Science.gov

Sample records for panorganismal metabolic response

  1. Panorganismal gut microbiome-host metabolic crosstalk.

    PubMed

    Martin, Francois-Pierre J; Sprenger, Norbert; Yap, Ivan K S; Wang, Yulan; Bibiloni, Rodrigo; Rochat, Florence; Rezzi, Serge; Cherbut, Christine; Kochhar, Sunil; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy K

    2009-04-01

    Coevolution shapes interorganismal crosstalk leading to profound and diverse cellular and metabolic changes as observed in gut dysbiosis in human diseases. Here, we modulated a simplified gut microbiota using pro-, pre-, and synbiotics to assess the depth of systemic metabolic exchanges in mice, using a multicompartmental modeling approach with metabolic signatures from 10 tissue/fluid compartments. The nutritionally induced microbial changes modulated host lipid, carbohydrate, and amino acid metabolism at a panorganismal scale. Galactosyl-oligosaccharides reduced lipogenesis, triacylglycerol incorporation into lipoproteins and triglyceride concentration in the liver and the kidney. Those changes were not correlated with decreased plasma lipoproteins that were specifically induced by L. rhamnosus supplementation. Additional alteration of transmethylation metabolic pathways (homocysteine-betaine) was observed in the liver and the pancreas following pre- and synbiotic microbial modulation, which may be of interest for control of glucose metabolism and insulin sensitivity. Probiotics also reduced hepatic glycogen and glutamine and adrenal ascorbate with inferred effects on energy homeostasis, antioxidation, and steroidogenesis. These studies show the breadth and the depth of gut microbiome modulations of host biochemistry and reveal that major mammalian metabolic processes are under symbiotic homeostatic control.

  2. Selected Metabolic Responses to Skateboarding

    ERIC Educational Resources Information Center

    Hetzler, Ronald K.; Hunt, Ian; Stickley, Christopher D.; Kimura, Iris F.

    2011-01-01

    Despite the popularity of skateboarding worldwide, the authors believe that no previous studies have investigated the metabolic demands associated with recreational participation in the sport. Although metabolic equivalents (METs) for skateboarding were published in textbooks, the source of these values is unclear. Therefore, the rise in…

  3. Response to trauma and metabolic changes: posttraumatic metabolism.

    PubMed

    Şimşek, Turgay; Şimşek, Hayal Uzelli; Cantürk, Nuh Zafer

    2014-01-01

    Stress response caused by events such as surgical trauma includes endocrine, metabolic and immunological changes. Stress hormones and cytokines play a role in these reactions. More reactions are induced by greater stress, ultimately leading to greater catabolic effects. Cuthbertson reported the characteristic response that occurs in trauma patients: protein and fat consumption and protection of body fluids and electrolytes because of hypermetabolism in the early period. The oxygen and energy requirement increases in proportion to the severity of trauma. The awareness of alterations in amino acid, lipid, and carbohydrate metabolism changes in surgical patients is important in determining metabolic and nutritional support. The main metabolic change in response to injury that leads to a series of reactions is the reduction of the normal anabolic effect of insulin, i.e. the development of insulin resistance. Free fatty acids are primary sources of energy after trauma. Triglycerides meet 50 to 80 % of the consumed energy after trauma and in critical illness. Surgical stress and trauma result in a reduction in protein synthesis and moderate protein degradation. Severe trauma, burns and sepsis result in increased protein degradation. The aim of glucose administration to surgical patients during fasting is to reduce proteolysis and to prevent loss of muscle mass. In major stress such as sepsis and trauma, it is important both to reduce the catabolic response that is the key to faster healing after surgery and to obtain a balanced metabolism in the shortest possible time with minimum loss. For these reasons, the details of metabolic response to trauma should be known in managing these situations and patients should be treated accordingly.

  4. Metabolic responses during postprandial exercise.

    PubMed

    Kang, Jie; Raines, Emily; Rosenberg, Joseph; Ratamess, Nicholas; Naclerio, Fernando; Faigenbaum, Avery

    2013-01-01

    To examine metabolic interaction between meal and exercise, 10 men and 10 women completed three trials: (1) exercise (E), (2) consumption of a meal (M), and (3) consumption of a meal followed by exercise (M+E). All trials commenced after an overnight fast and were preceded by a rest period in which resting metabolic rate (RMR) was determined. The meal contained 721 kilocalories composed of 41%, 36%, and 23% of carbohydrate, lipids, and protein, respectively. Exercise protocol consisted of three continuous 10-minute cycling at 50%, 60%, and 70% VO2peak. Measurement began 60 min after the start of the meal and included VO2 that was used to determine meal-induced thermogenesis (MIT). VO2 was greater (p < .05) in M+E than in E at 50% and 60% VO2peak. MIT was higher (p < .05) during exercise at 50% VO2peak than at rest. It appears that postprandial exercise of mild intensities can potentiate MIT, thereby provoking a greater increase in energy expenditure.

  5. Metabolic responses to simulated extravehicular activity

    NASA Technical Reports Server (NTRS)

    Williamson, Rebecca C.; Sharer, Peter J.; Webbon, Bruce W.; Rendon, Lisa R.

    1992-01-01

    Automatic control of the liquid cooling garment (LCG) worn by astronauts during extravehicular activity (EVA) would more efficiently regulate astronaut thermal comfort and improve astronaut productivity. An experiment was conducted in which subjects performed exercise profiles on a unique, supine upper body ergometer to elicit physiological and thermal responses similar to those achieved during zero-g EVAs. Results were analyzed to quantify metabolic rate, various body temperatures, and other heat balance parameters. Such data may lead to development of a microprocessor-based system to automatically maintain astronaut heat balance during extended EVAs.

  6. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems.

    PubMed

    McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P

    2015-09-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful.

  7. Metabolic response to exercise in dialysis patients.

    PubMed

    Castellino, P; Bia, M; DeFronzo, R A

    1987-12-01

    The metabolic and hormonal response to acute moderate intensity (40% of VO2 max) bicycle exercise was examined in eight uremic subjects maintained on chronic dialysis and in 12 age- and weight-matched controls before and after the administration of low dose, selective (metoprolol) and nonselective (propranolol), beta adrenergic antagonists. The fasting plasma glucose concentration and basal rates of hepatic glucose production (HGP) and tissue glucose disappearance (Rd) were similar in control and uremic subjects. In both groups HGP and Rd increased in parallel during exercise, and the plasma glucose concentration remained constant at the fasting level. However, the increments in Rd (2.27 +/- 0.27 vs. 0.87 +/- 0.31 mg/kg.min, P less than 0.01) and HGP (2.47 +/- 0.22 vs. 0.92 +/- 0.19 mg/kg.min, P less than 0.01) were 2.5-3 fold greater in the control compared to uremic subjects. Although the VO2max was decreased by 50% (39 +/- 2 vs. 20 +/- 2 ml/min.kg; P less than 0.01), the correlation between Rd and VO2max was weak (r = 0.33, P less than 0.10), suggesting that factors other than diminished physical fitness contribute to diminished tissue uptake of glucose in the dialyzed uremic patients. Following the cessation of exercise, HGP and Rd promptly returned toward basal levels in both uremic and control subjects. The glucose homeostatic response to exercise was not significantly altered by either propranolol or metoprolol. In the postabsorptive state fasting levels of insulin, glucagon, epinephrine, and norepinephrine all were significantly increased in the uremic group (P less than 0.01 to 0.05). During exercise in the healthy young controls the plasma insulin concentration declined and plasma epinephrine and norepinephrine levels rose three- to fourfold. In contrast, in uremics plasma insulin failed to fall (P less than 0.05) and the increase in circulating epinephrine and norepinephrine levels was markedly impaired (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Metabolic host responses to infection by intracellular bacterial pathogens

    PubMed Central

    Eisenreich, Wolfgang; Heesemann, Jürgen; Rudel, Thomas; Goebel, Werner

    2013-01-01

    The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies. PMID:23847769

  9. Global Metabolic Responses to Salt Stress in Fifteen Species

    PubMed Central

    Pollak, Georg R.; Kuehne, Andreas; Sauer, Uwe

    2016-01-01

    Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear which, if any, of the metabolic responses to osmotic stress are conserved among diverse organisms or confined to particular groups of species. Here we investigate the global metabolic responses of twelve bacteria, two yeasts and two human cell lines exposed to sustained hyperosmotic salt stress by measuring semiquantitative levels of hundreds of cellular metabolites using nontargeted metabolomics. Beyond the accumulation of osmoprotectants, we observed significant changes of numerous metabolites in all species. Global metabolic responses were predominantly species-specific, yet individual metabolites were characteristically affected depending on species’ taxonomy, natural habitat, envelope structure or salt tolerance. Exploiting the breadth of our dataset, the correlation of individual metabolite response magnitudes across all species implicated lower glycolysis, tricarboxylic acid cycle, branched-chain amino acid metabolism and heme biosynthesis to be generally important for salt tolerance. Thus, our findings place the global metabolic salt stress response into a phylogenetic context and provide insights into the cellular phenotype associated with salt tolerance. PMID:26848578

  10. Metabolic and Cardiovascular Responses of Children during Prolonged Physical Activity.

    ERIC Educational Resources Information Center

    Chausow, Sharon A.; And Others

    1984-01-01

    Metabolic and cardiovascular responses during 45 minutes of continuous moderate intensity exercise were investigated in 11 children, 8-11 years of age. Results indicate that children exhibit metabolic and cardiovascular adjustments similar to those noted in adults during prolonged exercise. (Author/JMK)

  11. Reproducibility of regional brain metabolic responses to lorazepam

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Overall, J. |

    1996-10-01

    Changes in regional brain glucose metabolism in response to benzodiazepine agonists have been used as indicators of benzodiazepine-GABA receptor function. The purpose of this study was to assess the reproducibility of these responses. Sixteen healthy right-handed men underwent scanning with PET and [{sup 18}F]fluorodeoxyglucose (FDG) twice: before placebo and before lorazepam (30 {mu}g/kg). The same double FDG procedure was repeated 6-8 wk later on the men to assess test-retest reproducibility. The regional absolute brain metabolic values obtained during the second evaluation were significantly lower than those obtained from the first evaluation regardless of condition (p {le} 0.001). Lorazepam significantly and consistently decreased both whole-brain metabolism and the magnitude. The regional pattern of the changes were comparable for both studies (12.3% {plus_minus} 6.9% and 13.7% {plus_minus} 7.4%). Lorazepam effects were the largest in the thalamus (22.2% {plus_minus} 8.6% and 22.4% {plus_minus} 6.9%) and occipital cortex (19% {plus_minus} 8.9% and 21.8% {plus_minus} 8.9%). Relative metabolic measures were highly reproducible both for pharmacolgic and replication condition. This study measured the test-retest reproducibility in regional brain metabolic responses, and although the global and regional metabolic values were significantly lower for the repeated evaluation, the response to lorazepam was highly reproducible. 1613 refs., 3 figs., 3 tabs.

  12. Evaluating metabolic response to light exposure in Lactobacillus species via targeted metabolic profiling.

    PubMed

    Xu, Mengyang; Zhong, Fanyi; Zhu, Jiangjiang

    2017-02-01

    This study reported metabolic profiles of three representative strains from Lactobacillus species, and explored their metabolic response to visible light exposure. We utilized strains from three Lactobacillus species, Lactobacillus acidophilus, Lactobacillus fermentum and Lactobacillus delbrueckii as our model bacteria and applied mass spectrometry base targeted metabolomics to specifically investigate 221 metabolites within multiple metabolic pathways. Similar and diverse metabolome from three tested strains were discovered. Furthermore, all three Lactobacillus strains demonstrated different metabolic profiles in comparison between light expose verse control. In all three strains, 12 metabolites were detected to have significant differences (p-value<0.01) in light exposure culture compared to the control samples (culture grown without light exposure). Principal components analysis using these significantly changed metabolites clearly separated the exposure and control groups in all three studied Lactobacillus strains. Additionally, metabolic pathway impact analysis indicated that several commonly impacted pathways can be observed.

  13. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast

    PubMed Central

    Henry, Susan A.; Gaspar, Maria L.; Jesch, Stephen A.

    2014-01-01

    This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed. PMID:24418527

  14. Metabolic Response to Hemorrhage in Swine.

    DTIC Science & Technology

    fatty acid, triglyceride growth hormone and glucagon response of swine to shock was completed. Results of a fourth study comparing venous and arterial lactate are also summarized. (Author Modified Abstract)

  15. Metabolic response and fatigue in soccer.

    PubMed

    Bangsbo, Jens; Iaia, Fedon Marcello; Krustrup, Peter

    2007-06-01

    The physical demands in soccer have been studied intensively, and the aim of the present review is to provide an overview of metabolic changes during a game and their relation to the development of fatigue. Heart-rate and body-temperature measurements suggest that for elite soccer players the average oxygen uptake during a match is around 70% of maximum oxygen uptake (VO2max). A top-class player has 150 to 250 brief intense actions during a game, indicating that the rates of creatine-phosphate (CP) utilization and glycolysis are frequently high during a game, which is supported by findings of reduced muscle CP levels and severalfold increases in blood and muscle lactate concentrations. Likewise, muscle pH is lowered and muscle inosine monophosphate (IMP) elevated during a soccer game. Fatigue appears to occur temporarily during a game, but it is not likely to be caused by elevated muscle lactate, lowered muscle pH, or change in muscle-energy status. It is unclear what causes the transient reduced ability of players to perform maximally. Muscle glycogen is reduced by 40% to 90% during a game and is probably the most important substrate for energy production, and fatigue toward the end of a game might be related to depletion of glycogen in some muscle fibers. Blood glucose and catecholamines are elevated and insulin lowered during a game. The blood free-fatty-acid levels increase progressively during a game, probably reflecting an increasing fat oxidation compensating for the lowering of muscle glycogen. Thus, elite soccer players have high aerobic requirements throughout a game and extensive anaerobic demands during periods of a match leading to major metabolic changes, which might contribute to the observed development of fatigue during and toward the end of a game.

  16. Metabolic Profiling of the Response to an Oral Glucose Tolerance Test Detects Subtle Metabolic Changes

    PubMed Central

    Wopereis, Suzan; Rubingh, Carina M.; van Erk, Marjan J.; Verheij, Elwin R.; van Vliet, Trinette; Cnubben, Nicole H. P.; Smilde, Age K.; van der Greef, Jan; van Ommen, Ben; Hendriks, Henk F. J.

    2009-01-01

    Background The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one such tool that can provide novel insights into the impact of treatments on metabolism. Methodology To study the metabolic changes induced by a mild anti-inflammatory drug intervention, plasma metabolic profiling was applied in overweight human volunteers with elevated levels of the inflammatory plasma marker C-reactive protein. Liquid and gas chromatography mass spectrometric methods were used to detect high and low abundant plasma metabolites both in fasted conditions and during an oral glucose tolerance test. This is based on the concept that the resilience of the system can be assessed after perturbing a homeostatic situation. Conclusions Metabolic changes were subtle and were only detected using metabolic profiling in combination with an oral glucose tolerance test. The repeated measurements during the oral glucose tolerance test increased statistical power, but the metabolic perturbation also revealed metabolites that respond differentially to the oral glucose tolerance test. Specifically, multiple metabolic intermediates of the glutathione synthesis pathway showed time-dependent suppression in response to the glucose challenge test. The fact that this is an insulin sensitive pathway suggests that inflammatory modulation may alter insulin signaling in overweight men. PMID:19242536

  17. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  18. In situ metabolic flux analysis to quantify the liver metabolic response to experimental burn injury.

    PubMed

    Izamis, Maria-Louisa; Sharma, Nripen S; Uygun, Basak; Bieganski, Robert; Saeidi, Nima; Nahmias, Yaakov; Uygun, Korkut; Yarmush, Martin L; Berthiaume, Francois

    2011-04-01

    Trauma such as burns induces a hypermetabolic response associated with altered central carbon and nitrogen metabolism. The liver plays a key role in these metabolic changes; however, studies to date have evaluated the metabolic state of liver using ex vivo perfusions or isotope labeling techniques targeted to specific pathways. Herein, we developed a unique mass balance approach to characterize the metabolic state of the liver in situ, and used it to quantify the metabolic changes to experimental burn injury in rats. Rats received a sham (control uninjured), 20% or 40% total body surface area (TBSA) scald burn, and were allowed to develop a hypermetabolic response. One day prior to evaluation, all animals were fasted to deplete glycogen stores. Four days post-burn, blood flow rates in major vessels of the liver were measured, and blood samples harvested. We combined measurements of metabolite concentrations and flow rates in the major vessels entering and leaving the liver with a steady-state mass balance model to generate a quantitative picture of the metabolic state of liver. The main findings were: (1) Sham-burned animals exhibited a gluconeogenic pattern, consistent with the fasted state; (2) the 20% TBSA burn inhibited gluconeogenesis and exhibited glycolytic-like features with very few other significant changes; (3) the 40% TBSA burn, by contrast, further enhanced gluconeogenesis and also increased amino acid extraction, urea cycle reactions, and several reactions involved in oxidative phosphorylation. These results suggest that increasing the severity of injury does not lead to a simple dose-dependent metabolic response, but rather leads to qualitatively different responses.

  19. Regulation of immune responses by L-arginine metabolism.

    PubMed

    Bronte, Vincenzo; Zanovello, Paola

    2005-08-01

    L-Arginine is an essential amino acid for birds and young mammals, and it is a conditionally essential amino acid for adult mammals, as it is important in situations in which requirements exceed production, such as pregnancy. Recent findings indicate that increased metabolism of L-arginine by myeloid cells can result in the impairment of lymphocyte responses to antigen during immune responses and tumour growth. Two enzymes that compete for L-arginine as a substrate - arginase and nitric-oxide synthase - are crucial components of this lymphocyte-suppression pathway, and the metabolic products of these enzymes are important moderators of T-cell function. This Review article focuses on the relevance of L-arginine metabolism by myeloid cells for immunity under physiological and pathological conditions.

  20. Nutrient and Metabolic Sensing in T Cell Responses

    PubMed Central

    Wei, Jun; Raynor, Jana; Nguyen, Thanh-Long M.; Chi, Hongbo

    2017-01-01

    T cells play pivotal roles in shaping host immune responses in infectious diseases, autoimmunity, and cancer. The activation of T cells requires immune and growth factor-derived signals. However, alterations in nutrients and metabolic signals tune T cell responses by impinging upon T cell fates and immune functions. In this review, we summarize how key nutrients, including glucose, amino acids, and lipids, and their sensors and transporters shape T cell responses. We also briefly discuss regulation of T cell responses by oxygen and energy sensing mechanisms. PMID:28337199

  1. Parasites, nutrition, immune responses, and biology of metabolic tissues.

    PubMed

    Shea-Donohue, Terez; Qin, Bolin; Smith, Allen

    2017-02-24

    Nutritional immunology, immunometabolism, and identification of novel immunotherapeutic targets, are areas of active investigation in parasitology. There is a well-documented crosstalk among immune cells and cells in metabolically active tissues that is important for homeostasis. The numbers and function of these cells are altered by obesity leading to inflammation. A variety of helminths spend some part of their life cycle in the gastrointestinal tract and even entirely enteral nematode infections exert beneficial effects on glucose and lipid metabolism. The foundation of this review is the ability of enteric nematode infections to improve obesity-induced type 2 diabetes and the metabolic syndrome, which are significant health issues in developed areas. It considers the impact of nutrition and specific nutritional deficiencies, which are occur in both undeveloped and developed areas, on the host's ability mount a protective immune response against parasitic nematodes. There are a number of proposed mechanisms by which parasitic nematodes can impact metabolism including effects gastrointestinal hormones, altering epithelial function, and changing the number and/or phenotype of immune cells in metabolic tissues. Nematodes can also exert their beneficial effects through Th2 cytokines that activate the transcription factor STAT6, which upregulates genes that regulate glucose and lipid metabolism. This article is protected by copyright. All rights reserved.

  2. Fetal and maternal metabolic responses to exercise during pregnancy.

    PubMed

    Mottola, Michelle F; Artal, Raul

    2016-03-01

    Pregnancy is characterized by physiological, endocrine and metabolic adaptations creating a pseudo-diabetogenic state of progressive insulin resistance. These adaptations occur to sustain continuous fetal requirements for nutrients and oxygen. Insulin resistance develops at the level of the skeletal muscle, and maternal exercise, especially activity involving large muscle groups improve glucose tolerance and insulin sensitivity. We discuss the maternal hormonal and metabolic changes associated with a normal pregnancy, the metabolic dysregulation that may occur leading to gestational diabetes mellitus (GDM), and the consequences to mother and fetus. We will then examine the acute and chronic (training) responses to exercise in the non-pregnant state and relate these alterations to maternal exercise in a low-risk pregnancy, how exercise can be used to regulate glucose tolerance in women at risk for or diagnosed with GDM. Lastly, we present key exercise guidelines to help maintain maternal glucose regulation and suggest future research directions.

  3. Metabolic PET Imaging in Cancer Detection and Therapy Response

    PubMed Central

    Zhu, Aizhi; Lee, Daniel; Shim, Hyunsuk

    2010-01-01

    Positron emission tomography (PET) is a noninvasive imaging technique that provides a functional or metabolic assessment of normal tissue or disease conditions. 18F-fluorodeoxyglucose PET imaging (FDG-PET) is widely used clinically for tumor imaging due to increased glucose metabolism in most types of tumors, and has been shown to improve the diagnosis and subsequent treatment of cancers. In this chapter, we review its use in cancer diagnosis, staging, restaging, and assessment of response to treatment. In addition, other metabolic PET imaging agents in research or clinical trial stages are discussed, including amino acid analogs based on increased protein synthesis, and choline, which is based on increased membrane lipid synthesis. Amino acid analogs and choline are more specific to tumor cells than FDG, so they play an important role in differentiating cancers from benign conditions and in the diagnosis of cancers with low FDG uptake or high background FDG uptake. For decades, researchers have shown that tumors have altered metabolic profiles and display elevated uptake of glucose, amino acids, and lipids, which can be used for cancer diagnosis and monitoring of the therapeutic response with excellent signal-to-noise ratios. PMID:21362516

  4. Metabolic Context Regulates Distinct Hypothalamic Transcriptional Responses to Antiaging Interventions

    PubMed Central

    Stranahan, Alexis M.; Martin, Bronwen; Chadwick, Wayne; Park, Sung-Soo; Wang, Liyun; Becker, Kevin G.; WoodIII, William H.; Zhang, Yongqing; Maudsley, Stuart

    2012-01-01

    The hypothalamus is an essential relay in the neural circuitry underlying energy metabolism that needs to continually adapt to changes in the energetic environment. The neuroendocrine control of food intake and energy expenditure is associated with, and likely dependent upon, hypothalamic plasticity. Severe disturbances in energy metabolism, such as those that occur in obesity, are therefore likely to be associated with disruption of hypothalamic transcriptomic plasticity. In this paper, we investigated the effects of two well-characterized antiaging interventions, caloric restriction and voluntary wheel running, in two distinct physiological paradigms, that is, diabetic (db/db) and nondiabetic wild-type (C57/Bl/6) animals to investigate the contextual sensitivity of hypothalamic transcriptomic responses. We found that, both quantitatively and qualitatively, caloric restriction and physical exercise were associated with distinct transcriptional signatures that differed significantly between diabetic and non-diabetic mice. This suggests that challenges to metabolic homeostasis regulate distinct hypothalamic gene sets in diabetic and non-diabetic animals. A greater understanding of how genetic background contributes to hypothalamic response mechanisms could pave the way for the development of more nuanced therapeutics for the treatment of metabolic disorders that occur in diverse physiological backgrounds. PMID:22934110

  5. Pythons metabolize prey to fuel the response to feeding.

    PubMed Central

    Starck, J. Matthias; Moser, Patrick; Werner, Roland A.; Linke, Petra

    2004-01-01

    We investigated the energy source fuelling the post-feeding metabolic upregulation (specific dynamic action, SDA) in pythons (Python regius). Our goal was to distinguish between two alternatives: (i) snakes fuel SDA by metabolizing energy depots from their tissues; or (ii) snakes fuel SDA by metabolizing their prey. To characterize the postprandial response of pythons we used transcutaneous ultrasonography to measure organ-size changes and respirometry to record oxygen consumption. To discriminate unequivocally between the two hypotheses, we enriched mice (= prey) with the stable isotope of carbon (13C). For two weeks after feeding we quantified the CO2 exhaled by pythons and determined its isotopic 13C/12C signature. Ultrasonography and respirometry showed typical postprandial responses in pythons. After feeding, the isotope ratio of the exhaled breath changed rapidly to values that characterized enriched mouse tissue, followed by a very slow change towards less enriched values over a period of two weeks after feeding. We conclude that pythons metabolize their prey to fuel SDA. The slowly declining delta13C values indicate that less enriched tissues (bone, cartilage and collagen) from the mouse become available after several days of digestion. PMID:15255044

  6. [Cardiorespiratory and metabolic responses during mountain hiking and downhill skiing].

    PubMed

    Burtscher, Martin; Faulhaber, Martin; Kornexl, Elmar; Nachbauer, Werner

    2005-04-01

    In Austria, more than 10 million hikers and skiers annually visit moderate altitudes. Nevertheless, there is little information on the frequency of cardiovascular diseases in mountaineers and the exercise responses during physical activity in the mountains. The prevalence of cardiovascular diseases was determined by an inquiry of 527 mountain hikers and 785 alpine skiers. Two groups (n = 35) performed step tests at low altitude (600 m) and at high altitude (2000 m and 3500 m). Exercise responses to hiking and skiing were recorded in the subjects of the third group (n = 10). Hiking and skiing at moderate intensity evoked moderate cardiovascular and metabolic responses which are also well tolerated by persons with non-severe cardiovascular and respiratory diseases. Low fitness, increasing altitude and intensity increased exercise responses, thereby enhancing the probability of cardiovascular events. A high degree of fitness based on regular training decreases exercise responses and improves exercise tolerance.

  7. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate.

    PubMed

    Wone, B W M; Madsen, P; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, D A; Hayes, J P

    2015-04-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question.

  8. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate

    PubMed Central

    Wone, B W M; Madsen, P; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, D A; Hayes, J P

    2015-01-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question. PMID:25604947

  9. Biofilm Shows Spatially Stratified Metabolic Responses to Contaminant Exposure

    SciTech Connect

    Cao, Bin; Majors, Paul D.; Ahmed, B.; Renslow, Ryan S.; Sylvia, Crystal P.; Shi, Liang; Kjelleberg, Staffan; Fredrickson, Jim K.; Beyenal, Haluk

    2012-11-01

    The objective of this study was to elucidate the spatiotemporal responses of live S. oneidensis MR-1 biofilms to U(VI) (uranyl, UO22+) and Cr(VI) (chromate, CrO42-), important environmental contaminants at DOE contaminated sites. Toward this goal, we applied noninvasive nuclear magnetic resonance (NMR) imaging, diffusion, relaxation and spectroscopy techniques to monitor in situ spatiotemporal responses of S. oneidensis biofilms to U(VI) and Cr(VI) exposure in terms of changes in biofilm structures, diffusion properties, and cellular metabolism. Exposure to U(VI) or Cr(VI) did not appear to change the overall biomass distribution but caused changes in the physicochemical microenvironments inside the biofilm as indicated by diffusion measurements. Changes in the diffusion properties of the biofilms in response to U(VI) and Cr(VI) exposure imply a novel function of the extracellular polymeric substances (EPS) affecting the biotransformation and transport of contaminants in the environment. In the presence of U(VI) or Cr(VI), the anaerobic metabolism of lactate was inhibited significantly, although the biofilms were still capable of reducing U(VI) and Cr(VI). Local concentrations of Cr(III)aq in the biofilm suggested relatively high Cr(VI) reduction activities at the top of the biofilm, near the medium-biofilm interface. The depth-resolved metabolic activities of the biofilm suggested higher diversion effects of gluconeogenesis and C1 metabolism pathways at the bottom of the biofilm and in the presence of U(VI). This study provides a noninvasive means to investigate spatiotemporal responses of biofilms, including surface-associated microbial communities in engineering, natural and medical settings, to various environmental perturbations including exposure to environmental contaminants and antimicrobials.

  10. Thermal sensation and thermophysiological responses to metabolic step-changes

    NASA Astrophysics Data System (ADS)

    Goto, T.; Toftum, J.; de Dear, R.; Fanger, P. O.

    2006-05-01

    This study investigated the effect on thermal perception and thermophysiological variables of controlled metabolic excursions of various intensities and durations. Twenty-four subjects were alternately seated on a chair or exercised by walking on a treadmill at a temperature predicted to be neutral at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation started to rise or decline immediately (within 1 min) after a change of activity, which means that even moderate activity changes of short duration affect thermal perceptions of humans. After approximately 15 20 min under constant activity, subjective thermal responses approximated the steady-state response. The sensitivity of thermal sensation to changes in core temperature was higher for activity down-steps than for up-steps. A model was proposed that estimates transient thermal sensation after metabolic step-changes. Based on predictions by the model, weighting factors were suggested to estimate a representative average metabolic rate with varying activity levels, e.g. for the prediction of thermal sensation by steady-state comfort models. The activity during the most recent 5 min should be weighted 65%, during the prior 10 5 min 25% and during the prior 20 10 min 10%.

  11. Vasodilator responses and endothelin-dependent vasoconstriction in metabolically healthy obesity and the metabolic syndrome

    PubMed Central

    Schinzari, Francesca; Iantorno, Micaela; Campia, Umberto; Mores, Nadia; Rovella, Valentina; Tesauro, Manfredi; Di Daniele, Nicola

    2015-01-01

    Patients with metabolically healthy obesity (MHO) do not present the cluster of metabolic abnormalities that define the metabolic syndrome (MetS). Whether MHO is associated with lower impairment of vasoreactivity than the MetS is unknown. For this purpose, forearm blood flow (FBF) responses were measured by strain-gauge plethysmography during the intra-arterial infusion of acetylcholine (ACh), sodium nitroprusside (SNP), and/or the selective endothelin type A (ETA) receptor blocker BQ-123 in 119 obese individuals with MHO (n = 34) or with the MetS (n = 85) and in healthy lean controls (n = 56). ACh and SNP caused a significant vasodilation in both obese and lean participants (all P < 0.001). However, the response to both agents was significantly lower in the obese than in the control group (both P < 0.001). Among the obese participants, the reactivity to ACh was higher in MHO than in MetS patients, whereas the responsiveness to SNP was equally impaired in both groups (P = 0.45). Infusion of BQ-123 significantly increased FBF in obese patients (P < 0001), but not in the lean participants; hence, FBF following ETA receptor blockade was higher in both obese groups than in controls (both P < 0.001). FBF response to BQ-123 was significantly higher in patients with the MetS than in those with MHO (P = 0.007). In conclusion, patients with MHO have abnormal vascular reactivity, although their endothelial dysfunction is less pronounced than in patients with the MetS. These findings indicate that obesity is associated with vascular damage independent of those metabolic abnormalities underlying the MetS. PMID:26374766

  12. Enhanced regional brain metabolic responses to benzodiazepines in cocaine abusers

    SciTech Connect

    Volkow, N.D.; Wang, G.J.; Fowler, J.S.

    1997-05-01

    While dopamine (DA) appears to be crucial for cocaine reinforcement, its involvement in cocaine addiction is much less clear. Using PET we have shown persistent reductions in striatal DA D2 receptors (which arc predominantly located on GABA cells) in cocaine abusers. This finding coupled to GABA`s role as an effector for DA led us to investigate if there were GABAergic abnormalities in cocaine abusers. In this study we measured regional brain metabolic responses to lorazepam, to indirectly assess GABA function (benzodiazepines facilitate GABAergic neurotransmission). Methods: The experimental subjects consisted of 12 active cocaine abusers and 32 age matched controls. Each subject underwent two PET FDG scans obtained within 1 week of each other. The first FDG scan was obtained after administration of placebo (3 cc of saline solution) given 40-50 minutes prior to FDG; and the second after administration of lorazepam (30 {mu}g/kg) given 40-50 minutes prior to FDG. The subjects were blind to the drugs received. Results: Lorazepam-induced sleepiness was significantly greater in abusers than in controls (p<0.001). Lorazepam-induced decreases in brain glucose metabolism were significantly larger in cocaine abusers than in controls. Whereas in controls whole brain metabolism decreased 13{+-}7 %, in cocaine abusers it decreased 21{+-}13 % (p < 0.05). Lorazepam-induced decrements in regional metabolism were significantly larger in striatum (p < 0.0 1), thalamus (p < 0.01) and cerebellum (p < 0.005) of cocaine abusers than of controls (ANOVA diagnosis by condition (placebo versus lorazepam) interaction effect). The only brain region for which the absolute metabolic changes-induced by lorazepam in cocaine abusers were equivalent to those in controls was the orbitofrontal cortex. These results document an accentuated sensitivity to benzodiazepines in cocaine abusers which is compatible with disrupted GABAergic function in these patients.

  13. Postprandial exercise: prioritization or additivity of the metabolic responses?

    PubMed

    Bennett, A F; Hicks, J W

    2001-06-01

    Monitor lizards (Varanus exanthematicus) were used to examine the prioritization or additivity of the metabolic responses associated with exercise and digestion, either of which can elevate metabolic rate independently. Rates of oxygen consumption (V(O2)) and ventilation (V(E)) were measured in lizards during fasting exercise, postprandial rest and postprandial exercise. In fasting animals, V(O2) increased with walking speed to a maximal value of 15.9 ml O(2)kg(-1)min(-1) at 1.25 km h(-1). Postprandial resting metabolic rate was elevated significantly above fasting levels (4.1 versus 2.0 ml O(2)kg(-1)min(-1)). During postprandial exercise, V(O2) increased to a maximal value of 18.8 ml O(2)kg(-1)min(-1) at 1.25 km h(-1). At every level of exercise, V(O2) was significantly higher in postprandial animals by a similar increment; the maximal rate of oxygen consumption was significantly increased by 18% in postprandial individuals. Maximal V(E) did not differ in fasting and postprandial animals and, therefore, the greater V(O2)(max) of postprandial animals cannot be attributed to a higher ventilation rate. Air convection requirement (V(E)/V(O2)) is significantly lower in postprandial animals at rest and at all levels of exercise, indicating a relative hypoventilation and increased pulmonary oxygen extraction efficiency. We suggest that this increased oxygen extraction may be due to decreased cardiopulmonary shunts and/or to lower mixed venous oxygen content. The data unequivocally support an additivity model rather than prioritization models for the allocation of elevated metabolic rate: the postprandial metabolic increment is not suspended during exercise, but rather is added onto the cost of exercise. It is clear that fasting exercise did not elicit truly maximal levels of cardiopulmonary oxygen transport in these animals, indicating problems for design models that make this assumption.

  14. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions

    PubMed Central

    Prakash, Chandra; Zuniga, Baltazar; Song, Chung Seog; Jiang, Shoulei; Cropper, Jodie; Park, Sulgi; Chatterjee, Bandana

    2016-01-01

    Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug’s impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and

  15. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions.

    PubMed

    Prakash, Chandra; Zuniga, Baltazar; Song, Chung Seog; Jiang, Shoulei; Cropper, Jodie; Park, Sulgi; Chatterjee, Bandana

    Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and

  16. Metabolomics reveals insect metabolic responses associated with fungal infection.

    PubMed

    Xu, Yong-Jiang; Luo, Feifei; Gao, Qiang; Shang, Yanfang; Wang, Chengshu

    2015-06-01

    The interactions between insects and pathogenic fungi are complex. We employed metabolomic techniques to profile insect metabolic dynamics upon infection by the pathogenic fungus Beauveria bassiana. Silkworm larvae were infected with fungal spores and microscopic observations demonstrated that the exhaustion of insect hemocytes was coupled with fungal propagation in the insect body cavity. Metabolomic analyses revealed that fungal infection could significantly alter insect energy and nutrient metabolisms as well as the immune defense responses, including the upregulation of carbohydrates, amino acids, fatty acids, and lipids, but the downregulation of eicosanoids and amines. The insect antifeedant effect of the fungal infection was evident with the reduced level of maclurin (a component of mulberry leaves) in infected insects but elevated accumulations in control insects. Insecticidal and cytotoxic mycotoxins like oosporein and beauveriolides were also detected in insects at the later stages of infection. Taken together, the metabolomics data suggest that insect immune responses are energy-cost reactions and the strategies of nutrient deprivation, inhibition of host immune responses, and toxin production would be jointly employed by the fungus to kill insects. The data obtained in this study will facilitate future functional studies of genes and pathways associated with insect-fungus interactions.

  17. Control of immune response by amino acid metabolism.

    PubMed

    Grohmann, Ursula; Bronte, Vincenzo

    2010-07-01

    The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.

  18. Gut microbiota dictates the metabolic response of Drosophila to diet.

    PubMed

    Wong, Adam C-N; Dobson, Adam J; Douglas, Angela E

    2014-06-01

    Animal nutrition is profoundly influenced by the gut microbiota, but knowledge of the scope and core mechanisms of the underlying animal-microbiota interactions is fragmentary. To investigate the nutritional traits shaped by the gut microbiota of Drosophila, we determined the microbiota-dependent response of multiple metabolic and performance indices to systematically varied diet composition. Diet-dependent differences between Drosophila bearing its unmanipulated microbiota (conventional flies) and experimentally deprived of its microbiota (axenic flies) revealed evidence for: microbial sparing of dietary B vitamins, especially riboflavin, on low-yeast diets; microbial promotion of protein nutrition, particularly in females; and microbiota-mediated suppression of lipid/carbohydrate storage, especially on high sugar diets. The microbiota also sets the relationship between energy storage and body mass, indicative of microbial modulation of the host signaling networks that coordinate metabolism with body size. This analysis identifies the multiple impacts of the microbiota on the metabolism of Drosophila, and demonstrates that the significance of these different interactions varies with diet composition and host sex.

  19. Metabolic Response of Clostridium ljungdahlii to Oxygen Exposure

    PubMed Central

    Whitham, Jason M.; Tirado-Acevedo, Oscar; Chinn, Mari S.; Pawlak, Joel J.

    2015-01-01

    Clostridium ljungdahlii is an important synthesis gas-fermenting bacterium used in the biofuels industry, and a preliminary investigation showed that it has some tolerance to oxygen when cultured in rich mixotrophic medium. Batch cultures not only continue to grow and consume H2, CO, and fructose after 8% O2 exposure, but fermentation product analysis revealed an increase in ethanol concentration and decreased acetate concentration compared to non-oxygen-exposed cultures. In this study, the mechanisms for higher ethanol production and oxygen/reactive oxygen species (ROS) detoxification were identified using a combination of fermentation, transcriptome sequencing (RNA-seq) differential expression, and enzyme activity analyses. The results indicate that the higher ethanol and lower acetate concentrations were due to the carboxylic acid reductase activity of a more highly expressed predicted aldehyde oxidoreductase (CLJU_c24130) and that C. ljungdahlii's primary defense upon oxygen exposure is a predicted rubrerythrin (CLJU_c39340). The metabolic responses of higher ethanol production and oxygen/ROS detoxification were found to be linked by cofactor management and substrate and energy metabolism. This study contributes new insights into the physiology and metabolism of C. ljungdahlii and provides new genetic targets to generate C. ljungdahlii strains that produce more ethanol and are more tolerant to syngas contaminants. PMID:26431975

  20. Biotransformation and metabolic response of cyanide in weeping willows.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong; Liu, Shuo

    2007-08-25

    Biotransformation and metabolic responses of plants to cyanide were investigated using pre-rooted plants of weeping willows (Salix babylonica L.) grown hydroponically in growth chambers and treated with potassium cyanide. Various physiological parameters of the plants were monitored to determine toxicity from exogenous cyanide exposure. Cyanide doses used in this study showed growth-promoting effects on plants, exhibiting higher measured values of transpiration rates, chlorophyll contents and soluble protein contents compared with the non-treated control plants. Superoxide dismutases (SOD), catalase (CAT) and peroxidase (POD) activities in leaves showed a slight change to cyanide application in most treatments. Of all selected parameters, soluble proteins of plants were the most sensitive indicator to cyanide application. Almost all applied cyanide was removed from the hydroponic solution in the presence of plants in all treatment groups. Small amounts of cyanide were detected in the plant tissues. Recovery of cyanide in different compartments of plants varied significantly, root being the dominant sink for cyanide accumulation. Mass balance studies showed that >97% of the applied cyanide was metabolized during transport through weeping willows and the metabolic rates of cyanide by plants were linearly increased with increasing of cyanide applied in the growth media. Results from this study indicated that neither visible toxic symptom nor metabolic lesion was observed for the plants after 192h of exposure, largely due to the well-established detoxification systems in willows. These findings suggest that cyanide has a beneficial role in plants and phytoremediation is a desirable solution of treating environmental sites contaminated with cyanide.

  1. The metabolic responses to aerial diffusion of essential oils.

    PubMed

    Wu, Yani; Zhang, Yinan; Xie, Guoxiang; Zhao, Aihua; Pan, Xiaolan; Chen, Tianlu; Hu, Yixue; Liu, Yumin; Cheng, Yu; Chi, Yi; Yao, Lei; Jia, Wei

    2012-01-01

    Anxiety disorders are the most prevalent psychiatric disorders and affect a great number of people worldwide. Essential oils, take effects through inhalation or topical application, are believed to enhance physical, emotional, and spiritual well-being. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of essential oils in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive gas chromatography time-of-flight mass spectrometry (GC-TOFMS) based metabonomics study that reveals the aromas-induced metabolic changes and the anxiolytic effect of aromas in elevated plus maze (EPM) induced anxiety model rats. The significant alteration of metabolites in the EPM group was attenuated by aromas treatment, concurrent with the behavioral improvement with significantly increased open arms time and open arms entries. Brain tissue and urinary metabonomic analysis identified a number of altered metabolites in response to aromas intervention. These metabolic changes included the increased carbohydrates and lowered levels of neurotransmitters (tryptophan, serine, glycine, aspartate, tyrosine, cysteine, phenylalanine, hypotaurine, histidine, and asparagine), amino acids, and fatty acids in the brain. Elevated aspartate, carbohydrates (sucrose, maltose, fructose, and glucose), nucleosides and organic acids such as lactate and pyruvate were also observed in the urine. The EPM induced metabolic differences observed in urine or brain tissue was significantly reduced after 10 days of aroma inhalation, as noted with the loss of statistical significance on many of the metabolites in the aroma-EPM group. This study demonstrates, for the first time, that the metabonomics approach can capture the subtle metabolic changes resulting from exposure to essential oils and provide the

  2. Blood Pressure Responses and Metabolic Effects of Hydrochlorothiazide and Atenolol

    PubMed Central

    Smith, Steven M.; Gong, Yan; Turner, Stephen T.; Cooper-DeHoff, Rhonda M.; Beitelshees, Amber L.; Chapman, Arlene B.; Boerwinkle, Eric; Bailey, Kent; Johnson, Julie A.; Gums, John G.

    2011-01-01

    BACKGROUND Thiazides and β-blockers cause adverse metabolic effects (AMEs), but whether these effects share predictors with blood pressure (BP) response is unknown. We aimed to determine whether AMEs are correlated with BP response in uncomplicated hypertensives. METHODS In a multicenter, open-label, parallel-group trial, we enrolled 569 persons, aged 17–65, with random assignment to 9 weeks of daily hydrochlorothiazide (HCTZ) or atenolol monotherapy, followed by 9 weeks of add-on therapy with the alternate agent. Measurements included home BP, averaged over 1 week, weight and fasting levels of serum glucose, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, and uric acid (UA) before and after monotherapy and after add-on therapy. RESULTS Increases in UA correlated with reductions in systolic BP (SBP) (r = −0.18; P = 0.003) and diastolic BP (DBP) (r = −0.20; P = 0.001) following HCTZ monotherapy and add-on therapy (r = −0.27 and r = −0.21, respectively; both P < 0.001). After adjustment for age, race, gender, and baseline body mass index (BMI), only the correlation between UA and DBP response became nonsignificant. Reductions in HDL correlated with systolic response following atenolol monotherapy (r = 0.18; P = 0.002) and with systolic and diastolic response following add-on therapy (r = 0.30 and r = 0.24, respectively; both P < 0.0001). These correlations remained significant after covariate adjustment. BP responses were not correlated with changes in glucose, LDL, triglycerides, or weight following either therapy. CONCLUSIONS BP response correlated with changes in UA following HCTZ therapy and HDL following atenolol therapy. No other significant correlations were observed between BP response and AMEs, suggesting that these effects generally do not share predictors. Patients should be monitored for AMEs, regardless of BP response. PMID:22089105

  3. Liposoluble vitamins in Crustacean feed: Metabolic and Histological responses.

    PubMed

    Fernández-Gimenez, Analía Verónica

    2016-05-01

    Vitamins are vital for normal growth and survival of living organisms and they are distributed in feedstuffs in small quantities. This review is focused on the liposoluble vitamins (A, D, E and K) in the diets and metabolic responses of the Argentine penaeoid shrimps Pleoticus muelleri and Artemesia longinaris, distributed along the South American coast line. Growth, survival and histological analyses serve as indicators of the nutritional value derived from vitamin deficiency. Liposoluble vitamins are also related to stress, antioxidant defense and immune response of shrimps. Effective diet for shrimp culture that provide not only macronutrients including protein and lipid but also micronutrients such as vitamins for optimal growth is an ever improving subject. This review may help formulating suitable feeds for shrimps.

  4. Dependence of carotid chemosensory responses on metabolic substrates.

    PubMed

    Spergel, D; Lahiri, S; Wilson, D F

    1992-11-20

    The dependence of the carotid chemosensory response to hypoxia on metabolic substrate and the hypothesis that lactic acidosis is essential for O2 chemoreception were tested. Effects of 3 types of substrate (glucose, glutamate and a mixture of amino acids) on the response to hypoxia (perfusate flow interruption) were measured (n = 33 carotid bodies). The response to nicotine (n = 25) was used to determine whether these effects were exclusive to the hypoxic response. The cat carotid body was perfused and superfused in vitro with modified Tyrode solution (pO2 > 400 Torr, pCO2 < 1 Torr, pH = 7.4) at 36 degrees C containing a given substrate for at least 15 min prior to flow interruption or nicotine injection. Without substrate, responses to flow interruption (n = 4) and nicotine (n = 2) were irreversibly depressed. With glucose, responses to flow interruption (n = 13) and nicotine (n = 8) increased in a concentration-dependent fashion. Glutamate (42 mM) alone (n = 11) or a mixture of amino acids (4.2 mM) plus 5.5 mM glucose (n = 12) substituted for 11 mM glucose (n = 10). Thus, glutamate (42 mM), or a mixture of amino acids (4.2 mM) or a high concentration of glucose (11 mM) can support chemosensory responses to flow interruption and nicotine. Since glutamate undergoes oxidative deamination to alpha-ketoglutarate without lactic acid production, O2 chemoreception does not depend on lactic acidosis.

  5. Systemic corazonin signalling modulates stress responses and metabolism in Drosophila

    PubMed Central

    Kubrak, Olga I.; Lushchak, Oleh V.; Zandawala, Meet

    2016-01-01

    Stress triggers cellular and systemic reactions in organisms to restore homeostasis. For instance, metabolic stress, experienced during starvation, elicits a hormonal response that reallocates resources to enable food search and readjustment of physiology. Mammalian gonadotropin-releasing hormone (GnRH) and its insect orthologue, adipokinetic hormone (AKH), are known for their roles in modulating stress-related behaviour. Here we show that corazonin (Crz), a peptide homologous to AKH/GnRH, also alters stress physiology in Drosophila. The Crz receptor (CrzR) is expressed in salivary glands and adipocytes of the liver-like fat body, and CrzR knockdown targeted simultaneously to both these tissues increases the fly's resistance to starvation, desiccation and oxidative stress, reduces feeding, alters expression of transcripts of Drosophila insulin-like peptides (DILPs), and affects gene expression in the fat body. Furthermore, in starved flies, CrzR-knockdown increases circulating and stored carbohydrates. Thus, our findings indicate that elevated systemic Crz signalling during stress coordinates increased food intake and diminished energy stores to regain metabolic homeostasis. Our study suggests that an ancient stress-peptide in Urbilateria evolved to give rise to present-day GnRH, AKH and Crz signalling systems. PMID:27810969

  6. Differential producibility analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis.

    PubMed

    Bonde, Bhushan K; Beste, Dany J V; Laing, Emma; Kierzek, Andrzej M; McFadden, Johnjoe

    2011-06-01

    A general paucity of knowledge about the metabolic state of Mycobacterium tuberculosis within the host environment is a major factor impeding development of novel drugs against tuberculosis. Current experimental methods do not allow direct determination of the global metabolic state of a bacterial pathogen in vivo, but the transcriptional activity of all encoded genes has been investigated in numerous microarray studies. We describe a novel algorithm, Differential Producibility Analysis (DPA) that uses a metabolic network to extract metabolic signals from transcriptome data. The method utilizes Flux Balance Analysis (FBA) to identify the set of genes that affect the ability to produce each metabolite in the network. Subsequently, Rank Product Analysis is used to identify those metabolites predicted to be most affected by a transcriptional signal. We first apply DPA to investigate the metabolic response of E. coli to both anaerobic growth and inactivation of the FNR global regulator. DPA successfully extracts metabolic signals that correspond to experimental data and provides novel metabolic insights. We next apply DPA to investigate the metabolic response of M. tuberculosis to the macrophage environment, human sputum and a range of in vitro environmental perturbations. The analysis revealed a previously unrecognized feature of the response of M. tuberculosis to the macrophage environment: a down-regulation of genes influencing metabolites in central metabolism and concomitant up-regulation of genes that influence synthesis of cell wall components and virulence factors. DPA suggests that a significant feature of the response of the tubercle bacillus to the intracellular environment is a channeling of resources towards remodeling of its cell envelope, possibly in preparation for attack by host defenses. DPA may be used to unravel the mechanisms of virulence and persistence of M. tuberculosis and other pathogens and may have general application for extracting

  7. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  8. PRMT5 modulates the metabolic response to fasting signals.

    PubMed

    Tsai, Wen-Wei; Niessen, Sherry; Goebel, Naomi; Yates, John R; Guccione, Ernesto; Montminy, Marc

    2013-05-28

    Under fasting conditions, increases in circulating glucagon maintain glucose balance by promoting hepatic gluconeogenesis. Triggering of the cAMP pathway stimulates gluconeogenic gene expression through the PKA-mediated phosphorylation of the cAMP response element binding (CREB) protein and via the dephosphorylation of the latent cytoplasmic CREB regulated transcriptional coactivator 2 (CRTC2). CREB and CRTC2 activities are increased in insulin resistance, in which they promote hyperglycemia because of constitutive induction of the gluconeogenic program. The extent to which CREB and CRTC2 are coordinately up-regulated in response to glucagon, however, remains unclear. Here we show that, following its activation, CRTC2 enhances CREB phosphorylation through an association with the protein arginine methyltransferase 5 (PRMT5). In turn, PRMT5 was found to stimulate CREB phosphorylation via increases in histone H3 Arg2 methylation that enhanced chromatin accessibility at gluconeogenic promoters. Because depletion of PRMT5 lowers hepatic glucose production and gluconeogenic gene expression, these results demonstrate how a chromatin-modifying enzyme regulates a metabolic program through epigenetic changes that impact the phosphorylation of a transcription factor in response to hormonal stimuli.

  9. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  10. Phosphorus stress in common bean: root transcript and metabolic responses.

    PubMed

    Hernández, Georgina; Ramírez, Mario; Valdés-López, Oswaldo; Tesfaye, Mesfin; Graham, Michelle A; Czechowski, Tomasz; Schlereth, Armin; Wandrey, Maren; Erban, Alexander; Cheung, Foo; Wu, Hank C; Lara, Miguel; Town, Christopher D; Kopka, Joachim; Udvardi, Michael K; Vance, Carroll P

    2007-06-01

    Phosphorus (P) is an essential element for plant growth. Crop production of common bean (Phaseolus vulgaris), the most important legume for human consumption, is often limited by low P in the soil. Functional genomics were used to investigate global gene expression and metabolic responses of bean plants grown under P-deficient and P-sufficient conditions. P-deficient plants showed enhanced root to shoot ratio accompanied by reduced leaf area and net photosynthesis rates. Transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs of 2,212 unigenes from a P deficiency root cDNA library. A total of 126 genes, representing different functional categories, showed significant differential expression in response to P: 62% of these were induced in P-deficient roots. A set of 372 bean transcription factor (TF) genes, coding for proteins with Inter-Pro domains characteristic or diagnostic for TF, were identified from The Institute of Genomic Research/Dana Farber Cancer Institute Common Bean Gene Index. Using real-time reverse transcription-polymerase chain reaction analysis, 17 TF genes were differentially expressed in P-deficient roots; four TF genes, including MYB TFs, were induced. Nonbiased metabolite profiling was used to assess the degree to which changes in gene expression in P-deficient roots affect overall metabolism. Stress-related metabolites such as polyols accumulated in P-deficient roots as well as sugars, which are known to be essential for P stress gene induction. Candidate genes have been identified that may contribute to root adaptation to P deficiency and be useful for improvement of common bean.

  11. SIRT4 has tumor suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism

    PubMed Central

    Jeong, Seung Min; Xiao, Cuiying; Finley, Lydia W.S; Lahusen, Tyler; Souza, Amanda L.; Pierce, Kerry; Li, Ying-Hua; Wang, Xiaoxu; Laurent, Gaëlle; German, Natalie J.; Xu, Xiaoling; Li, Cuiling; Wang, Rui-Hong; Lee, Jaewon; Csibi, Alfredo; Cerione, Richard; Blenis, John; Clish, Clary B.; Kimmelman, Alec; Deng, Chu-Xia; Haigis, Marcia C.

    2013-01-01

    SUMMARY DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into TCA cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest and tumor suppression. PMID:23562301

  12. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers.

    PubMed

    Burdick Sanchez, N C; Carroll, J A; Broadway, P R; Hughes, H D; Roberts, S L; Richeson, J T; Schmidt, T B; Vann, R C

    2016-07-01

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum

  13. Neuromuscular and Metabolic Responses to Three Different Resistance Exercise Methods

    PubMed Central

    Arazi, Hamid; Mirzaei, Bahman; Heidari, Naser

    2013-01-01

    Purpose The aim of this study was to compare the effect of resistance exercise with three different methods on integrated electromyography (IEMG) and metabolic responses in recreational athletes. Methods Twenty four males (mean 23.59±0.87 years) were randomly assigned to three experimental groups. Participants performed knee extension exercises: Slow (SL: 3-3, 3s for each concentric and eccentric action with 50% of 1 RM), Normal (NH: 1-1, 1 s for each concentric and eccentric action 80% of 1 RM) and Traditional (TH: 2-4, 2s for concentric and 4s for eccentric action with 80% of 1 RM). Plasma lactate, glucose and triglyceride concentration and IEMG was measured before and immediately after performing four sets of resistance exercise. Results Each method significantly decreased IEMG (P<0.05), but there was no significant difference between groups. Lactate was increased following TH and NH more than SL method (P<0.05). Each method significantly increased plasma glucose (P<0.05). Work considering time under tension (workTUT) was higher (P<0.05) during TH method than the other methods and during SL it was higher than NH method (P<0.05). Volume load was higher (P<0.05) during NH than the other two methods and during TH it was higher than SL method (P<0.05). Conclusion These results indicate that exercise intensity during the resistance exercise is important for the enhancement of lactate responses, but the slow resistance exercise method could induce acute neuromuscular response as much as high intensity methods. It seems that this method will be advantageous for those who want to increase acute neuromuscular changes with low exercise intensity and volume. PMID:24868429

  14. Acute metabolic and physiologic response of goats to narcosis

    NASA Technical Reports Server (NTRS)

    Schatte, C. L.; Bennett, P. B.

    1973-01-01

    Assessment of the metabolic consequences of exposure to elevated partial pressures of nitrogen and helium under normobaric and hyperbaric conditions in goats. The results include the finding that hyperbaric nitrogen causes and increase in metabolic rate and a general decrease in blood constituent levels which is interpreted as reflecting a shift toward fatty acid metabolism at the expense of carbohydrates. A similar but more pronounced pattern was observed with hyperbaric helium.

  15. PXR variants: the impact on drug metabolism and therapeutic responses.

    PubMed

    Brewer, C Trent; Chen, Taosheng

    2016-09-01

    The pregnane X receptor (PXR) plays an important and diverse role in mediating xenobiotic induction of drug-metabolizing enzymes and transporters. Several protein isoforms of PXR exist, and they have differential transcriptional activity upon target genes; transcript variants 3 (PXR3) and 4 (PXR4) do not induce target gene expression, whereas transcript variants 1 (PXR1) and 2 (PXR2) respond to agonist by activating target gene expression. PXR protein variants also display differences in protein-protein interactions; PXR1 interacts with p53, whereas PXR3 does not. Furthermore, the transcript variants of PXR that encode these protein isoforms are differentially regulated by methylation and deletions in the respective promoters of the variants, and their expression differs in various human cancers and also in cancerous tissue compared to adjacent normal tissues. PXR1 and PXR4 mRNA are downregulated by methylation in cancerous tissue and have divergent effects on cellular proliferation when ectopically overexpressed. Additional detailed and comparative mechanistic studies are required to predict the effect of PXR transcript variant expression on carcinogenesis, therapeutic response, and the development of toxicity.

  16. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory.

    PubMed

    Alamgir, Kabir Md; Hojo, Yuko; Christeller, John T; Fukumoto, Kaori; Isshiki, Ryutaro; Shinya, Tomonori; Baldwin, Ian T; Galis, Ivan

    2016-02-01

    Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants.

  17. Supplementation of Saccharomyces cerevisiae modulates the metabolic response to lipopolysaccharide challenge in feedlot steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Live yeast has the potential to serve as an alternative to the use of low-dose supplementation of antibiotics in cattle due to the ability to alter ruminant metabolism; which in turn may influence the immune response. Therefore, the objective of this study was to determine the metabolic response to ...

  18. Metabolic and Cardiovascular Response to Shallow Water Exercise in Young and Older Women.

    ERIC Educational Resources Information Center

    Campbell, Jennifer A.; D'Acquisto, Leo J.; D'Acquisto, Debra M.; Cline, Michael G.

    2003-01-01

    Compared the metabolic and cardiovascular responses of young and older women while performing shallow water exercise (SWE). Overall, SWE elicited metabolic and cardiovascular responses that met American College of Sports Medicine's guidelines for establishing health benefits. Older females self-selected a greater relative exercise intensity during…

  19. Metabolic response to dietary fibre composition in horses.

    PubMed

    Brøkner, C; Austbø, D; Næsset, J A; Blache, D; Bach Knudsen, K E; Tauson, A H

    2016-07-01

    The hypothesis for this study was that a higher dietary proportion of soluble fibre would result in stable and constant plasma metabolite and regulatory hormone concentrations. The study was a 4×4 Latin Square design with a sequence of 17 days adaptation to the ration followed by 8 sampling days. The feed rations consisted of only timothy hay (H), hay plus molassed sugar beet pulp combined with either whole oats (OB) or barley (BB) and hay plus a loose chaff-based concentrate (M). Four horses were fitted with permanent caecal cannulas and liquid caecal content was withdrawn manually and blood was drawn from the jugular vein at 0, 3 and 9 h postprandial. The horses were exercised daily at medium level for about 1 h. Samples were analysed for short-chain fatty acids (SCFA) and metabolic traits. Caecal SCFA and propionic acid concentrations increased with increased dietary starch and soluble fibre. The diet highest in soluble fibre (M) resulted in the highest plasma glucose and insulin concentrations in the morning, which then remained stable and constant throughout the day. A strong interaction (P<0.01) between time and diet was measured for plasma urea, glucose, insulin and leptin. The greatest variations in plasma glycaemic and insulinaemic responses were associated with the cereal grain diets (OB and BB). There were indications of a negative energy balance, which was reflected in a significantly higher plasma β-hydroxybutyrate concentration and a numerically higher non-esterified fatty acid concentration. In conclusion, this study found that inclusion of soluble fibre resulted in increased total caecal SCFA and propionic acid concentrations. This consequently resulted in stable and constant plasma glycaemic and insulinaemic responses. Diets with a high content of soluble fibre provided enough energy for horses at medium work level.

  20. Metabolic monosaccharides altered cell responses to anticancer drugs.

    PubMed

    Chen, Long; Liang, Jun F

    2012-06-01

    Metabolic glycoengineering has been used to manipulate the glycochemistry of cell surfaces and thus the cell/cell interaction, cell adhesion, and cell migration. However, potential application of glycoengineering in pharmaceutical sciences has not been studied until recently. Here, we reported that Ac(4)ManNAc, an analog of N-acetyl-D-mannosamine (ManNAc), could affect cell responses to anticancer drugs. Although cells from different tissues and organs responded to Ac(4)ManNAc treatment differently, treated cells with increased sialic acid contents showed dramatically reduced sensitivity (up to 130 times) to anti-cancer drugs as tested on various drugs with distinct chemical structures and acting mechanisms. Neither increased P-glycoprotein activity nor decreased drug uptake was observed during the course of Ac(4)ManNAc treatment. However, greatly altered intracellular drug distributions were observed. Most intracellular daunorubicin was found in the perinuclear region, but not the expected nuclei in the Ac(4)ManNAc treated cells. Since sialoglycoproteins and gangliosides were synthesized in the Golgi, intracellular glycans affected intracellular signal transduction and drug distributions seem to be the main reason for Ac(4)ManNAc affected cell sensitivity to anticancer drugs. It was interesting to find that although Ac(4)ManNAc treated breast cancer cells (MDA-MB-231) maintained the same sensitivity to 5-Fluorouracil, the IC(50) value of 5-Fluorouracil to the same Ac(4)ManNAc treated normal cells (MCF-10A) was increased by more than 20 times. Thus, this Ac(4)ManNAc treatment enlarged drug response difference between normal and tumor cells provides a unique opportunity to further improve the selectivity and therapeutic efficiency of anticancer drugs.

  1. Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients.

    PubMed

    Sonne, David P; Hare, Kristine J; Martens, Pernille; Rehfeld, Jens F; Holst, Jens J; Vilsbøll, Tina; Knop, Filip K

    2013-02-15

    Preclinical studies suggest that gallbladder emptying, via bile acid-induced activation of the G protein-coupled receptor TGR5 in intestinal L cells, may play a significant role in the secretion of the incretin hormone glucagon-like peptide-1 (GLP-1) and, hence, postprandial glucose homeostasis. We examined the secretion of gut hormones in cholecystectomized subjects to test the hypothesis that gallbladder emptying potentiates postprandial release of GLP-1. Ten cholecystectomized subjects and 10 healthy, age-, gender-, and body mass index-matched control subjects received a standardized fat-rich liquid meal (2,200 kJ). Basal and postprandial plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-2 (GLP-2), cholecystokinin (CCK), and gastrin were measured. Furthermore, gastric emptying and duodenal and serum bile acids were measured. We found similar basal glucose concentrations in the two groups, whereas cholecystectomized subjects had elevated postprandial glucose excursions. Cholecystectomized subjects had reduced postprandial concentrations of duodenal bile acids, but preserved postprandial plasma GLP-1 responses, compared with control subjects. Also, cholecystectomized patients exhibited augmented fasting glucagon. Basal plasma CCK concentrations were lower and peak concentrations were higher in cholecystectomized patients. The concentrations of GIP, GLP-2, and gastrin were similar in the two groups. In conclusion, cholecystectomized subjects had preserved postprandial GLP-1 responses in spite of decreased duodenal bile delivery, suggesting that gallbladder emptying is not a prerequisite for GLP-1 release. Cholecystectomized patients demonstrated a slight deterioration of postprandial glycemic control, probably because of metabolic changes unrelated to incretin secretion.

  2. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    PubMed

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected.

  3. Metabolic response induced by parasitic plant-fungus interactions hinder amino sugar and nucleotide sugar metabolism in the host

    PubMed Central

    Lee, Dong-Kyu; Ahn, Soohyun; Cho, Hae Yoon; Yun, Hye Young; Park, Jeong Hill; Lim, Johan; Lee, Jeongmi; Kwon, Sung Won

    2016-01-01

    Infestation by the biotrophic pathogen Gymnosporangium asiaticum can be devastating for plant of the family Rosaceae. However, the phytopathology of this process has not been thoroughly elucidated. Using a metabolomics approach, we discovered the intrinsic activities that induce disease symptoms after fungal invasion in terms of microbe-induced metabolic responses. Through metabolic pathway enrichment and mapping, we found that the host altered its metabolite levels, resulting in accumulation of tetrose and pentose sugar alcohols, in response to this fungus. We then used a multiple linear regression model to evaluate the effect of the interaction between this abnormal accumulation of sugar alcohol and the group variable (control/parasitism). The results revealed that this accumulation resulted in deficiency in the supply of specific sugars, which led to a lack of amino sugar and nucleotide sugar metabolism. Halting this metabolism could hamper pivotal functions in the plant host, including cell wall synthesis and lesion repair. In conclusion, our findings indicate that altered metabolic responses that occur during fungal parasitism can cause deficiency in substrates in pivotal pathways and thereby trigger pathological symptoms. PMID:27892480

  4. Acute metabolic response to fasted and postprandial exercise

    PubMed Central

    de Lima, Filipe Dinato; Correia, Ana Luiza Matias; Teixeira, Denilson da Silva; da Silva Neto, Domingos Vasco; Fernandes, Ítalo Sávio Gonçalves; Viana, Mário Boratto Xavier; Petitto, Mateus; da Silva Sampaio, Rodney Antônio; Chaves, Sandro Nobre; Alves, Simone Teixeira; Dantas, Renata Aparecida Elias; Mota, Márcio Rabelo

    2015-01-01

    The aim of this study was to analyze the acute metabolic response to exercise in fasting and postprandial. For this, ten individuals were submitted to an incremental treadmill test, with an initial speed of 5 and 1 km/h increments every minute, with no inclination, and a body composition assessment. After this 1st day, all volunteers were submitted to two experimental procedures (fasting and postprandial), with an aerobic exercise performed for 36 minutes at 65% of maximal oxygen consumption. At postprandial procedure, all subjects ingested a breakfast containing 59.3 g of carbohydrate (76.73%), 9.97 g of protein (12.90%), 8.01 g of lipids (10.37%), with a total energy intake of 349.17 kcal. An analysis of plasma concentration of triglycerides, lactate, and glucose was performed in two stages: before and after exercise. The Shapiro–Wilk test was used to verify the normality of the data. For analysis of glucose concentration, plasma lactate, and triglycerides, we used a repeated measures analysis of variance factorial 2×2, with Bonferroni multiple comparison test. The significance level of P<0.05 was adopted. The results indicated a maintenance level of glucose at fasting and a decrease in glucose concentration at postprandial exercise. Both conditions increase plasma lactate. Triglycerides also increased in the two experimental conditions; however, after exercise fasting, the increase was significantly higher than in the postprandial exercise. These data suggest that both exercises could increase plasma lactate and triglycerides. However, exercise performed in fasting condition decreases glucose concentration and increases triglycerides, even more than postprandial exercise. PMID:26316800

  5. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response.

    PubMed

    Watson, Emma; MacNeil, Lesley T; Arda, H Efsun; Zhu, Lihua Julie; Walhout, Albertha J M

    2013-03-28

    Expression profiles are tailored according to dietary input. However, the networks that control dietary responses remain largely uncharacterized. Here, we combine forward and reverse genetic screens to delineate a network of 184 genes that affect the C. elegans dietary response to Comamonas DA1877 bacteria. We find that perturbation of a mitochondrial network composed of enzymes involved in amino acid metabolism and the TCA cycle affects the dietary response. In humans, mutations in the corresponding genes cause inborn diseases of amino acid metabolism, most of which are treated by dietary intervention. We identify several transcription factors (TFs) that mediate the changes in gene expression upon metabolic network perturbations. Altogether, our findings unveil a transcriptional response system that is poised to sense dietary cues and metabolic imbalances, illustrating extensive communication between metabolic networks in the mitochondria and gene regulatory networks in the nucleus.

  6. Uptake, accumulation and metabolic response of ferricyanide in weeping willows.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2009-01-01

    The remediation potential and metabolic responses of plants to ferricyanide were investigated using pre-rooted weeping willows (Salix babylonica L.) grown hydroponically in growth chambers and treated with potassium ferricyanide. Positive responses were observed for the plants exposed to

  7. Hexavalent chromium induced stress and metabolic responses in hybrid willows.

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong; Huang, Shen-Zhuo

    2007-04-01

    Metabolic responses to hexavalent chromium (Cr(6+)) stress and the uptake and translocation of Cr(6+ )were investigated using pre-rooted hybrid willows (Salix matsudana Koidz x Salix alba L.) exposed to hydroponic solution spiked with K(2)CrO(4) at 24.0 +/- 1 degrees C for 192 h. Various physiological parameters of the plants were monitored to determine toxicity from Cr(6+ )exposure. At Cr(6+) treatments of 50% higher than that of the non-treated control plants. As Cr concentrations were increased further, a slight increase in the transpiration rate was also observed compared with the controls. Negligible difference in the chlorophyll contents in leaves between the treated and the non-treated control plants was measured, except for willows exposed to 1.05 mg Cr/l. The response of soluble proteins in leaves of willows to Cr treatments was remarkable. Cr-induced toxicity appeared in all treatments resulting in reduced activities of catalase (CAT) and peroxidase (POD) compared to the controls. Superoxide dismutases (SOD) activity in the leaf cells showed a positive increase after Cr exposure. Of all selected parameters, soluble proteins in leaves were the most sensitive to Cr(6+ )doses, showing a significant linear correlation negatively (R (2) = 0.931). Uptake of Cr(6+) by willows grown in flasks was found to increase linearly with the added Cr(6+ )(a zero order kinetics), as indicated by the high R (2) (0.9322). Recovery of Cr in different parts of plant materials varied significantly with roots being the dominant site of Cr accumulation. Although the translocation to shoots was detected, the amount of Cr translocated to shoots was considerably small. The capacity of willows to assimilate Cr(6+ )was also evaluated using detached leaves and roots in sealed glass vessels in vivo. Uptake of Cr by roots was mediated possibly through an active transport mechanism, whereas the cuticle of leaves was the major obstacle

  8. Differences in metabolism between the biofilm and planktonic response to metal stress.

    PubMed

    Booth, Sean C; Workentine, Matthew L; Wen, Jing; Shaykhutdinov, Rustem; Vogel, Hans J; Ceri, Howard; Turner, Raymond J; Weljie, Aalim M

    2011-07-01

    Bacterial biofilms are known to withstand the effects of toxic metals better than planktonic cultures of the same species. This phenomenon has been attributed to many features of the sessile lifestyle not present in free-swimming populations, but the contribution of intracellular metabolism has not been previously examined. Here, we use a combined GC-MS and (1)H NMR metabolomic approach to quantify whole-cell metabolism in biofilm and planktonic cultures of the multimetal resistant bacterium Pseudomonas fluorescens exposed to copper ions. Metabolic changes in response to metal exposure were found to be significantly different in biofilms compared to planktonic cultures. Planktonic metabolism indicated an oxidative stress response that was characterized by changes to the TCA cycle, glycolysis, pyruvate and nicotinate and niacotinamide metabolism. Similar metabolic changes were not observed in biofilms, which were instead dominated by shifts in exopolysaccharide related metabolism suggesting that metal stress in biofilms induces a protective response rather than the reactive changes observed for the planktonic cells. From these results, we conclude that differential metabolic shifts play a role in biofilm-specific multimetal resistance and tolerance. An altered metabolic response to metal toxicity represents a novel addition to a growing list of biofilm-specific mechanisms to resist environmental stress.

  9. Cattle temperament influences metabolism:3. Metabolic response to a feed restriction challenge in beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have demonstrated metabolic differences between calm and temperamental cattle. Specifically, Temperamental cattle exhibit greater concentrations of non-esterified fatty acids (NEFAs), decreased blood urea nitrogen (BUN), and decreased insulin sensitivity compared to Calm cattle. It is...

  10. Cattle temperament influences metabolism: 1. Metabolic response to a glucose tolerance test in beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperamental cattle are behaviorally, physiologically, and immunologically different in comparison to calm cattle. Recently, the metabolic differences between temperamental and calm cattle have begun to be explored; temperamental cattle maintain greater circulating concentrations of non-esterified ...

  11. Metabolic and inflammatory responses to the common sweetener stevioside and a glycemic challenge in horses with equine metabolic syndrome.

    PubMed

    Elzinga, S E; Rohleder, B; Schanbacher, B; McQuerry, K; Barker, V D; Adams, A A

    2017-02-04

    Extracts derived from the leaves of the stevia plant (stevioside) are commonly used as sweeteners for humans and horses. Stevioside appears to be safe for human consumption, including for individuals with insulin dysregulation. In the horse, the safety or metabolic effects of stevioside on normal animals or on those with metabolic dysfunction are unknown. Furthermore, the inflammatory response to a glycemic challenge or to stevioside in horses is not well defined. Therefore, the objective of this study was to measure the effects of stevioside and a glycemic challenge on insulin, glucose, and inflammatory responses in horses with a common metabolic dysfunction (equine metabolic syndrome or EMS) compared with non-EMS controls. To accomplish this, 15 horses were selected; 8 EMS and 7 age-matched controls. An oral sugar test was performed using Karo corn syrup (karo) or stevioside in a random crossover design. Horses were given 0.15 mL/kg body weight of karo or its equivalent grams of sugar in stevia dissolved in water. Blood samples were collected by jugular venipuncture before administration of either stevia or karo and at 60 and 240 min after administration. Serum was used for glucose and insulin determination and plasma for isolation of peripheral blood mononuclear cells (PBMCs) for inflammatory cytokine analysis via flow cytometry and reverse transcription PCR (RT-PCR). Stevia appeared to stimulate lower glycemic and insulinemic responses when compared to karo, in particular in EMS horses. EMS and control horses had inverse inflammatory responses to administration of either stevia or karo with EMS horses having a proinflammatory response (P ≤ 0.05). These data provide evidence as to why horses with EMS may be predisposed to developing laminitis, potentially as a result of an exaggerated inflammatory response to glycemic and insulinemic responses. Furthermore, the data provide new avenues for exploring mechanisms behind the syndrome, in particular when using a

  12. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  13. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  14. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus

    SciTech Connect

    Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; Sykes, Robert; Tuskan, Gerald A.; Kalluri, Udaya C.

    2014-10-07

    Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations in primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.

  15. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus

    DOE PAGES

    Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; ...

    2014-10-07

    Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations inmore » primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.« less

  16. Metabolic mechanisms of cancer-induced inhibition of immune responses.

    PubMed

    Viola, Antonella; Bronte, Vincenzo

    2007-08-01

    During progression, tumors become refractory to the offensive weapons of the immune system. It has been known for a long time that the tumor microenvironment presents a profound modification in the metabolism of arachidonic acid and amino acids such as l-triptophan and l-arginine. However, only in the last decade we have started to appreciate how these changes might cause dysfunctions in cells of both adaptive and innate immune system. The knowledge of these complex and partially interconnected metabolic pathways is offering new targets for an integrated pharmacological approach aiming at freeing tumor-specific T lymphocytes from the latches of cancer influence.

  17. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change

    PubMed Central

    Carey, Nicholas; Sigwart, Julia D.

    2014-01-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate (R) and body mass (M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH (‘ocean acidification’). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size. PMID:25122741

  18. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change.

    PubMed

    Carey, Nicholas; Sigwart, Julia D

    2014-08-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate ( R: ) and body mass ( M: ), has been a source of debate and controversy for decades. R: is proportional to MB: , the precise value of B: much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts B: to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; B: is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.

  19. Metabolic mapping of the brain's response to visual stimulation: studies in humans

    SciTech Connect

    Phelps, M.E.; Kuhl, D.E.; Mazziotta, J.C.

    1981-03-27

    These studies demonstrated increasing glucose metabolic rates in the human primary (PVC) and associative (AVC) visual cortex as the complexity of visual scenes increased. The metabolic response of the AVC increased more rapidly with scene complexity than that of the PVC, indicating the greater involvement of the higher order AVC for complex visual interpretations. Increases in local metabolic activity by as much as a factor of 2 above that of control subjects with eyes closed indicate the wide range and metabolic reserve of the visual cortex.

  20. 13C metabolic flux analysis shows that resistin impairs the metabolic response to insulin in L6E9 myotubes

    PubMed Central

    2014-01-01

    Background It has been suggested that the adipokine resistin links obesity and insulin resistance, although how resistin acts on muscle metabolism is controversial. We aimed to quantitatively analyse the effects of resistin on the glucose metabolic flux profile and on insulin response in L6E9 myotubes at the metabolic level using a tracer-based metabolomic approach and our in-house developed software, Isodyn. Results Resistin significantly increased glucose uptake and glycolysis, altering pyruvate utilisation by the cell. In the presence of resistin, insulin only slightly increased glucose uptake and glycolysis, and did not alter the flux profile around pyruvate induced by resistin. Resistin prevented the increase in gene expression in pyruvate dehydrogenase-E1 and the sharp decrease in gene expression in cytosolic phosphoenolpyruvate carboxykinase-1 induced by insulin. Conclusions These data suggest that resistin impairs the metabolic activation of insulin. This impairment cannot be explained by the activity of a single enzyme, but instead due to reorganisation of the whole metabolic flux distribution. PMID:25217974

  1. Cattle temperament influences metabolism: 2. Metabolic response to an insulin sensivitiy test in beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of non-esterified fatty acids (NEFAs) fou...

  2. Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli

    PubMed Central

    2011-01-01

    Background Until now, the direct link between central carbon metabolism and DNA replication has been demonstrated only in Bacillus. subtilis. Therefore, we asked if this is a specific phenomenon, characteristic for this bacterium and perhaps for its close relatives, or a more general biological rule. Results We found that temperature-sensitivity of mutants in particular genes coding for replication proteins could be suppressed by deletions of certain genes coding for enzymes of the central carbon metabolism. Namely, the effects of dnaA46(ts) mutation could be suppressed by dysfunction of pta or ackA, effects of dnaB(ts) by dysfunction of pgi or pta, effects of dnaE486(ts) by dysfunction of tktB, effects of dnaG(ts) by dysfunction of gpmA, pta or ackA, and effects of dnaN159(ts) by dysfunction of pta or ackA. The observed suppression effects were not caused by a decrease in bacterial growth rate. Conclusions The genetic correlation exists between central carbon metabolism and DNA replication in the model Gram-negative bacterium, E. coli. This link exists at the steps of initiation and elongation of DNA replication, indicating the important global correlation between metabolic status of the cell and the events leading to cell reproduction. PMID:21453533

  3. Metabolic response to feeding in Tupinambis merianae: circadian rhythm and a possible respiratory constraint.

    PubMed

    Klein, Wilfried; Perry, Steven F; Abe, Augusto S; Andrade, Denis V

    2006-01-01

    The diurnal tegu lizard Tupinambis merianae exhibits a marked circadian variation in metabolism that is characterized by the significant increase in metabolism during part of the day. These increases in metabolic rate, found in the fasting animal, are absent during the first 2 d after meal ingestion but reappear subsequently, and the daily increase in metabolic rate is added to the increase in metabolic rate caused by digestion. During the first 2 d after feeding, priority is given to digestion, while on the third and following days, the metabolic demands are clearly added to each other. This response seems to be a regulated response of the animal, which becomes less active after food ingestion, rather than an inability of the respiratory system to support simultaneous demands at the beginning of digestion. The body cavity of Tupinambis is divided into two compartments by a posthepatic septum (PHS). Animals that had their PHS surgically removed showed no significant alteration in the postprandial metabolic response compared to tegus with intact PHS. The maximal metabolic increment during digestion, the relative cost of meal digestion, and the duration of the process were virtually unaffected by the removal of the PHS.

  4. Shared Selective Pressures on Fungal and Human Metabolic Pathways Lead to Divergent yet Analogous Genetic Responses.

    PubMed

    Eidem, Haley R; McGary, Kriston L; Rokas, Antonis

    2015-06-01

    Reduced metabolic efficiency, toxic intermediate accumulation, and deficits of molecular building blocks, which all stem from disruptions of flux through metabolic pathways, reduce organismal fitness. Although these represent shared selection pressures across organisms, the genetic signatures of the responses to them may differ. In fungi, a frequently observed signature is the physical linkage of genes from the same metabolic pathway. In contrast, human metabolic genes are rarely tightly linked; rather, they tend to show tissue-specific coexpression. We hypothesized that the physical linkage of fungal metabolic genes and the tissue-specific coexpression of human metabolic genes are divergent yet analogous responses to the range of selective pressures imposed by disruptions of flux. To test this, we examined the degree to which the human homologs of physically linked metabolic genes in fungi (fungal linked homologs or FLOs) are coexpressed across six human tissues. We found that FLOs are significantly more correlated in their expression profiles across human tissues than other metabolic genes. We obtained similar results in analyses of the same six tissues from chimps, gorillas, orangutans, and macaques. We suggest that when selective pressures remain stable across large evolutionary distances, evidence of selection in a given evolutionary lineage can become a highly reliable predictor of the signature of selection in another, even though the specific adaptive response in each lineage is markedly different.

  5. Application of substrate depletion assay to evaluation of CYP isoforms responsible for stereoselective metabolism of carvedilol.

    PubMed

    Iwaki, Masahiro; Niwa, Toshiro; Bandoh, Saya; Itoh, Megumi; Hirose, Hitomi; Kawase, Atsushi; Komura, Hiroshi

    2016-12-01

    To evaluate the relative contribution of cytochrome P450 (CYP) isoforms responsible for carvedilol (CAR) oxidation, enantioselective metabolism of CAR was investigated in human liver microsomes (HLMs) and recombinant human CYPs by using the substrate depletion assay. CYP2D6 exhibited the highest contribution to the metabolism of R-CAR, followed by CYP3A4, CYP1A2, and CYP2C9, whereas the metabolism of the S-enantiomer was mainly mediated by CYP1A2, followed by CYP2D6 and CYP3A4. In HLMs, metabolism of R- and S-CAR was markedly inhibited by quinidine; R-CAR metabolism (57-61% decrease) was more inhibited than S-CAR metabolism (37-43% decrease), and furafylline and ketoconazole almost equally inhibited metabolism of both enantiomers by 25-32% and 30-50%, respectively. The absence of CYP2D6 in a mixture of five major recombinant CYP isoforms at the approximate ratio as in HLMs resulted in a 42% and 25% decrease in the metabolic activities for R- and S-CAR, respectively. Moreover, the absence of CYP1A2 in the mixture resulted in a 16% and 39% decrease in the metabolic activities for R- and S-CAR, respectively. Our results suggest the stereoselective metabolism of CAR is determined by not only the activity of CYP2D6 but also of CYP1A2 and CYP3A4.

  6. Test-retest reproducibility for regional brain metabolic responses to lorazepam

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Overall, J. |||

    1996-05-01

    Changes in regional brain glucose metabolism as assessed with PET and FDG in response to acute administration of benzodiazepine agonists have been used as indicators of benzodiazepine-GABA receptor function. The purpose of this study was to assess the reproducibility of these responses. Sixteen healthy right-handed men were scanned with positron emission tomography (PET) and [F-18] fluorodeoxyglucose (FDG) twice: prior to placebo and prior to lorazepam (30 {mu}g/kg). The same double FDG procedure was repeated 6-8 weeks later to assess test-retest reproducibility. The regional absolute brain metabolic values obtained during the second evaluation were significantly lower than those obtained for the first evaluation regardless of condition (p {le} 0.001). Lorazepam significantly and consistently decreased whole brain metabolism and the magnitude as well as the regional pattern of the changes was comparable for both studies (12.3 {plus_minus} 6.9% and 13.7 {plus_minus} 7.4%). Lorazepam effects were largest in thalamus (22.2 {plus_minus} 8.9%). Relative metabolic measures ROI/global were highly reproducible both for drug as well as replication condition. This is the first study to measure test-retest reproducibility in regional brain metabolic response to a pharmacological challenge. While the global and regional absolute metabolic values were significantly lower for the repeated evaluation, the regional brain metabolic response to lorazepam was highly reproducible.

  7. Elasticity analysis and design for large metabolic responses produced by changes in enzyme activities.

    PubMed Central

    Ortega, Fernando; Acerenza, Luis

    2002-01-01

    Metabolic control analysis has been extensively used to describe how the sensitivity properties of the component enzymes in a metabolic pathway (represented by the elasticity coefficients) determine the way in which metabolic variables respond (described by the control coefficients). Similarly, metabolic control design addresses the inverse problem of obtaining the sensitivity properties of the component enzymes that are required for the system to show a pre-established pattern of responses. These formalisms, including what is called elasticity analysis and design, were developed for small, strictly speaking infinitesimal, changes. Here we extend them to large metabolic responses. The new approach can be applied to simple two-step pathways or to any arbitrary metabolic system divided into two groups linked by one intermediate. General expressions that relate control and elasticity coefficients for large changes are derived. Concentration and flux connectivity relationships are obtained. The relationships for large changes indicate that the pattern of responses is not necessarily the same as the one obtained with the traditional infinitesimal approach, in some cases the patterns being qualitatively different. The general analysis is used to study the control of ketogenesis in rat liver mitochondria, starting from data available in the literature. The control profile of the pathway subject to large changes shows both quantitative and qualitative differences from the one obtained from an analysis that is performed with infinitesimal coefficients. This exemplifies the type of errors that may be introduced when drawing conclusions about large metabolic responses from results obtained with an infinitesimal treatment. PMID:12084013

  8. Organogenic nodule development in hop (Humulus lupulus L.): Transcript and metabolic responses

    PubMed Central

    Fortes, Ana M; Santos, Filipa; Choi, Young H; Silva, Marta S; Figueiredo, Andreia; Sousa, Lisete; Pessoa, Fernando; Santos, Bartolomeu A; Sebastiana, Mónica; Palme, Klaus; Malhó, Rui; Verpoorte, Rob; Pais, Maria S

    2008-01-01

    Background Hop (Humulus lupulus L.) is an economically important plant forming organogenic nodules which can be used for genetic transformation and micropropagation. We are interested in the mechanisms underlying reprogramming of cells through stress and hormone treatments. Results An integrated molecular and metabolomic approach was used to investigate global gene expression and metabolic responses during development of hop's organogenic nodules. Transcript profiling using a 3,324-cDNA clone array revealed differential regulation of 133 unigenes, classified into 11 functional categories. Several pathways seem to be determinant in organogenic nodule formation, namely defense and stress response, sugar and lipid metabolism, synthesis of secondary metabolites and hormone signaling. Metabolic profiling using 1H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, lipid and sugar metabolism and secondary metabolism in organogenic nodule formation. Conclusion The expression profile of genes pivotal for energy metabolism, together with metabolites profile, suggested that these morphogenic structures gain energy through a heterotrophic, transport-dependent and sugar-degrading anaerobic metabolism. Polyamines and auxins are likely to be involved in the regulation of expression of many genes related to organogenic nodule formation. These results represent substantial progress toward a better understanding of this complex developmental program and reveal novel information regarding morphogenesis in plants. PMID:18823540

  9. Early hemorrhage triggers metabolic responses that build up during prolonged shock

    PubMed Central

    Moore, Hunter B.; Moore, Ernest E.; Wither, Matthew; Nemkov, Travis; Gonzalez, Eduardo; Slaughter, Anne; Fragoso, Miguel; Hansen, Kirk C.; Silliman, Christopher C.; Banerjee, Anirban

    2015-01-01

    Metabolic staging after trauma/hemorrhagic shock is a key driver of acidosis and directly relates to hypothermia and coagulopathy. Metabolic responses to trauma/hemorrhagic shock have been assayed through classic biochemical approaches or NMR, thereby lacking a comprehensive overview of the dynamic metabolic changes occurring after shock. Sprague-Dawley rats underwent progressive hemorrhage and shock. Baseline and postshock blood was collected, and late hyperfibrinolysis was assessed (LY30 >3%) in all of the tested rats. Extreme and intermediate time points were collected to assay the dynamic changes of the plasma metabolome via ultra-high performance liquid chromatography-mass spectrometry. Sham controls were used to determine whether metabolic changes could be primarily attributable to anesthesia and supine positioning. Early hemorrhage-triggered metabolic changes that built up progressively and became significant during sustained hemorrhagic shock. Metabolic phenotypes either resulted in immediate hypercatabolism, or late hypercatabolism, preceded by metabolic deregulation during early hemorrhage in a subset of rats. Hemorrhagic shock consistently promoted hyperglycemia, glycolysis, Krebs cycle, fatty acid, amino acid, and nitrogen metabolism (urate and polyamines), and impaired redox homeostasis. Early dynamic changes of the plasma metabolome are triggered by hemorrhage in rats. Future studies will determine whether metabolic subphenotypes observed in rats might be consistently observed in humans and pave the way for tailored resuscitative strategies. PMID:25876652

  10. Novel quantitative metabolomic approach for the study of stress responses of plant root metabolism.

    PubMed

    Li, Kefeng; Wang, Xu; Pidatala, Venkataramana R; Chang, Chi-Peng; Cao, Xiaohong

    2014-12-05

    Quantitative metabolomics (qMetabolomics) is a powerful tool for understanding the intricate metabolic processes involved in plant abiotic stress responses. qMetabolomics is hindered by the limited coverage and high cost of isotopically labeled standards. In this study, we first selected 271 metabolites which might play important roles in abiotic stress responses as the targets and established a comprehensive LC-MS/MS based qMetabolomic method. We then developed a novel metabolic labeling method using E. coli-Saccharomyces cerevisiae two-step cultivation for the production of uniformly (13)C-labeled metabolites as internal standards. Finally, we applied the developed qMetabolomic method to investigate the influence of Pb stress on maize root metabolism. The absolute concentration of 226 metabolites in maize roots was accurately quantified in a single run within 30 min. Our study also revealed that glycolysis, purine, pyrimidine, and phospholipids were the main metabolic pathways in maize roots involved in Pb stress response. To our knowledge, this is the most comprehensive qMetabolomic method for plant metabolomics thus far. We developed a simple and inexpensive metabolic labeling method which dramatically expanded the availability of uniformly (13)C labeled metabolites. Our findings also provided new insights of maize metabolic responses to Pb stress.

  11. Metabolic profiling of the tissue-specific responses in mussel Mytilus galloprovincialis towards Vibrio harveyi challenge.

    PubMed

    Liu, Xiaoli; Ji, Chenglong; Zhao, Jianmin; Wang, Qing; Li, Fei; Wu, Huifeng

    2014-08-01

    Mussel Mytilus galloprovincialis is a marine aquaculture shellfish distributing widely along the coast in north China. In this work, we studied the differential metabolic responses induced by Vibrio harveyi in digestive gland and gill tissues from M. galloprovincialis using NMR-based metabolomics. The differential metabolic responses in the two tissue types were detected, except the similarly altered taurine and betaine. These metabolic responses suggested that V. harveyi mainly induced osmotic disruption and reduced energy demand via the metabolic pathways of glucose synthesis and ATP/AMP conversion in mussel digestive gland. In mussel gill tissues, V. harveyi basically caused osmotic stress and possible reduced energy demand as shown by the elevated phosphocholine that is involved in one of the metabolic pathways of ATP synthesis from ADP and phosphocholine. The altered mRNA expression levels of related genes (superoxide dismutase with copper and zinc, heat shock protein 90, defensin and lysozyme) suggested that V. harveyi induced clear oxidative and immune stresses in both digestive gland and gill tissues. However, the mRNA expression levels of both lysozyme and defensin in digestive gland were more significantly up-regulated than those in gill from V. harveyi-challenged mussel M. galloprovincialis, meaning that the immune organ, digestive gland, was more sensitive than gill. Overall, our results indicated that V. harveyi could induce tissue-specific metabolic responses in mussel M. galloprovincialis.

  12. Variation in metabolic responses to meal challenges differing in glycemic index in healthy women: Is it meaningful?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Metabolic phenotyping has potential utility as a diagnostic tool. While clinical parameters are commonly used in disease diagnosis, tools that enhance diagnosis of metabolic dysfunctions are needed. Objective: To identify typical and atypical metabolite temporal patterns in response to ...

  13. Variations in metabolic responses to meal challenges differing in glycemic index in healthy women: Is it meaningful?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Metabolic phenotyping has potential utility as a diagnostic tool. While clinical parameters are commonly used in disease diagnosis, tools that enhance diagnosis of metabolic dysfunctions are needed. Objective: To identify typical and atypical metabolite temporal patterns in response t...

  14. Differential metabolic responses of clam Ruditapes philippinarum to Vibrio anguillarum and Vibrio splendidus challenges.

    PubMed

    Liu, Xiaoli; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2013-12-01

    Clam Ruditapes philippinarum is one of the important marine aquaculture species in North China. However, pathogens can often cause diseases and lead to massive mortalities and economic losses of clam. In this work, we compared the metabolic responses induced by Vibrio anguillarum and Vibrio splendidus challenges towards hepatopancreas of clam using NMR-based metabolomics. Metabolic responses suggested that both V. anguillarum and V. splendidus induced disturbances in energy metabolism and osmotic regulation, oxidative and immune stresses with different mechanisms, as indicated by correspondingly differential metabolic biomarkers (e.g., amino acids, ATP, glucose, glycogen, taurine, betaine, choline and hypotaurine) and altered mRNA expression levels of related genes including ATP synthase, ATPase, glutathione peroxidase, heat shock protein 90, defensin and lysozyme. However, V. anguillarum caused more severe oxidative and immune stresses in clam hepatopancreas than V. splendidus. Our results indicated that metabolomics could be used to elucidate the biological effects of pathogens to the marine clam R. philippinarum.

  15. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions.

    PubMed

    Shimizu, Kazuyuki

    2016-01-01

    Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.

  16. Antioxidative and metabolic responses to extended cold exposure in rats.

    PubMed

    Yuksel, Sengul; Asma, Dilek; Yesilada, Ozfer

    2008-03-01

    In this work, we investigated whether extended cold exposure increases oxidative damage and susceptibility to oxidants of rat liver, heart, kidney and lung which are metabolically active tissues. Moreover in this study the effect of cold stress on some of the lipid metabolic mediators were studied in rat experimental model. Male albino Sprague-Dawley rats were randomly divided into two groups: The control group (n=12) and the cold-stress group (n=12). Tissue superoxide dismutase (SOD), catalase (CAT), glutathion S-transferase (GST) and glutathion reductase (GR) activities and glutathion (GSH) were measured using standard protocols. The biochemical analyses for total lipid, cholesterol, trigliceride, HDL, VLDL and LDL were done on autoanalyzer. In cold-stress groups SOD activity was decreased in the lung whereas it increased in the heart and kidney. CAT activity was significantly decreased (except liver) in all the tissues in treated rats. GST activity of cold-induced rats increased in liver and heart while decreased in the lung. GR activity was significantly decreased (except in liver) in all the tissues in cold-stressed rats. GSH level was significantly increased in the heart but decreased in the lung of animals exposed to cold when compared to controls. It was found that among the groups trigliceride, total lipid, HDL and VLDL parameters varied significantly but cholesterol and LDL had no significant variance. In this study, we found that exposure of extended (48 h) cold (8 degrees C) caused changes both in the antioxidant defense system (as tissue and enzyme specific) and serum lipoprotein profiles in rats.

  17. Metabolic responses of the South American ornate horned frog (Ceratophrys ornata) to estivation.

    PubMed

    Groom, Derrick J E; Kuchel, Louise; Richards, Jeffrey G

    2013-01-01

    We examined the metabolic responses of the South American frog, Ceratophrys ornata, to laboratory-induced estivation. Whole-animal and mass-specific oxygen consumption rates (VO(2)) did not change during fasting or 56days of estivation, despite observing significant decreases in body mass. The maintenance of mass-specific metabolic rate at routine levels during estivation suggests that metabolic rate suppression is not a major response to estivation in this species. There was a significant decline in liver glycogen and a loss of adipose tissue mass during estivation, suggesting that both carbohydrate and lipid pathways are used to fuel metabolism during estivation. The activity of pyruvate dehydrogenase, an important regulator of carbohydrate oxidation, and carnitine palmitoyltransferase and 3-hydroxyacyl-CoA dehydrogenase, regulators of lipid oxidation, showed no significant change in activity in liver, heart, and muscle between estivating and active frogs. There was an increase in plasma osmolality, which is characteristic of estivating animals. Overall, our metabolic analysis of estivation in C. ornata indicates that this species does not employ a dramatic suppression metabolic rate to survive dehydration stress and that both endogenous carbohydrates and lipids are used as metabolic fuels.

  18. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer

    PubMed Central

    Walsh, Alex J.; Cook, Rebecca S.; Sanders, Melinda E.; Aurisicchio, Luigi; Ciliberto, Gennaro; Arteaga, Carlos L.; Skala, Melissa C.

    2014-01-01

    There is a need for technologies to predict the efficacy of cancer treatment in individual patients. Here we show that optical metabolic imaging of organoids derived from primary tumors can predict therapeutic response of xenografts and measure anti-tumor drug responses in human-tumor derived organoids. Optical metabolic imaging quantifies the fluorescence intensity and lifetime of NADH and FAD, co-enzymes of metabolism. As early as 24 hours after treatment with clinically relevant anti-cancer drugs, the optical metabolic imaging index of responsive organoids decreased (p<0.001) and was further reduced when effective therapies were combined (p<5×10–6), with no change in drug-resistant organoids. Drug response in xenograft-derived organoids was validated with tumor growth measurements in vivo and stains for proliferation and apoptosis. Heterogeneous cellular responses to drug treatment were also resolved in organoids. Optical metabolic imaging shows potential as a high-throughput screen to test the efficacy of a panel of drugs to select optimal drug combinations. PMID:25100563

  19. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer.

    PubMed

    Walsh, Alex J; Cook, Rebecca S; Sanders, Melinda E; Aurisicchio, Luigi; Ciliberto, Gennaro; Arteaga, Carlos L; Skala, Melissa C

    2014-09-15

    There is a need for technologies to predict the efficacy of cancer treatment in individual patients. Here, we show that optical metabolic imaging of organoids derived from primary tumors can predict the therapeutic response of xenografts and measure antitumor drug responses in human tumor-derived organoids. Optical metabolic imaging quantifies the fluorescence intensity and lifetime of NADH and FAD, coenzymes of metabolism. As early as 24 hours after treatment with clinically relevant anticancer drugs, the optical metabolic imaging index of responsive organoids decreased (P < 0.001) and was further reduced when effective therapies were combined (P < 5 × 10(-6)), with no change in drug-resistant organoids. Drug response in xenograft-derived organoids was validated with tumor growth measurements in vivo and staining for proliferation and apoptosis. Heterogeneous cellular responses to drug treatment were also resolved in organoids. Optical metabolic imaging shows potential as a high-throughput screen to test the efficacy of a panel of drugs to select optimal drug combinations. Cancer Res; 74(18); 5184-94. ©2014 AACR.

  20. Hypothalamic responses to fasting indicate metabolic reprogramming away from glycolysis toward lipid oxidation.

    PubMed

    Poplawski, Michal M; Mastaitis, Jason W; Yang, Xue-Jun; Mobbs, Charles V

    2010-11-01

    Nutrient-sensitive hypothalamic neurons regulate energy balance and glucose homeostasis, but the molecular mechanisms mediating hypothalamic responses to nutritional state remain incompletely characterized. To address these mechanisms, the present studies used quantitative PCR to characterize the expression of a panel of genes the hypothalamic expression by nutritional status of which had been suggested by DNA microarray studies. Although these genes regulate a variety of function, the most prominent set regulate intermediary metabolism, and the overall pattern clearly indicated that a 48-h fast produced a metabolic reprogramming away from glucose metabolism and toward the utilization of alternative fuels, particularly lipid metabolism. This general reprogramming of intermediary metabolism by fasting was observed both in cortex and hypothalamus but most prominently in hypothalamus. The effect of fasting on the expression of these genes may be mediated by reduction in plasma glucose or glucose metabolism, rather than leptin, because they were generally recapitulated by hypoglycemia even in the presence of elevated insulin and in vitro by low glucose but were not recapitulated in ob/ob mice. These studies suggest that fasting reduces glucose metabolism and thus minimizes the production of hypothalamic malonyl-coenzyme A. However, because the reprogramming of glucose metabolism by fasting was also observed in cortex, this apparent substrate competition may mediate more general responses to nutritional deprivation, including those responsible for the protective effects of dietary restriction. The present studies also provide a large panel of novel glucose-regulated genes that can be used as markers of glucose action to address mechanisms mediating hypothalamic responses to nutritional state.

  1. Neuroendocrine, Metabolic and Cardiovascular Responses to Exercise Differ Among Healthy Men

    DTIC Science & Technology

    1995-12-20

    aI., 1987). In addition, exercise has the 1 2 advantage of producing responses that are independent of physical conditioning or experience on a...these metabolic adjustments are necessary to restore homeostatic balance and to sustain physical activity in the face of fuel deprivation. The...immune function. It has been suggested that metabolic factors mobilized during physical challenges playa role in BPA regulation. Exercise-induced

  2. Physiological responses to environmental factors related to space flight. [hemodynamic and metabolic responses to weightlessness

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1973-01-01

    Physiological base line data are established, and physiological procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are developed.

  3. Metabolism

    MedlinePlus

    ... and intestines. Several of the hormones of the endocrine system are involved in controlling the rate and direction ... For Kids For Parents MORE ON THIS TOPIC Endocrine System What Can I Do About My High Metabolism? ...

  4. Metabolism

    MedlinePlus

    ... symptoms. Metabolic diseases and conditions include: Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism is caused ... or through surgery or radiation treatments. Hypothyroidism (pronounced: hi-po-THIGH-roy-dih-zum). Hypothyroidism is caused ...

  5. Habituation of the metabolic and ventilatory responses to cold-water immersion in humans.

    PubMed

    Tipton, Michael J; Wakabayashi, Hitoshi; Barwood, Martin J; Eglin, Clare M; Mekjavic, Igor B; Taylor, Nigel A S

    2013-01-01

    An experiment was undertaken to answer long-standing questions concerning the nature of metabolic habituation in repeatedly cooled humans. It was hypothesised that repeated skin and deep-body cooling would produce such a habituation that would be specific to the magnitude of the cooling experienced, and that skin cooling alone would dampen the cold-shock but not the metabolic response to cold-water immersion. Twenty-one male participants were divided into three groups, each of which completed two experimental immersions in 12°C water, lasting until either rectal temperature fell to 35°C or 90min had elapsed. Between these two immersions, the control group avoided cold exposures, whilst two experimental groups completed five additional immersions (12°C). One experimental group repeatedly immersed for 45min in average, resulting in deep-body (1.18°C) and skin temperature reductions. The immersions in the second experimental group were designed to result only in skin temperature reductions, and lasted only 5min. Only the deep-body cooling group displayed a significantly blunted metabolic response during the second experimental immersion until rectal temperature decreased by 1.18°C, but no habituation was observed when they were cooled further. The skin cooling group showed a significant habituation in the ventilatory response during the initial 5min of the second experimental immersion, but no alteration in the metabolic response. It is concluded that repeated falls of skin and deep-body temperature can habituate the metabolic response, which shows tissue temperature specificity. However, skin temperature cooling only will lower the cold-shock response, but appears not to elicit an alteration in the metabolic response.

  6. Probing soil C metabolism in response to temperature: results from experiments and modeling

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; Dalder, J.; Blankinship, J.; Selmants, P. C.; Schwartz, E.; Koch, G. W.; Hart, S.; Hungate, B. A.

    2010-12-01

    C use efficiency (CUE) is one of the least understood aspects of soil C cycling, has a very large effect on soil respiration and C sequestration, and decreases with elevated temperature. CUE is directly related to substrate partitioning over energy production and biosynthesis. The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We have developed a new stable isotope approach using position-specific 13C-labeled metabolic tracers to measure these fundamental metabolic processes in intact soil communities (1). We use this new approach, combined with models of soil metabolic flux patterns, to analyze the response of microbial energy production, biosynthesis, and CUE to temperature. The method consists of adding small but precise amounts of position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through various metabolic pathways. A simplified metabolic model consisting of 23 reactions is iteratively solved using results of the metabolic tracer experiments and information on microbial precursor demand under different temperatures. This new method enables direct study of fundamental aspects of microbial energy production, C use efficiency, and soil organic matter formation in response to temperature. (1) Dijkstra P, Blankinship JC, Selmants PC, Hart SC, Koch GW, Schwarz E and Hungate BA. Probing metabolic flux patterns of soil microbial communities using parallel position-specific tracer labeling. Soil Biology and Biochemistry (accepted)

  7. Metabolic factors-triggered inflammatory response drives antidepressant effects of exercise in CUMS rats.

    PubMed

    Liu, Weina; Wang, Hongmei; Wang, Yangkai; Li, Haipeng; Ji, Liu

    2015-08-30

    Chronic stress is a potential contributing factor for depression, accompanying with metabolic and inflammatory response. Exercise is considered as a treatment for depression, but mechanisms underlying its beneficial effects still remain unknown. The objectives of present study were to confirm that metabolic factors-triggered inflammatory response mediates the antidepressant actions of exercise in chronic unpredictable mild stress (CUMS) rats. It has been found that CUMS stimulated expression of ghrelin and its receptor Ghsr, but inhibited expression of leptin and its receptor LepRb. Ghrelin, via binding to Ghsr, induced phosphorylation of GSK-3β on Tyr216 and decreased phosphorylation on Ser9, thus increasing GSK-3β activity. Conversely, ghrelin binding to Ghsr decreased STAT3 activity, through decreasing phosphorylation of STAT3 on Tyr705 and increasing Ser727 phosphorylation. Negatively correlated with ghrelin, leptin binding to LepRb had opposite effects on the activity of GSK-3β and STAT3 via phosphorylation. In addition, decreased leptin level initiated NLRP3 activity via LepRb. Furthermore, GSK-3β inhibited STAT3 activation, thus promoting the expression of NLRP3. Meanwhile, swim improved metabolic and inflammatory response both in CUMS and control rats. Our findings suggest that exercise not only ameliorates metabolic disturbance and inflammatory response in depression, but also contributes to metabolic and inflammatory function in normal conditions.

  8. Low Levels of Physical Activity Increase Metabolic Responsiveness to Cold in a Rat (Rattus fuscipes)

    PubMed Central

    Seebacher, Frank; Glanville, Elsa J.

    2010-01-01

    Background Physical activity modulates expression of metabolic genes and may therefore be a prerequisite for metabolic responses to environmental stimuli. However, the extent to which exercise interacts with environmental conditions to modulate metabolism is unresolved. Hence, we tested the hypothesis that even low levels of physical activity are beneficial by improving metabolic responsiveness to temperatures below the thermal neutral zone, thereby increasing the capacity for substrate oxidation and energy expenditure. Methodology/Principal Findings We used wild rats (Rattus fuscipes) to avoid potential effects of breeding on physiological phenotypes. Exercise acclimation (for 30 min/day on 5 days/week for 30 days at 60% of maximal performance) at 22°C increased mRNA concentrations of PGC1α, PPARδ, and NRF-1 in skeletal muscle and brown adipose tissue compared to sedentary animals. Lowering ambient temperature to 12°C caused further increases in relative expression of NRF-1 in skeletal muscle, and of PPARδ of brown adipose tissue. Surprisingly, relative expression of UCP1 increased only when both exercise and cold stimuli were present. Importantly, in sedentary animals cold acclimation (12°C) alone did not change any of the above variables. Similarly, cold alone did not increase maximum capacity for substrate oxidation in mitochondria (cytochrome c oxidase and citrate synthase activities) of either muscle or brown adipose tissue. Animals that exercised regularly had higher exercise induced metabolic rates in colder environments than sedentary rats, and temperature induced metabolic scope was greater in exercised rats. Conclusions/Significance Physical activity is a necessary prerequisite for the expression of transcriptional regulators that influence a broad range of physiological functions from energy metabolism to cardiovascular function and nutrient uptake. A sedentary lifestyle leads to decreased daily energy expenditure because of a lack of direct use

  9. Organ-specific metabolic responses to drought in Pinus pinaster Ait.

    PubMed

    de Miguel, Marina; Guevara, M Ángeles; Sánchez-Gómez, David; de María, Nuria; Díaz, Luis Manuel; Mancha, Jose A; Fernández de Simón, Brígida; Cadahía, Estrella; Desai, Nalini; Aranda, Ismael; Cervera, María-Teresa

    2016-05-01

    Drought is an important driver of plant survival, growth, and distribution. Water deficit affects different pathways of metabolism, depending on plant organ. While previous studies have mainly focused on the metabolic drought response of a single organ, analysis of metabolic differences between organs is essential to achieve an integrated understanding of the whole plant response. In this work, untargeted metabolic profiling was used to examine the response of roots, stems, adult and juvenile needles from Pinus pinaster Ait. full-sib individuals, subjected to a moderate and long lasting drought period. Cyclitols content showed a significant alteration, in response to drought in all organs examined, but other metabolites increased or decreased differentially depending on the analyzed organ. While a high number of flavonoids were only detected in aerial organs, an induction of the glutathione pathway was mainly detected in roots. This result may reflect different antioxidant mechanisms activated in aerial organs and roots. Metabolic changes were more remarkable in roots than in the other organs, highlighting its prominent role in the response to water stress. Significant changes in flavonoids and ascorbate metabolism were also observed between adult and juvenile needles, consistent with previously proven differential functional responses between the two developmental stages. Genetic polymorphisms in candidate genes coding for a Myb1 transcription factor and a malate dehydrogenase (EC 1.1.1.37) were associated with different concentration of phenylalanine, phenylpropanoids and malate, respectively. The results obtained will support further research on metabolites and genes potentially involved in functional mechanisms related to drought tolerance in trees.

  10. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.

    PubMed

    He, Lian; Xiao, Yi; Gebreselassie, Nikodimos; Zhang, Fuzhong; Antoniewiez, Maciek R; Tang, Yinjie J; Peng, Lifeng

    2014-03-01

    We engineered a fatty acid overproducing Escherichia coli strain through overexpressing tesA (“pull”) and fadR (“push”) and knocking out fadE (“block”). This “pull-push-block” strategy yielded 0.17 g of fatty acids (C12–C18) per gram of glucose (equivalent to 48% of the maximum theoretical yield) in batch cultures during the exponential growth phase under aerobic conditions. Metabolic fluxes were determined for the engineered E. coli and its control strain using tracer ([1,2-13C]glucose) experiments and 13C-metabolic flux analysis. Cofactor (NADPH) and energy (ATP) balances were also investigated for both strains based on estimated fluxes. Compared to the control strain, fatty acid overproduction led to significant metabolic responses in the central metabolism: (1) Acetic acid secretion flux decreased 10-fold; (2) Pentose phosphate pathway and Entner–Doudoroff pathway fluxes increased 1.5- and 2.0-fold, respectively; (3) Biomass synthesis flux was reduced 1.9-fold; (4) Anaplerotic phosphoenolpyruvate carboxylation flux decreased 1.7-fold; (5) Transhydrogenation flux converting NADH to NADPH increased by 1.7-fold. Real-time quantitative RT-PCR analysis revealed the engineered strain increased the transcription levels of pntA (encoding the membrane-bound transhydrogenase) by 2.1-fold and udhA (encoding the soluble transhydrogenase) by 1.4-fold, which is in agreement with the increased transhydrogenation flux. Cofactor and energy balances analyses showed that the fatty acid overproducing E. coli consumed significantly higher cellular maintenance energy than the control strain. We discussed the strategies to future strain development and process improvements for fatty acid production in E. coli.

  11. Bioenergetic and metabolic response to continuous v intermittent nasoenteric feeding.

    PubMed

    Heymsfield, S B; Casper, K; Grossman, G D

    1987-06-01

    Resting thermal energy losses and metabolic balances of N, K, P, Ca, Na, and Mg were compared during continuous and intermittent nasoenteric formula infusion in four healthy men. Each feeding protocol lasted 1 week in a 4-week double crossover experiment. The initial feeding schedule was established randomly. Continuous nasoenteric formula infusion produced no increase in thermal energy losses above the fasting level; energy expenditure fell with sleep to the same extent as with intermittent feeding. Thermal losses were similar during intermittent feeding with the exception of the thermic effect of food that produced an additional average energy loss of 115.7 kcal/d. The total resting and sleeping 24-hour energy expenditure was significantly lower (P less than .01) during continuous formula infusion (means +/- SD for n = 8 balance periods, 1344 +/- 119 kcal) compared to intermittent feeding (1457 +/- 179 kcal). No significant differences in nutrient absorption or balances of N, Na, Ca, and Mg were detected between the two feeding protocols. In contrast, continuous infusion of formula was accompanied by negative balances of K and the cytosolic portion of P; weight balance was slightly negative. Weight, K, and cytosolic P balances were all positive during intermittent feeding (P = NS, less than 0.01, and P less than .05 compared to respective continuous infusion periods). Hence, 1 week of continuous nasogastric formula infusion is associated with similar nutrient absorption, a significant reduction in thermal energy losses, and equivalent protein (N) balance relative to intermittent feeding. Differences in weight balance between the two feeding protocols can be ascribed largely to fluid and mineral shifts. These results suggest that energy requirements are lower during continuous formula infusion by about 100 kcal/d compared to regular meal ingestion.

  12. In vivo metabolic response of glucose to dichloroacetate in humans.

    PubMed

    Brown, J A; Gore, D C

    1996-03-01

    Hyperglycemia is common in severely ill patients and is related principally to an increase in glucose production. Dichloroacetate (DCA), which is known to increase the rate of pyruvate oxidation, has been shown to lower plasma glucose concentrations in normal fasting subjects and in diabetics and thus may be efficacious in treating stress induced hyperglycemia. However, the mechanism by which DCA lowers the plasma glucose concentration in humans has not been elucidated. To examine the human in vivo metabolic alterations induced by DCA, six fasting volunteers were infused with 6,6-D2-glucose and indirect calorimetry was performed prior to and following DCA administration. Glucose, lactate, and alanine net balance across the leg were also quantitated. Following DCA administration, plasma glucose concentrations decreased by 9% due to a proportional decrease in the rate of glucose production (P < 0.05). DCA had no affect on glucose clearance or leg net balance; however, the rate of glucose oxidation increased by 24% from baseline (P < 0.05). This increase in glucose oxidation without a compensatory change in peripheral glucose consumption suggests an improved efficiency in peripheral glucose utilization induced by DCA. Plasma concentrations of lactate and alanine were also lowered by DCA (56% for lactate, 66% for alanine, P < 0.05) without a significant alteration in leg net balance. These results suggest that DCA may decrease gluconeogenesis by limiting the availability of the precursor substrates lactate and alanine. Thus dichloroacetate may be an appropriate alternative to insulin in correcting mild elevations in plasma glucose concentrations. Furthermore, DCA may be especially effective in severely ill patients where hyperglycemia is largely due to increases in gluconeogenesis.

  13. Endocrine and Metabolic Response to Shock and Trauma.

    DTIC Science & Technology

    1979-09-01

    34) S. SECURITY CLASS . W. ha ope) IS& OCkAM F1CATbON/ DOWN GRAOIN6 16. OISTRJSUTION STATEMENT (of If.i RapWQt This document has been approved for public...Academy of Sciences-National Research Council. & ’ . . . . ... " -- ’ .. .. . . . ’ . . .. . Il lll lll I ’ I I . . . . . . I I . .. . . . .. . .. . . n...The response of isolated skeletal muscle to insulin is shown in Table I. Although the streptozotocin-treated and pancreatectomized groups are not

  14. Temporal development of the barley leaf metabolic response to Pi limitation.

    PubMed

    Alexova, Ralitza; Nelson, Clark J; Millar, A Harvey

    2016-12-20

    The response of plants to Pi limitation involves interplay between root uptake of Pi , adjustment of resource allocation to different plant organs, and increased metabolic Pi use efficiency. To identify potentially novel, early-responding, metabolic hallmarks of Pi limitation in crop plants, we studied the metabolic response of barley leaves over the first 7 days of Pi stress, and the relationship of primary metabolites with leaf Pi levels and leaf biomass. The abundance of leaf Pi , Tyr, and shikimate were significantly different between low Pi and control plants 1 h after transfer of the plants to low Pi . Combining these data with (15) N metabolic labeling, we show that over the first 48 hours of Pi limitation metabolic flux through the N assimilation and aromatic amino acid pathways is increased. We propose that together with a shift in amino acid metabolism in the chloroplast a transient restoration of the energetic and redox state of the leaf is achieved. Correlation analysis of metabolite abundances revealed a central role for major amino acids in Pi stress, appearing to modulate partitioning of soluble sugars between amino acid and carboxylate synthesis, thereby limiting leaf biomass accumulation when external Pi is low.

  15. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals.

    PubMed

    Chowen, Julie A; Argente-Arizón, Pilar; Freire-Regatillo, Alejandra; Frago, Laura M; Horvath, Tamas L; Argente, Jesús

    2016-09-01

    The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases.

  16. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    PubMed

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource.

  17. Deciphering the metabolic response of M ycobacterium tuberculosis to nitrogen stress

    PubMed Central

    Williams, Kerstin J.; Jenkins, Victoria A.; Barton, Geraint R.; Bryant, William A.; Krishnan, Nitya

    2015-01-01

    Summary A key component to the success of M ycobacterium tuberculosis as a pathogen is the ability to sense and adapt metabolically to the diverse range of conditions encountered in vivo, such as oxygen tension, environmental pH and nutrient availability. Although nitrogen is an essential nutrient for every organism, little is known about the genes and pathways responsible for nitrogen assimilation in M . tuberculosis. In this study we have used transcriptomics and chromatin immunoprecipitation and high‐throughput sequencing to address this. In response to nitrogen starvation, a total of 185 genes were significantly differentially expressed (96 up‐regulated and 89 down regulated; 5% genome) highlighting several significant areas of metabolic change during nitrogen limitation such as nitrate/nitrite metabolism, aspartate metabolism and changes in cell wall biosynthesis. We identify GlnR as a regulator involved in the nitrogen response, controlling the expression of at least 33 genes in response to nitrogen limitation. We identify a consensus GlnR binding site and relate its location to known transcriptional start sites. We also show that the GlnR response regulator plays a very different role in M . tuberculosis to that in non‐pathogenic mycobacteria, controlling genes involved in nitric oxide detoxification and intracellular survival instead of genes involved in nitrogen scavenging. PMID:26077160

  18. Phenotypic variation in xenobiotic metabolism and adverse environmental response: focus on sulfur-dependent detoxification pathways.

    PubMed

    McFadden, S A

    1996-07-17

    Proper bodily response to environmental toxicants presumably requires proper function of the xenobiotic (foreign chemical) detoxification pathways. Links between phenotypic variations in xenobiotic metabolism and adverse environmental response have long been sought. Metabolism of the drug S-carboxymethyl-L-cysteine (SCMC) is polymorphous in the population, having a bimodal distribution of metabolites, 2.5% of the general population are thought to be nonmetabolizers. The researchers developing this data feel this implies a polymorphism in sulfoxidation of the amino acid cysteine to sulfate. While this interpretation is somewhat controversial, these metabolic differences reflected may have significant effects. Additionally, a significant number of individuals with environmental intolerance or chronic disease have impaired sulfation of phenolic xenobiotics. This impairment is demonstrated with the probe drug acetaminophen and is presumably due to starvation of the sulfotransferases for sulfate substrate. Reduced metabolism of SCMC has been found with increased frequency in individuals with several degenerative neurological and immunological conditions and drug intolerances, including Alzheimer's disease, Parkinson's disease, motor neuron disease, rheumatoid arthritis, and delayed food sensitivity. Impaired sulfation has been found in many of these conditions, and preliminary data suggests that it may be important in multiple chemical sensitivities and diet responsive autism. In addition, impaired sulfation may be relevant to intolerance of phenol, tyramine, and phenylic food constituents, and it may be a factor in the success of the Feingold diet. These studies indicate the need for the development of genetic and functional tests of xenobiotic metabolism as tools for further research in epidemiology and risk assessment.

  19. Metabolic flux ratio analysis and multi-objective optimization revealed a globally conserved and coordinated metabolic response of E. coli to paraquat-induced oxidative stress.

    PubMed

    Shen, Tie; Rui, Bin; Zhou, Hong; Zhang, Ximing; Yi, Yin; Wen, Han; Zheng, Haoran; Wu, Jihui; Shi, Yunyu

    2013-01-27

    The ability of a microorganism to adapt to changes in the environment, such as in nutrient or oxygen availability, is essential for its competitive fitness and survival. The cellular objective and the strategy of the metabolic response to an extreme environment are therefore of tremendous interest and, thus, have been increasingly explored. However, the cellular objective of the complex regulatory structure of the metabolic changes has not yet been fully elucidated and more details regarding the quantitative behaviour of the metabolic flux redistribution are required to understand the systems-wide biological significance of this response. In this study, the intracellular metabolic flux ratios involved in the central carbon metabolism were determined by fractional (13)C-labeling and metabolic flux ratio analysis (MetaFoR) of the wild-type E. coli strain JM101 at an oxidative environment in a chemostat. We observed a significant increase in the flux through phosphoenolpyruvate carboxykinase (PEPCK), phosphoenolpyruvate carboxylase (PEPC), malic enzyme (MEZ) and serine hydroxymethyltransferase (SHMT). We applied an ε-constraint based multi-objective optimization to investigate the trade-off relationships between the biomass yield and the generation of reductive power using the in silico iJR904 genome-scale model of E. coli K-12. The theoretical metabolic redistribution supports that the trans-hydrogenase pathway should not play a direct role in the defence mounted by E. coli against oxidative stress. The agreement between the measured ratio and the theoretical redistribution established the significance of NADPH synthesis as the goal of the metabolic reprogramming that occurs in response to oxidative stress. Our work presents a framework that combines metabolic flux ratio analysis and multi-objective optimization to investigate the metabolic trade-offs that occur under varied environmental conditions. Our results led to the proposal that the metabolic response of E

  20. An improved sample loading technique for cellular metabolic response monitoring under pressure

    NASA Astrophysics Data System (ADS)

    Gikunda, Millicent Nkirote

    To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.

  1. Metabolic responses and "omics" technologies for elucidating the effects of heat stress in dairy cows

    NASA Astrophysics Data System (ADS)

    Min, Li; Zhao, Shengguo; Tian, He; Zhou, Xu; Zhang, Yangdong; Li, Songli; Yang, Hongjian; Zheng, Nan; Wang, Jiaqi

    2016-11-01

    Heat stress (HS) negatively affects various industries that rely on animal husbandry, particularly the dairy industry. A better understanding of metabolic responses in HS dairy cows is necessary to elucidate the physiological mechanisms of HS and offer a new perspective for future research. In this paper, we review the current knowledge of responses of body metabolism (lipid, carbohydrate, and protein), endocrine profiles, and bovine mammary epithelial cells during HS. Furthermore, we summarize the metabolomics and proteomics data that have revealed the metabolite profiles and differentially expressed proteins that are a feature of HS in dairy cows. Analysis of metabolic changes and "omics" data demonstrated that HS is characterized by reduced lipolysis, increased glycolysis, and catabolism of amino acids in dairy cows. Here, analysis of the impairment of immune function during HS and of the inflammation that arises after long-term HS might suggest new strategies to ameliorate the effects of HS in dairy production.

  2. SirT1 Regulates Energy Metabolism and Response to Caloric Restriction in Mice

    PubMed Central

    Boily, Gino; Seifert, Erin L.; Bevilacqua, Lisa; He, Xiao Hong; Sabourin, Guillaume; Estey, Carmen; Moffat, Cynthia; Crawford, Sean; Saliba, Sarah; Jardine, Karen; Xuan, Jian; Evans, Meredith; Harper, Mary-Ellen; McBurney, Michael W.

    2008-01-01

    The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction. PMID:18335035

  3. Metabolic effects of chronic ACTH administration, interaction with response to stress.

    PubMed

    Armario, A; Campmany, L; Hidalgo, J

    1986-01-01

    The present experiment was undertaken to study the metabolic response to stress of single or chronic ACTH-treated male rats. It was found that chronic ACTH-treated rats showed a slight reduction in food intake and a decrease in body weight gain. This treatment increased basal serum triglyceride and insulin levels. In addition, some differences in response to stress was found in chronic ACTH-treated rats. Thus, these latter animals, unlike the other two groups, showed a decrease in circulating triglyceride and insulin levels in response to short-term stress. Moreover, 24 h after onset of stress a more marked fall in liver weight and glucose levels were found in chronic ACTH-treated rats. It suggests that chronic ACTH treatment might alter the metabolic response to prolonged acute stress what could result in lower resistance to severe stresses.

  4. Physiological and metabolic responses of gestating Brahaman cows to repeated transportation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to examine physiological and metabolic responses to repeated transportation of gestating Brahman cows, previously classified as mature cows into temperament groups of Calm, Intermediate, or Temperamental. Brahman cows (n = 48) were subjected to 2 hours of transport (TRA...

  5. Insulin deficiency alters the metabolic and endocrine responses to undernutrition in fetal sheep near term.

    PubMed

    Fowden, Abigail L; Forhead, Alison J

    2012-08-01

    Insulin deficiency affects the adult metabolic response to undernutrition, but its effects on the fetal response to maternal undernutrition remain unknown. This study examined the effects of maternal fasting for 48 h in late gestation on the metabolism of fetal sheep made insulin deficient by pancreatectomy (PX). The endocrine and metabolic responses to maternal fasting differed between intact, sham-operated and PX fetuses, despite a similar degree of hypoglycemia. Compared with intact fetuses, there was no increase in the plasma concentrations of cortisol or norepinephrine in PX fetuses during maternal fasting. In contrast, there was a significant fasting-induced rise in plasma epinephrine concentrations in PX but not intact fetuses. Umbilical glucose uptake decreased to a similar extent in both groups of fasted animals but was associated with a significant fall in glucose carbon oxidation only in intact fetuses. Pancreatectomized but not intact fetuses lowered their oxygen consumption rate by 15-20% during maternal fasting in association with increased uteroplacental oxygen consumption. Distribution of uterine oxygen uptake between the uteroplacental and fetal tissues therefore differed with fasting only in PX fetuses. Both groups of fetuses produced glucose endogenously after maternal fasting for 48 h, which prevented any significant fall in the rate of fetal glucose utilization. In intact but not PX fetuses, fasting-induced glucogenesis was accompanied by a lower hepatic glycogen content. Chronic insulin deficiency in fetal sheep therefore leads to changes in the counterregulatory endocrine response to hypoglycemia and an altered metabolic strategy in dealing with nutrient restriction in utero.

  6. Chromium supplementation enhances the metabolic response of steers to lipopolysaccharide (LPS) challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of chromium (Cr; KemTRACE®brandChromiumProprionate 0.04%, Kemin Industries) supplementation on the metabolic response to LPS challenge was examined. Steers (n=20; 235±4 kg body weight (BW)) received a premix that added 0 (Con) or 0.2 mg/kg Cr to the total diet (DM (dry matter) basis) for ...

  7. Prenatal transportation alters the metabolic response of Brahman bull calves exposed to a lipopolysaccharide (LPS) challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if prenatal transportation influences the metabolic response to a postnatal lipopolysaccharide (LPS) challenge. Pregnant Brahman cows (n=96) matched by age and parity were separated into transported (TRANS; n=48; transported for 2 hours on gestational day 60, 80,...

  8. Yeast supplementation altered the metabolic response to a combined viral-bacterial challenge in feedlot heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two treatments were evaluated in feedlot heifers to determine the effects of feeding a yeast supplement on metabolic responses to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (325 +/- 19.2 kg) were selected and randomly assigned to one of two treatments: 1) Contr...

  9. Exposure to Lipopolysaccharide in Utero Alters the Postnatal Metabolic Response in Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal metabolic response to an LPS challenge in beef heifers. Pregnant crossbred cows (n = 50) were assigned to a prenatal immune stimulation (PIS; n = 25; administered 0.1 micrograms/kg BW LPS s...

  10. Metabolic response to everolimus in patient-derived triple negative breast cancer xenografts.

    PubMed

    Euceda, Leslie R; Hill, Deborah K; Stokke, Endre; Hatem, Rana; Botty, Rania El; Bièche, Ivan; Marangoni, Elisabetta; Bathen, Tone F; Moestue, Siver A

    2017-03-14

    Patients with triple negative breast cancer (TNBC) are unresponsive to endocrine and anti-HER2 pharmacotherapy, limiting their therapeutic options to chemotherapy. TNBC is frequently associated with abnormalities in the PI3K/AKT/mTOR signaling pathway; drugs targeting this pathway are currently being evaluated in these patients. However, response is variable, partly due to heterogeneity within TNBC, conferring a need to identify biomarkers predicting response and resistance to targeted therapy. In this study, we used a metabolomics approach to assess response to the mTOR inhibitor everolimus in a panel of TNBC patient-derived xenografts (PDX) (n=103 animals). Tumor metabolic profiles were acquired using high-resolution magic angle spinning magnetic resonance spectroscopy. Partial least squares-discriminant analysis on relative metabolite concentrations discriminated treated xenografts from untreated controls with an accuracy of 67% (p=0.003). Multilevel linear mixed-effects models (LMM) indicated reduced glycolytic lactate production and glutaminolysis after treatment, consistent with PI3K/AKT/mTOR pathway inhibition. Although inherent metabolic heterogeneity between different PDX models seemed to hinder prediction of treatment response, the metabolic effects following treatment were more pronounced in responding xenografts compared to non-responders. Additionally, the metabolic information predicted p53 mutation status, which may provide complimentary insight into the interplay between PI3K signaling and other drivers of disease progression.

  11. Yeast cell wall supplementation alters the metabolic responses of crossbred heifers to an endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding yeast cell wall (YCW) products on the metabolic responses of newly-received heifers to endotoxin challenge. Heifers (n = 24; 219 ± 2.4 kg) were separated into treatment groups receiving a Control diet (n = 8), YCW-A (2.5 grams/heifer/d; n = 8) or YCW-C (2.5 ...

  12. Multi-modality imaging to assess metabolic response to dichloroacetate treatment in tumor models

    PubMed Central

    Neveu, Marie-Aline; Preter, Géraldine De; Joudiou, Nicolas; Bol, Anne; Brender, Jeffery R.; Saito, Keita; Kishimoto, Shun; Grégoire, Vincent; Jordan, Bénédicte F.; Krishna, Murali C.; Feron, Olivier; Gallez, Bernard

    2016-01-01

    Reverting glycolytic metabolism is an attractive strategy for cancer therapy as upregulated glycolysis is a hallmark in various cancers. Dichloroacetate (DCA), long used to treat lactic acidosis in various pathologies, has emerged as a promising anti-cancer drug. By inhibiting the pyruvate dehydrogenase kinase, DCA reactivates the mitochondrial function and decreases the glycolytic flux in tumor cells resulting in cell cycle arrest and apoptosis. We recently documented that DCA was able to induce a metabolic switch preferentially in glycolytic cancer cells, leading to a more oxidative phenotype and decreasing proliferation, while oxidative cells remained less sensitive to DCA treatment. To evaluate the relevance of this observation in vivo, the aim of the present study was to characterize the effect of DCA in glycolytic MDA-MB-231 tumors and in oxidative SiHa tumors using advanced pharmacodynamic metabolic biomarkers. Oxygen consumption, studied by 17O magnetic resonance spectroscopy, glucose uptake, evaluated by 18F-FDG PET and pyruvate transformation into lactate, measured using hyperpolarized 13C-magnetic resonance spectroscopy, were monitored before and 24 hours after DCA treatment in tumor bearing mice. In both tumor models, no clear metabolic shift was observed. Surprisingly, all these imaging parameters concur to the conclusion that both glycolytic tumors and oxidative tumors presented a similar response to DCA. These results highlight a major discordance in metabolic cancer cell bioenergetics between in vitro and in vivo setups, indicating critical role of the local microenvironment in tumor metabolic behaviors. PMID:28082726

  13. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.).

    PubMed

    Wang, Ying; Campbell, Jacob B; Kaftanoglu, Osman; Page, Robert E; Amdam, Gro V; Harrison, Jon F

    2016-04-01

    Environmental changes during development have long-term effects on adult phenotypes in diverse organisms. Some of the effects play important roles in helping organisms adapt to different environments, such as insect polymorphism. Others, especially those resulting from an adverse developmental environment, have a negative effect on adult health and fitness. However, recent studies have shown that those phenotypes influenced by early environmental adversity have adaptive value under certain (anticipatory) conditions that are similar to the developmental environment, though evidence is mostly from morphological and behavioral observations and it is still rare at physiological and molecular levels. In the companion study, we applied a short-term starvation treatment to fifth instar honey bee larvae and measured changes in adult morphology, starvation resistance, hormonal and metabolic physiology and gene expression. Our results suggest that honey bees can adaptively respond to the predicted nutritional stress. In the present study, we further hypothesized that developmental starvation specifically improves the metabolic response of adult bees to starvation instead of globally affecting metabolism under well-fed conditions. Here, we produced adult honey bees that had experienced a short-term larval starvation, then we starved them for 12 h and monitored metabolic rate, blood sugar concentrations and metabolic reserves. We found that the bees that experienced larval starvation were able to shift to other fuels faster and better maintain stable blood sugar levels during starvation. However, developmental nutritional stress did not change metabolic rates or blood sugar levels in adult bees under normal conditions. Overall, our study provides further evidence that early larval starvation specifically improves the metabolic responses to adult starvation in honey bees.

  14. Metabolic and adaptive immune responses induced in mice infected with tissue-dwelling nematode Trichinella zimbabwensis

    PubMed Central

    Onkoba, N.; Chimbari, M.J.; Kamau, J.M.; Mukaratirwa, S.

    2016-01-01

    Tissue-dwelling helminths are known to induce intestinal and systemic inflammation accompanied with host compensatory mechanisms to counter balance nutritional and metabolic deficiencies. The metabolic and immune responses of the host depend on parasite species and tissues affected by the parasite. This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were randomly assigned into T. zimbabwensis-infected and control groups. Levels of Th1 (interferon-γ) and Th17 (interleukin-17) cytokines, insulin and blood glucose were determined as well as measurements of body weight, food and water intake. Results showed that during the enteric phase of infection, insulin and IFN-γ levels were significantly higher in the Trichinella infected group accompanied with a reduction in the trends of food intake and weight loss compared with the control group. During systemic larval migration, trends in food and water intake were significantly altered and this was attributed to compensatory feeding resulting in weight gain, reduced insulin levels and increased IL-17 levels. Larval migration also induced a Th1/Th17 derived inflammatory response. It was concluded that T. zimbabwensis alters metabolic parameters by instigating host compensatory feeding. Furthermore, we showed for the first time that non-encapsulated T. zimbabwensis parasite plays a role in immunomodulating host Th1/Th17 type responses during chronic infection. PMID:27882304

  15. Metabolic profiles of sunflower genotypes with contrasting response to Sclerotinia sclerotiorum infection.

    PubMed

    Peluffo, Lucila; Lia, Verónica; Troglia, Carolina; Maringolo, Carla; Norma, Paniego; Escande, Alberto; Esteban Hopp, H; Lytovchenko, Anna; Fernie, Alisdair R; Heinz, Ruth; Carrari, Fernando

    2010-01-01

    We report a comprehensive primary metabolite profiling of sunflower (Helianthus annuus) genotypes displaying contrasting behavior to Sclerotinia sclerotiorum infection. Applying a GC-MS-based metabolite profiling approach, we were able to identify differential patterns involving a total of 63 metabolites including major and minor sugars and sugar alcohols, organic acids, amino acids, fatty acids and few soluble secondary metabolites in the sunflower capitulum, the main target organ of pathogen attack. Metabolic changes and disease incidence of the two contrasting genotypes were determined throughout the main infection period (R5.2-R6). Both point-by-point and non-parametric statistical analyses showed metabolic differences between genotypes as well as interaction effects between genotype and time after inoculation. Network correlation analyses suggested that these metabolic changes were synchronized in a time-dependent manner in response to the pathogen. Concerted differential metabolic changes were detected to a higher extent in the susceptible, rather than the resistant genotype, thereby allowing differentiation of modules composed by intermediates of the same pathway which are highly interconnected in the susceptible line but not in the resistant one. Evaluation of these data also demonstrated a genotype specific regulation of distinct metabolic pathways, suggesting the importance of detection of metabolic patterns rather than specific metabolite changes when looking for metabolic markers differentially responding to pathogen infection. In summary, the GC-MS strategy developed in this study was suitable for detection of differences in carbon primary metabolism in sunflower capitulum, a tissue which is the main entry point for this and other pathogens which cause great detrimental impact on crop yield.

  16. HexR Controls Glucose-Responsive Genes and Central Carbon Metabolism in Neisseria meningitidis

    PubMed Central

    Antunes, Ana; Golfieri, Giacomo; Ferlicca, Francesca; Giuliani, Marzia M.; Scarlato, Vincenzo

    2015-01-01

    ABSTRACT Neisseria meningitidis, an exclusively human pathogen and the leading cause of bacterial meningitis, must adapt to different host niches during human infection. N. meningitidis can utilize a restricted range of carbon sources, including lactate, glucose, and pyruvate, whose concentrations vary in host niches. Microarray analysis of N. meningitidis grown in a chemically defined medium in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. Most such genes are implicated in energy metabolism and transport, and some are implicated in virulence. In particular, genes involved in glucose catabolism were upregulated, whereas genes involved in the tricarboxylic acid cycle were downregulated. Several genes encoding surface-exposed proteins, including the MafA adhesins and Neisseria surface protein A, were upregulated in the presence of glucose. Our microarray analysis led to the identification of a glucose-responsive hexR-like transcriptional regulator that controls genes of the central carbon metabolism of N. meningitidis in response to glucose. We characterized the HexR regulon and showed that the hexR gene is accountable for some of the glucose-responsive regulation; in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of the bacterium. Based on DNA sequence alignment of the target sites, we propose a 17-bp pseudopalindromic consensus HexR binding motif. Furthermore, N. meningitidis strains lacking hexR expression were deficient in establishing successful bacteremia in an infant rat model of infection, indicating the importance of this regulator for the survival of this pathogen in vivo. IMPORTANCE Neisseria meningitidis grows on a limited range of nutrients during infection. We analyzed the gene expression of N. meningitidis in response to glucose, the main energy source available in human blood, and we found that glucose regulates many genes

  17. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-09-01

    Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle microvascular recruitment. We demonstrated that a high-fat diet induces vascular adiponectin and insulin resistance but globular adiponectin administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism. This suggests that globular adiponectin might have a therapeutic potential for improving insulin resistance and preventing cardiovascular complications in patients with diabetes via modulation of microvascular insulin responses. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague-Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by

  18. [Advances in studies on growth metabolism and response mechanisms of medicinal plants under drought stress].

    PubMed

    Si, Can; Zhang, Jun-Yi; Xu, Hu-Chao

    2014-07-01

    Drought stress exerts a considerable effect on growth, physiology and secondary metabolisms of the medicinal plants. It could inhabit the growth of the medicinal plants but promote secretion of secondary metabolites. Other researches indicated that the medicinal plants could depend on the ABA signaling pathway and secreting osmotic substances to resist the drought stress and reduce the damage by it. The article concludes the changes in growth, physiology, secondary metabolisms and response mechanisms of medicinal plants to drought stress that provides a theoretical basis for exploring the relationship between medicinal plants and drought stress.

  19. Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system.

    PubMed

    Torzilli, P A; Grigiene, R; Huang, C; Friedman, S M; Doty, S B; Boskey, A L; Lust, G

    1997-01-01

    A new mechanical explant test system was used to study the metabolic response (via proteoglycan biosynthesis) of mature, weight-bearing canine articular cartilage subjected to static and dynamic compressive stresses. Stresses ranging from 0.5 to 24 MPa were applied sinusoidally at 1 Hz for intervals of 2-24 h. The explants were loaded in unconfined compression and compared to age-matched unloaded explants. Both static and dynamic compressive stress significantly decreased proteoglycan biosynthesis (range 25-85%) for all loading time intervals. The inhibition was proportional to the applied stress but was independent of loading time. After rehydration upon load removal, the measured water content of the loaded explants was not different from the unloaded explants for all test variables. Autoradiographic and electron microscopic analysis of loaded explants showed viable chondrocytes throughout the matrix. Our results suggest that the decreased metabolic response of cyclically loaded explants may be dominated by the static component (RMS) of the dynamic load. Furthermore, the observed decreased metabolism may be more representative of the in situ tissue response than that of unloaded explants, in which we found an increasing rate of metabolism for up to 6 days after explant removal.

  20. System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium.

    PubMed

    Lee, Do Yup; Park, Jeong-Jin; Barupal, Dinesh K; Fiehn, Oliver

    2012-10-01

    Drastic alterations in macronutrients are known to cause large changes in biochemistry and gene expression in the photosynthetic alga Chlamydomonas reinhardtii. However, metabolomic and proteomic responses to subtle reductions in macronutrients have not yet been studied. When ammonium levels were reduced by 25-100% compared with control cultures, ammonium uptake and growth rates were not affected at 25% or 50% nitrogen-reduction for 28 h. However, primary metabolism and enzyme expression showed remarkable changes at acute conditions (4 h and 10 h after ammonium reduction) compared with chronic conditions (18 h and 28 h time points). Responses of 145 identified metabolites were quantified using gas chromatography-time of flight mass spectrometry; 495 proteins (including 187 enzymes) were monitored using liquid chromatography-ion trap mass spectrometry with label-free spectral counting. Stress response and carbon assimilation processes (Calvin cycle, acetate uptake and chlorophyll biosynthesis) were altered first, in addition to increase in enzyme contents for lipid biosynthesis and accumulation of short chain free fatty acids. Nitrogen/carbon balance metabolism was found changed only under chronic conditions, for example in the citric acid cycle and amino acid metabolism. Metabolism in Chlamydomonas readily responds to total available media nitrogen with temporal increases in short-chain free fatty acids and turnover of internal proteins, long before nitrogen resources are depleted.

  1. Metabolic Communication between Astrocytes and Neurons via Bicarbonate-Responsive Soluble Adenylyl Cyclase

    PubMed Central

    Choi, Hyun B.; Gordon, Grant R.J.; Zhou, Ning; Tai, Chao; Rungta, Ravi L.; Martinez, Jennifer; Milner, Teresa A.; Ryu, Jae K.; McLarnon, James G.; Tresguerres, Martin; Levin, Lonny R.; Buck, Jochen; MacVicar, Brian A.

    2013-01-01

    SUMMARY Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO3−) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO3− entry via the electrogenic NaHCO3 cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K+]ext and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons. PMID:22998876

  2. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase.

    PubMed

    Choi, Hyun B; Gordon, Grant R J; Zhou, Ning; Tai, Chao; Rungta, Ravi L; Martinez, Jennifer; Milner, Teresa A; Ryu, Jae K; McLarnon, James G; Tresguerres, Martin; Levin, Lonny R; Buck, Jochen; MacVicar, Brian A

    2012-09-20

    Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO₃⁻) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO₃⁻ entry via the electrogenic NaHCO₃ cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K⁺](ext) and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons.

  3. Alteration of Plant Primary Metabolism in Response to Insect Herbivory1

    PubMed Central

    Zhou, Shaoqun; Lou, Yann-Ru; Tzin, Vered; Jander, Georg

    2015-01-01

    Plants in nature, which are continuously challenged by diverse insect herbivores, produce constitutive and inducible defenses to reduce insect damage and preserve their own fitness. In addition to inducing pathways that are directly responsible for the production of toxic and deterrent compounds, insect herbivory causes numerous changes in plant primary metabolism. Whereas the functions of defensive metabolites such as alkaloids, terpenes, and glucosinolates have been studied extensively, the fitness benefits of changes in photosynthesis, carbon transport, and nitrogen allocation remain less well understood. Adding to the complexity of the observed responses, the feeding habits of different insect herbivores can significantly influence the induced changes in plant primary metabolism. In this review, we summarize experimental data addressing the significance of insect feeding habits, as related to herbivore-induced changes in plant primary metabolism. Where possible, we link these physiological changes with current understanding of their underlying molecular mechanisms. Finally, we discuss the potential fitness benefits that host plants receive from altering their primary metabolism in response to insect herbivory. PMID:26378101

  4. Fluctuation of multiple metabolic pathways is required for Escherichia coli in response to chlortetracycline stress.

    PubMed

    Lin, Xiangmin; Kang, Liqun; Li, Hui; Peng, Xuanxian

    2014-04-01

    Bacterial antibiotic resistance has become a worldwide challenge with the overuse and misuse of drugs. Several mechanisms for the resistance are revealed, but information regarding the bacterial global response to antibiotics is largely absent. In this study, we characterized the differential proteome of Escherichia coli K12 BW25113 in response to chlortetracycline stress using isobaric tags for relative and absolute quantitation labeling quantitative proteomics technology. A total of 723 proteins including 10,763 peptides were identified with 184 decreasing and 147 increasing in abundance by liquid chromatography matrix assisted laser desorption ionization mass spectrometry. Most interestingly, crucial metabolic pathways such as the tricarboxylic acid cycle, pyruvate metabolism and glycolysis/gluconeogenesis sharply fluctuated, while the ribosome protein complexes contributing to the translation process were generally elevated in chlortetracycline stress, which is known for a compensative tactic due to the action of chlortetracycline on the ribosome. Further antimicrobial susceptibility assays validated the role of differential proteins in metabolic pathways using genetically modified mutants of gene deletion of these differential proteins. Our study demonstrated that the down-regulation of metabolic pathways was a part of the global response and played an important role in the antibiotics resistance. These results indicate that reverting of these fluctuated pathways may become a novel strategy to combat antibiotic-resistant bacteria.

  5. Comparative Proteomics Provides Insights into Metabolic Responses in Rat Liver to Isolated Soy and Meat Proteins.

    PubMed

    Song, Shangxin; Hooiveld, Guido J; Zhang, Wei; Li, Mengjie; Zhao, Fan; Zhu, Jing; Xu, Xinglian; Muller, Michael; Li, Chunbao; Zhou, Guanghong

    2016-04-01

    It has been reported that isolated dietary soy and meat proteins have distinct effects on physiology and liver gene expression, but the impact on protein expression responses are unknown. Because these may differ from gene expression responses, we investigated dietary protein-induced changes in liver proteome. Rats were fed for 1 week semisynthetic diets that differed only regarding protein source; casein (reference) was fully replaced by isolated soy, chicken, fish, or pork protein. Changes in liver proteome were measured by iTRAQ labeling and LC-ESI-MS/MS. A robust set totaling 1437 unique proteins was identified and subjected to differential protein analysis and biological interpretation. Compared with casein, all other protein sources reduced the abundance of proteins involved in fatty acid metabolism and Pparα signaling pathway. All dietary proteins, except chicken, increased oxidoreductive transformation reactions but reduced energy and essential amino acid metabolic pathways. Only soy protein increased the metabolism of sulfur-containing and nonessential amino acids. Soy and fish proteins increased translation and mRNA processing, whereas only chicken protein increased TCA cycle but reduced immune responses. These findings were partially in line with previously reported transcriptome results. This study further shows the distinct effects of soy and meat proteins on liver metabolism in rats.

  6. A Pilot Metabolic Profiling Study of Patients With Neonatal Jaundice and Response to Phototherapy.

    PubMed

    Cai, A; Qi, S; Su, Z; Shen, H; Yang, Y; Cai, W; Dai, Y

    2016-08-01

    Phototherapy has been widely used in treating neonatal jaundice, but detailed metabonomic profiles of neonatal jaundice patients and response to phototherapy have not been characterized. Our aim was to depict the serum metabolic characteristics of neonatal jaundice patients relative to controls and changes in response to phototherapy. A (1) H nuclear magnetic resonance (NMR)-based metabonomic approach was employed to study the metabolic profiling of serum from healthy infants (n = 25) and from infants with neonatal jaundice (n = 30) pre- and postphototherapy. The acquired data were processed by multivariate principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA). The PLS-DA and OPLS-DA model identified nine metabolites capable of distinguishing patients from controls. In addition, 28 metabolites such as β-glucose, α-glucose, valine, and pyruvate changed in response to phototherapy. This study offers useful information on metabolic disorders in neonatal jaundice patients and the effects of phototherapy on lipids, amino acid, and energy metabolism.

  7. Endoplasmic Reticulum and the Unfolded Protein Response: Dynamics and Metabolic Integration

    PubMed Central

    Bravo, Roberto; Parra, Valentina; Gatica, Damián; Rodriguez, Andrea E.; Torrealba, Natalia; Paredes, Felipe; Wang, Zhao V.; Zorzano, Antonio; Hill, Joseph A.; Jaimovich, Enrique; Quest, Andrew F.G.; Lavandero, Sergio

    2013-01-01

    The endoplasmic reticulum (ER) is a dynamic intracellular organelle with multiple functions essential for cellular homeostasis, development, and stress responsiveness. In response to cellular stress, a well-established signaling cascade, the unfolded protein response (UPR), is activated. This intricate mechanism is an important means of reestablishing cellular homeostasis and alleviating the inciting stress. Now, emerging evidence has demonstrated that the UPR influences cellular metabolism through diverse mechanisms, including calcium and lipid transfer, raising the prospect of involvement of these processes in the pathogenesis of disease, including neurodegeneration, cancer, diabetes mellitus and cardiovascular disease. Here, we review the distinct functions of the ER and UPR from a metabolic point of view, highlighting their association with prevalent pathologies. PMID:23317820

  8. Investigating the Cellular and Metabolic Responses of World-Class Canoeists Training: A Sportomics Approach

    PubMed Central

    Coelho, Wagner Santos; Viveiros de Castro, Luis; Deane, Elizabeth; Magno-França, Alexandre; Bassini, Adriana; Cameron, Luiz-Claudio

    2016-01-01

    (1) Background: We have been using the Sportomics approach to evaluate biochemical and hematological changes in response to exercise. The aim of this study was to evaluate the metabolic and hematologic responses of world-class canoeists during a training session; (2) Methods: Blood samples were taken at different points and analyzed for their hematological properties, activities of selected enzymes, hormones, and metabolites; (3) Results: Muscle stress biomarkers were elevated in response to exercise which correlated with modifications in the profile of white blood cells, where a leukocyte rise was observed after the canoe session. These results were accompanied by an increase in other exercise intensity parameters such as lactatemia and ammonemia. Adrenocorticotropic hormone and cortisol increased during the exercise sessions. The acute rise in both erythrocytes and white blood profile were probably due to muscle cell damage, rather than hepatocyte integrity impairment; (4) Conclusion: The cellular and metabolic responses found here, together with effective nutrition support, are crucial to understanding the effects of exercise in order to assist in the creation of new training and recovery planning. Also we show that Sportomics is a primal tool for training management and performance improvement, as well as to the understanding of metabolic response to exercise. PMID:27845704

  9. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli.

    PubMed

    Pries, Axel R; Reglin, Bettina; Secomb, Timothy W

    2005-10-01

    Vascular functions, including tissue perfusion and peripheral resistance, reflect continuous structural adaptation (remodeling) of blood vessels in response to several stimuli. Here, a theoretical model is presented that relates the structural and functional properties of microvascular networks to the adaptive responses of individual segments to hemodynamic and metabolic stimuli. All vessels are assumed to respond, according to a common set of adaptation rules, to changes in wall shear stress, circumferential wall stress, and tissue metabolic status (indicated by partial pressure of oxygen). An increase in vessel diameter with increasing wall shear stress and an increase in wall mass with increased circumferential stress are needed to ensure stable vascular adaptation. The model allows quantitative predictions of the effects of changes in systemic hemodynamic conditions or local adaptation characteristics on vessel structure and on peripheral resistance. Predicted effects of driving pressure on the ratio of wall thickness to vessel diameter are consistent with experimental observations. In addition, peripheral resistance increases by approximately 65% for an increase in driving pressure from 50 to 150 mm Hg. Peripheral resistance is predicted to be markedly increased in response to a decrease in vascular sensitivity to wall shear stress, and to be decreased in response to increased tissue metabolic demand. This theoretical approach provides a framework for integrating available information on structural remodeling in the vascular system and predicting responses to changing conditions or altered vascular reactivity, as may occur in hypertension.

  10. Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure1[OPEN

    PubMed Central

    Khaling, Eliezer; Lassueur, Steve

    2016-01-01

    Plants have evolved adaptive mechanisms that allow them to tolerate a continuous range of abiotic and biotic stressors. Tropospheric ozone (O3), a global anthropogenic pollutant, directly affects living organisms and ecosystems, including plant-herbivore interactions. In this study, we investigate the stress responses of Brassica nigra (wild black mustard) exposed consecutively to O3 and the specialist herbivore Pieris brassicae. Transcriptomics and metabolomics data were evaluated using multivariate, correlation, and network analyses for the O3 and herbivory responses. O3 stress symptoms resembled those of senescence and phosphate starvation, while a sequential shift from O3 to herbivory induced characteristic plant defense responses, including a decrease in central metabolism, induction of the jasmonic acid/ethylene pathways, and emission of volatiles. Omics network and pathway analyses predicted a link between glycerol and central energy metabolism that influences the osmotic stress response and stomatal closure. Further physiological measurements confirmed that while O3 stress inhibited photosynthesis and carbon assimilation, sequential herbivory counteracted the initial responses induced by O3, resulting in a phenotype similar to that observed after herbivory alone. This study clarifies the consequences of multiple stress interactions on a plant metabolic system and also illustrates how omics data can be integrated to generate new hypotheses in ecology and plant physiology. PMID:27758847

  11. Molecular and Physiological Responses to Juvenile Traumatic Brain Injury: Focus on Growth and Metabolism

    PubMed Central

    Babikian, Talin; Prins, Mayumi L.; Cai, Yan; Barkhoudarian, Garni; Hartonian, Ivet; Hovda, David A.; Giza, Christopher C.

    2011-01-01

    Traumatic brain injury (TBI), one of the most frequent causes of neurologic and neurobehavioral morbidity in the pediatric population, can result in lifelong challenges not only for patients, but also for their families. Survivors of a brain injury experienced during childhood – when the brain is undergoing a period of rapid development – frequently experience unique challenges as the consequences of their injuries are overlaid on normal developmental changes. Experimental studies have significantly advanced our understanding of the mechanisms and underlying molecular underpinnings of the injury response and recovery process following a TBI in the developing brain. In this paper, normal and TBI-related alterations in growth, development and metabolism are comprehensively reviewed in the postweanling/juvenile age range in the rat (postnatal days 21–60). As part of this review, TBI-related changes in gene expression are presented, with a focus on the injury-induced alterations related to cerebral growth and metabolism, and discussed in the context of existing literature related to physiological and behavioral responses to experimental TBI. Increasing evidence from the existing literature and from our own gene microarray data indicates that molecular responses related to growth, development and metabolism may play a particularly important role in the injury response and the recovery trajectory following developmental TBI. While gene expression analysis shows many of these changes occur at the level of transcription, a comprehensive review of other studies suggests that the control of metabolic substrates may preferentially be regulated through changes in transporters and enzymatic activity. The interrelation between cellular metabolism and activity-dependent neuroplasticity shows great promise as an area for future study for an optimal translation of experimental data to clinical TBI, with the ultimate goal of guiding therapeutic interventions. PMID:21071915

  12. Gender-specific metabolic responses in hepatopancreas of mussel Mytilus galloprovincialis challenged by Vibrio harveyi.

    PubMed

    Liu, Xiaoli; Sun, Hushan; Wang, Yiyan; Ma, Mengwen; Zhang, Yuemei

    2014-10-01

    Mussel Mytilus galloprovincialis is a marine aquaculture shellfish and frequently studied in shellfish immunology. In this work, the gender-specific metabolic responses induced by Vibrio harveyi in hepatopancreas from M. galloprovincialis were characterized using NMR-based metabolomics. In details, V. harveyi challenge increased the levels of amino acids including (valine, leucine, isoleucine, threonine, alanine, arginine and tyrosine) and ATP, and decreased the level of glucose in male mussel hepatopancreas. In V. harveyi-challenged female mussel hepatopancreas, both threonine and AMP were significantly elevated, and choline, phoshphocholine, sn-glycero-3-phosphocholine, taurine, betaine and ATP were depleted. Obviously, only threonine was similarly altered to that in V. harveyi-challenged male mussel hepatopancreas. These findings confirmed the gender-specific metabolic responses in mussels challenged by V. harveyi. Overall, V. harveyi induced an enhanced energy demand through activated glycolysis and immune response indicated by increased BCAAs in male mussel hepatopancreas. In female mussel hepatopancreas, V. harveyi basically caused disturbances in both osmotic regulation and energy metabolism through the metabolic pathways of conversions of phosphocholine and ADP to choline and ATP, and sn-glycero-3-phosphocholine and H2O into choline and sn-glycerol 3-phosphate. The altered mRNA expression levels of related genes (Cu/Zn-SOD, HSP90, lysozyme and defensin) suggested that V. harveyi induced obvious oxidative and immune stresses in both male and female mussel hepatopancreas. This work demonstrated that V. harveyi could induce gender-specific metabolic responses in mussel M. galloprovincialis hepatopancreas using NMR-based metabolomics.

  13. Metabolic response to optic centers to visual stimuli in the albino rat: anatomical and physiological considerations

    SciTech Connect

    Toga, A.W.; Collins, R.C.

    1981-07-10

    The functional organization of the visual system was studied in the albino rat. Metabolic differences were measured using the /sup 14/C-2-deoxyglucose (DG) autoradiographic technique during visual stimulation of one entire retina in unrestrained animals. All optic centers responded to changes in light intensity but to different degrees. The greatest change occurred in the superior colliculus, less in the lateral geniculate, and considerably less in second-order sites such as layer IV of visual cortex. These optic centers responded in particular to on/off stimuli, but showed no incremental change during pattern reversal or movement of orientation stimuli. Both the superior colliculus and lateral geniculate increased their metabolic rate as the frequency of stimulation increased, but the magnitude was twice as great in the colliculus. The histological pattern of metabolic change in the visual system was not homogenous. In the superior colliculus glucose utilization increased only in stratum griseum superficiale and was greatest in visuotopic regions representing the peripheral portions of the visual field. Similarly, in the lateral geniculate, only the dorsal nucleus showed an increased response to greater stimulus frequencies. Second-order regions of the visual system showed changes in metabolism in response to visual stimulation, but no incremental response specific for type or frequency of stimuli. To label proteins of axoplasmic transport to study the terminal fields of retinal projections /sup 14/C-amino acids were used. This was done to study how the differences in the magnitude of the metabolic response among optic centers were related to the relative quantity of retinofugal projections to these centers.

  14. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  15. Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule

    PubMed Central

    2010-01-01

    Background Different isoforms of Cytochrome P450 (CYP) metabolized different types of substrates (or drugs molecule) and make them soluble during biotransformation. Therefore, fate of any drug molecule depends on how they are treated or metabolized by CYP isoform. There is a need to develop models for predicting substrate specificity of major isoforms of P450, in order to understand whether a given drug will be metabolized or not. This paper describes an in-silico method for predicting the metabolizing capability of major isoforms (e.g. CYP 3A4, 2D6, 1A2, 2C9 and 2C19). Results All models were trained and tested on 226 approved drug molecules. Firstly, 2392 molecular descriptors for each drug molecule were calculated using various softwares. Secondly, best 41 descriptors were selected using general and genetic algorithm. Thirdly, Support Vector Machine (SVM) based QSAR models were developed using 41 best descriptors and achieved an average accuracy of 86.02%, evaluated using fivefold cross-validation. We have also evaluated the performance of our model on an independent dataset of 146 drug molecules and achieved average accuracy 70.55%. In addition, SVM based models were developed using 26 Chemistry Development Kit (CDK) molecular descriptors and achieved an average accuracy of 86.60%. Conclusions This study demonstrates that SVM based QSAR model can predict substrate specificity of major CYP isoforms with high accuracy. These models can be used to predict isoform responsible for metabolizing a drug molecule. Thus these models can used to understand whether a molecule will be metabolized or not. This is possible to develop highly accurate models for predicting substrate specificity of major isoforms using CDK descriptors. A web server MetaPred has been developed for predicting metabolizing isoform of a drug molecule http://crdd.osdd.net/raghava/metapred/. PMID:20637097

  16. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response.

    PubMed

    Dai, Fangyan; Lee, Hyemin; Zhang, Yilei; Zhuang, Li; Yao, Hui; Xi, Yuanxin; Xiao, Zhen-Dong; You, M James; Li, Wei; Su, Xiaoping; Gan, Boyi

    2017-03-21

    The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.

  17. CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma.

    PubMed

    Dixit, Deobrat; Ahmad, Fahim; Ghildiyal, Ruchi; Joshi, Shanker Datt; Sen, Ellora

    2016-05-15

    Understanding mechanisms that link aberrant metabolic adaptation and pro-survival responses in glioma cells is crucial towards the development of new anti-glioma therapies. As we have previously reported that CK2 is associated with glioma cell survival, we evaluated its involvement in the regulation of glucose metabolism. Inhibition of CK2 increased the expression of metabolic regulators, PDK4 and AMPK along with the key cellular energy sensor CREB. This increase was concomitant with altered metabolic profile as characterized by decreased glucose uptake in a PDK4 and AMPK dependent manner. Increased PDK4 expression was CREB dependent, as exogenous inhibition of CREB functions abrogated CK2 inhibitor mediated increase in PDK4 expression. Interestingly, PDK4 regulated AMPK phosphorylation which in turn affected cell viability in CK2 inhibitor treated glioma cells. CK2 inhibitor 4,5,6,7-Tetrabromobenzotriazole (TBB) significantly retarded the growth of glioma xenografts in athymic nude mouse model. Coherent with the in vitro findings, elevated senescence, pAMPK and PDK4 levels were also observed in TBB-treated xenograft tissue. Taken together, CK2 inhibition in glioma cells drives the PDK4-AMPK axis to affect metabolic profile that has a strong bearing on their survival.

  18. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response

    PubMed Central

    Dai, Fangyan; Lee, Hyemin; Zhang, Yilei; Zhuang, Li; Yao, Hui; Xi, Yuanxin; Xiao, Zhen-Dong; You, M. James; Li, Wei; Su, Xiaoping; Gan, Boyi

    2017-01-01

    The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer. PMID:28275095

  19. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    PubMed Central

    Iizuka, Katsumi

    2017-01-01

    Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP) is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase), fructolysis (Glut5, ketohexokinase), and lipogenesis (acetyl CoA carboxylase, fatty acid synthase). ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome. PMID:28241431

  20. Serine and SAM Responsive Complex SESAME Regulates Histone Modification Crosstalk by Sensing Cellular Metabolism.

    PubMed

    Li, Shanshan; Swanson, Selene K; Gogol, Madelaine; Florens, Laurence; Washburn, Michael P; Workman, Jerry L; Suganuma, Tamaki

    2015-11-05

    Pyruvate kinase M2 (PKM2) is a key enzyme for glycolysis and catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate, which supplies cellular energy. PKM2 also phosphorylates histone H3 threonine 11 (H3T11); however, it is largely unknown how PKM2 links cellular metabolism to chromatin regulation. Here, we show that the yeast PKM2 homolog, Pyk1, is a part of a novel protein complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex), which contains serine metabolic enzymes, SAM (S-adenosylmethionine) synthetases, and an acetyl-CoA synthetase. SESAME interacts with the Set1 H3K4 methyltransferase complex, which requires SAM synthesized from SESAME, and recruits SESAME to target genes, resulting in phosphorylation of H3T11. SESAME regulates the crosstalk between H3K4 methylation and H3T11 phosphorylation by sensing glycolysis and glucose-derived serine metabolism. This leads to auto-regulation of PYK1 expression. Thus, our study provides insights into the mechanism of regulating gene expression, responding to cellular metabolism via chromatin modifications.

  1. Purine and pyrimidine metabolism: Convergent evidence on chronic antidepressant treatment response in mice and humans

    PubMed Central

    Park, Dong Ik; Dournes, Carine; Sillaber, Inge; Uhr, Manfred; Asara, John M.; Gassen, Nils C.; Rein, Theo; Ising, Marcus; Webhofer, Christian; Filiou, Michaela D.; Müller, Marianne B.; Turck, Christoph W.

    2016-01-01

    Selective Serotonin Reuptake Inhibitors (SSRIs) are commonly used drugs for the treatment of psychiatric diseases including major depressive disorder (MDD). For unknown reasons a substantial number of patients do not show any improvement during or after SSRI treatment. We treated DBA/2J mice for 28 days with paroxetine and assessed their behavioral response with the forced swim test (FST). Paroxetine-treated long-time floating (PLF) and paroxetine-treated short-time floating (PSF) groups were stratified as proxies for drug non-responder and responder mice, respectively. Proteomics and metabolomics profiles of PLF and PSF groups were acquired for the hippocampus and plasma to identify molecular pathways and biosignatures that stratify paroxetine-treated mouse sub-groups. The critical role of purine and pyrimidine metabolisms for chronic paroxetine treatment response in the mouse was further corroborated by pathway protein expression differences in both mice and patients that underwent chronic antidepressant treatment. The integrated -omics data indicate purine and pyrimidine metabolism pathway activity differences between PLF and PSF mice. Furthermore, the pathway protein levels in peripheral specimens strongly correlated with the antidepressant treatment response in patients. Our results suggest that chronic SSRI treatment differentially affects purine and pyrimidine metabolisms, which may explain the heterogeneous antidepressant treatment response and represents a potential biosignature. PMID:27731396

  2. Residual effects of prior exercise and recovery on subsequent exercise-induced metabolic responses.

    PubMed

    Ronsen, Ola; Haugen, Oystein; Hallén, Jostein; Bahr, Roald

    2004-08-01

    Data on the metabolic responses to repeated endurance exercise sessions are limited. Thus, the aims of this study were to examine (1) the impact of prior exercise on metabolic responses to a subsequent exercise session and (2) the effect of different recovery periods between two daily exercise sessions on metabolic responses to the second bout of exercise. Nine male elite athletes participated in four 25-h trials: one bout of exercise (ONE), two bouts of exercise separated by 3 h of rest and one meal (SHORT), two bouts of exercise separated by 6 h of rest and two meals (LONG), and a trial with no exercise (REST). All exercise bouts consisted of 10 min cycling at 50% followed by 65 min at 75% of maximal O2 uptake. Compared to no prior exercise (ONE), a previous bout of exercise (SHORT) was followed by higher mean O2 uptake, heart rate (HR), rectal temperature (TR), excess post-exercise oxygen consumption and lower respiratory exchange ratio (R) during and after a similar exercise session 3 h later. A longer rest interval between the two exercise bouts (6 h versus 3 h) and an additional meal resulted in a decrease in O2 uptake, HR, TR and an increase in R during the second bout of exercise, but no effects on post-exercise metabolism were found. Thus, augmented metabolic stress was observed when strenuous exercise was repeated after only 3 h of recovery, but this was attenuated when a longer recovery period including an additional meal was provided between the exercise sessions.

  3. Discovering the role of mitochondria in the iron deficiency-induced metabolic responses of plants.

    PubMed

    Vigani, Gianpiero

    2012-01-01

    In plants, iron (Fe) deficiency-induced chlorosis is a major problem, affecting both yield and quality of crops. Plants have evolved multifaceted strategies, such as reductase activity, proton extrusion, and specialised storage proteins, to mobilise Fe from the environment and distribute it within the plant. Because of its fundamental role in plant productivity, several issues concerning Fe homeostasis in plants are currently intensively studied. The activation of Fe uptake reactions requires an overall adaptation of the primary metabolism because these activities need the constant supply of energetic substrates (i.e., NADPH and ATP). Several studies concerning the metabolism of Fe-deficient plants have been conducted, but research focused on mitochondrial implications in adaptive responses to nutritional stress has only begun in recent years. Mitochondria are the energetic centre of the root cell, and they are strongly affected by Fe deficiency. Nevertheless, they display a high level of functional flexibility, which allows them to maintain the viability of the cell. Mitochondria represent a crucial target of studies on plant homeostasis, and it might be of interest to concentrate future research on understanding how mitochondria orchestrate the reprogramming of root cell metabolism under Fe deficiency. In this review, I summarise what it is known about the effect of Fe deficiency on mitochondrial metabolism and morphology. Moreover, I present a detailed view of the possible roles of mitochondria in the development of plant responses to Fe deficiency, integrating old findings with new and discussing new hypotheses for future investigations.

  4. Application of the Key Events Dose-response Framework to Folate Metabolism.

    PubMed

    Hu, Jing; Wang, Bing; Sahyoun, Nadine R

    2016-06-10

    Folate is a vitamin that plays a role as a cofactor and coenzyme in many essential reactions. These reactions are interrelated and any change in folate homeostasis could affect other reactions. With food fortified with folic acid, and use of multivitamin, unmetabolized folic acid (UMFA) has been detected in blood circulation, particularly among older adults. This has raised concern about the potential harmful effect of high folic acid intake and UMFA on health conditions such as cognitive dysfunction and cancer. To examine what is known about folate metabolism and the release of circulating UMFA, the Key Events Dose-Response Framework (KEDRF) was used to review each of the major key events, dose-response characteristics and homeostatic mechanisms of folate metabolism. The intestine, liver and kidneys each play essential roles in regulating body folate homeostasis. But the determining event in folate metabolism leading to the release of UMFA in circulation appears to be the saturation of dihydrofolate reductase in the liver. However, at each of the key events in folate metabolism, limited information is available on threshold, homeostatic regulation and intracellular effects of folic acid. More studies are needed to fill in the knowledge gaps for quantitatively characterizing the dose-effect relationship especially in light of the call for extending folate fortification to other foods.

  5. Quantifying phenotypic flexibility as the response to a high-fat challenge test in different states of metabolic health.

    PubMed

    Kardinaal, Alwine F M; van Erk, Marjan J; Dutman, Alice E; Stroeve, Johanna H M; van de Steeg, Evita; Bijlsma, Sabina; Kooistra, Teake; van Ommen, Ben; Wopereis, Suzan

    2015-11-01

    Metabolism maintains homeostasis at chronic hypercaloric conditions, activating postprandial response mechanisms, which come at the cost of adaptation processes such as energy storage, eventually with negative health consequences. This study quantified the metabolic adaptation capacity by studying challenge response curves. After a high-fat challenge, the 8 h response curves of 61 biomarkers related to adipose tissue mass and function, systemic stress, metabolic flexibility, vascular health, and glucose metabolism was compared between 3 metabolic health stages: 10 healthy men, before and after 4 wk of high-fat, high-calorie diet (1300 kcal/d extra), and 9 men with metabolic syndrome (MetS). The MetS subjects had increased fasting concentrations of biomarkers representing the 3 core processes, glucose, TG, and inflammation control, and the challenge response curves of most biomarkers were altered. After the 4 wk hypercaloric dietary intervention, these 3 processes were not changed, as compared with the preintervention state in the healthy subjects, whereas the challenge response curves of almost all endocrine, metabolic, and inflammatory processes regulating these core processes were altered, demonstrating major molecular physiologic efforts to maintain homeostasis. This study thus demonstrates that change in challenge response is a more sensitive biomarker of metabolic resilience than are changes in fasting concentrations.

  6. The effect of temperature and body weight on the routine metabolic rate and postprandial metabolic response in mulloway, Argyrosomus japonicus.

    PubMed

    Pirozzi, Igor; Booth, Mark A

    2009-09-01

    Specific dynamic action (SDA) is the energy expended on the physiological processes associated with meal digestion and is strongly influenced by the characteristics of the meal and the body weight (BW) and temperature of the organism. This study assessed the effects of temperature and body weight on the routine metabolic rate (RMR) and postprandial metabolic response in mulloway, Argyrosomus japonicus. RMR and SDA were established at 3 temperatures (14, 20 and 26 degrees C). 5 size classes of mulloway ranging from 60 g to 1.14 kg were used to establish RMR with 3 of the 5 size classes (60, 120 and 240 g) used to establish SDA. The effect of body size on the mass-specific RMR (mg O(2) kg(-1) h(-1)) varied significantly depending on the temperature; there was a greater relative increase in the mass-specific RMR for smaller mulloway with increasing temperature. No statistical differences were found between the mass exponent (b) values at each temperature when tested against H(0): b=0.8. The gross RMR of mulloway (mg O(2) fish(-1) h(-1)) can be described as function of temperature (T; 14-26 degrees C) as: (0.0195T-0.0454)BW(g)(0.8) and the mass-specific RMR (mg O(2) kg(-1) h(-1)) can be described as: (21.042T-74.867)BW(g)(-0.2). Both SDA duration and time to peak SDA were influenced by temperature and body weight; SDA duration occurred within 41-89 h and peak time occurred within 17-38 h of feeding. The effect of body size on peak metabolic rate varied significantly depending on temperature, generally increasing with temperature and decreasing with increasing body size. Peak gross oxygen consumption (MO(2): mg O(2) fish(-1) h(-1)) scaled allometrically with BW. Temperature, but not body size, significantly affected SDA scope, although the difference was numerically small. There was a trend for MO(2) above RMR over the SDA period to increase with temperature; however, this was not statistically significant. The average proportion of energy expended over the SDA period

  7. How tissue damage MET metabolism: Regulation of the systemic damage response

    PubMed Central

    Kashio, Soshiro; Obata, Fumiaki; Miura, Masayuki

    2017-01-01

    ABSTRACT Living organisms experience tissue damage from both, the surrounding environment and from inside their bodies. Tissue repair/regeneration is triggered by local tissue injury to restore an injured, or lost, part of the body. Tissue damage results in a series of responses, not only locally but also systemically in distant tissues. In our recent publication, we established a “dual system” that induces spatiotemporal tissue damage simultaneously with gene manipulation in surrounding tissues. With this system, we demonstrated that appropriate regulation of methionine metabolism in the fat body is required for tissue repair in Drosophila wing discs, thus highlighting the importance of systemic damage response (SDR) in tissue repair. This “Extra View” aims to discuss our recent reports that propose methionine metabolism to be an essential part of SDR, together with related topics in several model organisms. PMID:27562340

  8. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter

    USGS Publications Warehouse

    Findlay, S.E.G.; Sinsabaugh, R. L.; Sobczak, W.V.; Hoostal, M.

    2003-01-01

    Hyporheic sediment bacterial communities were exposed to dissolved organic matter (DOM) from a variety of sources to assess the interdependence of bacterial metabolism and community composition. Experiments ranged from small-scale core perfusions with defined compounds (glucose, bovine serum albumin) to mesocosms receiving natural leaf leachate or water from different streams. Response variables included bacterial production, oxygen consumption, extracellular enzyme activity, and community similarity as manifest by changes in banding patterns of randomly amplified polymorphic DNA (RAPD). All DOM manipulations generated responses in at least one metabolic variable. Additions of both labile and recalcitrant materials increased either oxygen consumption, production, or both depending on background DOM. Enzyme activities were affected by both types of carbon addition with largest effects from the labile mixture. Cluster analysis of RAPD data showed strong divergence of communities exposed to labile versus recalcitrant DOM. Additions of leaf leachate to mesocosms representing hyporheic flow-paths caused increases in oxygen consumption and some enzyme activities with weaker effects on production. Community structure yeas strongly affected; samples from the leachate-amended mesocosms clustered separately from the control samples. In mesocosms receiving water from streams ranging in DOC (0.5-4.5 mg L-1), there were significant differences in bacterial growth, oxygen consumption, and enzyme activities. RAPD analysis showed strongest clustering of samples by stream type with more subtle effects of position along the flowpaths. Responses in community metabolism were always accompanied by shifts in community composition, suggesting carbon supply affects both functional and structural attributes of hyporheic bacterial communities.

  9. Effect of carbon on whole-biofilm metabolic response to high doses of streptomycin

    PubMed Central

    Jackson, Lindsay M. D.; Kroukamp, Otini; Wolfaardt, Gideon M.

    2015-01-01

    Biofilms typically exist as complex communities comprising multiple species with the ability to adapt to a variety of harsh conditions. In clinical settings, antibiotic treatments based on planktonic susceptibility tests are often ineffective against biofilm infections. Using a CO2 evolution measurement system we delineated the real-time metabolic response in continuous flow biofilms to streptomycin doses much greater than their planktonic susceptibilities. Stable biofilms from a multispecies culture (containing mainly Pseudomonas aeruginosa and Stenotrophomonas maltophilia), Gram-negative environmental isolates, and biofilms formed by pure culture P. aeruginosa strains PAO1 and PAO1 ΔMexXY (minimum planktonic inhibitory concentrations between 1.5 and 3.5 mg/l), were exposed in separate experiments to 4000 mg/l streptomycin for 4 h after which growth medium resumed. In complex medium, early steady state multispecies biofilms were susceptible to streptomycin exposure, inferred by a cessation of CO2 production. However, multispecies biofilms survived high dose exposures when there was extra carbon in the antibiotic medium, or when they were grown in defined citrate medium. The environmental isolates and PAO1 biofilms showed similar metabolic profiles in response to streptomycin; ceasing CO2 production after initial exposure, with CO2 levels dropping toward baseline levels prior to recovery back to steady state levels, while subsequent antibiotic exposure elicited increased CO2 output. Monitoring biofilm metabolic response in real-time allowed exploration of conditions resulting in vulnerability after antibiotic exposure compared to the resistance displayed following subsequent exposures. PMID:26441887

  10. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Feng, Tian-Ya; Yang, Zhi-Kai; Zheng, Jian-Wei; Xie, Ying; Li, Da-Wei; Murugan, Shanmugaraj Bala; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2015-05-28

    Phosphorus (P) is an essential macronutrient for the survival of marine phytoplankton. In the present study, phytoplankton response to phosphorus limitation was studied by proteomic profiling in diatom Phaeodactylum tricornutum in both cellular and molecular levels. A total of 42 non-redundant proteins were identified, among which 8 proteins were found to be upregulated and 34 proteins were downregulated. The results also showed that the proteins associated with inorganic phosphate uptake were downregulated, whereas the proteins involved in organic phosphorus uptake such as alkaline phosphatase were upregulated. The proteins involved in metabolic responses such as protein degradation, lipid accumulation and photorespiration were upregulated whereas energy metabolism, photosynthesis, amino acid and nucleic acid metabolism tend to be downregulated. Overall our results showed the changes in protein levels of P. tricornutum during phosphorus stress. This study preludes for understanding the role of phosphorous in marine biogeochemical cycles and phytoplankton response to phosphorous scarcity in ocean. It also provides insight into the succession of phytoplankton community, providing scientific basis for elucidating the mechanism of algal blooms.

  11. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum

    PubMed Central

    Feng, Tian-Ya; Yang, Zhi-Kai; Zheng, Jian-Wei; Xie, Ying; Li, Da-Wei; Murugan, Shanmugaraj Bala; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2015-01-01

    Phosphorus (P) is an essential macronutrient for the survival of marine phytoplankton. In the present study, phytoplankton response to phosphorus limitation was studied by proteomic profiling in diatom Phaeodactylum tricornutum in both cellular and molecular levels. A total of 42 non-redundant proteins were identified, among which 8 proteins were found to be upregulated and 34 proteins were downregulated. The results also showed that the proteins associated with inorganic phosphate uptake were downregulated, whereas the proteins involved in organic phosphorus uptake such as alkaline phosphatase were upregulated. The proteins involved in metabolic responses such as protein degradation, lipid accumulation and photorespiration were upregulated whereas energy metabolism, photosynthesis, amino acid and nucleic acid metabolism tend to be downregulated. Overall our results showed the changes in protein levels of P. tricornutum during phosphorus stress. This study preludes for understanding the role of phosphorous in marine biogeochemical cycles and phytoplankton response to phosphorous scarcity in ocean. It also provides insight into the succession of phytoplankton community, providing scientific basis for elucidating the mechanism of algal blooms. PMID:26020491

  12. The structure of wheat bread influences the postprandial metabolic response in healthy men.

    PubMed

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G

    2015-10-01

    Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with a similar composition were created using different processing conditions. The postprandial glucose kinetics and metabolic response to bread with a compact structure (flat bread, FB) was compared to bread with a porous structure (control bread, CB) in a randomized, crossover study with ten healthy male volunteers. Pasta (PA), with a very compact structure, was used as the control. The rate of appearance of exogenous glucose (RaE), endogenous glucose production, and glucose clearance rate (GCR) was calculated using stable isotopes. Furthermore, postprandial plasma concentrations of glucose, insulin, several intestinal hormones and bile acids were analyzed. The structure of FB was considerably more compact compared to CB, as confirmed by microscopy, XRT analysis (porosity) and density measurements. Consumption of FB resulted in lower peak glucose, insulin and glucose-dependent insulinotropic polypeptide (ns) responses and a slower initial RaE compared to CB. These variables were similar to the PA response, except for RaE which remained slower over a longer period after PA consumption. Interestingly, the GCR after FB was higher than expected based on the insulin response, indicating increased insulin sensitivity or insulin-independent glucose disposal. These results demonstrate that the structure of wheat bread can influence the postprandial metabolic response, with a more compact structure being more beneficial for health. Bread-making technology should be further explored to create healthier products.

  13. Biological and metabolic response in STS-135 space-flown mouse skin.

    PubMed

    Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S

    2014-08-01

    There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.

  14. Metabolic context affects hemodynamic response to bupivacaine in the isolated rat heart.

    PubMed

    Edelman, Lucas B; Ripper, Richard; Kelly, Kemba; Di Gregorio, Guido; Weinberg, Guy L

    2008-03-10

    Previous studies have demonstrated that the local anesthetic bupivacaine selectively inhibits oxidative metabolism of fatty acids in isolated cardiac mitochondria. In the present investigation, we compare the development of bupivacaine cardiotoxicity during fatty acid and carbohydrate metabolism. Hearts from adult male Sprague-Dawley rats were excised and retrograde perfused with a solution containing fatty acid (oleate or octanoate) or carbohydrate substrates for cardiac metabolism. An infusion of bupivacaine was initiated and sustained until asystole, after which full cardiac recovery was allowed. During fatty acid metabolism, substantially lower bupivacaine doses induced both arrhythmia (60.4+/-11.5 microg oleate and 106.8+/-14.8 octanoate versus 153.4+/-21.4 carbohydrate; P<0.05) and asystole (121.0+/-30.1 microg and 171.5+/-20.2 versus 344.7+/-34.6; P<0.001). Dose-response analysis revealed significantly increased sensitivity to bupivacaine toxicity during fatty acid metabolism, indicated by lower V50 doses for both heart rate (70.6+/-5.6 microg oleate and 122.3+/-6.2 octanoate versus 152.6+/-8.6) and rate-pressure product (63.4+/-5.1 microg and 133.7+/-7.9 versus 165.1+/-12.2). Time to recovery following bupivacaine exposure was elevated in the fatty acid group (24.3+/-2.0 s versus 15.8+/-3.1; P<0.04). Fatty acid metabolism was shown to predispose the isolated heart to bupivacaine toxicity, confirming that the local anesthetic exerts specific effects on lipid processes in cardiomyocytes.

  15. Ethanol Metabolism and Osmolarity Modify Behavioral Responses to Ethanol in C. elegans

    PubMed Central

    Alaimo, Joseph T.; Davis, Scott J.; Song, Sam S.; Burnette, Christopher R.; Grotewiel, Mike; Shelton, Keith L.; Pierce-Shimomura, Jonathan T.; Davies, Andrew G.; Bettinger, Jill C.

    2012-01-01

    Background Ethanol is metabolized by a two-step process in which alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde, which is further oxidized to acetate by aldehyde dehydrogenase (ALDH). Although variation in ethanol metabolism in humans strongly influences the propensity to chronically abuse alcohol, few data exist on the behavioral effects of altered ethanol metabolism. Here, we used the nematode C. elegans to directly examine how changes in ethanol metabolism alter behavioral responses to alcohol during an acute exposure. Additionally, we investigated ethanol solution osmolarity as a potential explanation for contrasting published data on C. elegans ethanol sensitivity. Methods We developed a gas chromatography assay and validated a spectrophotometric method to measure internal ethanol in ethanol-exposed worms. Further, we tested the effects of mutations in ADH and ALDH genes on ethanol tissue accumulation and behavioral sensitivity to the drug. Finally, we tested the effects of ethanol solution osmolarity on behavioral responses and tissue ethanol accumulation. Results Only a small amount of exogenously applied ethanol accumulated in the tissues of C. elegans and consequently their tissue concentrations were similar to those that intoxicate humans. Independent inactivation of an ADH-encoding gene (sodh-1) or an ALDH-encoding gene (alh-6 or alh-13) increased the ethanol concentration in worms and caused hypersensitivity to the acute sedative effects of ethanol on locomotion. We also found that the sensitivity to the depressive effects of ethanol on locomotion is strongly influenced by the osmolarity of the exogenous ethanol solution. Conclusions Our results indicate that ethanol metabolism via ADH and ALDH has a statistically discernable but surprisingly minor influence on ethanol sedation and internal ethanol accumulation in worms. In contrast, the osmolarity of the medium in which ethanol is delivered to the animals has a more substantial effect on

  16. Fight-flight or freeze-hide? Personality and metabolic phenotype mediate physiological defence responses in flatfish.

    PubMed

    Rupia, Emmanuel J; Binning, Sandra A; Roche, Dominique G; Lu, Weiqun

    2016-07-01

    Survival depends on appropriate behavioural and physiological responses to danger. In addition to active 'fight-flight' defence responses, a passive 'freeze-hide' response is adaptive in some contexts. However, the physiological mechanisms determining which individuals choose a given defence response remain poorly understood. We examined the relationships among personality, metabolic performance and physiological stress responses across an environmental gradient in the olive flounder, Paralichthys olivaceus. We employed four behavioural assays to document the existence of two distinct behavioural types ('bold' and 'shy') in this species. We found consistent metabolic differences between individuals of a given behavioural type across an environmental gradient: shy individuals had overall lower aerobic scope, maximum metabolic rate and standard metabolic rate than bold individuals in both high (25 ppt) and low (3 ppt) salinity. These behavioural and metabolic differences translated into divergent physiological responses during acute stress: shy individuals adopted a passive 'freeze-hide' response by reducing their oxygen consumption rates (akin to shallow breathing) whereas bold individuals adopted an active 'fight-flight' response by increasing their rates of respiration. These distinct defence strategies were repeatable within individuals between salinity treatments. Although it has been suggested theoretically, this is the first empirical evidence that the metabolic response to stressful situations differs between bold and shy individuals. Our results emphasize the importance of incorporating physiological measures to understand the mechanisms driving persistent inter-individual differences in animals.

  17. Tunable regulation of CREB DNA binding activity couples genotoxic stress response and metabolism

    PubMed Central

    Kim, Sang Hwa; Trinh, Anthony T.; Larsen, Michele Campaigne; Mastrocola, Adam S.; Jefcoate, Colin R.; Bushel, Pierre R.; Tibbetts, Randal S.

    2016-01-01

    cAMP response element binding protein (CREB) is a key regulator of glucose metabolism and synaptic plasticity that is canonically regulated through recruitment of transcriptional coactivators. Here we show that phosphorylation of CREB on a conserved cluster of Ser residues (the ATM/CK cluster) by the DNA damage-activated protein kinase ataxia-telangiectasia-mutated (ATM) and casein kinase1 (CK1) and casein kinase2 (CK2) positively and negatively regulates CREB-mediated transcription in a signal dependent manner. In response to genotoxic stress, phosphorylation of the ATM/CK cluster inhibited CREB-mediated gene expression, DNA binding activity and chromatin occupancy proportional to the number of modified Ser residues. Paradoxically, substoichiometric, ATM-independent, phosphorylation of the ATM/CK cluster potentiated bursts in CREB-mediated transcription by promoting recruitment of the CREB coactivator, cAMP-regulated transcriptional coactivators (CRTC2). Livers from mice expressing a non-phosphorylatable CREB allele failed to attenuate gluconeogenic genes in response to DNA damage or fully activate the same genes in response to glucagon. We propose that phosphorylation-dependent regulation of DNA binding activity evolved as a tunable mechanism to control CREB transcriptional output and promote metabolic homeostasis in response to rapidly changing environmental conditions. PMID:27431323

  18. Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis

    PubMed Central

    González-Siso, M Isabel; García-Leiro, Ana; Tarrío, Nuria; Cerdán, M Esperanza

    2009-01-01

    A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We propose Kluyveromyces lactis as a good alternative model to analyse variants in the oxidative stress response, since the respiratory metabolism in this yeast is predominant under aerobic conditions and it shows other important differences with S. cerevisiae in catabolic repression and carbohydrate utilization. The knowledge of oxidative stress response in K. lactis is still a developing field. In this article, we summarize the state of the art derived from experimental approaches and we provide a global vision on the characteristics of the putative K. lactis components of the oxidative stress response pathway, inferred from their sequence homology with the S. cerevisiae counterparts. Since K. lactis is also a well-established alternative host for industrial production of native enzymes and heterologous proteins, relevant differences in the oxidative stress response pathway and their potential in biotechnological uses of this yeast are also reviewed. PMID:19715615

  19. Metabolic pathways regulated by TAp73 in response to oxidative stress

    PubMed Central

    Agostini, Massimiliano; Annicchiarico-Petruzzelli, Margherita; Melino, Gerry; Rufini, Alessandro

    2016-01-01

    Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73−/−) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73−/− cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism. PMID:27119504

  20. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.

    PubMed

    Ou, Yang; Wang, Shang-Jui; Li, Dawei; Chu, Bo; Gu, Wei

    2016-11-01

    Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N(1)-acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.

  1. Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light.

    PubMed

    Kusano, Miyako; Tohge, Takayuki; Fukushima, Atsushi; Kobayashi, Makoto; Hayashi, Naomi; Otsuki, Hitomi; Kondou, Youichi; Goto, Hiroto; Kawashima, Mika; Matsuda, Fumio; Niida, Rie; Matsui, Minami; Saito, Kazuki; Fernie, Alisdair R

    2011-07-01

    Because of ever-increasing environmental deterioration it is likely that the influx of UV-B radiation (280-320 nm) will increase as a result of the depletion of stratospheric ozone. Given this fact it is essential that we better understand both the rapid and the adaptive responses of plants to UV-B stress. Here, we compare the metabolic responses of wild-type Arabidopsis with that of mutants impaired in flavonoid (transparent testa 4, tt4; transparent testa 5, tt5) or sinapoyl-malate (sinapoylglucose accumulator 1, sng1) biosynthesis, exposed to a short 24-h or a longer 96-h exposure to this photo-oxidative stress. In control experiments we subjected the genotypes to long-day conditions as well as to 24- and 96-h treatments of continuous light. Following these treatments we evaluated the dynamic response of metabolites including flavonoids, sinapoyl-malate precursors and ascorbate, which are well known to play a role in cellular protection from UV-B stress, as well as a broader range of primary metabolites, in an attempt to more fully comprehend the metabolic shift following the cellular perception of this stress. Our data reveals that short-term responses occur only at the level of primary metabolites, suggesting that these effectively prime the cell to facilitate the later production of UV-B-absorbing secondary metabolites. The combined results of these studies together with transcript profiles using samples irradiated by 24-h UV-B light are discussed in the context of current models concerning the metabolic response of plants to the stress imposed by excessive UV-B irradiation.

  2. Metabolic Imaging to Assess Treatment Response to Cytotoxic and Cytostatic Agents

    PubMed Central

    Serkova, Natalie J.; Eckhardt, S. Gail

    2016-01-01

    For several decades, cytotoxic chemotherapeutic agents were considered the basis of anticancer treatment for patients with metastatic tumors. A decrease in tumor burden, assessed by volumetric computed tomography and magnetic resonance imaging, according to the response evaluation criteria in solid tumors (RECIST), was considered as a radiological response to cytotoxic chemotherapies. In addition to RECIST-based dimensional measurements, a metabolic response to cytotoxic drugs can be assessed by positron emission tomography (PET) using 18F-fluoro-thymidine (FLT) as a radioactive tracer for drug-disrupted DNA synthesis. The decreased 18FLT-PET uptake is often seen concurrently with increased apparent diffusion coefficients by diffusion-weighted imaging due to chemotherapy-induced changes in tumor cellularity. Recently, the discovery of molecular origins of tumorogenesis led to the introduction of novel signal transduction inhibitors (STIs). STIs are targeted cytostatic agents; their effect is based on a specific biological inhibition with no immediate cell death. As such, tumor size is not anymore a sensitive end point for a treatment response to STIs; novel physiological imaging end points are desirable. For receptor tyrosine kinase inhibitors as well as modulators of the downstream signaling pathways, an almost immediate inhibition in glycolytic activity (the Warburg effect) and phospholipid turnover (the Kennedy pathway) has been seen by metabolic imaging in the first 24 h of treatment. The quantitative imaging end points by magnetic resonance spectroscopy and metabolic PET (including 18F-fluoro-deoxy-glucose, FDG, and total choline) provide an early treatment response to targeted STIs, before a reduction in tumor burden can be seen. PMID:27471678

  3. {sup 18}-F-Fluorodeoxyglucose-Positron Emission Tomography Evaluation of Early Metabolic Response During Radiation Therapy for Cervical Cancer

    SciTech Connect

    Schwarz, Julie K.; Lin, Lillie L.; Siegel, Barry A.; Miller, Tom R.; Grigsby, Perry W.

    2008-12-01

    Purpose: To document changes in cervical tumor {sup 18}-F-fluorodeoxyglocose (FDG) uptake during radiation therapy and to correlate those changes with post-treatment tumor response and survival outcome. Methods and Materials: A total of 36 patients with Stage Ib1 to IIIb cervical cancer were enrolled in an institutional protocol examining the use of fluorodeoxyglucose-positron emission tomography (FDG-PET) for brachytherapy treatment planning. As part of this study, FDG-PET or PET/computed tomograpy (CT) images were obtained before, during, and after the completion of radiation therapy. Tumor metabolic responses were assessed qualitatively and semi-quantitatively by measurement of the maximal standardized uptake value (SUV{sub max}). Results: Post-treatment FDG-PET images were obtained for 36 patients in this study. Of the patients, 29 patients had a complete metabolic response on the post-treatment PET, 4 had a partial metabolic response, and 3 had new sites of FDG uptake. Six patients had a complete metabolic response observed during radiation therapy, 26 had a partial metabolic response and 4 had stable or increased tumor metabolic activity. For patients with complete metabolic response during radiation therapy, median time to complete response was 29.5 days (range, 18-43 days). The mean cervical tumor SUV{sub max} decreased from 11.2 (SD, 6.3; range, 2.1-38.0) pretreatment to 2.4 (SD, 2.7; range, 0-8.8) mid treatment, and 0.5 (SD, 1.7; range, 0-8.3) post-treatment. Conclusions: During radiation therapy for cervical cancer, FDG-PET can be used to monitor treatment response. Complete metabolic response during radiation therapy was observed for a subset of patients. Recommendations regarding the optimal timing of FDG-PET during treatment for cervical cancer will require further systematic study.

  4. Intramolecular stable isotope distributions detect plant metabolic responses on century time scales

    NASA Astrophysics Data System (ADS)

    Schleucher, Jürgen; Ehlers, Ina; Augusti, Angela; Betson, Tatiana

    2014-05-01

    Plants respond to environmental changes on a vast range of time scales, and plant gas exchanges constitute important feedback mechanisms in the global C cycle. Responses on time scales of decades to centuries are most important for climate models, for prediction of crop productivity, and for adaptation to climate change. Unfortunately, responses on these timescale are least understood. We argue that the knowledge gap on intermediate time scales is due to a lack of adequate methods that can bridge between short-term manipulative experiments (e.g. FACE) and paleo research. Manipulative experiments in plant ecophysiology give information on metabolism on time scales up to years. However, this information cannot be linked to results from retrospective studies in paleo research, because little metabolic information can be derived from paleo archives. Stable isotopes are prominent tools in plant ecophysiology, biogeochemistry and in paleo research, but in all applications to date, isotope ratios of whole molecules are measured. However, it is well established that stable isotope abundance varies among intramolecular groups of biochemical metabolites, that is each so-called "isotopomer" has a distinct abundance. This intramolecular variation carries information on metabolic regulation, which can even be traced to individual enzymes (Schleucher et al., Plant, Cell Environ 1999). Here, we apply intramolecular isotope distributions to study the metabolic response of plants to increasing atmospheric [CO2] during the past century. Greenhouse experiments show that the deuterium abundance among the two positions in the C6H2 group of photosynthetic glucose depends on [CO2] during growth. This is observed for all plants using C3 photosynthesis, and reflects the metabolic flux ratio between photorespiration and photosynthesis. Photorespiration is a major C flux that limits assimilation in C3 plants, which encompass the overwhelming fraction of terrestrial photosynthesis and the

  5. Metabolic responses to submaximal treadmill walking and cycle ergometer pedalling in obese adolescents.

    PubMed

    Lafortuna, C L; Lazzer, S; Agosti, F; Busti, C; Galli, R; Mazzilli, G; Sartorio, A

    2010-08-01

    Physical activity is essential in obesity management because of the impact of exercise-related energy expenditure (EE) and fat oxidation (Fox) rate on a daily balance, but the specific physiological effects of different exercise modalities are scarcely known in obese individuals. The objective of the study was to compare the metabolic responses to treadmill (TM) and cycle ergometer (CE) exercise in obese adolescents. Gas exchange, heart rate (HR), blood lactate (LA) concentration, EE and Fox were determined at different intensity levels (up to about 85% of maximal oxygen uptake) during TM and CE in 14 pubertal (Tanner stage: >3) obese (BMI SDS: 2.15-3.86) male adolescents (age: 13-18 years). At comparable HR, oxygen uptake, EE and Fox were higher, and LA lower, during TM than CE (P<0.05-0.001), suggesting that cycling imposes a metabolic involvement at the level of the single active muscles greater than walking. Therefore, due to different physiological responses to TM and CE, walking was more convenient than cycling in obese adolescents, permitting to attain the same EE at lower HR, with lower blood LA concentration and with greater Fox. These conclusions seem clinically relevant when using exercise as a part of multidisciplinary treatment for juvenile obesity and amelioration of related metabolic disturbances.

  6. Effect of preexercise meals with different glycemic indices and loads on metabolic responses and endurance running.

    PubMed

    Chen, Ya Jun; Wong, Stephen H; Wong, Chun Kwok; Lam, Ching Wan; Huang, Ya Jun; Siu, Parco M

    2008-06-01

    This study examined the effect of ingesting 3 isocaloric meals with different glycemic indices (GI) and glycemic loads (GL) 2 hr before exercise on metabolic responses and endurance running performance. Eight male runners completed 3 trials in a randomized order, separated by at least 7 days. Carbohydrate (CHO) content (%), GI, and GL were, respectively, 65%, 79, and 82 for the high-GI/high-GL meal (H-H); 65%, 40, and 42 for the low-GI/low-GL meal (L-L); and 36%, 78, and 44 for the high-GI/low-GL meal (H-L). Each trial consisted of a 1-hr run at 70% VO2max, followed by a 10-km performance run. Low-GL diets (H-L and L-L) were found to induce smaller metabolic changes during the postprandial period and during exercise, which were characterized by a lower CHO oxidation in the 2 trials (p < .05) and a concomitant, higher glycerol and free-fatty-acid concentration in the H-L trial (p < .05). There was no difference, however, in time to complete the preloaded 10-km performance run between trials. This suggests that the GL of the preexercise meal has an important role in determining subsequent metabolic responses.

  7. Mathematical model of cycad cones' thermogenic temperature responses: inverse calorimetry to estimate metabolic heating rates.

    PubMed

    Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I

    2012-12-21

    A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants.

  8. Mild metabolic acidosis impairs the β-adrenergic response in isolated human failing myocardium

    PubMed Central

    2012-01-01

    Introduction Pronounced extracellular acidosis reduces both cardiac contractility and the β-adrenergic response. In the past, this was shown in some studies using animal models. However, few data exist regarding how the human end-stage failing myocardium, in which compensatory mechanisms are exhausted, reacts to acute mild metabolic acidosis. The aim of this study was to investigate the effect of mild metabolic acidosis on contractility and the β-adrenergic response of isolated trabeculae from human end-stage failing hearts. Methods Intact isometrically twitching trabeculae isolated from patients with end-stage heart failure were exposed to mild metabolic acidosis (pH 7.20). Trabeculae were stimulated at increasing frequencies and finally exposed to increasing concentrations of isoproterenol (0 to 1 × 10-6 M). Results A mild metabolic acidosis caused a depression in twitch-force amplitude of 26% (12.1 ± 1.9 to 9.0 ± 1.5 mN/mm2; n = 12; P < 0.01) as compared with pH 7.40. Force-frequency relation measurements yielded no further significant differences of twitch force. At the maximal isoproterenol concentration, the force amplitude was comparable in each of the two groups (pH 7.40 versus pH 7.20). However, the half-maximal effective concentration (EC50) was significantly increased in the acidosis group, with an EC50 of 5.834 × 10-8 M (confidence interval (CI), 3.48 × 10-8 to 9.779 × 10-8; n = 9), compared with the control group, which had an EC50 of 1.056 × 10-8 M (CI, 2.626 × 10-9 to 4.243 × 10-8; n = 10; P < 0.05), indicating an impaired β-adrenergic force response. Conclusions Our data show that mild metabolic acidosis reduces cardiac contractility and significantly impairs the β-adrenergic force response in human failing myocardium. Thus, our results could contribute to the still-controversial discussion about the therapy regimen of acidosis in patients with critical heart failure. PMID:22889236

  9. The GATOR1 Complex Regulates Metabolic Homeostasis and the Response to Nutrient Stress in Drosophila melanogaster

    PubMed Central

    Wei, Youheng; Reveal, Brad; Cai, Weili; Lilly, Mary A.

    2016-01-01

    TORC1 regulates metabolism and growth in response to a large array of upstream inputs. The evolutionarily conserved trimeric GATOR1 complex inhibits TORC1 activity in response to amino acid limitation. In humans, the GATOR1 complex has been implicated in a wide array of pathologies including cancer and hereditary forms of epilepsy. However, the precise role of GATOR1 in animal physiology remains largely undefined. Here, we characterize null mutants of the GATOR1 components nprl2, nprl3, and iml1 in Drosophila melanogaster. We demonstrate that all three mutants have inappropriately high baseline levels of TORC1 activity and decreased adult viability. Consistent with increased TORC1 activity, GATOR1 mutants exhibit a cell autonomous increase in cell growth. Notably, escaper nprl2 and nprl3 mutant adults have a profound locomotion defect. In line with a nonautonomous role in the regulation of systemic metabolism, expressing the Nprl3 protein in the fat body, a nutrient storage organ, and hemocytes but not muscles and neurons rescues the motility of nprl3 mutants. Finally, we show that nprl2 and nprl3 mutants fail to activate autophagy in response to amino acid limitation and are extremely sensitive to both amino acid and complete starvation. Thus, in Drosophila, in addition to maintaining baseline levels of TORC1 activity, the GATOR1 complex has retained a critical role in the response to nutrient stress. In summary, the TORC1 inhibitor GATOR1 contributes to multiple aspects of the development and physiology of Drosophila. PMID:27672113

  10. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis

    PubMed Central

    Kishi-Kaboshi, Mitsuko; Okada, Kazunori; Kurimoto, Leona; Murakami, Shinya; Umezawa, Toshiaki; Shibuya, Naoto; Yamane, Hisakazu; Miyao, Akio; Takatsuji, Hiroshi; Takahashi, Akira; Hirochika, Hirohiko

    2010-01-01

    Plants recognize potential microbial pathogens through microbial-associated molecular patterns (MAMPs) and activate a series of defense responses, including cell death and the production of reactive oxygen species (ROS) and diverse anti-microbial secondary metabolites. Mitogen-activated protein kinase (MAPK) cascades are known to play a pivotal role in mediating MAMP signals; however, the signaling pathway from a MAPK cascade to the activation of defense responses is poorly understood. Here, we found in rice that the chitin elicitor, a fungal MAMP, activates two rice MAPKs (OsMPK3 and OsMPK6) and one MAPK kinase (OsMKK4). OsMPK6 was essential for the chitin elicitor-induced biosynthesis of diterpenoid phytoalexins. Conditional expression of the active form of OsMKK4 (OsMKK4DD) induced extensive alterations in gene expression, which implied dynamic changes of metabolic flow from glycolysis to secondary metabolite biosynthesis while suppressing basic cellular activities such as translation and cell division. OsMKK4DD also induced various defense responses, such as cell death, biosynthesis of diterpenoid phytoalexins and lignin but not generation of extracellular ROS. OsMKK4DD-induced cell death and expression of diterpenoid phytoalexin pathway genes, but not that of phenylpropanoid pathway genes, were dependent on OsMPK6. Collectively, the OsMKK4–OsMPK6 cascade plays a crucial role in reprogramming plant metabolism during MAMP-triggered defense responses. PMID:20525005

  11. Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism.

    PubMed

    Hirose, Naoya; Makita, Nobue; Kojima, Mikiko; Kamada-Nobusada, Tomoe; Sakakibara, Hitoshi

    2007-03-01

    Genome-wide analyses of rice (Oryza sativa L.) cytokinin (CK)-responsive genes using the Affymetrix GeneChip(R) rice genome array were conducted to define the spectrum of genes subject to regulation by CK in monocotyledonous plants. Application of trans-zeatin modulated the expression of a wide variety of genes including those involved in hormone signaling and metabolism, transcriptional regulation, macronutrient transport and protein synthesis. To understand further the function of CK in rice plants, we examined the effects of in planta manipulation of a putative CK signaling factor on morphology, CK metabolism and expression of CK-responsive genes. Overexpression of the CK-inducible type-A response regulator OsRR6 abolished shoot regeneration, suggesting that OsRR6 acts as a negative regulator of CK signaling. Transgenic lines overexpressing OsRR6 (OsRR6-ox) had dwarf phenotypes with poorly developed root systems and panicles. Increased content of trans-zeatin-type CKs in OsRR6-ox lines indicates that homeostatic control of CK levels is regulated by OsRR6 signaling. Expression of genes encoding CK oxidase/dehydrogenase decreased in OsRR6-ox plants, possibly accounting for elevated CK levels in transgenic lines. Expression of a number of stress response genes was also altered in OsRR6-ox plants.

  12. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response1

    PubMed Central

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie

    2015-01-01

    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation. PMID:26084921

  13. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response.

    PubMed

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie

    2015-09-01

    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation.

  14. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress.

    PubMed

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-04-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing.

  15. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    PubMed Central

    2010-01-01

    Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen) and acceptors (Fe(III), fumarate) was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III) as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III) as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III), while growth in the presence of Fe(III) and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production. PMID:21092215

  16. Responses of the metabolism of the larvae of Pocillopora damicornis to ocean acidification and warming.

    PubMed

    Rivest, Emily B; Hofmann, Gretchen E

    2014-01-01

    Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index for assessing the physiological plasticity of Pocillopora damicornis larvae from this site to conditions of ocean acidity and warming. Larvae were incubated for 6 hours in seawater containing combinations of CO2 concentration (450 and 950 µatm) and temperature (28 and 30°C). Rates of larval oxygen consumption were higher at elevated temperatures. In contrast, high CO2 levels elicited depressed metabolic rates, especially for larvae released later in the spawning period. Rates of citrate synthase, a rate-limiting enzyme in aerobic metabolism, suggested a biochemical limit for increasing oxidative capacity in coral larvae in a warming, acidifying ocean. Biological responses were also compared between larvae released from adult colonies on the same day (cohorts). The metabolic physiology of Pocillopora damicornis larvae varied significantly by day of release. Additionally, we used environmental data collected on a reef in Moorea, French Polynesia to provide information about what adult corals and larvae may currently experience in the field. An autonomous pH sensor provided a continuous time series of pH on the natal fringing reef. In February/March, 2011, pH values averaged 8.075 ± 0.023. Our results suggest that without adaptation or acclimatization, only a portion of naïve Pocillopora damicornis larvae may have suitable metabolic phenotypes for maintaining function and fitness in an end-of-the century ocean.

  17. Responses of the Metabolism of the Larvae of Pocillopora damicornis to Ocean Acidification and Warming

    PubMed Central

    Rivest, Emily B.; Hofmann, Gretchen E.

    2014-01-01

    Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index for assessing the physiological plasticity of Pocillopora damicornis larvae from this site to conditions of ocean acidity and warming. Larvae were incubated for 6 hours in seawater containing combinations of CO2 concentration (450 and 950 µatm) and temperature (28 and 30°C). Rates of larval oxygen consumption were higher at elevated temperatures. In contrast, high CO2 levels elicited depressed metabolic rates, especially for larvae released later in the spawning period. Rates of citrate synthase, a rate-limiting enzyme in aerobic metabolism, suggested a biochemical limit for increasing oxidative capacity in coral larvae in a warming, acidifying ocean. Biological responses were also compared between larvae released from adult colonies on the same day (cohorts). The metabolic physiology of Pocillopora damicornis larvae varied significantly by day of release. Additionally, we used environmental data collected on a reef in Moorea, French Polynesia to provide information about what adult corals and larvae may currently experience in the field. An autonomous pH sensor provided a continuous time series of pH on the natal fringing reef. In February/March, 2011, pH values averaged 8.075±0.023. Our results suggest that without adaptation or acclimatization, only a portion of naïve Pocillopora damicornis larvae may have suitable metabolic phenotypes for maintaining function and fitness in an end-of-the century ocean. PMID:24769774

  18. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders.

    PubMed

    Su, Kuo-Hui; Dai, Chengkai

    2016-11-01

    Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance is associated with a broad range of human health conditions and diseases. Cells are constantly challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by the key cellular metabolic sensor AMP-activated protein kinase (AMPK). In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic regulation of the PSR, particularly focusing on AMPK, and their implications in the two major age-related diseases-diabetes mellitus and neurodegenerative disorders.

  19. Carbon monoxide and mitochondria—modulation of cell metabolism, redox response and cell death

    PubMed Central

    Almeida, Ana S.; Figueiredo-Pereira, Cláudia; Vieira, Helena L. A.

    2015-01-01

    Carbon monoxide (CO) is an endogenously produced gasotransmitter, which is associated with cytoprotection and cellular homeostasis in several distinct cell types and tissues. CO mainly targets mitochondria because: (i) mitochondrial heme-proteins are the main potential candidates for CO to bind, (ii) many CO's biological actions are dependent on mitochondrial ROS signaling and (iii) heme is generated in the mitochondrial compartment. Mitochondria are the key cell energy factory, producing ATP through oxidative phosphorylation and regulating cell metabolism. These organelles are also implicated in many cell signaling pathways and the production of reactive oxygen species (ROS). Finally, mitochondria contain several factors activating programmed cell death pathways, which are released from the mitochondrial inter-membrane space upon mitochondrial membrane permeabilization. Therefore, disclosing CO mode of action at mitochondria opens avenues for deeper understanding CO's biological properties. Herein, it is discussed how CO affects the three main aspects of mitochondrial modulation of cell function: metabolism, redox response and cell death. PMID:25709582

  20. Effect of fasting versus feeding on the bone metabolic response to running.

    PubMed

    Scott, Jonathan P R; Sale, Craig; Greeves, Julie P; Casey, Anna; Dutton, John; Fraser, William D

    2012-12-01

    Individuals often perform exercise in the fasted state, but the effects on bone metabolism are not currently known. We compared the effect of an overnight fast with feeding a mixed meal on the bone metabolic response to treadmill running. Ten, physically-active males aged 28 ± 4y (mean ±SD) completed two, counterbalanced, 8d trials. After 3d on a standardised diet, participants performed 60 min of treadmill running at 65% VO(2max) on Day 4 following an overnight fast (FAST) or a standardised breakfast (FED). Blood samples were collected at baseline, before and during exercise, for 3h after exercise, and on four consecutive follow-up days (FU1-FU4). Plasma/serum were analysed for the c-terminal telopeptide region of collagen type 1 (β-CTX), n-terminal propeptides of procollagen type 1 (P1NP), osteocalcin (OC), bone alkaline phosphatase (bone ALP), parathyroid hormone (PTH), albumin-adjusted calcium, phosphate, osteoprotegerin (OPG), cortisol, leptin and ghrelin. Only the β-CTX response was significantly affected by feeding. Pre-exercise concentrations decreased more in FED compared with FAST (47% vs 26%, P<0.001) but increased during exercise in both groups and were not significantly different from baseline at 1h post-exercise. At 3h post-exercise, concentrations were decreased (33%, P<0.001) from baseline in FAST and significantly lower (P<0.001) than in FED. P1NP and PTH increased, and OC decreased during exercise. Bone markers were not significantly different from baseline on FU1-FU4. Fasting had only a minor effect on the bone metabolic response to subsequent acute, endurance exercise, reducing the duration of the increase in β-CTX during early recovery, but having no effect on changes in bone formation markers. The reduced duration of the β-CTX response with fasting was not fully explained by changes in PTH, OPG, leptin or ghrelin.

  1. Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity.

    PubMed

    Shvaleva, A L; Costa E Silva, F; Breia, E; Jouve, J; Hausman, J F; Almeida, M H; Maroco, J P; Rodrigues, M L; Pereira, J S; Chaves, M M

    2006-02-01

    We compared the metabolic responses of leaves and roots of two Eucalyptus globulus Labill. clones differing in drought sensitivity to a slowly imposed water deficit. Responses measured included changes in concentrations of soluble and insoluble sugars, proline, total protein and several antioxidant enzymes. In addition to the general decrease in growth caused by water deficit, we observed a decrease in osmotic potential when drought stress became severe. In both clones, the decrease was greater in roots than in leaves, consistent with the observed increases in concentrations of soluble sugars and proline in these organs. In roots of both clones, glutathione reductase activity increased significantly in response to water deficit, suggesting that this enzyme plays a protective role in roots during drought stress by catalyzing the catabolism of reactive oxygen species. Clone CN5 has stress avoidance mechanisms that account for its lower sensitivity to drought compared with Clone ST51.

  2. Rain influences the physiological and metabolic responses to exercise in hot conditions.

    PubMed

    Ito, Ryo; Yamashita, Naoyuki; Suzuki, Eiko; Matsumoto, Takaaki

    2015-01-01

    Outdoor exercise often proceeds in rainy conditions. However, the cooling effects of rain on human physiological responses have not been systematically studied in hot conditions. The present study determined physiological and metabolic responses using a climatic chamber that can precisely simulate hot, rainy conditions. Eleven healthy men ran on a treadmill at an intensity of 70% VO2max for 30 min in the climatic chamber at an ambient temperature of 33°C in the presence (RAIN) or absence (CON) of 30 mm · h(-1) of precipitation and a headwind equal to the running velocity of 3.15 ± 0.19 m · s(-1). Oesophageal temperature, mean skin temperature, heart rate, rating of perceived exertion, blood parameters, volume of expired air and sweat loss were measured. Oesophageal and mean skin temperatures were significantly lower from 5 to 30 min, and heart rate was significantly lower from 20 to 30 min in RAIN than in CON (P < 0.05 for all). Plasma lactate and epinephrine concentrations (30 min) and sweat loss were significantly lower (P < 0.05) in RAIN compared with CON. Rain appears to influence physiological and metabolic responses to exercise in heat such that heat-induced strain might be reduced.

  3. Metabolic responses of clam Ruditapes philippinarum exposed to its pathogen Vibrio tapetis in relation to diet.

    PubMed

    Richard, Gaëlle; Guérard, Fabienne; Corporeau, Charlotte; Lambert, Christophe; Paillard, Christine; Pernet, Fabrice

    2016-07-01

    We investigated the effect of brown ring disease (BRD) development and algal diet on energy reserves and activity of enzymes related to energy metabolism, antioxidant system and immunity in Manila clam, Ruditapes philippinarum. We found that algal diet did not impact the metabolic response of clams exposed to Vibrio tapetis. At two days post-injection (dpi), activities of superoxide dismutase and glutathione peroxidase (GPx) decreased whereas activities of nitric oxide synthase (iNOS) and catalase increased in infected clams, although no clinical signs were visible (BRD-). At 7 dpi, activities of several antioxidant and immune-related enzymes were markedly increased in BRD-likely indicating an efficient reactive oxygen species (ROS) scavenging compared to animals which developed clinical signs of BRD (BRD+). Therefore, resistance to BRD clinical signs appearance was associated with higher detoxification of ROS and enhancement of immune response. This study provides new biochemical indicators of disease resistance and a more comprehensive view of the global antioxidant response of clam to BRD development.

  4. The effect of therapeutic hypothermia on drug metabolism and drug response: cellular mechanisms to organ function

    PubMed Central

    Zhou, Jiangquan; Poloyac, Samuel M.

    2011-01-01

    Introduction Therapeutic hypothermia is being employed, clinically based, on its neuro-protective benefits. Both critical illness and therapeutic hypothermia significantly affect drug disposition, potentially contributing to drug-therapy and drug-disease interaction. Currently, there is limited written information of the known alterations in drug concentration and response during mild hypothermia treatment and there is a limited understanding of the specific mechanisms that underlie alterations in drug concentrations and the potential clinical importance of these changes. Areas covered A systemic review of the effect of therapeutic hypothermia on drug metabolism, disposition, and response is provided. Specifically, the clinical and preclinical evidence of the effects of therapeutic hypothermia on blood flow, specific hepatic metabolism pathways, transporter, renal excretion, pharmacodynamics and rewarming effect are reviewed. Expert Opinion Available evidence demonstrates that mild hypothermia decreases the clearance of a variety of drugs with apparently little change in drug protein binding. Recent evidence suggests that the magnitude of the change is elimination route specific. Further research is needed to determine the impact of these alterations on both drug concentration and response in order to optimize the hypothermia therapy in this vulnerable patient population. PMID:21473710

  5. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  6. Effects of temperature on the metabolic response to feeding in Python molurus.

    PubMed

    Wang, Tobias; Zaar, Morten; Arvedsen, Sine; Vedel-Smith, Christina; Overgaard, Johannes

    2002-11-01

    As ectothermic vertebrates, reptiles undergo diurnal and seasonal changes in body temperature, which affect many biological functions. In conjunction with a general review regarding the effects of temperature on digestion in reptiles, we describe the effects of various temperatures (20-35 degrees C) on the metabolic response to digestion in the Burmese python (Python molurus). The snakes were fed mice amounting to 20% of their body weight and gas exchange (oxygen uptake and CO(2) production) were measured until digestion had ended and gas exchange returned to fasting levels. Elevated temperature was associated with a faster and larger metabolic increase after ingestion, and the time required to return to fasting levels was markedly longer at low temperature. The factorial increase between fasting oxygen consumption (VO(2)) and maximal VO(2) during digestion was, however, similar at all temperatures studied. Furthermore, the integrated SDA response was not affected by temperature suggesting the costs associated with digestion are temperature-independent. Other studies on reptiles show that digestive efficiency is only marginally affected by temperature and we conclude that selection of higher body temperatures during digestion (postprandial thermophilic response) primarily reduces the time required for digestion.

  7. The metabolic response to stress: a case of complex nutrition support management.

    PubMed

    Cartwright, Martina M

    2004-12-01

    The ICU patient with burns, neurotrauma, sepsis, or major surgery typifies the classic hypermetabolic patient. These patients have increased energy and nutrient needs as a result of their injuries and require early nutrition support. Although these patients are likely to benefit from nutritional intervention, the complexity of the stress response to injury and subsequent changes in nutrient metabolism make the design and implementation of nutrition care challenging. This article reviews the pathophysiology of common hypermetabolic conditions and provides strategies to manage the complications associated with nutrition support.

  8. Measurement of metabolic responses to an orbital-extravehicular work-simulation exercise

    NASA Technical Reports Server (NTRS)

    Lantz, Renee; Webbon, Bruce

    1988-01-01

    This paper describes a new system designed to simulate orbital EVA work and measure metabolic responses to these space-work exercises. The system incorporates an experimental protocol, a controlled-atmosphere chamber, an EVA-work exercise device, the instrumentation, and a data acquisition system. Engineering issues associated with the design of the proposed system are discussed. This EVA-work simulating system can be used with various types of upper-body work, including task boards, rope pulling, and arm ergometry. Design diagrams and diagrams of various types of work simulation are included.

  9. Effects of training status on the metabolic responses to high carbohydrate and high fat meals.

    PubMed

    Bowden, V L; McMurray, R G

    2000-03-01

    The purpose of this study was to determine if there is a difference between the way in which aerobically trained and untrained women metabolize fats and carbohydrates at rest in response to either a high-fat or high-carbohydrate meal. Subjects, 6 per group, were fed a high CHO meal (2068 kJ, 76% CHO, 23% fat, 5% protein) and a high fat meal (2093 kJ, 21% CHO, 72% fat, 8% protein) in counterbalanced order. Resting metabolic rate (RMR) was measured every half-hour for 5 hours. RMR was similar between groups. However, after ingesting a high CHO meal, trained subjects had a peak in metabolism at minute 60, not evident in the untrained subjects. In addition, postprandial RER from minutes 120-300 were lower and fat use was greater after the high CHO meal for the trained subjects. These results suggest that aerobically trained women have an accelerated CHO uptake and overall lower CHO oxidation following the ingestion of a high CHO meal.

  10. Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism.

    PubMed

    Bro, Christoffer; Regenberg, Birgitte; Nielsen, Jens

    2004-02-05

    The genome-wide transcriptional response of a Saccharomyces cerevisiae strain deleted in GDH1 that encodes a NADP(+)-dependent glutamate dehydrogenase was compared to a wild-type strain under anaerobic steady-state conditions. The GDH1-deleted strain has a significantly reduced NADPH requirement, and therefore, an altered redox metabolism. Identification of genes with significantly changed expression using a t-test and a Bonferroni correction yielded only 16 transcripts when accepting two false-positives, and 7 of these were Open Reading Frames (ORFs) with unknown function. Among the 16 transcripts the only one with a direct link to redox metabolism was GND1, encoding phosphogluconate dehydrogenase. To extract additional information we analyzed the transcription data for a gene subset consisting of all known genes encoding metabolic enzymes that use NAD(+) or NADP(+). The subset was analyzed for genes with significantly changed expression again with a t-test and correction for multiple testing. This approach was found to enrich the analysis since GND1, ZWF1 and ALD6, encoding the most important enzymes for regeneration of NADPH under anaerobic conditions, were down-regulated together with eight other genes encoding NADP(H)-dependent enzymes. This indicates a possible common redox-dependent regulation of these genes. Furthermore, we showed that it might be necessary to analyze the expression of a subset of genes to extract all available information from global transcription analysis.

  11. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation

    PubMed Central

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2015-01-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28 ± 0.08 μL min−1 (p < 0.001), and 0.20 ± 0.04 μL min−1 (p < 0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation. Results from an oxygen diffusion model based on previous oxygen electrode measurements corroborated our in vivo observations. We believe that vis-OCT has the potential to reveal the fundamental role of oxygen metabolism in various retinal diseases. PMID:26658555

  12. Integrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO2 Levels.

    PubMed

    Levering, Jennifer; Dupont, Christopher L; Allen, Andrew E; Palsson, Bernhard O; Zengler, Karsten

    2017-01-01

    Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean's primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom's metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and shared metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P. tricornutum's response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. IMPORTANCE Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P. tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P. tricornutum's metabolism.

  13. Integrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO2 Levels

    PubMed Central

    Dupont, Christopher L.; Allen, Andrew E.; Palsson, Bernhard O.

    2017-01-01

    ABSTRACT Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean’s primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom’s metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and shared metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P. tricornutum’s response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. IMPORTANCE Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P. tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P. tricornutum’s metabolism. PMID:28217746

  14. Differential Response of High-Elevation Planktonic Bacterial Community Structure and Metabolism to Experimental Nutrient Enrichment

    PubMed Central

    Nelson, Craig E.; Carlson, Craig A.

    2011-01-01

    Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and

  15. Aquatic metabolism response to the hydrologic alteration in the Yellow River estuary, China

    NASA Astrophysics Data System (ADS)

    Shen, Xiaomei; Sun, Tao; Liu, Fangfang; Xu, Jing; Pang, Aiping

    2015-06-01

    Successful artificial hydrologic regulation and environmental flow assessments for the ecosystem protection require an accurate understanding of the linkages between flow events and biotic responses. To explore an ecosystem's functional responses to hydrologic alterations, we analysed spatial and temporal variations in aquatic metabolism and the main factors influenced by artificial hydrologic alterations based on the data collected from 2009 to 2012 in the Yellow River estuary, China. Gross primary production (GPP) ranged from 0.002 to 8.488 mg O2 L-1 d-1. Ecosystem respiration (ER) ranged from 0.382 to 8.968 mg O2 L-1 d-1. Net ecosystem production (NEP) ranged from -5.792 to 7.293 mg O2 L-1 d-1 and the mean of NEP was -0.506 mg O2 L-1 d-1, which means that the trophic status of entire estuary was near to balance. The results showed that seasonal variations in the aquatic metabolism are influenced by the hydrologic alteration in the estuary. High water temperature and solar radiation in summer are associated with low turbidity and consequently high rates of GPP and ER, making the estuary net autotrophic in summer, and that also occurred after water-sediment regulation in August. Turbidity and water temperature were identified as two particularly important factors that influenced the variation in the metabolic balance. As a result, metabolism rate did not decrease but increased after the regulation. ER increased significantly in summer and autumn and reached a maximum after the water-sediment regulation in September. GPP and NEP reached a maximum value after the water-sediment regulation in August, and then decreased in autumn. Estuarine ecosystem shifted from net heterotrophy in spring to net autotrophy in summer, and then to net heterotrophy in autumn. Our study indicated that estuarine metabolism may recover to a high level faster in summer than that in other seasons after the short-term water-sediment regulation due to higher water temperature and nutrients.

  16. Metabolic Response of Dungeness Crab Larvae Exposed to Elevated CO2 and Hypoxia

    NASA Astrophysics Data System (ADS)

    Nichols, Z.; Busch, S.; McElhany, P.

    2015-12-01

    Ocean acidification (OA) and deoxygenation, both resulting from rising atmospheric CO2 levels, are lowering the pH and oxygen levels of global oceans. Assessing the impacts of OA and deoxygenation on harvested species is crucial for guiding resource management with the aim of maintaining healthy and sustainable populations. The Dungeness crab, Cancer magister, is an important species ecologically and economically for the US West Coast. Crabs transition through four main stages: zoea, megalopa, juvenile, and adult. Each stage results in a different morphology and behavior, and as a result, is exposed to various environmental parameters, such as pH and dissolved oxygen (DO). The first two stages exhibit diel vertical migration while the final stages are benthic. Our study focused on the megalopae stage and their metabolic response to OA and hypoxia. We exposed wild-caught megalopae to a pH x DO cross, producing treatment waters with combinations of low or high pH and O2, all maintained at 12˚C. Closed-chamber respirometry was used to compare standard metabolic rates in a common garden setting with high pH/high DO conditions. We predict that the megalopae exposed to the low pH/high DO treatment will have a higher metabolic rate than those exposed to the high pH/high DO treatment. This may be a result of homeostatic processes increasing to return the megalopae's internal pH back to equilibrium. We predict that the high pH/low DO treatment will cause a decrease in metabolism when compared to the high pH/high DO treatment due to the megalopae conserving oxygen in a limiting environment. If results support our hypothesis, they would suggest that OA and hypoxia affects Dungeness crabs in sublethal ways.

  17. Effect of Fasting on the Metabolic Response of Liver to Experimental Burn Injury

    PubMed Central

    Orman, Mehmet A.; Ierapetritou, Marianthi G.; Androulakis, Ioannis P.; Berthiaume, Francois

    2013-01-01

    Liver metabolism is altered after systemic injuries such as burns and trauma. These changes have been elucidated in rat models of experimental burn injury where the liver was isolated and perfused ex vivo. Because these studies were performed in fasted animals to deplete glycogen stores, thus simplifying quantification of gluconeogenesis, these observations reflect the combined impact of fasting and injury on liver metabolism. Herein we asked whether the metabolic response to experimental burn injury is different in fed vs. fasted animals. Rats were subjected to a cutaneous burn covering 20% of the total body surface area, or to similar procedures without administering the burn, hence a sham-burn. Half of the animals in the burn and sham-burn groups were fasted starting on postburn day 3, and the others allowed to continue ad libitum. On postburn day 4, livers were isolated and perfused for 1 hour in physiological medium supplemented with 10% hematocrit red blood cells. The uptake/release rates of major carbon and nitrogen sources, oxygen, and carbon dioxide were measured during the perfusion and the data fed into a mass balance model to estimate intracellular fluxes. The data show that in fed animals, injury increased glucose output mainly from glycogen breakdown and minimally impacted amino acid metabolism. In fasted animals, injury did not increase glucose output but increased urea production and the uptake of several amino acids, namely glutamine, arginine, glycine, and methionine. Furthermore, sham-burn animals responded to fasting by triggering gluconeogenesis from lactate; however, in burned animals the preferred gluconeogenic substrate was amino acids. Taken together, these results suggest that the fed state prevents the burn-induced increase in hepatic amino acid utilization for gluconeogenesis. The role of glycogen stores and means to increase and/or maintain internal sources of glucose to prevent increased hepatic amino acid utilization warrant further

  18. Acute metabolic, hormonal, and psychological responses to different endurance training protocols.

    PubMed

    Wahl, P; Mathes, S; Köhler, K; Achtzehn, S; Bloch, W; Mester, J

    2013-10-01

    In the last years, mainly 2 high-intensity-training (HIT) protocols became common: first, a Wingate-based "all-out" protocol and second, a 4×4 min protocol. However, no direct comparison between these protocols exists, and also a comparison with high-volume-training (HVT) is missing. Therefore, the aim of the present study was to compare these 3 endurance training protocols on metabolic, hormonal, and psychological responses. Twelve subjects performed: 1) HVT [130 min at 55% peak power output (PPO)]; 2) 4×4 min at 95% PPO; 3) 4×30 s all-out. Human growth hormone (hGH), testosterone, and cortisol were determined before (pre) and 0', 30', 60', 180' after each intervention. Metabolic stimuli and perturbations were characterized by lactate, blood gas (pH, BE, HCO₃⁻, pO₂, PCO₂), and spirometric analysis. Furthermore, changes of the person's perceived physical state were determined. The 4×30 s training caused the highest increases in cortisol and hGH, followed by 4 × 4 min and HVT. Testosterone levels were significantly increased by all 3 exercise protocols. Metabolic stress was highest during and after 4×30 s, followed by 4×4 min and HVT. The 4×30 s training was also the most demanding intervention from an athlete's point of view. In conclusion, the results suggest that 4×30 s and 4×4 min promote anabolic processes more than HVT, due to higher increases of hGH, testosterone, and the T/C ratio. It can be speculated that the acute hormonal increase and the metabolic perturbations might play a positive role in optimizing training adaptation and in eliciting health benefits as it has been shown by previous long term training studies using similar exercise protocols.

  19. Metabolic response to a glucagon challenge varies with adiposity and life-history stage in fasting northern elephant seals.

    PubMed

    Crocker, Daniel E; Fowler, Melinda A; Champagne, Cory D; Vanderlugt, Anna L; Houser, Dorian S

    2014-01-01

    Metabolic adaptations for extended fasting in wildlife prioritize beta-oxidation of lipids and reduced glucose utilization to support energy metabolism. The pancreatic hormone glucagon plays key roles in regulating glycemia and lipid metabolism during fasting in model species but its function in wildlife species adapted for extended fasting is not well understood. Northern elephant seals (NES) undergo natural fasts of 1-3months while under constraints of high nutrient demands including lactation and development. We performed a glucagon challenge on lactating, molting and developing NES, early and late in their natural fasts, to examine the impact of this important regulatory hormone on metabolism. Glucagon caused increases in plasma glucose, insulin, fatty acids, ketones and urea, but the magnitude of these effects varied widely with adiposity and life-history stage. The strong impact of adiposity on glucose and insulin responses suggest a potential role for adipose derived factors in regulating hepatic metabolism and pancreatic sensitivity. Elevations in plasma glucose in response to glucagon were strongly associated with increases in protein catabolism, suggesting negative impacts of elevated glucagon on protein sparing. Glucagon promoted rapid ketone accumulation suggesting that low ketoacid levels in NES reflect low rates of production. These results demonstrate strong metabolic impacts of glucagon and support the idea that glucagon levels are downregulated in the context of metabolic adaptation to extended fasting. These results suggest that the regulation of carbohydrate and lipid metabolism in NES changes with adiposity, fasting duration and under various constraints of nutrient demands.

  20. Multi-scale modeling of Arabidopsis thaliana response to different CO2 conditions: From gene expression to metabolic flux.

    PubMed

    Liu, Lin; Shen, Fangzhou; Xin, Changpeng; Wang, Zhuo

    2016-01-01

    Multi-scale investigation from gene transcript level to metabolic activity is important to uncover plant response to environment perturbation. Here we integrated a genome-scale constraint-based metabolic model with transcriptome data to explore Arabidopsis thaliana response to both elevated and low CO2 conditions. The four condition-specific models from low to high CO2 concentrations show differences in active reaction sets, enriched pathways for increased/decreased fluxes, and putative post-transcriptional regulation, which indicates that condition-specific models are necessary to reflect physiological metabolic states. The simulated CO2 fixation flux at different CO2 concentrations is consistent with the measured Assimilation-CO2intercellular curve. Interestingly, we found that reactions in primary metabolism are affected most significantly by CO2 perturbation, whereas secondary metabolic reactions are not influenced a lot. The changes predicted in key pathways are consistent with existing knowledge. Another interesting point is that Arabidopsis is required to make stronger adjustment on metabolism to adapt to the more severe low CO2 stress than elevated CO2 . The challenges of identifying post-transcriptional regulation could also be addressed by the integrative model. In conclusion, this innovative application of multi-scale modeling in plants demonstrates potential to uncover the mechanisms of metabolic response to different conditions.

  1. A forage-only diet alters the metabolic response of horses in training.

    PubMed

    Jansson, A; Lindberg, J E

    2012-12-01

    Most athletic horses are fed a high-starch diet despite the risk of health problems. Replacing starch concentrate with high-energy forage would alleviate these health problems, but could result in a shift in major substrates for muscle energy supply from glucose to short-chain fatty acids (SCFA) due to more hindgut fermentation of fibre. Dietary fat inclusion has previously been shown to promote aerobic energy supply during exercise, but the contribution of SCFA to exercise metabolism has received little attention. This study compared metabolic response with exercise and lactate threshold (VLa4) in horses fed a forage-only diet (F) and a more traditional high-starch, low-energy forage diet (forage-concentrate diet - FC). The hypothesis was that diet F would increase plasma acetate concentration and increase VLa4 compared with diet FC. Six Standardbred geldings in race training were used in a 29-day change-over experiment. Plasma acetate, non-esterified fatty acids (NEFA), lactate, glucose and insulin concentrations and venous pH were measured in samples collected before, during and after a treadmill exercise test (ET, day 25) and muscle glycogen concentrations before and after ET. Plasma acetate concentration was higher before and after exercise in horses on diet F compared with diet FC, and there was a tendency (P = 0.09) for increased VLa4 on diet F. Venous pH and plasma glucose concentrations during exercise were higher in horses on diet F than diet FC, as was plasma NEFA on the day after ET. Plasma insulin and muscle glycogen concentrations were lower for diet F, but glycogen utilisation was similar for the two diets. The results show that a high-energy, forage-only diet alters the metabolic response to exercise and, with the exception of lowered glycogen stores, appears to have positive rather than negative effects on performance traits.

  2. The Hsp72 response in peri-parturient dairy cows: relationships with metabolic and immunological parameters.

    PubMed

    Catalani, Elisabetta; Amadori, Massimo; Vitali, Andrea; Bernabucci, Umberto; Nardone, Alessandro; Lacetera, Nicola

    2010-11-01

    The study was aimed at assessing whether the peri-parturient period is associated with changes of intracellular and plasma inducible heat shock proteins (Hsp) 72 kDa molecular weight in dairy cows, and to establish possible relationships between Hsp72, metabolic, and immunological parameters subjected to changes around calving. The study was carried out on 35 healthy peri-parturient Holstein cows. Three, two, and one week before the expected calving, and 1, 2, 3, 4, and 5 weeks after calving, body conditions score (BCS) was measured and blood samples were collected to separate plasma and peripheral blood mononuclear cells (PBMC). Concentrations of Hsp72 in PBMC and plasma increased sharply after calving. In the post-calving period, BCS and plasma glucose declined, whereas plasma nonesterified fatty acids (NEFA) and tumor necrosis factor-alpha increased. The proliferative responses of PBMC to lipopolysaccharide (LPS) declined progressively after calving. The percentage of PBMC expressing CD14 receptors and Toll-like receptors (TLR)-4 increased and decreased in the early postpartum period, respectively. Correlation analysis revealed significant positive relationships between Hsp72 and NEFA, and between PBMC proliferation in response to LPS and the percentage of PBMC expressing TLR-4. Conversely, significant negative relationships were found between LPS-triggered proliferation of PBMC and both intracellular and plasma Hsp72. Literature data and changes of metabolic and immunological parameters reported herein authorize a few interpretative hypotheses and encourage further studies aimed at assessing possible cause and effect relationships between changes of PBMC and circulating Hsp72, metabolic, and immune parameters in dairy cows.

  3. Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis.

    PubMed

    Jiménez, Sergio; Ollat, Nathalie; Deborde, Catherine; Maucourt, Mickaël; Rellán-Álvarez, Rubén; Moreno, María Ángeles; Gogorcena, Yolanda

    2011-03-15

    Iron deficiency induces several responses to iron shortage in plants. Metabolic changes occur to sustain the increased iron uptake capacity of Fe-deficient plants. We evaluated the metabolic changes of three Prunus rootstocks submitted to iron chlorosis and their different responses for tolerance using measurements of metabolites and enzymatic activities. The more tolerant rootstocks Adesoto (Prunus insititia) and GF 677 (Prunus amygdalus×Prunus persica), and the more sensitive Barrier (P. persica×Prunus davidiana) were grown hydroponically in iron-sufficient and -deficient conditions over two weeks. Sugar, organic and amino acid concentrations of root tips were determined after two weeks of iron shortage by proton nuclear magnetic resonance spectroscopy of extracts. Complementary analyses of organic acids were performed by liquid chromatography coupled to mass spectrometry. The major soluble sugars found were glucose and sucrose. The major organic acids were malic and citric acids, and the major amino acid was asparagine. Iron deficiency increased root sucrose, total organic and amino acid concentrations and phosphoenolpyruvate carboxylase activity. After two weeks of iron deficiency, the malic, citric and succinic acid concentrations increased in the three rootstocks, although no significant differences were found among genotypes with different tolerance to iron chlorosis. The tolerant rootstock Adesoto showed higher total organic and amino acid concentrations. In contrast, the susceptible rootstock Barrier showed lower total amino acid concentration and phosphoenolpyruvate carboxylase activity values. These results suggest that the induction of this enzyme activity under iron deficiency, as previously shown in herbaceous plants, indicates the tolerance level of rootstocks to iron chlorosis. The analysis of other metabolic parameters, such as organic and amino acid concentrations, provides complementary information for selection of genotypes tolerant to iron

  4. Clinical, histopathological and metabolic responses following exercise in Arabian horses with a history of exertional rhabdomyolysis.

    PubMed

    McKenzie, E C; Eyrich, L V; Payton, M E; Valberg, S J

    2016-10-01

    A previous report suggests a substantial incidence of exertional rhabdomyolysis (ER) in Arabian horses performing endurance racing. This study compared formalin histopathology and clinical and metabolic responses to a standardised field exercise test (SET) between Arabians with and without ER. Arabian horses with (n = 10; age 15.4 ± 5.6 years) and without (n = 9; 12.9 ± 6.1 years) prior ER were stall-rested for 24-48 h, after which paired ER and control horses were fitted with a telemetric ECG and performed a 47 min submaximal SET. Plasma glucose, lactate, electrolyte and total protein concentrations and packed cell volume were measured before and immediately after exercise. Blood and percutaneous gluteal muscle samples were also obtained before and 3 h after exercise for measurement of plasma creatine kinase (CK) activity and muscle glycogen concentration, respectively. Histopathologic analysis of formalin-fixed pre-exercise muscle sections was performed. Data were analyzed by ANOVA and non-parametric tests (P <0.05). No horses displayed clinical signs of ER during exercise, and plasma CK increased similarly in ER and control Arabians. Muscle glycogen, heart rate, and remaining plasma variables did not differ between horses with ER and control horses. Horses with ER had more internalised nuclei in mature myofibers, more aggregates of cytoplasmic glycogen and desmin, and higher myopathic scores than control horses. Although many horses with ER had histopathologic evidence of chronic myopathy, muscle glycogen concentrations and metabolic exercise responses were normal. Results did not support a consistent metabolic myopathy or a glycogen storage disorder in Arabians with ER.

  5. Oxidative stress and metabolic responses to copper in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus.

    PubMed

    Ransberry, Victoria E; Morash, Andrea J; Blewett, Tamzin A; Wood, Chris M; McClelland, Grant B

    2015-04-01

    In freshwater (FW), many of the main mechanisms of copper (Cu) toxicity have been characterized; however, toxicity mechanisms in seawater (SW) are less well understood. We investigated the effects of salinity on Cu-induced oxidative stress and metabolic responses in adult killifish, Fundulus heteroclitus. We exposed FW and SW-acclimated killifish to either low Cu (LC, 50 μg/L) or high Cu (HC, 200 μg/L) for 96 h and compared them to controls (CTRL) under the same salinities without added Cu. Cu exerted minimal influence on tissue ion levels in either FW or SW. Salinity generally protected against Cu bioaccumulation in the gills and liver, but not in the carcass. Hematocrit (Hct) and hemoglobin (Hb) levels were increased by LC and HC in both FW and SW, and blood lactate was reduced in FW-killifish exposed to LC and HC. Rates of oxygen consumption were similar across treatments. Salinity reduced Cu load in gill, liver and intestine at LC but only in the gills at HC. In general, Cu increased gill, liver, and intestine catalase (CAT) activity, while superoxide dismutase (SOD) either decreased or remained unchanged depending on tissue-type. These changes did not directly correlate with levels of protein carbonyls, used as an index of oxidative stress. Cu-induced changes in carbohydrate metabolic enzymes were low across tissues and the effect of salinity was variable. Thus, while salinity clearly protects against Cu bioaccumulation in some tissues, it is unclear whether salinity protects against Cu-induced oxidative stress and metabolic responses.

  6. Skeletal muscle metabolic gene response to carbohydrate feeding during exercise in the heat

    PubMed Central

    2013-01-01

    Background Heat stress down-regulates mitochondrial function, while carbohydrate supplementation attenuates the exercise induced stimulation of mitochondrial biogenesis in humans. The effects of exogenous carbohydrate during exercise in the heat on metabolic mRNA have not been investigated in humans. The purpose of this study was to determine the impact of exercise with and without carbohydrate supplementation on skeletal muscle metabolic response in the heat. Methods Eight recreationally active males (4.05 ± 0.2 L.min-1) completed 2 trials which included 1 hr of cycling at 70% workload max and 3 hr recovery in a hot environment. Both trials were conducted in a climate controlled environmental chamber (38°C and 40% RH). The trials differed by the consumption of either a 6% carbohydrate (CHO) containing beverage (8 ml.kg-1.hr-1) or placebo (P) during exercise in random order. Muscle biopsies were obtained from the vastus lateralis before exercise, immediately post-exercise and at the end of the 3 hr recovery period. Muscle was analyzed for muscle glycogen and mRNA related to metabolic and mitochondrial development (MFN2, PGC-1α, GLUT4, UCP3). Expired gases were measured to determine whole body substrate use during exercise. Results Carbohydrate oxidation and muscle glycogen utilization did not differ between trials, whereas fat oxidation was elevated during exercise in P. Exercise caused an increase in PGC-1α, and GLUT4 (P < 0.05) independent of exogenous carbohydrate provision. Carbohydrate consumption attenuated the mRNA response in UCP3 (P < 0.05). Conclusions This study indicates that the provision of exogenous carbohydrate attenuates the stimulation of mRNA expression of UCP3 following exercise in the heat. PMID:24034227

  7. The metabolic response to postnatal leptin in rats varies with age and may be litter dependent.

    PubMed

    Granado, M; Diaz, F; Fuente-Martín, E; García-Cáceres, C; Argente, J; Chowen, J A

    2014-06-01

    Hyperleptinemia during postnatal life induces long-term effects on metabolism. However, these effects are controversial as both increased and decreased propensity towards obesity has been reported. To further analyze the effects of chronic neonatal hyperleptinemia on the subsequent metabolic profile, male Wistar rats proceeding from 18 different litters (8 pups/litter) received a daily subcutaneous injection of either saline (10 ml/kg, n=36) or leptin (3 μg/g, n=36) from postnatal day (PND) 2 to PND9. Rats were sacrificed at 10, 40, or 150 days of age. At 10 days of age, leptin treated rats had decreased body weight (p<0.001) and body fat (p<0.05). Leptin levels and glycemia were increased (p<0.01), whereas insulin, total lipids, triglycerides and glycerol levels were decreased (p<0.05). At PND40 rats receiving leptin had increased glycemia (p<0.01) and plasma HDL and LDL levels, but decreased total lipids (p<0.05). At PND150 neonatal leptin treatment induced different effects in rats raised in different litters. Rats from litter 1 had increased body weight (p<0.05), body fat (p<0.01), and plasma leptin (p<0.001), cholesterol (p<0.001), triglyceride (p<0.001), total lipid (p<0.001), LDL (p<0.05), and glycerol (p<0.001) levels. In rats from litter 2 these parameters did not differ from controls. Rats from litter 3 had decreased body weight (p<0.05), visceral fat (p<0.01) and plasma leptin (p<0.001), cholesterol (p<0.001), triglyceride (p<0.001), glycerol (p<0.001), and HDL (p<0.001) levels. In conclusion, the metabolic response to postnatal leptin varies with age, with the response in adulthood being variable and most likely influenced by other factors, including the genetic make-up.

  8. CYP2D6 poor metabolizer status might be associated with better response to risperidone treatment.

    PubMed

    Almoguera, Berta; Riveiro-Alvarez, Rosa; Lopez-Castroman, Jorge; Dorado, Pedro; Vaquero-Lorenzo, Concepción; Fernandez-Piqueras, José; Llerena, Adrián; Abad-Santos, Francisco; Baca-García, Enrique; Dal-Ré, Rafael; Ayuso, Carmen

    2013-11-01

    The variability in the antipsychotic response is, to some extent, genetically determined. Several studies have attempted to establish a role for genetic variation in genes coding pharmacokinetic and pharmacodynamic targets, but to date, no definite genetic predictive marker has been identified. We aimed to explore the putative role of 19 genetic variants and risperidone clinical improvement in 76 White schizophrenic inpatients, measured as change in Positive and Negative Syndrome Scale (PANSS). CYP2D6 poor metabolism was significantly associated with greater clinical improvement in total PANSS and a trend was also found for MDR1 3435C>T to higher total PANSS scores in 3435T carriers. This study suggests the importance that genetic variability on pharmacokinetic factors may have in risperidone response and gives evidence for the need for further investigation in order to establish the actual predictive value and clinical utility that CYP2D6 genotyping might have in risperidone therapy management.

  9. Effects of road transportation on metabolic and immunological responses in Holstein heifers.

    PubMed

    Kang, Hyeok-Joong; Lee, In Kyu; Piao, Min-Yu; Kwak, Chae-Won; Gu, Min Jeong; Yun, Cheol Heui; Kim, Hyun-Jin; Ahn, Hyeon-Ju; Kim, Hee-Bal; Kim, Gyeom-Heon; Kim, Soo-Ki; Ko, Jong-Youl; Ha, Jong K; Baik, Myunggi

    2017-01-01

    This study examined the effects of road transportation on metabolic and immunological responses in dairy heifers. Twenty Holstein heifers in early pregnancy were divided into non-transported (NT; n = 7) and transported (T; n = 13) groups. Blood was collected before transportation (BT), immediately after transportation for 100 km (T1) and 200 km (T2), and 24 h after transportation (AT). The T heifers had higher (P < 0.05) blood cortisol and non-esterified fatty acid concentrations after T1 and T2 than did NT heifers. By contrast, the T heifers had lower (P < 0.05) serum triglyceride concentrations after T1 and T2 than had the NT heifers. The serum cortisol and triglyceride concentrations returned (P > 0.05) to the BT concentrations at 24 h AT in the T heifers. The granulocyte-to-lymphocyte ratio and the percentage of monocytes were higher (P < 0.05) after T2 in the T heifers than in the NT heifers, suggesting that transportation stress increased the numbers of innate immune cells. T heifers had higher (P < 0.01) plasma haptoglobin concentrations than NT heifers 24 h AT. In conclusion, transportation increased cortisol secretion and was correlated with increased metabolic responses and up-regulation of peripheral innate immune cells in dairy heifers.

  10. Growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus Selenka during periods of inactivity

    NASA Astrophysics Data System (ADS)

    Du, Rongbin; Zang, Yuanqi; Tian, Xiangli; Dong, Shuanglin

    2013-03-01

    The growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus, were investigated during periods of inactivity. The body weight, oxygen consumption rate (OCR), activities of acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD), and content of heat shock protein 70 (Hsp70) in the body wall and coelomic fluid of A. japonicus were measured during starvation, experimental aestivation and aestivation. The results showed that the body weight of sea cucumber in the three treatments decreased significantly during the experimental period ( P < 0.05). The OCR of sea cucumber reduced in starvation and experimental aestivation treatments, but increased gradually in natural aestivation treatment. The activities of ACP and AKP of sea cucumber decreased gradually in all treatments, whereas those of SOD and CAT as well as Hsp70 content decreased in the starvation and experimental aestivation treatments and increased in natural aestivation treatment. The sea cucumber entered a state of aestivation at 24°C. To some extent, the animals in experimental aestivation were different from those in natural aestivation in metabolism and physiological response. These findings suggested that the aestivation mechanism of A. japonicus is complex and may not be attributed to the elevated temperature only.

  11. The interplay between genotype, metabolic state and cofactor treatment governs phenylalanine hydroxylase function and drug response.

    PubMed

    Staudigl, Michael; Gersting, Søren W; Danecka, Marta K; Messing, Dunja D; Woidy, Mathias; Pinkas, Daniel; Kemter, Kristina F; Blau, Nenad; Muntau, Ania C

    2011-07-01

    The discovery of a pharmacological treatment for phenylketonuria (PKU) raised new questions about function and dysfunction of phenylalanine hydroxylase (PAH), the enzyme deficient in this disease. To investigate the interdependence of the genotype, the metabolic state (phenylalanine substrate) and treatment (BH(4) cofactor) in the context of enzyme function in vitro and in vivo, we (i) used a fluorescence-based method for fast enzyme kinetic analyses at an expanded range of phenylalanine and BH(4) concentrations, (ii) depicted PAH function as activity landscapes, (iii) retraced the analyses in eukaryotic cells, and (iv) translated this into the human system by analyzing the outcome of oral BH(4) loading tests. PAH activity landscapes uncovered the optimal working range of recombinant wild-type PAH and provided new insights into PAH kinetics. They demonstrated how mutations might alter enzyme function in the space of varying substrate and cofactor concentrations. Experiments in eukaryotic cells revealed that the availability of the active PAH enzyme depends on the phenylalanine-to-BH(4) ratio. Finally, evaluation of data from BH(4) loading tests indicated that the patient's genotype influences the impact of the metabolic state on drug response. The results allowed for visualization and a better understanding of PAH function in the physiological and pathological state as well as in the therapeutic context of cofactor treatment. Moreover, our data underscore the need for more personalized procedures to safely identify and treat patients with BH(4)-responsive PAH deficiency.

  12. Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance.

    PubMed

    Tripathi, Preeti; Mishra, Aradhana; Dwivedi, Sanjay; Chakrabarty, Debasis; Trivedi, Prabodh K; Singh, Rana Pratap; Tripathi, Rudra Deo

    2012-05-01

    The mechanism of arsenic (As) tolerance was investigated on two contrasting rice (Oryza sativa L.) genotypes, selected for As tolerance and accumulation. One tolerant (Triguna) and one sensitive (IET-4786) variety were exposed to various arsenate (0-50 μM) levels for 7 d for biochemical analyses. Arsenic induced oxidative stress was more pronounced in IET-4786 than Triguna especially in terms of reactive oxygen species, lipid peroxidation, EC and pro-oxidant enzymes (NADPH oxidase and ascorbate oxidase). However, Triguna tolerated As stress through the enhanced enzymes activities particularly pertaining to thiol metabolism such as serine acetyl transferase (SAT), cysteine synthase (CS), γ-glutamyl cysteine synthase (γ-ECS), γ-glutamyl transpeptidase (γ-GT), and glutathione-S-transferase (GST) as well as arsenate reductase (AR). Besides maintaining the ratio of redox couples GSH/GSSG and ASC/DHA, the level of phytochelatins (PCs) and phytochelatin synthase (PCS) activity were more pronounced in Triguna, in which harmonized responses of thiol metabolism was responsible for As tolerance in contrast to IET-4786 showing its susceptible nature towards As exposure.

  13. Structural and metabolic correlation for Bacillus megaterium ACBT03 in response to colchicine biotransformation.

    PubMed

    Dubey, Kashyap Kumar; Jawed, Arshad; Haque, Shafiul

    2011-01-01

    This study aims to evaluate the effects of colchicine on metabolic and structural changes in Bacillus megaterium ACBT03, enduring colchicine bioconversion. Electron microscopy examination of cells adapted to different concentrations of colchicine for its bioconversion to pharmacologically active 3-demethylated colchicine, endowed changes in cell shape, decreased cell wall and plasma membrane thickness. In line with microscopic studies, lipid and membrane protein contents were drastically reduced in bacterial cells adapted to higher concentrations of colchicine and resulting into decrease in cell membrane thickness. More numbers of polyhydroxybutyrate (PHB) rich inclusion bodies were found inside the colchicine adapted cells and presence of higher amount of PHB, a carbon source for generation of redox potential, indicates that it might be responsible for activation of P450 BM-3 enzyme and plays significant role in colchicine demethylation. The presence of dense ribosome like bodies in colchicine adapted cells showed higher biosynthesis of P450 BM-3. Reduction in cell wall and cell membrane thickness, presence of more inclusion bodies and ribosome like masses in colchicine adapted cells were some of the key interlinked phenomena responsible for colchicine bioconversion. This is the first study which reports that colchicine demethylation process severely affects the structural and metabolic functions of the bacteria.

  14. Proteomic Analysis of Metabolic Responses to Biofuels and Chemicals in Photosynthetic Cyanobacteria.

    PubMed

    Sun, T; Chen, L; Zhang, W

    2017-01-01

    Recent progresses in various "omics" technologies have enabled quantitative measurements of biological molecules in a high-throughput manner. Among them, high-throughput proteomics is a rapidly advancing field that offers a new means to quantify metabolic changes at protein level, which has significantly facilitated our understanding of cellular process, such as protein synthesis, posttranslational modifications, and degradation in responding to environmental perturbations. Cyanobacteria are autotrophic prokaryotes that can perform oxygenic photosynthesis and have recently attracted significant attentions as one promising alternative to traditionally biomass-based "microbial cell factories" to produce green fuels and chemicals. However, early studies have shown that the low tolerance to toxic biofuels and chemicals represented one major hurdle for further improving productivity of the cyanobacterial production systems. To address the issue, metabolic responses and their regulation of cyanobacterial cells to toxic end-products need to be defined. In this chapter, we discuss recent progresses in interpreting cyanobacterial responses to biofuels and chemicals using high-throughput proteomics approach, aiming to provide insights and guidelines on how to enhance tolerance and productivity of biofuels or chemicals in the renewable cyanobacteria systems in the future.

  15. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum.

    PubMed

    Alcázar, Rubén; Bitrián, Marta; Bartels, Dorothea; Koncz, Csaba; Altabella, Teresa; Tiburcio, Antonio F

    2011-02-01

    In this work, we have studied the transcriptional profiles of polyamine biosynthetic genes and analyzed polyamine metabolic fluxes during a gradual drought acclimation response in Arabidopsis thaliana and the resurrection plant Craterostigma plantagineum. The analysis of free putrescine, spermidine and spermine titers in Arabidopsis arginine decarboxylase (adc1-3, adc2-3), spermidine synthase (spds1-2, spds2-3) and spermine synthase (spms-2) mutants during drought stress, combined with the quantitative expression of the entire polyamine biosynthetic pathway in the wild-type, has revealed a strong metabolic canalization of putrescine to spermine induced by drought. Such canalization requires spermidine synthase 1 (SPDS1) and spermine synthase (SPMS) activities and, intriguingly, does not lead to spermine accumulation but to a progressive reduction in spermidine and spermine pools in the wild-type. Our results suggest the participation of the polyamine back-conversion pathway during the drought stress response rather than the terminal catabolism of spermine. The putrescine to spermine canalization coupled to the spermine to putrescine back-conversion confers an effective polyamine recycling-loop during drought acclimation. Putrescine to spermine canalization has also been revealed in the desiccation tolerant plant C. plantagineum, which conversely to Arabidopsis, accumulates high spermine levels which associate with drought tolerance. Our results provide a new insight to the polyamine homeostasis mechanisms during drought stress acclimation in Arabidopsis and resurrection plants.

  16. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum

    PubMed Central

    Bartels, Dorothea; Koncz, Csaba; Altabella, Teresa

    2011-01-01

    In this work, we have studied the transcriptional profiles of polyamine biosynthetic genes and analyzed polyamine metabolic fluxes during a gradual drought acclimation response in Arabidopsis thaliana and the resurrection plant Craterostigma plantagineum. The analysis of free putrescine, spermidine and spermine titers in Arabidopsis arginine decarboxylase (adc1–3, adc2–3), spermidine synthase (spds1–2, spds2–3) and spermine synthase (spms-2) mutants during drought stress, combined with the quantitative expression of the entire polyamine biosynthetic pathway in the wild-type, has revealed a strong metabolic canalization of putrescine to spermine induced by drought. Such canalization requires spermidine synthase 1 (SPDS1) and spermine synthase (SPMS) activities and, intriguingly, does not lead to spermine accumulation but to a progressive reduction in spermidine and spermine pools in the wild-type. Our results suggest the participation of the polyamine back-conversion pathway during the drought stress response rather than the terminal catabolism of spermine. The putrescine to spermine canalization coupled to the spermine to putrescine back-conversion confers an effective polyamine recycling-loop during drought acclimation. Putrescine to spermine canalization has also been revealed in the desiccation tolerant plant C. plantagineum, which conversely to Arabidopsis, accumulates high spermine levels which associate with drought tolerance. Our results provide a new insight to the polyamine homeostasis mechanisms during drought stress acclimation in Arabidopsis and resurrection plants. PMID:21330782

  17. Metabolic responses to dietary cholecalciferol and phosphorus in abalone Haliotis discus hannai ino.

    PubMed

    Zhang, Wenbing; Mai, Kangsen; Xu, Wei; Ma, Hongming

    2003-10-01

    Metabolic responses of cholecalciferol (VD(3)) and minerals (Ca, P and Mg) in abalone Haliotis discus hannai Ino to dietary VD(3) and phosphorus (P) were investigated. Based on a 2 x 2 factorial design, four casein-gelatin-based diets were formulated. The basal diet was supplemented with either 0 or 2000 IU VD(3)/kg diet and 0 or 10 g P/kg diet. The abalone was reared in P-free artificial seawater for 55 days. Results showed that dietary VD(3) was hydroxylated to 25-hydroxyvitamin D(3) [25(OH)D(3)] and 1 alpha,25-dihydroxyvitamin D(3) [1 alpha,25(OH)(2)D(3)] in abalone, and subsequently raised the serum levels of these two VD(3) metabolites. Dietary P deficiency elevated serum 1 alpha,25(OH)(2)D(3) level only when the dietary VD(3) supplementation was sufficient. The supplementations of either dietary VD(3) or P significantly increased the levels of P in serum, mantle and hepatopancreas, and only the addition of VD(3) significantly raised the concentrations of Ca in serum and mantle (P<0.05). Interaction between dietary VD(3) and P was only found significant on the concentrations of P and Mg in mantle (P<0.05). The concentrations of Ca, P and Mg in muscle were not significantly influenced by these dietary treatments. Hence, the metabolic responses in serum, muscle, mantle and hepatopancreas of abalone to dietary VD(3) and P were in different manners.

  18. Aging of myelinating glial cells predominantly affects lipid metabolism and immune response pathways.

    PubMed

    Verdier, Valérie; Csárdi, Gábor; de Preux-Charles, Anne-Sophie; Médard, Jean-Jacques; Smit, August B; Verheijen, Mark H G; Bergmann, Sven; Chrast, Roman

    2012-05-01

    Both the central and the peripheral nervous systems are prone to multiple age-dependent neurological deficits, often attributed to still unknown alterations in the function of myelinating glia. To uncover the biological processes affected in glial cells by aging, we analyzed gene expression of the Schwann cell-rich mouse sciatic nerve at 17 time points throughout life, from day of birth until senescence. By combining these data with the gene expression data of myelin mouse mutants carrying deletions of either Pmp22, SCAP, or Lpin1, we found that the majority of age-related transcripts were also affected in myelin mutants (54.4%) and were regulated during PNS development (59.5%), indicating a high level of overlap in implicated molecular pathways. The expression profiles in aging copied the direction of transcriptional changes observed in neuropathy models; however, they had the opposite direction when compared with PNS development. The most significantly altered biological processes in aging involved the inflammatory/immune response and lipid metabolism. Interestingly, both these pathways were comparably changed in the aging optic nerve, suggesting that similar biological processes are affected in aging of glia-rich parts of the central and peripheral nervous systems. Our comprehensive comparison of gene expression in three distinct biological conditions including development, aging, and myelin disease thus revealed a previously unanticipated relationship among themselves and identified lipid metabolism and inflammatory/immune response pathways as potential therapeutical targets to prevent or delay so far incurable age-related and inherited forms of neuropathies.

  19. PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges

    PubMed Central

    Liu, Libin; Pilch, Paul F

    2016-01-01

    Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae–independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism. DOI: http://dx.doi.org/10.7554/eLife.17508.001 PMID:27528195

  20. Time course of the response of carbohydrate metabolism to unloading of the soleus

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.

    1988-01-01

    The time course of the response of carbohydrate metabolism to unloading was studied in the soleus muscle of rats subjected to tail-cast suspension. In the fresh soleus, 12 hours of unloading led to higher concentrations of glycogen and lower activity ratios of both glycogen synthase and glycogen phosphorylase. These changes were still evident on day three. Thereafter, the increased glycogen concentration apparently diminished the activity ratio of glycogen synthase, leading to a subsequent fall in the total glycogen content after day one. After 24 hours of unloading, when no significant atrophy was detectable, there was no differential response to insulin for in vitro glucose metabolism. On day three, the soleus atrophied significantly and displayed a greater sensitivity to insulin for most of these parameters compared to the weight-bearing control muscle. However, insulin sensitivity for glycogen synthesis was unchanged. These results showed that the increased sensitivity to insulin of the unloaded soleus is associated with the degree of muscle atrophy, likely due to an increased insulin binding capacity relative to muscle mass. This study also showed that insulin regulation of glucose uptake and of glycogen synthesis is affected differentially in the unloaded soleus muscle.

  1. Medicago truncatula Mtha1-2 mutants loose metabolic responses to mycorrhizal colonization.

    PubMed

    Hubberten, Hans-Michael; Sieh, Daniela; Zöller, Daniela; Hoefgen, Rainer; Krajinski, Franziska

    2015-01-01

    Bidirectional nutrient transfer is one of the key features of the arbuscular mycorrhizal symbiosis. Recently we were able to identify a Medicago truncatula mutant (mtha1-2) that is defective in the uptake of phosphate from the periarbuscular space due to a lack of the energy providing proton gradient provided by the symbiosis specific proton ATPase MtHA1 In order to further characterize the impact of fungal colonization on the plant metabolic status, without the beneficial aspect of improved mineral nutrition, we performed leaf ion analyses in mutant and wildtype plants with and without fungal colonization. Although frequency of fungal colonization was unaltered, the mutant did not show a positive growth response to mycorrhizal colonization. This indicates that nutrient transfer into the plant cell fails in the truncated arbuscules due to lacking expression of a functional MtHA1 protein. The leaves of wildtype plants showed clear metabolic responses to root mycorrhizal colonization, whereas no changes of leaf metabolite levels of mycorrhizal mtha1-2 plants were detected, even though they were colonized. These results show that MtHa1 is indispensable for a functional mycorrhizal symbiosis and, moreover, suggest that fungal root colonization per se does not depend on nutrient transfer to the plant host.

  2. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress

    PubMed Central

    Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.

    2015-01-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  3. Effects of tempol on altered metabolism and renal vascular responsiveness in fructose-fed rats.

    PubMed

    Abdulla, Mohammed H; Sattar, Munavvar A; Johns, Edward J

    2016-02-01

    This study investigated the effect of tempol (a superoxide dismutase mimetic) on renal vasoconstrictor responses to angiotensin II (Ang II) and adrenergic agonists in fructose-fed Sprague-Dawley rats (a model of metabolic syndrome). Rats were fed 20% fructose in drinking water (F) for 8 weeks. One fructose-fed group received tempol (FT) at 1 mmol·L(-1) in drinking water for 8 weeks or as an infusion (1.5 mg·kg(-1)·min(-1)) intrarenally. At the end of the treatment regimen, the renal responses to noradrenaline, phenylephrine, methoxamine, and Ang II were determined. F rats exhibited hyperinsulinemia, hyperuricemia, hypertriglyceridemia, and hypertension. Tempol reduced blood glucose and insulin levels (all p < 0.05) in FT rats compared with their untreated counterparts. The vasoconstriction response to all agonists was lower in F rats than in control rats by about 35%-65% (all p < 0.05). Vasoconstrictor responses to noradrenaline, phenylephrine, and methoxamine but not Ang II were about 41%-75% higher in FT rats compared with F rats (all p < 0.05). Acute tempol infusion blunted responses to noradrenaline, methoxamine, and Ang II in control rats by 32%, 33%, and 62%, while it blunted responses to noradrenaline and Ang II in F rats by 26% and 32%, respectively (all p < 0.05), compared with their untreated counterparts. Superoxide radicals play a crucial role in controlling renal vascular responses to adrenergic agonists in insulin-resistant rats. Chronic but not acute tempol treatment enhances renal vascular responsiveness in fructose-fed rats.

  4. Optical Imaging of Drug-Induced Metabolism Changes in Murine and Human Pancreatic Cancer Organoids Reveals Heterogeneous Drug Response

    PubMed Central

    Walsh, Alex J.; Castellanos, Jason A.; Nagathihalli, Nagaraj S.; Merchant, Nipun B.; Skala, Melissa C.

    2016-01-01

    Objectives Three-dimensional organoids derived from primary pancreatic ductal adenocarcinomas are an attractive platform for testing potential anticancer drugs on patient-specific tissue. Optical metabolic imaging (OMI) is a novel tool used to assess drug-induced changes in cellular metabolism, and its quantitative end point, the OMI index, is evaluated as a biomarker of drug response in pancreatic cancer organoids. Methods Optical metabolic imaging is used to assess both malignant cell and fibroblast drug response within primary murine and human pancreatic cancer organoids. Results Anticancer drugs induce significant reductions in the OMI index of murine and human pancreatic cancer organoids. Subpopulation analysis of OMI data revealed heterogeneous drug response and elucidated responding and nonresponding cell populations for a 7-day time course. Optical metabolic imaging index significantly correlates with immunofluorescence detection of cell proliferation and cell death. Conclusions Optical metabolic imaging of primary pancreatic ductal adenocarcinoma organoids is highly sensitive to drug-induced metabolic changes, provides a nondestructive method for monitoring dynamic drug response, and presents a novel platform for patient-specific drug testing and drug development. PMID:26495796

  5. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion.

    PubMed

    Xing, Jihong; Lu, Jian; Li, Jianhua

    2015-01-01

    Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.

  6. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion

    PubMed Central

    Xing, Jihong; Lu, Jian; Li, Jianhua

    2015-01-01

    Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24–72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia. PMID:26441669

  7. Effects of Chronic Environmental Cold on Growth, Health and Select Metabolic and Immunologic Responses of Preruminant Calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiological response of the preruminant calf to sustained exposure to cold has not been studied extensively. Effects of cold on growth performance and health of preruminant calves as well as functional measures of energy metabolism, fat-soluble vitamin, and immune responsiveness were evaluate...

  8. Modulation of the metabolic response to vaccination in naive beef steers using an acute versus chronic stress model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Available energy plays a critical role in the initiation and maintenance of an immune response to a pathogen a process that is further altered by activation of stress system. This study was designed to determine the effect of an acute versus chronic stress model on the metabolic response to vaccinat...

  9. Juvenile roach (Rutilus rutilus) increase their anaerobic metabolism in response to copper exposure in laboratory conditions.

    PubMed

    Maes, Virginie; Betoulle, Stéphane; Jaffal, Ali; Dedourge-Geffard, Odile; Delahaut, Laurence; Geffard, Alain; Palluel, Olivier; Sanchez, Wilfried; Paris-Palacios, Séverine; Vettier, Aurélie; David, Elise

    2016-07-01

    This study aims to determine the potential impairment of cell energy synthesis processes (glycolysis and respiratory chain pathways) by copper in juvenile roach at different regulation levels by using a multi-marker approach. Juvenile roach were exposed to 0, 10, 50, and 100 µg/L of copper for 7 days in laboratory conditions. The glycolysis pathway was assessed by measuring the relative expression levels of 4 genes encoding glycolysis enzymes. The respiratory chain was studied by assessing the electron transport system and cytochrome c oxidase gene expression. Muscle mitochondria ultrastructure was studied, and antioxidant responses were measured. Furthermore, the main energy reserves-carbohydrates, lipids, and proteins-were measured, and cellular energy was evaluated by measuring ATP, ADP, AMP and IMP concentrations. This study revealed a disturbance of the cell energy metabolism due to copper exposure, with a significant decrease in adenylate energy charge in roach exposed to 10 μg/L of copper after 1 day. Moreover, ATP concentrations significantly decreased in roach exposed to 10 μg/L of copper after 1 day. This significant decrease persisted in roach exposed to 50 µg/L of copper after 7 days. AMP concentrations increased in all contaminated fish after 1 day of exposure. In parallel, the relative expression of 3 genes encoding for glycolysis enzymes increased in all contaminated fish after 1 day of copper exposure. Focusing on the respiratory chain, cytochrome c oxidase gene expression also increased in all contaminated fish at the two time-points. The activity of the electron transport system was not disturbed by copper, except in roach exposed to 100 µg/L of copper after 1 day. Copper induced a metabolic stress. Juvenile roach seemed to respond to the ensuing high energy demand by increasing their anaerobic metabolism, but the energy produced by the anaerobic metabolism is unable to compensate for the stress induced by copper after 7

  10. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    SciTech Connect

    Campos, D; Peeters, W; Nickel, K; Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M

    2015-06-15

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response.

  11. Intra-myocellular fatty acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster

    PubMed Central

    Katewa, Subhash D.; Demontis, Fabio; Kolipinski, Marysia; Hubbard, Allan; Gill, Matthew S.; Perrimon, Norbert; Melov, Simon; Kapahi, Pankaj

    2012-01-01

    Summary Changes in fat content have been associated with dietary restriction (DR), but whether they play a causal role in mediating various responses to DR remains unknown. We demonstrate that upon DR, Drosophila melanogaster shift their metabolism towards increasing both fatty acid synthesis and breakdown, which is required for various responses to DR. Inhibition of fatty acid synthesis or oxidation genes specifically in the muscle tissue inhibited lifespan extension upon DR. Furthermore, DR enhances spontaneous activity of flies which was found to be dependent on the enhanced fatty acid metabolism. This increase in activity was found to be at least partially required for the lifespan extension upon DR. Over-expression of adipokinetic hormone (dAKH), the functional ortholog of glucagon, enhances fat metabolism, spontaneous activity and lifespan. Together, these results suggest that enhanced fat metabolism in the muscle and physical activity play a key role in the protective effects of DR. PMID:22768842

  12. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic...

  13. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    PubMed Central

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  14. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response.

    PubMed

    Busch, Andrea W U; Montgomery, Beronda L

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms.

  15. Proprietary tomato extract improves metabolic response to high-fat meal in healthy normal weight subjects

    PubMed Central

    Deplanque, Xavier; Muscente-Paque, Delphine; Chappuis, Eric

    2016-01-01

    Background Low-density lipoprotein (LDL) oxidation is a risk factor for atherosclerosis. Lycopene and tomato-based products have been described as potent inhibitors of LDL oxidation. Objectives To evaluate the effect of a 2-week supplementation with a carotenoid-rich tomato extract (CRTE) standardized for a 1:1 ratio of lycopene and phytosterols, on post-prandial LDL oxidation after a high-fat meal. Design In a randomized, double-blind, parallel-groups, placebo-controlled study, 146 healthy normal weight individuals were randomly assigned to a daily dose of CRTE standardized for tomato phytonutrients or placebo during 2 weeks. Oxidized LDL (OxLDL), glucose, insulin, and triglyceride (TG) responses were measured for 8 h after ingestion of a high-fat meal before and at the end of intervention. Results Plasma lycopene, phytofluene, and phytoene were increased throughout the study period in the CRTE group compared to placebo. CRTE ingestion significantly improved changes in OxLDL response to high-fat meal compared to placebo after 2 weeks (p<0.0001). Changes observed in glucose, insulin, and TG responses were not statistically significant after 2 weeks of supplementation, although together they may suggest a trend of favorable effect on metabolic outcomes after a high-fat meal. Conclusions Two-week supplementation with CRTE increased carotenoids levels in plasma and improved oxidized LDL response to a high-fat meal in healthy normal weight individuals. PMID:27707453

  16. Altered Response to Neuroendocrine Challenge Linked to Indices of the Metabolic Syndrome in Healthy Adults

    PubMed Central

    Tyrka, A. R.; Walters, O. C.; Price, L. H.; Anderson, G. M.; Carpenter, L. L.

    2013-01-01

    Metabolic syndrome (MetS) is characterized by central obesity, hypertension, insulin resistance, and hypercholesterolemia. Hypothalamic-pituitary-adrenal (HPA) axis activity is frequently abnormal in MetS, and excessive cortisol exposure may be implicated in metabolic derangements. We investigated the hypothesis that cortisol and adrenocorticotropic hormone (ACTH) responses to a standardized neuroendocrine challenge test would be associated with indices of MetS in a community sample of healthy adults. Healthy adults, 125 men and 170 women, without significant medical problems or chronic medications were recruited from the community. Participants completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test, and anthropometric measurements, blood pressure, glycosylated hemoglobin (HbA1c), and cholesterol were measured. Participants reported on their history of early life stress and recent stress, as well as mood and anxiety symptoms. Cortisol and ACTH responses to the Dex/CRH test were negatively associated with measures of central adiposity (p < 0.001) and blood pressure (p < 0.01), and positively associated with HDL cholesterol (p < 0.01). These findings remained significant after controlling for body mass index (BMI). Measures of stress and anxiety and depressive symptoms were negatively correlated with cortisol and ACTH responses in the Dex/CRH test but were not related to MetS indices. That altered HPA axis function is linked to MetS components even in a healthy community sample suggests that these processes may be involved in the pathogenesis of MetS. Identification of premorbid risk processes might allow for detection and intervention prior to the development of disease. PMID:22549400

  17. Estrogen contributes to regulating iron metabolism through governing ferroportin signaling via an estrogen response element.

    PubMed

    Qian, Yi; Yin, Chunyang; Chen, Yue; Zhang, Shuping; Jiang, Li; Wang, Fudi; Zhao, Meirong; Liu, Sijin

    2015-05-01

    Ferroportin (FPN) is the only known iron exporter in mammalian cells, and is universally expressed in most types of cells. FPN signaling plays a crucial role in maintaining iron homeostasis through governing the level of intracellular iron. Serum iron storage is conversely related with the estrogen level in the female bodies, and women in post-menopause are possibly subjected to iron retention. However, the potential effects of estrogen on iron metabolism are not clearly understood. Here, FPN mRNA transcription in all selected estrogen receptor positive (ER+) cells was significantly reduced upon 17β-estradiol (E2) treatment; and this inhibitory effect could be attenuated by ER antagonist tamoxifen. Likewise, in murine bone marrow-derived macrophages (BMDMs), FPN reduction with elevated intracellular iron (reflected by increased ferritin) was observed in response to E2; however, ferritin level barely responded to E2 in FPN-null BMDMs. The observation of inhibition of FPN mRNA expression was not replicated in ER(-) cells upon E2. A functional estrogen response element (ERE) was identified within the promoter of FPN, and this ERE was responsible for the suppressive effect of E2 on FPN expression. Moreover, ovariectomized (OVX) and sham-operated (SHAM) mice were used to further confirm the in vitro finding. The expression of hepatic FPN was induced in OVX mice, compared to that in the SHAM mice. Taken together, our results demonstrated that estrogen is involved in regulating FPN expression through a functional ERE on its promoter, providing additional insights into a vital role of estrogen in iron metabolism.

  18. Polyamine metabolism in flax in response to treatment with pathogenic and non–pathogenic Fusarium strains

    PubMed Central

    Wojtasik, Wioleta; Kulma, Anna; Namysł, Katarzyna; Preisner, Marta; Szopa, Jan

    2015-01-01

    Flax crop yield is limited by various environmental stress factors, but the largest crop losses worldwide are caused by Fusarium infection. Polyamines are one of the many plant metabolites possibly involved in the plant response to infection. However, in flax plants the polyamine composition, genes involved in polyamine synthesis, and in particular their regulation, were previously unknown. The aim of this study was to investigate the polyamine synthesis pathway in flax and its involvement in response to pathogen infection. It is well established that polyamines are essential for the growth and development of both plants and fungi, but their role in pathogen infection still remains unknown. In our study we correlated the expression of genes involved in polyamine metabolism with the polyamine levels in plant tissues and compared the results for flax seedlings treated with two pathogenic and one non-pathogenic strains of Fusarium. We observed an increase in the expression of genes participating in polyamine synthesis after fungal infection, and it was reflected in an increase of polyamine content in the plant tissues. The highest level of mRNA was characteristic for ornithine decarboxylase during infection with all tested, pathogenic and non-pathogenic, Fusarium strains and the arginine decarboxylase gene during infection with the pathogenic strain of Fusarium culmorum. The main polyamine identified in the flax seedlings was putrescine, and its level changed the most during infection. Moreover, the considerable increase in the contents of cell wall-bound polyamines compared to the levels of free and conjugated polyamines may indicate that their main role during pathogen infection lies in strengthening of the cell wall. In vitro experiments showed that the polyamines inhibit Fusarium growth, which suggests that they play an important role in plant defense mechanisms. Furthermore, changes in metabolism and content of polyamines indicate different defense mechanisms

  19. Moderate stress responses and specific changes in polyamine metabolism characterize Scots pine somatic embryogenesis

    PubMed Central

    Salo, Heikki M.; Sarjala, Tytti; Jokela, Anne; Häggman, Hely; Vuosku, Jaana

    2016-01-01

    Somatic embryogenesis (SE) is one of the methods with the highest potential for the vegetative propagation of commercially important coniferous species. However, many conifers, including Scots pine (Pinus sylvestris L.), are recalcitrant to SE and a better understanding of the mechanisms behind the SE process is needed. In Scots pine SE cultures, embryo production is commonly induced by the removal of auxin, addition of abscisic acid (ABA) and the desiccation of cell masses by polyethylene glycol (PEG). In the present study, we focus on the possible link between the induction of somatic embryo formation and cellular stress responses such as hydrogen peroxide protection, DNA repair, changes in polyamine (PA) metabolism and autophagy. Cellular PA contents and the expression of the PA metabolism genes arginine decarboxylase (ADC), spermidine synthase (SPDS), thermospermine synthase (ACL5) and diamine oxidase (DAO) were analyzed, as well as the expression of catalase (CAT), DNA repair genes (RAD51, KU80) and autophagy-related genes (ATG5, ATG8) throughout the induction of somatic embryo formation in Scots pine SE cultures. Among the embryo-producing SE lines, the expression of ADC, SPDS, ACL5, DAO, CAT, RAD51, KU80 and ATG8 showed consistent profiles. Furthermore, the overall low expression of the stress-related genes suggests that cells in those SE lines were not stressed but recognized the ABA + PEG treatment as a signal to trigger the embryogenic pathway. In those SE lines that were unable to produce embryos, cells seemed to experience the ABA + PEG treatment mostly as osmotic stress and activated a wide range of stress defense mechanisms. Altogether, our results suggest that the direction to the embryogenic pathway is connected with cellular stress responses in Scots pine SE cultures. Thus, the manipulation of stress response pathways may provide a way to enhance somatic embryo production in recalcitrant Scots pine SE lines. PMID:26786537

  20. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: unraveling metabolic responses.

    PubMed

    Scalabrin, Elisa; Radaelli, Marta; Rizzato, Giovanni; Bogani, Patrizia; Buiatti, Marcello; Gambaro, Andrea; Capodaglio, Gabriele

    2015-08-01

    Nicotiana langsdorffii plants, wild and transgenic for the Agrobacterium rhizogenes rol C gene and the rat glucocorticoid receptor (GR) gene, were exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations). An untargeted metabolomic analysis was carried out in order to investigate the metabolic effects of the inserted genes in response to the applied stresses and to obtain a comprehensive profiling of metabolites induced during abiotic stresses. High-performance liquid chromatography separation (HPLC) coupled to high-resolution mass spectrometry (HRMS) enabled the identification of more than 200 metabolites, and statistical analysis highlighted the most relevant compounds for each plant treatment. The plants exposed to heat stress showed a unique set of induced secondary metabolites, some of which were known while others were not previously reported for this kind of stress; significant changes were observed especially in lipid composition. The role of trichome, as a protection against heat stress, is here suggested by the induction of both acylsugars and glykoalkaloids. Water deficit and Cr(VI) stresses resulted mainly in enhanced antioxidant (HCAs, polyamine) levels and in the damage of lipids, probably as a consequence of reactive oxygen species (ROS) production. Moreover, the ability of rol C expression to prevent oxidative burst was confirmed. The results highlighted a clear influence of GR modification on plant stress response, especially to water deficiency-a phenomenon whose applications should be further investigated. This study provides new insights into the field of system biology and demonstrates the importance of metabolomics in the study of plant functioning. Graphical Abstract Untargeted metabolomic analysis was applied to wild type, GR and RolC modified Nicotiana Langsdorffii plants exposed to heat, water and Cr(VI) stresses. The key metabolites, highly affected by stress application, were identified

  1. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas--changes in metabolic pathways and thermal response.

    PubMed

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O; Sokolova, Inna M; Bock, Christian

    2010-08-11

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell, synergistic effects of elevated temperature and CO₂-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO₂ levels (partial pressure of CO₂ in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCo₂ and 15 °C hemolymph pH fell (pH(e) = 7.1 ± 0.2 (CO₂-group) vs. 7.6 ± 0.1 (control)) and P(e)CO₂ values in hemolymph increased (0.5 ± 0.2 kPa (CO₂-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO₂-incubated oysters ([HCO₃⁻](e) = 1.8 ± 0.3 mM (CO₂-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pH(e) did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO₂-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO₂-incubated group. Investigation in isolated gill cells revealed a similar temperature dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using ¹H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy

  2. Effects of stocking density on antioxidant status, metabolism and immune response in juvenile turbot (Scophthalmus maximus).

    PubMed

    Liu, Baoliang; Jia, Rui; Han, Cen; Huang, Bin; Lei, Ji-Lin

    2016-12-01

    This study was designed to evaluate the physiological and immune responses of juvenile turbot to stocking density. Turbot (average weight 185.4g) were reared for 120days in a land based recirculating aquaculture system (RAS) under three stocking densities: low density (LD, ~9.3-26.1kg/m(2), initial to final density), medium density (MD, ~13.6-38.2kg/m(2)) and high density (HD, ~19.1-52.3kg/m(2)). Fish were sampled at days 0, 40, 80 and 120 to obtain growth parameters and liver tissues. No significant difference was detected in growth, biochemical parameters and gene expression among the three densities until at the final sampling (day 120). At the end of this trial, fish reared in HD group showed lower specific growth rate (SGR) and mean weight than those reared in LD and MD groups. Similarly, oxidative stress and metabolism analyses represented that antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione (GSH)) and metabolic enzymes (glycerol-3-phosphate dehydrogenase (G3PDH) and glucose-6-phosphate dehydrogenase (G6PDH)) clearly reduced in the liver of turbot reared in HD group. The gene expression data showed that glutathione S-transferase (GST), cytochrome P450 1A (CYP1A), heat shock protein 70 (HSP 70) and metallothionein (MT) mRNA levels were significantly up-regulated, and lysozyme (LYS) and hepcidin (HAMP) mRNA levels were significantly down-regulated in HD group on day 120. Overall, our results indicate that overly high stocking density might block the activities of metabolic and antioxidant enzymes, and cause physiological stress and immunosuppression in turbot.

  3. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index.

  4. Aluminum stress inhibits root growth and alters physiological and metabolic responses in chickpea (Cicer arietinum L.).

    PubMed

    Choudhury, Shuvasish; Sharma, Parul

    2014-12-01

    Chickpea (Cicer arietinum L.) roots were treated with aluminum (Al3+) in calcium chloride (CaCl2) solution (pH 4.7) and growth responses along with physiological and metabolic changes were investigated. Al3+ treatment for 7d resulted in a dose dependent decline of seed germination and inhibition of root growth. A significant (p ≤ 0.05) decline in fresh and dry biomass were observed after 7d of Al3+ stress.The root growth (length) was inhibited after 24 and 48 h of stress imposition. The hydrogen peroxide (H2O2) levels increased significantly (p ≤ 0.05) with respect to control in Al3+ treated roots. The hematoxylin and Evans blue assay indicated significant (p ≤ 0.05) accumulation of Al3+ in the roots and loss of plasma membrane integrity respectively. The time-course evaluation of lipid peroxidation showed increase in malondialdehyde (MDA) after 12, 24 and 48 h of stress imposition. Al3+ treatment did not alter the MDA levels after 2 or 4 h of stress, however, a minor increase was observed after 6 and 10 h of treatment. The proton (1H) nuclear magnetic resonance (NMR) spectrum of the perchloric acid extracts showed variation in the abundance of metabolites and suggested a major metabolic shift in chickpea root during Al3+ stress. The key differences that were observed include changes in energy metabolites. Accumulation of phenolic compounds suggested its possible role in Al3+ exclusion in roots during stress. The results suggested that Al3+ alters growth pattern in chickpea and induces reactive oxygen species (ROS) production that causes physiological and metabolic changes.

  5. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity.

    PubMed

    Li, Tongyu; Li, Erchao; Suo, Yantong; Xu, Zhixin; Jia, Yongyi; Qin, Jian G; Chen, Liqiao; Gu, Zhimin

    2017-02-01

    The toxicity and poisoning mechanisms of sulfide were studied in Litopenaeus vannamei from the perspective of energy metabolism and metabolomics. The lethal concentrations of sulfide in L. vannamei (LC50) at 24h, 48h, 72h, and 96h were determined. Sulfide at a concentration of 0, 1/10 (425.5μg/L), and 1/5 (851μg/L) of the LC50 at 96h was used to test the metabolic responses of L. vannamei for 21days. The chronic exposure of shrimp to a higher sulfide concentration of 851μg/L decreased shrimp survival but did not affect weight gain or the hepatopancreas index. The glycogen content in the hepatopancreas and muscle and the activity of hepatopancreas cytochrome C oxidase of the shrimp exposed to all sulfide concentrations were significantly lower, and the serum glucose and lactic acid levels and lactic acid dehydrogenase activity were significantly lower than those in the control. Metabolomics assays showed that shrimp exposed to sulfide had lower amounts of serum pyruvic acid, succinic acid, glycine, alanine, and proline in the 425.5μg/L group and phosphate, succinic acid, beta-alanine, serine, and l-histidine in the 851μg/L group than in the control. Chronic sulfide exposure could disturb protein synthesis in shrimp but enhance gluconeogenesis and substrate absorption for ATP synthesis and tricarboxylic acid cycles to provide extra energy to cope with sulfide stress. Chronic sulfide exposure could adversely affect the health status of L. vannamei, as indicated by the high amounts of serum n-ethylmaleamic acid, pyroglutamic acid, aspartic acid and phenylalanine relative to the control. This study indicates that chronic exposure of shrimp to sulfide can decrease health and lower survival through functional changes in gluconeogenesis, protein synthesis and energy metabolism.

  6. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli.

    PubMed Central

    Calvo, J M; Matthews, R G

    1994-01-01

    The leucine-responsive regulatory protein (Lrp) regulates the expression of more than 40 genes and proteins in Escherichia coli. Among the operons that are positively regulated by Lrp are operons involved in amino acid biosynthesis (ilvIH, serA)), in the biosynthesis of pili (pap, fan, fim), and in the assimilation of ammonia (glnA, gltBD). Negatively regulated operons include operons involved in amino acid catabolism (sdaA, tdh) and peptide transport (opp) and the operon coding for Lrp itself (lrp). Detailed studies of a few members of the regulon have shown that Lrp can act directly to activate or repress transcription of target operons. A substantial fraction of operons regulated by Lrp are also regulated by leucine, and the effect of leucine on expression of these operons requires a functional Lrp protein. The patterns of regulation are surprising and interesting: in some cases activation or repression mediated by Lrp is antagonized by leucine, in other cases Lrp-mediated activation or repression is potentiated by leucine, and in still other cases leucine has no effect on Lrp-mediated regulation. Current research is just beginning to elucidate the detailed mechanisms by which Lrp can mediate such a broad spectrum of regulatory effects. Our view of the role of Lrp in metabolism may change as more members of the regulon are identified and their regulation characterized, but at this point Lrp seems to be important in regulating nitrogen metabolism and one-carbon metabolism, permitting adaptations to feast and to famine. PMID:7968922

  7. Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses.

    PubMed

    Pinheiro, Carla; António, Carla; Ortuño, Maria Fernanda; Dobrev, Petre I; Hartung, Wolfram; Thomas-Oates, Jane; Ricardo, Cândido Pinto; Vanková, Radomira; Chaves, M Manuela; Wilson, Julie C

    2011-10-01

    The early (2-4 d) effects of slowly imposed soil water deficit on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance in different organs (leaf blade, stem stele, stem cortex, and root) were evaluated on 23-d-old plants (growth chamber assay). Our work shows that several metabolic adjustments occurred prior to alteration of the plant water status, implying that water deficit is perceived before the change in plant water status. The slow, progressive decline in soil water content started to be visible 3 d after withholding water (3 DAW). The earliest plant changes were associated with organ-specific metabolic responses (particularly in the leaves) and with leaf conductance and only later with plant water status and photosynthetic rate (4 DAW) or photosynthetic capacity (according to the Farquhar model; 6 DAW). Principal component analysis (PCA) of the physiological parameters, the carbohydrate and the hormone levels and their relative values, as well as leaf water-soluble metabolites full scan data (LC-MS/MS), showed separation of the different sampling dates. At 6 DAW classically described stress responses are observed, with plant water status, ABA level, and root hormonal balance contributing to the separation of these samples. Discrimination of earlier stress stages (3 and 4 DAW) is only achieved when the relative levels of indole-3-acetic acid (IAA), cytokinins (Cks), and carbon metabolism (glucose, sucrose, raffinose, and starch levels) are taken into account. Our working hypothesis is that, in addition to single responses (e.g. ABA increase), the combined alterations in hormone and carbohydrate levels play an important role in the stress response mechanism. Response to more advanced stress appears to be associated with a combination of cumulative changes, occurring in several plant organs. The carbohydrate and hormonal balance in the leaf (IAA to bioactive-Cks; soluble sugars to IAA and starch to IAA; relative abundances of the

  8. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries

    PubMed Central

    Considine, Michael J.; Foyer, Christine H.

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the “ambient” environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry’s exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months. PMID:25750643

  9. Metabolic and hormonal responses to long-distance swimming in cold water.

    PubMed

    Dulac, S; Quirion, A; DeCarufel, D; LeBlanc, J; Jobin, M; Côte, J; Brisson, G R; Lavoie, J M; Diamond, P

    1987-10-01

    The acute effects of long-distance swimming in cold water on selected hormonal and metabolic variables were evaluated on 22 long-distance swimmers (16 males and 6 females) during a 32-km swimming competition (La Traversée Internationale du Lac St-Jean). The water temperature was 18.5 degrees C and the mean performance times were 8 h and 32 min for men (M) and 9 h and 1 min for women (F). The blood samples were withdrawn in the fasting state during the week preceding the event and within 30 min after completion of the race. A positive correlation was obtained, for both groups, between percent body fat and rectal temperature measured at the end of the competition. After the competition, an increase in plasma epinephrine, norepinephrine, cortisol, thyroxine, free fatty acids, lactate, a decrease in glucose and insulin and no change in growth hormone, triiodothyronine, triglycerides, and cholesterol concentrations were observed in both groups. The increase in plasma thyroxine was more pronounced in the slower swimmers while the change in blood cortisol concentrations was higher in the subjects having the most acute decrease in body temperature. Male and female swimmers have a similar metabolic and hormonal response to a long-distance swimming competition in cold water.

  10. Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons.

    PubMed

    Laczi, Krisztián; Kis, Ágnes; Horváth, Balázs; Maróti, Gergely; Hegedüs, Botond; Perei, Katalin; Rákhely, Gábor

    2015-11-01

    Rhodococcus erythropolis PR4 is able to degrade diesel oil, normal-, iso- and cycloparaffins and aromatic compounds. The complete DNA content of the strain was previously sequenced and numerous oxygenase genes were identified. In order to identify the key elements participating in biodegradation of various hydrocarbons, we performed a comparative whole transcriptome analysis of cells grown on hexadecane, diesel oil and acetate. The transcriptomic data for the most prominent genes were validated by RT-qPCR. The expression of two genes coding for alkane-1-monooxygenase enzymes was highly upregulated in the presence of hydrocarbon substrates. The transcription of eight phylogenetically diverse cytochrome P450 (cyp) genes was upregulated in the presence of diesel oil. The transcript levels of various oxygenase genes were determined in cells grown in an artificial mixture, containing hexadecane, cycloparaffin and aromatic compounds and six cyp genes were induced by this hydrocarbon mixture. Five of them were not upregulated by linear and branched hydrocarbons. The expression of fatty acid synthase I genes was downregulated by hydrocarbon substrates, indicating the utilization of external alkanes for fatty acid synthesis. Moreover, the transcription of genes involved in siderophore synthesis, iron transport and exopolysaccharide biosynthesis was also upregulated, indicating their important role in hydrocarbon metabolism. Based on the results, complex metabolic response profiles were established for cells grown on various hydrocarbons. Our results represent a functional annotation of a rhodococcal genome, provide deeper insight into molecular events in diesel/hydrocarbon utilization and suggest novel target genes for environmental monitoring projects.

  11. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries.

    PubMed

    Considine, Michael J; Foyer, Christine H

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the "ambient" environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry's exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months.

  12. Effect of a straw-derived xylooligosaccharide on broiler growth performance, endocrine metabolism, and immune response.

    PubMed

    Zhenping, Sun; Wenting, Lv; Ruikui, Yu; Jia, Li; Honghong, Liu; Wei, Sun; Zhongmie, Wang; Jingpan, Li; Zhe, Shan; Yuling, Qin

    2013-04-01

    The aim of this work was to evaluate the effect of 3 levels of supplemental xylooligosaccharides (XOS) from straw on the growth performance, endocrine metabolism, and immune response of broiler chickens. Day-old, healthy Arbor Acres broilers (n = 192) received a basal diet of maize-soybean meal and, depending on the group to which they were allocated, no additive (control group) or the following experimental treatments for 59 d: treatment 1: 5 g XOS/kg; treatment 2: 10 g XOS/kg; and treatment 3: 20 g XOS/kg. By day 59 the body weight gain of the chickens receiving treatment 2 had increased by 9.44% (P < 0.01) over the gain of the control group. The levels of serum triiodothyronine, thyroxine, and insulin on day 44 were significantly higher in the treatment groups than in the control group. The titers of antibody to the avian influenza H5N1 virus on day 24 were also significantly higher in the treatment groups than in the control group, and on day 59 the titer of the chickens receiving treatment 2 were still significantly increased (P < 0.05). Thus, the addition of XOS to feed can increase growth performance, enhance endocrine metabolism, and improve immune function in broiler chickens.

  13. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.

    PubMed

    Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas

    2014-01-30

    The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases.

  14. Food odors trigger an endocrine response that affects food ingestion and metabolism.

    PubMed

    Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R

    2015-08-01

    Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.

  15. Visible light optical coherence tomography measure retinal oxygen metabolic response to systemic oxygenation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2016-03-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. The rMRO2 was calculated by concurrent measurement of blood flow and blood oxygen saturation (sO2). Blood flow was calculated by the principle of Doppler optical coherence tomography, where the phase shift between two closely spaced A-lines measures the axial velocity. The distinct optical absorption spectra of oxy- and deoxy-hemoglobin provided the contrast for sO2 measurement, combined with the spectroscopic analysis of vis-OCT signal within the blood vessels. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28+/-0.08 μL/min (p<0.001), and 0.20+/-0.04 μL/min (p<0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation (CC).

  16. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains

    PubMed Central

    2014-01-01

    Background Shikimic acid (SA) is a key chiral starting molecule for the synthesis of the neuramidase inhibitor GS4104 against viral influenza. Microbial production of SA has been extensively investigated in Escherichia coli, and to a less extent in Bacillus subtilis. However, metabolic flux of the high SA-producing strains has not been explored. In this study, we constructed with genetic manipulation and further determined metabolic flux with 13C-labeling test of high SA-producing B. subtilis strains. Results B. subtilis 1A474 had a mutation in SA kinase gene (aroI) and accumulated 1.5 g/L of SA. Overexpression of plasmid-encoded aroA, aroB, aroC or aroD in B. subtilis revealed that aroD had the most significantly positive effects on SA production. Simultaneous overexpression of genes for 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroA) and SA dehydrogenase (aroD) in B. subtilis BSSA/pSAAroA/pDGSAAroD resulted in SA production of 3.2 g/L. 13C-Metabolic flux assay (MFA) on the two strains BSSA/pHCMC04/pDG148-stu and BSSA/pSAAroA/pDGSAAroD indicated the carbon flux from glucose to SA increased to 4.6% in BSSA/pSAAroA/pDGSAAroD from 1.9% in strain BSSA/pHCMC04/pDG148-stu. The carbon flux through tricarboxylic acid cycle significantly reduced, while responses of the pentose phosphate pathway and the glycolysis to high SA production were rather weak, in the strain BSSA/pSAAroA/pDGSAAroD. Based on the results from MFA, two potential targets for further optimization of SA production were identified. Experiments on genetic deletion of phosphoenoylpyruvate kinase gene confirmed its positive influence on SA production, while the overexpression of the transketolase gene did not lead to increase in SA production. Conclusion Of the genes involved in shikimate pathway in B. subtilis, aroD exerted most significant influence on SA accumulation. Overexpression of plasmid-encoded aroA and aroD doubled SA production than its parent strain. MFA revealed metabolic flux

  17. Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2

    PubMed Central

    2012-01-01

    Introduction Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated PCO2 (0.2 kPa CO2) at different levels of physiological organisation. Results For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid–base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated PCO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher PCO2 was compensated for by intracellular bicarbonate accumulation. Conclusion The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial

  18. Metabolic response to low-level toxicant exposure in a novel renal tubule epithelial cell system.

    PubMed

    Ellis, James Keith; Athersuch, Toby James; Cavill, Rachel; Radford, Robert; Slattery, Craig; Jennings, Paul; McMorrow, Tara; Ryan, Michael P; Ebbels, Timothy Mark David; Keun, Hector Charles

    2011-01-01

    Toxicity testing is vital to protect human health from exposure to toxic chemicals in the environment. Furthermore, combining novel cellular models with molecular profiling technologies, such as metabolomics can add new insight into the molecular basis of toxicity and provide a rich source of biomarkers that are urgently required in a 21st Century approach to toxicology. We have used an NMR-based metabolic profiling approach to characterise for the first time the metabolome of the RPTEC/TERT1 cell line, an immortalised non-tumour human renal epithelial cell line that recapitulates phenotypic characteristics that are absent in other in vitro renal cell models. RPTEC/TERT1 cells were cultured with either the dosing vehicle (DMSO) or with exposure to one of six compounds (nifedipine, potassium bromate, monuron, D-mannitol, ochratoxin A and sodium diclofenac), several of which are known to cause renal effects. Aqueous intracellular and culture media metabolites were profiled by (1)H NMR spectroscopy at 6, 24 and 72 hours of exposure to a low effect dose (IC(10)). We defined the metabolome of the RPTEC/TERT1 cell line and used a principal component analysis approach to derive a panel of key metabolites, which were altered by chemical exposure. By considering only major changes (±1.5 fold change from control) across this metabolite panel we were able to show specific alterations to cellular processes associated with chemical treatment. Our findings suggest that metabolic profiling of RPTEC/TERT1 cells can report on the effect of chemical exposure on multiple cellular pathways at low-level exposure, producing different response profiles for the different compounds tested with a greater number of major metabolic effects observed in the toxin treated cells. Importantly, compounds with established links to chronic renal toxicity produced more diverse and severe perturbations to the cellular metabolome than non-toxic compounds in this model. As these changes can be

  19. Root metabolic responses to short term anaerobiosis in the temperate sea grass Zostera marina L

    SciTech Connect

    Smith, R.D.; Pregnall, A.M.; Alberte, R.S.

    1986-04-01

    The submerged angiosperm Z. marina grows in highly reducing marine sediments. The roots experience periods of oxygen deprivation at night when photosynthesis-mediated oxygen transport from the shoot ceases. Despite this apparently inhospitable environment, Z. marina is extremely productive. This study sought to determine root metabolic responses to short term anaerobiosis. Roots were incubated for 4 h in the presence of /sup 14/C-sucrose. Amino acids and Krebs cycle intermediates were then extracted and label was quantified. Ethanol and lactate were the most heavily labeled metabolites following short term anaerobiosis. Despite increased synthesis of ethanol during anaerobiosis, endogenous levels do not increase significantly. Instead over 90% of newly synthesized ethanol is released by roots into the incubation medium. The authors conclude that release of ethanol by roots occurs naturally and prevents excessive accumulation of a potentially toxic product.

  20. Methods of Assessing Human Tendon Metabolism and Tissue Properties in Response to Changes in Mechanical Loading.

    PubMed

    Heinemeier, Katja M; Kjaer, Michael; Magnusson, S Peter

    2016-01-01

    In recent years a number of methodological developments have improved the opportunities to study human tendon. Microdialysis enables sampling of interstitial fluid in the peritendon tissue, while sampling of human tendon biopsies allows direct analysis of tendon tissue for gene- and protein expression as well as protein synthesis rate. Further the (14)C bomb-pulse method has provided data on long-term tissue turnover in human tendon. Non-invasive techniques allow measurement of tendon metabolism (positron emission tomography (PET)), tendon morphology (magnetic resonance imaging (MRI)), and tendon mechanical properties (ultrasonography combined with force measurement during movement). Finally, 3D cell cultures of human tendon cells provide the opportunity to investigate cell-matrix interactions in response to various interventions.

  1. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    NASA Astrophysics Data System (ADS)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  2. Maternal-foetal interaction, antibody formation, and metabolic response in mice immunized with pneumococcal polysacharides.

    PubMed Central

    Lee, C J

    1980-01-01

    The maternal transfer of pneumococcal polysaccharides to foetus, as well as the antibody formation and metabolic response were studied in mice exposed to pneumococcal polysaccharides during pregnancy. Type 19 and type 57 pneumococcal polysaccharides display cross-placental transfer to foetus. These polysaccharides also transfer through mother's milk to neonates. Maternal immunization of type 19 polysaccharide during pregnancy induced higher antibody formation in the offspring than the group from non-immunized mothers. Young mice, which received a second dose of polysaccharide at 2 weeks of age, showed a higher antibody response than those which did not receive polysacharide. Treatment of mothers with anti-lymphocyte serum, following by administration of polysaccharide, significantly increased the neonatal immune response to the polysaccharide. Treatment of the mother with a high dose of type 19 or type 57 polysaccharide did not cause significant changes in neonatal growth and organ weights. The offspring from mothers treated with high doses of these polysaccharides did not exhibit abnormalities in chemical contents of their tissues. PMID:7429553

  3. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens

    PubMed Central

    Alkan, Noam; Fortes, Ana M.

    2015-01-01

    Due to post-harvest losses more than 30% of harvested fruits will not reach the consumers’ plate. Fungal pathogens play a key role in those losses, as they cause most of the fruit rots and the customer complaints. Many of the fungal pathogens are already present in the unripe fruit but remain quiescent during fruit growth until a particular phase of fruit ripening and senescence. The pathogens sense the developmental change and switch into the devastating necrotrophic life style that causes fruit rotting. Colonization of unripe fruit by the fungus initiates defensive responses that limit fungal growth and development. However, during fruit ripening several physiological processes occur that correlate with increased fruit susceptibility. In contrast to plant defenses in unripe fruit, the defense posture of ripe fruit entails a different subset of defense responses that will end with fruit rotting and losses. This review will focus on several aspects of molecular and metabolic events associated with fleshy fruit responses induced by post-harvest fungal pathogens during fruit ripening. PMID:26539204

  4. Putrescine catabolism is a metabolic response to several stresses in Escherichia coli.

    PubMed

    Schneider, Barbara L; Hernandez, V James; Reitzer, Larry

    2013-05-01

    Genes whose products degrade arginine and ornithine, precursors of putrescine synthesis, are activated by either regulators of the nitrogen-regulated (Ntr) response or σ(S) -RNA polymerase. To determine if dual control regulates a complete putrescine catabolic pathway, we examined expression of patA and patD, which specify the first two enzymes of one putrescine catabolic pathway. Assays of PatA (putrescine transaminase) activity and β-galactosidase from cells with patA-lacZ transcriptional and translational fusions indicate dual control of patA transcription and putrescine-stimulated patA translation. Similar assays for PatD indicate that patD transcription required σ(S) -RNA polymerase, and Nac, an Ntr regulator, enhanced the σ(S) -dependent transcription. Since Nac activation via σ(S) -RNA polymerase is without precedent, transcription with purified components was examined and the results confirmed this conclusion. This result indicates that the Ntr regulon can intrude into the σ(S) regulon. Strains lacking both polyamine catabolic pathways have defective responses to oxidative stress, high temperature and a sublethal concentration of an antibiotic. These defects and the σ(S) -dependent expression indicate that polyamine catabolism is a core metabolic response to stress.

  5. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens.

    PubMed

    Alkan, Noam; Fortes, Ana M

    2015-01-01

    Due to post-harvest losses more than 30% of harvested fruits will not reach the consumers' plate. Fungal pathogens play a key role in those losses, as they cause most of the fruit rots and the customer complaints. Many of the fungal pathogens are already present in the unripe fruit but remain quiescent during fruit growth until a particular phase of fruit ripening and senescence. The pathogens sense the developmental change and switch into the devastating necrotrophic life style that causes fruit rotting. Colonization of unripe fruit by the fungus initiates defensive responses that limit fungal growth and development. However, during fruit ripening several physiological processes occur that correlate with increased fruit susceptibility. In contrast to plant defenses in unripe fruit, the defense posture of ripe fruit entails a different subset of defense responses that will end with fruit rotting and losses. This review will focus on several aspects of molecular and metabolic events associated with fleshy fruit responses induced by post-harvest fungal pathogens during fruit ripening.

  6. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley.

    PubMed

    Ghaffari, Mohammad Reza; Ghabooli, Mehdi; Khatabi, Behnam; Hajirezaei, Mohammad Reza; Schweizer, Patrick; Salekdeh, Ghasem Hosseini

    2016-04-01

    The root endophytic fungus Piriformospora indica enhances plant adaptation to environmental stress based on general and non-specific plant species mechanisms. In the present study, we integrated the ionomics, metabolomics, and transcriptomics data to identify the genes and metabolic regulatory networks conferring salt tolerance in P. indica-colonized barley plants. To this end, leaf samples were harvested at control (0 mM NaCl) and severe salt stress (300 mM NaCl) in P. indica-colonized and non-inoculated barley plants 4 weeks after fungal inoculation. The metabolome analysis resulted in an identification of a signature containing 14 metabolites and ions conferring tolerance to salt stress. Gene expression analysis has led to the identification of 254 differentially expressed genes at 0 mM NaCl and 391 genes at 300 mM NaCl in P. indica-colonized compared to non-inoculated samples. The integration of metabolome and transcriptome analysis indicated that the major and minor carbohydrate metabolism, nitrogen metabolism, and ethylene biosynthesis pathway might play a role in systemic salt-tolerance in leaf tissue induced by the root-colonized fungus.

  7. Metabolic and hormonal responses during exercise at 20°, 0° and -20°C

    NASA Astrophysics Data System (ADS)

    Quirion, A.; Laurencelle, L.; Paulin, L.; Therminarias, A.; Brisson, G. R.; Audet, A.; Dulac, S.; Vogelaere, P.

    1989-12-01

    This study was designed to clarify the effects of cold air exposure on metabolic and hormonal responses during progressive incremental exercise. Eight healthy males volunteered for the study. Informed consent was obtained from every participant. The following protocol was administered to each subject on three occasions in a climatic chamber in which the temperature was 20°, 0° or -20°C with relative humidity at 60%±1%. Exercise tests were conducted on an electrically braked ergocycle, and consisted of a propressive incremental maximal exercise. Respiratory parameters were continuously monitored by an automated open-circuit sampling system Exercise blood lactate (LA), free fatty acids (FFA), glucose levels, bicarbonate concentration (HCO{3/-}), acidbase balance, plasma epinephrine (E) and norepinephrine (NE) were determined from venous blood samples obtained through an indwelling brachial catheter. Maximal oxygen uptake was significantly different between conditions: 72.0±5.4 ml kg-1 min-1 at 20°C; 68.9±5.1 ml kg-1 min-1 at 0°C and 68.5±4.6 ml kg-1 min-1 at -20°C. Workload, time to exhaustion, glucose levels and rectal Catecholamines and lactate values were not significantly altered by thermal conditions after maximal exercise but the catecholamines were decreased during rest. Bicarbonate, respiratory quotient, lactate and ventilatory thresholds increased significantly at -20°C. The data support the contention that metabolic and hormonal responses following progressive incremental exercise are altered by cold exposure and they indicate a marked decrease in maximal oxygen uptake, time to exhaustion and workload.

  8. Stress response in honeybees is associated with changes in task-related physiology and energetic metabolism.

    PubMed

    Bordier, Célia; Suchail, Séverine; Pioz, Maryline; Devaud, Jean Marc; Collet, Claude; Charreton, Mercedes; Le Conte, Yves; Alaux, Cédric

    2017-04-01

    In a rapidly changing environment, honeybee colonies are increasingly exposed to diverse sources of stress (e.g., new parasites, pesticides, climate warming), which represent a challenge to individual and social homeostasis. However, bee physiological responses to stress remain poorly understood. We therefore exposed bees specialised in different tasks (nurses, guards and foragers) to ancient (immune and heat stress) or historically more recent sources of stress (pesticides), and we determined changes in the expression of genes linked to behavioural maturation (vitellogenin - vg and juvenile hormone esterase - jhe) as well as in energetic metabolism (glycogen level, expression level of the receptor to the adipokinetic hormone - akhr, and endothermic performance). While acute exposure to sublethal doses of two pesticides did not affect vg and jhe expression, immune and heat challenges caused a decrease and increase in both genes, respectively, suggesting that bees had responded to ecologically relevant stressors. Since vg and jhe are expressed to a higher level in nurses than in foragers, it is reasonable to assume that an immune challenge stimulated behavioural maturation to decrease potential contamination risk and that a heat challenge promoted a nurse profile for brood thermoregulation. All behavioural castes responded in the same way. Though endothermic performances did not change upon stress exposure, the akhr level dropped in immune and heat-challenged individuals. Similarly, the abdomen glycogen level tended to decline in immune-challenged bees. Altogether, these results suggest that bee responses are stress specific and adaptive but that they tend to entail a reduction of energetic metabolism that needs to be studied on a longer timescale.

  9. Endocrine-metabolic responses to military field operations: Effects of cold and moderate altitude exposure

    SciTech Connect

    Floyd, E.; Hackney, A.C.; Hodgdon, J.A.; Coyne, J.T.; Kelleher, D.L. Univ. of North Carolina, Chapel Hill )

    1991-03-11

    Select endocrine-metabolic responses of US Marines to 4.5 day field operations (FOPS) in different environments were examined. Blood and urine samples were collected in the field immediately before and after FOPS at: (1) sea level, neutral temperatures (Ts) (SLN; n = 14), (2) sea level, cold Ts (SLC; n = 16), (3) 2,500 M altitude, neutral Ts (ALN; n = 16), and (4) 2,500 M altitude, cold Ts (ALC; n = 45). Measures examined were testosterone (T), cortisol (C), glucose (Glu), triglycerides (Tg), and urinary ketones (Uket). T decreased pre-post the FOPS in the cold conditions ({bar X}; 6.7 to 5.5 hg/ml; n = 61) but did not change in neutral conditions. C increased pre-post FOPS at SLC (12.1 to 19.8 ug/dl, p < 0.01), ALN (9.3 to 13.9 ug/dl, p < 0.01), and ALC (16.7 to 19.0 ug/dl, p = 0.08). Normoglycemia was maintained under each condition. Tg decreased (p < 0.01) at SLC, ALN, and ALC ({bar X}{triangle}: {minus}59.1, {minus}102.2, {minus}93.3 mg/dl, respectively), but increased at SLN (+74.0 mg/dl). Uket increased post FOPS only at ALN and ALC ({bar X}{triangle}: 3.4 mg/dl and +11.3 mg/dl). The Uket increases were correlated to Tg decreases. Results suggest FOPS induces a slight endocrine stress response, which is augmented with moderate altitude or cold exposure. Furthermore FOPS at altitude, especially in the cold, seems to shift the body towards fat metabolism.

  10. Heritability of metabolic response to the intravenous glucose tolerance test in German Holstein Friesian bulls.

    PubMed

    Pieper, Laura; Staufenbiel, Rudolf; Christ, Jana; Panicke, Lothar; Müller, Uwe; Brockmann, Gudrun A

    2016-09-01

    Selection for improved health and welfare in farm animals is of increasing interest worldwide. Peripartum energy balance is a key factor for pathogenesis of diseases in dairy cows. The intravenous glucose tolerance test (ivGTT) can be used to study the metabolic response to a glucose stimulus. The aim of this study was to estimate heritability of ivGTT traits in German Holstein bulls. A total of 541 Holstein bulls aged 7 to 17 mo from 2 breeding stations were subjected to the ivGTT. Serum glucose concentrations were measured at 0, 7, 14, 21, 28, 35, 42, 49, 56, and 63 min relative to glucose infusion. The maximum increase in blood glucose concentration, glucose area equivalent, and blood glucose half-life period were calculated. Heritabilities were estimated using a univariate animal model including station-year-season and age as fixed effects, and animal additive genetic and residual as random effects. The estimated heritabilities were 0.19 for fasting glucose concentration, 0.43 for glucose area equivalent, 0.40 for glucose half-life period, 0.14 for the peak glucose concentration, and 0.12 for the maximum increase of blood glucose concentration. Correlations between ivGTT traits and breeding values for milk yield and composition were not found. The results indicate that heritability for response to glucose is high, which warrants further investigation of this trait for genetic improvement of metabolic disorders. Research is necessary to determine the target levels of ivGTT traits and potential associations between ivGTT traits in breeding bulls and periparturient diseases in their offspring.

  11. Circulating salicylic acid and metabolic and inflammatory responses after fruit ingestion.

    PubMed

    Rinelli, Samuele; Spadafranca, Angela; Fiorillo, Giovanni; Cocucci, Maurizio; Bertoli, Simona; Battezzati, Alberto

    2012-03-01

    We hypothesized that fruit ingestion provides measurable amounts of salicylic acid (SA) and produces different metabolic and inflammatory responses compared to mere fruit sugars. In a randomized-crossover study, 26 healthy subjects received a peach shake meal (PSM) (SA: 0,06 ± 0,001 mg/100 g) and a mixed sugar meal (MSM), consisting in an aqueous solution with the same sugars found in the peach shake. In order to control for the SA contribution from meals in the previous day, 16 subjects (Group 1) abstained from fruits and vegetables consumption the evening before trials, and 10 subjects (Group 2) maintained their usual diet. Circulating SA, glucose, insulin, free fatty acids, and interleukin-6 were determined. Basal SA was lower in Group 1 than in Group 2 (0.09 ± 0.02 vs. 0.30 ± 0.03 μmol/l, p < 0.001), peaked at 90 min in both groups (0.18 ± 0.01 vs. 0.38 ± 0.02 μmol/l, p < 0.01) and remained above baseline (p < 0.05) up to 3 h. Glycemia increased less after PSM at 15 min (p < 0.01) with a lower average glucose excursion (p < 0.05). Insulin peaked at 45 min with both meals but decreased less rapidly with PSM. Free fatty acids decreased more (p < 0.01), and interleukin-6 increased less (p < 0.05) with PSM. Dietary fruit intake increases the concentration of SA in vivo, and provides non-nutrients capable to modulate the inflammatory and metabolic responses to carbohydrates.

  12. Inflammatory and metabolic responses to high-fat meals with and without dairy products in men.

    PubMed

    Schmid, Alexandra; Petry, Nicolai; Walther, Barbara; Bütikofer, Ueli; Luginbühl, Werner; Gille, Doreen; Chollet, Magali; McTernan, Philip G; Gijs, Martin A M; Vionnet, Nathalie; Pralong, François P; Laederach, Kurt; Vergères, Guy

    2015-06-28

    Postprandial inflammation is an important factor for human health since chronic low-grade inflammation is associated with chronic diseases. Dairy products have a weak but significant anti-inflammatory effect on postprandial inflammation. The objective of the present study was to compare the effect of a high-fat dairy meal (HFD meal), a high-fat non-dairy meal supplemented with milk (HFM meal) and a high-fat non-dairy control meal (HFC meal) on postprandial inflammatory and metabolic responses in healthy men. A cross-over study was conducted in nineteen male subjects. Blood samples were collected before and 1, 2, 4 and 6 h after consumption of the test meals. Plasma concentrations of insulin, glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, TAG and C-reactive protein (CRP) were measured at each time point. IL-6, TNF-α and endotoxin concentrations were assessed at baseline and endpoint (6 h). Time-dependent curves of these metabolic parameters were plotted, and the net incremental AUC were found to be significantly higher for TAG and lower for CRP after consumption of the HFM meal compared with the HFD meal; however, the HFM and HFD meals were not different from the HFC meal. Alterations in IL-6, TNF-α and endotoxin concentrations were not significantly different between the test meals. The results suggest that full-fat milk and dairy products (cheese and butter) have no significant impact on the inflammatory response to a high-fat meal.

  13. Survival response to increased ceramide involves metabolic adaptation through novel regulators of glycolysis and lipolysis.

    PubMed

    Nirala, Niraj K; Rahman, Motiur; Walls, Stanley M; Singh, Alka; Zhu, Lihua Julie; Bamba, Takeshi; Fukusaki, Eiichiro; Srideshikan, Sargur M; Harris, Greg L; Ip, Y Tony; Bodmer, Rolf; Acharya, Usha R

    2013-06-01

    The sphingolipid ceramide elicits several stress responses, however, organisms survive despite increased ceramide but how they do so is poorly understood. We demonstrate here that the AKT/FOXO pathway regulates survival in increased ceramide environment by metabolic adaptation involving changes in glycolysis and lipolysis through novel downstream targets. We show that ceramide kinase mutants accumulate ceramide and this leads to reduction in energy levels due to compromised oxidative phosphorylation. Mutants show increased activation of Akt and a consequent decrease in FOXO levels. These changes lead to enhanced glycolysis by upregulating the activity of phosphoglyceromutase, enolase, pyruvate kinase, and lactate dehydrogenase to provide energy. A second major consequence of AKT/FOXO reprogramming in the mutants is the increased mobilization of lipid from the gut through novel lipase targets, CG8093 and CG6277 for energy contribution. Ubiquitous reduction of these targets by knockdown experiments results in semi or total lethality of the mutants, demonstrating the importance of activating them. The efficiency of these adaptive mechanisms decreases with age and leads to reduction in adult life span of the mutants. In particular, mutants develop cardiac dysfunction with age, likely reflecting the high energy requirement of a well-functioning heart. The lipases also regulate physiological triacylglycerol homeostasis and are important for energy metabolism since midgut specific reduction of them in wild type flies results in increased sensitivity to starvation and accumulation of triglycerides leading to cardiac defects. The central findings of increased AKT activation, decreased FOXO level and activation of phosphoglyceromutase and pyruvate kinase are also observed in mice heterozygous for ceramide transfer protein suggesting a conserved role of this pathway in mammals. These data reveal novel glycolytic and non-autonomous lipolytic pathways in response to increased

  14. Black and white with some shades of grey: the diverse responses of inducible metabolic pathways in Escherichia coli.

    PubMed

    Rao, Christopher V; Koirala, Santosh

    2014-09-01

    The metabolic pathways for many sugars are inducible. This process has been extensively studied in the case of Escherichia coli lactose metabolism. It has long been known that gratuitous induction of the lac operon with non-metabolizable lactose analogues generates an all-or-nothing response, where some cells express the lac genes at a maximal rate and others not at all. However, the response to lactose itself is graded, where all cells express the lac genes in proportion to lactose concentrations. The mechanisms generating these distinct behaviours in lactose metabolism have been a topic of many studies. Despite this large body of work, little is known about how other pathways respond to their cognate sugars. An article of Molecular Microbiology investigated the response of eight metabolic pathways in E. coli to their cognate sugars at single-cell resolution. The authors demonstrate that these pathways exhibit diverse responses, ranging from graded to all-or-nothing responses and combinations thereof. Remarkably, they were able to interpret these responses using a simple mathematical model and identify the mechanisms likely giving rise to each.

  15. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus).

    PubMed

    Petzinger, Christina; Heatley, J J; Bailey, Christopher A; Bauer, John E

    2014-03-01

    Monk parrots (Myiopsitta monachus) are susceptible to atherosclerosis, a progressive disease characterized by the formation of plaques in the arteries accompanied by underlying chronic inflammation. The family of n-3 fatty acids, especially eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have consistently been shown to reduce atherosclerotic risk factors in humans and other mammals. Some avian species have been observed to convert α-linolenic acid (18:3n-3, ALA) to EPA and DHA (Htin et al. in Arch Geflugelk 71:258-266, 2007; Petzinger et al. in J Anim Physiol Anim Nutr, 2013). Therefore, the metabolic effects of including flaxseed oil, as a source of ALA, in the diet at three different levels (low, medium, and high) on the lipid metabolism of Monk parrots was evaluated through measuring plasma total cholesterol (TC), free cholesterol (FC), triacylglycerols (TAG), and phospholipid fatty acids. Feed intake, body weight, and body condition score were also assessed. Thus the dose and possible saturation response of increasing dietary ALA at constant linoleic acid (18:2n-6, LNA) concentration on lipid metabolism in Monk parrots (M. monachus) was evaluated. Calculated esterified cholesterol in addition to plasma TC, FC, and TAG were unaltered by increasing dietary ALA. The high ALA group had elevated levels of plasma phospholipid ALA, EPA, and docosapentaenoic acid (DPAn-3, 22:5n-3). The medium and high ALA groups had suppressed plasma phospholipid 20:2n-6 and adrenic acid (22:4n-6, ADA) compared to the low ALA group. When the present data were combined with data from a previous study (Petzinger et al. in J Anim Physiol Anim Nutr, 2013) a dose response to dietary ALA was observed when LNA was constant. Plasma phospholipid ALA, EPA, DPAn-3, DHA, and total n-3 were positively correlated while 20:2n-6, di-homo-gamma-linoleic acid (20:3n-6Δ7), arachidonic acid (20:4n-6), ADA, and total n-6 were inversely correlated with dietary en% ALA.

  16. Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease

    PubMed Central

    Tsedensodnom, Orkhontuya; Vacaru, Ana M.; Howarth, Deanna L.; Yin, Chunyue; Sadler, Kirsten C.

    2013-01-01

    SUMMARY Secretory pathway dysfunction and lipid accumulation (steatosis) are the two most common responses of hepatocytes to ethanol exposure and are major factors in the pathophysiology of alcoholic liver disease (ALD). However, the mechanisms by which ethanol elicits these cellular responses are not fully understood. Recent data indicates that activation of the unfolded protein response (UPR) in response to secretory pathway dysfunction can cause steatosis. Here, we examined the relationship between alcohol metabolism, oxidative stress, secretory pathway stress and steatosis using zebrafish larvae. We found that ethanol was immediately internalized and metabolized by larvae, such that the internal ethanol concentration in 4-day-old larvae equilibrated to 160 mM after 1 hour of exposure to 350 mM ethanol, with an average ethanol metabolism rate of 56 μmol/larva/hour over 32 hours. Blocking alcohol dehydrogenase 1 (Adh1) and cytochrome P450 2E1 (Cyp2e1), the major enzymes that metabolize ethanol, prevented alcohol-induced steatosis and reduced induction of the UPR in the liver. Thus, we conclude that ethanol metabolism causes ALD in zebrafish. Oxidative stress generated by Cyp2e1-mediated ethanol metabolism is proposed to be a major culprit in ALD pathology. We found that production of reactive oxygen species (ROS) increased in larvae exposed to ethanol, whereas inhibition of the zebrafish CYP2E1 homolog or administration of antioxidants reduced ROS levels. Importantly, these treatments also blocked ethanol-induced steatosis and reduced UPR activation, whereas hydrogen peroxide (H2O2) acted as a pro-oxidant that synergized with low doses of ethanol to induce the UPR. Collectively, these data demonstrate that ethanol metabolism and oxidative stress are conserved mechanisms required for the development of steatosis and hepatic dysfunction in ALD, and that these processes contribute to ethanol-induced UPR activation and secretory pathway stress in hepatocytes. PMID

  17. Fish Oil Supplementation in Humans: Effects on Platelet Responses, Phospholipid Composition and Metabolism.

    NASA Astrophysics Data System (ADS)

    Skeaff, Clark Murray

    Platelets are believed to play a significant role in the development of occlusive vascular diseases. Epidemiological reports have correlated the high intake of marine foods, rich in omega3 fatty acids, with diminished platelet responses and a low incidence of arterial thrombosis and myocardial infarction. The activation of platelet responses is mediated by the accelerated metabolism of membrane phospholipid; therefore, it was of interest to examine, in human volunteers, the effect of a dietary fish oil concentrate (MaxEPA), enriched in omega 3 polyunsaturated fatty acids, on platelet aggregation and phospholipid composition/metabolism. For the complete separation of cellular phospholipids, a one-dimensional thin-layer chromatography system using silica-gel pre-coated glass plates was developed. The solvent system consisted of CHCl_3/CH_3OH/CH _3COOH/H_2O (50/37.5/3.5/2.0, by vol), required approximately 90-120 minutes for full phospholipid separation, and was highly reproducible even under conditions of variable humidity and temperature. The consumption of a fish oil concentrate (MaxEPA) for 6 weeks (3.6 g of 20:5omega 3 and 2.4 g of 22:6omega3 per day) diminished both the collagen- and platelet activating factor-induced maximum aggregation responses in washed human platelet suspensions by 50.1% and 27.2%, respectively, as compared to initial unsupplemented baseline responses. Thrombin -induced aggregation remained unchanged. Thrombin stimulation of intact human platelets produced a significant decrease in the mass of phosphatidylinositol in plasma membrane. In platelets pre-labelled with (2-^3H) glycerol and stimulated with either thrombin or low-dose collagen, the loss of (^3H) phosphatidylinositol did not differ between those subjects consuming olive oil or fish oil. Likewise, the thrombin-stimulated accumulation of diacylglycerol, an activator of protein kinase C, was unaffected by fish oil consumption. The ratio of collagen -induced increase in radioactivity

  18. Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain

    USGS Publications Warehouse

    Valett, H.M.; Baker, M.A.; Morrice, J.A.; Crawford, C.S.; Molles, M.C.; Dahm, Clifford N.; Moyer, D.L.; Thibault, J.R.; Ellis, L.M.

    2005-01-01

    Flood pulse inundation of riparian forests alters rates of nutrient retention and organic matter processing in the aquatic ecosystems formed in the forest interior. Along the Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain isolated from flooding (i.e., disconnected). This research investigates how ecosystem responses to the flood pulse relate to forest IFI by quantifying nutrient and organic matter dynamics in the Rio Grande floodplain during three years of experimental flooding of the disconnected floodplain and during a single year of natural flooding of the connected floodplain. Surface and subsurface conditions in paired sites (control, flood) established in the two floodplain types were monitored to address metabolic and biogeochemical responses. Compared to dry controls, rates of respiration in the flooded sites increased by up to three orders of magnitude during the flood pulse. In the disconnected forest, month-long experimental floods produced widespread anoxia of four-week duration during each of the three years of flooding. In contrast, water in the connected floodplain remained well oxygenated (3-8 ppm). Material budgets for experimental floods showed the disconnected floodplain to be a sink for inorganic nitrogen and suspended solids, but a potential source of dissolved organic carbon (DOC). Compared to the main stem of the Rio Grande, flood-water on the connected floodplain contained less nitrate, but comparable concentrations of DOC, phosphate-phosphorus, and ammonium-nitrogen. Results suggest that floodplain IFI drives metabolic and biogeochemical responses during the flood pulse. Impoundment and fragmentation have altered floodplains from a mosaic of patches with variable IFI to a bimodal distribution. Relatively predictable

  19. Impaired counterregulatory hormonal and metabolic response to exhaustive exercise in obese subjects.

    PubMed

    Vettor, R; Macor, C; Rossi, E; Piemonte, G; Federspil, G

    1997-08-01

    A reduction of postprandial thermogenesis has been described in obesity; insulin resistance and/or decreased sympathetic nervous system activity seem to play the major role in its pathogenesis. On the other hand, a normal energy expenditure during exercise has been reported. At present, the response and the role of catecholamines in energy metabolism during exercise in obesity have not been well clarified yet. The aim of this work was to study the metabolic and hormonal changes caused by intense exercise in obesity. Nine obese subjects and ten normal weight controls were submitted to exhaustive exercise on a cycloergometer. Blood glucose, free fatty acids (FFA), glycerol, lactate, beta-OH-butyrate, insulin, glucagon, plasma growth hormone (HGH), catecholamine plasma levels were assayed before and at the end of exercise, and after a recovery period. The energy cost of exercise was evaluated by indirect calorimetry. In our experiment muscular exercise did not provoke any change in blood glucose and FFA plasma levels in either of our groups. In the obese subjects the insulin plasma levels were higher than in the controls. Glucagon plasma levels did not change. The exercise responses of norepinephrine (NE) (4.28 +/- 0.74 vs 8.81 +/- 1.35 nmol/l; P < 0.01), epinephrine (E) (234.21 +/- 64.18 vs 560.51 +/- 83.38 pmol/l; P < 0.01) and plasma growth hormone (HGH) (134.84 +/- 58.97 vs 825.92 +/- 195.25 pmol/l; P < 0.01) were significantly lower in obese subjects. At the end of exercise, the thermic effect of exercise did not differ between obese and control subjects (0.335 +/- 0.038 vs 0.425 +/- 0.040 kJ/min x kg fat-free mass. Our findings indicate that an impaired counterregulatory hormone response to exercise exists in obese subjects. The thermic effect of exercise does not seem to be affected by either the reduced catecholamine response nor insulin resistance.

  20. Role of the endocrine pancreas in the kalemic response to acute metabolic acidosis in conscious dogs.

    PubMed

    Adrogué, H J; Chap, Z; Ishida, T; Field, J B

    1985-03-01

    Metabolic acidosis due to organic acids infusion fails to elicit hyperkalemia. Although plasma potassium levels may rise, the increase is smaller than in mineral acid acidosis. The mechanisms responsible for the different effects of organic acid acidosis and mineral acid acidosis remain undefined, although dissimilar hormonal responses by the pancreas may explain dissimilar hormonal responses by the pancreas may explain the phenomena. To test this hypothesis, beta-hydroxybutyric acid (7 meq/kg) or hydrochloric acid (3 meq/kg) was infused over 30 min into conscious dogs (n = 12) with chronically implanted catheters in the portal, hepatic, and systemic circulation, and flow probes were placed around the portal vein and hepatic artery. Acid infusion studies in two groups of anesthetized dogs were also done to assess the urinary excretion of potassium (n = 14), and to evaluate the effects of acute suppression of renal electrolyte excretion on plasma potassium and on the release/uptake of potassium in peripheral tissues of the hindleg (n = 17). Ketoacid infusion caused hypokalemia and a significant increase in portal vein plasma insulin, from the basal level of 27 +/- 4 microU/ml to a maximum of 84 +/- 22 microU/ml at 10 min, without changes in glucagon levels. By contrast, mineral acid acidosis of similar severity resulted in hyperkalemia and did not increase portal insulin levels but enhanced portal glucagon concentration from control values of 132 +/- 25 pg/ml to 251 +/- 39 pg/ml at 40 min. A significant decrease in plasma glucose levels due to suppression of hepatic release was observed during ketoacid infusion, while no changes were observed with mineral acid infusion. Plasma flows in the portal vein and hepatic artery remained unchanged from control values in both acid infusion studies. Differences in renal potassium excretion were ruled out as determinants of the disparate kalemic responses to organic acid infusion compared with HCl acidosis. Evaluation of the

  1. Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α.

    PubMed

    Minsky, Neri; Roeder, Robert G

    2015-10-20

    In recent years an extensive effort has been made to elucidate the molecular pathways involved in metabolic signaling in health and disease. Here we show, surprisingly, that metabolic regulation and the heat-shock/stress response are directly linked. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator of metabolic genes, acts as a direct transcriptional repressor of heat-shock factor 1 (HSF1), a key regulator of the heat-shock/stress response. Our findings reveal that heat-shock protein (HSP) gene expression is suppressed during fasting in mouse liver and in primary hepatocytes dependent on PGC-1α. HSF1 and PGC-1α associate physically and are colocalized on several HSP promoters. These observations are extended to several cancer cell lines in which PGC-1α is shown to repress the ability of HSF1 to activate gene-expression programs necessary for cancer survival. Our study reveals a surprising direct link between two major cellular transcriptional networks, highlighting a previously unrecognized facet of the activity of the central metabolic regulator PGC-1α beyond its well-established ability to boost metabolic genes via its interactions with nuclear hormone receptors and nuclear respiratory factors. Our data point to PGC-1α as a critical repressor of HSF1-mediated transcriptional programs, a finding with possible implications both for our understanding of the full scope of metabolically regulated target genes in vivo and, conceivably, for therapeutics.

  2. Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α

    PubMed Central

    Minsky, Neri; Roeder, Robert G.

    2015-01-01

    In recent years an extensive effort has been made to elucidate the molecular pathways involved in metabolic signaling in health and disease. Here we show, surprisingly, that metabolic regulation and the heat-shock/stress response are directly linked. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator of metabolic genes, acts as a direct transcriptional repressor of heat-shock factor 1 (HSF1), a key regulator of the heat-shock/stress response. Our findings reveal that heat-shock protein (HSP) gene expression is suppressed during fasting in mouse liver and in primary hepatocytes dependent on PGC-1α. HSF1 and PGC-1α associate physically and are colocalized on several HSP promoters. These observations are extended to several cancer cell lines in which PGC-1α is shown to repress the ability of HSF1 to activate gene-expression programs necessary for cancer survival. Our study reveals a surprising direct link between two major cellular transcriptional networks, highlighting a previously unrecognized facet of the activity of the central metabolic regulator PGC-1α beyond its well-established ability to boost metabolic genes via its interactions with nuclear hormone receptors and nuclear respiratory factors. Our data point to PGC-1α as a critical repressor of HSF1-mediated transcriptional programs, a finding with possible implications both for our understanding of the full scope of metabolically regulated target genes in vivo and, conceivably, for therapeutics. PMID:26438876

  3. Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes

    PubMed Central

    Guimarães-Dias, Fábia; Neves-Borges, Anna Cristina; Viana, Antonio Americo Barbosa; Mesquita, Rosilene Oliveira; Romano, Eduardo; de Fátima Grossi-de-Sá, Maria; Nepomuceno, Alexandre Lima; Loureiro, Marcelo Ehlers; Alves-Ferreira, Márcio

    2012-01-01

    Metabolomics analysis of wild type Arabidopsis thaliana plants, under control and drought stress conditions revealed several metabolic pathways that are induced under water deficit. The metabolic response to drought stress is also associated with ABA dependent and independent pathways, allowing a better understanding of the molecular mechanisms in this model plant. Through combining an in silico approach and gene expression analysis by quantitative real-time PCR, the present work aims at identifying genes of soybean metabolic pathways potentially associated with water deficit. Digital expression patterns of Arabidopsis genes, which were selected based on the basis of literature reports, were evaluated under drought stress condition by Genevestigator. Genes that showed strong induction under drought stress were selected and used as bait to identify orthologs in the soybean genome. This allowed us to select 354 genes of putative soybean orthologs of 79 Arabidopsis genes belonging to 38 distinct metabolic pathways. The expression pattern of the selected genes was verified in the subtractive libraries available in the GENOSOJA project. Subsequently, 13 genes from different metabolic pathways were selected for validation by qPCR experiments. The expression of six genes was validated in plants undergoing drought stress in both pot-based and hydroponic cultivation systems. The results suggest that the metabolic response to drought stress is conserved in Arabidopsis and soybean plants. PMID:22802708

  4. Kinetics of the ventilatory and metabolic responses to moderate-intensity exercise in humans following prior exercise-induced metabolic acidaemia.

    PubMed

    Ward, Susan A; Whipp, Brian J

    2010-01-01

    As the time constant of the phase 2 (ø2) ventilatory response (tauV'(E)) to moderate exercise (< lactate threshold, thetaL) is reduced by exogenous procedures that augment peripheral (carotid) chemosensitivity (hypoxia; chronic metabolic acidaemia), we examined whether an acute endogenous metabolic acidaemia had a similar effect. Six subjects completed two tests (A, B), each comprising two 6-min bouts separated by a 6-min "0" W recovery: A:- 90% thetaL, 90% thetaL; B:- supra-thetaL (50% between thetaL and peak V'O2), 90% thetaL. For Protocol A, the bout 2 sub-thetaL tauV'E was similar to bout 1. However, for Protocol B, where the initial supra-thetaL metabolic acidaemia was still evident at the end of the subsequent sub-thetaL bout, the sub-thetaL tauV'E was shorter; tauV'E/tauV'O2 and tauV'E/tauV'CO2 were reduced; and the transient end-tidal PO2undershoot was less marked. We conclude that an acute, endogenous metabolic acidaemia speeds ø2 V'(E) kinetics in moderate exercise, consistent with carotid chemoreception contributing to the tightness of arterial pH-CO2 regulation and the magnitude of the transient arterial hypoxaemia.

  5. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism and photosynthesis

    SciTech Connect

    Pelletier, Dale A; Morrell-Falvey, Jennifer L; Karve, Abhijit A; Lu, Tse-Yuan S; Tschaplinski, Timothy J; Tuskan, Gerald A; Chen, Jay; Martin, Madhavi Z; Jawdy, Sara; Weston, David; Doktycz, Mitchel John; Schadt, Christopher Warren

    2012-01-01

    Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.

  6. Temperament alters the metabolic response to glucose and insulin challenges and feed restriction in steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently the dramatic metabolic differences between Temperamental and Calm cattle have been elucidated; Temperamental cattle maintain greater circulating concentrations of non-esterified fatty acids (NEFA) when compared to Calm cattle, which may influence other metabolic parameters including glucos...

  7. Sex-dependent metabolic, neuroendocrine, and cognitive responses to dietary energy restriction and excess.

    PubMed

    Martin, Bronwen; Pearson, Michele; Kebejian, Lisa; Golden, Erin; Keselman, Alex; Bender, Meredith; Carlson, Olga; Egan, Josephine; Ladenheim, Bruce; Cadet, Jean-Lud; Becker, Kevin G; Wood, William; Duffy, Kara; Vinayakumar, Prabhu; Maudsley, Stuart; Mattson, Mark P

    2007-09-01

    Females and males typically play different roles in survival of the species and would be expected to respond differently to food scarcity or excess. To elucidate the physiological basis of sex differences in responses to energy intake, we maintained groups of male and female rats for 6 months on diets with usual, reduced [20% and 40% caloric restriction (CR), and intermittent fasting (IF)], or elevated (high-fat/high-glucose) energy levels and measured multiple physiological variables related to reproduction, energy metabolism, and behavior. In response to 40% CR, females became emaciated, ceased cycling, underwent endocrine masculinization, exhibited a heightened stress response, increased their spontaneous activity, improved their learning and memory, and maintained elevated levels of circulating brain-derived neurotrophic factor. In contrast, males on 40% CR maintained a higher body weight than the 40% CR females and did not change their activity levels as significantly as the 40% CR females. Additionally, there was no significant change in the cognitive ability of the males on the 40% CR diet. Males and females exhibited similar responses of circulating lipids (cholesterols/triglycerides) and energy-regulating hormones (insulin, leptin, adiponectin, ghrelin) to energy restriction, with the changes being quantitatively greater in males. The high-fat/high-glucose diet had no significant effects on most variables measured but adversely affected the reproductive cycle in females. Heightened cognition and motor activity, combined with reproductive shutdown, in females may maximize the probability of their survival during periods of energy scarcity and may be an evolutionary basis for the vulnerability of women to anorexia nervosa.

  8. Sex-Dependent Metabolic, Neuroendocrine, and Cognitive Responses to Dietary Energy Restriction and Excess

    PubMed Central

    Martin, Bronwen; Pearson, Michele; Kebejian, Lisa; Golden, Erin; Keselman, Alex; Bender, Meredith; Carlson, Olga; Egan, Josephine; Ladenheim, Bruce; Cadet, Jean-Lud; Becker, Kevin G.; Wood, William; Duffy, Kara; Vinayakumar, Prabhu; Maudsley, Stuart; Mattson, Mark P.

    2008-01-01

    Females and males typically play different roles in survival of the species and would be expected to respond differently to food scarcity or excess. To elucidate the physiological basis of sex differences in responses to energy intake, we maintained groups of male and female rats for 6 months on diets with usual, reduced [20% and 40% caloric restriction (CR), and intermittent fasting (IF)], or elevated (high-fat/high-glucose) energy levels and measured multiple physiological variables related to reproduction, energy metabolism, and behavior. In response to 40% CR, females became emaciated, ceased cycling, underwent endocrine masculinization, exhibited a heightened stress response, increased their spontaneous activity, improved their learning and memory, and maintained elevated levels of circulating brain-derived neurotrophic factor. In contrast, males on 40% CR maintained a higher body weight than the 40% CR females and did not change their activity levels as significantly as the 40% CR females. Additionally, there was no significant change in the cognitive ability of the males on the 40% CR diet. Males and females exhibited similar responses of circulating lipids (cholesterols/triglycerides) and energy-regulating hormones (insulin, leptin, adiponectin, ghrelin) to energy restriction, with the changes being quantitatively greater in males. The high-fat/high-glucose diet had no significant effects on most variables measured but adversely affected the reproductive cycle in females. Heightened cognition and motor activity, combined with reproductive shutdown, in females may maximize the probability of their survival during periods of energy scarcity and may be an evolutionary basis for the vulnerability of women to anorexia nervosa. PMID:17569758

  9. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa).

    PubMed

    Yu, Lu-jun; Luo, Ying-feng; Liao, Bin; Xie, Li-juan; Chen, Liang; Xiao, Shi; Li, Jin-tian; Hu, Song-nian; Shu, Wen-sheng

    2012-07-01

    • Arsenic (As) contamination of rice (Oryza sativa) is a worldwide concern and elucidating the molecular mechanisms of As accumulation in rice may provide promising solutions to the problem. Previous studies using microarray techniques to investigate transcriptional regulation of plant responses to As stress have identified numerous differentially expressed genes. However, little is known about the metabolic and regulatory network remodelings, or their interactions with microRNA (miRNA) in plants upon As(III) exposure. • We used Illumina sequencing to acquire global transcriptome alterations and miRNA regulation in rice under As(III) treatments of varying lengths of time and dosages. • We found that the response of roots was more distinct when the dosage was varied, whereas that of shoots was more distinct when the treatment time was varied. In particular, the genes involved in heavy metal transportation, jasmonate (JA) biosynthesis and signaling, and lipid metabolism were closely related to responses of rice under As(III) stress. Furthermore, we discovered 36 new As(III)-responsive miRNAs, 14 of which were likely involved in regulating gene expression in transportation, signaling, and metabolism. • Our findings highlight the significance of JA signaling and lipid metabolism in response to As(III) stress and their regulation by miRNA, which provides a foundation for subsequent functional research.

  10. Metabolic Mapping of the Brain's Response to Visual Stimulation: Studies in Humans.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Kuhl, David E.

    1981-01-01

    Studies demonstrate increasing glucose metabolic rates in human primary (PVC) and association (AVC) visual cortex as complexity of visual scenes increase. AVC increased more rapidly with scene complexity than PVC and increased local metabolic activities above control subject with eyes closed; indicates wide range and metabolic reserve of visual…

  11. PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii1[OPEN

    PubMed Central

    Bajhaiya, Amit K.; Dean, Andrew P.; Zeef, Leo A.H.; Webster, Rachel E.; Pittman, Jon K.

    2016-01-01

    Many eukaryotic microalgae modify their metabolism in response to nutrient stresses such as phosphorus (P) starvation, which substantially induces storage metabolite biosynthesis, but the genetic mechanisms regulating this response are poorly understood. Here, we show that P starvation-induced lipid and starch accumulation is inhibited in a Chlamydomonas reinhardtii mutant lacking the transcription factor Pi Starvation Response1 (PSR1). Transcriptomic analysis identified specific metabolism transcripts that are induced by P starvation but misregulated in the psr1 mutant. These include transcripts for starch and triacylglycerol synthesis but also transcripts for photosynthesis-, redox-, and stress signaling-related proteins. To further examine the role of PSR1 in regulating lipid and starch metabolism, PSR1 complementation lines in the psr1 strain and PSR1 overexpression lines in a cell wall-deficient strain were generated. PSR1 expression in the psr1 lines was shown to be functional due to rescue of the psr1 phenotype. PSR1 overexpression lines exhibited increased starch content and number of starch granules per cell, which correlated with a higher expression of specific starch metabolism genes but reduced neutral lipid content. Furthermore, this phenotype was consistent in the presence and absence of acetate. Together, these results identify a key transcriptional regulator in global metabolism and demonstrate transcriptional engineering in microalgae to modulate starch biosynthesis. PMID:26704642

  12. PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii.

    PubMed

    Bajhaiya, Amit K; Dean, Andrew P; Zeef, Leo A H; Webster, Rachel E; Pittman, Jon K

    2016-03-01

    Many eukaryotic microalgae modify their metabolism in response to nutrient stresses such as phosphorus (P) starvation, which substantially induces storage metabolite biosynthesis, but the genetic mechanisms regulating this response are poorly understood. Here, we show that P starvation-induced lipid and starch accumulation is inhibited in a Chlamydomonas reinhardtii mutant lacking the transcription factor Pi Starvation Response1 (PSR1). Transcriptomic analysis identified specific metabolism transcripts that are induced by P starvation but misregulated in the psr1 mutant. These include transcripts for starch and triacylglycerol synthesis but also transcripts for photosynthesis-, redox-, and stress signaling-related proteins. To further examine the role of PSR1 in regulating lipid and starch metabolism, PSR1 complementation lines in the psr1 strain and PSR1 overexpression lines in a cell wall-deficient strain were generated. PSR1 expression in the psr1 lines was shown to be functional due to rescue of the psr1 phenotype. PSR1 overexpression lines exhibited increased starch content and number of starch granules per cell, which correlated with a higher expression of specific starch metabolism genes but reduced neutral lipid content. Furthermore, this phenotype was consistent in the presence and absence of acetate. Together, these results identify a key transcriptional regulator in global metabolism and demonstrate transcriptional engineering in microalgae to modulate starch biosynthesis.

  13. Specific dietary preferences are linked to differing gut microbial metabolic activity in response to dark chocolate intake.

    PubMed

    Martin, Francois-Pierre J; Montoliu, Ivan; Nagy, Kornél; Moco, Sofia; Collino, Sebastiano; Guy, Philippe; Redeuil, Karine; Scherer, Max; Rezzi, Serge; Kochhar, Sunil

    2012-12-07

    Systems biology approaches are providing novel insights into the role of nutrition for the management of health and disease. In the present study, we investigated if dietary preference for dark chocolate in healthy subjects may lead to different metabolic response to daily chocolate consumption. Using NMR- and MS-based metabolic profiling of blood plasma and urine, we monitored the metabolic response of 10 participants stratified as chocolate desiring and eating regularly dark chocolate (CD) and 10 participants stratified as chocolate indifferent and eating rarely dark chocolate (CI) to a daily consumption of 50 g of dark chocolate as part of a standardized diet over a one week period. We demonstrated that preference for chocolate leads to different metabolic response to chocolate consumption. Daily intake of dark chocolate significantly increased HDL cholesterol by 6% and decreased polyunsaturated acyl ether phospholipids. Dark chocolate intake could also induce an improvement in the metabolism of long chain fatty acid, as noted by a compositional change in plasma fatty acyl carnitines. Moreover, a relationship between regular long-term dietary exposure to a small amount of dark chocolate, gut microbiota, and phenolics was highlighted, providing novel insights into biological processes associated with cocoa bioactives.

  14. Does amifostine reduce metabolic rate? Effect of the drug on gas exchange and acute ventilatory hypoxic response in humans.

    PubMed

    Pandit, Jaideep J; Allen, Caroline; Little, Evelyn; Formenti, Federico; Harris, Adrian L; Robbins, Peter A

    2015-04-16

    Amifostine is added to chemoradiation regimens in the treatment of many cancers on the basis that, by reducing the metabolic rate, it protects normal cells from toxic effects of therapy. We tested this hypothesis by measuring the metabolic rate (by gas exchange) over 255 min in 6 healthy subjects, at two doses (500 mg and 1000 mg) of amifostine infused over 15 min at the start of the protocol. We also assessed the ventilatory response to six 1 min exposures to isocapnic hypoxia mid-protocol. There was no change in metabolic rate with amifostine as measured by oxygen uptake (p = 0.113). However in carbon dioxide output and respiratory quotient, we detected a small decline over time in control and drug protocols, consistent with a gradual change from carbohydrate to fat metabolism over the course of the relatively long study protocol. A novel result was that amifostine (1000 mg) increased the mean ± SD acute hypoxic ventilatory response from 12.4 ± 5.1 L/min to 20.3 ± 11.9 L/min (p = 0.045). In conclusion, any cellular protective effects of amifostine are unlikely due to metabolic effects. The stimulatory effect on hypoxic ventilatory responses may be due to increased levels of hypoxia inducible factor, either peripherally in the carotid body, or centrally in the brain.

  15. Regulation of Secondary Metabolism by the Velvet Complex Is Temperature-Responsive in Aspergillus

    PubMed Central

    Lind, Abigail L.; Smith, Timothy D.; Saterlee, Timothy; Calvo, Ana M.; Rokas, Antonis

    2016-01-01

    Sensing and responding to environmental cues is critical to the lifestyle of filamentous fungi. How environmental variation influences fungi to produce a wide diversity of ecologically important secondary metabolites (SMs) is not well understood. To address this question, we first examined changes in global gene expression of the opportunistic human pathogen, Aspergillus fumigatus, after exposure to different temperature conditions. We found that 11 of the 37 SM gene clusters in A. fumigatus were expressed at higher levels at 30° than at 37°. We next investigated the role of the light-responsive Velvet complex in environment-dependent gene expression by examining temperature-dependent transcription profiles in the absence of two key members of the Velvet protein complex, VeA and LaeA. We found that the 11 temperature-regulated SM gene clusters required VeA at 37° and LaeA at both 30 and 37° for wild-type levels of expression. Interestingly, four SM gene clusters were regulated by VeA at 37° but not at 30°, and two additional ones were regulated by VeA at both temperatures but were substantially less so at 30°, indicating that the role of VeA and, more generally of the Velvet complex, in the regulation of certain SM gene clusters is temperature-dependent. Our findings support the hypothesis that fungal secondary metabolism is regulated by an intertwined network of transcriptional regulators responsive to multiple environmental factors. PMID:27694115

  16. Metabolic and hormonal response to short term fasting after endurance training in the rat.

    PubMed

    Guezennec, C Y; Serrurier, B; Aymonod, M; Merino, D; Pesquies, P C

    1984-11-01

    The metabolic and hormonal response to short term fasting was studied after endurance exercise training. Rats were kept running on a motor driven rodent treadmill 5 days/wk for periods up to 1 h/day for 6 wk. Trained and untrained rats were then fasted for 24 h and 48 h. Liver and muscle glycogen, blood glucose, lactate, beta OH butyrate, glycerol, plasma insulin, testosterone and corticosterone were measured in fed and fasted trained and untrained rats. 48 h fasted trained rats show a lower level of blood lactate (1.08 +/- 0.05 vs 1.33 +/- 0.08 mmol/l-1 of blood glycerol (1 +/- 0.11 vs 0.84 +/- 0.08 mmol/l-1), and of muscle glycogen. There is a significant increase in plasma corticosterone in 48 h fasted trained rats from fed values. Plasma testosterone decreases during fasting, the values are higher in trained rats. Plasma insulin decreases during fasting without any difference between the two groups. These results show higher lipolysis, and decreased glycogenolysis in trained animals during 48 h fasting. The difference between the groups in steroid hormone response could reduce neoglucogenesis and muscle proteolysis in trained animals.

  17. Plasticity in habitat use determines metabolic response of fish to global warming in stratified lakes.

    PubMed

    Busch, Susan; Kirillin, Georgiy; Mehner, Thomas

    2012-09-01

    We used a coupled lake physics and bioenergetics-based foraging model to evaluate how the plasticity in habitat use modifies the seasonal metabolic response of two sympatric cold-water fishes (vendace and Fontane cisco, Coregonus spp.) under a global warming scenario for the year 2100. In different simulations, the vertically migrating species performed either a plastic strategy (behavioral thermoregulation) by shifting their population depth at night to maintain the temperatures occupied at current in-situ observations, or a fixed strategy (no thermoregulation) by keeping their occupied depths at night but facing modified temperatures. The lake physics model predicted higher temperatures above 20 m and lower temperatures below 20 m in response to warming. Using temperature-zooplankton relationships, the density of zooplankton prey was predicted to increase at the surface, but to decrease in hypolimnetic waters. Simulating the fixed strategy, growth was enhanced only for the deeper-living cisco due to the shift in thermal regime at about 20 m. In contrast, simulating the plastic strategy, individual growth of cisco and young vendace was predicted to increase compared to growth currently observed in the lake. Only growth rates of older vendace are reduced under future global warming scenarios irrespective of the behavioral strategy. However, performing behavioral thermoregulation would drive both species into the same depth layers, and hence will erode vertical microhabitat segregation and intensify inter-specific competition between the coexisting coregonids.

  18. Metabolic responses to dietary leucine restriction involve remodeling of adipose tissue and enhanced hepatic insulin signaling.

    PubMed

    Wanders, Desiree; Stone, Kirsten P; Dille, Kelly; Simon, Jacob; Pierse, Alicia; Gettys, Thomas W

    2015-01-01

    Dietary leucine was incrementally restricted to test whether limiting this essential amino acid (EAA) would fully reproduce the beneficial responses produced by dietary methionine restriction. Restricting leucine by 85% increased energy intake and expenditure within 5 to 7 days of its introduction and reduced overall accumulation of adipose tissue. Leucine restriction (LR) also improved glucose tolerance, increased hepatic release of fibroblast growth factor 21 into the blood stream, and enhanced insulin-dependent activation of Akt in liver. However, LR had no effect on hepatic lipid levels and failed to lower lipogenic gene expression in the liver. LR did affect remodeling of white and brown adipose tissues, increasing expression of both thermogenic and lipogenic genes. These findings illustrate that dietary LR reproduces many but not all of the physiological responses of methionine restriction. The primary differences occur in the liver, where methionine and LR cause opposite effects on tissue lipid levels and expression of lipogenic genes. Altogether, these findings suggest that the sensing systems which detect and respond to dietary restriction of EAAs act through mechanisms that both leucine and methionine are able to engage, and in the case of hepatic lipid metabolism, may be unique to specific EAAs such as methionine.

  19. Effects of forearm bier block with bretylium on the hemodynamic and metabolic responses to handgrip

    NASA Technical Reports Server (NTRS)

    Lee, F.; Shoemaker, J. K.; McQuillan, P. M.; Kunselman, A. R.; Smith, M. B.; Yang, Q. X.; Smith, H.; Gray, K.; Sinoway, L. I.

    2000-01-01

    We tested the hypothesis that a reduction in sympathetic tone to exercising forearm muscle would increase blood flow, reduce muscle acidosis, and attenuate reflex responses. Subjects performed a progressive, four-stage rhythmic handgrip protocol before and after forearm bier block with bretylium as forearm blood flow (Doppler) and metabolic (venous effluent metabolite concentration and (31)P-NMR indexes) and autonomic reflex responses (heart rate, blood pressure, and sympathetic nerve traffic) were measured. Bretylium inhibits the release of norepinephrine at the neurovascular junction. Bier block increased blood flow as well as oxygen consumption in the exercising forearm (P < 0.03 and P < 0.02, respectively). However, despite this increase in flow, venous K(+) release and H(+) release were both increased during exercise (P < 0.002 for both indexes). Additionally, minimal muscle pH measured during the first minute of recovery with NMR was lower after bier block (6.41 +/- 0.08 vs. 6.20 +/- 0.06; P < 0.036, simple effects). Meanwhile, reflex effects were unaffected by the bretylium bier block. The results support the conclusion that sympathetic stimulation to muscle during exercise not only limits muscle blood flow but also appears to limit anaerobiosis and H(+) release, presumably through a preferential recruitment of oxidative fibers.

  20. Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib

    PubMed Central

    Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E.; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R.; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I.; Trump, Donald L.; Johnson, Candace S.; Morrison, Carl D.

    2015-01-01

    Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise <2% of all granular cell tumors, are associated with aggressive behavior and poor clinical outcome, and are poorly understood in terms of tumor etiology and systematic treatment. Because of its rarity, the genetic basis of malignant granular cell tumor remains unknown. We performed whole-genome sequencing of one malignant granular cell tumor with metabolic response to pazopanib. This tumor exhibited a very low mutation rate and an overall stable genome with local complex rearrangements. The mutation signature was dominated by C>T transitions, particularly when immediately preceded by a 5′ G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567

  1. Neuromuscular, hormonal, and metabolic responses to different plyometric training volumes in rugby players.

    PubMed

    Cadore, Eduardo L; Pinheiro, Eraldo; Izquierdo, Mikel; Correa, Cleiton S; Radaelli, Régis; Martins, Jocelito B; Lhullier, Francisco L R; Laitano, Orlando; Cardoso, Marcelo; Pinto, Ronei S

    2013-11-01

    The purpose of this study was to investigate the effect of different volumes of plyometric exercise (i.e., 100, 200, or 300 hurdle jumps) on acute strength and jump performance and on the acute hormonal and lactate responses in rugby players. Eleven young male elite rugby players (age, 23.5 ± 0.9 years; height, 173 ± 4.8 cm) volunteered for the study. Maximal isometric peak torque (PT), maximal rate of force development (RFD), squat jump (SJ), and drop jump (DJ) performance were assessed before and 5 minutes, 8 hours, and 24 hours after 100, 200, or 300 jumps. In addition, total testosterone (TT), cortisol (COR), and lactate were measured before and after the 3 different plyometric exercise volumes. There were significant decreases in the PT (p < 0.02) and maximal RFD (p < 0.001) 5 minutes, 8 hours, and 24 hours after 100, 200, and 300 jumps, with no differences between the exercise volumes. Additionally, there were significant decreases in the SJ (p < 0.001) and DJ (p < 0.01) performances 24 hours after 100, 200, and 300 jumps, with no differences between the exercise volumes. However, there were significant increases in the TT (p < 0.001), COR (p < 0.05), and lactate (p < 0.001) after 100, 200, and 300 jumps, with no differences between the exercise volumes. All plyometric exercise volumes (100, 200, and 300 jumps) resulted in similar neuromuscular, metabolic, and hormonal responses.

  2. Aging and sleep deprivation induce the unfolded protein response in the pancreas: implications for metabolism.

    PubMed

    Naidoo, Nirinjini; Davis, James G; Zhu, Jingxu; Yabumoto, Maya; Singletary, Kristan; Brown, Marishka; Galante, Raymond; Agarwal, Beamon; Baur, Joseph A

    2014-02-01

    Sleep disruption has detrimental effects on glucose metabolism through pathways that remain poorly defined. Although numerous studies have examined the consequences of sleep deprivation (SD) in the brain, few have directly tested its effects on peripheral organs. We examined several tissues in mice for induction of the unfolded protein response (UPR) following acute SD. In young animals, we found a robust induction of BiP in the pancreas, indicating an active UPR. At baseline, pancreata from aged animals exhibited a marked increase in a pro-apoptotic transcription factor, CHOP, that was amplified by SD, whereas BiP induction was not observed, suggesting a maladaptive response to cellular stress with age. Acute SD increased plasma glucose levels in both young and old animals. However, this change was not overtly related to stress in the pancreatic beta cells, as plasma insulin levels were not lower following acute SD. Accordingly, animals subjected to acute SD remained tolerant to a glucose challenge. In a chronic SD experiment, young mice were found to be sensitized to insulin and have improved glycemic control, whereas aged animals became hyperglycemic and failed to maintain appropriate plasma insulin concentrations. Our results show that both age and SD cooperate to induce the UPR in pancreatic tissue. While changes in insulin secretion are unlikely to play a major role in the acute effects of SD, CHOP induction in pancreatic tissues suggests that chronic SD may contribute to the loss or dysfunction of endocrine cells and that these effects may be exacerbated by normal aging.

  3. METABOLIC RESPONSES TO DIETARY LEUCINE RESTRICTION INVOLVE REMODELING OF ADIPOSE TISSUE AND ENHANCED HEPATIC INSULIN SIGNALING

    PubMed Central

    Wanders, Desiree; Stone, Kirsten P.; Dille, Kelly; Simon, Jacob; Pierse, Alicia; Gettys, Thomas W.

    2015-01-01

    Dietary leucine was incrementally restricted to test whether limiting this essential amino acid (EAA) would fully reproduce the beneficial responses produced by dietary methionine restriction. Restricting leucine by 85% increased energy intake and expenditure within five to seven days of its introduction and reduced overall accumulation of adipose tissue. Leucine restriction (LR) also improved glucose tolerance, increased hepatic release of FGF21 into the blood stream, and enhanced insulin-dependent activation of Akt in liver. However, LR had no effect on hepatic lipid levels and failed to lower lipogenic gene expression in the liver. LR did affect remodeling of white and brown adipose tissue, increasing expression of both thermogenic and lipogenic genes. These findings illustrate that dietary LR reproduces many but not all of the physiological responses of methionine restriction. The primary differences occur in the liver, where methionine and leucine restriction cause opposite effects on tissue lipid levels and expression of lipogenic genes. Together these findings suggest that the sensing systems which detect and respond to dietary restriction of EAAs act through mechanisms that both leucine and methionine are able to engage, and in the case of hepatic lipid metabolism, may be unique to specific EAAs such as methionine. PMID:26643647

  4. Antecedent plant physiological performance influences the metabolic acceleration of semi-arid soils in response to rainfall

    NASA Astrophysics Data System (ADS)

    Potts, D. L.; Barron-Gafford, G. A.; Jenerette, D.

    2011-12-01

    In semi-arid ecosystems precipitation often arrives as discrete rainfall events. Under these conditions of episodic resource availability, natural selection might favor rapid metabolic responses to the sudden availability of otherwise limiting resources. We introduce and define the term metabolic acceleration (α) as the first derivative of the metabolic rate of a biological system. In other words, α describes the ability of a biological system to up- and down-regulate metabolic rate. Examples include, but are not limited to, the metabolic acceleration of leaf maximum net CO2 assimilation (αAnet), of the CO2 efflux produced by roots and soil microbes (αsoil), and of net ecosystem CO2 exchange (αNEE). To better understand αsoil in relation to seasonal patterns of rainfall and plant physiological performance, we compared three microhabitats (under mesquite, under bunchgrasses, and in intercanopy soils) in a semi-arid shrubland near Tucson, Arizona. Across microhabitats, maximum αsoil varied seasonally such that αsoil was greatest during the warm, wet summer months and lowest during cool winter months. Furthermore, throughout course of the year αsoil beneath mesquites was greater than beneath bunchgrasses or in intercanopy soils. Finally, microhabitat-specific responses of αsoil to the onset of the North American monsoon were consistent with patterns of antecedent plant physiological performance. By quantifying the ability of living systems to respond to episodic resource availability, metabolic acceleration provides a new perspective on the biological significance of antecedent conditions in pulse-driven ecosystems. Finally, that αAnet varies among plant functional types and that αsoil varies among microhabitats suggests the potential for the existence of previously unrecognized life-history trade-offs involving the ability of biological systems to rapidly adjust their metabolic rate in response to episodic resource availability.

  5. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants.

    PubMed

    Nikiforova, Victoria J; Kopka, Joachim; Tolstikov, Vladimir; Fiehn, Oliver; Hopkins, Laura; Hawkesford, Malcolm J; Hesse, Holger; Hoefgen, Rainer

    2005-05-01

    Sulfur is an essential macro-element in plant and animal nutrition. Plants assimilate inorganic sulfate into two sulfur-containing amino acids, cysteine and methionine. Low supply of sulfate leads to decreased sulfur pools within plant tissues. As sulfur-related metabolites represent an integral part of plant metabolism with multiple interactions, sulfur deficiency stress induces a number of adaptive responses, which must be coordinated. To reveal the coordinating network of adaptations to sulfur deficiency, metabolite profiling of Arabidopsis has been undertaken. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry techniques revealed the response patterns of 6,023 peaks of nonredundant ion traces and relative concentration levels of 134 nonredundant compounds of known chemical structure. Here, we provide a catalogue of the detected metabolic changes and reconstruct the coordinating network of their mutual influences. The observed decrease in biomass, as well as in levels of proteins, chlorophylls, and total RNA, gives evidence for a general reduction of metabolic activity under conditions of depleted sulfur supply. This is achieved by a systemic adjustment of metabolism involving the major metabolic pathways. Sulfur/carbon/nitrogen are partitioned by accumulation of metabolites along the pathway O-acetylserine to serine to glycine, and are further channeled together with the nitrogen-rich compound glutamine into allantoin. Mutual influences between sulfur assimilation, nitrogen imbalance, lipid breakdown, purine metabolism, and enhanced photorespiration associated with sulfur-deficiency stress are revealed in this study. These responses may be assembled into a global scheme of metabolic regulation induced by sulfur nutritional stress, which optimizes resources for seed production.

  6. Identification of enzymes responsible for extracellular alginate depolymerization and alginate metabolism in Vibrio algivorus.

    PubMed

    Doi, Hidetaka; Tokura, Yuriko; Mori, Yukiko; Mori, Kenichi; Asakura, Yoko; Usuda, Yoshihiro; Fukuda, Hiroo; Chinen, Akito

    2017-02-01

    Alginate is a marine non-food-competing polysaccharide that has potential applications in biorefinery. Owing to its large size (molecular weight >300,000 Da), alginate cannot pass through the bacterial cell membrane. Therefore, bacteria that utilize alginate are presumed to have an enzyme that degrades extracellular alginate. Recently, Vibrio algivorus sp. SA2(T) was identified as a novel alginate-decomposing and alginate-utilizing species. However, little is known about the mechanism of alginate degradation and metabolism in this species. To address this issue, we screened the V. algivorus genomic DNA library for genes encoding polysaccharide-decomposing enzymes using a novel double-layer plate screening method and identified alyB as a candidate. Most identified alginate-decomposing enzymes (i.e., alginate lyases) must be concentrated and purified before extracellular alginate depolymerization. AlyB of V. algivorus heterologously expressed in Escherichia coli depolymerized extracellular alginate without requiring concentration or purification. We found seven homologues in the V. algivorus genome (alyB, alyD, oalA, oalB, oalC, dehR, and toaA) that are thought to encode enzymes responsible for alginate transport and metabolism. Introducing these genes into E. coli enabled the cells to assimilate soluble alginate depolymerized by V. algivorus AlyB as the sole carbon source. The alginate was bioconverted into L-lysine (43.3 mg/l) in E. coli strain AJIK01. These findings demonstrate a simple and novel screening method for identifying polysaccharide-degrading enzymes in bacteria and provide a simple alginate biocatalyst and fermentation system with potential applications in industrial biorefinery.

  7. The metabolic and temporal basis of muscle hypertrophy in response to resistance exercise.

    PubMed

    Brook, Matthew S; Wilkinson, Daniel J; Smith, Kenneth; Atherton, Philip J

    2016-09-01

    Constituting ∼40% of body mass, skeletal muscle has essential locomotory and metabolic functions. As such, an insight into the control of muscle mass is of great importance for maintaining health and quality-of-life into older age, under conditions of cachectic disease and with rehabilitation. In healthy weight-bearing individuals, muscle mass is maintained by the equilibrium between muscle protein synthesis (MPS) and muscle protein breakdown; when this balance tips in favour of MPS hypertrophy occurs. Despite considerable research into pharmacological/nutraceutical interventions, resistance exercise training (RE-T) remains the most potent stimulator of MPS and hypertrophy (in the majority of individuals). However, the mechanism(s) and time course of hypertrophic responses to RE-T remain poorly understood. We would suggest that available data are very much in favour of the notion that the majority of hypertrophy occurs in the early phases of RE-T (though still controversial to some) and that, for the most part, continued gains are hard to come by. Whilst the mechanisms of muscle hypertrophy represent the culmination of mechanical, auto/paracrine and endocrine events, the measurement of MPS remains a cornerstone for understanding the control of hypertrophy - mainly because it is the underlying driving force behind skeletal muscle hypertrophy. Development of sophisticated isotopic techniques (i.e. deuterium oxide) that lend to longer term insight into the control of hypertrophy by sustained RE-T will be paramount in providing insights into the metabolic and temporal regulation of hypertrophy. Such technologies will have broad application in muscle mass intervention for both athletes and for mitigating disease/age-related cachexia and sarcopenia, alike.

  8. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal.

    PubMed

    Van Soeren, M H; Graham, T E

    1998-10-01

    In this study the effects of acute caffeine ingestion on exercise performance, hormonal (epinephrine, norepinephrine, insulin), and metabolic (free fatty acids, glycerol, glucose, lactate, expired gases) parameters during short-term withdrawal from dietary caffeine were investigated. Recreational athletes who were habitual caffeine users (n = 6) (maximum oxygen uptake 54.5 +/- 3.3 ml x kg-1 x min-1 and daily caffeine intake 761.3 +/- 11.8 mg/day) were tested under conditions of no withdrawal and 2-day and 4-day withdrawal from dietary caffeine. There were seven trials in total with a minimum of 10 days between trials. On the day of the exercise trial, subjects ingested either dextrose placebo or 6 mg/kg caffeine in capsule form 1 h before cycle ergometry to exhaustion at 80-85% of maximum oxygen uptake. Test substances were assigned in a random, double-blind manner. A final placebo control trial completed the experiment. There was no significant difference in any measured parameters among days of withdrawal after ingestion of placebo. At exhaustion in the 2- and 4-day withdrawal trials, there were significant increases in plasma norepinephrine in response to caffeine ingestion. Caffeine-induced increases in serum free fatty acids occurred after 4 days and only at rest. Subjects responded to caffeine with increases in plasma epinephrine (P < 0.05) at exhaustion and prolonged exercise time in all caffeine trials compared with placebo, regardless of withdrawal from caffeine. It is concluded that increased endurance is unrelated to hormonal or metabolic changes and that it is not related to prior caffeine habituation in recreational athletes.

  9. Adaptive stress response of glutathione and uric acid metabolism in man following controlled exercise and diet.

    PubMed

    Svensson, M B; Ekblom, B; Cotgreave, I A; Norman, B; Sjöberg, B; Ekblom, O; Sjödin, B; Sjödin, A

    2002-09-01

    Ergometer cycling performance as well as acute exercise-induced changes in the metabolism of energy-intermediates and glutathione (GSH) were investigated in skeletal muscle (SM) of 15 healthy young male subjects (VO(2max) approximately 54.7 mL kg(-1) min(-1), age approximately 25 years), before and after 3 days of controlled 'ìoverload-training' in combination with either high (62% of energy intake) or low (26% of energy intake) dietary intake of carbohydrates. The intake of a carbohydrate-rich diet clearly reduced the depletion of SM glycogen following the short-term training period, paralleled with a positive effect on the endurance performance, but not on high-intensity work-performance. An 'delayed over-reaching effect', defined as impaired work-performance, was observed after 2.5 days of recovery from the short-term training period, irrespective of the carbohydrate content of the diet and basal glycogen level in SM. Taken together, the main and novel findings of present investigation are: (1) an acute decrease of reduced GSH content and altered thiol-redox homeostasis in SM induced by strenuous high-intensity exercise; (2) an adaptive elevation of basal GSH level following the short-term training period; (3) an adaptive decrease of basal GSH level following 2.5 days recovery from training; (4) evidence of a relationship between the SM fibre type, physical performance capacity and GSH turnover during acute bouts of exercise; and (5) no evident effect of the level of carbohydrate intake on metabolism of GSH or energy intermediates. Furthermore, the induction of acute oxidative stress in exercising human SM and the adaptive responses to training are suggested to provide a protective antioxidant phenotype to the exercising SM during periods with repeated intense intermittent training.

  10. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities

    PubMed Central

    Lindh, Markus V.; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone

    2015-01-01

    Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates. PMID

  11. Different Narrow-Band Light Ranges Alter Plant Secondary Metabolism and Plant Defense Response to Aphids.

    PubMed

    Rechner, Ole; Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2016-10-01

    Light of different wavelengths affects various physiological processes in plants. Short-wavelength radiation (like UV) can activate defense pathways in plants and enhance the biosynthesis of secondary metabolites (such as flavonoids and glucosinolates) responsible for resistance against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. In this study, broccoli (Brassica oleracea var. italica) plants were grown for 4 weeks in a climate chamber under conventional fluorescent tubes and were additionally treated with UV-B (310 nm), UV-A (365 or 385 nm), or violet (420 nm) light generated with UV-B tubes or light-emitting diodes (LEDs). The objective was to determine the influence of narrow bandwidths of light (from UV-B to violet) on plant secondary metabolism and on the performance of the cabbage aphid Brevicoryne brassicae (a specialist) and the green peach aphid Myzus persicae (a generalist). Among flavonol glycosides, specific quercetin and kaempferol glycosides increased markedly under UV-B, while among glucosinolates only 4-methoxy-3-indolylmethyl showed a 2-fold increase in plants exposed to UV-B and UV-A. The concentration of 3-indolylmethyl glucosinolate in broccoli plants increased with UV-B treatment. Brevicoryne brassicae adult weights and fecundity were lower on UV-B treated plants compared to UV-A or violet light-treated plants. Adult weights and fecundity of M. persicae were increased under UV-B and UV-A treatments. When specific light wavelengths are used to induce metabolic changes in plants, the specificity of the induced effects on herbivores should be considered.

  12. Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish

    PubMed Central

    Jurczyk, Agata; Roy, Nicole; Bajwa, Rabia; Gut, Philipp; Lipson, Kathryn; Yang, Chaoxing; Covassin, Laurence; Racki, Waldemar J.; Rossini, Aldo A.; Phillips, Nancy; Stainier, Didier Y. R.; Greiner, Dale L.; Brehm, Michael A.; Bortell, Rita; diIorio, Philip

    2010-01-01

    Zebrafish embryos are emerging as models of glucose metabolism. However, patterns of endogenous glucose levels, and the role of the islet in glucoregulation, are unknown. We measured absolute glucose levels in zebrafish and mouse embryos, and demonstrate similar, dynamic glucose fluctuations in both species. Further, we show that chemical and genetic perturbations elicit mammalian-like glycemic responses in zebrafish embryos. We show that glucose is undetectable in early zebrafish and mouse embryos, but increases in parallel with pancreatic islet formation in both species. In zebrafish, increasing glucose is associated with activation of gluconeogenic phosphoenolpyruvate carboxykinase1 (pck1) transcription. Non-hepatic Pck1 protein is expressed in mouse embryos. We show, using RNA in situ hybridization, that zebrafish pck1 mRNA is similarly expressed in multiple cell types prior to hepatogenesis. Further, we demonstrate that the Pck1 inhibitor 3-mercaptopicolinic acid suppresses normal glucose accumulation in early zebrafish embryos. This shows that pre- and extra-hepatic pck1 is functional, and provides glucose locally to rapidly developing tissues. To determine if the primary islet is glucoregulatory in early fish embryos, we injected pdx1-specific morpholinos into transgenic embryos expressing GFP in beta cells. Most morphant islets were hypomorphic, not agenetic, but embryos still exhibited persistent hyperglycemia. We conclude from these data that the early zebrafish islet is functional, and regulates endogenous glucose. In summary, we identify mechanisms of glucoregulation in zebrafish embryos that are conserved with embryonic and adult mammals. These observations justify use of this model in mechanistic studies of human metabolic disease. PMID:20965191

  13. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions.

    PubMed

    Muscolo, A; Junker, A; Klukas, C; Weigelt-Fischer, K; Riewe, D; Altmann, T

    2015-09-01

    Drought and salinity are among the major abiotic stresses which, often inter-relatedly, adversely affect plant growth and productivity. Plant stress responses depend on the type of stress, on its intensity, on the species, and also on the genotype. Different accessions of a species may have evolved different mechanisms to cope with stress and to complete their life cycles. This study is focused on lentil, an important Mediterranean legume with high quality protein for the human diet. The effects of salinity and drought on germination and early growth of Castelluccio di Norcia (CAST), Pantelleria (PAN), Ustica (UST), and Eston (EST) accessions were evaluated to identify metabolic and phenotypic traits related to drought and/or salinity stress tolerance. The results showed a relationship between imposed stresses and performance of the cultivars. According to germination frequencies, the accession ranking was as follows: NaCl resistant > susceptible, PAN > UST > CAST > EST; polyethylene glycol (PEG) resistant > susceptible, CAST > UST > EST > PAN. Seedling tolerance rankings were: NaCl resistant > susceptible, CAST ≈ UST > PAN ≈ EST; PEG resistant > susceptible, CAST > EST ≈ UST > PAN. Changes in the metabolite profiles, mainly quantitative rather than qualitative, were observed in the same cultivar in respect to the treatments, and among the cultivars under the same treatment. Metabolic differences in the stress tolerance of the different genotypes were related to a reduction in the levels of tricarboxylic acid (TCA) cycle intermediates. The relevant differences, between the most NaCl-tolerant genotype (PAN) and the most sensitive one (EST) were related to the decrease in the threonic acid level. Stress-specific metabolite indicators were also identified: ornithine and asparagine as markers of drought stress and alanine and homoserine as markers of salinity stress.

  14. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions

    PubMed Central

    Muscolo, A.; Junker, A.; Klukas, C.; Weigelt-Fischer, K.; Riewe, D.; Altmann, T.

    2015-01-01

    Drought and salinity are among the major abiotic stresses which, often inter-relatedly, adversely affect plant growth and productivity. Plant stress responses depend on the type of stress, on its intensity, on the species, and also on the genotype. Different accessions of a species may have evolved different mechanisms to cope with stress and to complete their life cycles. This study is focused on lentil, an important Mediterranean legume with high quality protein for the human diet. The effects of salinity and drought on germination and early growth of Castelluccio di Norcia (CAST), Pantelleria (PAN), Ustica (UST), and Eston (EST) accessions were evaluated to identify metabolic and phenotypic traits related to drought and/or salinity stress tolerance. The results showed a relationship between imposed stresses and performance of the cultivars. According to germination frequencies, the accession ranking was as follows: NaCl resistant > susceptible, PAN > UST > CAST > EST; polyethylene glycol (PEG) resistant > susceptible, CAST > UST > EST > PAN. Seedling tolerance rankings were: NaCl resistant > susceptible, CAST ≈ UST > PAN ≈ EST; PEG resistant > susceptible, CAST > EST ≈ UST > PAN. Changes in the metabolite profiles, mainly quantitative rather than qualitative, were observed in the same cultivar in respect to the treatments, and among the cultivars under the same treatment. Metabolic differences in the stress tolerance of the different genotypes were related to a reduction in the levels of tricarboxylic acid (TCA) cycle intermediates. The relevant differences, between the most NaCl-tolerant genotype (PAN) and the most sensitive one (EST) were related to the decrease in the threonic acid level. Stress-specific metabolite indicators were also identified: ornithine and asparagine as markers of drought stress and alanine and homoserine as markers of salinity stress. PMID:25969553

  15. Endocrine and metabolic response to trauma in hypovolemic patients treated at a trauma center in Brazil

    PubMed Central

    Bahten, Luiz CV; Mauro, Fernando HO; Domingos, Maria F; Scheffer, Paula H; Pagnoncelli, Bruno H; Wille, Marco AR

    2008-01-01

    Background The metabolic changes in trauma patients with shock contribute directly to the survival of the patient. To understand these changes better, we made a rigorous analysis of the variations in the main examinations requested for seriously polytraumatized patients. Methods Prospective analysis of patients with blunt or penetrating trauma with hypovolemic shock, with systolic arterial pressure (SAP) equal to or lower than 90 mmHg at any time during initial treatment in the emergency room and aged between 14 and 60 years old. The following exams were analyzed: sodium, potassium, blood test, glycemia and arterial gasometry. The tests were carried out at intervals: T0 (the first exam, collected on admission) and followed by T24 (24 hours after admission), T48 (48 hours after admission), T72 (72 hours after admission). Results The test evaluations showed that there was a tendency towards hyperglycemia, which was more evident upon admission to hospital. The sodium in all the patients was found to be normal upon admission, with a later decline. However, no patient had significant hyponatremia; there was no significant variation in the potassium variable; the gasometry, low pH, BE (base excess) and bicarbonate levels when the first sample was collected and increased later with PO2 and PCO2 showing only slight variations, which meant an acidotic state during the hemorrhagic shock followed by a response from the organism to reestablish the equilibrium, retaining bicarbonate. The red blood count, shown by the GB (globular volume) and HB (hemoglobin) was normal upon entry but later it dropped steadily until it fell below normal; the white blood count (leukocytes, neutrophils and band neutrophil) remained high from the first moment of evaluation. Conclusion In this study we demonstrated the main alterations that took place in patients with serious trauma, emphasizing that even commonly requested laboratory tests can help to estimate metabolic alterations. Suitable

  16. ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses.

    PubMed

    Weigelt, Kathleen; Küster, Helge; Rutten, Twan; Fait, Aaron; Fernie, Alisdair R; Miersch, Otto; Wasternack, Claus; Emery, R J Neil; Desel, Christine; Hosein, Felicia; Müller, Martin; Saalbach, Isolde; Weber, Hans

    2009-01-01

    We present a comprehensive analysis of ADP-glucose pyrophosphorylase (AGP)-repressed pea (Pisum sativum) seeds using transcript and metabolite profiling to monitor the effects that reduced carbon flow into starch has on carbon-nitrogen metabolism and related pathways. Changed patterns of transcripts and metabolites suggest that AGP repression causes sugar accumulation and stimulates carbohydrate oxidation via glycolysis, tricarboxylic acid cycle, and mitochondrial respiration. Enhanced provision of precursors such as acetyl-coenzyme A and organic acids apparently support other pathways and activate amino acid and storage protein biosynthesis as well as pathways fed by cytosolic acetyl-coenzyme A, such as cysteine biosynthesis and fatty acid elongation/metabolism. As a consequence, the resulting higher nitrogen (N) demand depletes transient N storage pools, specifically asparagine and arginine, and leads to N limitation. Moreover, increased sugar accumulation appears to stimulate cytokinin-mediated cell proliferation pathways. In addition, the deregulation of starch biosynthesis resulted in indirect changes, such as increased mitochondrial metabolism and osmotic stress. The combined effect of these changes is an enhanced generation of reactive oxygen species coupled with an up-regulation of energy-dissipating, reactive oxygen species protection, and defense genes. Transcriptional activation of mitogen-activated protein kinase pathways and oxylipin synthesis indicates an additional activation of stress signaling pathways. AGP-repressed embryos contain higher levels of jasmonate derivatives; however, this increase is preferentially in nonactive forms. The results suggest that, although metabolic/osmotic alterations in iAGP pea seeds result in multiple stress responses, pea seeds have effective mechanisms to circumvent stress signaling under conditions in which excessive stress responses and/or cellular damage could prematurely initiate senescence or apoptosis.

  17. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol

    PubMed Central

    2012-01-01

    Background Glycerol has enhanced its biotechnological importance since it is a byproduct of biodiesel synthesis. A study of Escherichia coli physiology during growth on glycerol was performed combining transcriptional-proteomic analysis as well as kinetic and stoichiometric evaluations in the strain JM101 and certain derivatives with important inactivated genes. Results Transcriptional and proteomic analysis of metabolic central genes of strain JM101 growing on glycerol, revealed important changes not only in the synthesis of MglB, LamB and MalE proteins, but also in the overexpression of carbon scavenging genes: lamB, malE, mglB, mglC, galP and glk and some members of the RpoS regulon (pfkA, pfkB, fbaA, fbaB, pgi, poxB, acs, actP and acnA). Inactivation of rpoS had an important effect on stoichiometric parameters and growth adaptation on glycerol. The observed overexpression of poxB, pta, acs genes, glyoxylate shunt genes (aceA, aceB, glcB and glcC) and actP, suggested a possible carbon flux deviation into the PoxB, Acs and glyoxylate shunt. In this scenario acetate synthesized from pyruvate with PoxB was apparently reutilized via Acs and the glyoxylate shunt enzymes. In agreement, no acetate was detected when growing on glycerol, this strain was also capable of glycerol and acetate coutilization when growing in mineral media and derivatives carrying inactivated poxB or pckA genes, accumulated acetate. Tryptophanase A (TnaA) was synthesized at high levels and indole was produced by this enzyme, in strain JM101 growing on glycerol. Additionally, in the isogenic derivative with the inactivated tnaA gene, no indole was detected and acetate and lactate were accumulated. A high efficiency aromatic compounds production capability was detected in JM101 carrying pJLBaroGfbrtktA, when growing on glycerol, as compared to glucose. Conclusions The overexpression of several carbon scavenging, acetate metabolism genes and the absence of acetate accumulation occurred in JM101

  18. Non-steroidal anti-inflammatory drugs attenuate the vascular responses in aging metabolic syndrome rats

    PubMed Central

    Rubio-Ruiz, María Esther; Pérez-Torres, Israel; Diaz-Diaz, Eulises; Pavón, Natalia; Guarner-Lans, Verónica

    2014-01-01

    Aim: Metabolic syndrome (MS) and aging are low-grade systemic inflammatory conditions, and inflammation is a key component of endothelial dysfunction. The aim of this study was to investigate the effects of non-steroidal anti-inflammatory drugs (NSAIDs) upon the vascular reactivity in aging MS rats. Methods: MS was induced in young male rats by adding 30% sucrose in drinking water over 6, 12, and 18 months. When the treatment was finished, the blood samples were collected, and aortas were dissected out. The expression of COX isoenzymes and PLA2 in the aortas was analyzed using Western blot analysis. The contractile responses of aortic rings to norepinephrine (1 μmol/L) were measured in the presence or absence of different NSAIDs (10 μmol/L for each). Results: Serum levels of pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β) in control rats were remained stable during the aging process, whereas serum IL-6 in MS rats were significantly increased at 12 and 18 months. The levels of COX isoenzyme and PLA2 in aortas from control rats increased with the aging, whereas those in aortas from MS rats were irregularly increased with the highest levels at 6 months. Pretreatment with acetylsalicylic acid (a COX-1 preferential inhibitor), indomethacin (a non-selective COX inhibitor) or meloxicam (a COX-2 preferential inhibitor) decreased NE-induced contractions of aortic rings from MS rats at all the ages, with meloxicam being the most potent. Acetylsalicylic acid also significantly reduced the maximum responses of ACh-induced vasorelaxation of aortic rings from MS rats, but indomethacin and meloxicam had no effect. Conclusion: NSAIDs can directly affect vascular responses in aging MS rats. Understanding the effects of NSAIDs on blood vessels may improve the treatment of cardiovascular diseases and MS in the elders. PMID:25263337

  19. Metabolic response of different high-intensity aerobic interval exercise protocols.

    PubMed

    Gosselin, Luc E; Kozlowski, Karl F; DeVinney-Boymel, Lee; Hambridge, Caitlin

    2012-10-01

    Although high-intensity sprint interval training (SIT) employing the Wingate protocol results in significant physiological adaptations, it is conducted at supramaximal intensity and is potentially unsafe for sedentary middle-aged adults. We therefore evaluated the metabolic and cardiovascular response in healthy young individuals performing 4 high-intensity (~90% VO2max) aerobic interval training (HIT) protocols with similar total work output but different work-to-rest ratio. Eight young physically active subjects participated in 5 different bouts of exercise over a 3-week period. Protocol 1 consisted of 20-minute continuous exercise at approximately 70% of VO2max, whereas protocols 2-5 were interval based with a work-active rest duration (in seconds) of 30/30, 60/30, 90/30, and 60/60, respectively. Each interval protocol resulted in approximately 10 minutes of exercise at a workload corresponding to approximately 90% VO2max, but differed in the total rest duration. The 90/30 HIT protocol resulted in the highest VO2, HR, rating of perceived exertion, and blood lactate, whereas the 30/30 protocol resulted in the lowest of these parameters. The total caloric energy expenditure was lowest in the 90/30 and 60/30 protocols (~150 kcal), whereas the other 3 protocols did not differ (~195 kcal) from one another. The immediate postexercise blood pressure response was similar across all the protocols. These finding indicate that HIT performed at approximately 90% of VO2max is no more physiologically taxing than is steady-state exercise conducted at 70% VO2max, but the response during HIT is influenced by the work-to-rest ratio. This interval protocol may be used as an alternative approach to steady-state exercise training but with less time commitment.

  20. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways.

    PubMed

    Bhasin, Manoj K; Dusek, Jeffery A; Chang, Bei-Hung; Joseph, Marie G; Denninger, John W; Fricchione, Gregory L; Benson, Herbert; Libermann, Towia A

    2013-01-01

    The relaxation response (RR) is the counterpart of the stress response. Millennia-old practices evoking the RR include meditation, yoga and repetitive prayer. Although RR elicitation is an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging, the underlying molecular mechanisms that explain these clinical benefits remain undetermined. To assess rapid time-dependent (temporal) genomic changes during one session of RR practice among healthy practitioners with years of RR practice and also in novices before and after 8 weeks of RR training, we measured the transcriptome in peripheral blood prior to, immediately after, and 15 minutes after listening to an RR-eliciting or a health education CD. Both short-term and long-term practitioners evoked significant temporal gene expression changes with greater significance in the latter as compared to novices. RR practice enhanced expression of genes associated with energy metabolism, mitochondrial function, insulin secretion and telomere maintenance, and reduced expression of genes linked to inflammatory response and stress-related pathways. Interactive network analyses of RR-affected pathways identified mitochondrial ATP synthase and insulin (INS) as top upregulated critical molecules (focus hubs) and NF-κB pathway genes as top downregulated focus hubs. Our results for the first time indicate that RR elicitation, particularly after long-term practice, may evoke its downstream health benefits by improving mitochondrial energy production and utilization and thus promoting mitochondrial resiliency through upregulation of ATPase and insulin function. Mitochondrial resiliency might also be promoted by RR-induced downregulation of NF-κB-associated upstream and downstream targets that mitigates stress.

  1. Relaxation Response Induces Temporal Transcriptome Changes in Energy Metabolism, Insulin Secretion and Inflammatory Pathways

    PubMed Central

    Joseph, Marie G.; Denninger, John W.; Fricchione, Gregory L.; Benson, Herbert; Libermann, Towia A.

    2013-01-01

    The relaxation response (RR) is the counterpart of the stress response. Millennia-old practices evoking the RR include meditation, yoga and repetitive prayer. Although RR elicitation is an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging, the underlying molecular mechanisms that explain these clinical benefits remain undetermined. To assess rapid time-dependent (temporal) genomic changes during one session of RR practice among healthy practitioners with years of RR practice and also in novices before and after 8 weeks of RR training, we measured the transcriptome in peripheral blood prior to, immediately after, and 15 minutes after listening to an RR-eliciting or a health education CD. Both short-term and long-term practitioners evoked significant temporal gene expression changes with greater significance in the latter as compared to novices. RR practice enhanced expression of genes associated with energy metabolism, mitochondrial function, insulin secretion and telomere maintenance, and reduced expression of genes linked to inflammatory response and stress-related pathways. Interactive network analyses of RR-affected pathways identified mitochondrial ATP synthase and insulin (INS) as top upregulated critical molecules (focus hubs) and NF-κB pathway genes as top downregulated focus hubs. Our results for the first time indicate that RR elicitation, particularly after long-term practice, may evoke its downstream health benefits by improving mitochondrial energy production and utilization and thus promoting mitochondrial resiliency through upregulation of ATPase and insulin function. Mitochondrial resiliency might also be promoted by RR-induced downregulation of NF-κB-associated upstream and downstream targets that mitigates stress. PMID:23650531

  2. Association of gene variants with lipid levels in response to fenofibrate is influenced by metabolic syndrome status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fenofibrate therapy reduces serum triglycerides (TG) and increases high-density lipoprotein-cholesterol (HDL-C) and thus addresses the atherogenic dyslipidemia associated with metabolic syndrome (MetS). Our hypothesis is that genetic factors contribute to the variability of lipid response to fenofib...

  3. The metabolic response during resistance training and neuromuscular electrical stimulation (NMES) in patients with COPD, a pilot study.

    PubMed

    Sillen, Maurice J H; Janssen, Paul P; Akkermans, Marco A; Wouters, Emiel F M; Spruit, Martijn A

    2008-05-01

    Resistance training and transcutaneous neuromuscular electrical stimulation (NMES) are new modalities in rehabilitation of severely disabled patients with chronic obstructive pulmonary disease (COPD). The purpose of this study was to compare the metabolic response during resistance training and during NMES of the quadriceps femoris muscles in patients with COPD entering pulmonary rehabilitation. Pulmonary function, body composition, peak aerobic capacity, the Medical Research Council dyspnoea grade, the one-repetition maximum strength assessment were evaluated in 13 COPD patients. Additionally, peak oxygen uptake, peak minute ventilation and Borg symptom scores were assessed during a resistance training session and a NMES session. The median peak oxygen uptake and median peak minute ventilation during the resistance training session were significantly higher compared to the NMES session. Additionally, these higher metabolic responses were accompanied by higher symptom Borg scores for dyspnoea and leg fatigue. To conclude, the metabolic response was significantly lower during a NMES session compared to a resistance exercise training session in patients with COPD. Nevertheless, both modalities seem to result in an acceptable metabolic response accompanied by a clinically acceptable sensation of dyspnoea and leg fatigue.

  4. Yeast supplementation reduced the immune and metabolic responses to a combined viral-bacterial respiratory disease challenge in feedlot heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two treatments were evaluated in commercial feedlot heifers to determine the effects of a yeast supplement on immune and metabolic responses to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (324 ± 19.2 kg BW) were selected and randomly assigned to one of two treat...

  5. Supplementation with a Lactobacillus acidophilus fermentation product alters the metabolic response following a lipopolysaccharide challenge in weaned pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if feeding a Lactobacillus acidophilus fermentation product to weaned pigs would alter the metabolic response following a lipopolysaccharide (LPS) challenge. Pigs (n=30; 6.4+/-0.1 kg BW) were housed individually with ad libitum access to feed and water. Pigs were...

  6. The effect of yeast cell wall supplementation on the metabolic responses of crossbred heifers to endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding yeast cell wall (YCW) products on the metabolic responses of newly-received heifers to endotoxin (lipopolysaccharide; LPS) challenge. Heifers (n=24; 218.9±2.4 kg) were obtained from commercial sale barns and transported to the Texas Tech University Beef Cent...

  7. Modulation of the metabolic response to an endotoxin challenge in Brahman heifers through OmniGen-AF supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding OmniGen-AF (OG; Prince Agri Products) on the metabolic response of newly-weaned heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Brahman heifers (n=24; 183±5 kilograms) from the Texas AgriLife Research Center in Overton, TX, were separated into 2...

  8. Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit

    PubMed Central

    Cukrov, Dubravka; Zermiani, Monica; Brizzolara, Stefano; Cestaro, Alessandro; Licausi, Francesco; Luchinat, Claudio; Santucci, Claudio; Tenori, Leonardo; Van Veen, Hans; Zuccolo, Andrea; Ruperti, Benedetto; Tonutti, Pietro

    2016-01-01

    The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.8 kPa oxygen) conditions for up to 60 days. NMR analyses of cortex tissue identified eight metabolites showing significantly different accumulations between samples, with ethanol and alanine displaying the most pronounced difference between hypoxic and normoxic treatments. A rapid up-regulation of alcohol dehydrogenase and pyruvate-related metabolism (lactate dehydrogenase, pyruvate decarboxylase, alanine aminotransferase) gene expression was detected under both hypoxic conditions with a more pronounced effect induced by the lowest (0.4 kPa) oxygen concentration. Both hypoxic conditions negatively affected ACC synthase and ACC oxidase transcript accumulation. Analysis of RNA-seq data of samples collected after 24 days of hypoxic treatment identified more than 1000 genes differentially expressed when comparing 0.4 vs. 0.8 kPa oxygen concentration samples. Genes involved in cell-wall, minor and major CHO, amino acid and secondary metabolisms, fermentation and glycolysis as well as genes involved in transport, defense responses, and oxidation-reduction appeared to be selectively affected by treatments. The lowest oxygen concentration induced a higher expression of transcription factors belonging to AUX/IAA, WRKY, HB, Zinc-finger families, while MADS box family genes were more expressed when apples were kept under 0.8 kPa oxygen. Out of the eight group VII ERF members present in apple genome, two genes showed a rapid up-regulation under hypoxia, and western blot analysis showed that apple MdRAP2.12 proteins were differentially accumulated in normoxic and hypoxic samples, with the highest level reached under 0.4 kPa oxygen. These data suggest

  9. Possible role of the aromatase-independent steroid metabolism pathways in hormone responsive primary breast cancers.

    PubMed

    Hanamura, Toru; Niwa, Toshifumi; Gohno, Tatsuyuki; Kurosumi, Masafumi; Takei, Hiroyuki; Yamaguchi, Yuri; Ito, Ken-ichi; Hayashi, Shin-ichi

    2014-01-01

    Aromatase inhibitors (AIs) exert antiproliferative effects by reducing local estrogen production from androgens in postmenopausal women with hormone-responsive breast cancer. Previous reports have shown that androgen metabolites generated by the aromatase-independent enzymes, 5α-androstane-3β, 17β-diol (3β-diol), androst-5-ene-3β, and 17β-diol (A-diol), also activate estrogen receptor (ER) α. Estradiol (E2) can also reportedly be generated from estrone sulfate (E1S) pooled in the plasma. Estrogenic steroid-producing aromatase-independent pathways have thus been proposed as a mechanism of AI resistance. However, it is unclear whether these pathways are functional in clinical breast cancer. To investigate this issue, we assessed the transcriptional activities of ER in 45 ER-positive human breast cancers using the adenovirus estrogen-response element-green fluorescent protein assay and mRNA expression levels of the ER target gene, progesterone receptor, as indicators of ex vivo and in vivo ER activity, respectively. We also determined mRNA expression levels of 5α-reductase type 1 (SRD5A1) and 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD type 1; HSD3B1), which produce 3β-diol from androgens, and of steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD type 1; HSD17B1), which produce E2 or A-diol from E1S or dehydroepiandrosterone sulfate. SRD5A1 and HSD3B1 expression levels were positively correlated with ex vivo and in vivo ER activities. STS and HSD17B1 expression levels were positively correlated with in vivo ER activity alone. Elevated expression levels of these steroid-metabolizing enzymes in association with high in vivo ER activity were particularly notable in postmenopausal patients. Analysis of the expression levels of steroid-metabolizing enzymes revealed positive correlations between SRD5A1 and HSD3B1, and STS and HSD17B1. These findings suggest that the SRD5A1-HSD3B1 as well as the STS-HSD17B pathways, could contributes

  10. Variation in metabolic responses to meal challenges differing in glycemic index in healthy women: Is it meaningful?

    PubMed Central

    2012-01-01

    Background Established clinical tests are commonly used in disease diagnosis, but tools that enhance identification of metabolic dysfunctions are needed. This study was conducted to identify typical and atypical metabolite temporal patterns in response to paired meal challenge tests. Design Metabolic responses to high and low glycemic index (GI) meals were tested in 24 healthy pre-menopausal women, aged 20-50 y, with BMI of 25-30 kg/m2 using a cross-over design. On test days, blood glucose, insulin, leptin and non-esterified fatty acids were measured after an overnight fasting, and for 8 h following test meal consumption. The data were range scaled, and multivariate statistics were used to assess the presence of distinct response groups to the meal challenge tests. Results As expected, participants showed higher circulating glucose and insulin in response to the high GI compared to the low GI meal challenge. However, using range-scaling and Principal Component Analysis, three distinct groups were identified based on differential responses to the paired challenges. Members of the most populated group (n = 18) displayed little deviation from the expected response to the two meal challenges. Two minor groups (n = 3/group) with distinct responses were observed, one suggestive of sub-clinical insulin resistance, and the other suggestive of hyperleptinemia. Conclusions The differential responses of glucose, insulin and leptin to low and high glycemic test meals revealed three response groups. Dietary intervention studies traditionally evaluate group responses, and aim to identify the overall effect in the population studied. In contrast, our study analyzed the variance in the meal challenge responses, using an integrated physiological approach, rather than a reductionist approach. This phenotyping approach may be useful for detecting subclinical metabolic dysfunctions, and it could contribute to improved personalized nutrition management. This study is registered in

  11. Effect of carbohydrate feeding on the bone metabolic response to running.

    PubMed

    Sale, Craig; Varley, Ian; Jones, Thomas W; James, Ruth M; Tang, Jonathan C Y; Fraser, William D; Greeves, Julie P

    2015-10-01

    Bone resorption is increased after running, with no change in bone formation. Feeding during exercise might attenuate this increase, preventing associated problems for bone. This study investigated the immediate and short-term bone metabolic responses to carbohydrate (CHO) feeding during treadmill running. Ten men completed two 7-day trials, once being fed CHO (8% glucose immediately before, every 20 min during, and immediately after exercise at a rate of 0.7 g CHO · kg body mass(-1) · h(-1)) and once being fed placebo (PBO). On day 4 of each trial, participants completed a 120-min treadmill run at 70% of maximal oxygen consumption (V̇o2 max). Blood was taken at baseline (BASE), immediately after exercise (EE), after 60 (R1) and 120 (R2) min of recovery, and on three follow-up days (FU1-FU3). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (β-CTX)] and formation [NH2-terminal propeptides of procollagen type 1 (P1NP)] were measured, along with osteocalcin (OC), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate, glucagon-like peptide-2 (GLP-2), interleukin-6 (IL-6), insulin, cortisol, leptin, and osteoprotogerin (OPG). Area under the curve was calculated in terms of the immediate (BASE, EE, R1, and R2) and short-term (BASE, FU1, FU2, and FU3) responses to exercise. β-CTX, P1NP, and IL-6 responses to exercise were significantly lower in the immediate postexercise period with CHO feeding compared with PBO (β-CTX: P = 0.028; P1NP: P = 0.021; IL-6: P = 0.036), although there was no difference in the short-term response (β-CTX: P = 0.856; P1NP: P = 0.721; IL-6: P = 0.327). No other variable was significantly affected by CHO feeding during exercise. We conclude that CHO feeding during exercise attenuated the β-CTX and P1NP responses in the hours but not days following exercise, indicating an acute effect of CHO feeding on bone turnover.

  12. Metabolic response of normal man and insulin-infused diabetics to postprandial exercise.

    PubMed

    Nelson, J D; Poussier, P; Marliss, E B; Albisser, A M; Zinman, B

    1982-05-01

    Physical exercise is often performed during absorption of meals. We have characterized the metabolic response to 45 min of moderate exercise (approximately 55% of estimated maximal oxygen uptake) beginning 30 min after breakfast in seven healthy controls. Nine insulin-dependent diabetes were studied in an identical manner, with glycemia controlled by a closed-loop "artificial endocrine pancreas" controlled by a closed-loop "artificial endocrine pancreas" (AEP). Responses were compared to those during breakfast without exercise. In the controls, onset of exercise rapidly reversed the rise in both glycemia and insulin (IRI) that occurred with breakfast alone, both returning to fasting levels (glycemia, 80 +/- 3 mg/dl; IRI, 0.38 +/- 0.10 ng/ml). After exercise, small and transient increments occurred (glycemia, 33 +/- 6 mg/dl; IRI, 0.81 +/- 0.15 ng/ml). In the diabetics, prior overnight intravenous insulin normalized fasting glycemia (98 +/- 4 mg/dl), and its postbreakfast excursion was identical to that of controls, as were those of most measured substrates. Similarly, with exercise, glycemia returned rapidly to fasting levels, accompanied by an appropriate decrease in insulin infusion rates. "Free" IRI levels mirrored changes in infusion rates by the AEP, with a decrease in insulin requirement of 30% during exercise as compared to breakfast alone (P less than 0.05). Thus, in both diabetics treated with the AEP and in normals, the responses to postprandial exercise required rapid modulation of insulin delivery. To demonstrate the effect of postprandial exercise on preprogrammed open-loop insulin replacement, four diabetic subjects were studied during breakfast with and without exercise while receiving a fixed open-loop insulin infusion pattern (6.1 +/- 0.7 U over 140 +/- 8 min). The glycemic response to breakfast alone was entirely normalized. However, symptomatic hypoglycemia occurred in all subjects when exercise was initiated 30 min after breakfast. The diabetic

  13. Transcriptomic and proteomic responses of Serratia marcescens to spaceflight conditions involve large-scale changes in metabolic pathways

    NASA Astrophysics Data System (ADS)

    Wang, Yajuan; Yuan, Yanting; Liu, Jinwen; Su, Longxiang; Chang, De; Guo, Yinghua; Chen, Zhenhong; Fang, Xiangqun; Wang, Junfeng; Li, Tianzhi; Zhou, Lisha; Fang, Chengxiang; Yang, Ruifu; Liu, Changting

    2014-04-01

    The microgravity environment of spaceflight expeditions has been associated with altered microbial responses. This study explores the characterization of Serratia marcescensis grown in a spaceflight environment at the phenotypic, transcriptomic and proteomic levels. From November 1, 2011 to November 17, 2011, a strain of S. marcescensis was sent into space for 398 h on the Shenzhou VIII spacecraft, and ground simulation was performed as a control (LCT-SM213). After the flight, two mutant strains (LCT-SM166 and LCT-SM262) were selected for further analysis. Although no changes in the morphology, post-culture growth kinetics, hemolysis or antibiotic sensitivity were observed, the two mutant strains exhibited significant changes in their metabolic profiles after exposure to spaceflight. Enrichment analysis of the transcriptome showed that the differentially expressed genes of the two spaceflight strains and the ground control strain mainly included those involved in metabolism and degradation. The proteome revealed that changes at the protein level were also associated with metabolic functions, such as glycolysis/gluconeogenesis, pyruvate metabolism, arginine and proline metabolism and the degradation of valine, leucine and isoleucine. In summary S. marcescens showed alterations primarily in genes and proteins that were associated with metabolism under spaceflight conditions, which gave us valuable clues for future research.

  14. Taking their breath away: metabolic responses to low-oxygen levels in anchialine shrimps (Crustacea: Atyidae and Alpheidae).

    PubMed

    Havird, Justin C; Vaught, Rebecca C; Weeks, Jeffrey R; Fujita, Yoshihisa; Hidaka, Michio; Santos, Scott R; Henry, Raymond P

    2014-12-01

    Crustaceans generally act as oxy-regulators, maintaining constant oxygen uptake as oxygen partial pressures decrease, but when a critical low level is reached, ventilation and aerobic metabolism shut down. Cave-adapted animals, including crustaceans, often show a reduced metabolic rate possibly owing in part to the hypoxic nature of such environments. However, metabolic rates have not been thoroughly explored in crustaceans from anchialine habitats (coastal ponds and caves), which can experience variable oxygenic regimes. Here, an atypical oxy-conforming pattern of oxygen uptake is reported in the Hawaiian anchialine atyid Halocaridina rubra, along with other unusual metabolic characteristics. Ventilatory rates are near-maximal in normoxia and did not increase appreciably as PO₂ declined, resulting in a decline in VO₂ during progressive hypoxia. Halocaridina rubra maintained in anoxic waters survived for seven days (the duration of the experiment) with no measureable oxygen uptake, suggesting a reliance on anaerobic metabolism. Supporting this, lactate dehydrogenase activity was high, even in normoxia, and oxygen debts were quickly repaid by an unusually extreme increase in oxygen uptake upon exposure to normoxia. In contrast, four related anchialine shrimp species from the Ryukyu Islands, Japan, exhibited physiological properties consistent with previously studied crustaceans. The unusual respiratory patterns found in H. rubra are discussed in the context of a trade-off in gill morphology for osmoregulatory ion transport vs. diffusion of respiratory gasses. Future focus on anchialine species may offer novel insight into the diversity of metabolic responses to hypoxia and other physiological challenges experienced by crustaceans.

  15. A single transcription factor regulates evolutionarily diverse but functionally linked metabolic pathways in response to nutrient availability.

    PubMed

    Schmid, Amy K; Reiss, David J; Pan, Min; Koide, Tie; Baliga, Nitin S

    2009-01-01

    During evolution, enzyme-coding genes are acquired and/or replaced through lateral gene transfer and compiled into metabolic pathways. Gene regulatory networks evolve to fine tune biochemical fluxes through such metabolic pathways, enabling organisms to acclimate to nutrient fluctuations in a competitive environment. Here, we demonstrate that a single TrmB family transcription factor in Halobacterium salinarum NRC-1 globally coordinates functionally linked enzymes of diverse phylogeny in response to changes in carbon source availability. Specifically, during nutritional limitation, TrmB binds a cis-regulatory element to activate or repress 113 promoters of genes encoding enzymes in diverse metabolic pathways. By this mechanism, TrmB coordinates the expression of glycolysis, TCA cycle, and amino-acid biosynthesis pathways with the biosynthesis of their cognate cofactors (e.g. purine and thiamine). Notably, the TrmB-regulated metabolic network includes enzyme-coding genes that are uniquely archaeal as well as those that are conserved across all three domains of life. Simultaneous analysis of metabolic and gene regulatory network architectures suggests an ongoing process of co-evolution in which TrmB integrates the expression of metabolic enzyme-coding genes of diverse origins.

  16. Metabolic and Transcriptional Analysis of Durum Wheat Responses to Elevated CO2 at Low and High Nitrate Supply.

    PubMed

    Vicente, Rubén; Pérez, Pilar; Martínez-Carrasco, Rafael; Feil, Regina; Lunn, John E; Watanabe, Mutsumi; Arrivault, Stephanie; Stitt, Mark; Hoefgen, Rainer; Morcuende, Rosa

    2016-10-01

    Elevated [CO2] (eCO2) can lead to photosynthetic acclimation and this is often intensified by low nitrogen (N). Despite intensive studies of plant responses to eCO2, the regulation mechanism of primary metabolism at the whole-plant level in interaction with [Formula: see text] supply remains unclear. We examined the metabolic and transcriptional responses triggered by eCO2 in association with physiological-biochemical traits in flag leaves and roots of durum wheat grown hydroponically in ambient and elevated [CO2] with low (LN) and high (HN) [Formula: see text] supply. Multivariate analysis revealed a strong interaction between eCO2 and [Formula: see text] supply. Photosynthetic acclimation induced by eCO2 in LN plants was accompanied by an increase in biomass and carbohydrates, and decreases of leaf organic N per unit area, organic acids, inorganic ions, Calvin-Benson cycle intermediates, Rubisco, nitrate reductase activity, amino acids and transcripts for N metabolism, particularly in leaves, whereas [Formula: see text] uptake was unaffected. In HN plants, eCO2 did not decrease photosynthetic capacity or leaf organic N per unit area, but induced transcripts for N metabolism, especially in roots. In conclusion, the photosynthetic acclimation in LN plants was associated with an inhibition of leaf [Formula: see text] assimilation, whereas up-regulation of N metabolism in roots could have mitigated the acclimatory effect of eCO2 in HN plants.

  17. Leaf responses of micropropagated apple plants to water stress: nonstructural carbohydrate composition and regulatory role of metabolic enzymes.

    PubMed

    Li, Tian H; Li, Shao H

    2005-04-01

    We examined changes in nonstructural carbohydrate biosynthesis and activities of related enzymes in leaves of micropropagated apple plants (Malus domestica Borkh. cv. 'NaganoFuji') in response to water stress, with particular emphasis on the enzymes associated with sorbitol, sucrose and starch metabolism. Water stress resulted in the accumulation of photosynthates in leaves, mainly sorbitol, sucrose, glucose and fructose, accompanied by a reduction in starch concentration. Correlation and path analysis indicated that water stress affected the partitioning of newly fixed carbon among terminal products. In response to water stress, ADP-glucose-pyrophosphorylase (ADPGPPase) activity decreased, becoming a critical and limiting step in shifting partitioning of photosynthetically fixed carbon. Amylase and ADPGPPase affected sucrose and sorbitol metabolism, mainly by regulating substrate supply; however, competition for limited substrate had a greater effect on the biosynthesis of sorbitol than of sucrose. Starch metabolism was also strictly regulated by ADPGPPase and amylase, whereas other related enzymes were downstream of the pathway for synthesis and degradation of carbohydrates and thus had relatively little effect on starch metabolism. Sorbitol dehydrogenase and sucrose phosphate synthase were critical regulators of sorbitol and sucrose metabolism, respectively.

  18. Metabolomics reveals differences in postprandial responses to breads and fasting metabolic characteristics associated with postprandial insulin demand in postmenopausal women.

    PubMed

    Moazzami, Ali A; Shrestha, Aahana; Morrison, David A; Poutanen, Kaisa; Mykkänen, Hannu

    2014-06-01

    Changes in serum metabolic profile after the intake of different food products (e.g., bread) can provide insight into their interaction with human metabolism. Postprandial metabolic responses were compared after the intake of refined wheat (RWB), whole-meal rye (WRB), and refined rye (RRB) breads. In addition, associations between the metabolic profile in fasting serum and the postprandial concentration of insulin in response to different breads were investigated. Nineteen postmenopausal women with normal fasting glucose and normal glucose tolerance participated in a randomized, controlled, crossover meal study. The test breads, RWB (control), RRB, and WRB, providing 50 g of available carbohydrate, were each served as a single meal. The postprandial metabolic profile was measured using nuclear magnetic resonance and targeted LC-mass spectrometry and was compared between different breads using ANOVA and multivariate models. Eight amino acids had a significant treatment effect (P < 0.01) and a significant treatment × time effect (P < 0.05). RWB produced higher postprandial concentrations of leucine (geometric mean: 224; 95% CI: 196, 257) and isoleucine (mean ± SD: 111 ± 31.5) compared with RRB (geometric mean: 165; 95% CI: 147, 186; mean ± SD: 84.2 ± 22.9) and WRB (geometric mean: 190; 95% CI: 174, 207; mean ± SD: 95.8 ± 17.3) at 60 min respectively (P < 0.001). In addition, 2 metabolic subgroups were identified using multivariate models based on the association between fasting metabolic profile and the postprandial concentration of insulin. Women with higher fasting concentrations of leucine and isoleucine and lower fasting concentrations of sphingomyelins and phosphatidylcholines had higher insulin responses despite similar glucose concentration after all kinds of bread (cross-validated ANOVA, P = 0.048). High blood concentration of branched-chain amino acids, i.e., leucine and isoleucine, has been associated with the increased risk of diabetes, which

  19. Douglas-Fir Seedlings Exhibit Metabolic Responses to Increased Temperature and Atmospheric Drought

    PubMed Central

    Jansen, Kirstin; Du, Baoguo; Kayler, Zachary; Siegwolf, Rolf; Ensminger, Ingo; Rennenberg, Heinz; Kammerer, Bernd; Jaeger, Carsten; Schaub, Marcus; Kreuzwieser, Jürgen; Gessler, Arthur

    2014-01-01

    In the future, periods of strongly increased temperature in concert with drought (heat waves) will have potentially detrimental effects on trees and forests in Central Europe. Norway spruce might be at risk in the future climate of Central Europe. However, Douglas-fir is often discussed as an alternative for the drought and heat sensitive Norway spruce, because some provenances are considered to be well adapted to drier and warmer conditions. In this study, we identified the physiological and growth responses of seedlings from two different Douglas-fir provenances to increased temperature and atmospheric drought during a period of 92 days. We analysed (i) plant biomass, (ii) carbon stable isotope composition as an indicator for time integrated intrinsic water use efficiency, (iii) apparent respiratory carbon isotope fractionation as well as (iv) the profile of polar low molecular metabolites. Plant biomass was only slightly affected by increased temperatures and atmospheric drought but the more negative apparent respiratory fractionation indicated a temperature-dependent decrease in the commitment of substrate to the tricarboxylic acid cycle. The metabolite profile revealed that the simulated heat wave induced a switch in stress protecting compounds from proline to polyols. We conclude that metabolic acclimation successfully contributes to maintain functioning and physiological activity in seedlings of both Douglas-fir provenances under conditions that are expected during heat waves (i.e. elevated temperatures and atmospheric drought). Douglas-fir might be a potentially important tree species for forestry in Central Europe under changing climatic conditions. PMID:25436455

  20. Sex‐specific responses of bone metabolism and renal stone risk during bed rest

    PubMed Central

    Morgan, Jennifer L. L.; Heer, Martina; Hargens, Alan R.; Macias, Brandon R.; Hudson, Edgar K.; Shackelford, Linda C.; Zwart, Sara R.; Smith, Scott M.

    2014-01-01

    Abstract The purpose of this study was to directly assess sex differences in bone loss, bone biochemistry, and renal stone risk in bed rest. Bed rest simulates some spaceflight effects on human physiology and can be used to address the potential existence of sex‐specific effects on bone metabolism and renal stone risk in space. We combined data from the control subjects in five head‐down‐tilt bed rest studies (combined n = 50 men, 24 women) of differing durations (14–90 days). All subjects were healthy volunteers. Mean age was 35 ± 9 years for women and 33 ± 8 years for men. The main outcome measures were bone density and biochemistry, and renal stone risk chemistry. Before bed rest began, men had higher bone mineral density and content (P < 0.001), and excreted more biomarkers of bone resorption and calcium per day than did women (P < 0.05). These differences remained during bed rest. A number of urine chemistry analytes increased (e.g., calcium) or decreased (e.g., sodium, citrate, and urine volume) significantly for men and women during bed rest. These changes may predispose men to higher stone risk. Men and women do not have substantially different responses to the skeletal unloading of bed rest. PMID:25107989

  1. Effects of verapamil and elgodipine on isoprenaline-induced metabolic responses in rabbits.

    PubMed

    García-Barrado, M J; Sancho, C; Iglesias-Osma, M C; Moratinos, J

    2001-03-09

    Verapamil (0.17 microg kg(-1) min(-1) intravenous, i.v.) but not elgodipine (35 ng kg(-1) min(-1)) modestly enhanced the weak blood glucose increase induced by the i.v. infusion of isoprenaline (0.3 microg kg(-1) min(-1)) in conscious rabbits. However, elgodipine but not verapamil suppressed the increase in circulating insulin evoked by the agonist. Both drugs enhanced the rise in plasma lactate mediated by isoprenaline but only elgodipine potentiated the lipolytic effect of the agonist. In isolated islets elgodipine (10(-6) M) blocked forskolin (10(-6) M)-induced insulin release. However, in rabbit adipocytes elgodipine potentiated both glycerol release and cAMP accumulation induced by isoprenaline (10(-8)-10(-6) M). Excess K(+) (40-60 mM) did not alter basal lipolysis or the response to isoprenaline in either rabbit or mouse adipocytes. Therefore, Ca2+ influx through L-type Ca2+ channels does not seem to play a significant role in the lipolytic effect of isoprenaline. Metabolic alterations found with Ca2+ channel antagonists were of minor intensity and probably devoid of pathological implications.

  2. Douglas-fir seedlings exhibit metabolic responses to increased temperature and atmospheric drought.

    PubMed

    Jansen, Kirstin; Du, Baoguo; Kayler, Zachary; Siegwolf, Rolf; Ensminger, Ingo; Rennenberg, Heinz; Kammerer, Bernd; Jaeger, Carsten; Schaub, Marcus; Kreuzwieser, Jürgen; Gessler, Arthur

    2014-01-01

    In the future, periods of strongly increased temperature in concert with drought (heat waves) will have potentially detrimental effects on trees and forests in Central Europe. Norway spruce might be at risk in the future climate of Central Europe. However, Douglas-fir is often discussed as an alternative for the drought and heat sensitive Norway spruce, because some provenances are considered to be well adapted to drier and warmer conditions. In this study, we identified the physiological and growth responses of seedlings from two different Douglas-fir provenances to increased temperature and atmospheric drought during a period of 92 days. We analysed (i) plant biomass, (ii) carbon stable isotope composition as an indicator for time integrated intrinsic water use efficiency, (iii) apparent respiratory carbon isotope fractionation as well as (iv) the profile of polar low molecular metabolites. Plant biomass was only slightly affected by increased temperatures and atmospheric drought but the more negative apparent respiratory fractionation indicated a temperature-dependent decrease in the commitment of substrate to the tricarboxylic acid cycle. The metabolite profile revealed that the simulated heat wave induced a switch in stress protecting compounds from proline to polyols. We conclude that metabolic acclimation successfully contributes to maintain functioning and physiological activity in seedlings of both Douglas-fir provenances under conditions that are expected during heat waves (i.e. elevated temperatures and atmospheric drought). Douglas-fir might be a potentially important tree species for forestry in Central Europe under changing climatic conditions.

  3. Functional optical coherence imaging of tumor response to a metabolic electron transport inhibitor

    NASA Astrophysics Data System (ADS)

    Jeong, Kwan; Turek, J. J.; Nolte, D. D.

    2006-02-01

    The post-genomic promise of a plethora of new therapeutic drugs has remained largely unfulfilled because of two principal bottlenecks: insufficient high-throughput drug toxicity assays, and acceptable in vitro surrogates to in vivo testing. In this paper, we report coherence-domain functional imaging of bulk tissue response to drug toxicity using cellular motility as both a contrast agent for imaging and as a biomarker for metabolic activity. Osteogenic sarcoma tumor spheroids treated with sodium azide exhibit a rapid onset of increased cellular motility, followed by cellular exhaustion. This behavior correlates with the known biological progression of azide poisoning. These specific findings for azide poisoning are relevant in general because of the common action of many drug candidates on the same oxidative phosphorylation pathways affected by azide. Furthermore, azide poisoning is generally representative of hypoxia, including ischemic hypoxia, which is the most common cause of tissue damage in disease and trauma. The OCI motility mapping technique could therefore introduce a new and general approach to the study of toxicity and pathology in vitro.

  4. Effects of Different Intensities of Endurance Exercise in Morning and Evening on the Lipid Metabolism Response

    PubMed Central

    Kim, Hyeon-Ki; Ando, Karina; Tabata, Hiroki; Konishi, Masayuki; Takahashi, Masaki; Nishimaki, Mio; Xiang, Mi; Sakamoto, Shizuo

    2016-01-01

    To study the effects of different exercise intensity performed at different exercise times on lipid metabolism response during prolonged exercise. Nine young men performed endurance exercise at different exercise intensities (60%VO2max or Fatmax) in the morning (9 am to 10 am) or evening (5 pm to 6 pm); blood samples were collected before exercise and immediately and one and two hours after exercise completion. Expired gas was analyzed from the start of exercise until two hours after exercise completion. There were no significant changes in catecholamine (adrenaline and noradrenaline) and free fatty acid levels between morning and evening trials for each endurance exercise intensity. However, the morning and evening trials both exhibited significantly higher lipid oxidation at Fatmax than that at 60%VO2max. These results suggest that exercise at Fatmax offers greater lipid oxidation than that at 60%VO2max, regardless of exercise timing. Key points It is important to consider exercise intensity when evaluating lipid oxidation. Few studies have investigated the effects of the intensity of exercise on lipid oxidation in the morning and evening. Fatmax exhibited greater total lipid oxidation compared to that of 60%VO2max when energy expenditure was equated, but time of day did not affect lipid oxidation in prolonged exercise. PMID:27803625

  5. Cross-talk between carbon metabolism and the DNA damage response in S. cerevisiae

    PubMed Central

    Simpson-Lavy, Kobi J.; Bronstein, Alex; Kupiec, Martin; Johnston, Mark

    2015-01-01

    Yeast cells with DNA damage avoid respiration, presumably because products of oxidative metabolism can be harmful to DNA. We show that DNA damage inhibits the activity of the Snf1 (AMP-activated) protein kinase (AMPK), which activates expression of genes required for respiration. Glucose and DNA damage upregulate SUMOylation of Snf1, catalyzed by the SUMO E3-ligase Mms21, which inhibits SNF1 activity. The DNA damage checkpoint kinases Mec1/ATR and Tel1/ATM, as well as the nutrient sensing protein kinase A (PKA), regulate Mms21 activity towards Snf1. Mec1 and Tel1 are required for two SNF1-regulated processes—glucose sensing and ADH2 gene expression—even without exogenous genotoxic stress. Our results imply that inhibition of Snf1 by SUMOylation is a mechanism by which cells lower their respiration in response to DNA damage. This raises the possibility that activation of DNA damage checkpoint mechanisms could contribute to aerobic fermentation (Warburg effect), a hallmark of cancer cells. PMID:26344768

  6. Metabolic pathways reconstruction by frequency and amplitude response to forced glycolytic oscillations in yeast.

    PubMed

    Zimmerman, William B

    2005-10-05

    The hypothesis that frequency and amplitude response can be used in a complicated metabolic pathway kinetics model for optimal parameter estimation, as speculated by its successful prior usage for a mechanical oscillator and a heterogeneous chemical system, is tested here. Given the complexity of the glycolysis model of yeast chosen, this question is limited to three kinetics parameters of the 87 in the in vitro model developed in the literature. The direct application of the approach, used with the uninformed selection of operating conditions for the oscillation of external glucose concentration, led to miring the data assimilation process in local minima. Application of linear systems theory, however, identified two natural resonant frequencies that, when excited by external forced oscillations of the same frequency, result in the expression of many harmonics in the Fourier spectra, that is, information-rich experiments. A single such information-rich experiment at one of the resonant frequencies was sufficient to break away from the local minima to find the optimum kinetics parameter estimates. The resonant frequencies themselves represent oscillation modes in glycolysis akin to those previously observed. Furthermore, operation of the bioreactor with large amplitude oscillations of glucose feed (25%) leads to enhanced ethanol average yield by 1.6% at the resonant frequency.

  7. Metabolic responses in root nodules of Phaseolus vulgaris and Vicia sativa exposed to the imazamox herbicide.

    PubMed

    García-Garijo, A; Tejera, N A; Lluch, C; Palma, F

    2014-05-01

    Alterations on growth, amino acids metabolism and some antioxidant enzyme activities as result of imazamox treatment were examined in determinate and indeterminate nodules, formed by Phaseolus vulgaris and Vicia sativa, respectively. Young seedlings of both legumes were inoculated with their respective microsymbionts and grown under controlled conditions. At vegetative growth, plants were treated with imazamox (250μM) in the nutrient solution and harvested 7days after. Imazamox was mainly accumulated in V. sativa where concentrations were more than six fold higher than those detected in P. vulgaris. Nodule dry weight and total nitrogen content were reduced by the herbicide treatment: the highest decrease of nodule biomass (50%) and nitrogen content (40%) were registered in V. sativa and P. vulgaris, respectively. The concentration of branched-chain amino acids (BCAA) did not change in neither determinate nor indeterminate nodules even though the acetohydroxyacid synthase activity decreased in root and nodules of both symbioses with the herbicide application. Based on this last result and taking into account that total free amino acids increased in roots but not in nodules of common vetch, a possible BCAA translocation from root to nodule could occur. Our results suggest that the maintenance of BCAA balance in nodule become a priority for the plant in such conditions. The involvement of activities glutathione-S-transferase, guaiacol peroxidase and superoxide dismutase in the response of the symbioses to imazamox are also discussed.

  8. Metabolic responses to exercise on land and in water following glucose ingestion.

    PubMed

    Kurobe, Kazumichi; Kousaka, Ayaka; Ogita, Futoshi; Matsumoto, Naoyuki

    2016-12-26

    Although aerobic exercise after a meal decreases postprandial blood glucose, the differences in glucose response between land and aquatic exercise are unclear. Thus, we examined the effect of different modes of exercise with same energy expenditure following glucose ingestion on carbohydrate metabolism. Ten healthy sedentary men (age, 22 ± 1 years) participated in this study. All subjects performed each of three exercise modes (cycling, walking and aquatic exercise) for 30 min after ingestion of a 75-g glucose solution with 1-2 weeks between trials. The exercise intensity was set at 40% of the maximum oxygen uptake that occurred during cycling. The velocity during walking and the target heart rate during aquatic exercise were predetermined in a pretest. The plasma glucose concentration at 30 min after exercise was significantly lower with aquatic exercise compared to that with cycling and walking (P<0·05). However, there were no significant differences among the three exercise modes in respiratory exchange ratio. On the other hand, serum free fatty acid concentration with aquatic exercise was significantly higher at 120 min after exercise compared with that after walking (P<0·05). These results suggest that aquatic exercise reduces postprandial blood glucose compared with both cycling and walking with the same energy expenditure. Aquatic exercise shows potential as an exercise prescription to prevent postprandial hyperglycaemia.

  9. Metabolic response of Alicycliphilus denitrificans strain BC toward electron acceptor variation.

    PubMed

    Oosterkamp, Margreet J; Boeren, Sjef; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2013-10-01

    Alicycliphilus denitrificans is a versatile, ubiquitous, facultative anaerobic bacterium. Alicycliphilus denitrificans strain BC can use chlorate, nitrate, and oxygen as electron acceptor for growth. Cells display a prolonged lag-phase when transferred from nitrate to chlorate and vice versa. Furthermore, cells adapted to aerobic growth do not easily use nitrate or chlorate as electron acceptor. We further investigated these responses of strain BC by differential proteomics, transcript analysis, and enzyme activity assays. In nitrate-adapted cells transferred to chlorate and vice versa, appropriate electron acceptor reduction pathways need to be activated. In oxygen-adapted cells, adaptation to the use of chlorate or nitrate is likely difficult due to the poorly active nitrate reduction pathway and low active chlorate reduction pathway. We deduce that the Nar-type nitrate reductase of strain BC also reduces chlorate, which may result in toxic levels of chlorite if cells are transferred to chlorate. Furthermore, the activities of nitrate reductase and nitrite reductase appear to be not balanced when oxygen-adapted cells are shifted to nitrate as electron acceptor, leading to the production of a toxic amount of nitrite. These data suggest that strain BC encounters metabolic challenges in environments with fluctuations in the availability of electron acceptors. All MS data have been deposited in the ProteomeXchange with identifier PXD000258.

  10. Response of human skin to ultraviolet radiation: dissociation of erythema and metabolic changes following sunscreen protection

    SciTech Connect

    Pearse, A.D.; Marks, R.

    1983-03-01

    After UV irradiation of human skin there is an increase in epidermal and stratum corneum thickness and an increase in the thymidine autoradiographic labeling index. Previously we have demonstrated that persistent exposure to ultraviolet radiation (UVR) alters the distribution and activities of glucose-6-phosphate dehydrogenase (G-6-PDH) and succinic dehydrogenase (SDH) within the epidermis; G-6-PDH activity is increased over the whole epidermis and SDH activity is diminished in the granular cell area but increased in the basal layer. When skin is protected by an efficient sunscreen and irradiated with UVB, there is almost complete inhibition of the erythema normally seen following UVR exposure. In this study we have investigated the cytochemical, cell kinetic, and histometric changes that take place in the epidermis after UVB irradiation, with and without two different types of sunscreen. Some of the histometric and metabolic changes associated with UVB exposure were still evident despite sunscreen protection and the successful blocking of the erythema response. The implications of these findings are discussed together with the use of sunscreens to prevent development of solar damage.

  11. Metabolism of Albumin after Continuous Venovenous Hemofiltration in Patients with Systemic Inflammatory Response Syndrome

    PubMed Central

    Chen, Yu; Qin, Xiaodong; Li, Guanwei; Zhou, Bo; Gu, Guosheng; Hong, Zhiwu; Aa, JiYe; Li, Jieshou

    2015-01-01

    Background. The systemic inflammatory response syndrome (SIRS) is characterized by a hypercatabolic state induced by inflammatory mediators. Continuous venovenous hemofiltration (CVVH) stabilizes the internal environment but also aggravates loss of amino acids. The effect of CVVH on protein dynamics is largely unknown. We adopted the stable isotopic tracer technology to investigate how CVVH changed serum albumin metabolism. Methods. Twenty SIRS patients were randomized into low- (2000 mL/h) and high- (4000 mL/h) volume CVVH groups according to the rate of replacement fluid. Eight patients with abdominal infection matched for age, sex, and laboratory index served as controls. Consecutive arterial blood samples were drawn during a primed-constant infusion of two stable isotopes to determine the albumin fractional synthesis rate (FSR) and fractional breakdown rate (FBR). Results. Before treatment, there was no significant difference of FSR and FBR among 3 groups. After CVVH, the albumin FSR in high- and low-volume groups was 7.75 ± 1.08% and 7.30 ± 0.89%, respectively, both higher than in the control (5.83 ± 0.94%). There was no significant difference in albumin FBR after treatment. Conclusions. Protein dynamic indicators could reflect protein synthesis and breakdown state directly and effectively. CVVH increased albumin synthesis, while the breakdown rate remained at a high level independently of the CVVH rate. PMID:25650044

  12. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism

    PubMed Central

    Yang, Wei; Bai, Yibing; Xiong, Ying; Zhang, Jin; Chen, Shuokai; Zheng, Xiaojun; Meng, Xiangbo; Li, Lunyi; Wang, Jing; Xu, Chenguang; Yan, Chengsong; Wang, Lijuan; Chang, Catharine C. Y.; Chang, Ta-Yuan; Zhang, Ti; Zhou, Penghui; Song, Bao-Liang; Liu, Wanli; Sun, Shao-cong; Liu, Xiaolong; Li, Bo-liang; Xu, Chenqi

    2016-01-01

    CD8+ T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment1–4. Reactivating the cytotoxicity of CD8+ T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8+ T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme5, led to potentiated effector function and enhanced proliferation of CD8+ but not CD4+ T cells. This is due to the increase in the plasma membrane cholesterol level of CD8+ T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8+ T cells were better than wild-type CD8+ T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile6,7, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy. PMID:26982734

  13. Cardiorespiratory and metabolic responses associated with children's physical activity during self-paced games.

    PubMed

    Belcastro, Angelo N; Morrison, Katherine S; Hicks, Emma; Matta, Helin

    2012-09-01

    The aim of this study was to explore the possibility of identifying clusters of children's games based on estimated energy expenditures and (or) intensity when performed in a guided active play format. The study also investigated whether the identified active play game clusters were repeatable when the games were performed on different days. Children (9.7 ± 1.1 years; n = 12) were assessed for oxygen consumption, heart rate, energy expenditure (EE), and metabolic equivalent (MET) on a treadmill (at 4, 6, and 8 km·h(-1) (0% grade)). HR and ActiGraph GT1M accelerometer (ACC) generated linear regression equations were used to estimate EE. The ACC (3 s epochs) were used for estimating METs in assigning percent time at medium-vigorous physical activity (%MVPA) of 10 self-paced games. The results showed a consistent range of EEs (ACC-equation) from 13.57 kcal·(5 min)(-1) to 25.00 kcal·(5 min)(-1) (p < 0.05); EEs (HR-equation) from 29.72 to 42.49 kcal·(5 min)(-1) (p < 0.05); and %MVPA from 10% to 34% (p < 0.05) (from ACC equations) across all games. These were reproducible from day to day (p > 0.05). This study confirms the existence of active play children's game clusters that might be useful in formatting guided active play in a dose-response manner for children.

  14. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions

    PubMed Central

    Briand, Enora; Bormans, Myriam; Gugger, Muriel; Dorrestein, Pieter C.; Gerwick, William H.

    2016-01-01

    Summary The cyanobacteria Microcystis proliferate in freshwater ecosystems and produce bioactive compounds including the harmful toxins microcystins (MC). These secondary metabolites play an important role in shaping community composition through biotic interactions although their role and mode of regulation are poorly understood. As natural cyanobacterial populations include producing and non-producing strains, we tested if the production of a range of peptides by coexisting cells could be regulated through intraspecific interactions. With an innovative co-culturing chamber together with advanced mass spectrometry (MS) techniques, we monitored the growth and compared the metabolic profiles of a MC-producing as well as two non-MC-producing Microcystis strains under mono- and co-culture conditions. In monocultures, these strains grew comparably; however, the non-MC-producing mutant produced higher concentrations of cyanopeptolins, aerucyclamides and aeruginosins than the wild type. Physiological responses to co-culturing were reflected in a quantitative change in the production of the major peptides. Using a MS/MS-based molecular networking approach, we identified new analogues of known classes of peptides as well as new compounds. This work provides new insights into the factors that regulate the production of MC and other secondary metabolites in cyanobacteria, and suggests interchangeable or complementary functions allowing bloom-forming cyanobacteria to efficiently colonize and dominate in fluctuating aquatic environments. PMID:25980449

  15. Expression profile of early estradiol-responsive genes in cynomolgus macaque liver: implications for drug-metabolizing enzymes.

    PubMed

    Ise, Ryota; Kito, Go; Uno, Yasuhiro

    2012-01-01

    Estrogen plays important roles in estrogen-responsive tissues, such as mammary glands, ovaries, and the uterus. In the liver, the major drug metabolizing organ, estrogen is known to regulate expression of some drug-metabolizing enzymes. Due to the lack of information on the role of estrogen in hepatic gene expression in primate species, we previously investigated the late response of hepatic gene expression to estradiol in cynomolgus macaques. To understand the early response of hepatic gene expression to estradiol, in this study, microarray analysis was conducted using cynomolgus macaque liver samples collected at 1 h and 5 h after estradiol injection. Comparison of expression profiles in estradiol and solvent (control)-treated ovariectomized cynomolgus macaques revealed 27 differentially expressed genes (>2.0-fold), including 18 at 1 h and 9 at 5 h after estradiol injection. As indicated by Gene Ontology analysis, these genes were related to oxidoreductase activity and transferase activity, partly representing important aspects of drug-metabolizing enzymes. Further analysis by quantitative polymerase chain reaction revealed that estradiol down-regulated CYP2A24, CYP2C76, and CYP2E1 (>2.0-fold) at 1 h and up-regulated GSTM5 (>2.0-fold) at 5 h after estradiol injection. These results suggest that the short-term estradiol treatment influenced expression of hepatic genes, including drug-metabolizing enzyme genes, in cynomolgus macaque liver.

  16. Oxygen uptake and blood metabolic responses to a 400-m run.

    PubMed

    Hanon, Christine; Lepretre, Pierre-Marie; Bishop, David; Thomas, Claire

    2010-05-01

    This study aimed to investigate the oxygen uptake and metabolic responses during a 400-m run reproducing the pacing strategy used in competition. A portable gas analyser was used to measure the oxygen uptake (VO2) of ten specifically trained runners racing on an outdoor track. The tests included (1) an incremental test to determine maximal VO2 (VO2max) and the velocity associated with VO2(max) (v - VO2max), (2) a maximal 400-m (400T) and 3) a 300-m running test (300T) reproducing the exact pacing pattern of the 400T. Blood lactate, bicarbonate concentrations [HCO3(-)], pH and arterial oxygen saturation were analysed at rest and 1, 4, 7, 10 min after the end of the 400 and 300T. The peak VO2 recorded during the 400T corresponded to 93.9 +/- 3.9% of VO2max and was reached at 24.4 +/- 3.2 s (192 +/- 22 m). A significant decrease in VO2 (P < 0.05) was observed in all subjects during the last 100 m, although the velocity did not decrease below v - VO2max. The VO2 in the last 5 s was correlated with the pH (r = 0.86, P < 0.0005) and [HCO3(-)] (r = 0.70, P < 0.05) measured at the end of 300T. Additionally, the velocity decrease observed in the last 100 m was inversely correlated with [HCO3(-)] and pH at 300T (r = -0.83, P < 0.001, r = -0.69, P < 0.05, respectively). These track running data demonstrate that acidosis at 300 m was related to both the VO2 response and the velocity decrease during the final 100 m of a 400-m run.

  17. Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature.

    PubMed

    Seebacher, F; Sparrow, J; Thompson, M B

    2004-04-01

    Fluctuations in the thermal environment may elicit different responses in animals: migration to climatically different areas, regulation of body temperature, modification of biochemical reaction rates, or assuming a state of dormancy. Many ectothermic reptiles are active over a range of body temperatures that vary seasonally. Here we test the hypothesis that metabolic enzyme activity acclimatises seasonally in freshwater turtles (Chelodina longicollis) in addition to, or instead of, behavioural regulation of body temperatures. We measured body temperatures in free-ranging turtles (n = 3) by radiotelemetry, and we assayed phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities in early autumn (March, n = 10 turtles), late autumn (May, n = 7) and mid-winter (July, n = 7) over a range of assay temperatures (10 degrees C, 15 degrees C, 20 degrees C, 25 degrees C). Body temperatures were either not different from, or higher than expected from a theoretical null-distribution of a randomly moving animal. Field body temperatures at any season were lower, however, than expected from animals that maximised their sun exposure. Turtles maintained constant PFK, LDH and CCO activities in different months, despite body temperature differences of nearly 13.0 degrees C between March (average daily body temperature = 24.4 degrees C) and July (average = 11.4 degrees C). CS activity did not vary between March and May (average daily body temperature = 20.2 degrees C), but it decreased in July. Thus C. longicollis use a combination of behavioural thermoregulation and biochemical acclimatisation in response to seasonally changing thermal conditions. Ectothermic reptiles were often thought not to acclimatise biochemically, and our results show that behavioural attainment of a preferred body temperature is not mandatory for activity or physiological performance in turtles.

  18. Acute metabolic responses to a 24-h ultra-marathon race in male amateur runners.

    PubMed

    Waśkiewicz, Zbigniew; Kłapcińska, Barbara; Sadowska-Krępa, Ewa; Czuba, Milosz; Kempa, Katarzyna; Kimsa, Elżbieta; Gerasimuk, Dagmara

    2012-05-01

    The study was conducted to evaluate the metabolic responses to a 24 h ultra-endurance race in male runners. Paired venous and capillary blood samples from 14 athletes (mean age 43.0 ± 10.8 years, body weight 64.3 ± 7.2 kg, VO(2max) 57.8 ± 6.1 ml kg(-1) min(-1)), taken 3 h before the run, after completing the marathon distance (42.195 km), after 12 h, and at the finish of the race, were analyzed for blood morphology, acid-base balance and electrolytes, lipid profile, interleukin-6 (IL-6), high-sensitivity C-reactive protein (hsCRP), and serum enzyme activities. Mean distance covered during the race was 168.5 ± 23.1 km (range 125.2-218.5 km). Prolonged ultra-endurance exercise triggered immune and inflammatory responses, as evidenced by a twofold increase in total leukocyte count with neutrophils and monocytes as main contributors, nearly 30-fold increase in serum IL-6 and over 20-fold rise in hsCRP. A progressive exponential increase in mean creatine kinase activity up to the level 70-fold higher than the respective pre-race value, a several fold rise in serum activities of aspartate aminotransferase and alanine aminotransferase, and a fairly stable serum γ-glutamyl transferase level, were indicative of muscle, but not of liver damage. With duration of exercise, there was a progressive development of hyperventilation-induced hypocapnic alkalosis, and a marked alteration in substrate utilization towards fat oxidation to maintain blood glucose homeostasis. The results of this study may imply that progressive decline in partial CO(2) pressure (hypocapnia) that develops during prolonged exercise may contribute to increased interleukin-6 production.

  19. Influence of developmental nicotine exposure on the ventilatory and metabolic response to hyperthermia.

    PubMed

    Ferng, Jonathan; Fregosi, Ralph F

    2015-12-01

    To determine whether developmental nicotine exposure (DNE) alters the ventilatory and metabolic response to hyperthermia in neonatal rats (postnatal age 2-4 days), pregnant dams were exposed to nicotine (6 mg kg(-1) of nicotine tartrate daily) or saline with an osmotic mini-pump implanted subdermally on day 5 of gestation. Rat pups (a total of 72 controls and 72 DNE pups) were studied under thermoneutral conditions (chamber temperature 33°C) and during moderate thermal stress (37.5°C). In all pups, core temperature was similar to chamber temperature, with no treatment effects. The rates of pulmonary ventilation (V̇(I)), O2 consumption (V̇(O2)) and CO2 production (V̇(CO2)) did not change with hyperthermia in either control or DNE pups. However, V̇(I) was lower in DNE pups at both chamber temperatures, whereas the duration of spontaneous apnoeas was longer in DNE pups than in controls at 33°C. The V̇(I)/V̇(O2) ratio increased at 37.5°C in control pups, although it did not change in DNE pups. To simulate severe thermal stress, additional pups were studied at 33°C and 43°C. V̇(I) increased with heating in control pups but not in DNE pups. As heat stress continued, gasping was evoked in both groups, with no effect of DNE on the gasping pattern. Over a 20 min recovery period at 33°C, V̇(I) returned to baseline in control pups but remained depressed in DNE pups. In addition to altering baseline V̇(I) and apnoea duration, DNE is associated with subtle but significant alterations in the ventilatory response to hyperthermia in neonatal rats.

  20. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action.

    PubMed

    McKelvie, Jennifer R; Wolfe, David M; Celejewski, Magda A; Alaee, Mehran; Simpson, André J; Simpson, Myrna J

    2011-12-01

    Nuclear magnetic resonance (NMR)--based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms.

  1. Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses.

    PubMed

    Arciero, Julia C; Carlson, Brian E; Secomb, Timothy W

    2008-10-01

    A proposed mechanism for metabolic flow regulation involves the saturation-dependent release of ATP by red blood cells, which triggers an upstream conducted response signal and arteriolar vasodilation. To analyze this mechanism, a theoretical model is used to simulate the variation of oxygen and ATP levels along a flow pathway of seven representative segments, including two vasoactive arteriolar segments. The conducted response signal is defined by integrating the ATP concentration along the vascular pathway, assuming exponential decay of the signal in the upstream direction with a length constant of approximately 1 cm. Arteriolar tone depends on the conducted metabolic signal and on local wall shear stress and wall tension. Arteriolar diameters are calculated based on vascular smooth muscle mechanics. The model predicts that conducted responses stimulated by ATP release in venules and propagated to arterioles can account for increases in perfusion in response to increased oxygen demand that are consistent with experimental findings at low to moderate oxygen consumption rates. Myogenic and shear-dependent responses are found to act in opposition to this mechanism of metabolic flow regulation.

  2. Metabolic Response of Prostate Cancer to Nicotinamide Phophoribosyltransferase Inhibition in a Hyperpolarized MR/PET Compatible Bioreactor

    PubMed Central

    Keshari, Kayvan R.; Wilson, David M.; Van Criekinge, Mark; Sriram, Renuka; Koelsch, Bertram L.; Wang, Zhen J.; VanBrocklin, Henry F.; Peehl, Donna M.; O’Brien, Tom; Sampath, Deepak; Carano, Richard A. D.; Kurhanewicz, John

    2015-01-01

    Background Metabolic shifts in disease are of great interest for the development of novel therapeutics. In cancer treatment, these therapies exploit the metabolic phenotype associated with oncogenesis and cancer progression. One recent strategy involves the depletion of the cofactors needed to maintain the high rate of glycolysis seen with the Warburg effect. Specifically, blocking nicotinamide adenine dinucleotide (NAD) biosynthesis via nicotinamide phosphoribosyltransferase (NAMPT) inhibition depletes cancer cells of the NAD needed for glycolysis. To characterize this metabolic phenotype in vivo and describe changes in flux with treatment, non-invasive biomarkers are necessary. One such biomarker is hyperpolarized (HP) [1-13C] pyruvate, a clinically translatable probe that allows real-time assessment of metabolism. Methods We therefore developed a cell perfusion system compatible with HP magnetic resonance (MR) and positron emission tomography (PET) to develop translatable biomarkers of response to NAMPT inhibition in reduced volume cell cultures. Results Using this platform, we observed a reduction in pyruvate flux through lactate dehydrogenase with NAMPT inhibition in prostate cancer cells, and showed that both HP lactate and 2-[18F] fluoro-2-deoxy-D-glucose (FDG) can be used as biomarkers for treatment response of such targeted agents. Moreover, we observed dynamic flux changes whereby HP pyruvate was re-routed to alanine, providing both positive and negative indicators of treatment response. Conclusions This study demonstrated the feasibility of a MR/PET compatible bioreactor approach to efficiently explore cell and tissue metabolism, the understanding of which is critical for developing clinically translatable biomarkers of disease states and responses to therapeutics. PMID:26177608

  3. Metabolic Syndrome and Inflammatory Responses to Long-Term Particulate Air Pollutants

    PubMed Central

    Chen, Jiu-Chiuan; Schwartz, Joel

    2008-01-01

    Background Human data linking inflammation with long-term particulate matter (PM) exposure are still lacking. Emerging evidence suggests that people with metabolic syndrome (MS) may be a more susceptible population. Objectives Our goal was to examine potential inflammatory responses associated with long-term PM exposure and MS-dependent susceptibility. Methods We conducted secondary analyses of white blood cell (WBC) count and MS data from The Third National Health and Nutrition Examination Survey and PM10 (PM with aerodynamic diameter < 10 μm) data from the U.S. Environmental Protection Agency Aerometric Information Retrieval System. Estimated 1-year PM10 exposures were aggregated at the centroid of each residential census-block group, using distance-weighted averages from all monitors in the residing and adjoining counties. We restricted our analyses to adults (20–89 years of age) with normal WBC (4,000–11,000 × 106/L), no existing cardiovascular disease, complete PM10 and MS data, and living in current residences > 1 year (n = 2,978; age 48.5 ± 17.8 years). Mixed-effects models were constructed to account for autocorrelation and potential confounders. Results After adjustment for demographics, socioeconomic factors, lifestyles, residential characteristics, and MS, we observed a statistically significant association between WBC count and estimated local PM10 levels (p = 0.035). Participants from the least polluted areas (1-year PM10 < 1st quartile cutoff: 27.8 μg/m3) had lower WBC counts than the others (difference = 145 × 106/L; 95% confidence interval, 10–281). We also noted a graded association between PM10 and WBC across subpopulations with increasing MS components, with 91 × 106/L difference in WBC for those with no MS versus 214, 338, and 461 × 106/L for those with 3, 4, and 5 metabolic abnormalities (trend-test p = 0.15). Conclusions Our study revealed a positive association between long-term PM exposure and hematological markers of

  4. Comparison of the acute metabolic responses to traditional resistance, body-weight, and battling rope exercises.

    PubMed

    Ratamess, Nicholas A; Rosenberg, Joseph G; Klei, Samantha; Dougherty, Brian M; Kang, Jie; Smith, Charles R; Ross, Ryan E; Faigenbaum, Avery D

    2015-01-01

    The purpose of this study was to quantify and compare the acute metabolic responses to resistance exercise protocols comprising free-weight, body-weight, and battling rope (BR) exercises. Ten resistance-trained men (age = 20.6 ± 1.3 years) performed 13 resistance exercise protocols on separate days in random order consisting of only one exercise per session. For free-weight exercise protocols, subjects performed 3 sets of up to 10 repetitions with 75% of their 1 repetition maximum. For the push-up (PU) and push-up on a BOSU ball protocols, subjects performed 3 sets of 20 repetitions. For the burpee and PU with lateral crawl protocols, subjects performed 3 sets of 10 repetitions. For the plank and BR circuit protocols, subjects performed 3 sets of 30-second bouts. A standard 2-minute rest interval (RI) was used in between all sets for each exercise. Data were averaged for the entire protocol including work and RIs. Mean oxygen consumption was significantly greatest during the BR (24.6 ± 2.6 ml·kg·min) and burpee (22.9 ± 2.1 ml·kg·min) protocols. For the free-weight exercises, highest mean values were seen in the squat (19.6 ± 1.8 ml·kg·min), deadlift (18.9 ± 3.0 ml·kg·min), and lunge (17.3 ± 2.6 ml·kg·min). No differences were observed between PUs performed on the floor vs. on a BOSU ball. However, adding a lateral crawl to the PU significantly increased mean oxygen consumption (19.5 ± 2.9 ml·kg·min). The lowest mean value was seen during the plank exercise (7.9 ± 0.7 ml·kg·min). These data indicate performance of exercises with BRs and a body-weight burpee exercise elicit relatively higher acute metabolic demands than traditional resistance exercises performed with moderately heavy loading.

  5. Physiologic and metabolic responses of wheat seedlings to elevated and super-elevated carbon dioxide

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang H.; Kasahara, Hirokazu; Kopka, Joachim; Erban, Alexander; Fehrl, Ines; Kaplan, Fatma; Zhao, Wei; Littell, Ramon C.; Guy, Charles; Wheeler, Raymond; Sager, John; Mills, Aaron; Levine, Howard G.

    2008-12-01

    The metabolic consequence of suboptimal (400 μmol mol -1 or ppm), near-optimal (1500 ppm) and supra-optimal (10,000 ppm) atmospheric carbon dioxide concentrations [CO 2] was investigated in an attempt to reveal plausible underlying mechanisms for the differential physiological and developmental responses to increasing [CO 2]. Both non-targeted and targeted metabolite profiling by GC-MS and LC-MS were employed to examine primary and secondary metabolites in wheat ( Triticum aestivum, cv Yocoro rojo) continuously exposed to these [CO 2] levels for 14, 21 and 28 days. Metabolite profile was altered by both [CO 2] and physiological age. In general, plants grown under high [CO 2] exhibited a metabolite profile characteristic of older plants under ambient CO 2. Elevated [CO 2] resulted in higher levels of phosphorylated sugar intermediates, though no clear trend in the content of reducing sugars was observed. Transient starch content was enhanced by increasing [CO 2] to a much greater extent at 10,000 ppm CO 2 than at 1500 ppm CO 2. The percentage increase of starch content resulting from CO 2 enrichment declined as plants develope. In contrast, elevated [CO 2] promoted the accumulation of secondary metabolites (flavonoids) progressively to a greater extent as plants became mature. Elevated [CO 2] to 1500 ppm induced a higher initial growth rate, while super-elevated [CO 2] appeared to negate such initial growth promotion. However, after 4 weeks, there was no difference in vegetative growth between 1500 and 10,000 ppm CO 2-grown plants, both elevated CO 2 levels resulted in an overall 25% increase in biomass over the control plants. More interestingly, elevated atmospheric [CO 2] reduced evapotranspiration rate (ET), but further increase to the supra-optimal level resulted in increased ET (a reversed trend), i.e. ET at 1500 ppm < ET at 10,000 ppm < ET at 400 ppm. The differential effect of elevated and super-elevated CO 2 on plants was further reflected in the nitrogen

  6. Metabolic responses to metal pollution in shrimp Crangon affinis from the sites along the Laizhou Bay in the Bohai Sea.

    PubMed

    Xu, Lanlan; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-12-15

    Marine environment in the Laizhou Bay is potentially contaminated by metals from industrial discharges. In this study, metal concentrations in shrimps Crangon affinis indicated that two typical sites (S6283 and S5283) close to Longkou and Zhaoyuan cities along the Laizhou Bay have been contaminated by metals, including Cd, As, Cu, Ni, Co, and Mn. In particular, Cd and As were the main metal contaminants in S6283. In S5283, however, Cu was the most important metal contaminant. The metabolic responses in the shrimps indicated that the metal pollution in S6283 and S5283 induced disturbances in osmotic regulation and energy metabolism and reduced anaerobiosis, lipid metabolism, and muscle movement. However, alteration in the levels of dimethylglycine, dimethylamine, arginine, betaine, and glutamine indicated that the metal pollution in S5283 induced osmotic stress through different pathways compared to that in S6283. In addition, dimethylamine might be the biomarker of Cu in shrimp C. affinis.

  7. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin

    PubMed Central

    Shackelford, David B.; Abt, Evan; Gerken, Laurie; Vasquez, Debbie S.; Seki, Atsuko; Leblanc, Mathias; Wei, Liu; Fishbein, Michael C.; Czernin, Johannes; Mischel, Paul S.; Shaw, Reuben J.

    2013-01-01

    SUMMARY The LKB1 (also called STK11) tumor suppressor is mutationally inactivated in ~20% of non-small cell lung cancers (NSCLC). LKB1 is the major upstream kinase activating the energy-sensing kinase AMPK, making LKB1-deficient cells unable to appropriately sense metabolic stress. We tested the therapeutic potential of metabolic drugs in NSCLC and identified phenformin, a mitochondrial inhibitor and analog of the diabetes therapeutic metformin, as selectively inducing apoptosis in LKB1-deficient NSCLC cells. Therapeutic trials in Kras-dependent mouse models of NSCLC revealed that tumors with Kras and Lkb1 mutations, but not those with Kras and p53 mutations showed selective response to phenformin as a single agent, resulting in prolonged survival. This study suggests phenformin as a cancer metabolism-based therapeutic to selectively target LKB1-deficient tumors. PMID:23352126

  8. Metabolic and Cardiorespiratory Responses of Young Women to Skipping and Jogging.

    ERIC Educational Resources Information Center

    Allen, T. Earl; And Others

    1987-01-01

    Nine 18- to 29-year-old females were studied while jogging and skipping at treadmill speeds of 4.0, 4.8, and 5.4 miles per hour. Comparison of metabolic demand, musculoskeletal stress, and perceived exertion indicated skipping imposed significantly greater metabolic demands and caused higher heart rates than jogging. Skipping was also rated more…

  9. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations

    PubMed Central

    Semenza, Gregg L.

    2013-01-01

    Hypoxia occurs frequently in human cancers and induces adaptive changes in cell metabolism that include a switch from oxidative phosphorylation to glycolysis, increased glycogen synthesis, and a switch from glucose to glutamine as the major substrate for fatty acid synthesis. This broad metabolic reprogramming is coordinated at the transcriptional level by HIF-1, which functions as a master regulator to balance oxygen supply and demand. HIF-1 is also activated in cancer cells by tumor suppressor (e.g., VHL) loss of function and oncogene gain of function (leading to PI3K/AKT/mTOR activity) and mediates metabolic alterations that drive cancer progression and resistance to therapy. Inhibitors of HIF-1 or metabolic enzymes may impair the metabolic flexibility of cancer cells and make them more sensitive to anticancer drugs. PMID:23999440

  10. Metabolic Biomarker Panels of Response to Fusarium Head Blight Infection in Different Wheat Varieties

    PubMed Central

    Forseille, Lily; Boyle, Kerry; Merkley, Nadine; Burton, Ian; Fobert, Pierre R.

    2016-01-01

    Metabolic changes in spikelets of wheat varieties FL62R1, Stettler, Muchmore and Sumai3 following Fusarium graminearum infection were explored using NMR analysis. Extensive 1D and 2D 1H NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. In addition, metabolic changes that are observed in all studied varieties as well as wheat variety specific changes have been determined and discussed. A new method for metabolite quantification from NMR data that automatically aligns spectra of standards and samples prior to quantification using multivariate linear regression optimization of spectra of assigned metabolites to samples’ 1D spectra is described and utilized. Fusarium infection-induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. PMID:27101152

  11. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    SciTech Connect

    Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.; Andrews, Debora; Schladweiler, Mette C.; Ghio, Andrew J.; Gavett, Stephen H.; Kodavanti, Urmila P.

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  12. Common Motifs in the Response of Cereal Primary Metabolism to Fungal Pathogens are not Based on Similar Transcriptional Reprogramming

    PubMed Central

    Voll, Lars Matthias; Horst, Robin Jonathan; Voitsik, Anna-Maria; Zajic, Doreen; Samans, Birgit; Pons-Kühnemann, Jörn; Doehlemann, Gunther; Münch, Steffen; Wahl, Ramon; Molitor, Alexandra; Hofmann, Jörg; Schmiedl, Alfred; Waller, Frank; Deising, Holger Bruno; Kahmann, Regine; Kämper, Jörg; Kogel, Karl-Heinz; Sonnewald, Uwe

    2011-01-01

    During compatible interactions with their host plants, biotrophic plant–pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism toward colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei), the corn smut fungus Ustilago maydis, and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment. Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. However, increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during early

  13. Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation.

    PubMed

    Ances, Beau M; Liang, Christine L; Leontiev, Oleg; Perthen, Joanna E; Fleisher, Adam S; Lansing, Amy E; Buxton, Richard B

    2009-04-01

    Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2). For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 +/- 0.07%) compared to the younger group (0.95 +/- 0.14%), despite the finding that the fractional CBF and CMRO(2) changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 +/- 0.4%) than younger subjects (6.5 +/- 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 +/- 4.8 mL/100 mL/min) compared to younger (59.6 +/- 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone.

  14. Adenosine receptors mediate the hypoxic ventilatory response but not the hypoxic metabolic response in the naked mole rat during acute hypoxia

    PubMed Central

    Pamenter, Matthew E.; Dzal, Yvonne A.; Milsom, William K.

    2015-01-01

    Naked mole rats are the most hypoxia-tolerant mammals identified; however, the mechanisms underlying this tolerance are poorly understood. Using whole-animal plethysmography and open-flow respirometry, we examined the hypoxic metabolic response (HMR), hypoxic ventilatory response (HVR) and hypoxic thermal response in awake, freely behaving naked mole rats exposed to 7% O2 for 1 h. Metabolic rate and ventilation each reversibly decreased 70% in hypoxia (from 39.6 ± 2.9 to 12.1 ± 0.3 ml O2 min−1 kg−1, and 1412 ± 244 to 417 ± 62 ml min−1 kg−1, respectively; p < 0.05), whereas body temperature was unchanged and animals remained awake and active. Subcutaneous injection of the general adenosine receptor antagonist aminophylline (AMP; 100 mg kg−1, in saline), but not control saline injections, prevented the HVR but had no effect on the HMR. As a result, AMP-treated naked mole rats exhibited extreme hyperventilation in hypoxia. These animals were also less tolerant to hypoxia, and in some cases hypoxia was lethal following AMP injection. We conclude that in naked mole rats (i) hypoxia tolerance is partially dependent on profound hypoxic metabolic and ventilatory responses, which are equal in magnitude but occur independently of thermal changes in hypoxia, and (ii) adenosine receptors mediate the HVR but not the HMR. PMID:25520355

  15. Adenosine receptors mediate the hypoxic ventilatory response but not the hypoxic metabolic response in the naked mole rat during acute hypoxia.

    PubMed

    Pamenter, Matthew E; Dzal, Yvonne A; Milsom, William K

    2015-02-07

    Naked mole rats are the most hypoxia-tolerant mammals identified; however, the mechanisms underlying this tolerance are poorly understood. Using whole-animal plethysmography and open-flow respirometry, we examined the hypoxic metabolic response (HMR), hypoxic ventilatory response (HVR) and hypoxic thermal response in awake, freely behaving naked mole rats exposed to 7% O₂ for 1 h. Metabolic rate and ventilation each reversibly decreased 70% in hypoxia (from 39.6 ± 2.9 to 12.1 ± 0.3 ml O₂ min(-1) kg(-1), and 1412 ± 244 to 417 ± 62 ml min(-1) kg(-1), respectively; p < 0.05), whereas body temperature was unchanged and animals remained awake and active. Subcutaneous injection of the general adenosine receptor antagonist aminophylline (AMP; 100 mg kg(-1), in saline), but not control saline injections, prevented the HVR but had no effect on the HMR. As a result, AMP-treated naked mole rats exhibited extreme hyperventilation in hypoxia. These animals were also less tolerant to hypoxia, and in some cases hypoxia was lethal following AMP injection. We conclude that in naked mole rats (i) hypoxia tolerance is partially dependent on profound hypoxic metabolic and ventilatory responses, which are equal in magnitude but occur independently of thermal changes in hypoxia, and (ii) adenosine receptors mediate the HVR but not the HMR.

  16. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Gründel, Marianne; Scheunemann, Ramon; Lockau, Wolfgang; Zilliges, Yvonne

    2012-12-01

    The biosynthesis of glycogen or starch is one of the main strategies developed by living organisms for the intracellular storage of carbon and energy. In phototrophic organisms, such polyglucans accumulate due to carbon fixation during photosynthesis and are used to provide maintenance energy for cell integrity, function and viability in dark periods. Moreover, it is assumed that glycogen enables cyanobacteria to cope with transient starvation conditions, as observed in most micro-organisms. Here, glycogen accumulates when an appropriate carbon source is available in sufficient amounts but growth is inhibited by lack of other nutrients. In this study, the role of glycogen in energy and carbon metabolism of phototrophic cyanobacteria was first analysed via a comparative physiological and metabolic characterization of knockout mutants defective in glycogen synthesis. We first proved the role of glycogen as a respiratory substrate in periods of darkness, the role of glycogen as a reserve to survive starvation periods such as nitrogen depletion and the role of glycogen synthesis as an ameliorator of carbon excess conditions in the model organism Synechocystis sp. PCC 6803. We provide striking new insights into the complex carbon and nitrogen metabolism of non-diazotrophic cyanobacteria: a phenotype of sensitivity to photomixotrophic conditions and of reduced glucose uptake, a non-bleaching phenotype based on an impaired acclimation response to nitrogen depletion and furthermore a phenotype of energy spilling. This study shows that the analysis of deficiencies in glycogen metabolism is a valuable tool for the identification of metabolic regulatory principles and signals.

  17. Metabolic activity of brown, "beige," and white adipose tissues in response to chronic adrenergic stimulation in male mice.

    PubMed

    Labbé, Sébastien M; Caron, Alexandre; Chechi, Kanta; Laplante, Mathieu; Lecomte, Roger; Richard, Denis

    2016-07-01

    Classical brown adipocytes such as those found in interscapular brown adipose tissue (iBAT) represent energy-burning cells, which have been postulated to play a pivotal role in energy metabolism. Brown adipocytes can also be found in white adipose tissue (WAT) depots [e.g., inguinal WAT (iWAT)] following adrenergic stimulation, and they have been referred to as "beige" adipocytes. Whether the presence of these adipocytes, which gives iWAT a beige appearance, can confer a white depot with some thermogenic activity remains to be seen. In consequence, we designed the present study to investigate the metabolic activity of iBAT, iWAT, and epididymal white depots in mice. Mice were either 1) kept at thermoneutrality (30°C), 2) kept at 30°C and treated daily for 14 days with an adrenergic agonist [CL-316,243 (CL)], or 3) housed at 10°C for 14 days. Metabolic activity was assessed using positron emission tomography imaging with fluoro-[(18)F]deoxyglucose (glucose uptake), fluoro-[(18)F]thiaheptadecanoic acid (fatty acid uptake), and [(11)C]acetate (oxidative activity). In each group, substrate uptakes and oxidative activity were measured in anesthetized mice in response to acute CL. Our results revealed iBAT as a major site of metabolic activity, which exhibited enhanced glucose and nonesterified fatty acid uptakes and oxidative activity in response to chronic cold and CL. On the other hand, beige adipose tissue failed to exhibit appreciable increase in oxidative activity in response to chronic cold and CL. Altogether, our results suggest that the contribution of beige fat to acute-CL-induced metabolic activity is low compared with that of iBAT, even after sustained adrenergic stimulation.

  18. Short-term time course of liver metabolic response to acute handling stress in rainbow trout, Oncorhynchus mykiss.

    PubMed

    López-Patiño, Marcos A; Hernández-Pérez, Juan; Gesto, Manuel; Librán-Pérez, Marta; Míguez, Jesús M; Soengas, José L

    2014-02-01

    To elucidate the short-term time-course of liver metabolic response in rainbow trout to acute handling stress we subjected rainbow trout to 5min chasing and obtained samples 0 to 480min post-stress. Levels of cortisol, glucose and lactate were measured in plasma, whereas metabolite levels, enzyme activities, mRNA abundance of parameters related to energy metabolism, and glucocorticoid receptors were assessed in liver. Acute stress affected many parameters related to energy metabolism, with most of them turning back to normal levels after 480min. In general, the present results support the existence of two stages in the short-term time-course of metabolic response to handling stress. A first stage occurring few minutes post-stress (15-45min), was characterized by increased mobilization of liver glycogen resulting in increased production of endogenous glucose, reduced use of exogenous glucose and reduced lipogenic potential. A second stage, occurring 60-120min post-stress onwards was characterized by the recovery of liver glycogen levels, the increased capacity of liver for releasing glucose, and the recovery of lipogenic capacity whereas no changes were noted in gluconeogenic potential, which probably needs longer time periods to become enhanced.

  19. Central ghrelin signaling mediates the metabolic response of C57BL/6 male mice to chronic social defeat stress.

    PubMed

    Patterson, Z R; Khazall, R; Mackay, H; Anisman, H; Abizaid, A

    2013-03-01

    Chronic stressors promote metabolic disturbances, including obesity and metabolic syndrome. Ghrelin, a peptide that promotes appetite and the accumulation of adipose tissue, is also secreted in response to stressors to protect the brain and peripheral tissues from the effects of these stressors. Here we demonstrate that elevated ghrelin levels produced by chronic exposure to social stress are associated with increased caloric intake and body weight gain in male C57BL mice. In contrast, stressed mice lacking ghrelin receptors (GHSR KO mice) or C57BL mice receiving chronic intracerebroventricular delivery of the ghrelin receptor antagonist [d-Lys(3)]-GHRP-6 show attenuated weight gain and feeding responses under the same social stress paradigm. Interestingly, stressed GHSR KO mice showed depleted sc and intrascapular brown fat depots, whereas stressed young wild-type mice did not. In old wild-type mice, chronic social defeat increased visceral and intrascapular brown fat depots in association with increases in obesity markers like hyperleptinemia and hyperinsulinemia along with increased hypothalamic expression of neuropeptide Y and Agouti related peptide. Importantly, the elevated expression of these peptides persisted least for 2 weeks after cessation of the stressor regimen. In contrast, old GHSR KO mice did not show these alterations after chronic social defeat. These results suggest that ghrelin plays an important role in the metabolic adaptations necessary to meet the energetic demands posed by stressors, but chronic exposure to stress-induced ghrelin elevations ultimately could lead to long lasting metabolic dysfunctions.

  20. Metabolic responses of Saccharomyces cerevisiae to valine and ammonium pulses during four-stage continuous wine fermentations.

    PubMed

    Clement, T; Perez, M; Mouret, J R; Sanchez, I; Sablayrolles, J M; Camarasa, C

    2013-04-01

    Nitrogen supplementation, which is widely used in winemaking to improve fermentation kinetics, also affects the products of fermentation, including volatile compounds. However, the mechanisms underlying the metabolic response of yeast to nitrogen additions remain unclear. We studied the consequences for Saccharomyces cerevisiae metabolism of valine and ammonium pulses during the stationary phase of four-stage continuous fermentation (FSCF). This culture technique provides cells at steady state similar to that of the stationary phase of batch wine fermentation. Thus, the FSCF device is an appropriate and reliable tool for individual analysis of the metabolic rerouting associated with nutrient additions, in isolation from the continuous evolution of the environment in batch processes. Nitrogen additions, irrespective of the nitrogen-containing compound added, substantially modified the formation of fermentation metabolites, including glycerol, succinate, isoamyl alcohol, propanol, and ethyl esters. This flux redistribution, fulfilling the requirements for precursors of amino acids, was consistent with increased protein synthesis resulting from increased nitrogen availability. Valine pulses, less efficient than ammonium addition in increasing the fermentation rate, were followed by a massive conversion of this amino acid in isobutanol and isobutyl acetate through the Ehrlich pathway. However, additional routes were involved in valine assimilation when added in stationary phase. Overall, we found that particular metabolic changes may be triggered according to the nature of the amino acid supplied, in addition to the common response. Both these shared and specific modifications should be considered when designing strategies to modulate the production of volatile compounds, a current challenge for winemakers.

  1. Scorpions regulate their energy metabolism towards increased carbohydrate oxidation in response to dehydration.

    PubMed

    Kalra, Bhawna; Gefen, Eran

    2012-08-01

    Scorpions successfully inhabit some of the most arid habitats on earth. During exposure to desiccating stress water is mobilized from the scorpion hepatopancreas to replenish the hemolymph and retain hydration and osmotic stability. Carbohydrate catabolism is advantageous under these conditions as it results in high metabolic water production rate, as well as the release of glycogen-bound water. Hypothesizing that metabolic fuel utilization in scorpions is regulated in order to boost body water management under stressful conditions we used a comparative approach, studying energy metabolism during prolonged desiccation in four species varying in resistance performance. We used respirometry for calculating respiratory gas exchange ratios, indicative of metabolic fuel utilization, and measured metabolic fuel contents in the scorpion hepatopancreas. We found that hydrated scorpions used a mixture of metabolic fuels (respiratory exchange rates, RER~0.9), but a shift towards carbohydrate catabolism was common during prolonged desiccation stress. Furthermore, the timing of metabolic shift to exclusive carbohydrate oxidation (RER not different from 1.0) was correlated with desiccation resistance of the respective studied species, suggesting triggering by alterations to hemolymph homeostasis.

  2. Metabolic responses during initial days of altitude acclimatization in the Eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Basu, C. K.; Gautam, R. K.; Sharma, R. P.; Kumar, H.; Tomar, O. S.; Sawhney, R. C.; Selvamurthy, W.

    1996-09-01

    The study was carried out on 16 men (aged 20 30 years) to evaluate daily metabolic responses during the early phase of altitude acclimatization at moderate altitudes between 3100 and 4200 m in the Eastern Himalayas. Resting (R) and submaximal exercise (E) oxygen consumption (| VO2) at 100 W at sea level (SL) were 3.25 (SEM 0.15) and 20.31 (SEM 0.77) ml/kg per min respectively. On day 1 at 3110 m both R and E | VO2 decreased ( P<0.001) and subsequently remained constant. At 3445 m these values tended to increase over the 3110 m values but were lower than the SL values. At 4177 m the decline in | VO2 was significantly greater ( P<0.01) than at the preceding altitudes. Pulmonary ventilation (|VE) increased consistently ( P<0.001) with increase in altitude. The arterial oxygen saturation ( S a O2) at different altitudes was lower ( P<0.001) than SL values. The cardiac frequency ( f C ) at R and E was higher ( P<0.001) at altitude; the values at 3110 and 3445 m were significantly lower ( P<0.001) than at 4177 m. Blood pressure (BP) increased ( P<0.001) on the first day at each altitude. The systolic BP tended to decline towards SL values but the diastolic BP remained high ( P<0.001) throughout. The resting blood lactic acid concentration, [ la -] bl , showed a decline ( P<0.001) only at 4177 m. The [ la -] bl at E was similar at 3110 and 3445 m but was higher ( P<0.01) at 4177 m. These observations suggest that acclimatization to a mid-altitude of 3445 m can be safely avoided where rapid ascent to higher altitude is required.

  3. Metabolic variations in different citrus rootstock cultivars associated with different responses to Huanglongbing.

    PubMed

    Albrecht, Ute; Fiehn, Oliver; Bowman, Kim D

    2016-10-01

    Huanglongbing (HLB) is one of the most destructive bacterial diseases of citrus. No resistant cultivars have been identified, although tolerance has been observed in the genus Poncirus and some of its hybrids with Citrus that are commonly used as rootstocks. In this study we exploited this tolerance by comparing five different tolerant hybrids with a cultivar that shows pronounced HLB sensitivity to discern potential contributing metabolic factors. Whole leaves of infected and non-infected greenhouse-grown seedlings were extracted and subjected to untargeted GC-TOF MS based metabolomics. After BinBase data filtering, 342 (experiment 1) and 650 (experiment 2) unique metabolites were quantified, of which 122 and 195, respectively, were assigned by chemical structures. The number of metabolites found to be differently regulated in the infected state compared with the non-infected state varied between the cultivars and was largest (166) in the susceptible cultivar Cleopatra mandarin (Citrus reticulata) and lowest (3) in the tolerant cultivars US-897 (C. reticulata 'Cleopatra' × Poncirus trifoliata) and US-942 (C. reticulata 'Sunki' × P. trifoliata) from experiment 2. Tolerance to HLB did not appear to be associated with accumulation of higher amounts of protective metabolites in response to infection. Many metabolites were found in higher concentrations in the tolerant cultivars compared with susceptible Cleopatra mandarin and may play important roles in conferring tolerance to HLB. Lower availability of specific sugars necessary for survival of the pathogen may also be a contributing factor in the decreased disease severity observed for these cultivars.

  4. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    PubMed

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality.

  5. Oxygen Metabolic Responses of Three Species of Large Benthic Foraminifers with Algal Symbionts to Temperature Stress

    PubMed Central

    Fujita, Kazuhiko; Okai, Takaaki; Hosono, Takashi

    2014-01-01

    Water temperature affects the physiology of large benthic foraminifers (LBFs) with algal symbionts dwelling in coral reef environments. However, the detailed physiological responses of LBF holobionts to temperature ranges occurring in their habitats are not known. We report net oxygen (O2) production and respiration rates of three LBF holobionts (Baculogypsina sphaerulata and Calcarina gaudichaudii hosting diatom symbionts, and Amphisorus kudakajimensis hosting dinoflagellate symbionts) measured in the laboratory at water temperatures ranging from 5°C to 45°C in 2.5°C or 5°C intervals and with light saturation levels of ∼500 µmol m−2 s−1. In addition, the recovery of net O2 production and respiration rates after exposure to temperature stress was assessed. The net O2 production and respiration rates of the three LBF holobionts peaked at ∼30°C, indicating their optimal temperature for a short exposure period. At extreme high temperatures (≥40°C), the net O2 production rates of all three LBF holobionts declined to less than zero and the respiration rates slightly decreased, indicating that photosynthesis of algal symbionts was inactivated. At extreme low temperatures (≤10°C for two calcarinid species and ≤5°C for A. kudakajimensis), the net O2 production and respiration rates were near zero, indicating a weakening of holobiont activity. After exposure to extreme high or low temperature, the net O2 production rates did not recover until the following day, whereas the respiration rates recovered rapidly, suggesting that a longer time (days) is required for recovery from damage to the photosystem by temperature stress compared to the respiration system. These results indicate that the oxygen metabolism of LBF holobionts can generally cope well with conditions that fluctuate diurnally and seasonally in their habitats. However, temporal heat and cold stresses with high light levels may induce severe damage to algal symbionts and also damage to host

  6. The effect of pantothenate deficiency in mice on their metabolic response to fast and exercise.

    PubMed

    Smith, C M; Narrow, C M; Kendrick, Z V; Steffen, C

    1987-02-01

    The changes in fuel metabolism during fast and exercise were compared to the tissue total CoA levels in mice maintained on pantothenate-deficient and pantothenate-supplemented (control) diets. In nonexercised mice maintained on a pantothenate-deficient diet for 65 to 105 days, the total CoA levels of many tissues were significantly lower than in controls (liver 18%, kidney 23%, spleen 21%, heart 38%, and leg skeletal muscle 66%). However, no differences in total CoA levels in brain or epididymal fat pads were observed. During a 48-hour fast, the total CoA levels increased in the heart and liver of both pantothenate-deficient and control mice (heart 32 and 19%, respectively; liver 39 and 45%, respectively), but the level of total CoA remained lower in the deficient mice. Liver glycogen levels were 17% lower in deficient mice than in controls and liver ketone bodies were 17% higher in pantothenate deficient mice than in controls. Separate groups of mice on deficient and supplemented diets were trained to run to exhaustion. Compared to trained mice on pantothenate-supplemented diets, the trained pantothenate-deficient mice had lower running times until exhaustion, lower body weights, lower liver and muscle glycogen content (even after rest), and elevated liver ketone bodies both during rest and after running. In summary, the pantothenate-deficient mice were unable to maintain normal glycogen stores, but had a normal ketogenic response to fast and exercise in spite of the lower levels of liver total CoA.

  7. Metabolic response to high-carbohydrate and low-carbohydrate meals in a nonhuman primate model

    PubMed Central

    Fabbrini, Elisa; Higgins, Paul B.; Magkos, Faidon; Bastarrachea, Raul A.; Voruganti, V. Saroja; Comuzzie, Anthony G.; Shade, Robert E.; Gastaldelli, Amalia; Horton, Jay D.; Omodei, Daniela; Patterson, Bruce W.

    2013-01-01

    We established a model of chronic portal vein catheterization in an awake nonhuman primate to provide a comprehensive evaluation of the metabolic response to low-carbohydrate/high-fat (LCHF; 20% carbohydrate and 65% fat) and high-carbohydrate/low-fat (HCLF; 65% carbohydrate and 20% fat) meal ingestion. Each meal was given 1 wk apart to five young adult (7.8 ± 1.3 yr old) male baboons. A [U-13C]glucose tracer was added to the meal, and a [6,6-2H2]glucose tracer was infused systemically to assess glucose kinetics. Plasma areas under the curve (AUCs) of glucose, insulin, and C-peptide in the femoral artery and of glucose and insulin in the portal vein were higher (P ≤ 0.05) after ingestion of the HCLF compared with the LCHF meal. Compared with the LCHF meal, the rate of appearance of ingested glucose into the portal vein and the systemic circulation was greater after the HCLF meal (P < 0.05). Endogenous glucose production decreased by ∼40% after ingestion of the HCLF meal but was not affected by the LCHF meal (P < 0.05). Portal vein blood flow increased (P < 0.001) to a similar extent after consumption of either meal. In conclusion, a LCHF diet causes minimal changes in the rate of glucose appearance in both portal and systemic circulations, does not affect the rate of endogenous glucose production, and causes minimal stimulation of C-peptide and insulin. These observations demonstrate that LCHF diets cause minimal perturbations in glucose homeostasis and pancreatic β-cell activity. PMID:23269412

  8. Skeletal muscle glycogen concentration and metabolic responses following a high glycaemic carbohydrate breakfast.

    PubMed

    Chryssanthopoulos, Costas; Williams, Clyde; Nowitz, Andrea; Bogdanis, Gregory

    2004-01-01

    The purpose of this study was to examine the influence of a carbohydrate-rich meal on post-prandial metabolic responses and skeletal muscle glycogen concentration. After an overnight fast, eight male recreational/club endurance runners ingested a carbohydrate (CHO) meal (2.5 g CHO x kg(-1) body mass) and biopsies were obtained from the vastus lateralis muscle before and 3 h after the meal. Ingestion of the meal resulted in a 10.6 +/- 2.5% (P < 0.05) increase in muscle glycogen concentration (pre-meal vs post-meal: 314.0 +/- 33.9 vs 347.3 +/- 31.3 mmol x kg(-1) dry weight). Three hours after ingestion, mean serum insulin concentrations had not returned to pre-feeding values (0 min vs 180 min: 45 +/- 4 vs 143 +/- 21 pmol x l(-1)). On a separate occasion, six similar individuals ingested the meal or fasted for a further 3 h during which time expired air samples were collected to estimate the amount of carbohydrate oxidized over the 3 h post-prandial period. It was estimated that about 20% of the carbohydrate consumed was converted into muscle glycogen, and about 12 % was oxidized. We conclude that a meal providing 2.5 g CHO x kg(-1) body mass can increase muscle glycogen stores 3 h after ingestion. However, an estimated 67% of the carbohydrate ingested was unaccounted for and this may have been stored as liver glycogen and/or still be in the gastrointestinal tract.

  9. Invited review: Efficacy, metabolism, and toxic responses to chlorate salts in food and laboratory animals.

    PubMed

    Smith, D J; Oliver, C E; Taylor, J B; Anderson, R C

    2012-11-01

    For over 100 yr, scientists have explored uses of sodium chlorate in agricultural applications. Sodium chlorate is a strong oxidizer, and thus can be very hazardous when not handled accordingly. Nevertheless, late 19th century agriculturists and scientists attempted to exploit the chemical properties of sodium chlorate as an herbicide and food preservative. It is the herbicidal utility that led to subsequent use of sodium chlorate in the agricultural industry since then. However, in 2000, USDA-ARS scientists proposed a new and targeted use of sodium chlorate against enterobacteria in food animal production. Specifically, when orally dosed in to cattle (Bos taurus), swine (Sus scrofa), broilers (Gallus gallus), turkeys (Meleagris gallopavo), and sheep (Ovis aries), chlorate reduced the fecal shedding of common enteropathogens of the Enterobacteriaceae family. Subsequent to this discovery, the efficacy of chlorate salts has been demonstrated in numerous production classes within species. Doses of sodium chlorate as low as 30 mg/kg BW, but typically 50 to 150 mg/kg BW, have been used to demonstrate efficacy against pathogens. Single or short-duration (<3 d) exposures to oral chlorate at concentrations < 150 mg/kg BW have not produced acute toxicity or clinical signs (labored breathing, methemoglobinemia) in food animals. In all species studied to date, the major biotransformation product of chlorate is chloride ion; chlorite is not present in tissues or excreta of chlorate dosed animals. Chlorate is rapidly eliminated in ruminants and nonruminants, primarily in urine; likewise, residual chlorate in tissues depletes rapidly. Application of any new chemical entity to food animal production carries with it a responsibility to understand adverse reactions that intended and nonintended exposures may have in target and (or) nontarget animals and an understanding of the pathways of elimination that occur after exposure. Therefore, the purpose of this review is to summarize

  10. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure.

    PubMed

    Shannahan, Jonathan H; Alzate, Oscar; Winnik, Witold M; Andrews, Debora; Schladweiler, Mette C; Ghio, Andrew J; Gavett, Stephen H; Kodavanti, Urmila P

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA.

  11. Differential Molecular Responses of Rapeseed Cotyledons to Light and Dark Reveal Metabolic Adaptations toward Autotrophy Establishment

    PubMed Central

    He, Dongli; Damaris, Rebecca N.; Fu, Jinlei; Tu, Jinxing; Fu, Tingdong; Xi, Chen; Yi, Bin; Yang, Pingfang

    2016-01-01

    Photosynthesis competent autotrophy is established during the postgerminative stage of plant growth. Among the multiple factors, light plays a decisive role in the switch from heterotrophic to autotrophic growth. Under dark conditions, the rapeseed hypocotyl extends quickly with an apical hook, and the cotyledon is yellow and folded, and maintains high levels of the isocitrate lyase (ICL). By contrast, in the light, the hypocotyl extends slowly, the cotyledon unfolds and turns green, the ICL content changes in parallel with cotyledon greening. To reveal metabolic adaptations during the establishment of postgerminative autotrophy in rapeseed, we conducted comparative proteomic and metabolomic analyses of the cotyledons of seedlings grown under light versus dark conditions. Under both conditions, the increase in proteases, fatty acid β-oxidation and glyoxylate-cycle related proteins was accompanied by rapid degradation of the stored proteins and lipids with an accumulation of the amino acids. While light condition partially retarded these conversions. Light significantly induced the expression of chlorophyll-binding and photorespiration related proteins, resulting in an increase in reducing-sugars. However, the levels of some chlorophyllide conversion, Calvin-cycle and photorespiration related proteins also accumulated in dark grown cotyledons, implying that the transition from heterotrophy to autotrophy is programmed in the seed rather than induced by light. Various anti-stress systems, e.g., redox related proteins, salicylic acid, proline and chaperones, were employed to decrease oxidative stress, which was mainly derived from lipid oxidation or photorespiration, under both conditions. This study provides a comprehensive understanding of the differential molecular responses of rapeseed cotyledons to light and dark conditions, which will facilitate further study on the complex mechanism underlying the transition from heterotrophy to autotrophy. PMID:27471506

  12. Effects of exercise on hepcidin response and iron metabolism during recovery.

    PubMed

    Peeling, Peter; Dawson, Brian; Goodman, Carmel; Landers, Grant; Wiegerinck, Erwin T; Swinkels, Dorine W; Trinder, Debbie

    2009-12-01

    Urinary hepcidin, inflammation, and iron metabolism were examined during the 24 hr after exercise. Eight moderately trained athletes (6 men, 2 women) completed a 60-min running trial (15-min warm-up at 75-80% HR(peak) + 45 min at 85-90% HR(peak)) and a 60-min trial of seated rest in a randomized, crossover design. Venous blood and urine samples were collected pretrial, immediately posttrial, and at 3, 6, and 24 hr posttrial. Samples were analyzed for interleukin-6 (IL-6), C-reactive protein (CRP), serum iron, serum ferritin, and urinary hepcidin. The immediate postrun levels of IL-6 and 24-hr postrun levels of CRP were significantly increased from baseline (6.9 and 2.6 times greater, respectively) and when compared with the rest trial (p < or = .05). Hepcidin levels in the run trial after 3, 6, and 24 hr of recovery were significantly greater (1.7-3.1 times) than the pre- and immediate postrun levels (p < or = .05). This outcome was consistent in all participants, despite marked variation in the magnitude of rise. In addition, the 3-hr postrun levels of hepcidin were significantly greater than at 3 hr in the rest trial (3.0 times greater, p < or = .05). Hepcidin levels continued to increase at 6 hr postrun but failed to significantly differ from the rest trial (p = .071), possibly because of diurnal influence. Finally, serum iron levels were significantly increased immediately postrun (1.3 times, p < or = .05). The authors concluded that high-intensity exercise was responsible for a significant increase in hepcidin levels subsequent to a significant increase in IL-6 and serum iron.

  13. Oxygen metabolic responses of three species of large benthic foraminifers with algal symbionts to temperature stress.

    PubMed

    Fujita, Kazuhiko; Okai, Takaaki; Hosono, Takashi

    2014-01-01

    Water temperature affects the physiology of large benthic foraminifers (LBFs) with algal symbionts dwelling in coral reef environments. However, the detailed physiological responses of LBF holobionts to temperature ranges occurring in their habitats are not known. We report net oxygen (O2) production and respiration rates of three LBF holobionts (Baculogypsina sphaerulata and Calcarina gaudichaudii hosting diatom symbionts, and Amphisorus kudakajimensis hosting dinoflagellate symbionts) measured in the laboratory at water temperatures ranging from 5°C to 45°C in 2.5°C or 5°C intervals and with light saturation levels of ∼500 µmol m(-2) s(-1). In addition, the recovery of net O2 production and respiration rates after exposure to temperature stress was assessed. The net O2 production and respiration rates of the three LBF holobionts peaked at ∼30°C, indicating their optimal temperature for a short exposure period. At extreme high temperatures (≥40°C), the net O2 production rates of all three LBF holobionts declined to less than zero and the respiration rates slightly decreased, indicating that photosynthesis of algal symbionts was inactivated. At extreme low temperatures (≤10°C for two calcarinid species and ≤5°C for A. kudakajimensis), the net O2 production and respiration rates were near zero, indicating a weakening of holobiont activity. After exposure to extreme high or low temperature, the net O2 production rates did not recover until the following day, whereas the respiration rates recovered rapidly, suggesting that a longer time (days) is required for recovery from damage to the photosystem by temperature stress compared to the respiration system. These results indicate that the oxygen metabolism of LBF holobionts can generally cope well with conditions that fluctuate diurnally and seasonally in their habitats. However, temporal heat and cold stresses with high light levels may induce severe damage to algal symbionts and also damage to host

  14. The effects of fasting duration on the metabolic response to feeding in Python molurus: an evaluation of the energetic costs associated with gastrointestinal growth and upregulation.

    PubMed

    Overgaard, Johannes; Andersen, Johnnie B; Wang, Tobias

    2002-01-01

    The oxygen uptake of Python molurus increases enormously following feeding, and the elevated metabolism coincides with rapid growth of the gastrointestinal organs. There are opposing views regarding the energetic costs of the gastrointestinal hypertrophy, and this study concerns the metabolic response to feeding after fasting periods of different duration. Since mass and function of the gastrointestinal organs remain elevated for several days after feeding, the metabolic increment following a second meal given soon after the first can reveal whether the metabolic costs relate to the upregulation of gastrointestinal organs or merely the metabolic cost of processing a meal. Eight juvenile pythons were kept on a regular feeding regime for 6 mo after hatching. At the beginning of the metabolic measurements, they were fed mice (20% of body mass), and the metabolic response to similarly sized meals was determined following 3, 5, 7, 14, 21, 30, and 60 d of fasting. Our data show that the metabolic response following feeding was large, ranging from 21% to 35% of ingested energy (mean=27%), but the metabolic response seems independent of fasting duration. Hence, the extraordinarily large cost of digestion in P. molurus does not appear to correlate with increased function and growth of gastrointestinal organs but must be associated with other physiological processes.

  15. A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles.

    PubMed

    Chen, Zheng; McKnight, Steven L

    2007-12-01

    The circadian clock drives endogenous oscillations of cellular and physiological processes with a periodicity of approximately 24 h. Progression of the cell division cycle (CDC) has been found to be coupled to the circadian clock, and it has been postulated that gating of the CDC by the circadian cycle may have evolved to protect DNA from the mutagenic effects of ultraviolet light. When grown under nutrient-limiting conditions in a chemostat, prototrophic strains of budding yeast, Saccharomyces cerevisiae, adopt a robust metabolic cycle of ultradian dimensions that temporally compartmentalizes essential cellular events. The CDC is gated by this yeast metabolic cycle (YMC), with DNA replication strictly segregated away from the oxidative phase when cells are actively respiring. Mutants impaired in such gating allow DNA replication to take place during the respiratory phase of the YMC and have been found to suffer significantly elevated rates of spontaneous mutation. Analogous to the circadian cycle, the YMC also employs the conserved DNA checkpoint kinase Rad53/Chk2 to facilitate coupling with the CDC. These studies highlight an evolutionarily conserved mechanism that seems to confine cell division to particular temporal windows to prevent DNA damage. We hypothesize that DNA damage itself might constitute a "zeitgeber", or time giver, for both the circadian cycle and the metabolic cycle. We discuss these findings in the context of a unifying theme underlying the circadian and metabolic cycles, and explore the relevance of cell cycle gating to human diseases including cancer.

  16. Gender-specific metabolic responses in gonad of mussel Mytilus galloprovincialis to 2,2',4,4'-tetrabromodiphenyl ether.

    PubMed

    Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2014-05-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as a class of brominated flame-retardants. As a congener of PBDEs, 2,2',4,4'-tetrabromodiphenylether (BDE 47) is the most toxic congener to animals. In this study, we applied metabolomics to characterize the gender-specific metabolic responses in mussel Mytilus galloprovincialis exposed to BDE 47 for 30 days. Results indicated the apparent gender-specific responses in M. galloprovincialis with BDE 47 exposures (1 and 10 μg/L) at metabolite level. Basically, BDE 47 induced disruption in osmotic regulation and altered energy metabolism in mussels, via differential metabolic pathways. In addition, the hormesis phenomenon was observed in both male and female mussel samples exposed the two concentrations of BDE 47, indicated by the contrarily altered metabolites from two BDE 47 treatments (1 and 10 μg/L), respectively. Overall, this study confirmed the gender-specific responses to BDE 47 exposures in mussels and suggested the gender differences should be considered in marine ecotoxicology.

  17. Bone turnover response is linked to both acute and established metabolic changes in ultra-marathon runners.

    PubMed

    Sansoni, Veronica; Vernillo, Gianluca; Perego, Silvia; Barbuti, Andrea; Merati, Giampiero; Schena, Federico; La Torre, Antonio; Banfi, Giuseppe; Lombardi, Giovanni

    2017-04-01

    Bone and energy metabolisms regulation depends on a two-way street aimed at regulating energy utilization. Mountain ultra-marathons are highly demanding aerobic performances that deeply affect the whole body homeostasis. In this study we aimed to investigate and characterize the metabolic profile (in terms of hormones involved in energy metabolism), the inflammatory adipokines, and the bone turnover; in particular the osteocalcin-mediated response has been compared in experienced mountain ultra-marathons runners versus control subjects. Serum concentrations of specific markers of bone turnover (pro-collagen type I N-terminal propeptide, carboxylated/undercarboxylated osteocalcin), measured by enzyme-linked immunosorbent assay, and metabolic hormones (C-peptide, insulin, glucagon, glucagon-like peptide, gastric-inhibitory peptide, ghrelin, leptin, resistin, and visfatin), measured by fluorescent-based multiplex assay, were compared before and after a 65 km mountain ultra-marathons in 17 trained runners and 12 age-matched controls characterized by a low physical activity profile. After the mountain ultra-marathons, runners experienced a reduction in pro-collagen type I N-terminal propeptide, though it remained higher than in controls; while carboxylated osteocalcin remained unchanged. Among the metabolic hormones, only glucagon and leptin were different between runners and controls at rest. C-peptide and leptin decreased after the mountain ultra-marathons in runners; while glucagon, glucagon-like peptide 1, resistin, and visfatin were all increased. Uncarboxylated osteocalcin (and uncarboxylated/carboxylated osteocalcin ratio) was decreased and this highly correlated with insulin and C-peptide levels. In conditions of high energy expenditure, homeostasis is maintained at expenses of bone metabolism. Changes in the uncarboxylated osteocalcin clearly mark the global energy needs of the body.

  18. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury

    PubMed Central

    Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari

    2015-01-01

    Background: Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. Objective: The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Methods: Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Results: Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Conclusion: Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity. PMID:26364281

  19. Women with metabolic syndrome present different autonomic modulation and blood pressure response to an acute resistance exercise session compared with women without metabolic syndrome.

    PubMed

    Tibana, Ramires A; Boullosa, Daniel A; Leicht, Anthony S; Prestes, Jonato

    2013-09-01

    Metabolic syndrome (MetS) is a cluster of risk factors in individuals with high risk of diabetes and heart disease. Resistance training (RT) has been proposed to be a safe, effective and worthwhile method for the prevention and treatment of metabolic and cardiovascular diseases. However, no study has analysed the acute response of blood pressure (BP) and autonomic control of heart rate (HR) after a RT session in female patients with MetS. The aim of the present study was to analyse the response of laboratory assessed and ambulatory BP and cardiac autonomic modulation after a RT session in women with MetS. Nine women without MetS (35.0 ± 6.7 years) and 10 women with MetS (34.1 ± 9.4 years) completed one experimental exercise session and a control session. Laboratory BP, heart rate variability (HRV) and ambulatory BP of each subject were measured at rest, over 60 min, and for 24 h after the end of the sessions, respectively. There was a significant reduction in systolic blood pressure (SBP), night time diastolic blood pressure (DBP) and mean blood pressure (MBP) only for women with MetS, for all periods after the RT session when compared with the control session (P<0.05). Significantly lower laboratory values of SBP and DBP (10, 30 and 40 min postexercise) and MBP (10, 40 and 50 min postexercise) were observed in women with MetS (P<0.05). Patients with MetS exhibited significant lower basal HRV and a lower autonomic responsiveness during the 60 min of acute recovery. These results confirmed that an acute session of resistance exercise induced a lower BP during day time and sleeping hours in women with MetS that may offer a cardio-protective effect. Women with MetS exhibited an impaired autonomic modulation at rest and a lower acute autonomic responsiveness to a RT session. The dissociation between BP and HRV responses suggests that other factors than autonomic control could be involved in the hypotensive effect of a RT session in MetS patients.

  20. A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection

    PubMed Central

    2010-01-01

    Background Postharvest losses of citrus fruit due to green mold decay, caused by the fungus Penicillium digitaum, have a considerable economic impact. However, little is known about the molecular processes underlying the response of citrus fruit to P. digitatum. Results Here we describe the construction of a subtracted cDNA library enriched in citrus genes preferentially expressed in response to pathogen infection followed by cDNA macroarray hybridization to investigate gene expression during the early stages of colonization of the fruit's peel by P. digitatum. Sequence annotation of clones from the subtracted cDNA library revealed that induction of secondary and amino acid metabolisms constitutes the major response of citrus fruits to P. digitatum infection. Macroarray hybridization analysis was conducted with RNA from either control, wounded, ethylene treated or P. digitatum infected fruit. Results indicate an extensive overlap in the response triggered by the three treatments, but also demonstrated specific patterns of gene expression in response to each stimulus. Collectively our data indicate a significant presence of isoprenoid, alkaloid and phenylpropanoid biosynthetic genes in the transcriptomic response of citrus fruits to P. digitatum infection. About half of the genes that are up-regulated in response to pathogen infection are also induced by ethylene, but many examples of ethylene-independent gene regulation were also found. Two notable examples of this regulation pattern are the genes showing homology to a caffeine synthase and a berberine bridge enzyme, two proteins involved in alkaloid biosynthesis, which are among the most induced genes upon P. digitatum infection but are not responsive to ethylene. Conclusions This study provided the first global picture of the gene expression changes in citrus fruit in response to P. digitatum infection, emphasizing differences and commonalities with those triggered by wounding or exogenous ethylene treatment

  1. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    PubMed

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel.

  2. Transcriptome Analysis Identifies Key Metabolic Changes in the Hooded Seal (Cystophora cristata) Brain in Response to Hypoxia and Reoxygenation.

    PubMed

    Hoff, Mariana Leivas Müller; Fabrizius, Andrej; Czech-Damal, Nicole U; Folkow, Lars P; Burmester, Thorsten

    2017-01-01

    The brain of diving mammals tolerates low oxygen conditions better than the brain of most terrestrial mammals. Previously, it has been demonstrated that the neurons in brain slices of the hooded seal (Cystophora cristata) withstand hypoxia longer than those of mouse, and also tolerate reduced glucose supply and high lactate concentrations. This tolerance appears to be accompanied by a shift in the oxidative energy metabolism to the astrocytes in the seal while in terrestrial mammals the aerobic energy production mainly takes place in neurons. Here, we used RNA-Seq to compare the effect of hypoxia and reoxygenation in vitro on brain slices from the visual cortex of hooded seals. We saw no general reduction of gene expression, suggesting that the response to hypoxia and reoxygenation is an actively regulated process. The treatments caused the preferential upregulation of genes related to inflammation, as found before e.g. in stroke studies using mammalian models. Gene ontology and KEGG pathway analyses showed a downregulation of genes involved in ion transport and other neuronal processes, indicative for a neuronal shutdown in response to a shortage of O2 supply. These differences may be interpreted in terms of an energy saving strategy in the seal's brain. We specifically analyzed the regulation of genes involved in energy metabolism. Hypoxia and reoxygenation caused a similar response, with upregulation of genes involved in glucose metabolism and downregulation of the components of the pyruvate dehydrogenase complex. We also observed upregulation of the monocarboxylate transporter Mct4, suggesting increased lactate efflux. Together, these data indicate that the seal brain responds to the hypoxic challenge by a relative increase in the anaerobic energy metabolism.

  3. Transcriptome Analysis Identifies Key Metabolic Changes in the Hooded Seal (Cystophora cristata) Brain in Response to Hypoxia and Reoxygenation

    PubMed Central

    Czech-Damal, Nicole U.; Folkow, Lars P.

    2017-01-01

    The brain of diving mammals tolerates low oxygen conditions better than the brain of most terrestrial mammals. Previously, it has been demonstrated that the neurons in brain slices of the hooded seal (Cystophora cristata) withstand hypoxia longer than those of mouse, and also tolerate reduced glucose supply and high lactate concentrations. This tolerance appears to be accompanied by a shift in the oxidative energy metabolism to the astrocytes in the seal while in terrestrial mammals the aerobic energy production mainly takes place in neurons. Here, we used RNA-Seq to compare the effect of hypoxia and reoxygenation in vitro on brain slices from the visual cortex of hooded seals. We saw no general reduction of gene expression, suggesting that the response to hypoxia and reoxygenation is an actively regulated process. The treatments caused the preferential upregulation of genes related to inflammation, as found before e.g. in stroke studies using mammalian models. Gene ontology and KEGG pathway analyses showed a downregulation of genes involved in ion transport and other neuronal processes, indicative for a neuronal shutdown in response to a shortage of O2 supply. These differences may be interpreted in terms of an energy saving strategy in the seal's brain. We specifically analyzed the regulation of genes involved in energy metabolism. Hypoxia and reoxygenation caused a similar response, with upregulation of genes involved in glucose metabolism and downregulation of the components of the pyruvate dehydrogenase complex. We also observed upregulation of the monocarboxylate transporter Mct4, suggesting increased lactate efflux. Together, these data indicate that the seal brain responds to the hypoxic challenge by a relative increase in the anaerobic energy metabolism. PMID:28046118

  4. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    SciTech Connect

    Kim, Young C. Yim, Hye K.; Jung, Young S.; Park, Jae H.; Kim, Sung Y.

    2007-08-15

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards.

  5. Low-dose ionizing radiation-induced blood plasma metabolic response in a diverse genetic mouse population.

    PubMed

    Lee, Do Yup; Bowen, Benjamin P; Nguyen, David H; Parsa, Sara; Huang, Yurong; Mao, Jian-Hua; Northen, Trent R

    2012-12-01

    Understanding the biological effects and biochemical mechanisms of low-dose ionizing radiation (LDIR) is important for setting exposure limits for the safe use of nuclear power and medical diagnostic procedures. Although several studies have highlighted the effects of ionizing radiation on metabolism, most studies have focused on uniform genetic mouse populations. Here, we report the metabolic response to LDIR (10 cGy X ray) on a genetically diverse mouse population (142 mice) generated from a cross of radiation-sensitive (BALB/c) and radiation-resistant (SPRET/EiJ) parental strains. GC-TOF profiling of plasma metabolites was used to compare exposed vs. sham animals. From this, 16 metabolites were significantly altered in the LDIR treated vs. sham group. Use of two significantly altered metabolites, thymine and 2-monostearin, was found to effectively segregate the two treatments. Multivariate statistical analysis was used to identify genetic polymorphisms correlated with metabolite abundance (e.g., amino acids, fatty acids, nucleotides and TCA cycle intermediates). Genetic analysis of metabolic phenotypes showed suggestive linkages for fatty acid and amino acid metabolism. However, metabolite abundance was found to be a function of low-dose ionizing radiation exposure, and not of the underlying genetic variation.

  6. Metabolic Response of “Candidatus Accumulibacter Phosphatis” Clade II C to Changes in Influent P/C Ratio

    PubMed Central

    Welles, Laurens; Abbas, Ben; Sorokin, Dimitry Y.; Lopez-Vazquez, Carlos M.; Hooijmans, Christine M.; van Loosdrecht, Mark C. M.; Brdjanovic, Damir

    2017-01-01

    The objective of this study was to investigate the ability of a culture highly enriched with the polyphosphate-accumulating organism, “Candidatus Accumulibacter phosphatis” clade IIC, to adjust their metabolism to different phosphate availabilities. For this purpose the biomass was cultivated in a sequencing batch reactor with acetate and exposed to different phosphate/carbon influent ratios during six experimental phases. Activity tests were conducted to determine the anaerobic kinetic and stoichiometric parameters as well as the composition of the microbial community. Increasing influent phosphate concentrations led to increased poly-phosphate content and decreased glycogen content of the biomass. In response to higher biomass poly-phosphate content, the biomass showed higher specific phosphate release rates. Together with the phosphate release rates, acetate uptake rates also increased up to an optimal poly-phosphate/glycogen ratio of 0.3 P-mol/C-mol. At higher poly-phosphate/glycogen ratios (obtained at influent P/C ratios above 0.051 P-mol/C-mol), the acetate uptake rates started to decrease. The stoichiometry of the anaerobic conversions clearly demonstrated a metabolic shift from a glycogen dominated to a poly-phosphate dominated metabolism as the biomass poly-phosphate content increased. FISH and DGGE analyses confirmed that no significant changes occurred in the microbial community, suggesting that the changes in the biomass activity were due to different metabolic behavior, allowing the organisms to proliferate under conditions with fluctuating phosphate levels. PMID:28111570

  7. Cellular metabolic, stress, and histological response on exposure to acute toxicity of endosulfan in tilapia (Oreochromis mossambicus).

    PubMed

    Kumar, Neeraj; Sharma, Rupam; Tripathi, Gayatri; Kumar, Kundan; Dalvi, Rishikesh S; Krishna, Gopal

    2016-01-01

    Endosulfan is one of the most hazardous organochlorines pesticides responsible for environmental pollution, as it is very persistent and shows bio-magnification. This study evaluated the impact of acute endosulfan toxicity on metabolic enzymes, lysozyme activities, heat shock protein (Hsp) 70 expression, and histopathology in Tilapia (Oreochromis mossambicus). Among the indicators that were induced in dose dependent manner were the enzymes of amino acid metabolism (serum alanine aminotransferase and aspartate aminotransferase), carbohydrate metabolism (serum lactate dehydrogenase), pentose phosphate pathway (Glucose-6-phosphate dehydrogenase) as well as lysozyme and Hsp70 in liver and gill, while liver and gill Isocitrate dehydrogenase (TCA cycle enzyme) and marker of general energetics (Total adenosine triphosphatase) were inhibited. Histopathological alterations in gill were clubbing of secondary gill lamellae, marked hyperplasia, complete loss of secondary lamellae and atrophy of primary gill filaments. Whereas in liver, swollen hepatocyte, and degeneration with loss of cellular boundaries were distinctly noticed. Overall results clearly demonstrated the unbalanced metabolism and damage of the vital organs like liver and gill in Tilapia due to acute endosulfan exposure.

  8. Effects of hyperthermia on the metabolic responses to repeated high-intensity exercise.

    PubMed

    Linnane, D M; Bracken, R M; Brooks, S; Cox, V M; Ball, D

    2004-10-01

    In this study, we investigated the metabolic and performance responses to hyperthermia during high-intensity exercise. Seven males completed two 30-s cycle sprints (SpI and SpII) at an environmental temperature of 20.6 (0.3) degrees C [mean (SD)] with 4 min recovery between sprints. A hot or control treatment preceded the sprint exercise. For the hot trial, subjects were immersed up to the neck in hot water [43 degrees C for 16.0 (3.2) min] prior to entering an environmental chamber [44.2 (0.8) degrees C for 30.7 (7.1) min]. For the control trial, subjects were seated in an empty bath (15 min) and thereafter in a normal environment [20.2 (0.6) degrees C for 29.0 (1.9) min]. Subjects' core temperature prior to exercise was 38.1 (0.3) degrees C in the hot trial and 37.1 (0.3) degrees C in the control trial. Mean power output (MPO) was significantly higher in the hot condition for SpI [683 (130) W hot vs 646 (119) W control ( P<0.025)]. Peak power output (PPO) tended to be higher in the hot trial compared with the control trial for SpI [1057 (260) W hot vs 990 (245) W control ( P=0.03, NS)]. These differences in power output were a consequence of a faster pedal cadence in the hot trial ( P<0.025). There were no differences in sprint performance in SpII in the hot trial compared to the control trial; however, MPO was significantly reduced from SpI to SpII in the hot condition but not in the control condition ( P<0.025). Plasma ammonia was higher in the hot trial at 2 min post-SpI [169 (65) micromol l(-1 )hot vs 70 (26) micromol l(-1) control ( P<0.01)], immediately and at 2 min post-SpII [231 (76) micromol l(-1) hot vs 147 (72) micromol l(-1) control ( P<0.01)]. Blood lactate was higher in the hot trial compared with the control trial at 5 min post-SpII ( P<0.025). The results of this study suggest that an elevation in core body temperature by 1 degrees C can improve performance during an initial bout of high-intensity cycle exercise but has no further beneficial

  9. Organogenic responses of Pinus pinea cotyledons to hormonal treatments: BA metabolism and cytokinin content.

    PubMed

    Moncaleán, P; Alonso, P; Centeno, M L; Cortizo, M; Rodríguez, A; Fernández, B; Ordás, R J

    2005-01-01

    Isolated cotyledons from mature Pinus pinea L. embryos were cultured in vitro in a factorial combination of 4.4, 10 and 44.4 microM N6-benzyladenine (BA) for 2, 4, 8, 16 and 35 days to optimize shoot regeneration. Incubation of explants in 44.4 microM BA for 4 days, in place of the standard incubation in 4.4 microM BA for 35 days, reduced the entire culture period to 4 weeks. Shortening the culture period had no significant effect on the caulogenic response or the number of buds formed per cotyledon. To establish the relationship between key moments in the caulogenic process induced by 4.4 microM BA and the endogenous concentrations of the active forms of BA and other isoprenoid-type cytokinins (CKs), we examined uptake, metabolism and amount of BA, as well as the amounts of zeatin, dihydrozeatin and their ribosides in P. pinea cotyledons after 1, 2, 6, 12 and 24 h, and 2, 4, 8, 16 and 35 days of exposure to 8-[14C]BA. Uptake and release of BA were associated with water movement between explants and the medium during the first 8 days of culture. The interconvertible forms of BA were the main metabolites formed in the tissues. Inactivation of BA as a result of conjugation or oxidation was insignificant. The endogenous concentration of BA + N6-benzyladenosine was 20-fold higher than the exogenously applied BA during the competence acquisition phase (Days 0-3). The concentration of isoprenoid-type CKs also increased 16-fold and then decreased during this time. Induction of shoot buds (Days 4-8) was characterized by a second peak of BA uptake by explants that triggered the synthesis of N6-benzyladenosine-5 -monophosphate and b