In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts
Ranasinghe, Priyanga; Ranasinghe, Pathmasiri; Abeysekera, W. P. Kaushalya M.; Premakumara, G. A. Sirimal; Perera, Yashasvi S.; Gurugama, Padmalal; Gunatilake, Saman B.
2012-01-01
Background: Carica papaya L. fruit juice and leaf extracts are known to have many beneficial medical properties. Recent reports have claimed possible beneficial effects of C. papaya L. leaf juice in treating patients with dengue viral infections. This study aims to evaluate the membrane stabilization potential of C. papaya L. leaf extracts using an in vitro hemolytic assay. Materials and Methods: The study was conducted in between June and August 2010. Two milliliters of blood from healthy volunteers and patients with serologically confirmed current dengue infection were freshly collected and used in the assays. Fresh papaya leaves at three different maturity stages (immature, partly matured, and matured) were cleaned with distilled water, crushed, and the juice was extracted with 10 ml of cold distilled water. Freshly prepared cold water extracts of papaya leaves (1 ml containing 30 μl of papaya leaf extracts, 20 μl from 40% erythrocytes suspension, and 950 μl of phosphate buffered saline) were used in the heat-induced and hypotonic-induced hemolytic assays. In dose response experiments, six different concentrations (9.375, 18.75, 37.5, 75, 150, and 300 μg/ml) of freeze dried extracts of the partly matured leaves were used. Membrane stabilization properties were investigated with heat-induced and hypotonicity-induced hemolysis assays. Results: Extracts of papaya leaves of all three maturity levels showed a significant reduction in heat-induced hemolysis compared to controls (P < 0.05). Papaya leaf extracts of all three maturity levels showed more than 25% inhibition at a concentration of 37.5 μg/ml. The highest inhibition of heat-induced hemolysis was observed at 37.5 μg/ml. Inhibition activity of different maturity levels was not significantly (P < 0.05) different from one another. Heat-induced hemolysis inhibition activity did not demonstrate a linear dose response relationship. At 37.5 μg/ml concentration of the extract, a marked inhibition of
In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts.
Ranasinghe, Priyanga; Ranasinghe, Pathmasiri; Abeysekera, W P Kaushalya M; Premakumara, G A Sirimal; Perera, Yashasvi S; Gurugama, Padmalal; Gunatilake, Saman B
2012-10-01
Carica papaya L. fruit juice and leaf extracts are known to have many beneficial medical properties. Recent reports have claimed possible beneficial effects of C. papaya L. leaf juice in treating patients with dengue viral infections. This study aims to evaluate the membrane stabilization potential of C. papaya L. leaf extracts using an in vitro hemolytic assay. The study was conducted in between June and August 2010. Two milliliters of blood from healthy volunteers and patients with serologically confirmed current dengue infection were freshly collected and used in the assays. Fresh papaya leaves at three different maturity stages (immature, partly matured, and matured) were cleaned with distilled water, crushed, and the juice was extracted with 10 ml of cold distilled water. Freshly prepared cold water extracts of papaya leaves (1 ml containing 30 μl of papaya leaf extracts, 20 μl from 40% erythrocytes suspension, and 950 μl of phosphate buffered saline) were used in the heat-induced and hypotonic-induced hemolytic assays. In dose response experiments, six different concentrations (9.375, 18.75, 37.5, 75, 150, and 300 μg/ml) of freeze dried extracts of the partly matured leaves were used. Membrane stabilization properties were investigated with heat-induced and hypotonicity-induced hemolysis assays. Extracts of papaya leaves of all three maturity levels showed a significant reduction in heat-induced hemolysis compared to controls (P < 0.05). Papaya leaf extracts of all three maturity levels showed more than 25% inhibition at a concentration of 37.5 μg/ml. The highest inhibition of heat-induced hemolysis was observed at 37.5 μg/ml. Inhibition activity of different maturity levels was not significantly (P < 0.05) different from one another. Heat-induced hemolysis inhibition activity did not demonstrate a linear dose response relationship. At 37.5 μg/ml concentration of the extract, a marked inhibition of hypotonicity-induced hemolysis was observed. C. papaya
The potential of papaya leaf extract in controlling Ganoderma boninense
NASA Astrophysics Data System (ADS)
Tay, Z. H.; Chong, K. P.
2016-06-01
Basal Stem Rot (BSR) disease causes significant losses to the oil palm industry. Numerous controls have been applied in managing the disease but no conclusive result was reported. This study investigated the antifungal potential of papaya leaf extracts against Ganoderma boninense, the causal pathogen of BSR. Among the five different solvents tested in extraction of compounds from papaya leaf, methanol and acetone gave the highest yield. In vitro antifungal activity of the methanol and acetone extracts were evaluated against G. boninense using agar dilution at four concentrations: 5 mg mL-1, 15 mg mL-1, 30 mg mL-1and 45 mg mL-1. The results indicated a positive correlation between the concentration of leaf extracts and the inhibition of G. boninense. ED50 of methanol and acetone crude extracts were determined to be 32.016 mg mL-1and 65.268 mg mL-1, respectively. The extracts were later semi-purified using solid phase extraction (SPE) and the nine bioactive compounds were identified: decanoic acid, 2-methyl-, Z,Z-10-12-Hexadecadien-1-ol acetate, dinonanoin monocaprylin, 2-chloroethyl oleate, phenol,4-(1-phenylethyl)-, phenol,2,4-bis(1-phenylethyl)-, phenol-2-(1-phenylethyl)-, ethyl iso-allocholate and 1- monolinoleoylglycerol trimethylsilyl ether. The findings suggest that papaya leaf extracts have the ability to inhibit the growth of G. boninense, where a higher concentration of the extract exhibits better inhibition effects.
Chinnappan, Shobia; Ramachandrappa, Vijayakumar Shettikothanuru; Tamilarasu, Kadhiravan; Krishnan, Uma Maheswari; Pillai, Agiesh Kumar Balakrishna; Rajendiran, Soundravally
2016-04-01
Dengue cases were reported to undergo platelet activation and thrombocytopenia by a poorly understood mechanism. Recent studies suggested that Carica papaya leaf extract could recover the platelet count in dengue cases. However, no studies have attempted to unravel the mechanism of the plant extract in platelet recovery. Since there are no available drugs to treat dengue and considering the significance of C. papaya in dengue treatment, the current study aimed to evaluate two research questions: First one is to study if the C. papaya leaf extract exerts its action directly on platelets and second one is to understand if the extract can specifically inhibit the platelet aggregation during dengue viral infection. Sixty subjects with dengue positive and 60 healthy subjects were recruited in the study. Platelet-rich plasma (PRP) and platelet-poor plasma were prepared from both the dengue-infected and healthy control blood samples. Effect of the leaf extract obtained from C. papaya leaves was assessed on plasma obtained as well as platelets collected from both healthy and dengue-infected individuals. Platelet aggregation was significantly reduced when leaf extract preincubated with dengue plasma was added into control PRP, whereas no change in aggregation when leaf extract incubated-control plasma was added into control PRP. Upon direct addition of C. papaya leaf extract, both dengue PRP and control PRP showed a significant reduction in platelet aggregation. Within the dengue group, PRP from severe and nonsevere cases showed a significant decrease in aggregation without any difference between them. From the study, it is evident that C. papaya leaf extract can directly act on platelet. The present study, the first of its kind, found that the leaf extract possesses a dengue-specific neutralizing effect on dengue viral-infected plasma that may exert a protective role on platelets.
Zuhrotun Nisa, Fatma; Astuti, Mary; Murdiati, Agnes; Mubarika Haryana, Sofia
2017-01-01
Breast cancer is the most frequently diagnosed cancer in women. Chemotherapy is the main method of breast cancer treatment but there are side effects. Carica papaya leaves is vegetable foods consumed by most people of Indonesia have potential as anticancer. The aim of this study was to investigate anti-proliferative and apoptotic induced effect of aqueous papaya leaves extracts on human breast cancer cell lines MCF-7. Inhibitory on cell proliferation was measured by MTT assay while apoptosis induction was measured using Annexin V. The results showed that papaya leaf can inhibit the proliferation of human breast cancer cells MCF-7 with IC50 in 1319.25 μg mL-1. The IC50 values of papaya leaf extract was higher than the IC50 value quercetin and doxorubicin. Papaya leaf extract can also induce apoptosis of breast cancer cells MCF-7 about 22.54% for concentration 659.63 μg mL-1 and about 20.73% for concentration 329.81 μg mL-1. The percentage of cell apoptosis of papaya leaf extract lower than doxorubicin but higher than quercetin. This study indicated that papaya leaf extract have potential as anticancer through mechanism anti-proliferation and apoptosis induction.
Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract.
Okoko, Tebekeme; Ere, Diepreye
2012-06-01
To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.
Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K
2015-12-24
In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.
Nguyen, Thao T.; Parat, Marie-Odile; Hodson, Mark P.; Pan, Jenny; Shaw, Paul N.; Hewavitharana, Amitha K.
2015-01-01
In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer. PMID:26712788
Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract
Okoko, Tebekeme; Ere, Diepreye
2012-01-01
Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948
Charan, Jaykaran; Saxena, Deepak; Goyal, Jagdish Prasad; Yasobant, Sandul
2016-01-01
Dengue is an infectious disease associated with high mortality and morbidity. Being a viral disease, there is no specific drug available for treatment. There are some reports that Carica papaya leaf extract may improve the clinical condition of dengue patients; however, to support this, at present, there is no systematically searched and synthesized evidence available. This systematic review and meta-analysis was designed to search the available evidence related to the efficacy and safety of C. papaya leaf extract in dengue and to synthesize the evidence in meaningful form through meta-analysis so that inference can be drawn. Randomized controlled trials related to the efficacy and safety of C. papaya leaf extract in dengue were searched from PubMed, Cochrane Clinical Trial Registry and Google Scholar. The primary endpoint was mortality, and secondary endpoints were increase in platelet count, hospitalization days, and Grade 3 and 4 adverse events. Data related to primary and secondary endpoints were pooled together and analyzed by review manager (Review Manager (RevMan) Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, Denmark) software. The random effect model was used. The bias was analyzed by the Cochrane risk of bias tool. Total four trials enrolling 439 subjects were included in the analysis. Of 439 subjects, data of 377 subjects were available for analysis. C. papaya leaf extract was found to be associated with increase in platelet count in the overall analysis (mean difference [MD] =20.27 [95% confidence interval (CI) 6.21-34.73; P = 0.005]) and analysis after 4 th day (MD = 28.25 [95% CI 14.14-42.37; P < 0.0001]). After 48 h, there was no significant difference between C. papaya and control group (MD = 13.38 [95% CI - 7.71-34.51; P = 0.21]). There was significant decrease in hospitalization days in the C. papaya group (MD = 1.90 [95% CI 1.62-2.18; P < 0.00001]). Because of nonavailability of data in published clinical trials, mortality
Repeated dose 28-days oral toxicity study of Carica papaya L. leaf extract in Sprague Dawley rats.
Afzan, Adlin; Abdullah, Noor Rain; Halim, Siti Zaleha; Rashid, Badrul Amini; Semail, Raja Hazlini Raja; Abdullah, Noordini; Jantan, Ibrahim; Muhammad, Hussin; Ismail, Zakiah
2012-04-10
Carica papaya L. leaves have been used in ethnomedicine for the treatment of fevers and cancers. Despite its benefits, very few studies on their potential toxicity have been described. The aim of the present study was to characterize the chemical composition of the leaf extract from 'Sekaki' C. papaya cultivar by UPLC-TripleTOF-ESI-MS and to investigate the sub-acute oral toxicity in Sprague Dawley rats at doses of 0.01, 0.14 and 2 g/kg by examining the general behavior, clinical signs, hematological parameters, serum biochemistry and histopathology changes. A total of twelve compounds consisting of one piperidine alkaloid, two organic acids, six malic acid derivatives, and four flavonol glycosides were characterized or tentatively identified in the C. papaya leaf extract. In the sub-acute study, the C. papaya extract did not cause mortality nor were treatment-related changes in body weight, food intake, water level, and hematological parameters observed between treatment and control groups. Some biochemical parameters such as the total protein, HDL-cholesterol, AST, ALT and ALP were elevated in a non-dose dependent manner. Histopathological examination of all organs including liver did not reveal morphological alteration. Other parameters showed non-significant differences between treatment and control groups. The present results suggest that C. papaya leaf extract at a dose up to fourteen times the levels employed in practical use in traditional medicine in Malaysia could be considered safe as a medicinal agent.
Ikpeme, E V; Ekaluo, U B; Kooffreh, M E; Udensi, O
2011-03-15
This study was aimed at qualitative evaluation of the ethanol seed, leaf and pulp extracts of C. papaya for bioactive compounds and also to investigate their effect on the haematology in male albino rats. A 3 x 4 factorial experimental layout using randomized complete design was adopted. Results show that the phytochemicals found in seed, leaf and pulp were almost the same but however, in varying proportions. Present result also revealed that there were significant effects (p < 0.05) of the extracts on the heamatology of the treated rats, which was blamed on the varying and different variants ofbioactive compounds found in the extracts they were administered with. Suggestively, C. papaya extracts could be used to enhance the production of selected blood parameters, taking issue of dosage into consideration.
Indran, M; Mahmood, A A; Kuppusamy, U R
2008-09-01
The effects of Carica papaya leaf (CPL) aqueous extract on alcohol induced acute gastric damage and the immediate blood oxidative stress level were studied in rats. The results showed that gastric ulcer index was significantly reduced in rats pretreated with CPL extract as compared with alcohol treated controls. The in vitro studies using 2,2-Diphenyl-1-Picryl-Hydrazyl (DPPH) assay showed strong antioxidant nature of CPL extract. Biochemical analysis indicated that the acute alcohol induced damage is reflected in the alterations of blood oxidative indices and CPL extract offered some protection with reduction in plasma lipid peroxidation level and increased erythrocyte glutathione peroxidase activity. Carica papaya leaf may potentially serve as a good therapeutic agent for protection against gastric ulcer and oxidative stress.
Dharmarathna, Sinhalagoda Lekamlage Chandi Asoka; Wickramasinghe, Susiji; Waduge, Roshitha Nilmini; Rajapakse, Rajapakse Peramune Veddikkarage Jayanthe; Kularatne, Senanayake Abeysinghe Mudiyanselage
2013-09-01
To investigate the potential role of fresh Carica papaya (C. papaya) leaf extract on haematological and biochemical parameters and toxicological changes in a murine model. In total 36 mice were used for the trial. Fresh C. papaya leaf extract [0.2 mL (2 g)/mouse] was given only to the test group (18 mice). General behavior, clinical signs and feeding patterns were recorded. Blood and tissue samples were collected at intervals. Haematological parameters including platelet, red blood cell (RBC), white blood cell (WBC), packed cell volume (PCV), serum biochemistry including serum creatinine, serum glutamic-oxaloacetic transaminase (SGOT) and serum glutamic-pyruvic transaminase (SGPT) were determined. Organs for possible histopathological changes were examined. Neither group exhibited alteration of behavior or reduction in food and water intake. Similarly, no significant changes in SGOT, SGPT and serum creatinine levels were detected in the test group. Histopathological organ changes were not observed in either group of mice except in three liver samples of the test group which had a mild focal necrosis. The platelet count (11.33±0.35)×10⁵/µL (P=0.00004) and the RBC count (7.97±0.61)×10⁶/µL (P=0.00003) were significantly increased in the test group compared to that of the controls. However, WBC count and PCV (%) values were not changed significantly in the test group. The platelet count in the test group started to increase significantly from Day 3 (3.4±0.18×10⁵/µL), reaching almost a fourfold higher at Day 21 (11.3×10⁵/µL), while it was 3.8×10⁵/µL and 5.5×10⁵/µL at Day 3 and Day 21 respectively in the control. Likewise, the RBC count in the test group increased from 6×10⁶/µL to 9×10⁶/ µL at Day 21 while it remained near constant in the control group (6×10⁶/µL). Fresh C. papaya leaf extract significantly increased the platelet and RBC counts in the test group as compared to controls. Therefore, it is very important to identify
Does Carica papaya leaf-extract increase the platelet count? An experimental study in a murine model
Dharmarathna, Sinhalagoda Lekamlage Chandi Asoka; Wickramasinghe, Susiji; Waduge, Roshitha Nilmini; Rajapakse, Rajapakse Peramune Veddikkarage Jayanthe; Kularatne, Senanayake Abeysinghe Mudiyanselage
2013-01-01
Objective To investigate the potential role of fresh Carica papaya (C. papaya) leaf extract on haematological and biochemical parameters and toxicological changes in a murine model. Methods In total 36 mice were used for the trial. Fresh C. papaya leaf extract [0.2 mL (2 g)/mouse] was given only to the test group (18 mice). General behavior, clinical signs and feeding patterns were recorded. Blood and tissue samples were collected at intervals. Haematological parameters including platelet, red blood cell (RBC), white blood cell (WBC), packed cell volume (PCV), serum biochemistry including serum creatinine, serum glutamic-oxaloacetic transaminase (SGOT) and serum glutamic-pyruvic transaminase (SGPT) were determined. Organs for possible histopathological changes were examined. Results Neither group exhibited alteration of behavior or reduction in food and water intake. Similarly, no significant changes in SGOT, SGPT and serum creatinine levels were detected in the test group. Histopathological organ changes were not observed in either group of mice except in three liver samples of the test group which had a mild focal necrosis. The platelet count (11.33±0.35)×105/µL (P=0.000 04) and the RBC count (7.97±0.61)×106/µL (P=0.000 03) were significantly increased in the test group compared to that of the controls. However, WBC count and PCV (%) values were not changed significantly in the test group. The platelet count in the test group started to increase significantly from Day 3 (3.4±0.18×105/µL), reaching almost a fourfold higher at Day 21 (11.3×105/µL), while it was 3.8×105/µL and 5.5×105/µL at Day 3 and Day 21 respectively in the control. Likewise, the RBC count in the test group increased from 6×106/µL to 9×106/ µL at Day 21 while it remained near constant in the control group (6×106/µL). Conclusions Fresh C. papaya leaf extract significantly increased the platelet and RBC counts in the test group as compared to controls. Therefore, it is very
Gadhwal, Ajeet Kumar; Ankit, B S; Chahar, Chitresh; Tantia, Pankaj; Sirohi, P; Agrawal, R P
2016-06-01
Thrombocytopenia in dengue fever is a common and serious complication. However, no specific treatment is available for dengue fever induced thrombocytopenia. In few countries (Pakistan, Malaysia, Sri Lanka and other Asian countries) the leaf extract of Carica papaya has been effectively used for thrombocytopenia. So, the study is planned to access effect of Carica papaya leaf extract on platelet count in dengue fever patients. All participants were randomised into two groups, study group and control group; the study group was given papaya leaf extract capsule of 500 mg once daily and routine supportive treatment for consecutive five days. The controls were given only routine supportive treatment. Daily complete blood counts, platelet counts and haematocrit level, liver function test, renal function test of both groups were observed. On the first day platelet count of study group and control group was (59.82±18.63, 61.06±20.03 thousands, p value 0.36). On the 2nd day platelet count of both study and control groups was not significantly different (61.67±19.46 and 59.93±19.52 thousands, p value 0.20) but on 3rd day platelet count of study group was significantly higher than control group (82.96±16.72, 66.45±17.36 thousands, p value < 0.01). On 4th and 5th day platelet count of study group (122.43±19.36 and 112.47±17.49 thousands respectively) was also significantly higher than the control group (88.75±21.65 and 102.59±19.35 thousands) (p value < 0.01). On 7th day platelet count of study group and control group were not significantly different (124.47±12.35 and 122.46±19.76 thousands respectively, p value 0.08). Average hospitalization period of study group v/s control group was 3.65±0.97 v/s 5.42±0.98 days (p value < 0.01). Average platelet transfusion requirement in study group was significantly less than control group (0.685 units per patient v/s 1.19 units per patient) (p value <0.01). It is concluded that Carica papaya leaf extract increases the
Kovendan, Kalimuthu; Murugan, Kadarkarai; Naresh Kumar, Arjunan; Vincent, Savariar; Hwang, Jiang-Shiou
2012-02-01
The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC(50) = I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs.
Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.
Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal
2015-09-05
The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. Copyright © 2015 Elsevier B.V. All rights reserved.
Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye
NASA Astrophysics Data System (ADS)
Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal
2015-09-01
The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.
Quantification of the antiplasmodial alkaloid carpaine in papaya (Carica papaya) leaves.
Julianti, Tasqiah; Oufir, Mouhssin; Hamburger, Matthias
2014-08-01
Daily consumption of papaya (Carica papaya) leaves as greens and an herbal infusion is common in some parts of Indonesia as a means for preventing malaria. Antiplasmodial activity of the leaf extracts and of the main alkaloid carpaine were recently confirmed. A quantitative assay for determination of carpaine in papaya leaves was developed and validated. The assay involved pressurized liquid extraction and quantification with the aid of ultrahigh-performance liquid chromatography-tandem mass spectroscopy. Extraction conditions were optimized with respect to solvent, temperature, and number of extraction cycles. The ultrahigh-performance liquid chromatography-tandem mass spectroscopy assay was validated over a range of 20-5000 ng/mL (R(2) of 0.9908). A total of 29 papaya leaf samples were analyzed, and carpaine concentration in dry leaves was found to range from 0.02 to 0.31%. No obvious dependence on geographic origin and leaf maturity was observed. Georg Thieme Verlag KG Stuttgart · New York.
Pandey, Saurabh; Walpole, Carina; Cabot, Peter J; Shaw, Paul N; Batra, Jyotsna; Hewavitharana, Amitha K
2017-05-01
Prostate cancer (PCa) is the leading cause of cancer related deaths in men. Carica papaya is a popular tropical plant that has been traditionally used for its nutritional and medicinal properties. We investigated the anti-proliferative responses of papaya leaf juice (LJP) and its various extracts ("biological"- in vitro digested, "physical"- size exclusion, and "chemical"-solvent extraction) on a range of cell lines representing benign hyperplasia, tumorigenic and normal cells of prostate origin. Time course analysis (by 24h, 48h and 72h) of LJP (1-0.1mg/mL) before and after in vitro digestion, and of molecular weight based fractions of LJP showed anti-proliferative responses. The medium polarity fraction of LJP (0.03-0.003mg/mL) after 72h exposure showed potent growth inhibitory (IC 50 =0.02-0.07mg/mL) and cytotoxic activities on all prostate cells, with the exception of the normal (RWPE-1 and WPMY-1) cells. Flow cytometry analysis showed S phase cell cycle arrest and apoptosis as a possible mechanism for these activities. Medium polar fraction of LJP also inhibited migration and adhesion of metastatic PC-3 cells. This is the first report suggesting selective anti-proliferative and anti-metastatic attributes of LJP extract against prostatic diseases, including PCa. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Varun, Priyanka; Saxena, Sangeeta
2018-05-01
Papaya leaf curl is an economically important disease occurring in papaya growing tropical and subtropical areas. Papaya leaf curl virus, a begomovirus, is the main causative agent for the disease, but many other begomoviruses as well as betasatellites have also been reported on papaya leaf curl disease. Rapidly evolving host range of begomoviruses is a major issue for developing successful resistance strategies against begomoviral infection considering their expanding host range and mixed infection. In our study, we have identified the presence of begomovirus and associated satellite molecule on papaya showing severe leaf curl symptoms in Lucknow, India. Analysis of complete DNA-A component of this isolate (MG757245) revealed the highest similarity (91%) with tomato leaf curl Gujarat virus (ToLCuGuV), while sequence data of betasatellite (MG478451) showed maximum (89%) identity with tomato leaf curl Bangladesh betasatellite (ToLCuBB). This is the first report on identification of ToLCuGuV and ToLCuBB coinfecting papaya plants in Lucknow, Uttar Pradesh (India).
Tuo, D; Shen, W; Yan, P; Li, Ch; Gao, L; Li, X; Li, H; Zhou, P
2013-01-01
Papaya leaf distortion mosaic virus is highly destructive to commercial papaya production. Here, the complete genome sequence was determined for an isolate of papaya leaf distortion mosaic virus, designated PLDMV-DF, infecting the commercialized papaya ringspot virus (PRSV)-resistant transgenic papaya from China. Excluding the 3'-poly (A) tail, the sequence shares high sequence identity to several PLDMV isolates from Taiwan and Japan and is phylogenetically most closely related to the isolate from Japan. Infection of PLDMV-DF in transgenic PRSV-resistant papaya may indicate emergence of this disease in genetically engineered plants. The reported sequence for this isolate may help generate bi-transgenic papaya resistant to PRSV and PLDMV.
A molecular insight into papaya leaf curl-a severe viral disease.
Varun, Priyanka; Ranade, S A; Saxena, Sangeeta
2017-11-01
Papaya leaf curl disease (PaLCuD) caused by papaya leaf curl virus (PaLCuV) not only affects yield but also plant growth and fruit size and quality of papaya and is one of the most damaging and economically important disease. Management of PaLCuV is a challenging task due to diversity of viral strains, the alternate hosts, and the genomic complexities of the viruses. Several management strategies currently used by plant virologists to broadly control or eliminate the viruses have been discussed. In the absence of such strategies in the case of PaLCuV at present, the few available options to control the disease include methods like removal of affected plants from the field, insecticide treatments against the insect vector (Bemisia tabaci), and gene-specific control through transgenic constructs. This review presents the current understanding of papaya leaf curl disease, genomic components including satellite DNA associated with the virus, wide host and vector range, and management of the disease and suggests possible generic resistance strategies.
Kasture, Prabhu Nagnathappa; Nagabhushan, K H; Kumar, Arun
2016-06-01
Dengue is a rapidly expanding global health problem. Approximately 2.5 billion people live in dengue-risk regions with about 100 million new cases each year worldwide. The cumulative dengue diseases burden has attained an unprecedented proportion in recent times with sharp increase in the size of human population at risk. The management of dengue virus infection is essentially supportive and symptomatic and no specific treatment is available for increasing the fallen platelets, which have a significant role in causing the mortality of dengue patient.This study was conducted to evaluate the platelet increasing efficacy of Carica papaya leaf extract (CPLE) in patients with dengue fever (DF). The administration of Carica papaya leaf extract should significantly increase the platelet count in cases of thrombocytopenia associated with dengue, preventing the patient to go in DHF or DSS conditions. A Multi-centric, Double blind, Placebo controlled, Randomized, prospective study was conducted in 300 patients across 5 centres', to evaluate the Efficacy and Safety of Carica Papaya Leaf Extract, as empirical therapy for thrombocytopenia associated with dengue fever. The subjects were randomized into two groups, as control and intervention group. Both the groups were managed by the standard management guidelines for dengue except steroid administration. In addition to this, the intervention group received CPLE tablet three times daily for five days. All of them were followed daily with platelet monitoring. This study has been registered in the clinical trial registry-India (CTRI Registration number: CTRI/2015/05/005806). The results indicate that CPLE had significant increase(p< 0.01) in the platelet count over the therapy duration, in dengue fever patients, confirming CPLE accelerates the increase in platelet count compared to the control group. There were few adverse events related to GI disturbance like nausea and vomiting which were similar in both groups. Thus this study
Kung, Yi-Jung; Bau, Huey-Jiunn; Wu, Yi-Ling; Huang, Chiung-Huei; Chen, Tsui-Miao; Yeh, Shyi-Dong
2009-11-01
During the field tests of coat protein (CP)-transgenic papaya lines resistant to Papaya ringspot virus (PRSV), another Potyvirus sp., Papaya leaf-distortion mosaic virus (PLDMV), appeared as an emerging threat to the transgenic papaya. In this investigation, an untranslatable chimeric construct containing the truncated CP coding region of the PLDMV P-TW-WF isolate and the truncated CP coding region with the complete 3' untranslated region of PRSV YK isolate was transferred into papaya (Carica papaya cv. Thailand) via Agrobacterium-mediated transformation to generate transgenic plants with resistance to PLDMV and PRSV. Seventy-five transgenic lines were obtained and challenged with PRSV YK or PLDMV P-TW-WF by mechanical inoculation under greenhouse conditions. Thirty-eight transgenic lines showing no symptoms 1 month after inoculation were regarded as highly resistant lines. Southern and Northern analyses revealed that four weakly resistant lines have one or two inserts of the construct and accumulate detectable amounts of transgene transcript, whereas nine resistant lines contain two or three inserts without significant accumulation of transgene transcript. The results indicated that double virus resistance in transgenic lines resulted from double or more copies of the insert through the mechanism of RNA-mediated posttranscriptional gene silencing. Furthermore, three of nine resistant lines showed high levels of resistance to heterologous PRSV strains originating from Hawaii, Thailand, and Mexico. Our transgenic lines have great potential for controlling a number of PRSV strains and PLDMV in Taiwan and elsewhere.
Papaya is not a host for Tomato Yellow Leaf Curl Virus
USDA-ARS?s Scientific Manuscript database
The economic value of tomato production is threatened by tomato yellow leaf-curl virus TYLCV and its vector, the silverleaf whitefly Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae). Use of papaya Carica papaya L. as a banker plant for a whitefly parasitoid shows promise as a whitefly m...
Bau, H-J; Kung, Y-J; Raja, J A J; Chan, S-J; Chen, K-C; Chen, Y-K; Wu, H-W; Yeh, S-D
2008-07-01
A virus identified as a new pathotype of Papaya leaf distortion mosaic virus (PLDMV, P-TW-WF) was isolated from diseased papaya in an isolated test-field in central Taiwan, where transgenic papaya lines resistant to Papaya ringspot virus (PRSV) were evaluated. The infected plants displayed severe mosaic, distortion and shoe-stringing on leaves; stunting in apex; and water-soaking on petioles and stems. This virus, which did not react in enzyme-linked immunosorbent assay with the antiserum to the PRSV coat protein, infected only papaya, but not the other 18 plant species tested. Virions studied under electron microscope exhibited morphology and dimensions of potyvirus particles. Reverse transcription-polymerase chain reaction conducted using potyvirus-specific primers generated a 1,927-nucleotide product corresponding to the 3' region of a potyvirus, showing high sequence identity to the CP gene and 3' noncoding region of PLDMV. Search for similar isolates with the antiserum against CP of P-TW-WF revealed scattered occurrence of PLDMV in Taiwan. Phylogenetic analysis of PLDMV isolates of Taiwan and Japan indicated that the Taiwan isolates belong to a separate genetic cluster. Since all the Taiwan isolates infected only papaya, unlike the cucurbit-infecting Japanese P type isolates, the Taiwan isolates are considered a new pathotype of PLDMV. Susceptibility of all our PRSV-resistant transgenic papaya lines to PLDMV indicates that the virus is an emerging threat for the application of PRSV-resistant transgenic papaya in Taiwan and elsewhere.
Jafari, Saeid; Goh, Yong M; Rajion, Mohamed A; Jahromi, Mohammad F; Ahmad, Yusof H; Ebrahimi, Mahdi
2017-02-01
Papaya leaf methanolic extract (PLE) at concentrations of 0 (CON), 5 (LLE), 10 (MLE) and 15 (HLE) mg/250 mg dry matter (DM) with 30 mL buffered rumen fluid were incubated for 24 h to identify its effect on in vitro ruminal methanogenesis and ruminal biohydrogenation (BH). Total gas production was not affected (P > 0.05) by addition of PLE compared to the CON at 24 h of incubation. Methane (CH 4 ) production (mL/250 mg DM) decreased (P < 0.05) with increasing levels of PLE. Acetate to propionate ratio was lower (P <0.05) in MLE (2.02) and HLE (1.93) compared to the CON (2.28). Supplementation of the diet with PLE significantly (P <0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), C18:3n-3 (linolenic acid; LNA) and C18 polyunsaturated fatty acids (PUFA) compared to CON after 24 h incubation, which resulted in higher concentrations of BH intermediates such as C18:1 t11 (vaccenic acid; VA), c9t11 conjugated LA (CLA) (rumenic acid; RA) and t10c12 CLA. Real-time PCR analysis indicated that the total bacteria, total protozoa, Butyrivibrio fibrisolvens and methanogen population in HLE decreased (P <0.05) compared to CON, but the total bacteria and B. fibrisolvens population were higher (P < 0.05) in CON compared to the PLE treatment groups. © 2016 Japanese Society of Animal Science.
Thrombocyte counts in mice after the administration of papaya leaf suspension.
Sathasivam, Kathiresan; Ramanathan, Surash; Mansor, Sharif M; Haris, Mas Rosemal M H; Wernsdorfer, Walther H
2009-10-01
Following up a popular use of crude leaf preparations from Carica papaya for the treatment of dengue infections, a suspension of powdered Carica papaya leaves in palm oil has been investigated for its effect on thrombocyte counts in mice, administering by gavage 15 mg of powdered leaves per kg body weight to 5 mice. Equal numbers of animals received corresponding volumes of either palm oil alone or physiological saline solution. Thrombocyte counts before and at 1, 2, 4, 8, 10, 12, 24, 48 and 72 hours after dosing revealed significantly higher mean counts at 1, 2, 4, 8, 10 and 12 after dosing with the C. papaya leaf formulation as compared to the mean count at hour 0. There was only a non-significant rise of thrombocyte counts in the group having received saline solution, possibly the expression of a normal circadian rhythm in mice. The group having received palm oil only showed a protracted increase of platelet counts that was significant at hours 8 and 48 and obviously the result of a hitherto unknown stimulation of thrombocyte release. The results call for a dose-response investigation and for extending the studies to the isolation and identification of the C. papaya substances responsible for the release and/or production of thrombocytes.
Tarora, Kazuhiko; Shudo, Ayano; Kawano, Shinji; Yasuda, Keiji; Ueno, Hiroki; Matsumura, Hideo; Urasaki, Naoya
2016-12-01
In this study, we confirmed that Vasconcellea cundinamarcensis resists Papaya leaf distortion mosaic virus (PLDMV), and used it to produce intergeneric hybrids with Carica papaya . From the cross between C. papaya and V. cundinamarcensis , we obtained 147 seeds with embryos. Though C. papaya is a monoembryonic plant, multiple embryos were observed in all 147 seeds. We produced 218 plants from 28 seeds by means of embryo-rescue culture. All plants had pubescence on their petioles and stems characteristic of V. cundinamarcensis . Flow cytometry and PCR of 28 plants confirmed they were intergeneric hybrids. To evaluate virus resistance, mechanical inoculation of PLDMV was carried out. The test showed that 41 of 134 intergeneric hybrid plants showed no symptoms and were resistant. The remaining 93 hybrids showed necrotic lesions on the younger leaves than the inoculated leaves. In most of the 93 hybrids, the necrotic lesions enclosed the virus and prevented further spread. These results suggest that the intergeneric hybrids will be valuable material for PLDMV-resistant papaya breeding.
Tarora, Kazuhiko; Shudo, Ayano; Kawano, Shinji; Yasuda, Keiji; Ueno, Hiroki; Matsumura, Hideo; Urasaki, Naoya
2016-01-01
In this study, we confirmed that Vasconcellea cundinamarcensis resists Papaya leaf distortion mosaic virus (PLDMV), and used it to produce intergeneric hybrids with Carica papaya. From the cross between C. papaya and V. cundinamarcensis, we obtained 147 seeds with embryos. Though C. papaya is a monoembryonic plant, multiple embryos were observed in all 147 seeds. We produced 218 plants from 28 seeds by means of embryo-rescue culture. All plants had pubescence on their petioles and stems characteristic of V. cundinamarcensis. Flow cytometry and PCR of 28 plants confirmed they were intergeneric hybrids. To evaluate virus resistance, mechanical inoculation of PLDMV was carried out. The test showed that 41 of 134 intergeneric hybrid plants showed no symptoms and were resistant. The remaining 93 hybrids showed necrotic lesions on the younger leaves than the inoculated leaves. In most of the 93 hybrids, the necrotic lesions enclosed the virus and prevented further spread. These results suggest that the intergeneric hybrids will be valuable material for PLDMV-resistant papaya breeding. PMID:28163589
Awodele, Olufunsho; Yemitan, Omoniyi; Ise, Peter Uduak; Ikumawoyi, Victor Olabowale
2016-01-01
Introduction: Carica papaya Linn is used in a traditional medicine for hepatobiliary disorders. This study investigated the hepatomodulatory effects of aqueous extracts of C. papaya leaf (CPL) and unripe fruit (CPF) at doses of 100 and 300 mg/kg on carbon tetrachloride (CCl4) and acetaminophen (ACM)-induced liver toxicities in rats. Materials and Methods: Rats were administered CCl4 (3 ml/kg in olive oil, i.p.) followed by oral administration of CPL and CPF at 2, 6 and 10 h intervals. The ACM model proceeded with the same method but inclusive of animals treated with N-acetyl cysteine (3 ml/kg i.p). At the end of the study, serum levels of liver biomarkers and antioxidant enzymes were assessed and histology of the liver tissues determined. Results: There was a significant (P < 0.05) reduction in CCl4 and ACM-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and direct bilirubin at 100 and 300 mg/kg, respectively. The levels of catalase (CAT), superoxide dismutase and reduced GSH were decreased in both models with corresponding significantly (P < 0.05) elevated level of malondialdehyde. However, these antioxidant enzymes were significantly (P < 0.05) increased in CPL and CPF-treated rats. Histopathological assessment of the liver confirmed the protective effects of CPL and CPF on CCl4 and ACM-induced hepatic damage evidenced by the normal presentation of liver tissue architecture. Conclusion: These results indicate that aqueous extracts of C. papaya may be useful in preventing CCl4 and ACM-induced liver toxicities. PMID:27069723
Awodele, Olufunsho; Yemitan, Omoniyi; Ise, Peter Uduak; Ikumawoyi, Victor Olabowale
2016-01-01
Carica papaya Linn is used in a traditional medicine for hepatobiliary disorders. This study investigated the hepatomodulatory effects of aqueous extracts of C. papaya leaf (CPL) and unripe fruit (CPF) at doses of 100 and 300 mg/kg on carbon tetrachloride (CCl4) and acetaminophen (ACM)-induced liver toxicities in rats. Rats were administered CCl4 (3 ml/kg in olive oil, i.p.) followed by oral administration of CPL and CPF at 2, 6 and 10 h intervals. The ACM model proceeded with the same method but inclusive of animals treated with N-acetyl cysteine (3 ml/kg i.p). At the end of the study, serum levels of liver biomarkers and antioxidant enzymes were assessed and histology of the liver tissues determined. There was a significant (P < 0.05) reduction in CCl4 and ACM-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and direct bilirubin at 100 and 300 mg/kg, respectively. The levels of catalase (CAT), superoxide dismutase and reduced GSH were decreased in both models with corresponding significantly (P < 0.05) elevated level of malondialdehyde. However, these antioxidant enzymes were significantly (P < 0.05) increased in CPL and CPF-treated rats. Histopathological assessment of the liver confirmed the protective effects of CPL and CPF on CCl4 and ACM-induced hepatic damage evidenced by the normal presentation of liver tissue architecture. These results indicate that aqueous extracts of C. papaya may be useful in preventing CCl4 and ACM-induced liver toxicities.
Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects.
Otsuki, Noriko; Dang, Nam H; Kumagai, Emi; Kondo, Akira; Iwata, Satoshi; Morimoto, Chikao
2010-02-17
Various parts of Carica papaya Linn. (CP) have been traditionally used as ethnomedicine for a number of disorders, including cancer. There have been anecdotes of patients with advanced cancers achieving remission following consumption of tea extract made from CP leaves. However, the precise cellular mechanism of action of CP tea extracts remains unclear. The aim of the present study is to examine the effect of aqueous-extracted CP leaf fraction on the growth of various tumor cell lines and on the anti-tumor effect of human lymphocytes. In addition, we attempted to identify the functional molecular weight fraction in the CP leaf extract. The effect of CP extract on the proliferative responses of tumor cell lines and human peripheral blood mononuclear cells (PBMC), and cytotoxic activities of PBMC were assessed by [(3)H]-thymidine incorporation. Flow cytometric analysis and measurement of caspase-3/7 activities were performed to confirm the induction of apoptosis on tumor cells. Cytokine productions by PBMC were measured by ELISA. Gene profiling of the effect of CP extract treatment was performed by microarray analysis and real-time RT-PCR. We observed significant growth inhibitory activity of the CP extract on tumor cell lines. In PBMC, the production of IL-2 and IL-4 was reduced following the addition of CP extract, whereas that of IL-12p40, IL-12p70, IFN-gamma and TNF-alpha was enhanced without growth inhibition. In addition, cytotoxicity of activated PBMC against K562 was enhanced by the addition of CP extract. Moreover, microarray analyses showed that the expression of 23 immunomodulatory genes, classified by gene ontology analysis, was enhanced by the addition of CP extract. In this regard, CCL2, CCL7, CCL8 and SERPINB2 were representative of these upregulated genes, and thus may serve as index markers of the immunomodulatory effects of CP extract. Finally, we identified the active components of CP extract, which inhibits tumor cell growth and stimulates anti
Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P
2015-12-01
Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.
Administration Dependent Antioxidant Effect of Carica papaya Seeds Water Extract
Panzarini, Elisa; Dwikat, Majdi; Mariano, Stefania; Vergallo, Cristian; Dini, Luciana
2014-01-01
Carica papaya is widely used in folk medicine as herbal remedy to prevent, protect against, and cure several diseases. These curative properties are based on the presence in different parts of the plant of phytochemical nutrients with antioxidant effect. Seeds are the less exploited part; thus this study is aimed at assessing the antioxidant activities of the C. papaya seeds water extract against hydrogen peroxide (H2O2) oxidative stress in human skin Detroit 550 fibroblasts. C. papaya seeds water extract is not toxic and acts as a potent free radical scavenger, providing protection to Detroit 550 fibroblasts that underwent H2O2 oxidative stress. Data show that (i) the maximum protective effect is achieved by the simultaneous administration of the extract with 1 mM H2O2; (ii) the extract in presence of an oxidative stress does not increase catalase activity and prevents the release of cytochrome C and the inner mitochondrial transmembrane potential (Δψ m) loss; (iii) the extract is more efficient than vitamin C to hamper the oxidative damage; (iv) the purified subfractions of the seeds water extract exert the same antioxidant effect of whole extract. In conclusion, C. papaya seeds water extract is potentially useful for protection against oxidative stress. PMID:24795765
Samaram, Shadi; Mirhosseini, Hamed; Tan, Chin Ping; Ghazali, Hasanah Mohd
2013-10-10
The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.
Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds.
Nayak, Bijoor Shivananda; Ramdeen, Ria; Adogwa, Andrew; Ramsubhag, Adash; Marshall, Julien Rhodney
2012-12-01
Carica papaya L. (Linn) (Caricaceae) is traditionally used to treat various skin disorders, including wounds. It is widely used in developing countries as an effective and readily available treatment for various wounds, particularly burns. This study evaluated the wound-healing and antimicrobial activity of C. papaya seed extract. Ethanol extract of C. papaya seed (50 mg/kg/day) was evaluated for its wound-healing activity in Sprague-Dawley rats using excision wound model. Animals were randomly divided into four groups of six each (group 1 served as control, group 2 treated with papaya seed extract, group 3 treated with a standard drug mupirocin and papaya seed extract (1:1 ratio) and group 4 treated with a mupirocin ointment. Rate of wound contraction and hydroxyproline content were determined to assess the wound-healing activity of the seed extract. The group 2 animals showed a significant decrease in wound area of 89% over 13 days when compared with groups 1 (82%), 3 (86%) and 4 (84%) respectively. The hydroxyproline content was significantly higher with the granulation tissue obtained from group 2 animals which were treated with C. papaya seed extract. Histological analysis of granulation tissue of the group 2 animals showed the deposition of well-organized collagen. The extract exhibited antimicrobial activity against Salmonella choleraesuis and Staphylococcus aureus. Our results suggest that C. papaya promotes significant wound healing in rats and further evaluation for this activity in humans is suggested. © 2012 The Authors. © 2012 Blackwell Publishing Ltd and Medicalhelplines.com Inc.
[Human chromosome banding with raw extract of fruits or leaves of papaya].
Solís, M V
2001-01-01
One week old human chromosome preparations were treated with filtrate from one liquefied leaf (53 g) of papaya (Carica papaya) in 100 ml of distilled water, and stained with 1.5% Giemsa (pH 6.8). Good chromosome banding was obtained after 2 min of treatment. Solutions that have been frozen even for years are effective and the method is cheaper and easier than others.
Ojo, Oluwafemi Adeleke; Ojo, Adebola Busola; Awoyinka, Olayinka; Ajiboye, Basiru Olaitan; Oyinloye, Babatunji Emmanuel; Osukoya, Olukemi Adetutu; Olayide, Israel Idowu; Ibitayo, Adejoke
2018-04-01
In Africa, the fruit, leaf, seed and roots of Carica papaya Linn. are generally used to treat a variety of diseases such as malaria, cancer, and cardiovascular diseases. In this study, we evaluated the protective potentials of aqueous extract of C. papaya roots on arsenic-induced biochemical and genotoxic effects in Wistar rats. Rats were induced intraperitoneal with sodium arsenate (dissolved in distilled water at 3 mg/kg body weight) for 21 days and the animals were administered simultaneously with 200 mg/kg body weight vitamin C, 100 and 150 mg/kg body weight of the C. papaya Linn. root aqueous extract once daily for three weeks. Results obtained reveals that activities of plasma 8-OHdG, serum lipids concentration, atherogenic index (AI), coronary artery index (CRI), aspartate transaminase, alanine transaminase, alkaline phosphatase, total bilirubin levels were elevated significantly ( p < 0.05) and catalase, glutathione peroxidase, superoxide dismutase, plasma hematological profile were progressively reduced ( p < 0.05) in arsenic-alone exposed rats. Significant increase in the quantity of chromosomal aberrations (CA), micronuclei (MN) frequency, oxidative damages in the bone marrow cells from arsenic alone rats was observed. Though, mitotic index scores in these cells were progressively reduced (p < 0.05). In animals administered with aqueous extract of C. papaya roots and vitamin C, the altered parameters were significantly recovered towards the levels observed in normal control rats. These results suggest that aqueous C. papaya roots preparations might have therapeutic potential as a supplement that can be applied in arsenic poisoning.
Dengue fever treatment with Carica papaya leaves extracts.
Ahmad, Nisar; Fazal, Hina; Ayaz, Muhammad; Abbasi, Bilal Haider; Mohammad, Ijaz; Fazal, Lubna
2011-08-01
The main objective of the current study is to investigate the potential of Carica papaya leaves extracts against Dengue fever in 45 year old patient bitten by carrier mosquitoes. For the treatment of Dengue fever the extract was prepared in water. 25 mL of aqueous extract of C. papaya leaves was administered to patient infected with Dengue fever twice daily i.e. morning and evening for five consecutive days. Before the extract administration the blood samples from patient were analyzed. Platelets count (PLT), White Blood Cells (WBC) and Neutrophils (NEUT) decreased from 176×10(3)/µL, 8.10×10(3)/µL, 84.0% to 55×10(3)/µL, 3.7×10(3)/µL and 46.0%. Subsequently, the blood samples were rechecked after the administration of leaves extract. It was observed that the PLT count increased from 55×10(3)/µL to 168×10(3)/µL, WBC from 3.7×10(3)/µL to 7.7×10(3)/µL and NEUT from 46.0% to 78.3%. From the patient feelings and blood reports it showed that Carica papaya leaves aqueous extract exhibited potential activity against Dengue fever. Furthermore, the different parts of this valuable specie can be further used as a strong natural candidate against viral diseases.
Dengue fever treatment with Carica papaya leaves extracts
Ahmad, Nisar; Fazal, Hina; Ayaz, Muhammad; Abbasi, Bilal Haider; Mohammad, Ijaz; Fazal, Lubna
2011-01-01
The main objective of the current study is to investigate the potential of Carica papaya leaves extracts against Dengue fever in 45 year old patient bitten by carrier mosquitoes. For the treatment of Dengue fever the extract was prepared in water. 25 mL of aqueous extract of C. papaya leaves was administered to patient infected with Dengue fever twice daily i.e. morning and evening for five consecutive days. Before the extract administration the blood samples from patient were analyzed. Platelets count (PLT), White Blood Cells (WBC) and Neutrophils (NEUT) decreased from 176×103/µL, 8.10×103/µL, 84.0% to 55×103/µL, 3.7×103/µL and 46.0%. Subsequently, the blood samples were rechecked after the administration of leaves extract. It was observed that the PLT count increased from 55×103/µL to 168×103/µL, WBC from 3.7×103/µL to 7.7×103/µL and NEUT from 46.0% to 78.3%. From the patient feelings and blood reports it showed that Carica papaya leaves aqueous extract exhibited potential activity against Dengue fever. Furthermore, the different parts of this valuable specie can be further used as a strong natural candidate against viral diseases. PMID:23569787
Sasidharan, Sreenivasan; Sumathi, Vello; Jegathambigai, Naidu Rameshwar; Latha, Lachimanan Yoga
2011-12-01
Diabetes mellitus is a global disease that is increasing in an alarming rate. The present study was undertaken to study the antidiabetic effect of the ethanol extracts of Carica papaya and Pandanus amaryfollius on streptozotocin-induced diabetic mice. The results of the present study indicated that there was no significant difference in the body weight of the treated groups when compared to diabetic control. Whereas, there was significant (P < 0.05) decrease in the blood glucose level of the plant-treated groups compared to the diabetic control. Histologically the pancreas of the treated groups indicated significant regeneration of the β-cells when compared to the diabetic control. The liver tissues of the treated group indicated a reduction in fatty changes and pyknotic nucleus. The kidney tissues of the treated groups indicated significant recovery in the cuboidal tissue. The results from the phytochemical screening indicated the presence of flavonoids, alkaloids, saponin and tannin in C. papaya and P. amaryfollius. The antidiabetic effect of C. papaya and P. amaryfollius observed in the present study may be due to the presence of these phytochemicals.
Shen, Wentao; Tuo, Decai; Yan, Pu; Li, Xiaoying; Zhou, Peng
2014-01-01
Papaya leaf distortion mosaic virus (PLDMV) can infect transgenic papaya resistant to a related pathogen, Papaya ringspot virus (PRSV), posing a substantial threat to papaya production in China. Current detection methods, however, are unable to be used for rapid detection in the field. Here, a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of PLDMV, using a set of four RT-LAMP primers designed based on the conserved sequence of PLDMV CP. The RT-LAMP method detected specifically PLDMV and was highly sensitive, with a detection limit of 1.32×10(-6) μg of total RNA per reaction. Indeed, the reaction was 10 times more sensitive than one-step RT-PCR, while also requiring significantly less time and equipment. The effectiveness of RT-LAMP and one-step RT-PCR in detecting the virus were compared using 90 field samples of non-transgenic papaya and 90 field samples of commercialized PRSV-resistant transgenic papaya from Hainan Island. None of the non-transgenic papaya tested positive for PLDMV using either method. In contrast, 19 of the commercialized PRSV-resistant transgenic papaya samples tested positive by RT-LAMP assay, and 6 of those tested negative by RT-PCR. Therefore, the PLDMV-specific RT-LAMP is a simple, rapid, sensitive, and cost-effective tool in the field diagnosis and control of PLDMV. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
So’aib, M. S.; Salihon, J.; Tan, H. L.
2018-05-01
This review highlights the anti-dengue potency of Carica Papaya leaf (CPL) extract which was associated with platelet increase and other medicinal properties such as antiinflammatory and antioxidant. Garcinia Mangostana’s pericarp (GMP) extract have much commonalities with CPL, in addition to antiviral and immunomodulatory properties of the former. These properties may exhibit, yet unproven, analgesic, hemorrhage prevention and antiviral effects that may facilitate dengue recovery. Nevertheless, the limited bioavailability of native polyphenolic contents of both, as hinted by studies on colonic microbiome metabolism on dietary polyphenols, highlighted fermentation as viable method to enhance the functionality of the compounds. Thus, this review also highlights some relevant parameters in existing fermentation of well known fermented foods that impact their bioactivity, functionality and palatability that may applicable for the development of CPL and GMP fermentations.
Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats
2012-01-01
Background Traditional plant treatment for diabetes has shown a surging interest in the last few decades. Therefore, the purpose of this study was to assess the hypoglycemic effect of the aqueous extract of C. papaya leaves in diabetic rats. Several studies have reported that some parts of the C. papaya plant exert hypoglycemic effects in both animals and humans. Methods Diabetes was induced in rats by intraperitoneal administration of 60 mg/kg of streptozotocin (STZ). The aqueous extract of C. papaya was administered in three different doses (0.75, 1.5 and 3 g/100 mL) as drinking water to both diabetic and non-diabetic animals during 4 weeks. Results The aqueous extract of Carica papaya (0.75 g and 1.5 g/100 mL) significantly decreased blood glucose levels (p<0.05) in diabetic rats. It also decreased cholesterol, triacylglycerol and amino-transferases blood levels. Low plasma insulin levels did not change after treatment in diabetic rats, but they significantly increased in non-diabetic animals. Pancreatic islet cells were normal in non-diabetic treated animals, whereas in diabetic treated rats, C. papaya could help islet regeneration manifested as preservation of cell size. In the liver of diabetic treated rats, C. papaya prevented hepatocyte disruption, as well as accumulation of glycogen and lipids. Finally, an antioxidant effect of C. papaya extract was also detected in diabetic rats. Conclusions This study showed that the aqueous extract of C. papaya exerted a hypoglycemic and antioxidant effect; it also improved the lipid profile in diabetic rats. In addition, the leaf extract positively affected integrity and function of both liver and pancreas. PMID:23190471
Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats.
Juárez-Rojop, Isela Esther; Díaz-Zagoya, Juan C; Ble-Castillo, Jorge L; Miranda-Osorio, Pedro H; Castell-Rodríguez, Andrés E; Tovilla-Zárate, Carlos A; Rodríguez-Hernández, Arturo; Aguilar-Mariscal, Hidemi; Ramón-Frías, Teresa; Bermúdez-Ocaña, Deysi Y
2012-11-28
Traditional plant treatment for diabetes has shown a surging interest in the last few decades. Therefore, the purpose of this study was to assess the hypoglycemic effect of the aqueous extract of C. papaya leaves in diabetic rats. Several studies have reported that some parts of the C. papaya plant exert hypoglycemic effects in both animals and humans. Diabetes was induced in rats by intraperitoneal administration of 60 mg/kg of streptozotocin (STZ). The aqueous extract of C. papaya was administered in three different doses (0.75, 1.5 and 3 g/100 mL) as drinking water to both diabetic and non-diabetic animals during 4 weeks. The aqueous extract of Carica papaya (0.75 g and 1.5 g/100 mL) significantly decreased blood glucose levels (p<0.05) in diabetic rats. It also decreased cholesterol, triacylglycerol and amino-transferases blood levels. Low plasma insulin levels did not change after treatment in diabetic rats, but they significantly increased in non-diabetic animals. Pancreatic islet cells were normal in non-diabetic treated animals, whereas in diabetic treated rats, C. papaya could help islet regeneration manifested as preservation of cell size. In the liver of diabetic treated rats, C. papaya prevented hepatocyte disruption, as well as accumulation of glycogen and lipids. Finally, an antioxidant effect of C. papaya extract was also detected in diabetic rats. This study showed that the aqueous extract of C. papaya exerted a hypoglycemic and antioxidant effect; it also improved the lipid profile in diabetic rats. In addition, the leaf extract positively affected integrity and function of both liver and pancreas.
Histopathological changes in Wistar albino rats exposed to aqueous extract of unripe Carica papaya.
Oduola, Taofeeq; Bello, Ibrahim; Idowu, Thomas; Avwioro, Godwin; Adeosun, Ganiyu; Olatubosun, Luqman
2010-05-01
Exposure of animals to xenobiotics may or may not trigger adverse response at cellular levels. Aqueous extract of unripe Carica papaya is consumed by sickle cell patients as antisickling agent in Western Nigeria. This study was undertaken to investigate the effects of Carica papaya on certain organs in Wister albino rats exposed to aqueous extract of unripe Carica papaya. Different doses of aqueous extract of unripe Carica papaya were administered orally daily for 42 days to six groups of rats. At the end of exposure, the animals were sacrificed and tissue sections were prepared from livers, kidneys, hearts and small intestines using standard techniques. Histopathological results showed that no pathological changes were observed in tissue sections of experimental animals when compared with tissue sections of the same organs in control animals. No pathological changes were elicited in the organs of rats exposed to aqueous extract of unripe Carica papaya.
Zhang, Hui; Ma, Xin-ying; Qian, Ya-juan; Zhou, Xue-ping
2010-02-01
Papaya leaf curl China virus (PaLCuCNV) was previously reported as a distinct begomovirus infecting papaya in southern China. Based on molecular diagnostic survey, 13 PaLCuCNV isolates were obtained from tomato plants showing leaf curl symptoms in Henan and Guangxi Provinces of China. Complete nucleotide sequences of 5 representative isolates (AJ558116, AJ558117, AJ704604, FN256260, and FN297834) were determined to be 2738-2751 nucleotides, which share 91.7%-97.9% sequence identities with PaLCuCNV isolate G2 (AJ558123). DNA-beta was not found to be associated with PaLCuCNV isolates. To investigate the infectivity of PaLCuCNV, an infectious clone of PaLCuCNV-[CN:HeNZM1] was constructed and agro-inoculated into Nicotiana benthamiana, N. tabacum Samsun, N. glutinosa, Solanum lycopersicum and Petunia hybrida plants, which induced severe leaf curling and crinkling symptoms in these plants. Southern blot analysis and polymerase chain reaction (PCR) indicated a systemic infection of test plants by the agro-infectious clone.
Identification of a novel subgroup 16SrII-U phytoplasma associated with papaya little leaf disease.
Yang, Yi; Jiang, Lei; Che, Haiyan; Cao, Xueren; Luo, Daquan
2016-09-01
Papaya is an important fruit crop cultivated in tropical and subtropical regions. Papaya little leaf (PLL) disease was observed in China. The phytoplasma 16S rRNA gene was detected from symptomatic papaya trees via PCR using phytoplasma universal primers P1/P7 followed by R16F2n/R16R2. No amplification products were obtained from templates of asymptomatic papaya trees. These results indicated a direct association between phytoplasma infection and PLL disease. Comparative and phylogenetic analyses of 16S rRNA gene sequences indicated that the papaya-infecting phytoplasmas under study belonged to the peanut witches' broom phytoplasma group (16SrII). Genotyping through use of computer-simulated RFLP analysis of 16S rRNA genes and coefficients of RFLP pattern similarities (0.97) reveal that the PLL phytoplasma was placed in a new subgroup. In this article, we describe the molecular characterization of a new phytoplasma associated with PLL disease and propose that the PLL phytoplasma be considered as a novel subgroup, 16SrII-U.
Magaña-Álvarez, Anuar; Vencioneck Dutra, Jean Carlos; Carneiro, Tarcio; Pérez-Brito, Daisy; Tapia-Tussell, Raúl; Ventura, Jose Aires; Higuera-Ciapara, Inocencio; Fernandes, Patricia Machado Bueno; Fernandes, Antonio Alberto Ribeiro
2016-01-01
Sticky disease, which is caused by Papaya meleira virus (PMeV), is a significant papaya disease in Brazil and Mexico, where it has caused severe economic losses, and it seems to have spread to Central and South America. Studies assessing the pathogen-host interaction at the nano-histological level are needed to better understand the mechanisms that underlie natural resistance. In this study, the topography and mechanical properties of the leaf midribs and latex of healthy and PMeV-infected papaya plants were observed by atomic force microscopy and scanning electron microscopy. Healthy plants displayed a smooth surface with practically no roughness of the leaf midribs and the latex and a higher adhesion force than infected plants. PMeV promotes changes in the leaf midribs and latex, making them more fragile and susceptible to breakage. These changes, which are associated with increased water uptake and internal pressure in laticifers, causes cell disruption that leads to spontaneous exudation of the latex and facilitates the spread of PMeV to other laticifers. These results provide new insights into the papaya-PMeV interaction that could be helpful for controlling papaya sticky disease. PMID:27092495
Magaña-Álvarez, Anuar; Vencioneck Dutra, Jean Carlos; Carneiro, Tarcio; Pérez-Brito, Daisy; Tapia-Tussell, Raúl; Ventura, Jose Aires; Higuera-Ciapara, Inocencio; Fernandes, Patricia Machado Bueno; Fernandes, Antonio Alberto Ribeiro
2016-04-15
Sticky disease, which is caused by Papaya meleira virus (PMeV), is a significant papaya disease in Brazil and Mexico, where it has caused severe economic losses, and it seems to have spread to Central and South America. Studies assessing the pathogen-host interaction at the nano-histological level are needed to better understand the mechanisms that underlie natural resistance. In this study, the topography and mechanical properties of the leaf midribs and latex of healthy and PMeV-infected papaya plants were observed by atomic force microscopy and scanning electron microscopy. Healthy plants displayed a smooth surface with practically no roughness of the leaf midribs and the latex and a higher adhesion force than infected plants. PMeV promotes changes in the leaf midribs and latex, making them more fragile and susceptible to breakage. These changes, which are associated with increased water uptake and internal pressure in laticifers, causes cell disruption that leads to spontaneous exudation of the latex and facilitates the spread of PMeV to other laticifers. These results provide new insights into the papaya-PMeV interaction that could be helpful for controlling papaya sticky disease.
Anti-inflammatory activities of ethanolic extract of Carica papaya leaves.
Owoyele, Bamidele V; Adebukola, Olubori M; Funmilayo, Adeoye A; Soladoye, Ayodele O
2008-08-01
The anti-inflammatory activity of an ethanolic extract of Carica papaya leaves was investigated in rats using carrageenan induced paw oedema, cotton pellet granuloma and formaldehyde induced arthritis models. Experimental animals received 25-200 mg/Kg (orally) of the extracts or saline (control group) and the reference group received 5 mg/ Kg of indomethacin. The ulcerogenic activity of the extract was also investigated. The results show that the extracts significantly (p <0.05) reduced paw oedema in the carrageenan test. Likewise the extract produced significant reduction in the amount of granuloma formed from 0.58 +/-0.07 to 0.22 +/-0.03 g. In the formaldehyde arthritis model, the extracts significantly reduced the persistent oedema from the 4th day to the 10th day of the investigation. The extracts also produced slight mucosal irritation at high doses. The study establishes the anti-inflammatory activity of Carica papaya leaves.
Melariri, Paula; Campbell, William; Etusim, Paschal; Smith, Peter
2011-01-01
We investigated the antiplasmodial properties of crude extracts from Carica papaya leaves to trace the activity through bioassay-guided fractionation. The greatest antiplasmodial activity was observed in the ethyl acetate crude extract. C. papaya showed a high selectivity for P. falciparum against CHO cells with a selectivity index of 249.25 and 185.37 in the chloroquine-sensitive D10 and chloroquine-resistant DD2 strains, respectively. Carica papaya ethyl acetate extract was subjected to bioassay-guided fractionation to ascertain the most active fraction, which was purified and identified using high-pressure liquid chromatography (HPLC) and GC-MS (Gas chromatography-Mass spectrometry) methods. Linoleic and linolenic acids identified from the ethyl acetate fraction showed IC50 of 6.88 μg/ml and 3.58 μg/ml, respectively. The study demonstrated greater antiplasmodial activity of the crude ethyl acetate extract of Carica papaya leaves with an IC50 of 2.96 ± 0.14 μg/ml when compared to the activity of the fractions and isolated compounds. PMID:22174990
Herb-drug pharmacokinetic interaction between carica papaya extract and amiodarone in rats.
Rodrigues, Márcio; Alves, Gilberto; Francisco, Joana; Fortuna, Ana; Falcão, Amílcar
2014-01-01
Carica papaya has been traditionally used worldwide in folk medicine to treat a wide range of ailments in humans, including the management of obesity and digestive disorders. However, scientific information about its potential to interact with conventional drugs is lacking. Thus, this work aimed to investigate the interference of a standardized C. papaya extract (GMP certificate) on the systemic exposure to amiodarone (a narrow therapeutic index drug) in rats. In the first pharmacokinetic study, rats were simultaneously co-administered with a single-dose of C. papaya (1230 mg/kg, p.o.) and amiodarone (50 mg/kg, p.o.); in the second study, rats were pre-treated for 14 days with C. papaya (1230 mg/kg/day, p.o.) and received amiodarone (50 mg/kg, p.o.) on the 15th day. Rats of the control groups received the herbal extract vehicle. Blood samples were collected before dosing and at 0.25, 0.5, 1, 2, 4, 6, 8 and 12 h following amiodarone administration; in addition, at 24 h post-dose, blood and tissues (heart, liver, kidneys and lungs) were also harvested. Thereafter, the concentrations of amiodarone and its major metabolite (mono-N-desethylamiodarone) were determined in plasma and tissue samples employing a high-performance liquid chromatography-diode array detection method previously developed and validated. In both studies was observed a delay in attaining the maximum plasma concentrations of amiodarone (tmax) in the rats treated with the extract. Nevertheless, it must be highlighted the marked increase (60-70%) of the extent of amiodarone systemic exposure (as assessed by AUC0-t and AUC0-∞) in the rats pre-treated with C. papaya comparatively with the control (vehicle) group. The results herein found suggest an herb-drug interaction between C. papaya extract and amiodarone, which clearly increase the drug bioavailability. To reliably assess the clinical impact of these findings appropriate human studies should be conducted.
Abreu, Paolla M V; Piccin, João G; Rodrigues, Silas P; Buss, David S; Ventura, José A; Fernandes, Patricia M B
2012-03-01
Papaya meleira virus (PMeV) is the causal agent of papaya sticky disease. This study describes two methods for molecular diagnosis of PMeV using conventional and real-time PCR. These methods were shown to be more efficient than current methods of viral detection using extraction of PMeV dsRNA and observation of symptoms in the field. The methods described here were used to evaluate the effect of inoculation of papaya plants with purified PMeV dsRNA on the progress of PMeV infection. A single inoculation with PMeV dsRNA was observed to delay the progress of the virus infection by several weeks. The possibility of vertical transmission of PMeV was also investigated. No evidence was found for PMeV transmission through seeds collected from diseased fruit. The implications of these results for the epidemiology of PMeV and the management of papaya sticky disease are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia.
Amin, Noriha Mat; Bunawan, Hamidun; Redzuan, Rohaiza Ahmad; Jaganath, Indu Bala S
2010-12-24
Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414). Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch's postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya.
Erwinia mallotivora sp., a New Pathogen of Papaya (Carica papaya) in Peninsular Malaysia
Amin, Noriha Mat; Bunawan, Hamidun; Redzuan, Rohaiza Ahmad; Jaganath, Indu Bala S.
2011-01-01
Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414). Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch’s postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya. PMID:21339975
Jiménez-Coello, Matilde; Guzman-Marín, Eugenia; Ortega-Pacheco, Antonio; Perez-Gutiérrez, Salud; Acosta-Viana, Karla Y
2013-10-11
In order to determine the in vivo activity against the protozoan Trypanosoma cruzi, two doses (50 and 75 mg/kg) of a chloroform extract of Carica papaya seeds were evaluated compared with a control group of allopurinol. The activity of a mixture of the three main compounds (oleic, palmitic and stearic acids in a proportion of 45.9% of oleic acid, 24.1% of palmitic and 8.52% of stearic acid previously identified in the crude extract of C. papaya was evaluated at doses of 100, 200 and 300 mg/kg. Both doses of the extracts were orally administered for 28 days. A significant reduction (p < 0.05) in the number of blood trypomastigotes was observed in animals treated with the evaluated doses of the C. papaya extract in comparison with the positive control group (allopurinol 8.5 mg/kg). Parasitemia in animals treated with the fatty acids mixture was also significantly reduced (p < 0.05), compared to negative control animals. These results demonstrate that the fatty acids identified in the seed extracts of C. papaya (from ripe fruit) are able to reduce the number of parasites from both parasite stages, blood trypomastigote and amastigote (intracellular stage).
da Rocha, Renier Felinto Julião; da Silva Araújo, Ídila Maria; de Freitas, Sílvia Maria; Dos Santos Garruti, Deborah
2017-11-01
Optimization of the extraction conditions to investigate the volatile composition of papaya fruit involving headspace solid phase micro-extraction was carried out using multivariate strategies such as factorial design and response surface methodology. The performance of different combinations of time for reaching the equilibrium in the headspace and time for maximum extraction of volatiles was evaluated by GC-olfactometry of the extract (intensity of papaya characteristic aroma), number of peaks and total area in the chromatogram. Thirty-two compounds were identified by GC-MS under the optimized extraction conditions, the majority of which were aldehydes, both in number of compounds and area. Major compounds were δ-octalactone, β-citral, benzaldehyde, heptanal, benzyl isothiocyanate, isoamyl acetate, γ-octalactone, (E)-linalool oxide and benzyl alcohol. Seven aldehydes and two other compounds are reported for the first time in papaya's volatile profile.
Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy
2015-01-01
The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50–250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity. PMID:26288570
Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy
2015-09-01
The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50-250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity.
Oloyede, Hussein O B; Adaja, Matthew C; Ajiboye, Taofeek O; Salawu, Musa O
2015-03-01
Carica papaya is an important fruit with its seeds used in the treatment of ulcer in Nigeria. This study investigated the anti-ulcerogenic and antioxidant activities of aqueous extract of Carica papaya seed against indomethacin-induced peptic ulcer in male rats. Thirty male rats were separated into 6 groups (A-F) of five rats each. For 14 d before ulcer induction with indomethacin, groups received once daily oral doses of vehicle (distilled water), cimetidine 200 mg/kg body weight (BW), or aqueous extract of C. papaya seed at doses of 100, 150 or 200 mg/kg BW (groups A, B, C, D, E and F, respectively). Twenty-four hours after the last treatment, groups B, C, D, E and F were treated with 100 mg/kg BW of indomethacin to induce ulcer formation. Carica papaya seed extract significantly (P< 0.05) increased gastric pH and percentage of ulcer inhibition relative to indomethacin-induced ulcer rats. The extract significantly (P< 0.05) decreased gastric acidity, gastric acid output, gastric pepsin secretion, ulcer index and gastric secretion volume relative to group B. These results were similar to that achieved by pretreatment with cimetidine. Specific activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase in the extract-treated groups (D, E and F) were increased significantly over the group B (P< 0.05). Pretreatment with the seed extract protected rats from the indomethacin-mediated decrease in enzyme function experienced by the group B. Similarly, indomethacin-mediated decrease in reduced glutathione level and indomethacin-mediated increase in malondialdehyde were reversed by Carica papaya extract. In this study, pretreatment with aqueous extract of Carica papaya seed exhibited anti-ulcerogenic and antioxidant effects, which may be due to the enhanced antioxidant enzymes.
Kebebew, Zerihun; Shibeshi, Workineh
2013-11-25
Carica papaya has been used in the Ethiopian traditional medicine to relieve stress and other disease conditions. The present study was undertaken to evaluate the anxiolytic and sedative effects of 80% ethanolic Carica papaya (Caricaceae) pulp extract in mice. Carica papaya pulp extract was screened for anxiolytic effect by using elevated plus maze, staircase and open field tests, and ketamine-induced sleeping time test for sedation at doses of 50, 100, 200, 400 mg/kg. Distilled water and Diazepam were employed as negative and positive control groups, respectively. Carica papaya pulp extract 100 mg/kg significantly increased the percentage of open arm time and entry, and reduced the percentage of entry and time spent in closed arm in elevated plus maze test; reduced the number of rearing in the staircase test; and increased the time spent and entries in the central squares while the total number of entries into the open field were not significantly affected, suggesting anxiolytic activity without altering locomotor and sedative effects. A synergistic reduction in the number of rearing and an inverted U-shaped dose response curves were obtained with important parameters of anxiety The results of this study established a support for the traditional usage of Carica papaya as anxiolytic medicinal plant. © 2013 Elsevier Ireland Ltd. All rights reserved.
Ratchadaporn, Janthasri; Sureeporn, Katengam; Khumcha, U
2007-09-15
The experiment was carried out at the Department of Horticulture, Ubon Ratchathani University, Ubon Ratchathani province, Northeast Thailand during June 2002 to May 2003 aims to identify DNA fingerprints of thirty papaya cultivars with the use of Amplified Fragment Length Polymorphisms (AFLP) technique. Papaya cultivars were collected from six different research centers in Thailand. Papaya plants of each cultivar were grown under field conditions up to four months then leaf numbers 2 and 3 of each cultivar (counted from top) were chosen for DNA extraction and the samples were used for AFLP analysis. Out of 64 random primers being used, 55 pairs gave an increase in DNA bands but only 12 pairs of random primers were randomly chosen for the final analysis of the experiment. The results showed that AFLP markers gave Polymorphic Information Contents (PIC) of three ranges i.e., AFLP markers of 235 lied on a PIC range of 0.003-0.05, 47 for a PIC range of 0.15-0.20 and 12 for a PIC range of 0.35-0.40. The results on dendrogram cluster analysis revealed that the thirty papaya cultivars were classified into six groups i.e., (1) Kaeg Dum and Malador (2) Kaeg Nuan (3) Pakchong and Solo (4) Taiwan (5) Co Coa Hai Nan and (6) Sitong. Nevertheless, in spite of the six papaya groups all papaya cultivars were genetically related to each other where diversity among the cultivars was not significantly found.
Mohamed Sadek, Kadry
2012-01-01
Introduction: The present study was conducted to evaluate the antioxidant and immunostimulant effects of The Carica papaya fruit aqueous extract (CPF, Caricaceae) against acrylamide induced oxidative stress and improvement of Immune functions which affected by free radicals liberating acrylamide in rats. Material and methods: Sixty male wistar albino rats (195-230g) were assigned to four groups, (fifteen/group). The first group used as control group and received normal physiological saline orally daily. The second group was supplemented with acrylamide 0.05% in drinking water. The third group was gastro-gavaged with 250 mg/kg of papaya fruit extract orally on daily basis. The fourth group was supplemented with acrylamide 0.05% in drinking water and gastro-gavaged with 250 mg/kg of papaya fruit extract orally on daily basis. The chosen dose of papaya fruit extract was based on the active pharmacological dose range obtained from the orientation study earlier conducted. The experimental period was extended to forty day. At the expiration of the experimental period and night fasting, blood samples were collected from the orbital venous sinus. The sera were separated and used for determining of IgG and IgM and the stomach, liver and kidney homogenates for estimation of MDA, GSH level, SOD and CAT activity as a biomarker of lipid peroxidation and antioxidative stress. Results and discussion: The obtained results revealed that, acrylamide caused significant increases in MDA and decrease of GSH level, SOD and CAT activity due to the oxidative stress induced by acrylamide on membrane polyunsaturated fatty acids in rat’s stomach, liver and kidney while administration of CPF aqueous extract, was significantly ameliorated the increased levels of MDA and decline of GSH, SOD and CAT activity in the stomach, liver and kidney tissues caused by acrylamide toxicity. Meanwhile, CPF aqueous extract significantly increased immune functions (IgG and IgM) while acrylamide significantly
Effect of green and ripe Carica papaya epicarp extracts on wound healing and during pregnancy.
Anuar, Nor Suhada; Zahari, Shafiyyah Solehah; Taib, Ibrahim Adham; Rahman, Mohammad Tariqur
2008-07-01
The traditional use of papaya to treat many diseases, especially skin conditions and its prohibition for consumption during pregnancy has prompted us to determine whether papaya extracts both from green and ripe fruits improve wound healing and also produce foetal toxicity. Aqueous extracts of green papaya epicarp (GPE) and ripe papaya epicarp (RPE) were applied on induced wounds on mice. GPE treatment induced complete healing in shorter periods (13 days) than that required while using RPE (17 days), sterile water (18 days) and Solcoseryl ointment (21 days). Extracts were administered orally (1 mg/g body weight/day) to pregnant mice from day 10 and onwards after conception. 3 (n=7) mice and 1 (n=6) mice given RPE and misoprostol, an abortive drug, respectively experienced embryonic resorption while this effect was observed in none of the mice given GPE (n=5) and water (n=5). The average body weight of live pups delivered by mice given GPE (1.12+/-0.04 g) was significantly lower than those delivered by mice given water (1.38+/-0.02 g). In SDS-PAGE, proteins were distributed in three bands (Mr range approximately 8-29 kDa). Band intensity at Mr approximately 28-29 kDa was higher in GPE than in RPE. In contrast, band intensity at low Mr (approximately 8 kDa) was found to be higher in RPE than in GPE. Notably, the band corresponding to Mr approximately 23-25 kDa was absent in RPE. These differences in composition may have contributed to the different wound healing and abortive effects of green and ripe papaya.
Naggayi, Madinah; Mukiibi, Nozmo; Iliya, Ezekiel
2015-06-01
Oxidative stress plays a crucial role in the development of drug induced nephrotoxicity. The study aimed to determine the nephroprotective and ameliorative effects of Carica papaya seed extract in paracetamol-induced nephrotoxicity in rats. To carry out phytochemical screening of Carica papaya, measure serum urea, creatinine and uric acid and describe the histopathological status of the kidneys in the treated and untreated groups. Phytochemical screening of the extract was done. Thirty two adult male Wistar rats were divided into four groups (n= 8 in each group). Group A (control) animals received normal saline for seven days, group B (paracetamol group) received normal saline, and paracetamol single dose on the 8th day. Group C received Carica papaya extract (CPE) 500 mg/kg, and paracetamol on the 8th day, while group D, rats were pretreated with CPE 750 mg/kg/day,and paracetamol administration on the 8th day. Samples of kidney tissue were removed for histopathological examination. Screening of Carica papaya showed presence of nephroprotective pytochemicals. Paracetamol administration resulted in significant elevation of renal function markers. CPE ameliorated the effect of paracetamol by reducing the markers as well as reversing the paracetamol-induced changes in kidney architecture. Carica papaya contains nephroprotective phytochemicals and may be useful in preventing kidney damage induced by paracetamol.
Shahid, M S; Yoshida, S; Khatri-Chhetri, G B; Briddon, R W; Natsuaki, K T
2013-06-01
Carica papaya (papaya) is a fruit crop that is cultivated mostly in kitchen gardens throughout Nepal. Leaf samples of C. papaya plants with leaf curling, vein darkening, vein thickening, and a reduction in leaf size were collected from a garden in Darai village, Rampur, Nepal in 2010. Full-length clones of a monopartite Begomovirus, a betasatellite and an alphasatellite were isolated. The complete nucleotide sequence of the Begomovirus showed the arrangement of genes typical of Old World begomoviruses with the highest nucleotide sequence identity (>99 %) to an isolate of Ageratum yellow vein virus (AYVV), confirming it as an isolate of AYVV. The complete nucleotide sequence of betasatellite showed greater than 89 % nucleotide sequence identity to an isolate of Tomato leaf curl Java betasatellite originating from Indonesian. The sequence of the alphasatellite displayed 92 % nucleotide sequence identity to Sida yellow vein China alphasatellite. This is the first identification of these components in Nepal and the first time they have been identified in papaya.
Julianti, Tasqiah; De Mieri, Maria; Zimmermann, Stefanie; Ebrahimi, Samad N; Kaiser, Marcel; Neuburger, Markus; Raith, Melanie; Brun, Reto; Hamburger, Matthias
2014-08-08
Leaf decoctions of Carica papaya have been traditionally used in some parts of Indonesia to treat and prevent malaria. Leaf extracts and fraction have been previously shown to possess antiplasmodial activity in vitro and in vivo. Antiplasmodial activity of extracts was confirmed and the active fractions in the extract were identified by HPLC-based activity profiling, a gradient HPLC fractionation of a single injection of the extract, followed by offline bioassay of the obtained microfractions. For preparative isolation of compounds, an alkaloidal fraction was obtained via adsorption on cationic ion exchange resin. Active compounds were purified by HPLC-MS and MPLC-ELSD. Structures were established by HR-ESI-MS and NMR spectroscopy. For compounds 5 and 7 absolute configuration was confirmed by comparison of experimental and calculated electronic circular dichroism (ECD) spectroscopy data, and by X-ray crystallography. Compounds were tested for bioactivity in vitro against four parasites (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum), and in the Plasmodium berghei mouse model. Profiling indicated flavonoids and alkaloids in the active time windows. A total of nine compounds were isolated. Four were known flavonols--manghaslin, clitorin, rutin, and nicotiflorin. Five compounds isolated from the alkaloidal fraction were piperidine alkaloids. Compounds 5 and 6 were inactive carpamic acid and methyl carpamate, while three alkaloids 7-9 showed high antiplasmodial activity and low cytotoxicity. When tested in the Plasmodium berghei mouse model, carpaine (7) did not increase the survival time of animals. The antiplasmodial activity of papaya leaves could be linked to alkaloids. Among these, carpaine was highly active and selective in vitro. The high in vitro activity could not be substantiated with the in vivo murine model. Further investigations are needed to clarify the divergence between our negative in vivo results
Carica papaya microRNAs are responsive to Papaya meleira virus infection.
Abreu, Paolla M V; Gaspar, Clicia G; Buss, David S; Ventura, José A; Ferreira, Paulo C G; Fernandes, Patricia M B
2014-01-01
MicroRNAs are implicated in the response to biotic stresses. Papaya meleira virus (PMeV) is the causal agent of sticky disease, a commercially important pathology in papaya for which there are currently no resistant varieties. PMeV has a number of unusual features, such as residence in the laticifers of infected plants, and the response of the papaya to PMeV infection is not well understood. The protein levels of 20S proteasome subunits increase during PMeV infection, suggesting that proteolysis could be an important aspect of the plant defense response mechanism. To date, 10,598 plant microRNAs have been identified in the Plant miRNAs Database, but only two, miR162 and miR403, are from papaya. In this study, known plant microRNA sequences were used to search for potential microRNAs in the papaya genome. A total of 462 microRNAs, representing 72 microRNA families, were identified. The expression of 11 microRNAs, whose targets are involved in 20S and 26S proteasomal degradation and in other stress response pathways, was compared by real-time PCR in healthy and infected papaya leaf tissue. We found that the expression of miRNAs involved in proteasomal degradation increased in response to very low levels of PMeV titre and decreased as the viral titre increased. In contrast, miRNAs implicated in the plant response to biotic stress decreased their expression at very low level of PMeV and increased at high PMeV levels. Corroborating with this results, analysed target genes for this miRNAs had their expression modulated in a dependent manner. This study represents a comprehensive identification of conserved miRNAs inpapaya. The data presented here might help to complement the available molecular and genomic tools for the study of papaya. The differential expression of some miRNAs and identifying their target genes will be helpful for understanding the regulation and interaction of PMeV and papaya.
Carica papaya MicroRNAs Are Responsive to Papaya meleira virus Infection
Abreu, Paolla M. V.; Gaspar, Clicia G.; Buss, David S.; Ventura, José A.; Ferreira, Paulo C. G.; Fernandes, Patricia M. B.
2014-01-01
MicroRNAs are implicated in the response to biotic stresses. Papaya meleira virus (PMeV) is the causal agent of sticky disease, a commercially important pathology in papaya for which there are currently no resistant varieties. PMeV has a number of unusual features, such as residence in the laticifers of infected plants, and the response of the papaya to PMeV infection is not well understood. The protein levels of 20S proteasome subunits increase during PMeV infection, suggesting that proteolysis could be an important aspect of the plant defense response mechanism. To date, 10,598 plant microRNAs have been identified in the Plant miRNAs Database, but only two, miR162 and miR403, are from papaya. In this study, known plant microRNA sequences were used to search for potential microRNAs in the papaya genome. A total of 462 microRNAs, representing 72 microRNA families, were identified. The expression of 11 microRNAs, whose targets are involved in 20S and 26S proteasomal degradation and in other stress response pathways, was compared by real-time PCR in healthy and infected papaya leaf tissue. We found that the expression of miRNAs involved in proteasomal degradation increased in response to very low levels of PMeV titre and decreased as the viral titre increased. In contrast, miRNAs implicated in the plant response to biotic stress decreased their expression at very low level of PMeV and increased at high PMeV levels. Corroborating with this results, analysed target genes for this miRNAs had their expression modulated in a dependent manner. This study represents a comprehensive identification of conserved miRNAs inpapaya. The data presented here might help to complement the available molecular and genomic tools for the study of papaya. The differential expression of some miRNAs and identifying their target genes will be helpful for understanding the regulation and interaction of PMeV and papaya. PMID:25072834
Fournier, Valerie; Rosenheim, Jay A; Brodeur, Jacques; Johnson, Marshall W
2004-10-01
An important element in developing a management strategy for a new pest is the study of its seasonal dynamics and within-plant distribution. Here, we studied the mite Calacarus flagelliseta Fletchmann, De Moraes & Barbosa on papaya, Papaya carica L. (Caricaceae), in Hawaii to quantify 1) patterns of seasonal abundance, 2) its distribution across different vertical strata of the papaya canopy, and 3) shifts in its use of the upper versus the lower surfaces of papaya leaves. Nondestructive sampling conducted in two papaya plantings revealed that 1) populations of C. flagelliseta peak during the summer; 2) mites are most abundant in the middle and lower strata of the plant canopy, and least abundant on the youngest leaves found in the upper canopy; and 3) mites are found more predominantly on the upper leaf surfaces when overall population density peaks, suggesting that individuals move from the lower to the upper leaf surfaces when food resources on the lower leaf surface have been exploited by conspecifics. These results have significant implications for the development of sampling plans for C. flagelliseta in papaya.
Isolation and Identification of Active Compounds from Papaya Plants and Activities as Antimicrobial
NASA Astrophysics Data System (ADS)
Prasetya, A. T.; Mursiti, S.; Maryan, S.; Jati, N. K.
2018-04-01
Extraction and isolation of papaya seeds and leaves (Carica papaya L) has been performed using n-hexane and ethanol solvents. Further isolation of the extract obtained using ethyl acetate and diethyl ether solvents. The result of the phytochemical test of papaya extract obtained by mixture of an active compound of flavonoids, alkaloids, tannins, steroids, and saponins. Ethyl acetate isolates containing only flavonoids and diethyl ether isolates contain only alkaloids. Extracts and isolates from papaya plants had gram-positive antibacterial activity greater than the gram-negative bacteria, but both did not have antifungal activity. Papaya extracts have greater antibacterial activity than flavonoid isolates and alkaloid isolates. Strong antibacterial inhibitory sequences are extracts of papaya plants, flavonoid isolates, and alkaloid isolates.
Ekanem, A P; Obiekezie, A; Kloas, W; Knopf, K
2004-03-01
The ciliate Ichthyophthirius multifiliis is among the most pathogenic parasites of fish maintained in captivity. In the present study, the effects of the crude methanolic extract of leaves of Mucuna pruriens and the petroleum-ether extract of seeds of Carica papaya against I. multifiliis were investigated under in vivo and in vitro conditions. Goldfish (Carassius auratus auratus) infected with the parasites were immersed for 72 h in baths with M. pruriens extract, and for 96 h in baths with C. papaya extract. There was a 90% reduction in numbers of I. multifiliis on fish after treatment in baths of each plant extract at 200 mg l(-1 )compared to untreated controls. Consequently, parasite-induced fish mortality was reduced significantly. A complete interruption of trophont recruitment was achieved by immersion in the M. pruriens extract. In vitro tests led to a 100% mortality of I. multifiliis in 150 mg/l M. pruriens extract, and in 200 mg/l of C. papaya extract after 6 h. Although the active constituents of the medicinal plant extracts are still unknown, we have demonstrated that they have potential for effective control of I. multifiliis.
USDA-ARS?s Scientific Manuscript database
This study was carried out to verify the practical use of the portable chlorophyll meter-PCM502 (PCM) in two papaya cultivars with contrasting green coloring of the leaf blade (‘Golden’: yellowish-green; ‘Solo’: dark green). The relationship was studied between the photosynthetic process and leaf n...
Proteomic analysis of papaya (Carica papaya L.) displaying typical sticky disease symptoms.
Rodrigues, Silas P; Ventura, José A; Aguilar, Clemente; Nakayasu, Ernesto S; Almeida, Igor C; Fernandes, Patricia M B; Zingali, Russolina B
2011-07-01
Papaya (Carica papaya L.) hosts the only described laticifer-infecting virus (Papaya meleira virus, PMeV), which is the causal agent of papaya sticky disease. To understand the systemic effects of PMeV in papaya, we conducted a comprehensive proteomic analysis of leaf samples from healthy and diseased plants grown under field conditions. First, a reference 2-DE map was established for proteins from healthy samples. A total of 486 reproducible spots were identified, and MALDI-TOF-MS/MS data identified 275 proteins accounting for 159 distinct proteins from 231 spots that were annotated. Second, the differential expression of proteins from healthy and diseased leaves was determined through parallel experiments, using 2-DE and DIGE followed by MALDI-TOF-MS/MS and LC-IonTrap-MS/MS, respectively. Conventional 2-DE analysis revealed 75 differentially expressed proteins. Of those, 48 proteins were identified, with 26 being upregulated (U) and 22 downregulated (D). In general, metabolism-related proteins were downregulated, and stress-responsive proteins were upregulated. This expression pattern was corroborated by the results of the DIGE analysis, which identified 79 differentially expressed proteins, with 23 identified (17 U and 6 D). Calreticulin and the proteasome subunits 20S and RPT5a were shown to be upregulated during infection by both 2-DE and DIGE analyses. These data may help shed light on plant responses against stresses and viral infections. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2007-01-01
Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic
Aziz, Jazli; Abu Kassim, Noor Lide; Abu Kasim, Noor Hayaty; Haque, Nazmul; Rahman, Mohammad Tariqur
2015-07-08
Use of Carica papaya leaf extracts, reported to improve thrombocyte counts in dengue patients, demands further analysis on the underlying mechanism of its thrombopoietic cytokines induction In vitro cultures of peripheral blood leukocytes (PBL) and stem cells from human exfoliated deciduous teeth (SHED) were treated with unripe papaya pulp juice (UPJ) to evaluate its potential to induce thrombopoietic cytokines (IL-6 and SCF) RESULTS: In vitro scratch gap closure was significantly faster (p < .05) in SHED culture treated with UPJ. IL-6 concentration was significantly increased (p < .05) in SHED and PBL culture supernatant when treated with UPJ. SCF synthesis in SHED culture was also significantly increased (p < .05) when treated with UPJ CONCLUSION: In vitro upregulated synthesis of IL -6 and SCF both in PBL and SHED reveals the potential mechanism of unripe papaya to induce thrombopoietic cytokines synthesis in cells of hematopoietic and mesenchymal origin.
Anti-inflammatory and immunomodulatory properties of Carica papaya.
Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K
2016-07-01
Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking.
Anticancer activity of Carica papaya: a review.
Nguyen, Thao T T; Shaw, Paul N; Parat, Marie-Odile; Hewavitharana, Amitha K
2013-01-01
Carica papaya is widely cultivated in tropical and subtropical countries and is used as food as well as traditional medicine to treat a range of diseases. Increasing anecdotal reports of its effects in cancer treatment and prevention, with many successful cases, have warranted that these pharmacological properties be scientifically validated. A bibliographic search was conducted using the key words "papaya", "anticancer", and "antitumor" along with cross-referencing. No clinical or animal cancer studies were identified and only seven in vitro cell-culture-based studies were reported; these indicate that C. papaya extracts may alter the growth of several types of cancer cell lines. However, many studies focused on specific compounds in papaya and reported bioactivity including anticancer effects. This review summarizes the results of extract-based or specific compound-based investigations and emphasizes the aspects that warrant future research to explore the bioactives in C. papaya for their anticancer activities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rodrigues, Silas Pessini; Ventura, José Aires; Zingali, R B; Fernandes, P M B
2009-01-01
A variety of sample preparation protocols for plant proteomic analysis using two-dimensional gel electrophoresis (2-DE) have been reported. However, they usually have to be adapted and further optimised for the analysis of plant species not previously studied. This work aimed to evaluate different sample preparation protocols for analysing Carica papaya L. leaf proteins through 2-DE. Four sample preparation methods were tested: (1) phenol extraction and methanol-ammonium acetate precipitation; (2) no precipitation fractionation; and the traditional trichloroacetic acid-acetone precipitation either (3) with or (4) without protein fractionation. The samples were analysed for their compatibility with SDS-PAGE (1-DE) and 2-DE. Fifteen selected protein spots were trypsinised and analysed by matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS), followed by a protein search using the NCBInr database to accurately identify all proteins. Methods number 3 and 4 resulted in large quantities of protein with good 1-DE separation and were chosen for 2-DE analysis. However, only the TCA method without fractionation (no. 4) proved to be useful. Spot number and resolution advances were achieved, which included having an additional solubilisation step in the conventional TCA method. Moreover, most of the theoretical and experimental protein molecular weight and pI data had similar values, suggesting good focusing and, most importantly, limited protein degradation. The described sample preparation method allows the proteomic analysis of papaya leaves by 2-DE and mass spectrometry (MALDI-TOF-MS/MS). The methods presented can be a starting point for the optimisation of sample preparation protocols for other plant species.
Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng
2015-01-01
Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure. PMID:26633465
Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng
2015-12-01
Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.
Runnie, I; Salleh, M N; Mohamed, S; Head, R J; Abeywardena, M Y
2004-06-01
In this study, the vasodilatory actions of nine edible tropical plant extracts were investigated. Ipomoea batatas (sweet potato leaf), Piper betle (betel leaf), Anacardium occidentale (cashew leaf), Gynandropsis gynandra (maman leaf), Carica papaya (papaya leaf), and Mentha arvensis (mint leaf) extracts exhibited more than 50% relaxing effect on aortic ring preparations, while Piper betle and Cymbopogon citratus (lemongrass stalk) showed comparable vasorelaxation on isolated perfused mesenteric artery preparation. The vascular effect on the aortic ring preparations were mainly endothelium-dependent, and mediated by nitric oxide (NO) as supported by the inhibition of action in the presence of N(omega)-nitro-L-arginine (NOLA), an nitric oxide synthase (NOS) inhibitor, or by the removal of endothelium. In contrast, vasodilatory actions in resistance vessels (perfused mesenteric vascular beds) appear to involve several biochemical mediators, including NO, prostanoids, and endothelium-dependent hyperpolarizing factors (EDHFs). Total phenolic contents and antioxidant capacities varied among different extracts and found to be independent of vascular relaxation effects. This study demonstrates that many edible plants common in Asian diets to possess potential health benefits, affording protection at the vascular endothelium level.
Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly.
Senthilvel, Padmanaban; Lavanya, Pandian; Kumar, Kalavathi Murugan; Swetha, Rayapadi; Anitha, Parimelzaghan; Bag, Susmita; Sarveswari, Sundaramoorthy; Vijayakumar, Vijayaparthasarathi; Ramaiah, Sudha; Anbarasu, Anand
2013-01-01
Dengue virus belongs to the virus family Flaviviridae. Dengue hemorrhagic disease caused by dengue virus is a public health problem worldwide. The viral non structural 2B and 3 (NS2B-NS3) protease complex is crucial for virus replication and hence, it is considered to be a good anti-viral target. Leaf extracts from Carica papaya is generally prescribed for patients with dengue fever, but there are no scientific evidences for its anti-dengue activity; hence we intended to investigate the anti-viral activity of compounds present in the leaves of Carica papaya against dengue 2 virus (DENV-2). We analysed the anti-dengue activities of the extracts from Carica papaya by using bioinformatics tools. Interestingly, we find the flavonoid quercetin with highest binding energy against NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results suggest that the flavonoids from Carica papaya have significant anti-dengue activities. ADME - Absorption, distribution, metabolism and excretion, BBB - Blood brain barrier, CYP - Cytochrome P450, DENV - - Dengue virus, DHF - Dengue hemorrhagic fever, DSS - Dengue shock syndrome, GCMS - - Gas chromatography- Mass spectrometry, MOLCAD - Molecular Computer Aided Design, NS - Non structural, PDB - Protein data bank, PMF - Potential Mean Force.
Evaluation of the composition of Carica papaya L. seed oil extracted with supercritical CO2.
Barroso, Pedro T W; de Carvalho, Pedro P; Rocha, Thiago B; Pessoa, Fernando L P; Azevedo, Debora A; Mendes, Marisa F
2016-09-01
Among the most important tropical fruit grown in the world today and in Brazil, papaya occupies a prominent place. Native to tropical America, papaya has spread to several regions of the world, and Brazil accounts for 12.74% of the world production, followed by Mexico, Nigeria and India. The culture reached a harvested area of 441,042 ha and production of 12,420,585 t worldwide. The largest interest in this fruit relies on its main constituent compounds, like vitamins A, B and C, alkaloids (carpaine and pseudocarpaine), proteolytic enzymes (papain and quimiopapain) and benzyl isothiocyanate, more known as BITC, which has anthelmintic activity. Because of that, the present work has as objective the evaluation of the efficiency and composition of the oil extracted from Carica papaya L. seeds with supercritical carbon dioxide. The experiments were performed in a unit containing mainly a high-pressure pump and a stainless steel extractor with 42 mL of volume. The sampling was performed at each 20 min until the saturation of the process. About 6.5 g of sample were fed for each experiment done at 40, 60 and 80 °C under the pressures of 100, 150 and 200 bar. Samples of the Carica papaya L. fruit were acquired in a popular market and free for personal use intended for the study. After collection, the seeds were crushed with the help of a pestle, and dried at 60 °C for 60 min. For each operational condition, the extraction curves were constructed relating cumulative mass of oil extracted in function of the operational time. The better efficiencies were found at 40 °C and 200 bar (1.33%) followed by 80 °C and 200 bar (2.56%). Gas chromatography and NMR analysis could identify an insecticide component (BITC) that enables new applications of this residue in pharmaceutical and chemical industries.
Jayasinghe, Chanika Dilumi; Gunasekera, Dinara S; De Silva, Nuwan; Jayawardena, Kithmini Kawya Mandakini; Udagama, Preethi Vidya
2017-04-26
The leaf concentrate of Carica papaya is a traditionally acclaimed immunomodulatory remedy against numerous diseases; nonetheless comprehensive scientific validation of this claim is limited. The present study thus investigated the immunomodulatory potential of Carica papaya mature leaf concentrate (MLCC) of the Sri Lankan wild type cultivar using nonfunctional and functional immunological assays. Wistar rats (N = 6/ group) were orally gavaged with 3 doses (0.18, 0.36 and 0.72 ml/100g body weight) of the MLCC once daily for 3 consecutive days. Selected nonfunctional (enumeration of immune cells and cytokine levels) and functional (cell proliferation and phagocytic activity) immunological parameters, and acute toxic effects were determined using standard methods. Effect of the MLCC (31.25, 62.5, 125, 250, 500 and 1000 μg/ml) on ex vivo proliferation of bone marrow cells (BMC) and splenocytes (SC), and in vitro phagocytic activity of peritoneal macrophages (PMs), and their corresponding cytokine responses were evaluated. The phytochemical profile of the MLCC was established using liquid chromatography-mass spectrometry (LS-MS) and Gas chromatography-mass spectrometry (GC-MS). Counts of rat platelets, total leukocytes, lymphocyte and monocyte sub populations, and BMCs were significantly augmented by oral gavage of the MLCC (p < 0.05). The highest MLCC dose tested herein significantly reduced pro inflammatory cytokines, Interleukin 6 (IL-6) and Tumor Necrosis Factor α (TNF α) levels of rats (p < 0.05). The in vivo phagocytic index of rat PMs significantly increased by oral gavage of all three doses of the MLCC (p < 0.05). In vitro phagocytic activity of rat PMs were enhanced by the MLCC and triggered a Th1 biased cytokine response. The MLCC at low concentrations elicited ex vivo proliferation of BMC (31.25 μg/ml) and SC (31.25 and 62.5 μg/ml) respectively. Conversely, high concentrations (500 and 1000 μg/ml) exhibited cytotoxicity of both BMC and SC
A matrix solid-phase dispersion method for the extraction of seven pesticides from mango and papaya.
Navickiene, Sandro; Aquino, Adriano; Bezerra, Débora Santos Silva
2010-10-01
A simple and effective extraction method based on matrix solid-phase dispersion was developed to determine trichlorfon, pyrimethanil, methyl parathion, tetraconazole, thiabendazole, imazalil, and tebuconazole in papaya and mango using gas chromatography-mass spectrometry with selected ion monitoring. Different parameters of the method were evaluated, such as type of solid-phase (silica-gel, neutral alumina, and Florisil), the amount of solid-phase, and eluent [dichloromethane, ethyl acetate-dichloromethane (4:1, 1:4, 1:1, 2:3, v/v)]. The best results were obtained using 2.0 g of mango or papaya, 3.0 g of silica as dispersant sorbent, and ethyl acetate-dichloromethane (1:1, v/v) as eluting solvent. The method was validated using mango and papaya samples fortified with pesticides at different concentration levels (0.05, 0.10, and 1.0 mg/kg). Average recoveries (4 replicates) ranged from 80% to 146%, with relative standard deviations between 1.0% and 28%. Detection and quantification limits for mango and papaya ranged from 0.01 to 0.03 mg/kg and 0.05 to 0.10 mg/kg, respectively. The proposed method was applied to the analysis of these compounds in commercial fruit samples from a local market (Aracaju/SE, Brazil), and residues of the pesticides were not detected on the samples.
Alarcón, Alejandro; Davies, Frederick T; Egilla, Johnatan N; Fox, Theodore C; Estrada-Luna, Arturo A; Ferrera-Cerrato, Ronald
2002-01-01
Arbuscular mycorrhizal fungi (AMF) are able to increase root enzymatic activity of acid and alkaline phosphatases. However, the role of AMF on phosphatase activity has not been reported in papaya (Carica papaya L.), which is frequently established at places with soil phosphorus (P) deficiencies. The goals of this research were to determine the effect of Glomus claroideum (Gc), and plant growth promoting rhizobacterium Azospirillum brasilense strain VS7 [Ab]) on root phosphatase activity and seedling growth of Carica papaya L. cv. Red Maradol under low P conditions. There were four treatments-colonization with: 1) Gc, 2) Ab, 3) Gc+Ab, and 4) non-inoculated seedlings. Plants were established in a coarse sand:sandy loam substrate under P-limitation (11 microg P ml(-1)), supplied with a modified Long Ashton Nutrient Solution. Seedling growth was severely reduced by low P. Gc+Ab inoculated plants had greater total dry matter and leaf area than non-colonized plants. Gc-inoculated plants had greater leaf area than non-colonized plants. Treatments did not differ in leaf area ratio, specific leaf area and, total chlorophyll content. There was a non-significant effect on stem relative growth rate with Gc and Gc+Ab plants. Mycorrhizal colonization enhanced the bacterial population 3.4-fold in the Gc+Ab treatment compared with the population quantified in Ab treatment. Soluble and extractable root acid phosphatase activity (RAPA) was higher in Gc inoculated plants. We discussed on the possible relation among both inoculated microorganisms and also with the P-limitation which plants were established.
NASA Astrophysics Data System (ADS)
Dewi Astuty, S.; Baktir, A.
2017-05-01
Research on the effectiveness of photo inactivation of C.albicans biofilms led by a-PDT system mediated by chlorophyll-diode-laser-induced was done. This research was done using in vitro technique in order to effectively determine chlorophyll extract of ROS-generated Carica Papaya L. using in situ technique. This technique induced laser diode on different dose and C. albicans with reduced degree. This research is a preliminary study in efforts to find anew sensitizer agent candidate made of chlorophyll extract and antifungal of Carica Papaya L. The effectiveness of eradication has been tested with MDA’s content and OD of biomass biofilms as well as analyzed using ANOVA and Tukey Test (α=0.05). The characteristic of chlorophyll extract of Carica Papaya L. has maximum absorptions on blue areas (λmax = 420 nm) and red areas (λmax = 670 nm). The MIC value of Carica Papaya L.’schlorophyll extract against C. albicans planktonic and biofilms cell is 63.8 μM and 31.9 μM respectively. The result shows that treatment using laser which was combined with chlorophyll extract is more effective than that with laser only or chlorophyll extract only. The treatment using laser combined with chlorophyll extract obtained more than 65% (α=0.05) (more than that of negative control) for P2L1 group with OD595 0.915. The MDA’s content showed that group of laser which was mediated with chlorophyll extract had larger values than group of laser or chlorophyll extract only.
A Current Overview of the Papaya meleira virus, an Unusual Plant Virus
Abreu, Paolla M. V.; Antunes, Tathiana F. S.; Magaña-Álvarez, Anuar; Pérez-Brito, Daisy; Tapia-Tussell, Raúl; Ventura, José A.; Fernandes, Antonio A. R.; Fernandes, Patricia M. B.
2015-01-01
Papaya meleira virus (PMeV) is the causal agent of papaya sticky disease, which is characterized by a spontaneous exudation of fluid and aqueous latex from the papaya fruit and leaves. The latex oxidizes after atmospheric exposure, resulting in a sticky feature on the fruit from which the name of the disease originates. PMeV is an isometric virus particle with a double-stranded RNA (dsRNA) genome of approximately 12 Kb. Unusual for a plant virus, PMeV particles are localized on and linked to the polymers present in the latex. The ability of the PMeV to inhabit such a hostile environment demonstrates an intriguing interaction of the virus with the papaya. A hypersensitivity response is triggered against PMeV infection, and there is a reduction in the proteolytic activity of papaya latex during sticky disease. In papaya leaf tissues, stress responsive proteins, mostly calreticulin and proteasome-related proteins, are up regulated and proteins related to metabolism are down-regulated. Additionally, PMeV modifies the transcription of several miRNAs involved in the modulation of genes related to the ubiquitin-proteasome system. Until now, no PMeV resistant papaya genotype has been identified and roguing is the only viral control strategy available. However, a single inoculation of papaya plants with PMeV dsRNA delayed the progress of viral infection. PMID:25856636
A current overview of the Papaya meleira virus, an unusual plant virus.
Abreu, Paolla M V; Antunes, Tathiana F S; Magaña-Álvarez, Anuar; Pérez-Brito, Daisy; Tapia-Tussell, Raúl; Ventura, José A; Fernandes, Antonio A R; Fernandes, Patricia M B
2015-04-08
Papaya meleira virus (PMeV) is the causal agent of papaya sticky disease, which is characterized by a spontaneous exudation of fluid and aqueous latex from the papaya fruit and leaves. The latex oxidizes after atmospheric exposure, resulting in a sticky feature on the fruit from which the name of the disease originates. PMeV is an isometric virus particle with a double-stranded RNA (dsRNA) genome of approximately 12 Kb. Unusual for a plant virus, PMeV particles are localized on and linked to the polymers present in the latex. The ability of the PMeV to inhabit such a hostile environment demonstrates an intriguing interaction of the virus with the papaya. A hypersensitivity response is triggered against PMeV infection, and there is a reduction in the proteolytic activity of papaya latex during sticky disease. In papaya leaf tissues, stress responsive proteins, mostly calreticulin and proteasome-related proteins, are up regulated and proteins related to metabolism are down-regulated. Additionally, PMeV modifies the transcription of several miRNAs involved in the modulation of genes related to the ubiquitin-proteasome system. Until now, no PMeV resistant papaya genotype has been identified and roguing is the only viral control strategy available. However, a single inoculation of papaya plants with PMeV dsRNA delayed the progress of viral infection.
Antihypertensive effect of Carica papaya via a reduction in ACE activity and improved baroreflex.
Brasil, Girlandia Alexandre; Ronchi, Silas Nascimento; do Nascimento, Andrews Marques; de Lima, Ewelyne Miranda; Romão, Wanderson; da Costa, Helber Barcellos; Scherer, Rodrigo; Ventura, José Aires; Lenz, Dominik; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Andrade, Tadeu Uggere
2014-11-01
The aims of this study were to evaluate the antihypertensive effects of the standardised methanolic extract of Carica papaya, its angiotensin converting enzyme inhibitory effects in vivo, its effect on the baroreflex and serum angiotensin converting enzyme activity, and its chemical composition. The chemical composition of the methanolic extract of C. papaya was evaluated by liquid chromatography-mass/mass and mass/mass spectrometry. The angiotensin converting enzyme inhibitory effect was evaluated in vivo by Ang I administration. The antihypertensive assay was performed in spontaneously hypertensive rats and Wistar rats that were treated with enalapril (10 mg/kg), the methanolic extract of C. papaya (100 mg/kg; twice a day), or vehicle for 30 days. The baroreflex was evaluated through the use of sodium nitroprusside and phenylephrine. Angiotensin converting enzyme activity was measured by ELISA, and cardiac hypertrophy was evaluated by morphometric analysis. The methanolic extract of C. papaya was standardised in ferulic acid (203.41 ± 0.02 µg/g), caffeic acid (172.60 ± 0.02 µg/g), gallic acid (145.70 ± 0.02 µg/g), and quercetin (47.11 ± 0.03 µg/g). The flavonoids quercetin, rutin, nicotiflorin, clitorin, and manghaslin were identified in a fraction of the extract. The methanolic extract of C. papaya elicited angiotensin converting enzyme inhibitory activity. The antihypertensive effects elicited by the methanolic extract of C. papaya were similar to those of enalapril, and the baroreflex sensitivity was normalised in treated spontaneously hypertensive rats. Plasma angiotensin converting enzyme activity and cardiac hypertrophy were also reduced to levels comparable to the enalapril-treated group. These results may be associated with the chemical composition of the methanolic extract of C. papaya, and are the first step into the development of a new phytotherapic product which could be used in the treatment of hypertension. Georg Thieme Verlag KG Stuttgart
Guo, Tao; Guo, Qi; Cui, Xi-Yun; Liu, Yin-Quan; Hu, Jian; Liu, Shu-Sheng
2015-01-01
Begomoviruses are transmitted by cryptic species of the whitefly Bemisia tabaci complex, often in a species-specific manner. Papaya leaf curl China virus (PaLCuCNV) has been recorded to infect several crops including papaya, tomato and tobacco in China. To help assess the risks of spread of this virus, we compared the acquisition, retention and transmission of PaLCuCNV among four species of whiteflies, Middle East-Asia Minor 1 (MEAM1), Mediterranean (MED), Asia 1 and Asia II 7. All four species of whiteflies are able to acquire, retain and transmit the virus, but with different levels of efficiency. Transmission tests using tomato as the host plant showed that MEAM1 transmitted PaLCuCNV with substantially higher efficiency than did MED, Asia 1 and Asia II 7. Furthermore, accumulation of PaLCuCNV in the whiteflies was positively associated with its efficiency of transmitting the virus. Altogether, these findings indicate that MEAM1 is the most efficient vector for PaLCuCNV in the four species of whiteflies, and suggest that risks of PaLCuCNV pandemics are high in regions where MEAM1 occurs. PMID:26486606
Guo, Tao; Guo, Qi; Cui, Xi-Yun; Liu, Yin-Quan; Hu, Jian; Liu, Shu-Sheng
2015-10-21
Begomoviruses are transmitted by cryptic species of the whitefly Bemisia tabaci complex, often in a species-specific manner. Papaya leaf curl China virus (PaLCuCNV) has been recorded to infect several crops including papaya, tomato and tobacco in China. To help assess the risks of spread of this virus, we compared the acquisition, retention and transmission of PaLCuCNV among four species of whiteflies, Middle East-Asia Minor 1 (MEAM1), Mediterranean (MED), Asia 1 and Asia II 7. All four species of whiteflies are able to acquire, retain and transmit the virus, but with different levels of efficiency. Transmission tests using tomato as the host plant showed that MEAM1 transmitted PaLCuCNV with substantially higher efficiency than did MED, Asia 1 and Asia II 7. Furthermore, accumulation of PaLCuCNV in the whiteflies was positively associated with its efficiency of transmitting the virus. Altogether, these findings indicate that MEAM1 is the most efficient vector for PaLCuCNV in the four species of whiteflies, and suggest that risks of PaLCuCNV pandemics are high in regions where MEAM1 occurs.
Siddique, Sarmad; Nawaz, Shamsa; Muhammad, Faqir; Akhtar, Bushra; Aslam, Bilal
2018-06-01
Aqueous, absolute and 80% ethanolic extract of fruit peels of Musa sapientum and Carica papaya were investigated for their antibacterial activity, measured by disc diffusion method and antioxidant activity, measured by four different methods. Papaya and banana peels were found to contain terpenoids, tannins, alkaloids, saponins steroid, phenols, fixed oils and fats. 80% ethanolic extract of banana peel was found to contain highest total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity but in papaya peel, highest TPC and reducing activity was shown by water extract while, TFC and radical scavenging activity was given by 80% ethanolic extract. In banana, water extract showed highest antibacterial activity against tested bacteria while in case of papaya, absolute ethanolic extract showed highest antibacterial activity. The present study revealed that peels of banana and papaya fruits are potentially good source of antioxidant and antibacterial agents.
Nguyen, Thao T; Parat, Marie-Odile; Shaw, Paul N; Hewavitharana, Amitha K; Hodson, Mark P
2016-01-01
Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study
Nguyen, Thao T.; Parat, Marie-Odile; Shaw, Paul N.; Hewavitharana, Amitha K.; Hodson, Mark P.
2016-01-01
Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study
Anjum, Varisha; Arora, Poonam; Ansari, Shahid Husain; Najmi, Abul Kalam; Ahmad, Sayeed
2017-12-01
Carica papaya Linn. (Caricaceae) leaf (CPL) juice has long been traditionally used in ethnomedicine for dengue fever. The study examines the effects of standardized CPL aqueous extract (SCPLE) on platelet count, extramedullary haematopoiesis (EMH), and immunomodulation in cyclophosphamide (CP)-induced animal model of thrombocytopenia. The extract was analyzed for myricetin, caffeic acid, trans-ferulic acid, and kaempferol using HPTLC for standardization followed by UPLC-qTOF/MS fingerprinting for metabolite signature. The effects of SCPLE (50 and 150 mg/kg p.o.) on proliferative response of platelet count and total leucocyte count (TLC) were observed up to 14 days in Wistar rat. However, delayed-type hypersensitivity (DTH), haemagglutination titre (HT), and in vivo carbon clearance were examined as immunomodulatory parameters in albino mice at 150 mg/kg p.o. against CP. The quantitative HPTLC estimation of SCPLE showed the presence of myricetin, caffeic acid, trans-ferulic acid, and kaempferol up to 280.16 ± 5.99, 370.18 ± 6.27, 1110.86 ± 2.97, and 160.53 ± 2.48 (μg/g), respectively. Twenty-four metabolites were identified using UPLC-qTOF/MS. Oral administration of SCPLE (150 mg/kg) in thrombocytopenic rats exhibited significant (p < 0.01) increase in thrombocytes (1014.83 × 10 3 cells/mm 3 ), DTH response (0.16 ± 0.004), and phagocytic index (63.15% increase) as compared to CP-induced thrombocytopenia group. Histopathological studies showed minimal fibrosis in spleen histology. Results suggest CPL can mediate the release of platelets providing the means for the treatment and prevention of dengue.
Fabi, João Paulo; Broetto, Sabrina Garcia; da Silva, Sarah Lígia Garcia Leme; Zhong, Silin; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira
2014-01-01
Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening. PMID:25162506
Fabi, João Paulo; Broetto, Sabrina Garcia; da Silva, Sarah Lígia Garcia Leme; Zhong, Silin; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira
2014-01-01
Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening.
... has been fermented can lower blood sugar. In theory, this form of papaya might affect blood sugary ... appropriate range of doses for papaya. Keep in mind that natural products are not always necessarily safe ...
Antimicrobial activity of aqueous extract of leaf and stem extract of Santalum album
Kumar, M. Giriram; Jeyraaj, Indira A.; Jeyaraaj, R.; Loganathan, P.
2006-01-01
The antimicrobial activity of aqueous extract leaf and stem of Santalum album was performed against Escherichia coli, Staphylococcus aureus and Pseudomonas. S. album leaf extract showed inhibition to E.coli (0.8mm), Staphylococcus aureus (1.0mm) and Pseudomonas (1.4mm) were as stem extract showed inhibition on E.coli (0.6mm), Staphylococcus aureus (0.4mm) and seudomonas (1.0mm) respectively. However leaf extract showed significantly higher inhibition when compared to stem extract. This might be due to presence of higher amount of secondary metabolites in the aqueous leaf extract. PMID:22557199
Yanty, Noorzianna Abdul Manaf; Marikkar, Jalaldeen Mohammed Nazrim; Nusantoro, Bangun Prajanto; Long, Kamariah; Ghazali, Hasanah Mohd
2014-01-01
A study was carried out to determine the physicochemical characteristics of the oil derived from papaya seeds of the Hong Kong/Sekaki variety. Proximate analysis showed that seeds of the Hong Kong/Sekaki variety contained considerable amount of oil (27.0%). The iodine value, saponification value, unsaponifiable matter and free fatty acid contents of freshly extracted papaya seed oil were 76.9 g I2/100g oil, 193.5 mg KOH/g oil, 1.52% and 0.91%, respectively. The oil had a Lovibond color index of 15.2Y + 5.2B. Papaya seed oil contained ten detectable fatty acids, of which 78.33% were unsaturated. Oleic (73.5%) acid was the dominant fatty acids followed by palmitic acid (15.8%). Based on the high performance liquid chromatography (HPLC) analysis, seven species of triacylglycerols (TAGs) were detected. The predominant TAGs of papaya seed oil were OOO (40.4%), POO (29.1%) and SOO (9.9%) where O, P, and S denote oleic, palmitic and stearic acids, respectively. Thermal analysis by differential scanning calorimetry (DSC) showed that papaya seed oil had its major melting and crystallization transitions at 12.4°C and -48.2°C, respectively. Analysis of the sample by Z-nose (electronic nose) instrument showed that the sample had a high level of volatile compounds.
Nageswara-Rao, Madhugiri; Kwit, Charles; Agarwal, Sujata; Patton, Mariah T; Skeen, Jordan A; Yuan, Joshua S; Manshardt, Richard M; Stewart, C Neal
2013-09-01
Genetically engineered (GE) ringspot virus-resistant papaya cultivars 'Rainbow' and 'SunUp' have been grown in Hawai'i for over 10 years. In Hawai'i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai'i for the presence of transgenic seed at typical regulatory threshold levels
2013-01-01
Background Genetically engineered (GE) ringspot virus-resistant papaya cultivars ‘Rainbow’ and ‘SunUp’ have been grown in Hawai’i for over 10 years. In Hawai’i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. Results We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. Conclusions This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai’i for the presence of transgenic
Abdel-Lateef, Ezzat El-Sayed; Rabia, Ibrahim Aly; El-Sayed, Mortada Mohamed; Abdel-Hameed, El-Sayed Saleh
2018-04-10
The in vivo antischistosomal activities of Carica papaya L. extracts were evaluated and the characterization of the active secondary metabolites of the defatted methanolic extract was performed using HPLC-ESI-MS. The plant fruit powders were extracted with 85% methanol and fractionated using organic solvents. The in vivo antischistosomal effects of the methanolic extracts and its fractions, as well as the assessment of the relationship between the antischistosomal activity of these plant extracts and oxidative stress, was determined. In addition, the defatted methanolic extract was characterized by HPLC-ESI-MS analysis. The number of worms, ova, and the Oogram pattern displayed typical Schistosoma mansoni pathology 8 weeks after infection in mice. Treatment of the infected group with the defatted methanolic extracts significantly decreased worm burden, immature ova and mature ova, while increasing the percentage of dead ova in vivo. The butanol fraction was the most effective fraction reducing worm burden by 77%, ova count in the intestine by 76% and in the liver by 80%, and significantly decreased immature and mature ova ( P <0.001) compared to the infected group. Additionally, the defatted methanolic extracts improved the reduced glutathione and malondialdehyde levels in hepatic tissues in the treated groups compared to the infected group. The HPLC-ESI-MS analysis of the Carica papaya defatted methanolic extract revealed the presence of several polyphenolic compounds. Carica papaya fruit extracts are rich with phenolic acids and flavonoids and show a significant effect against S. mansoni infections which may be used alternative to PZQ as anti-schistosomal drug against schistosomiasis. © Georg Thieme Verlag KG Stuttgart · New York.
Post-irradiation identification of papaya ( Carica papaya L.) fruit
NASA Astrophysics Data System (ADS)
Chatterjee, Suchandra; Variyar, Prasad S.; Sharma, Arun
2012-03-01
Impact of radiation processing on the volatile essential oil profile of papaya ( Carica papaya) was investigated. Gamma-radiation processing resulted in the appearance of a new peak in the GLC profile that was identified as phenol. The observed dose dependent increase in phenol content suggested possible use of this compound as a marker for radiation processed papaya.
Zhang, Tao; Chen, Weijun
2017-08-25
The inhibitory activity of the papaya seed extract (PSE) on Candida albicans ( C. albicans ) was determined by turbidimetry method. The inhibitory mechanisms were also evaluated from the prospective of reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) decrease, and the activities of four complex enzymes in mitochondria respiratory chain. Results obtained from this study indicated that the PSE exhibited an effective inhibitory activity on C. albicans and induced significant accumulation of ROS and collapse of MMP. The Complex I and Complex III exhibited continues significant decrease in mitochondrial enzyme activity assays, but the Complex II and Complex IV activities were not positively correlated. Furthermore, the GC-MS analysis demonstrated that the PSE represents a rich and high-purity source of benzyl isothiocyanate (BITC), which indicated the BITC may be responsible for the mitochondrial dysfunction.
Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion.
Liu, Juan; Sharma, Anupma; Niewiara, Marie Jamille; Singh, Ratnesh; Ming, Ray; Yu, Qingyi
2018-01-06
Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases structurally related to papain, play important roles in plant development, senescence, and defense responses. Papain, the first cysteine protease whose structure was determined by X-ray crystallography, plays a crucial role in protecting papaya from herbivorous insects. Except the four major PLCPs purified and characterized in papaya latex, the rest of the PLCPs in papaya genome are largely unknown. We identified 33 PLCP genes in papaya genome. Phylogenetic analysis clearly separated plant PLCP genes into nine subfamilies. PLCP genes are not equally distributed among the nine subfamilies and the number of PLCPs in each subfamily does not increase or decrease proportionally among the seven selected plant species. Papaya showed clear lineage-specific gene expansion in the subfamily III. Interestingly, all four major PLCPs purified from papaya latex, including papain, chymopapain, glycyl endopeptidase and caricain, were grouped into the lineage-specific expansion branch in the subfamily III. Mapping PLCP genes on chromosomes of five plant species revealed that lineage-specific expansions of PLCP genes were mostly derived from tandem duplications. We estimated divergence time of papaya PLCP genes of subfamily III. The major duplication events leading to lineage-specific expansion of papaya PLCP genes in subfamily III were estimated at 48 MYA, 34 MYA, and 16 MYA. The gene expression patterns of the papaya PLCP genes in different tissues were assessed by transcriptome sequencing and qRT-PCR. Most of the papaya PLCP genes of subfamily III expressed at high levels in leaf and green fruit tissues. Tandem duplications played the dominant role in affecting copy number of PLCPs in plants. Significant variations in size of the PLCP subfamilies among species may reflect genetic adaptation of plant species to different environments. The lineage-specific expansion of papaya PLCPs of subfamily III might
Asghar, Nazia; Naqvi, Syed Ali Raza; Hussain, Zaib; Rasool, Nasir; Khan, Zulfiqar Ali; Shahzad, Sohail Anjum; Sherazi, Tauqir A; Janjua, Muhammad Ramzan Saeed Ashraf; Nagra, Saeed Ahmad; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Ze
2016-01-01
Carica papaya is a well known medicinal plant used in the West and Asian countries to cope several diseases. Patients were advised to eat papaya fruit frequently during dengue fever epidemic in Pakistan by physicians. This study was conducted to establish Polyphenols, flavonoids and antioxidant potential profile of extracts of all major parts of the C. papaya with seven major solvents i.e. water, ethanol, methanol, n-butanol, dichloromethane, ethyl acetate, and n-hexane. TPC, TFC, antioxidant and antibacterial potential were determined using different aqueous and organic solvents in addition to the determination of trace element in leaves, pulp and peel of C. papaya. Total soluble phenolics and flavonoids were found in promising quantity (≈66 mg GAE/g) especially in case of methanol and ethanol extracts. Antioxidant activity using DPPH free radical scavenging assay indicated leaves, bark, roots and pulp extracts showed >75.0 % scavenging potential while leaves and pulp showed 84.9 and 80.9 % inhibition of peroxidation, respectively. Reducing power assay showed leaves, pulp and roots extracts active to reduce Fe(3+) to Fe(2+) ions. The antibacterial study showed pulp extract is the best to cope infectious action of bacteria. This study was conducted to test the medicinal profile of all parts of C. papaya by extracting secondary metabolites with organic and aqueous solvents. Ethanol and methanol both were found to be the best solvents of choice to extract natural products to get maximum medicinal benefits and could be used to medicinal formulation against different infectious diseases.Graphical abstractMedicinal evaluation of different parts of C. papaya.
Nafiu, Abdulrazaq Bidemi; Rahman, Mohammad Tariqur
2015-10-15
Increased wound healing efficiency by Se(2+) added Carica papaya L. (Caricaceae) fruit extract was linked to increased antioxidant and anti-inflammatory responses during healing. We investigated the impact of Se(2+) or Zn(2+) added papaya water (WE) and phosphate-buffered saline (PE) extracts on cells recruitment and bio-molecular alterations on days 4 and 10 post wounding in an in vivo excision wound. Excision wounds were created on the dorsum of Sprague Dawley rats and treated topically twice/day with 20 μL of PE and WE (5 mg extract/mL), 0.5 μgSe(2+) added PE and WE (PES and WES), or 100 μMZn(2+) added PE and WE (PEZ and WEZ). Deionised water (negative) and Solcoseryl (positive) were applied on the control groups. Histochemical and biochemical assays were used to evaluate cellular and bio-molecular changes in the wound. PES (PE + 0.5 μg Se(2+)) only increased significantly (p < 0.05) wound total protein content (95.14 ± 1.15 mg/g tissue vs positive control; 80.42 ± 0.86 mg/g tissue) on day 10 post wounding. PES increased significantly (p < 0.05) the number of fibroblasts/high power field (HPF) (75.60 ± 9.66) but decreased significantly (p < 0.05) the number of polymorphonuclear leukocytes/HPF (59.20 ± 12.64) in the wound compared to positive control (50.60 ± 12.58 fibroblasts/HPF, 101.00 ± 27.99 polymorphonuclear leukocytes/HPF) on day 4. Similar results were recorded for WES. PES demonstrated increased neovascularization, TGF-β1 and VEGFA expressions at day 4 and increased collagen at day 10. Papaya extract improved wound repair by increasing fibroblasts recruitment and reducing polymorphonuclear leukocytes infiltration through early transient expressions of TGF-β1 and VEGFA at the wound area. The processes were amplified with Se(2+) addition.
Schweiggert, Ralf M; Steingass, Christof B; Heller, Annerose; Esquivel, Patricia; Carle, Reinhold
2011-11-01
Chromoplast morphology and ultrastructure of red- and yellow-fleshed papaya (Carica papaya L.) were investigated by light and transmission electron microscopy. Carotenoid analyses by LC-MS revealed striking similarity of nutritionally relevant carotenoid profiles in both the red and yellow varieties. However, while yellow fruits contained only trace amounts of lycopene, the latter was found to be predominant in red papaya (51% of total carotenoids). Comparison of the pigment-loaded chromoplast ultrastructures disclosed tubular plastids to be abundant in yellow papaya, whereas larger crystalloid substructures characterized most frequent red papaya chromoplasts. Exclusively existent in red papaya, such crystalloid structures were associated with lycopene accumulation. Non-globular carotenoid deposition was derived from simple solubility calculations based on carotenoid and lipid contents of the differently colored fruit pulps. Since the physical state of carotenoid deposition may be decisive regarding their bioavailability, chromoplasts from lycopene-rich tomato fruit (Lycopersicon esculentum L.) were also assessed and compared to red papaya. Besides interesting analogies, various distinctions were ascertained resulting in the prediction of enhanced lycopene bioavailability from red papaya. In addition, the developmental pathway of red papaya chromoplasts was investigated during fruit ripening and carotenogenesis. In the early maturation stage of white-fleshed papaya, undifferentiated proplastids and globular plastids were predominant, corresponding to incipient carotenoid biosynthesis. Since intermediate plastids, e.g., amyloplasts or chloroplasts, were absent, chromoplasts are likely to emerge directly from proplastids.
Guo, S G; Guan, S H; Wang, G M; Liu, G Y; Sun, H; Wang, B J; Xu, F
2015-01-01
This paper aims to compare the curative effects of persimmon leaf extract and ginkgo biloba extract in the treatment of headache and dizziness caused by vertebrobasilar insufficiency. Sixty patients were observed, who underwent therapy with persimmon leaf extract and ginkgo biloba extract based on the treatment of nimodipine and aspirin. After 30 days, 30 patients treated with persimmon leaf extract and 30 patients with ginkgo biloba extract were examined for changes in hemodynamic indexes and symptoms, such as headache and dizziness. The results showed statistically significant differences of 88.3% for the persimmon leaf extract and 73.1% for the ginkgo biloba extract, P < 0.05. Compared to the group of ginkgo biloba extract, the group of persimmon leaf extract had more apparent improvement in the whole blood viscosity, plasma viscosity, fibrinogen, hematokrit, and platelet adhesion rate, and the difference was statistically significant (P < 0.05 or P < 0.01). Based on these analyses, it can be concluded that persimmon leaf extract is better than ginkgo biloba extract in many aspects, such as cerebral circulation improvement, cerebral vascular expansion, hypercoagulable state lowering and vertebrobasilar insufficiency-induced headache and dizziness relief.
Protection and coexistence of conventional papaya productions with PRSV resistant transgenic papaya
USDA-ARS?s Scientific Manuscript database
Papaya ringspot virus (PRSV) is a devastating disease that has a detrimental impact on both commercial papaya production and Caricaceae germplasm conservation. Transgenic line 55-1 and derived progeny ‘SunUp’ and ‘Rainbow’ are resistant to PRSV and have saved the papaya industry in Hawaii. In small...
Chen, M H; Wang, P J; Maeda, E
1987-10-01
The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.
Label-free quantitative proteomic analysis of pre-flowering PMeV-infected Carica papaya L.
Soares, Eduardo de A; Werth, Emily G; Madroñero, Leidy J; Ventura, José A; Rodrigues, Silas P; Hicks, Leslie M; Fernandes, Patricia M B
2017-01-16
symptoms development prior to C. papaya flowering is considered in this study. Thus, field-grown and PMeV-infected C. papaya leaf samples were analyzed using proteomics, which revealed the modulation of photosynthesis-, 26S proteasome- and cell-wall remodeling-associated proteins. The data implicate a role for those systems in C. papaya resistance to viruses and support the idea of a partial resistance induction in the plants at pre-flowering stage. The specific proteins presented in the manuscript represent a starting point to the selection of key genes to be used in C. papaya improvement to PMeV infection resistance. The presented data also contribute to the understanding of virus-induced disease symptoms development in plants, of interest to the plant-virus interaction field. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Firdaus, M.; Andriana, S.; Elvinawati; Alwi, W.; Swistoro, E.; Ruyani, A.; Sundaryono, A.
2017-04-01
We have successfully synthesized silver nanoparticles (AgNPs) by using aqueous extract of papaya (Carica papaya) fruit as bioreductant under sunlight irradiation without additional capping agent. Characterizations were done using UV-Visible spectrophotometry and Fourier Transform Infrared Spectroscopy (FTIR). The synthesized AgNPs have yellowish-brown color with surface plasmon resonance peak at 410 nm. Good selectivity of the AgNPs towards hazardous heavy metal of mercury ions in aqueous solution has been developed as a green environmental sensor. The presence of Hg(II) ions in the mixture changed the yellowish-brown color of AgNPs to colorless due to oxidation of Ag(O) in AgNPs to Ag(I) ions. Effect of samples matrix such as alkali metal, alkaline earth metal and transition metal ions were evaluated.
Olea europaea L. leaf extract and derivatives: antioxidant properties.
Briante, Raffaella; Patumi, Maurizio; Terenziani, Stefano; Bismuto, Ettore; Febbraio, Ferdinando; Nucci, Roberto
2002-08-14
This paper reports a very simple and fast method to collect eluates with high amounts of hydroxytyrosol, biotransforming Olea europaea L. leaf extract by a thermophilic beta-glycosidase immobilized on chitosan. Some phenolic compounds in the leaf tissue and in the eluates obtained by biotransformation are identified. To propose the eluates as natural substances from a vegetal source, their antioxidant properties have been compared with those of the leaf extract from which they are originated. The eluates possess a higher concentration of simple phenols, characterized by a stronger antioxidant capacity, than those available in extra virgin olive oils and in many tablets of olive leaf extracts, commercially found as dietetic products and food integrators.
Chandrasekaran, Rajkuberan; Seetharaman, Prabukumar; Krishnan, Muthukumar; Gnanasekar, Sathishkumar; Sivaperumal, Sivaramakrishnan
2018-02-01
This study manifests the larvicidal efficacy of Carica papaya latex extract and silver nanoparticles (CPAgNPs) synthesized using latex, against developing immature juveniles of Aedes aegypti and Culex quinquefasciatus . Briefly, the latex was collected and fractioned with different solvents such as chloroform, methanol and aqueously. The obtained crude extracts were subjected to larvicidal activity in the dose-dependent method. After 24 h, the mortality rate was calculated and statistically analyzed. From the results, it was demonstrated that the chloroform extract displayed prominent activity in IInd and IIIrd instar larvae of A. aegypti and C. quinquefasciatus with better LC 50 values followed by methanol and aqueous extract. Subsequently, we profiled the qualitative analysis of a chloroform extract through biochemical tests; Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. Moreover, we authenticated the major secondary metabolites and activated larvicidal compound present in the extract. Further, we synthesized CPAgNPs using aqueous latex extract and challenged with IInd and IIIrd instar larvae of A. aegypti and C. quinquefasciatus. Noticeably, the synthesized nanoproducts were showed 100% mortality in a 24-h treatment with significant LC 50 values. Hence, this study has opened up new vistas in the field of parasitological research to develop Carica papaya latex as a new stratagem in the insect vector management program.
Kokila, T; Ramesh, P S; Geetha, D
2016-12-01
Waste fruit peel mediated synthesis of silver nanoparticles (AgNPs) is a green chemistry approach that links nanotechnology and biotechnology. Using biological medium such as peel extract for the biosynthesis of nanoparticles is an ecofriendly and emerging scientific trend. With this back drop the present study focused on the biosynthesis of AgNPs using Carica Papaya peel extract (CPPE) and evaluation of its antimicrobial potentials of the nanoparticles against different human pathogens and to investigate the free radical scavenging activity. Water soluble antioxidant constituents present in Carica Papaya peel extract were mainly responsible for the reduction of silver ions to nanosized Ag particles. UV-vis spectral analysis shows surface plasmon resonance band at 430nm. The presence of active proteins and phenolic groups present in the biomass before and after reduction was identified by Fourier transform infrared spectroscopy. X-ray diffraction study shows the average size of the silver nanoparticles is in the range of 28nm, as well as revealed their face centered cubic structure. Atomic force microscope image gives the 3D topological characteristic of silver nanoparticles and the particle size ranges from 10 to 30nm. The average particle size distribution of silver nanoparticles is 161nm (Dynamic light scattering) and the corresponding average zeta potential value is -20.5mV, suggesting higher stability of silver nanoparticles. Biologically synthesized nanoparticles efficiently inhibited pathogenic organisms both gram-positive and gram-negative bacteria. The biosynthesized nanoparticles might serve as a potent antioxidant as revealed by DPPH and ABT S+ assay. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Double-stranded RNA (dsRNA) extractions from papaya leaves infected with Papaya ringspot virus (PRSV) revealed the presence of an unusual 4kb band, in addition to the presumed PRSV-associated 10kb band. Partial sequence of RT-PCR products from the 4kb dsRNA revealed homology to genomes of several me...
USDA-ARS?s Scientific Manuscript database
Papayas are sweet, flavorful tropical fruit, rich in vitamin C and carotenoids. Multiple interactions among preharvest environmental conditions, genetics, and physiology determine papaya nutritional composition at harvest. Selecting a cultivar with the genetic potential for high nutrient content and...
Zhu, Yun J; Fitch, Maureen M M; Moore, Paul H
2006-01-01
Transgenic papaya plants were initially obtained using particle bombardment, a method having poor efficiency in producing intact, single-copy insertion of transgenes. Single-copy gene insertion was improved using Agrobacterium tumefaciens. With progress being made in genome sequencing and gene discovery, there is a need for more efficient methods of transformation in order to study the function of these genes. We describe a protocol for Agrobacterium-mediated transformation using carborundum-wounded papaya embryogenic calli. This method should lead to high-throughput transformation, which on average produced at least one plant that was positive in polymerase chain reaction (PCR), histochemical staining, or by Southern blot hybridization from 10 to 20% of the callus clusters that had been co-cultivated with Agrobacterium. Plants regenerated from the callus clusters in 9 to 13 mo.
USDA-ARS?s Scientific Manuscript database
The virus-resistant, transgenic commercial papaya cultivars Rainbow and SunUp (Carica papaya L.) have been consumed locally in Hawaii and elsewhere in the mainland US and Canada since their release to planters in Hawaii in 1998. These cultivars are derived from transgenic papaya line 55-1 and carry ...
Ocimum sanctum leaf extract induces drought stress tolerance in rice
Pandey, Veena; Ansari, M.W.; Tula, Suresh; Sahoo, R.K.; Bains, Gurdeep; Kumar, J.; Tuteja, Narendra; Shukla, Alok
2016-01-01
ABSTRACT Ocimum leaves are highly enriched in antioxidant components. Thus, its leaf extract, if applied in plants, is believed to efficiently scavenge ROS, thereby preventing oxidative damage under drought stress. Thus, the present study was performed in kharif 2013 and rabi 2014 season to evaluate the effect of aqueous leaf extract of Ocimum sanctum against drought stress in 2 rice genotype under glass house conditions. Here we show that various morpho- physiological (chlorophyll fluorescence, leaf rolling score, leaf tip burn, number of senesced leaves and total dry matter) and biochemical parameters (proline, malondialdehyde and superoxide dismutase content) were amended by Ocimum treatment in both the seasons. Application of Ocimum extract increased expression of dehydrin genes, while reducing expression of aquaporin genes in drought stressed rice plant. Thus, application of Ocimum leaf extract under drought stress can be suggested as a promising strategy to mitigate drought stress in economical, accessible and ecofriendly manner. PMID:26890603
USDA-ARS?s Scientific Manuscript database
Papaya ringspot virus, transmitted by alate aphids, is the most limiting factor of papaya production in the Caribbean region. Although there are transgenic papaya varieties that provide protection from this virus, these varieties are effective only in certain regions against certain strains of the v...
Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract
Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou
2013-01-01
Objective To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum). Methods Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenoic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion for seven strains of bacteria. Results Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone) against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone) at 10 mg/ disc. The IC50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.
Gupta, Sandeep Kumar
2016-01-01
Summary The ability of acetone and ethyl acetate extracts of the leaves of a traditional Indian medicinal plant, Indian borage (Plectranthus amboinicus Benth) to prevent spoilage of artificially inoculated model food systems (cabbage and papaya) and natural microflora of chicken meat was evaluated. These extracts were able to reduce the bacterial counts in all food systems; however, the effective concentration varied with the complexity of the system (cabbage<papaya
Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng
2014-01-01
Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya. PMID:25337891
Gogna, Navdeep; Hamid, Neda; Dorai, Kavita
2015-11-10
Extracts from the Carica papaya L. plant are widely reported to contain metabolites with antibacterial, antioxidant and anticancer activity. This study aims to analyze the metabolic profiles of papaya leaves and seeds in order to gain insights into their phytomedicinal constituents. We performed metabolite fingerprinting using 1D and 2D 1H NMR experiments and used multivariate statistical analysis to identify those plant parts that contain the most concentrations of metabolites of phytomedicinal value. Secondary metabolites such as phenyl propanoids, including flavonoids, were found in greater concentrations in the leaves as compared to the seeds. UPLC-ESI-MS verified the presence of significant metabolites in the papaya extracts suggested by the NMR analysis. Interestingly, the concentration of eleven secondary metabolites namely caffeic, cinnamic, chlorogenic, quinic, coumaric, vanillic, and protocatechuic acids, naringenin, hesperidin, rutin, and kaempferol, were higher in young as compared to old papaya leaves. The results of the NMR analysis were corroborated by estimating the total phenolic and flavonoid content of the extracts. Estimation of antioxidant activity in leaves and seed extracts by DPPH and ABTS in-vitro assays and antioxidant capacity in C2C12 cell line also showed that papaya extracts exhibit high antioxidant activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Roberts, Madeen; Minott, Donna A; Pinnock, Simone; Tennant, Paula F; Jackson, Jose C
2014-03-30
Papaya, a nutritious tropical fruit, is consumed both in its fresh form and as a processed product worldwide. Major quality indices which include firmness, acidity, pH, colour and size, are cultivar dependent. Transgenic papayas engineered for resistance to Papaya ringspot virus were evaluated over the ripening period to address physicochemical quality attributes and food safety concerns. With the exception of one transgenic line, no significant differences (P > 0.05) were observed in firmness, acidity and pH. Lightness (L*) and redness (a*) of the pulps of non-transgenic and transgenic papaya were similar but varied over the ripening period (P < 0.05). Fruit mass, though non-uniform (P < 0.05) for some lines, was within the range reported for similar papaya cultivars, as were shape indices of female fruits. Transgene proteins, CP and NPTII, were not detected in fruit pulp at the table-ready stage. The findings suggest that transformation did not produce any major unintended alterations in the physicochemical attributes of the transgenic papayas. Transgene proteins in the edible fruit pulp were low or undetectable. © 2013 Society of Chemical Industry.
Wu, Zilin; Mo, Cuiping; Zhang, Shuguang; Li, Huaping
2018-05-29
In 2006, the release and cultivation of the genetically modified papaya cultivar 'Huanong No.1' successfully controlled the destructive papaya ringspot disease caused by Papaya ringspot virus (PRSV) in South China. However, some transgenic papaya plants from Guangdong and Hainan are found infected by PRSV. In this study, Field investigation was carried out and susceptible transgenic papaya samples were collected during 2012-2016. Twenty representative isolates were artificially inoculated into Cucurbita pepo and commercialised 'Huanong No.1' papaya, and results indicated that the plants showed obvious disease symptoms. Phylogenetic analysis of CP genes of 120 PRSV-infected isolates showed that PRSV can be divided into three groups. Isolates from Guangdong and Hainan belong to Group III, which is further divided into two subgroups. The isolates collected in this study have greatly diverged from the previously reported dominant strains Ys, Vb and Sm in South China, indicating that they belong to a new lineage. Further analysis showed a highly genetic differentiation between isolates, and 27.1% of the isolates were identified as recombinants on the basis of CP nucleotide sequences. These results indicate that the genetic variation of PRSV and the formation of the new virus lineage may explain the loss of transgenic papaya resistance in South China.
Antioxidant activity of Syzygium cumini leaf gall extracts
Eshwarappa, Ravi Shankara Birur; Iyer, Raman Shanthi; Subbaramaiah, Sundara Rajan; Richard, S Austin; Dhananjaya, Bhadrapura Lakkappa
2014-01-01
Introduction: Free radicals are implicated in several metabolic diseases and the medicinal properties of plants have been explored for their potent antioxidant activities to counteract metabolic disorders. This research highlights the chemical composition and antioxidant potential of leaf gall extracts (aqueous and methanol) of Syzygium cumini (S. cumini), which have been extensively used in traditional medications to treat various metabolic diseases. Methods: The antioxidant activities of leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), nitric oxide scavenging, hydroxyl scavenging and ferric reducing power (FRAP) methods. Results: In all the methods, the methanolic extract showed higher antioxidant potential than the standard ascorbic acid. The presence of phenolics, flavonoids, phytosterols, terpenoids, and reducing sugars was identified in both the extracts. When compared, the methanol extract had the highest total phenolic and flavonoid contents at 474±2.2 mg of GAE/g d.w and 668±1.4 mg of QUE/g d.w, respectively. The significant high antioxidant activity can be positively correlated to the high content of total polyphenols/flavonoids of the methanol extract. Conclusion: The present study confirms the folklore use of S. cumini leaves gall extracts as a natural antioxidant and justifies its ethnobotanical use. Further, the result of antioxidant properties encourages the use of S. cumini leaf gall extracts for medicinal health, functional food and nutraceuticals applications. PMID:25035854
Porter, Brad W; Zhu, Yun J; Webb, David T; Christopher, David A
2009-04-01
Because of its rapid growth rate, relative ease of transformation, sequenced genome and low gene number relative to Arabidopsis, the tropical fruit tree, Carica papaya, can serve as a complementary genetic model for complex traits. Here, new phenotypes and touch-regulated gene homologues have been identified that can be used to advance the understanding of thigmomorphogenesis, a multigenic response involving mechanoreception and morphological change. Morphological alterations were quantified, and microscopy of tissue was conducted. Assays for hypocotyl anthocyanins, lignin and chlorophyll were performed, and predicted genes from C. papaya were compared with Arabidopsis touch-inducible (TCH) and Mechanosensitive channel of Small conductance-like genes (MscS-like or MSL). In addition, the expression of two papaya TCH1 homologues was characterized. On the abaxial side of petioles, treated plants were found to have novel, hypertrophic outgrowths associated with periderm and suberin. Touched plants also had higher lignin, dramatically less hypocotyl anthocyanins and chlorophyll, increased hypocotyl diameter, and decreased leaf width, stem length and root fresh weight. Papaya was found to have fewer MSL genes than Arabidopsis, and four touch-regulated genes in Arabidopsis had no counterparts in papaya. Water-spray treatment was found to enhance the expression of two papaya TCH1 homologues whereas induction following touch was only slightly correlated. The novel petiole outgrowths caused by non-wounding, mechanical perturbation may be the result of hardening mechanisms, including added lignin, providing resistance against petiole movement. Inhibition of anthocyanin accumulation following touch, a new phenotypic association, may be caused by diversion of p-coumaroyl CoA away from chalcone synthase for lignin synthesis. The absence of MSL and touch-gene homologues indicates that papaya may have a smaller set of touch-regulated genes. The genes and novel touch
Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells.
Lin, Haixia; Guo, Xiaoqing; Zhang, Suhui; Dial, Stacey L; Guo, Lei; Manjanatha, Mugimane G; Moore, Martha M; Mei, Nan
2014-06-01
Ginkgo biloba has been used for many thousand years as a traditional herbal remedy and its extract has been consumed for many decades as a dietary supplement. Ginkgo biloba leaf extract is a complex mixture with many constituents, including flavonol glycosides and terpene lactones. The National Toxicology Program 2-year cancer bioassay found that G. biloba leaf extract targets the liver, thyroid gland, and nose of rodents; however, the mechanism of G. biloba leaf extract-associated carcinogenicity remains unclear. In the current study, the in vitro genotoxicity of G. biloba leaf extract and its eight constituents was evaluated using the mouse lymphoma assay (MLA) and Comet assay. The underlying mechanisms of G. biloba leaf extract-associated genotoxicity were explored. Ginkgo biloba leaf extract, quercetin, and kaempferol resulted in a dose-dependent increase in the mutant frequency and DNA double-strand breaks (DSBs). Western blot analysis confirmed that G. biloba leaf extract, quercetin, and kaempferol activated the DNA damage signaling pathway with increased expression of γ-H2AX and phosphorylated Chk2 and Chk1. In addition, G. biloba leaf extract produced reactive oxygen species and decreased glutathione levels in L5178Y cells. Loss of heterozygosity analysis of mutants indicated that G. biloba leaf extract, quercetin, and kaempferol treatments resulted in extensive chromosomal damage. These results indicate that G. biloba leaf extract and its two constituents, quercetin and kaempferol, are mutagenic to the mouse L5178Y cells and induce DSBs. Quercetin and kaempferol likely are major contributors to G. biloba leaf extract-induced genotoxicity.
Rahman, M M; Ahmad, S H; Mohamed, M T M; Ab Rahman, M Z
2014-01-01
The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15 mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested.
Rahman, M. M.; Ahmad, S. H.; Mohamed, M. T. M.; Ab Rahman, M. Z.
2014-01-01
The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested. PMID:25250382
Antimicrobial activity of commercial Olea europaea (olive) leaf extract.
Sudjana, Aurelia N; D'Orazio, Carla; Ryan, Vanessa; Rasool, Nooshin; Ng, Justin; Islam, Nabilah; Riley, Thomas V; Hammer, Katherine A
2009-05-01
The aim of this research was to investigate the activity of a commercial extract derived from the leaves of Olea europaea (olive) against a wide range of microorganisms (n=122). Using agar dilution and broth microdilution techniques, olive leaf extract was found to be most active against Campylobacter jejuni, Helicobacter pylori and Staphylococcus aureus [including meticillin-resistant S. aureus (MRSA)], with minimum inhibitory concentrations (MICs) as low as 0.31-0.78% (v/v). In contrast, the extract showed little activity against all other test organisms (n=79), with MICs for most ranging from 6.25% to 50% (v/v). In conclusion, olive leaf extract was not broad-spectrum in action, showing appreciable activity only against H. pylori, C. jejuni, S. aureus and MRSA. Given this specific activity, olive leaf extract may have a role in regulating the composition of the gastric flora by selectively reducing levels of H. pylori and C. jejuni.
Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya).
Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo
2012-01-01
Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Y(h)) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Y(h) chromosome, implying a loss of many genes on the Y(h) chromosome. Nevertheless, candidate Y(h) chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya.
Digital Transcriptome Analysis of Putative Sex-Determination Genes in Papaya (Carica papaya)
Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo
2012-01-01
Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Yh) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Yh chromosome, implying a loss of many genes on the Yh chromosome. Nevertheless, candidate Yh chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya. PMID:22815863
Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro
NASA Astrophysics Data System (ADS)
Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.
2018-03-01
Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.
The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus).
Ming, Ray; Hou, Shaobin; Feng, Yun; Yu, Qingyi; Dionne-Laporte, Alexandre; Saw, Jimmy H; Senin, Pavel; Wang, Wei; Ly, Benjamin V; Lewis, Kanako L T; Salzberg, Steven L; Feng, Lu; Jones, Meghan R; Skelton, Rachel L; Murray, Jan E; Chen, Cuixia; Qian, Wubin; Shen, Junguo; Du, Peng; Eustice, Moriah; Tong, Eric; Tang, Haibao; Lyons, Eric; Paull, Robert E; Michael, Todd P; Wall, Kerr; Rice, Danny W; Albert, Henrik; Wang, Ming-Li; Zhu, Yun J; Schatz, Michael; Nagarajan, Niranjan; Acob, Ricelle A; Guan, Peizhu; Blas, Andrea; Wai, Ching Man; Ackerman, Christine M; Ren, Yan; Liu, Chao; Wang, Jianmei; Wang, Jianping; Na, Jong-Kuk; Shakirov, Eugene V; Haas, Brian; Thimmapuram, Jyothi; Nelson, David; Wang, Xiyin; Bowers, John E; Gschwend, Andrea R; Delcher, Arthur L; Singh, Ratnesh; Suzuki, Jon Y; Tripathi, Savarni; Neupane, Kabi; Wei, Hairong; Irikura, Beth; Paidi, Maya; Jiang, Ning; Zhang, Wenli; Presting, Gernot; Windsor, Aaron; Navajas-Pérez, Rafael; Torres, Manuel J; Feltus, F Alex; Porter, Brad; Li, Yingjun; Burroughs, A Max; Luo, Ming-Cheng; Liu, Lei; Christopher, David A; Mount, Stephen M; Moore, Paul H; Sugimura, Tak; Jiang, Jiming; Schuler, Mary A; Friedman, Vikki; Mitchell-Olds, Thomas; Shippen, Dorothy E; dePamphilis, Claude W; Palmer, Jeffrey D; Freeling, Michael; Paterson, Andrew H; Gonsalves, Dennis; Wang, Lei; Alam, Maqsudul
2008-04-24
Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.
Influence of ripening stages on antioxidant properties of papaya fruit (Carica papaya L.)
NASA Astrophysics Data System (ADS)
Addai, Zuhair Radhi; Abdullah, Aminah; Mutalib, Sahilah Abd.
2013-11-01
Papaya (Carica papaya L. cv Eksotika) is one of the most commonly consumed tropical fruits by humans, especially Malaysians. The objective of this study was to determine the phenolic compounds and antioxidants activity in different ripening stages of papaya fruit. The fruits were harvested at five different, stages RS1, RS2, RS3, RS4, and RS5 corresponding to 12, 14, 16, 18, and 20 weeks after anthesis, respectively. Papayas fruit at five different stage of ripening were obtained from farms at Pusat Flora Cheras, JabatanPertanian and Hulu Langat Semenyih, Selangor, Malaysia. The antioxidants activity were analyzed using the total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant Power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The analyses were conducted in triplicate and the data were subjected to statistical analysis using SPSS. The results showed significant differences (P< 0.05) were found at different stages of ripening. The total phenol content TPC, TFC, FRAP and DPPH values increased significantly (P<0.05) with the ripening process. The results showed the important role of the ripening stage in increasing the antioxidant content of papaya fruits.
Antimalarial activity of methanolic leaf extract of Piper betle L.
Al-Adhroey, Abdulelah H; Nor, Zurainee M; Al-Mekhlafi, Hesham M; Amran, Adel A; Mahmud, Rohela
2010-12-28
The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P < 0.05) schizonticidal activity in all three antimalarial evaluation models. Phytochemical screening showed that the leaf extract contains some vital antiplasmodial chemical constituents. The extract also exhibited a potent ability to scavenge the free radicals. The results of acute toxicity showed that the methanol extract of Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.
Gene Technology for Papaya Ringspot Virus Disease Management
Azad, Md. Abul Kalam; Sidik, Nik Marzuki
2014-01-01
Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research. PMID:24757435
Gene technology for papaya ringspot virus disease management.
Azad, Md Abul Kalam; Amin, Latifah; Sidik, Nik Marzuki
2014-01-01
Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.
Topical Olive Leaf Extract Improves Healing of Oral Mucositis in Golden Hamsters.
Showraki, Najmeh; Mardani, Maryam; Emamghoreishi, Masoumeh; Andishe-Tadbir, Azadeh; Aram, Alireza; Mehriar, Peiman; Omidi, Mahmoud; Sepehrimanesh, Masood; Koohi-Hosseinabadi, Omid; Tanideh, Nader
2016-12-01
Oral mucositis (OM) is a common side effect of anti-cancer drugs and needs significant attention for its prevention. This study aimed to evaluate the healing effects of olive leaf extract on 5-fluorouracil-induced OM in golden hamster. OM was induced in 63 male golden hamsters by the combination of 5-fluorouracil injections (days 0, 5 and 10) and the abrasion of the cheek pouch (days 3 and 4). On day 12, hamsters were received topical olive leaf extract ointment, base of ointment, or no treatment (control) for 5 days. Histopathology evaluations, blood examinations, and tissue malondialdehyde level measurement were performed 1, 3 and 5 days after treatments. Histopathology score and tissue malondialdehyde level were significantly lower in olive leaf extract treated group in comparison with control and base groups ( p = 0.000). Significant decreases in white blood cell, hemoglobin, hematocrit , and mean corpuscular volume and an increase in mean corpuscular hemoglobin concentration were observed in olive leaf extract treated group in comparison with control and base groups ( p < 0.05). Our findings demonstrated that daily application of olive leaf extract ointment had healing effect on 5-fluorouracil induced OM in hamsters. Moreover, the beneficial effect of olive leaf extract on OM might be due to its antioxidant and anti-inflammatory properties.
The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)
Ming, Ray; Hou, Shaobin; Feng, Yun; Yu, Qingyi; Dionne-Laporte, Alexandre; Saw, Jimmy H.; Senin, Pavel; Wang, Wei; Ly, Benjamin V.; Lewis, Kanako L. T.; Salzberg, Steven L.; Feng, Lu; Jones, Meghan R.; Skelton, Rachel L.; Murray, Jan E.; Chen, Cuixia; Qian, Wubin; Shen, Junguo; Du, Peng; Eustice, Moriah; Tong, Eric; Tang, Haibao; Lyons, Eric; Paull, Robert E.; Michael, Todd P.; Wall, Kerr; Rice, Danny W.; Albert, Henrik; Wang, Ming-Li; Zhu, Yun J.; Schatz, Michael; Nagarajan, Niranjan; Acob, Ricelle A.; Guan, Peizhu; Blas, Andrea; Wai, Ching Man; Ackerman, Christine M.; Ren, Yan; Liu, Chao; Wang, Jianmei; Wang, Jianping; Na, Jong-Kuk; Shakirov, Eugene V.; Haas, Brian; Thimmapuram, Jyothi; Nelson, David; Wang, Xiyin; Bowers, John E.; Gschwend, Andrea R.; Delcher, Arthur L.; Singh, Ratnesh; Suzuki, Jon Y.; Tripathi, Savarni; Neupane, Kabi; Wei, Hairong; Irikura, Beth; Paidi, Maya; Jiang, Ning; Zhang, Wenli; Presting, Gernot; Windsor, Aaron; Navajas-Pérez, Rafael; Torres, Manuel J.; Feltus, F. Alex; Porter, Brad; Li, Yingjun; Burroughs, A. Max; Luo, Ming-Cheng; Liu, Lei; Christopher, David A.; Mount, Stephen M.; Moore, Paul H.; Sugimura, Tak; Jiang, Jiming; Schuler, Mary A.; Friedman, Vikki; Mitchell-Olds, Thomas; Shippen, Dorothy E.; dePamphilis, Claude W.; Palmer, Jeffrey D.; Freeling, Michael; Paterson, Andrew H.; Gonsalves, Dennis; Wang, Lei; Alam, Maqsudul
2010-01-01
Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic fruit tree1 to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far2–5, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties. PMID:18432245
Antioxidant activities of ficus glomerata (moraceae) leaf gall extracts
Eshwarappa, Ravi Shankara Birur; Iyer, Shanthi; Subaramaihha, Sundara Rajan; Richard, S Austin; Dhananjaya, Bhadrapura Lakkappa
2015-01-01
An excess production or decreased scavenging of reactive oxygen species (ROS) has been implicated in the pathogenesis of diverse metabolic disorders such as diabetes, cancer, atherosclerosis and neurodegeneration. Hence the antioxidant therapy has gained an utmost importance in the treatment of such diseases linked to free radicals. The medicinal properties of plants have been investigated and explored for their potent antioxidant activities to counteract metabolic disorders. This research highlights the chemical composition and antioxidant potential of leaf gall extracts (aqueous and methanol) of Ficus glomerata (F. glomerata), which is extensively used in the preparation of traditional medications to treat various metabolic diseases. The presences of phenolics, flavonoids, phytosterols, terpenoids and reducing sugars were identified in both the extracts. In comparison to the aqueous extract, the methanol extract had the highest total phenolic and flavonoid content at 370 ± 3.2 mg of gallic acid equivalent per gram of dry weight (mg GAE/g dw) and 155 ± 3.2 mg of quercetin equivalent per gram of dry weight (mg QUE/g dw), respectively. The antioxidant activities of leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), Nitric oxide scavenging, hydroxyl scavenging and ferric reducing power (FRAP) methods. In all the methods, the methanolic extract showed higher antioxidant potential than the aqueous extract. A higher content of both total phenolics and flavonoids were found in the methanolic extract and the significantly high antioxidant activity can be positively correlated to the high content of total polyphenols/flavonoids of the methanol extract. The results of this study confirm the folklore use of F. glomerata leaf gall extracts as a natural antioxidant and justify its ethnobotanical use. Further, the results of antioxidant properties encourage the use of F. glomerata leaf gall extracts for medicinal health, functional food and nutraceuticals
Porter, Brad W.; Zhu, Yun J.; Webb, David T.; Christopher, David A.
2009-01-01
Background and Aims Because of its rapid growth rate, relative ease of transformation, sequenced genome and low gene number relative to Arabidopsis, the tropical fruit tree, Carica papaya, can serve as a complementary genetic model for complex traits. Here, new phenotypes and touch-regulated gene homologues have been identified that can be used to advance the understanding of thigmomorphogenesis, a multigenic response involving mechanoreception and morphological change. Methods Morphological alterations were quantified, and microscopy of tissue was conducted. Assays for hypocotyl anthocyanins, lignin and chlorophyll were performed, and predicted genes from C. papaya were compared with Arabidopsis touch-inducible (TCH) and Mechanosensitive channel of Small conductance-like genes (MscS-like or MSL). In addition, the expression of two papaya TCH1 homologues was characterized. Key Results On the abaxial side of petioles, treated plants were found to have novel, hypertrophic outgrowths associated with periderm and suberin. Touched plants also had higher lignin, dramatically less hypocotyl anthocyanins and chlorophyll, increased hypocotyl diameter, and decreased leaf width, stem length and root fresh weight. Papaya was found to have fewer MSL genes than Arabidopsis, and four touch-regulated genes in Arabidopsis had no counterparts in papaya. Water-spray treatment was found to enhance the expression of two papaya TCH1 homologues whereas induction following touch was only slightly correlated. Conclusions The novel petiole outgrowths caused by non-wounding, mechanical perturbation may be the result of hardening mechanisms, including added lignin, providing resistance against petiole movement. Inhibition of anthocyanin accumulation following touch, a new phenotypic association, may be caused by diversion of p-coumaroyl CoA away from chalcone synthase for lignin synthesis. The absence of MSL and touch-gene homologues indicates that papaya may have a smaller set of touch
Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle
2010-01-01
Background The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. Methods For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Results Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated
Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle.
Siegner, Ralf; Heuser, Stefan; Holtzmann, Ursula; Söhle, Jörn; Schepky, Andreas; Raschke, Thomas; Stäb, Franz; Wenck, Horst; Winnefeld, Marc
2010-08-05
The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated by a decrease in the ADD1
NASA Astrophysics Data System (ADS)
Hastuti, Utami Sri; Ummah, Yunita Putri Irsadul; Khasanah, Henny Nurul
2017-05-01
This research was done to 1) examine the effect of Piper aduncum leaf ethanol extract at certain concentrations against Candida albicans colony growth inhibition in vitro; 2) examine the effect of Peperomia pellucida leaf ethanol extract at certain concentrations toward Candida albicans colony growth inhibition in vitro; and 3) determine the most effective concentration of P. aduncum and P. pellucida leaves ethanol extract against C. albicans colony growth inhibition in vitro. These plant extracts were prepared by the maceration technique using 95% ethanol, and then sterile filtered and evaporated to obtain the filtrate. The filtrate was diluted with sterile distilled water at certain concentrations, i.e.: 0%, 10%, 20%, 30%, 405, 50%, 60%, 70%, 80%, and 90%. The antifungal effect of each leaf extract concentration was examined by the agar diffusion method on Sabouraud Dextrose Agar medium. The research results are: 1) the P.aduncum leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 2) the P.pellucida leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 3) the P. aduncum leaf ethanol extract at 80% is the most effective for C. albicans colony growth inhibition in vitro; and 4) the P. pellucida leaf ethanol extract at 70% is the most effective for C. albicans colony growth inhibition in vitro.
Effects of different freezing methods on calcium enriched papaya (Carica papaya L.).
Lovera, Nancy N; Ramallo, Laura; Salvadori, Viviana O
2018-06-01
The effect of calcium impregnation on drip loss, colour, mechanical properties, sensory perception and freezing time on frozen-thawed papaya was studied, evaluating different freezing methods: cryogenic, tunnel and household freezer freezing. Osmotic dehydration as pre-treatment was also evaluated. Freezing in liquid nitrogen was considered an inappropriate method for papaya preservation due to cracking. Calcium impregnation and osmotic dehydration increased tissue firmness and decreased freezing time (freezing time for fresh, calcium impregnated and osmo-dehydrated fruit was 23, 17 and 5 min in a tunnel and 118, 83 and 60 min in a household freezer, respectively). Calcium lactate was the most effective way to protect tissue's firmness before and after a freeze-thaw cycle (maximum stress values approx. 300-400% of the raw tissue for tunnel freezing and 260% for household freezer). Microstructure analysis showed better tissue integrity retention in papaya samples impregnated with calcium lactate than in those with calcium gluconate, after a freezing-thawing cycle, in agreement with the drip loss results. In spite of these results, consumers preferred frozen papaya without pre-treatment or impregnated with calcium gluconate.
Liu, Kaidong; Yuan, Changchun; Feng, Shaoxian; Zhong, Shuting; Li, Haili; Zhong, Jundi; Shen, Chenjia; Liu, Jinxiang
2017-05-05
Auxin/indole-3-acetic acid (Aux/IAA) family genes encode short-lived nuclear proteins that mediate the responses of auxin-related genes and are involved in several plant developmental and growth processes. However, how Aux/IAA genes function in the fruit development and ripening of papaya (Carica papaya L.) is largely unknown. In this study, a comprehensive identification and a distinctive expression analysis of 18 C. papaya Aux/IAA (CpIAA) genes were performed using newly updated papaya reference genome data. The Aux/IAA gene family in papaya is slightly smaller than that in Arabidopsis, but all of the phylogenetic subfamilies are represented. Most of the CpIAA genes are responsive to various phytohormones and expressed in a tissues-specific manner. To understand the putative biological functions of the CpIAA genes involved in fruit development and ripening, quantitative real-time PCR was used to test the expression profiling of CpIAA genes at different stages. Furthermore, an IAA treatment significantly delayed the ripening process in papaya fruit at the early stages. The expression changes of CpIAA genes in ACC and 1-MCP treatments suggested a crosstalk between auxin and ethylene during the fruit ripening process of papaya. Our study provided comprehensive information on the Aux/IAA family in papaya, including gene structures, phylogenetic relationships and expression profiles. The involvement of CpIAA gene expression changes in fruit development and ripening gives us an opportunity to understand the roles of auxin signaling in the maturation of papaya reproductive organs.
Sagnia, Bertrand; Fedeli, Donatella; Casetti, Rita; Montesano, Carla; Falcioni, Giancarlo; Colizzi, Vittorio
2014-01-01
The vast majority of the population around the world has always used medicinal plants as first source of health care to fight infectious and non infectious diseases. Most of these medicinal plants may have scientific evidence to be considered in general practice. The aim of this work was to investigate the antioxidant capacities and anti-inflammatory activities of ethanol extracts of leaves of Cassia alata, Eleusine indica, Carica papaya, Eremomastax speciosa and the stem bark of Polyscias fulva, collected in Cameroon. Chemiluminescence was used to analyze the antioxidant activities of plant extracts against hydrogen peroxide or superoxide anion. Comet assays were used to analyze the protection against antioxidant-induced DNA damage induced in white blood cells after treating with hydrogen peroxide. Flow cytometry was used to measure γδ T cells proliferation and anti-inflammatory activity of γδ T cells and of immature dendritic cells (imDC) in the presence of different concentrations of plant extracts. Ethanol extracts showed strong antioxidant properties against both hydrogen peroxide and superoxide anion. Cassia alata showed the highest antioxidant activity. The effect of plant extracts on γδ T cells and imDC was evidenced by the dose dependent reduction in TNF-α production in the presence of Cassia alata, Carica papaya, Eremomastax speciosa Eleusine indica, and Polyscias fulva. γδ T cells proliferation was affected to the greatest extent by Polyscias fulva. These results clearly show the antioxidant capacity and anti-inflammatory activities of plant extracts collected in Cameroon. These properties of leaves and stem bark extracts may contribute to the value for these plants in traditional medicine and in general medical practice.
Sagnia, Bertrand; Fedeli, Donatella; Casetti, Rita; Montesano, Carla; Falcioni, Giancarlo; Colizzi, Vittorio
2014-01-01
Background The vast majority of the population around the world has always used medicinal plants as first source of health care to fight infectious and non infectious diseases. Most of these medicinal plants may have scientific evidence to be considered in general practice. Objective The aim of this work was to investigate the antioxidant capacities and anti-inflammatory activities of ethanol extracts of leaves of Cassia alata, Eleusine indica, Carica papaya, Eremomastax speciosa and the stem bark of Polyscias fulva, collected in Cameroon. Methods Chemiluminescence was used to analyze the antioxidant activities of plant extracts against hydrogen peroxide or superoxide anion. Comet assays were used to analyze the protection against antioxidant-induced DNA damage induced in white blood cells after treating with hydrogen peroxide. Flow cytometry was used to measure γδ T cells proliferation and anti-inflammatory activity of γδ T cells and of immature dendritic cells (imDC) in the presence of different concentrations of plant extracts. Results Ethanol extracts showed strong antioxidant properties against both hydrogen peroxide and superoxide anion. Cassia alata showed the highest antioxidant activity. The effect of plant extracts on γδ T cells and imDC was evidenced by the dose dependent reduction in TNF-α production in the presence of Cassia alata, Carica papaya, Eremomastax speciosa Eleusine indica, and Polyscias fulva. γδ T cells proliferation was affected to the greatest extent by Polyscias fulva. Conclusion These results clearly show the antioxidant capacity and anti-inflammatory activities of plant extracts collected in Cameroon. These properties of leaves and stem bark extracts may contribute to the value for these plants in traditional medicine and in general medical practice. PMID:25090613
Hsu, Te-Hua; Gwo, Jin-Chywan; Lin, Kuan-Hung
2012-10-01
Papaya (Carica papaya L.) is established as a cash crop throughout the tropical and subtropical regions due to its easy adaptation to diverse agricultural conditions, high yields, and prompt returns. The sex types of papaya plants are hermaphrodite, male, and female. Among them, hermaphroditic plants are the major type in papaya production, because the fruit has commercial advantages over that of the other sexes. Sex inheritance in papaya is determined by the M and M(h) dominant alleles in males and hermaphrodites, respectively, and a recessive m allele in females. Currently, all hermaphrodite seeds are not available due to the lethality of dominant homozygosity. Therefore, in this study, six male-hermaphrodite-specific markers were developed for a rapid sex identification using multiplex loop-mediated isothermal amplification (mLAMP) to efficiently and precisely select hermaphroditic individuals in the seedling or early growth stage. The LM1-LAMP assay consisted of two sex-LAMP reactions for amplifying two male-specific markers (T12 and Cpsm90) in one reaction, and showed several advantages in terms of a rapid reaction time (<1 h), isothermal conditions (less equipment required), a high efficiency (0.5 ng of DNA required in the reaction mixture), and an economical reaction system (5 μl in volume). The established method can be easily performed in the field by visual inspection and facilitates the selection of all hermaphroditic individuals in papaya production.
Devitt, Luke C.; Fanning, Kent; Dietzgen, Ralf G.; Holton, Timothy A.
2010-01-01
The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to β-carotene (yellow) is catalysed by lycopene β-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene β-cyclases (lcy-β1 and lcy-β2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-β2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-β1 and lcy-β2 genes is similar and low in leaves, but lcy-β2 expression increases markedly in ripe fruit. Isolation of the lcy-β2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties. PMID:19887502
Devitt, Luke C; Fanning, Kent; Dietzgen, Ralf G; Holton, Timothy A
2010-01-01
The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to beta-carotene (yellow) is catalysed by lycopene beta-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene beta-cyclases (lcy-beta1 and lcy-beta2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-beta2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-beta1 and lcy-beta2 genes is similar and low in leaves, but lcy-beta2 expression increases markedly in ripe fruit. Isolation of the lcy-beta2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties.
NASA Astrophysics Data System (ADS)
da Silva, M. G.; Oliveira, J. G.; Vitoria, A. P.; Corrêa, S. F.; Pereira, M. G.; Campostrini, E.; Santos, E. O.; Cavalli, A.; Vargas, H.
2005-06-01
The skin colour changes and ethylene emission rates were monitored during papaya (C. papaya L.) fruit ripening. Two groups of papaya (‘Formosa’ and ‘Solo’) were applied in this study. The total colour difference was used as measured parameter and the corresponding half time of its saturation was used as correlation parameter. A high correlation factor between the saturation half time and corresponding climacteric peak time was found. It was concluded that high ethylene emission rate in ‘Solo’ fruit promotes a quick change of the total colour difference.
Castro-Vargas, Henry I; Baumann, Wolfram; Parada-Alfonso, Fabián
2016-07-01
In the present study we report the characterization of benzylglucosinolate (BG) isolated from papaya (Carica papaya L.) seeds. A methanolic extract was fractionated and further purified by solid phase extraction (SPE). It was analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and nuclear magnetic resonance spectroscopy ((1) H and (13) C-NMR) as well, and the target compound BG was identified by these two techniques. The effect of BG on lipid oxidation in edible vegetable oil (EO) was shown by observing some lipid oxidation products (linoleic acid hydroperoxides, LHP; hexanal, HEX; nonanal, NON; thiobarbituric acid reactives species, TBARS). BG reduced lipid oxidation production in EO by over 80%, as compared to a control sample and in this way has proved to be a useful antioxidant, even more effective than some antioxidants used by food industry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antioxidant, genotoxic and antigenotoxic activities of daphne gnidium leaf extracts
2012-01-01
Background Plants play a significant role in maintaining human health and improving the quality of human life. They serve humans well as valuable components of food, as well as in cosmetics, dyes, and medicines. In fact, many plant extracts prepared from plants have been shown to exert biological activity in vitro and in vivo. The present study explored antioxidant and antigenotoxic effects of Daphne gnidium leaf extracts. Methods The genotoxic potential of petroleum ether, chloroform, ethyl acetate, methanol and total oligomer flavonoid (TOF) enriched extracts from leaves of Daphne gnidium, was assessed using Escherichia coli PQ37. Likewise, the antigenotoxicity of the same extracts was tested using the “SOS chromotest test”. Antioxidant activities were studied using non enzymatic and enzymatic method: NBT/Riboflavine and xantine oxidase. Results None of the different extracts produced a genotoxic effect, except TOF extract at the lowest tested dose. Our results showed that D. gnidium leaf extracts possess an antigenotoxic effect against the nitrofurantoin a mutagen of reference. Ethyl acetate and TOF extracts were the most effective in inhibiting xanthine oxidase activity. While, methanol extract was the most potent superoxide scavenger when tested with the NBT/Riboflavine assay. Conclusions The present study has demonstrated that D. gnidium leaf extract possess antioxidant and antigenotoxic effects. These activities could be ascribed to compounds like polyphenols and flavonoid. Further studies are required to isolate the active molecules. PMID:22974481
In vitro Antioxidant and Pharmacognostic Studies of Leaf Extracts of Cajanus cajan (L.) Millsp.
Mahitha, B; Archana, P; Ebrahimzadeh, Md H; Srikanth, K; Rajinikanth, M; Ramaswamy, N
2015-01-01
Cajanus cajan (L.) Millsp is one of the second most dietary legume crops. The leaf extracts may be used as a potential source of natural antioxidant. The ash values, extractive values, total phenolic and flavonoid content, in vitro antioxidant activity of various leaf extracts as well as anatomical investigation of Cajanus cajan were carried out. Physicochemical parameters such as total, acid-insoluble and water-soluble ash values and moisture content of the leaf powder of C. cajan were found to be 9.50%, 1.40 g/100 g, 4.15 g/100 g drug and 6.72%, respectively. Percent yield of acetone, aqueous, ethanol, ethyl acetate and chloroform leaf extracts were 9.0, 10.6, 13.75, 8.7 and 5.8 g/100 g, respectively. Significant amount of phenolic and flavonoid content were observed. The results of the antioxidant activity were found to be concentration-dependent. The IC50 values for DPPH assay determined for aqueous and ethanol extracts were 0.69 and 0.79 mg/ml, respectively. Reducing power is increased with increasing amount of concentration in both aqueous and ethanol leaf extracts. The highest hydroxyl radical scavenging activity reached up to 83.67% in aqueous and 78.75% in ethanol extracts and in phosphomolybdenum assay the aqueous extract showed strong antioxidant capacity up to 55.97 nM gallic acid equivalents/g. It was found that the aqueous extract possessed highest antioxidant activity in all the assays tested. The antioxidant characteristics of leaf extracts are possibly because of the presence of polyphenols. Microscopic study showed the presence of collenchyma, fibres, xylem, phloem, epidermis, trichomes, palisade tissue, basal sheath, pith and cortex in leaf, petiole and pulvinus.
Biogasification of papaya processing wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, P.Y.; Weitzenhoff, M.H.; Moy, J.H.
1984-01-01
Biogasification of papaya processing wastes for pollution control and energy utilization is feasible. The biogasification process with sludge recycling permits smaller reactor volume without any deterioration of CH4 production rate and CH4 content. Appropriate design and operational criteria for biogasification processing of papaya wastes were developed.
Rapid divergence and expansion of the X chromosome in papaya
Gschwend, Andrea R.; Yu, Qingyi; Tong, Eric J.; Zeng, Fanchang; Han, Jennifer; VanBuren, Robert; Aryal, Rishi; Charlesworth, Deborah; Moore, Paul H.; Paterson, Andrew H.; Ming, Ray
2012-01-01
X chromosomes have long been thought to conserve the structure and gene content of the ancestral autosome from which the sex chromosomes evolved. We compared the recently evolved papaya sex chromosomes with a homologous autosome of a close relative, the monoecious Vasconcellea monoica, to infer changes since recombination stopped between the papaya sex chromosomes. We sequenced 12 V. monoica bacterial artificial chromosomes, 11 corresponding to the papaya X-specific region, and 1 to a papaya autosomal region. The combined V. monoica X-orthologous sequences are much shorter (1.10 Mb) than the corresponding papaya region (2.56 Mb). Given that the V. monoica genome is 41% larger than that of papaya, this finding suggests considerable expansion of the papaya X; expansion is supported by a higher repetitive sequence content of the X compared with the papaya autosomal sequence. The alignable regions include 27 transcript-encoding sequences, only 6 of which are functional X/V. monoica gene pairs. Sequence divergence from the V. monoica orthologs is almost identical for papaya X and Y alleles; the Carica-Vasconcellea split therefore occurred before the papaya sex chromosomes stopped recombining, making V. monoica a suitable outgroup for inferring changes in papaya sex chromosomes. The papaya X and the hermaphrodite-specific region of the Yh chromosome and V. monoica have all gained and lost genes, including a surprising amount of changes in the X. PMID:22869742
Son, Yu-Ra; Choi, Eun-Hye; Kim, Goon-Tae; Park, Tae-Sik; Shim, Soon-Mi
2016-02-01
The aims of this study were to determine bioactive components of Graviola leaf extracts and to examine the radical scavenging capacity, gene expression and transcription factors of antioxidant enzymes. Rutin, kaempferol-rutinoside, and vitamin U were identified from the steaming and 50% EtOH extracts of Graviola leaves. Graviola leaf extracts effectively scavenged peroxy and nitrogen radicals. 50% EtOH of Graviola leaves provided a 1-2.9 times higher trolox equivalent than the steaming extract. It also had a higher VCEAC. Graviola leaf extracts reduced the generation of reactive oxygen species (ROS) induced by H2O2 in a dose-dependent manner. The 50% EtOH extract of Graviola leaves upregulated SOD1 and Nrf2, but catalase and HMOX1 were not altered by the 50% EtOH extract of Graviola leaves.
Influence of phytochemicals in piper betle linn leaf extract on wound healing.
Lien, Le Thi; Tho, Nguyen Thi; Ha, Do Minh; Hang, Pham Luong; Nghia, Phan Tuan; Thang, Nguyen Dinh
2015-01-01
Wound healing has being extensively investigated over the world. Healing impairment is caused by many reasons including increasing of free-radicals-mediated damage, delaying in granulation tissue formation, reducing in angiogenesis and decreasing in collagen reorganization. These facts consequently lead to chronic wound healing. Piper betle Linn (Betle) leaves have been folklore used as an ingredient of drugs for cutaneous wound treatment. However, the effect of betle leaf on wound healing is not yet well elucidated. In this study, we aimed to investigate the healing efficacy of methanol leaf extract of Piper betle Linn on proliferation of fibroblast NIH3T3 cells as well as full-thickness burn and excision wounds in swiss mice. Scratch wound healing assays were conducted to examine the effects of betle leaf extract on healing activity of fibroblast cells. Burn and excision wounds on swiss mouse skins were created for investigating the wound healing progress caused by the betle leaf extract. Malondialdehyde (MDA) was also evaluated to examine the products of lipid hydroperoxide (LPO) under conditions of with or without betle leaf extract treatment. The results of this study showed that Piper betle Linn leaf extract in methanol increased proliferation of NIH3T3 cells and promoted wound healing in vitro and in vivo with both burn wound and excision wound models. In addition, this extract significant decreased level of malondialdehyde (MDA) in liver of treated-mice compared with that in non-treated mice. Our results suggest that Piper betle Linn can be used as an ingredient in developing natural origin drugs for treatment of cutaneous wounds.
In vitro Antioxidant and Pharmacognostic Studies of Leaf Extracts of Cajanus cajan (L.) Millsp
Mahitha, B.; Archana, P.; Ebrahimzadeh, MD. H.; Srikanth, K.; Rajinikanth, M.; Ramaswamy, N.
2015-01-01
Cajanus cajan (L.) Millsp is one of the second most dietary legume crops. The leaf extracts may be used as a potential source of natural antioxidant. The ash values, extractive values, total phenolic and flavonoid content, in vitro antioxidant activity of various leaf extracts as well as anatomical investigation of Cajanus cajan were carried out. Physicochemical parameters such as total, acid-insoluble and water-soluble ash values and moisture content of the leaf powder of C. cajan were found to be 9.50%, 1.40 g/100 g, 4.15 g/100 g drug and 6.72%, respectively. Percent yield of acetone, aqueous, ethanol, ethyl acetate and chloroform leaf extracts were 9.0, 10.6, 13.75, 8.7 and 5.8 g/100 g, respectively. Significant amount of phenolic and flavonoid content were observed. The results of the antioxidant activity were found to be concentration-dependent. The IC50 values for DPPH assay determined for aqueous and ethanol extracts were 0.69 and 0.79 mg/ml, respectively. Reducing power is increased with increasing amount of concentration in both aqueous and ethanol leaf extracts. The highest hydroxyl radical scavenging activity reached up to 83.67% in aqueous and 78.75% in ethanol extracts and in phosphomolybdenum assay the aqueous extract showed strong antioxidant capacity up to 55.97 nM gallic acid equivalents/g. It was found that the aqueous extract possessed highest antioxidant activity in all the assays tested. The antioxidant characteristics of leaf extracts are possibly because of the presence of polyphenols. Microscopic study showed the presence of collenchyma, fibres, xylem, phloem, epidermis, trichomes, palisade tissue, basal sheath, pith and cortex in leaf, petiole and pulvinus. PMID:26009649
Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke
2015-04-01
Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hepatoprotective activity of Psidium guajava Linn. leaf extract.
Roy, Chanchal K; Kamath, Jagadish V; Asad, Mohammed
2006-04-01
The study was designed to evaluate the hepatoprotective activity of P. guajava in acute experimental liver injury induced by carbon tetrachloride, paracetamol or thioacetamide and chronic liver damage induced by carbon tetrachloride. The effects observed were compared with a known hepatoprotective agent, silymarin. In the acute liver damage induced by different hepatotoxins, P. guajava leaf extracts (250 and 500mg/kg, po) significantly reduced the elevated serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and bilirubin. The higher dose of the extract (500 mg/kg, po) prevented the increase in liver weight when compared to hepatoxin treated control, while the lower dose was ineffective except in the paracetamol induced liver damage. In the chronic liver injury induced by carbon tetrachloride, the higher dose (500 mg/kg, po) of P. guajava leaf extract was found to be more effective than the lower dose (250 mg/kg, po). Histological examination of the liver tissues supported the hepatoprotection. It is concluded that the aqueous extract of leaves of guava plant possesses good hepatoprotective activity.
Vidal, Newton Medeiros; Grazziotin, Ana Laura; Ramos, Helaine Christine Cancela; Pereira, Messias Gonzaga; Venancio, Thiago Motta
2014-01-01
Carica papaya (papaya) is an economically important tropical fruit. Molecular marker-assisted selection is an inexpensive and reliable tool that has been widely used to improve fruit quality traits and resistance against diseases. In the present study we report the development and validation of an atlas of papaya simple sequence repeat (SSR) markers. We integrated gene predictions and functional annotations to provide a gene-centered perspective for marker-assisted selection studies. Our atlas comprises 160,318 SSRs, from which 21,231 were located in genic regions (i.e. inside exons, exon-intron junctions or introns). A total of 116,453 (72.6%) of all identified repeats were successfully mapped to one of the nine papaya linkage groups. Primer pairs were designed for markers from 9,594 genes (34.5% of the papaya gene complement). Using papaya-tomato orthology assessments, we assembled a list of 300 genes (comprising 785 SSRs) potentially involved in fruit ripening. We validated our atlas by screening 73 SSR markers (including 25 fruit ripening genes), achieving 100% amplification rate and uncovering 26% polymorphism rate between the parental genotypes (Sekati and JS12). The SSR atlas presented here is the first comprehensive gene-centered collection of annotated and genome positioned papaya SSRs. These features combined with thousands of high-quality primer pairs make the atlas an important resource for the papaya research community. PMID:25393538
Vidal, Newton Medeiros; Grazziotin, Ana Laura; Ramos, Helaine Christine Cancela; Pereira, Messias Gonzaga; Venancio, Thiago Motta
2014-01-01
Carica papaya (papaya) is an economically important tropical fruit. Molecular marker-assisted selection is an inexpensive and reliable tool that has been widely used to improve fruit quality traits and resistance against diseases. In the present study we report the development and validation of an atlas of papaya simple sequence repeat (SSR) markers. We integrated gene predictions and functional annotations to provide a gene-centered perspective for marker-assisted selection studies. Our atlas comprises 160,318 SSRs, from which 21,231 were located in genic regions (i.e. inside exons, exon-intron junctions or introns). A total of 116,453 (72.6%) of all identified repeats were successfully mapped to one of the nine papaya linkage groups. Primer pairs were designed for markers from 9,594 genes (34.5% of the papaya gene complement). Using papaya-tomato orthology assessments, we assembled a list of 300 genes (comprising 785 SSRs) potentially involved in fruit ripening. We validated our atlas by screening 73 SSR markers (including 25 fruit ripening genes), achieving 100% amplification rate and uncovering 26% polymorphism rate between the parental genotypes (Sekati and JS12). The SSR atlas presented here is the first comprehensive gene-centered collection of annotated and genome positioned papaya SSRs. These features combined with thousands of high-quality primer pairs make the atlas an important resource for the papaya research community.
THAM, CHING S.; CHAKRAVARTHI, SRIKUMAR; HALEAGRAHARA, NAGARAJA; DE ALWIS, RANJIT
2013-01-01
Lead causes damage to the body by inducing oxidative stress. The sites of damage include the bone marrow, where marrow hypoplasia and osteosclerosis may be observed. Leaves of Carica papaya, which have antioxidant and haemopoietic properties, were tested against the effect of lead acetate in experimental rats. The rats were divided into 8 groups; control, lead acetate only, Carica papaya (50 mg and 200 mg), post-treatment with Carica papaya (50 mg and 200 mg) following lead acetate administration and pre-treatment with Carica papaya (50 mg and 200 mg) followed by lead acetate administration. The substances were administered for 14 days. The effects were evaluated by measuring protein carbonyl content (PCC) and glutathione content (GC) in the bone marrow. Histological changes in the bone marrow were also observed. The results showed that Carica papaya induced a significant reduction in the PCC activity and significantly increased the GC in the bone marrow. Carica papaya also improved the histology of the bone marrow compared with that of the lead acetate-treated group. In summary, Carica papaya was effective against the oxidative damage caused by lead acetate in the bone marrow and had a stimulatory effect on haemopoiesis. PMID:23403524
Tham, Ching S; Chakravarthi, Srikumar; Haleagrahara, Nagaraja; DE Alwis, Ranjit
2013-02-01
Lead causes damage to the body by inducing oxidative stress. The sites of damage include the bone marrow, where marrow hypoplasia and osteosclerosis may be observed. Leaves of Carica papaya, which have antioxidant and haemopoietic properties, were tested against the effect of lead acetate in experimental rats. The rats were divided into 8 groups; control, lead acetate only, Carica papaya (50 mg and 200 mg), post-treatment with Carica papaya (50 mg and 200 mg) following lead acetate administration and pre-treatment with Carica papaya (50 mg and 200 mg) followed by lead acetate administration. The substances were administered for 14 days. The effects were evaluated by measuring protein carbonyl content (PCC) and glutathione content (GC) in the bone marrow. Histological changes in the bone marrow were also observed. The results showed that Carica papaya induced a significant reduction in the PCC activity and significantly increased the GC in the bone marrow. Carica papaya also improved the histology of the bone marrow compared with that of the lead acetate-treated group. In summary, Carica papaya was effective against the oxidative damage caused by lead acetate in the bone marrow and had a stimulatory effect on haemopoiesis.
Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress
Bhatt, Laxit; Joshi, Viraj
2017-01-01
Aim: The study was undertaken to evaluate the cardioprotective effect of the alcoholic leaf extract of Mangifera indica L. against cardiac stress caused by doxorubicin (DOX). Materials and Methods: Rats were treated with 100 mg/kg of M. indica leaf extract (MILE) in alone and interactive groups for 21 days. Apart from the normal and MILE control groups, all the groups were subjected to DOX (15 mg/kg, i.p.) toxicity for 21 days and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile, and histopathological evaluation. Results: The MILE treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidants levels. Compared to DOX control group, MILE treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score, and mortality. Conclusion: These findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by DOX. PMID:28894627
Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagajjanani Rao, K.; Paria, Santanu, E-mail: santanuparia@yahoo.com
Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60more » nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.« less
Handayani, Lita; Faridah, Didah Nur; Kusumaningrum, Harsi D
2014-11-01
Staphylococcus aureus is a known pathogen causing intoxication by producing enterotoxins in food. Staphylococcal enterotoxin A is one of the enterotoxins commonly implicated in staphylococcal food poisoning. The ability of crude alkaloid extract from papaya leaves to inhibit the growth of S. aureus and staphylococcal enterotoxin A synthesis was investigated. Staphylococcal enterotoxin A gene-carrying S. aureus was isolated from raw milk and ready-to-eat foods. Crude alkaloid was extracted from ground, dried papaya leaves using ultrasonic-assisted extraction, and a MIC of the alkaloid was determined by the broth macrodilution method. Furthermore, S. aureus isolate was exposed to the crude alkaloid extract at one- and twofold MIC, and the expression of sea was subsequently analyzed using a quantitative reverse transcription real-time PCR. Ten isolates of S. aureus were obtained, and nine of those isolates were sea carriers. The yield of crude alkaloid extract was 0.48 to 1.82% per dry weight of papaya leaves. A MIC of crude alkaloid to S. aureus was 0.25 mg/ml. After exposure to the alkaloid at 0.25 and 0.5 mg/ml for 2 h, a significant increase in cycle threshold values of sea was observed. The sea was expressed 29 and 41 times less when S. aureus was exposed to crude alkaloid at one- and twofold MIC, respectively. This study revealed that crude alkaloid of papaya leaves could control staphylococcal enterotoxin A gene-carrying S. aureus by suppressing the expression of sea, in addition to the ability to inhibit the growth of S. aureus. The expression of sea was successfully quantified.
ANTIFUNGAL POTENTIAL OF LEAF EXTRACTS OF LEGUMINOUS TREES AGAINST SCLEROTIUM ROLFSII.
Sana, Nighat; Shoaib, Amna; Javaid, Arshad
2016-01-01
Sclerotium rolfsii Sacc. is a destructive soil-borne plant pathogen that infects over 500 plant species and causes significant yield losses in many economically important plant species. Synthetic fungicides used to combat the menace also pollute the environment and cause health hazards. In order to search environmental friendly alternatives from natural resources, methanolic extracts of three leguminous tree species namely Acacia nilotica (L.) Willd. ex Delile subsp. indica (Benth.) Brenan, Prosopis juliflora (Sw.) DC. and Albizia lebbeck (L.) Benth. were evaluated for their antifungal activity against S. rolfsii and A. nilotica subsp. indica exhibited the maximum fungicidal potential. Two hundred grams dried leaf material of each of the three test plant species were extracted with methanol for two weeks. After filtration, methanol was evaporated on a rotary evaporator. Malt extract broth was used to make various concentrations of the crude methanolic extracts and their antifungal potential was determined by comparing the fungal biomass in various treatments with control. Chemical composition of methanolic leaf extract of A. nilotica subsp. indica was determined through GC-MS analysis. Methanolic leaf extract of A. nilotica subsp. indica showed the highest fungicidal activity. Fungal biomass was decreased by 17-55% due to various concentrations of this extract over control. Different concentrations of P. juliflora reduced fungal biomass by 3-52%. Fourteen compounds were identified in methanolic extract of A. nilotica subsp. indica . 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z,)- (16.59%) was the most abundant compound followed by 1-pentanol, 2 methyl-, acetate (14.80%); hexanedioic acid, dimethyl ester (13.10%) and cyclotriaconta- 1, 7, 16, 22-tetraone (10.28%). This study concludes that methanolic leaf extract of A. nilotica subsp. indica can be used for management of S. rolfsii .
ANTIFUNGAL POTENTIAL OF LEAF EXTRACTS OF LEGUMINOUS TREES AGAINST SCLEROTIUM ROLFSII
Sana, Nighat; Shoaib, Amna; Javaid, Arshad
2016-01-01
Background: Sclerotium rolfsii Sacc. is a destructive soil-borne plant pathogen that infects over 500 plant species and causes significant yield losses in many economically important plant species. Synthetic fungicides used to combat the menace also pollute the environment and cause health hazards. In order to search environmental friendly alternatives from natural resources, methanolic extracts of three leguminous tree species namely Acacia nilotica (L.) Willd. ex Delile subsp. indica (Benth.) Brenan, Prosopis juliflora (Sw.) DC. and Albizia lebbeck (L.) Benth. were evaluated for their antifungal activity against S. rolfsii and A. nilotica subsp. indica exhibited the maximum fungicidal potential. Materials and Methods: Two hundred grams dried leaf material of each of the three test plant species were extracted with methanol for two weeks. After filtration, methanol was evaporated on a rotary evaporator. Malt extract broth was used to make various concentrations of the crude methanolic extracts and their antifungal potential was determined by comparing the fungal biomass in various treatments with control. Chemical composition of methanolic leaf extract of A. nilotica subsp. indica was determined through GC-MS analysis. Results: Methanolic leaf extract of A. nilotica subsp. indica showed the highest fungicidal activity. Fungal biomass was decreased by 17-55% due to various concentrations of this extract over control. Different concentrations of P. juliflora reduced fungal biomass by 3-52%. Fourteen compounds were identified in methanolic extract of A. nilotica subsp. indica. 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z,)- (16.59%) was the most abundant compound followed by 1-pentanol, 2 methyl-, acetate (14.80%); hexanedioic acid, dimethyl ester (13.10%) and cyclotriaconta- 1, 7, 16, 22-tetraone (10.28%). Conclusion: This study concludes that methanolic leaf extract of A. nilotica subsp. indica can be used for management of S. rolfsii. PMID:28487894
Anticonvulsant effect of Persea americana Mill (Lauraceae) (Avocado) leaf aqueous extract in mice.
Ojewole, John A O; Amabeoku, George J
2006-08-01
Various morphological parts of Persea americana Mill (Lauraceae) (avocado) are widely used in African traditional medicines for the treatment, management and/or control of a variety of human ailments, including childhood convulsions and epilepsy. This study examined the anticonvulsant effect of the plant's leaf aqueous extract (PAE, 50-800 mg/kg i.p.) against pentylenetetrazole (PTZ)-, picrotoxin (PCT)- and bicuculline (BCL)-induced seizures in mice. Phenobarbitone and diazepam were used as reference anticonvulsant drugs for comparison. Like the reference anticonvulsant agents used, Persea americana leaf aqueous extract (PAE, 100-800 mg/kg i.p.) significantly (p < 0.05-0.001) delayed the onset of, and antagonized, pentylenetetrazole (PTZ)-induced seizures. The plant's leaf extract (PAE, 100-800 mg/kg i.p.) also profoundly antagonized picrotoxin (PCT)-induced seizures, but only weakly antagonized bicuculline (BCL)-induced seizures. Although the data obtained in the present study do not provide conclusive evidence, it would appear that 'avocado' leaf aqueous extract (PAE) produces its anticonvulsant effect by enhancing GABAergic neurotransmission and/or action in the brain. The findings of this study indicate that Persea americana leaf aqueous extract possesses an anticonvulsant property, and thus lends pharmacological credence to the suggested ethnomedical uses of the plant in the management of childhood convulsions and epilepsy.
Anticonvulsant activity of Aloe vera leaf extract in acute and chronic models of epilepsy in mice.
Rathor, Naveen; Arora, Tarun; Manocha, Sachin; Patil, Amol N; Mediratta, Pramod K; Sharma, Krishna K
2014-03-01
The effect of Aloe vera in epilepsy has not yet been explored. This study was done to explore the effect of aqueous extract of Aloe vera leaf powder on three acute and one chronic model of epilepsy. In acute study, aqueous extract of Aloe vera leaf (extract) powder was administered in doses 100, 200 and 400 mg/kg p.o. Dose of 400 mg/kg of Aloe vera leaf extract was chosen for chronic administration. Oxidative stress parameters viz. malondialdehyde (MDA) and reduced glutathione (GSH) were also estimated in brain of kindled animals. In acute study, Aloe vera leaf (extract) powder in a dose-dependent manner significantly decreased duration of tonic hind limb extension in maximal electroshock seizure model, increased seizure threshold current in increasing current electroshock seizure model, and increased latency to onset and decreased duration of clonic convulsion in pentylenetetrazole (PTZ) model as compared with control group. In chronic study, Aloe vera leaf (extract) powder prevented progression of kindling in PTZ-kindled mice. Aloe vera leaf (extract) powder 400 mg/kg p.o. also reduced brain levels of MDA and increased GSH levels as compared to the PTZ-kindled non-treated group. The results of study showed that Aloe vera leaf (extract) powder possessed significant anticonvulsant and anti-oxidant activity. © 2013 Royal Pharmaceutical Society.
Column chromatography isolation of nicotine from tobacco leaf extract (Nicotiana tabaccum L.)
NASA Astrophysics Data System (ADS)
Fathi, Raden Muhammad; Fauzantoro, Ahmad; Rahman, Siti Fauziyah; Gozan, Misri
2018-02-01
Restrictions on the use of dried tobacco leaf for cigarette production must be accompanied by the development of non-cigarette alternative products that are made from tobacco leaves. One of the alternative that can be done is to use the nicotine compound in tobacco leaf extract as medical product, such as Parkinson's medication or to be used as active substance in biopesticide. Nicotine was isolated using column chromatography method with the variation of mobile phase mixture ratio (petroleum ether and ethanol), started from 8:2, 6:4, 4:6, 2:8, to 0:10. All of the chromatographic fraction from each mobile phase's ratio was then tested qualitatively using thin layer chromatography (TLC) and also quantitatively using HPLC instrument. The column chromatography process could isolate 4.006% of nicotine compound from 4.19% tobacco leaf extract's nicotine. It is also known that ethanol is a good solution to be used as chromatography's mobile phase for nicotine isolation from tobacco leaf extract.
Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats.
Wainstein, Julio; Ganz, Tali; Boaz, Mona; Bar Dayan, Yosefa; Dolev, Eran; Kerem, Zohar; Madar, Zecharia
2012-07-01
Olive tree (Olea europaea L.) leaves have been widely used in traditional remedies in European and Mediterranean countries as extracts, herbal teas, and powder. They contain several potentially bioactive compounds that may have hypoglycemic properties. To examine the efficacy of 500 mg oral olive leaf extract taken once daily in tablet form versus matching placebo in improving glucose homeostasis in adults with type 2 diabetes (T2DM). In this controlled clinical trial, 79 adults with T2DM were randomized to treatment with 500 mg olive leaf extract tablet taken orally once daily or matching placebo. The study duration was 14 weeks. Measures of glucose homeostasis including Hba1c and plasma insulin were measured and compared by treatment assignment. In a series of animal models, normal, streptozotocin (STZ) diabetic, and sand rats were used in the inverted sac model to determine the mechanism through which olive leaf extract affected starch digestion and absorption. In the randomized clinical trial, the subjects treated with olive leaf extract exhibited significantly lower HbA1c and fasting plasma insulin levels; however, postprandial plasma insulin levels did not differ significantly by treatment group. In the animal models, normal and STZ diabetic rats exhibited significantly reduced starch digestion and absorption after treatment with olive leaf extract compared with intestine without olive leaf treatment. Reduced digestion and absorption was observed in both the mucosal and serosal sides of the intestine. Though reduced, the decline in starch digestion and absorption did not reach statistical significance in the sand rats. Olive leaf extract is associated with improved glucose homeostasis in humans. Animal models indicate that this may be facilitated through the reduction of starch digestion and absorption. Olive leaf extract may represent an effective adjunct therapy that normalizes glucose homeostasis in individuals with diabetes.
He, X; Ma, Y; Yi, G; Wu, J; Zhou, L; Guo, H
2017-05-01
In recent years, the incidence of clinical yeast infections has increased dramatically. Due to the extensive use of broad-spectrum antifungal agents, there has been a notable increase in drug resistance among infections yeast species. As one of the most popular natural antimicrobial agents, essential oils (EOs) have attracted a lot of attention from the scientific community. The aim of this study was to analyse the chemical composition and examine the antifungal activity of the EO extracted from the seeds of Carica papaya Linn. The papaya seed EO was analysed by gas chromatography-mass spectrometry. The major constituent is benzyl isothiocyanate (99·36%). The filter paper disc diffusion method and broth dilution method were employed. The EO showed inhibitory effect against all the tested Candida strains including C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropical with inhibition zone diameters in the range of 14·2-33·2 mm, the minimal inhibitory concentrations (MICs) in the range of 4·0-16·0 μg ml -1 and the minimum fungicidal concentrations (MFCs) in the range of 16·0-64·0 μg ml -1 . Here, we found that the papaya seed EO has promising anticandida activity and identify C. papaya L. as a potential natural source of antifungal agents. The chemical composition and antifungal activity of essential oil of Carica papaya seeds were studied. The oil of papaya seeds could inhibit the growth of Candida spp. for the first report. Carica Papaya may be recognized as a possible new source of natural antifungal agents. © 2017 The Society for Applied Microbiology.
Veda, Supriya; Platel, Kalpana; Srinivasan, K
2007-09-19
Mango and papaya, which are rich sources of beta-carotene, are widely consumed in India. In this study, beta-carotene content and its bioaccessibility were determined in six locally available varieties of mango, namely, Badami, Raspuri, Mallika, Malgoa, Totapuri, and Neelam, and two varieties of papaya, namely, Honey Dew and Surya. Varietal differences were evident in both beta-carotene content and its bioaccessibility in the case of mango. beta-Carotene content in ripe mango ranged from 0.55 +/- 0.03 mg/100 g in the Malgoa variety to 3.21 +/- 0.25 mg/100 g in the Badami variety. Similarly, in the Honey Dew and Surya varieties of papaya, beta-carotene contents were 0.70 +/- 0.10 and 0.74 +/- 0.12 mg/100 g, respectively. Bioaccessibility of beta-carotene ranged from 24.5% in Badami to 39.1% in Raspuri varieties of mango. Considering both the percent bioaccessibility and the inherent beta-carotene content, the amount of bioaccessible beta-carotene was highest in the Mallika variety (0.89 mg/100 g), followed by Badami (0.79 mg/100 g). Because mango and papaya are also consumed as a blend with milk, the influence of the presence of milk on the bioaccessibility of beta-carotene from these fruits was also examined. Addition of milk generally brought about a significant increase in the bioaccessibility of beta-carotene from mango, the increase ranging from 12 to 56%. Bioaccessibility of beta-carotene from the two varieties of papaya examined was similar (31.4-34.3%). Addition of milk increased this bioaccessibility by 19 and 38% in these two varieties. Considering the beta-carotene content of mango and papaya, the latter has to be consumed in amounts roughly 3 times that of mango to derive the same amount of beta-carotene. Thus, this study has indicated that varietal differences exist in the content and bioaccessibility of beta-carotene in mango and that the addition of milk is advantageous in deriving this provitamin A from the fruit pulp of mango and papaya.
Synthesis and antimicrobial activity of palladium nanoparticles from Prunus × yedoensis leaf extract
USDA-ARS?s Scientific Manuscript database
The eco-friendly production of palladium nanoparticles (PdNPs) by Prunus × yedoensis tree leaf extract was studied for the first time. Initial confirmation of PdNP production was confirmed by a color change from light yellow to dark brown. The optimization parameters show that pH 7, 8% leaf extract,...
Chin, Chai-Yee; Jalil, Juriyati; Ng, Pei Yuen; Ng, Shiow-Fern
2018-02-15
M.oleifera is a medicinal plant traditionally used for skin sores, sore throat and eye infections. Recently, the wound healing property of the leaves of M. oleifera was has been well demonstrated experimentally in both in vivo and in vitro models. However, there is a lack of research which focuses on formulating M.oleifera into a functional wound dressing. In this study, the M.oleifera leaf standardized aqueous extract with highest potency in vitro migration was formulated into a film for wound healing application. Firstly, M. oleifera leaf were extracted in various solvents (aqueous, 50%, 70% and 100% ethanolic extracts) and standardized by reference standards using UHPLC technique. The extracts were then tested for cell migration and proliferation using HDF and HEK cell lines. M. oleifera leaf aqueous extract was then incorporated into alginate-pectin (SA-PC) based film dressing. The film dressings were characterized for the physicochemical properties and the bioactives release from the M. oleifera leaf extract loaded film dressing was also investigated using Franz diffusion cells. All extracts were found to contain vicenin-2, chlorogenic acid, gallic acid, quercetin, kaempferol, rosmarinic acid and rutin. Among all M. oleifera extracts, aqueous standardized leaf extracts showed the highest human dermal fibroblast and human keratinocytes cells proliferation and migration properties. Among the film formulations, SA-PC (3% w/v) composite film dressing containing M. oleifera aqueous leaf extract was found to possess optimal physicochemical properties as wound dressing. A potentially applicable wound dressing formulated as an alginate-pectin film containing aqueous extracts of M. oleifera has been developed. The dressing would be suitable for wounds with moderate exudates. Copyright © 2017 Elsevier B.V. All rights reserved.
Diversity of Papaya ringspot virus isolates in Puerto Rico
USDA-ARS?s Scientific Manuscript database
Papaya ringspot virus (PRSV) devastates papaya production worldwide. In Puerto Rico, papaya fields can be completely infected with PRSV within a year of planting. Information about the diversity of the Puerto Rican PRSV population is relevant in order to establish a control strategy in the island. T...
Identification of a new phospholipase D in Carica papaya latex.
Abdelkafi, Slim; Abousalham, Abdelkarim; Fendri, Imen; Ogata, Hiroyuki; Barouh, Nathalie; Fouquet, Benjamin; Scheirlinckx, Frantz; Villeneuve, Pierre; Carrière, Frédéric
2012-05-15
Phospholipase D (PLD) is a lipolytic enzyme involved in signal transduction, vesicle trafficking and membrane metabolism. It catalyzes the hydrolysis and transphosphatidylation of glycerophospholipids at the terminal phosphodiester bond. The presence of a PLD in the latex of Carica papaya (CpPLD1) was demonstrated by transphosphatidylation of phosphatidylcholine (PtdCho) in the presence of 2% ethanol. Although the protein could not be purified to homogeneity due to its presence in high molecular mass aggregates, a protein band was separated by SDS-PAGE after SDS/chloroform-methanol/TCA-acetone extraction of the latex insoluble fraction. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by micro-LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (723 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 2424 bp encoding a protein of 808 amino acid residues, with a theoretical molecular mass of 92.05 kDa. From sequence analysis, CpPLD1 was identified as a PLD belonging to the plant phosphatidylcholine phosphatidohydrolase family. Copyright © 2012 Elsevier B.V. All rights reserved.
Chávez-Calvillo, Gabriela; Contreras-Paredes, Carlos A; Mora-Macias, Javier; Noa-Carrazana, Juan C; Serrano-Rubio, Angélica A; Dinkova, Tzvetanka D; Carrillo-Tripp, Mauricio; Silva-Rosales, Laura
2016-02-01
Antagonism between unrelated plant viruses has not been thoroughly described. Our studies show that two unrelated viruses, papaya ringspot virus (PRSV) and papaya mosaic virus (PapMV) produce different symptomatic outcomes during mixed infection depending on the inoculation order. Synergism occurs in plants infected first with PRSV or in plants infected simultaneously with PRSV and PapMV, and antagonism occurs in plants infected first with PapMV and later inoculated with PRSV. During antagonism, elevated pathogenesis-related (PR-1) gene expression and increased reactive oxygen species production indicated the establishment of a host defense resulting in the reduction in PRSV titers. Polyribosomal fractioning showed that PRSV affects translation of cellular eEF1α, PR-1, β-tubulin, and PapMV RNAs in planta, suggesting that its infection could be related to an imbalance in the translation machinery. Our data suggest that primary PapMV infection activates a defense response against PRSV and establishes a protective relationship with the papaya host. Copyright © 2015 Elsevier Inc. All rights reserved.
Phytochemical screening and quantification of flavonoids from leaf extract of Jatropha curcas Linn.
Ebuehi, O A T; Okorie, N A
2009-01-01
The Jatropha curcas L. (Euphorbiaceae) herb is found in SouthWest, Nigeria and other parts of West Africa, and is claimed to possess anti-hypertensive property. The phytochemical screening and flavonoid quantification of the leaf extract of Jatropha curcas Linn were studied. The phytochemical screening of the methanolic leaf extract of J. curcas L. was carried using acceptable and standard methods. The flavonoid contents of the leaf extract of Jatropha curcas L. were determined using thin layer chromatography (TLC), infrared spectroscopy (IRS) and a reversed phase high performance liquid chromatography (HPLC). The phytochemical screening of the methanolic extract of the leaves of the plant shows the presence of alkaloids, cardiac glycosides, cyanogenic glycosides, phlobatannins, tannins, flavonoids and saponins. To quantify the flavonoid contents of leaf extract of Jatropha curcas L, extracts from the plant samples where examined in a C-18 column with UV detection and isocratic elution with acetonitrile; water (45:55). Levels of flavonoids (flavones) in leaves ranged from 6:90 to 8:85 mg/g dry weight. Results indicate that the methanolic extract of the leaves of Jatropha curcas L. contains useful active ingredients which may serve as potential drug for the treatment of diseases. In addition, a combination of TLC, IRS and HPLC can be used to analyse and quantify the flavonoids present in the leaves of Jatropha curcas L.
Bioavailability of Bioactive Molecules from Olive Leaf Extracts and its Functional Value.
Martín-Vertedor, Daniel; Garrido, María; Pariente, José Antonio; Espino, Javier; Delgado-Adámez, Jonathan
2016-07-01
Olive leaves are an important low-cost source of bioactive compounds. The present study aimed to examine the effect of in vitro digestibility of an olive leaf aqueous extract so as to prove the availability of its phenolic compounds as well as its antioxidant, antimicrobial, and anticancer activity after a simulated digestion process. The total phenolic content was significantly higher in the pure lyophilized extract. Phenolic compounds, however, decreased by 60% and 90% in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), respectively. Regarding antioxidant activity, it was reduced by 10% and 50% after gastric and intestinal digestion, respectively; despite this fact, high antioxidant capacity was found in both SGF and SIF. Moreover, the olive leaf extract showed an unusual combined antimicrobial action at low concentration, which suggested their great potential as nutraceuticals, particularly as a source of phenolic compounds. Finally, olive leaf extracts produced a general dose-dependent cytotoxic effect against U937 cells. To sum up, these findings suggest that the olive leaf aqueous extract maintains its beneficial properties after a simulated digestion process, and therefore its regular consumption could be helpful in the management and the prevention of oxidative stress-related chronic disease, bacterial infection, or even cancer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Determination of saponins and flavonoids in ivy leaf extracts using HPLC-DAD.
Yu, Miao; Shin, Young June; Kim, Nanyoung; Yoo, Guijae; Park, SeonJu; Kim, Seung Hyun
2015-04-01
A new method for the determination of six compounds, chlorogenic acid, rutin, nicotiflorin, hederacoside C, hederasaponin B and α-hederin, in ivy leaf extracts using high-performance liquid chromatography with diode array detector was developed. The chromatographic separation was performed on a YMC Hydrosphere C18 analytical column using a gradient elution of 0.1% phosphoric acid and acetonitrile. The method was validated in terms of specificity, linearity (r(2) > 0.9999), precision [relative standard deviation (RSD) < 0.36%] and accuracy (97.4-103.8%). The limit of detection and limit of quantification were <20.32 and 61.56 ng for all analytes, respectively. The tested compounds were found to be stable in the ivy leaf extract from 0 to 48 h, and the RSD value for each compound was <0.90%. The validated method was successfully applied to quantify all six compounds in a 30% ethanol ivy leaf extract and 13 ivy leaf extract products. The results showed that all the tested products satisfied the minimum requirement for the content of hederacoside C. However, there were some differences between the contents of other constituents. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nghonjuyi, Ndaleh Wozerou; Tiambo, Christian Keambou; Taïwe, Germain Sotoing; Toukala, Jean Paul; Lisita, Frederico; Juliano, Raquel Soares; Kimbi, Helen Kuokuo
2016-02-03
Aloe vera (L.) Burm. f. (Xanthorrhoeaceae), Carica papaya L. (Caricaceae) and Mimosa pudica L. (Fabaceae) are widely used in the Cameroonian ethnoveterinary medicine as a panacea, and specifically for gastrointestinal disorders as well as an anthelmintic and antibacterial. The present study evaluated the potential toxicity of the hydroalcoholic extracts of Aloe vera leaves, Carica papaya leaves or seeds, and Mimosa pudica leaves after acute and sub-chronic administration in chicks. For the acute toxicity test a single administration of each of the four hydroalcoholic extracts was given orally at doses ranging from 40 to 5120 mg/kg (n=5/group/sex). In the sub-chronic study, these extracts were given orally as a single administration to chicks at doses of 80, 160, 320 and 640 mg/kg/day for 42 days. The anti-angiogenic properties of these extracts (5-320 µg/mg) were investigated in the chick chorioallantoic membrane in vivo. In the acute toxicity test, none of the four studied hydroalcoholic extracts induced mortality or significant behavioural changes. The sub-acute treatment with the four plant extracts did not alter either the body weight gain or the food and water consumption. However, the results indicated that Aloe vera leaf extract acute treatment by oral route at doses up to 2560 mg/kg did not produce death in 50% (5/10) of chicks during 24h or 14 days of observation, but 20% (2/10) chicks died. The haematological and biochemical analyses did not show significant differences in any of the parameters examined in female or male groups, with the exception of a transient rise in white blood cell counts at high doses (640 mg/kg). Additionally, these extracts did not have the potential for anti-angiogenic effects through the inhibition of neo-angiogenesis in the chick chorioallantoic membrane in vivo. The results showed that the therapeutic use of the hydroalcoholic extracts of Aloe vera leaves, Carica papaya leaves or seeds and Mimosa pudica leaves had very low
Senna leaf curl virus: a novel begomovirus identified in Senna occidentalis.
Kumar, Jitesh; Alok, Anshu; Kumar, Jitendra; Tuli, Rakesh
2016-09-01
Begomoviruses are whitefly-transmitted, single-stranded DNA viruses that infect a variety of cultivated (crop) and non-cultivated (weed) plants. The present study identified a novel begomovirus and satellites (alpha- and betasatellite) in Senna occidentalis (syn. Cassia occidentalis) showing leaf curl symptoms. The begomovirus shared a maximum sequence identity of 88.6 % with french bean leaf curl virus (JQ866297), whereas the alphasatellite and the betasatellite shared identities of 98 % and 90 % with ageratum yellow vein India alphasatellite (LK054802) and papaya leaf curl betasatellite (HM143906), respectively. No other begomovirus or satellites were detected in the suspected plants. We propose to name the virus "senna leaf curl virus" (SenLCuV).
Zunjar, Vishwanath; Dash, Ranjeet Prasad; Jivrajani, Mehul; Trivedi, Bhavna; Nivsarkar, Manish
2016-04-02
The decoction of Carica papaya Linn. leaves is used in folklore medicine in certain parts of Malaysia and Indonesia for the treatment of different types of thrombocytopenia associated with diseases and drugs. There are several scientific studies carried out on humans and animal models to confirm the efficacy of decoction of papaya leave for the treatment of disease induced and drug induced thrombocytopenia, however very little is known about the bio-active compounds responsible for the observed activity. The aim of present study was to identify the active phytochemical component of Carica papaya Linn. leaves decoction responsible for anti-thrombocytopenic activity in busulfan-induced thrombocytopenic rats. Antithrombocytopenic activity was assessed on busulfan induced thrombocytopenic Wistar rats. The antithrombocytopenic activity of different bio-guided fractions was evaluated by monitoring blood platelet count. Bioactive compound carpaine was isolated and purified by chromatographic methods and confirmed by spectroscopic methods (LC-MS and 1D/2D-1H/13C NMR) and the structure was confirmed by single crystal X-ray diffraction. Quantification of carpaine was carried out by LC-MS/MS equipped with XTerra(®) MS C18 column and ESI-MS detector using 90:10 CH3CN:CH3COONH4 (6mM) under isocratic conditions and detected with multiple reaction monitoring (MRM) in positive ion mode. Two different phytochemical groups were isolated from decoction of Carica papaya leaves: phenolics, and alkaloids. Out of these, only alkaloid fraction showed good biological activity. Carpaine was isolated from the alkaloid fraction and exhibited potent activity in sustaining platelet counts upto 555.50±85.17×10(9)/L with no acute toxicity. This study scientifically validates the popular usage of decoction of Carica papaya leaves and it also proves that alkaloids particularly carpaine present in the leaves to be responsible for the antithrombocytopenic activity. Copyright © 2016 Elsevier
Nasiry, Davood; Khalatbary, Ali Reza; Ahmadvand, Hassan; Talebpour Amiri, Fereshteh; Akbari, Esmaeil
2017-10-02
Oxidative stress has a pivotal role in the pathogenesis and development of diabetic peripheral neuropathy (DPN), the most common and debilitating complications of diabetes mellitus. There is accumulating evidence that Juglans regia L. (GRL) leaf extract, a rich source of phenolic components, has hypoglycemic and antioxidative properties. This study aimed to determine the protective effects of Juglans regia L. leaf extract against streptozotocin-induced diabetic neuropathy in rat. The DPN rat model was generated by intraperitoneal injection of a single 55 mg/kg dose of streptozotocin (STZ). A subset of the STZ-induced diabetic rats intragastically administered with GRL leaf extract (200 mg/kg/day) before or after the onset of neuropathy, whereas other diabetic rats received only isotonic saline as the same volume of GRL leaf extract. To evaluate the effects of GRL leaf extract on the diabetic neuropathy various parameters, including histopathology and immunohistochemistry of apoptotic and inflammatory factors were assessed along with nociceptive and biochemical assessments. Degeneration of the sciatic nerves which was detected in the STZ-diabetic rats attenuated after GRL leaf extract administration. Greater caspase-3, COX-2, and iNOS expression could be detected in the STZ-diabetic rats, which were significantly attenuated after GRL leaf extract administration. Also, attenuation of lipid peroxidation and nociceptive response along with improved antioxidant status in the sciatic nerve of diabetic rats were detected after GRL leaf extract administration. In other word, GRL leaf extract ameliorated the behavioral and structural indices of diabetic neuropathy even after the onset of neuropathy, in addition to blood sugar reduction. Our results suggest that GRL leaf extract exert preventive and curative effects against STZ-induced diabetic neuropathy in rats which might be due to its antioxidant, anti-inflammatory, and antiapoptotic properties. Protection against
Ojewole, John A O
2005-05-13
In order to scientifically appraise some of the ethnomedical uses of Bryophyllum pinnatum leaves, the present study was undertaken to investigate the antinociceptive, anti-inflammatory and antidiabetic properties of the plant's leaf aqueous extract in experimental animal models. The antinociceptive effect of the herb's leaf extract was evaluated by the 'hot-plate' and 'acetic acid' test models of pain in mice. The anti-inflammatory and antidiabetic effects of the plant's extract were investigated in rats, using fresh egg albumin-induced pedal (paw) oedema, and streptozotocin (STZ)-induced diabetes mellitus. Diclofenac (DIC, 100 mg/kg) and chlorpropamide (250 mg/kg) were used respectively as reference drugs for comparison. Bryophyllum pinnatum leaf aqueous extract (BPE, 25-800 mg/kg i.p.) produced significant (P<0.05-0.001) antinociceptive effects against thermally- and chemically-induced nociceptive pain stimuli in mice. The plant extract (BPE, 25-800 mg/kg p.o. or i.p.) also significantly (P<0.05-0.001) inhibited fresh egg albumin-induced acute inflammation and caused significant (P<0.05-0.001) hypoglycaemia in rats. The results of this experimental animal study suggest that Bryophyllum pinnatum leaf aqueous extract possesses antinociceptive, anti-inflammatory and hypoglycaemic properties. The different flavonoids, polyphenols, triterpenoids and other chemical constituents of the herb are speculated to account for the observed antinociceptive, anti-inflammatory and antidiabetic properties of the plant.
Wu, Meng; Lewis, Jamicia; Moore, Richard C
2017-01-01
The red flesh of some papaya cultivars is caused by a recessive loss-of-function mutation in the coding region of the chromoplast-specific lycopene beta cyclase gene (CYC-b). We performed an evolutionary genetic analysis of the CYC-b locus in wild and cultivated papaya to uncover the origin of this loss-of-function allele in cultivated papaya. We analyzed the levels and patterns of genetic diversity at the CYC-b locus and six loci in a 100-kb region flanking CYC-b and compared these to genetic diversity levels at neutral autosomal loci. The evolutionary relationships of CYC-b haplotypes were assessed using haplotype network analysis of the CYC-b locus and the 100-kb CYC-b region. Genetic diversity at the recessive CYC-b allele (y) was much lower relative to the dominant Y allele found in yellow-fleshed wild and cultivated papaya due to a strong selective sweep. Haplotype network analyses suggest the y allele most likely arose in the wild and was introduced into domesticated varieties after the first papaya domestication event. The shared haplotype structure between some wild, feral, and cultivated haplotypes around the y allele supports subsequent escape of this allele from red cultivars back into wild populations through feral intermediates. Our study supports a protracted domestication process of papaya through the introgression of wild-derived traits and gene flow from cultivars to wild populations. Evidence of gene flow from cultivars to wild populations through feral intermediates has implications for the introduction of transgenic papaya into Central American countries. © 2017 Botanical Society of America.
Dutta, Sangita; Bhattacharyya, Debasish
2013-11-25
Various parts of the plant pineapple (Ananas comosus) are used in traditional medicine worldwide for treatment of a number of diseases and disorders. In folk medicine, pineapple leaf extract was used as an antimicrobial, vermicide, purgative, emmenagoogue, abortifacient, anti-oedema and anti-inflammatory agent. Compared to the fruit and stem extracts of pineapple, information about its leaf extract is limited. The potential of pineapple crown leaf extract as an ethno-medicine has been evaluated in terms of its enzymatic activities related to wound healing, antimicrobial property and toxicity. Major protein components of the extract were revealed by 2-D gel electrophoresis followed by MS/MS analysis. Zymography, DQ-gelatin assay were performed to demonstrate proteolytic, fibrinolytic, gelatinase and collagenase activities. DNase and RNase activities were revealed from agarose gel electrophoresis. Antimicrobial activity was evaluated spectrophotometrically from growth inhibition. Sprague-Dawley rat model was used to measure acute and sub-acute toxicity of the extract by analyzing blood markers. The extract contains several proteins that were clustered under native condition. Proteomic studies indicated presence of fruit bromelain as major protein constituent of the extract. It showed nonspecific protease activity, gelatinolytic, collagenase, fibrinolytic, acid and alkaline phosphatase, peroxidase, DNase and RNase activities along with considerable anti-microbial property. The leaf extract did not induce any toxicity in rats after oral administration of acute and sub-acute doses. Pineapple leaf extract is nontoxic, contains enzymes related to damage tissue repairing, wound healing and possibly prevents secondary infections from microbial organisms. © 2013 Elsevier Ireland Ltd. All rights reserved.
Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts.
Machado, S; Pacheco, J G; Nouws, H P A; Albergaria, J T; Delerue-Matos, C
2015-11-15
In the last decades nanotechnology has become increasingly important because it offers indisputable advantages to almost every area of expertise, including environmental remediation. In this area the synthesis of highly reactive nanomaterials (e.g. zero-valent iron nanoparticles, nZVI) is gaining the attention of the scientific community, service providers and other stakeholders. The synthesis of nZVI by the recently developed green bottom-up method is extremely promising. However, the lack of information about the characteristics of the synthetized particles hinders a wider and more extensive application. This work aims to evaluate the characteristics of nZVI synthesized through the green method using leaves from different trees. Considering the requirements of a product for environmental remediation the following characteristics were studied: size, shape, reactivity and agglomeration tendency. The mulberry and pomegranate leaf extracts produced the smallest nZVIs (5-10 nm), the peach, pear and vine leaf extracts produced the most reactive nZVIs while the ones produced with passion fruit, medlar and cherry extracts did not settle at high nZVI concentrations (931 and 266 ppm). Considering all tests, the nZVIs obtained from medlar and vine leaf extracts are the ones that could present better performances in the environmental remediation. The information gathered in this paper will be useful to choose the most appropriate leaf extracts and operational conditions for the application of the green nZVIs in environmental remediation. Copyright © 2015 Elsevier B.V. All rights reserved.
Elgebaly, Hassan A; Mosa, Nermeen M; Allach, Mariam; El-Massry, Khaled F; El-Ghorab, Ahmed H; Al Hroob, Amir M; Mahmoud, Ayman M
2018-02-01
Olive oil and leaf extract have several health benefits; however, their beneficial effect against fluoxetine-induced liver injury has not been investigated. The present study aimed to scrutinize the impact of fluoxetine on the liver of rats and to evaluate the protective effects of olive oil and leaf extract. Rats received fluoxetine orally at dose of 10 mg/kg body weight for 7 consecutive days. The fluoxetine-induced rats were concurrently treated with olive oil or leaf extract. At the end of the experiment, blood and liver samples were collected for analysis. Fluoxetine administration significantly increased circulating ALT, AST, ALP and the pro-inflammatory cytokines TNF-α and IL-1β levels in rats. Histological analysis showed several alterations, such as inflammatory cells infiltration, hepatocyte vacuolation and dilated sinusoids in the liver of fluoxetine-induced rats. Concurrent supplementation of olive oil and olive leaf extract significantly reduced circulating liver function marker enzymes and pro-inflammatory cytokines, and prevented fluoxetine-induced histological alterations. Both olive oil and leaf extract significantly decreased liver lipid peroxidation and nitric oxide, and ameliorated liver glutathione, superoxide dismutase, catalase and glutathione peroxidase. In addition, olive oil and leaf extract prevented fluoxetine-induced apoptosis in the liver of rats as evidenced by decreased expression of Bax and caspase-3, and up-regulated expression of Bcl-2. In conclusion, olive oil and leaf extract protect against fluoxetine-induced liver injury in rats through attenuation of oxidative stress, inflammation and apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Moringa oleifera leaf extracts inhibit 6beta-hydroxylation of testosterone by CYP3A4.
Monera, Tsitsi G; Wolfe, Alan R; Maponga, Charles C; Benet, Leslie Z; Guglielmo, Joseph
2008-10-01
Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6beta-hydroxylation of testosterone. Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs.
Hajihosseini, Shadieh; Setorki, Mahbubeh; Hooshmandi, Zahra
2017-01-01
Medicinal plants have attracted global attention due to their safety as well as their considerable antioxidant content that helps to prevent or ameliorate various disorders including memory impairments. This study was conducted to investigate the effect of beet root ( Beta vulgaris ) leaf extract on scopolamine-induced spatial memory impairments in male Wistar rats. Male Wistar rats were randomly divided into 5 groups (n=10): Control (C), scopolamine 1 mg/kg/day (S), scopolamine+50 mg/kg B. vulgaris leaf extract (S+B 50), scopolamine+100 mg/kg B. vulgaris leaf extract (S+B 100) and scopolamine+200 mg/kg B. vulgaris leaf extract (S+B 200). Morris water maze task was used to assess spatial memory. Serum antioxidant capacity and malondialdehyde (MDA) level were also measured. Group S spent significantly less time in the target quadrant compared to the control group, and the administration of B. vulgaris leaf extract (100 and 200 mg/kg) significantly increased this time (p<0.05). Scopolamine decreased serum antioxidant capacity and increased serum MDA level yet insignificantly. B. vulgaris extract (200 mg/kg) significantly increased the antioxidant capacity and decreased serum MDA level in scopolamine-treated rats (p<0.05). Our results suggested that B. vulgaris leaf extract could ameliorate the memory impairments and exhibited protective effects against scopolamine-induced oxidation. Further investigation is needed to isolate specific antioxidant compounds from B. vulgaris leaf extract with protective effect against brain and memory impairments.
Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract
NASA Astrophysics Data System (ADS)
Balamurugan, Madheswaran; Saravanan, Shanmugam
2017-12-01
A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.
Isolation and functional characterization of bacterial endophytes from Carica papaya fruits.
Krishnan, P; Bhat, R; Kush, A; Ravikumar, P
2012-08-01
To isolate and characterize the endophytes from papaya fruits and to determine the fermentative potential of the strains. Endophytes provide potential sources for novel natural products for the use in agriculture and nutrition. There is very limited information on isolation and characterization of bacterial endophytes from papaya. We describe isolation and characterization of eighteen endophytes of papaya fruit from four economically important papaya varieties viz 'Red lady', 'Solo', 'Coorg Honey' and 'Bangalore'. The phylogenetic analysis based on the 16S rRNA sequence revealed that isolated endophytes are genetically distinct and cluster as discrete clades in the dendrogram. The Bacillus species is a predominant bacterial endophyte across papaya varieties. The seeds and the endocarp of papaya fruits harbour Kocuria, Acinetobacter and Enterobacter species. The Staphylococcus species were detected in the fruit mesocarp of two papaya varieties used in the study. The endophytes isolated from papaya fruits were capable of producing extracellular enzymes like amylase, cellulase, pectinase and xylanase. Three isolates, Bacillus (PE-LR-1 and PE-LR-3) and Kocuria (PE-LR-2), were selected for fruit fermentation, and antioxidant potential of the fermented product was evaluated. PE-LR-3 fermented product has the free radical scavenging activity of 61·2% and a microbial cocktail of PE-LR-3 with Saccharomyces cerevisiae MTCC 2918 enhances the antioxidant potential to 75·7%. These findings suggest that different parts of papaya fruits harbour an array of bacterial endophytes that could be important agents in attributing the high nutritive status to the fruit and can serve as potent microbial cocktails for developing value-added fermented products of this important fruit. This study describes isolation of a bacterial endophyte from papaya fruit that is capable of improving the antioxidant potential of raw papaya after fermentation. No claim to Indian Government works Journal
Rahman, M M; Ahmad, S H; Lgu, K S
2012-01-01
The effect of leaf extracts of Psidium guajava and Piper betle on prolonging vase life of cut carnation flowers was studied. "Carola" and "Pallas Orange" carnation flowers, at bud stage, were pulsed 24 hours with a floral preservative. Then, flowers were placed in a vase solution containing sprite and a "germicide" (leaf extracts of P. guajava and P. betle, 8-HQC, or a copper coin). Flowers treated with 8-HQC, copper coin, and leaf extracts had longer vase life, larger flower diameter, and higher rate of water uptake compared to control (tap water). The leaf extracts of P. guajava and P. betle showed highest antibacterial and antifungal activities compared to the other treatments. Both showed similar effects on flower quality as the synthetic germicide, 8-HQC. Therefore, these extracts are likely natural germicides to prolong vase life of cut flowers.
Allelopathic potential of Rapanea umbellata leaf extracts.
Novaes, Paula; Imatomi, Maristela; Varela, Rosa M; Molinillo, José M G; Lacret, Rodney; Gualtieri, Sonia C J; Macías, Francisco A
2013-08-01
The stressful conditions associated with the Brazilian savanna (Cerrado) environment were supposed to favor higher levels of allelochemicals in Rapanea umbellata from this ecosystem. The allelopathic potential of R. umbellata leaf extracts was studied using the etiolated wheat coleoptile and standard phytotoxicity bioassays. The most active extract was selected to perform a bioassay-guided isolation, which allowed identifying lutein (1) and (-)-catechin (2) as potential allelochemicals. Finally, the general bioactivity of the two compounds was studied, which indicated that the presence of 1 might be part of the defense mechanisms of this plant. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin; Kim, Hyun-Sook
2015-07-01
We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats.
Physical-chemical analyses of irradiated papayas ( Carica papaya L.)
NASA Astrophysics Data System (ADS)
Camargo, R. J.; Tadini, C. C.; Sabato, S. F.
2007-11-01
Papaya is cultivated in Espírito Santo State/Brazil and as it stands up to irradiation, it is important to validate this technology, since it is already being applied in some countries. Penetration energy, ratio (relation between soluble solids and titrable acidity) and skin color were evaluated to verify the influence of four different doses of irradiation (0.0, 0.5, 0.75 and 1.00 kGy) on papayas, during 21 days. As a result for the skin color and the penetration energy, it was found that in the first days after irradiation, these variables increased with increase in radiation dose; however, after a time lapse, the tendency inverted and the irradiated fruits had a slower ripening process. For the ratio, a very important variable that it is responsible for the fruit taste, no difference was found between irradiated and the control fruit. Color and texture measurements are dependent on the storage temperature.
Zhang, Chen; Sanders, Johan P M; Xiao, Ting T; Bruins, Marieke E
2015-01-01
Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of chemicals and low quality of (denatured) protein limits its application. The research objective was to investigate how alkali aids protein extraction of green tea leaf residue, and use these results for further improvements in alkaline protein biorefinery. Protein extraction yield was studied for correlation to morphology of leaf tissue structure, protein solubility and hydrolysis degree, and yields of non-protein components obtained at various conditions. Alkaline protein extraction was not facilitated by increased solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG pectin, RGII pectin, and organic acids were extracted before protein extraction, which was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin were both linear to protein yield. The yields of these two components were 80% and 25% respectively when 95% protein was extracted, which indicated that RGI pectin is more likely to be the key limitation to leaf protein extraction. An integrated biorefinery was designed based on these results.
NASA Astrophysics Data System (ADS)
Omar, Hazreen; Zubairi, Saiful Irwan; Fadhilah, Mohd Faizulhelmi; Omar, Dzolkhifli; Asib, Norhayu
2016-11-01
Carica papaya is a member of the Caricaceae. Its leaves have been used in folk medicine for centuries. Recent studies have shown its beneficial effects as an anti-inflammatory agent (Owoyele et al 2008) and anti-tumour15 as well as antioxidant and wound healing properties7. The study has shown that the effect of carica papaya leaves juice intake also can accelerate the rate of increase in platelet count among the patients infected with dengue fever and dengue haemorrhagic fever18. With all the goodness of carica papaya leaves, a formulation with addition of virgin coconut oil (VCO) is produced to give an enhanced supplement beverage to market nowadays. Virgin coconut oil is well known as anti-oxidant4. The combination of these two substances gives a balance combination in healthy supplement. In recent years the application of emulsion is rapidly increasing in many fields such as cosmetics and paints. Emulsions are dispersions of droplets of one liquid in another, immiscible, liquid in which the droplets are of colloidal or near-colloidal sizes. The combination of water and oil (VCO) with addition of non-ionic surfactant Tween80 was constructed using ternary phase diagram. By considering the Hydrophilic-Lipophilic Balance (HLB) value of each substance will help in producing a stable emulsion.
Gu, Hanna; Boonanantanasarn, Kanitsak; Kang, Moonkyu; Kim, Ikhwi; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa
2018-01-01
Morinda citrifolia (Noni) leaf is an herbal medicine with application in the domestic treatment of a broad range of conditions, including bone fracture and luxation. However, the basic mechanism underlying the stimulation of osteogenic differentiation by Noni leaf extract remains poorly understood. This study aimed to examine the effect of this extract on osteogenic differentiation and the mechanism by which Noni leaf extract enhances osteogenic differentiation. Aqueous extract of Noni leaves was prepared, and rutin and kaempferol-3-O-rutinoside were identified to be two of its major components. C2C12 and human periodontal ligament (hPDL) cells were used to study the effect of Noni. Noni did not show cytotoxicity at a concentration range of 0.015%-1.0% (w/v%) and significantly enhanced the activity of alkaline phosphatase (ALP) and expression levels of osteoblast differentiation markers, including Runx2, ALP, osterix, and osteocalcin, bone morphogenetic protein 2, Wnt3a, and β-catenin. In addition, Noni enhanced the matrix mineralization of hPDL cells. In the signaling pathways, Noni increased the phosphorylation levels of Akt and GSK3β and nuclear translocation and transcriptional activity of β-catenin, which were attenuated by the addition of Dkk-1, a Wnt inhibitor, or LY294002, a PI3K inhibitor. These results suggest that Noni leaf extract enhances osteogenic differentiation through the PI3K/Akt-dependent activation of Wnt/β-catenin signaling. Noni leaf extract might be a novel alternative medicine for bone and periodontal regeneration in patients with periodontal diseases.
Duckstein, Sarina M; Lorenz, Peter; Stintzing, Florian C
2012-01-01
Hamamelis virginiana, known for its high level of tannins and other phenolics is widely used for treatment of dermatological disorders. Although reports on hydroalcoholic and aqueous extracts from Hamamelis leaf and bark exist, knowledge on fermented leaf preparations and the underlying conversion processes are still scant. Aqueous Hamamelis leaf extracts were monitored during fermentation and maturation in order to obtain an insight into the bioconversion of tannins and other phenolics. Aliquots taken during the production period were investigated by HPLC-DAD-MS/MS as well as GC-MS after derivatisation into the corresponding trimethylsilyl compounds. In Hamamelis leaf extracts, the main constituents exhibited changes during the observational period of 6 months. By successive depside bond cleavage, the gallotannins were completely transformed into gallic acid after 1 month. Although not completely, kaempferol and quercetin glycosides were also converted during 6 months to yield their corresponding aglycones. Following C-ring fission, phloroglucinol was formed from the A-ring of both flavonols. The B-ring afforded 3-hydroxybenzoic acid from quercetin and 3,4-dihydroxybenzoic acid as well as 2-(4-hydroxyphenyl)-ethanol from kaempferol. Interestingly, hydroxycinnamic acids remained almost stable in the same time range. The present study broadens the knowledge on conversion processes in aqueous fermented extracts containing tannins, flavonol glycosides and hydroxycinnamic acids. In particular, the analogy between the microbial metabolism of phenolics from fermented Hamamelis extracts, fermented sourdough by heterofermentative lactic acid bacteria or conversion of phenolics by the human microbial flora is indicated. Copyright © 2012 John Wiley & Sons, Ltd.
Rahman, M. M.; Ahmad, S. H.; Lgu, K. S.
2012-01-01
The effect of leaf extracts of Psidium guajava and Piper betle on prolonging vase life of cut carnation flowers was studied. “Carola” and “Pallas Orange” carnation flowers, at bud stage, were pulsed 24 hours with a floral preservative. Then, flowers were placed in a vase solution containing sprite and a “germicide” (leaf extracts of P. guajava and P. betle, 8-HQC, or a copper coin). Flowers treated with 8-HQC, copper coin, and leaf extracts had longer vase life, larger flower diameter, and higher rate of water uptake compared to control (tap water). The leaf extracts of P. guajava and P. betle showed highest antibacterial and antifungal activities compared to the other treatments. Both showed similar effects on flower quality as the synthetic germicide, 8-HQC. Therefore, these extracts are likely natural germicides to prolong vase life of cut flowers. PMID:22619568
Effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats
Ibrahim, Doaa S; Abd El-Maksoud, Marwa A E
2015-01-01
Diabetic nephropathy is a clinical syndrome characterized by albuminuria, hypertension and progressive renal insufficiency. The aim of this study was to investigate the effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats. Streptozotocin (STZ) diabetic rats were orally treated with three doses (50, 100 and 200 mg/kg) of strawberry leaf extract for 30 days. Nephropathy biomarkers in plasma and kidney were examined at the end of the experiment. The three doses of strawberry leaf extract significantly decreased the levels of blood glucose, urea nitrogen, plasma creatinine, kidney injury molecule (Kim)-1, renal malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), interleukin (IL)- 6 and caspase-3 in diabetic rats. Meanwhile, the levels of plasma insulin, albumin, uric acid, renal catalase (CAT), superoxide dismutase (SOD) and vascular endothelial growth factor A (VEGF-A) were significantly elevated in diabetic rats treated with strawberry leaf extract. These results indicate the role of strawberry leaves extract as anti-diabetic, antioxidant, anti-inflammatory and anti-apoptosis in diabetic nephropathy. PMID:25645466
Moringa oleifera leaf extracts inhibit 6β-hydroxylation of testosterone by CYP3A4
Monera, Tsitsi G.; Wolfe, Alan R.; Maponga, Charles C.; Benet, Leslie Z.; Guglielmo, Joseph
2017-01-01
Background Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6ß-hydroxylation of testosterone. Methods Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Results Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Conclusions Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs. PMID:19745507
Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray
2012-01-01
Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process. PMID:23256600
Naz, Rabia; Bano, Asghari; Wilson, Neil L; Guest, David; Roberts, Thomas H
2014-09-01
Leaf rust (Puccinia triticina) is a major disease of wheat. We tested aqueous leaf extracts of Jacaranda mimosifolia (Bignoniaceae), Thevetia peruviana (Apocynaceae), and Calotropis procera (Apocynaceae) for their ability to protect wheat from leaf rust. Extracts from all three species inhibited P. triticina urediniospore germination in vitro. Plants sprayed with extracts before inoculation developed significantly lower levels of disease incidence (number of plants infected) than unsprayed, inoculated controls. Sprays combining 0.6% leaf extracts and 2 mM salicylic acid with the fungicide Amistar Xtra at 0.05% (azoxystrobin at 10 μg/liter + cyproconazole at 4 μg/liter) reduced disease incidence significantly more effectively than sprays of fungicide at 0.1% alone. Extracts of J. mimosifolia were most active, either alone (1.2%) or in lower doses (0.6%) in combination with 0.05% Amistar Xtra. Leaf extracts combined with fungicide strongly stimulated defense-related gene expression and the subsequent accumulation of pathogenesis-related (PR) proteins in the apoplast of inoculated wheat leaves. The level of protection afforded was significantly correlated with the ability of extracts to increase PR protein expression. We conclude that pretreatment of wheat leaves with spray formulations containing previously untested plant leaf extracts enhances protection against leaf rust provided by fungicide sprays, offering an alternative disease management strategy.
Ojewole, J A O
2006-09-01
In many parts of Africa, the leaf, stem-bark, and roots of Psidium guajava Linn. (Family: Myrtaceae) are used traditionally for the management, control, and/or treatment of an array of human disorders. In an effort to scientifically appraise some of the ethnomedical properties of P. guajava leaf, and probe its efficacy and safety, the present study was undertaken to examine the antiinflammatory and analgesic properties of the plant's leaf aqueous extract in some experimental animal paradigms. The antiinflammatory property of the aqueous leaf extract was investigated in rats, using fresh egg albumin-induced pedal (paw) edema, while the analgesic effect of the plant extract was evaluated by the "hot-plate" and "acetic acid" test models of pain in mice. Diclofenac (100 mg/kg, i.p.) and morphine (10 mg/kg, i.p.) were used respectively as standard, reference antiinflammatory and analgesic agents for comparison. P. guajava leaf aqueous extract (PGE, 50-800 mg/kg, i.p.) produced dose-dependent and significant (p < 0.05-0.001) inhibition of fresh egg albumin-induced acute inflammation (edema) in rats. The plant extract (PGE, 50-800 mg/kg, i.p.) also produced dose-dependent and significant (p < 0.05-0.001) analgesic effects against thermally and chemically induced nociceptive pain in mice. The numerous tannins, polyphenolic compounds, flavonoids, ellagic acid, triterpenoids, guiajaverin, quercetin, and other chemical compounds present in the plant are speculated to account for the observed antiinflammatory and analgesic effects of the plant's leaf extract. In summary, the findings of this experimental animal study indicate that the leaf aqueous extract of P. guajava possesses analgesic and antiinflammatory properties, and thus lend pharmacological credence to the suggested ethnomedical, folkloric uses of the plant in the management and/or control of painful, arthritic and other inflammatory conditions in some rural communities of Africa. (c) 2006 Prous Science. All rights
Wen, Tung-Chou; Li, Yuan-Sheng; Rajamani, Karthyayani; Harn, Horng-Jyh; Lin, Shinn-Zong; Chiou, Tzyy-Wen
2018-01-01
In this study, we explored the effect of the water extract of Cinnamomum osmophloeum Kanehira (COK) leaves on hair growth by in vitro and in vivo assays. Using an in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, it was found that the proliferation of rat vibrissae and human hair dermal papilla cells (hDPCs) was significantly enhanced by the COK leaf extract treatment. As determined by quantitative real-time polymerase chain reaction (RT-PCR), the messenger RNA (mRNA) levels of some hair growth–related factors including vascular endothelial growth factor, keratinocyte growth factor (KGF), and transforming growth factor-β2 were found to be higher in the cultured hDPCs exposed to COK leaf extract than those in the untreated control group. In the hair-depilated C57BL/6 mouse model, the stimulation of hair growth was demonstrated in the group of COK leaf extract treatment. Both photographical and histological observations revealed the promotion of the anagen phase in the hair growth cycle by the COK leaf extract in the C57BL/6 mice. Finally, the ultra performance liquid chromatography (UPLC) showed that the COK extract contained mostly cinnamic aldehyde and a small amount of cinnamic acid. The results suggest that the COK leaf extract may find use for the treatment of hair loss. PMID:29637818
Ramesh, B. N.; Girish, T. K.; Raghavendra, R. H.; Naidu, K. Akhilender; Rao, U. J. S. Prasada; Rao, K. S.
2014-01-01
Background: Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer's disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. Objective: The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. Materials and Methods: Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm) using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs) were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. Results: Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory) in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. Conclusions: Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer's disease. PMID:24741275
NASA Astrophysics Data System (ADS)
Bindhu, M. R.; Umadevi, M.
2013-01-01
Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.
NASA Astrophysics Data System (ADS)
Lestari, R. P.; Nissa, C.; Afifah, D. N.; Anjani, G.; Rustanti, N.
2018-02-01
Alternative treatment for metabolic syndrome can be done by providing a diet consist of functional foods or beverages. Synbiotic yoghurt containing binahong leaf extract which high in antioxidant, total LAB and fiber can be selected to reduce the risk of metabolic syndrome. The effect of binahong leaf extract in synbiotic yoghurt against total LAB, antioxidant activity, and acceptance were analyzed. The experiment was done with complete randomized design with addition of binahong leaf extract 0% (control); 0.12%; 0.25%; 0.5% in synbiotic yoghurt. Analysis of total LAB using Total Plate Count test, antioxidant activity using DPPH, and acceptance were analyzed by hedonic test. The addition of binahong leaf extract in various doses in synbiotic yoghurt decreased total LAB without significant effect (p=0,145). There was no effect of addition binahong leaf extract on antioxidant activity (p=0,297). The addition of binahong leaf extract had an effect on color, but not on aroma, texture and taste. The best result was yoghurt synbiotic with addition of 0,12% binahong leaf extract. Conclusion of the research was the addition of binahong leaf extract to synbiotic yogurt did not significantly affect total LAB, antioxidant activity, aroma, texture and taste; but had a significant effect on color.
Conserved Daily Transcriptional Programs in Carica papaya
Zdepski, Anna; Wang, Wenqin; Priest, Henry D.; Ali, Faraz; Alam, Maqsudul; Mockler, Todd C.
2008-01-01
Most organisms have internal circadian clocks that mediate responses to daily environmental changes in order to synchronize biological functions to the correct times of the day. Previous studies have focused on plants found in temperate and sub-tropical climates, and little is known about the circadian transcriptional networks of plants that typically grow under conditions with relatively constant day lengths and temperatures over the year. In this study we conducted a genomic and computational analysis of the circadian biology of Carica papaya, a tropical tree. We found that predicted papaya circadian clock genes cycle with the same phase as Arabidopsis genes. The patterns of time-of-day overrepresentation of circadian-associated promoter elements were nearly identical across papaya, Arabidopsis, rice, and poplar. Evolution of promoter structure predicts the observed morning- and evening-specific expression profiles of the papaya PRR5 paralogs. The strong conservation of previously identified circadian transcriptional networks in papaya, despite its tropical habitat and distinct life-style, suggest that circadian timing has played a major role in the evolution of plant genomes, consistent with the selective pressure of anticipating daily environmental changes. Further studies could exploit this conservation to elucidate general design principles that will facilitate engineering plant growth pathways for specific environments. Electronic supplementary material The online version of this article (doi:10.1007/s12042-008-9020-3) contains supplementary material, which is available to authorized users. PMID:20671772
NASA Astrophysics Data System (ADS)
Yanis Musdja, Muhammad; Mahendra, Feizar; Musir, Ahmad
2017-12-01
Traditionally guava (Psidium guajava L) leaf is used for treatment of various ailments like diarrhea, wounds, rheumatism, anti-allergy, ant-spasmodic, etc, as folk medicine. The aim of this research is to know the effect of hypoglycemia and glucose tolerance of ethanol extract of guava leaf against male white rat. The guajava leaf was obtained from Balitro Bogor. Preparation of guajava leaf extract was done by cold maceration extraction technique using ethanol 70%. Male albino rats were made into diabetics using the alloxan method. Rats were divided into 6 groups, as a comparative drug for anti-hyperglycemic used glibenclamid and as a comparative drug for glucose tolerance used acarbose. The result of blood glucometer test showed that ethanol extract 70% of guajava leaf had effect as anti-hyperglycemic and glucose tolerance with no significant difference with glibenclamid drug as anti-hyperglycemic and acarbose as glucose tolerance drug.
Direct LAMP Assay without Prior DNA Purification for Sex Determination of Papaya.
Tsai, Chi-Chu; Shih, Huei-Chuan; Ko, Ya-Zhu; Wang, Ren-Huang; Li, Shu-Ju; Chiang, Yu-Chung
2016-09-24
Papaya (Carica papaya L.) is an economically important tropical fruit tree with hermaphrodite, male and female sex types. Hermaphroditic plants are the major type used for papaya production because their fruits have more commercial advantages than those of female plants. Sex determination of the seedlings, or during the early growth stages, is very important for the papaya seedling industry. Thus far, the only method for determining the sex type of a papaya at the seedling stage has been DNA analysis. In this study, a molecular technique-based on DNA analysis-was developed for detecting male-hermaphrodite-specific markers to examine the papaya's sex type. This method is based on the loop-mediated isothermal amplification (LAMP) and does not require prior DNA purification. The results show that the method is an easy, efficient, and inexpensive way to determine a papaya's sex. This is the first report on the LAMP assay, using intact plant materials-without DNA purification-as samples for the analysis of sex determination of papaya. We found that using high-efficiency DNA polymerase was essential for successful DNA amplification, using trace intact plant material as a template DNA source.
Vital, Pierangeli G; Rivera, Windell L
2011-10-01
To determine the antibacterial, antifungal, antiprotozoal, cytotoxic, and phytochemical properties of ethanol extracts of leaves of Voacanga globosa (Blanco) Merr. (V. globosa). The extracts were tested against bacteria and fungus through disc diffusion assay; against protozoa through growth curve determination, antiprotozoal and cytotoxicity assays. The extract revealed antibacterial activities, inhibiting the growth of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Micrococcus luteus, and Salmonella typhimurium. Antifungal assay showed that it inhibited Candida albicans. The antiprotozoal assay against Trichomonas vaginalis and Entamoeba histolytica showed that V. globosa can inhibit the parasites, wherein the action can be comparable to metronidazole. With the in situ cell death detection kit, Trichomonas vaginalis and Entamoeba histolytica exposed to V. globosa leaf extract was observed to fluoresce simultaneously in red and yellow signals signifying apoptotic-like changes. Preliminary phytochemical screening revealed the chemical composition of plant extract containing alkaloids, saponins, 2-deoxysugars, and hydrolysable tannins. Thus, this study provides scientific evidence on the traditional use of V. globosa leaf extract in treating microbial diseases. Further, the leaf extract can possibly be used to produce alternative forms of antimicrobials. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Wei, Lee Seong; Wee, Wendy; Siong, Julius Yong Fu; Syamsumir, Desy Fitrya
2011-01-01
Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS). The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC(50)) of 10.4 ± 0.06 µg/ml. The minimum inhibitory concentration (MIC) values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88%) was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%), Hexadecanoic acid, methyl ester (18.31%) and 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (17.61%). Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.
Abou Shady, Omayma M; Basyoni, Maha M A; Mahdy, Olfat A; Bocktor, Nardden Zakka
2014-08-01
Hymenolepis nana (H. nana) is the most common tapeworm infection worldwide. It is more prevalent in warm climates where sanitation is poor, particularly among children. The effect and mechanism of action of praziquantel (PZQ), given at a dose of 25-mg/kg BW, and Carica papaya dried seed crude aqueous extract (CAE), given at a dose of 1.2-g/kg BW, were assessed on H. nana worms in experimentally infected mice. Tegumental changes were studied using the scanning electron microscope (SEM) and different parasitological parameters were observed. Each group of infected mice was divided into two subgroups. The first subgroup received either treatment before the 4th day after infection to investigate their effects on the cysticercoid stage. The other subgroup received treatments after the development of the adult stage, confirmed by eggs detection in stool. Both PZQ and C. papaya dried seed CAE resulted in a significant reduction of worm burden, total egg output and viable egg count. Marked tegumental changes were evident in adult worms treated with either treatment including shrinkage of the scolex and neck region with rostellar edema and complete loss of its hooks. However, all previous effects were exerted more rapidly in the case of PZQ treatment. They both significantly reduced cysticercoid stage size. Nevertheless, C. papaya outstand PZQ in having a deforming effect on adults arising from treated cysticercoids. It was concluded that C. papaya has significant anti-cestodal properties that enable its seed extract to be a very effective alternative to PZQ against H. nana.
Niu, Kaimin; Kuk, Min; Jung, Haein; Chan, Kokgan; Kim, Sooki
2017-09-01
An increasing concern on resistance to multiple-antibiotics has led to the discovery of novel agents and the establishment of new precaution strategy. Numerous plant sources have been widely studied to reduce virulence of pathogenic bacteria by interfering cell-to-cell based communication called quorum sensing (QS). Leaf extracts of 17 gardening trees were collected and investigated for their anti-QS effects using a sensor strain Chromobacterium violaceum CV026. Methanolic extracts of K4 ( Acer palmatum ), K9 ( Acer pseudosieboldianum ) and K13 ( Cercis chinensis ) leaves were selected for further experiments based on their antagonism effect on QS without inhibiting C. violaceum CV026 growth. Subsequently, the leaf extracts on QS-mediated virulence of Pseudomonas aeruginosa PAO1 involved in biofilm formation, motility, bioluminescence, pyocyanin production, QS molecules production, and Caenorhabditis elegans killing activity were evaluated. The biofilm formation ability and swarming motility of P. aeruginosa PAO1 were decreased approximately 50% in the presence of these leaf extracts at a concentration of 1 mg/mL. The expression level of lecA::lux of P. aeruginosa PAO1 and pyocyanin production were also reduced. The three leaf extracts also decreased autoinducer (AI) production in P. aeruginosa PAO1 without direct degradation, suggesting that AI synthesis might have been suppressed by these extracts. The three leaf extracts also showed anti-infection activity in C. elegans model. Taken together, these results suggest that methanolic leaf extracts of K4, K9 and K13 have the potential to attenuate the virulence of P. aeruginosa PAO1.
Malahubban, M; Alimon, A R; Sazili, A Q; Fakurazi, S; Zakry, F A
2013-09-01
Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.
Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, Kannan Badri; Sakthivel, Natarajan, E-mail: puns2005@gmail.com
2011-10-15
Highlights: {yields} Synthesis of AgNPs using the leaf extract of Coleus amboinicus L. was described. {yields} UV-vis absorption spectra showed the formation of isotrophic AgNPs at 437 nm in 6 h. {yields} XRD analysis showed intense peaks corresponding to fcc structure of AgNPs. {yields} HR-TEM analysis revealed the formation of stable anisotrophic and isotrophic AgNPs. -- Abstract: In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmissionmore » electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.« less
Ghonmode, Wasudeo Namdeo; Balsaraf, Omkar D; Tambe, Varsha H; Saujanya, K P; Patil, Ashishkumar K; Kakde, Deepak D
2013-01-01
Background: E. faecalis is the predominant micro-organism recovered from root canal of the teeth where previous endodontic treatment has failed. Thorough debridement and complete elimination of micro-organisms are objectives of an effective endodontic treatment. For many years, intracanal irrigants have been used as an adjunct to enhance antimicrobial effect of cleaning and shaping in endodontics. The constant increase in antibiotic-resistant strains and side-effects of synthetic drugs has promoted researchers to look for herbal alternatives. For thousands of years humans have sought to fortify their health and cure various illnesses with herbal remedies, but only few have been tried and tested to withstand modern scientific scrutiny. The present study was aimed to evaluate alternative, inexpensive simple and effective means of sanitization of the root canal systems. The antimicrobial efficacy of herbal alternatives as endodontic irrigants is evaluated and compared with the standard irrigant sodium hypochlorite. Materials & Methods: Neem leaf extracts, grape seed extracts, 3% Sodium hypochlorite, absolute ethanol, Enterococcus faecalis (ATCC 29212) cultures, Brain heart infusion media. The agar diffusion test was performed in brain heart infusion media and broth. The agar diffusion test was used to measure the zone of inhibition. Results: Neem leaf extracts and grape seed extracts showed zones of inhibition suggesting that they had anti-microbial properties. Neem leaf extracts showed significantly greater zones of inhibition than 3% sodium hypochlorite. Also interestingly grape seed extracts showed zones of inhibition but were not as significant as of neem extracts. Conclusion: Under the limitations of this study, it was concluded that neem leaf extract has a significant antimicrobial effect against E. faecalis. Microbial inhibition potential of neem leaf extract observed in this study opens perspectives for its use as an intracanal medication. How to cite this
Bindhu, M R; Umadevi, M
2013-01-15
Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri. Copyright © 2012 Elsevier B.V. All rights reserved.
Sukumaran, NatarajaPillai
2014-01-01
The main objective of the present study is to improve the immune power of Cyprinus carpio by using Euphorbia hirta plant leaf extract as immunostimulants. The haematological, immunological and enzymatic studies were conducted on the medicated fish infected with Aeromonas hydrophila pathogen. The results obtained from the haematological studies show that the RBC count, WBC count and haemoglobin content were increased in the infected fish at higher concentration of leaf extract. The feeds with leaf extract of Euphorbia hirta were able to stimulate the specific immune response by increasing the titre value of antibody. It was able to stimulate the antibody production only up to the 5th day, when fed with higher concentrations of (25 g and 50 g) plant leaf extract. The plant extract showed non-specific immune responses such as lysozyme activity, phagocytic ratio, NBT assay, etc. at higher concentration (50 g) and in the same concentration (50 g), the leaf extract of Euphorbia hirta significantly eliminated the pathogen in blood and kidney. It was observed that fish have survival percentage significantly at higher concentration (50 g) of Euphorbia hirta, when compared with the control. The obtained results are statistically significant at P < 0.05 and P < 0.01 levels. This research work suggests that the plant Euphorbia hirta has immunostimulant activity by stimulating both specific and non-specific immunity at higher concentrations. PMID:25405077
Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K; Pandey, Abhay K
2013-01-01
The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11-222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10-40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90-99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.
Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K.; Pandey, Abhay K.
2013-01-01
The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11–222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10–40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90–99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts. PMID:24093108
Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles
Elavazhagan, Tamizhamudu; Arunachalam, Kantha D
2011-01-01
We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878
Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.
Elavazhagan, Tamizhamudu; Arunachalam, Kantha D
2011-01-01
We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.
JUNG, IL LAE; LEE, JU HYE; KANG, SE CHAN
2015-01-01
It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44–52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers. PMID:26622717
Kawakami, Yuki; Nakamura, Tomomi; Hosokawa, Tomoko; Suzuki-Yamamoto, Toshiko; Yamashita, Hiromi; Kimoto, Masumi; Tsuji, Hideaki; Yoshida, Hideki; Hada, Takahiko; Takahashi, Yoshitaka
2009-01-01
Prostaglandin endoperoxide H synthase (PGHS) is a key enzyme for the synthesis of prostaglandins (PGs) which play important roles in inflammation and carcinogenesis. Because the extract from Psidium guajava is known to have a variety of beneficial effects on our body including the anti-inflammatory, antioxidative and antiproliferative activities, we investigated whether the extract inhibited the catalytic activity of the two PGHS isoforms using linoleic acid as an alternative substrate. The guava leaf extract inhibited the cyclooxygenase reaction of recombinant human PGHS-1 and PGHS-2 as assessed by conversion of linoleic acid to 9- and 13-hydroxyoctadecadienoic acids (HODEs). The guava leaf extract also inhibited the PG hydroperoxidase activity of PGHS-1, which was not affected by nonsteroidal anti-inflammatory drugs (NSAIDs). Quercetin which was one of the major components not only inhibited the cyclooxygenase activity of both isoforms but also partially inhibited the PG hydroperoxidase activity. Overexpression of human PGHS-1 and PGHS-2 in the human colon carcinoma cells increased the DNA synthesis rate as compared with mock-transfected cells which did not express any isoforms. The guava leaf extract not only inhibited the PGE(2) synthesis but also suppressed the DNA synthesis rate in the PGHS-1- and PGHS-2-expressing cells to the same level as mock-transfected cells. These results demonstrate the antiproliferative activity of the guava leaf extract which is at least in part caused by inhibition of the catalytic activity of PGHS isoforms.
Vennat, B; Pourrat, H; Pouget, M P; Gross, D; Pourrat, A
1988-10-01
The tannins in leaf, bark, and stem extracts of HAMAMELIS VIRGINIANA were analyzed. Four proanthocyanidins were isolated by HPLC. One was a procyanidin polymer containing only one type of flavanol unit; the other three were polymers of procyanidin and prodelphinidin containing two types of flavanol units. A method of assay of hamamelitannin showed the bark extract to be 31 times richer in hamamelitannin than the leaf extract and 87 times richer than the stem extract.
Ly, Christina; Ferrier, Jonathan; Gaudet, Jeremiah; Yockell-Lelièvre, Julien; Arnason, John Thor; Gruslin, Andrée; Bainbridge, Shannon
2018-04-01
Perturbations to extravillous trophoblast (EVT) cell migration and invasion are associated with the development of placenta-mediated diseases. Phytochemicals found in the lowbush blueberry plant (Vaccinium angustifolium) have been shown to influence cell migration and invasion in models of tumorigenesis and noncancerous, healthy cells, however never in EVT cells. We hypothesized that the phenolic compounds present in V. angustifolium leaf extract promote trophoblast migration and invasion. Using the HTR-8/SVneo human EVT cell line and Boyden chamber assays, the influence of V. angustifolium leaf extract (0 to 2 × 10 4 ng/ml) on trophoblast cell migration (n = 4) and invasion (n = 4) was determined. Cellular proliferation and viability were assessed using immunoreactivity to Ki67 (n = 3) and trypan blue exclusion assays (n = 3), respectively. At 20 ng/ml, V. angustifolium leaf extract increased HTR-8/SVneo cell migration and invasion (p < .01) and did not affect cell proliferation or viability. Chlorogenic acid was identified as a major phenolic compound of the leaf extract and the most active compound. Evidence from Western blot analysis (n = 3) suggests that the effects of the leaf extract and chlorogenic acid on trophoblast migration and invasion are mediated through an adenosine monophosphate-activated protein (AMP) kinase-dependent mechanism. Further investigations examining the potential therapeutic applications of this natural health product extract and its major chemical compounds in the context of placenta-mediated diseases are warranted. Copyright © 2018 John Wiley & Sons, Ltd.
Dual role of betel leaf extract on thyroid function in male mice.
Panda, S; Kar, A
1998-12-01
The effects of betel leaf extract (0.10, 0.40, 0.80 and 2.0 g kg-1 day-1 for 15 days) on the alterations in thyroid hormone concentrations. lipid peroxidation (LPO) and on the activities of superoxide dismutase (SOD) and catalase (CAT) were investigated in male Swiss mice. Administration of betel leaf extract exhibited a dual role, depending on the different doses. While the lowest dose decreased thyroxine (T4) and increased serum triiodothyronine (T3) concentrations, reverse effects were observed at two higher doses. Higher doses also increased LPO with a concomitant decrease in SOD and CAT activities. However, with the lowest dose most of these effects were reversed. These findings suggest that betel leaf can be both stimulatory and inhibitory to thyroid function, particularly for T3 generation and lipid peroxidation in male mice, depending on the amount consumed.
Antidiarrhoeal activity of leaf methanolic extract of Rauwolfia serpentina.
Ezeigbo, I I; Ezeja, M I; Madubuike, K G; Ifenkwe, D C; Ukweni, I A; Udeh, N E; Akomas, S C
2012-06-01
To evaluate the antidiarrhoeal property of methanol extract of the leaves of Rauwolfia serpentina (R. serpentina) in experimental diarrhoea induced by castor oil in mice. Doses of 100, 200 and 400 mg/kg R. serpentina leaf methanol extracts were administered to castor oil induced diarrhoea mice to determine its antidiarrhoeal activity. All doses of the extract and the reference drug atropine sulphate (3 mg/kg, i.p.) produced a dose-dependent reduction in intestinal weight and fluid volume. The extracts also significantly reduced the intestinal transit in charcoal meal test when compared to diphenoxylate Hcl (5 mg/kg, p.o.). The results show that the extract of R. serpentina leaves has a significant antidiarrhoeal activity and supports its traditional uses in herbal medicine.
Evidence of oleuropein degradation by olive leaf protein extract.
De Leonardis, Antonella; Macciola, Vincenzo; Cuomo, Francesca; Lopez, Francesco
2015-05-15
The enzymatic activity of raw protein olive leaf extract has been investigated in vivo, on olive leaf homogenate and, in vitro with pure oleuropein and other phenolic substrates. At least two types of enzymes were found to be involved in the degradation of endogenous oleuropein in olive leaves. As for the in vitro experiments, the presence of active polyphenoloxidase and β-glucosidase was determined by HPLC and UV-Visible spectroscopy. Interestingly, both the enzymatic activities were found to change during the storage of olive leaves. Specifically, the protein extracts obtained from fresh leaves showed the presence of both the enzymatic activities, because oleuropein depletion occurred simultaneously with the formation of the oleuropein aglycon, 3,4-DHPEA-EA. In comparison leaves subjected to the drying process showed a polyphenoloxidase activity leading exclusively to the formation of oxidation products responsible for the typical brown coloration of the reaction solution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ramachandran, Pushkala; Nagarajan, Srividya
2014-01-01
Aloe vera gel, well known for its nutraceutical potential, is being explored as a functional ingredient in a wide array of health foods and drinks. Processing of exotic fruits and herbal botanicals into functional beverage is an emerging sector in food industry. The present study was undertaken to develop a spiced functional RTS beverage blend using Aloe gel (AG) and papaya. Aloe gel (30%), papaya pulp (15%), spice extract (5%), and citric acid (0.1%) were mixed in given proportion to prepare the blend with TSS of 15 °Brix. The product was bottled, pasteurized, and stored at room temperature. The quality characteristics and storage stability of the spiced beverage blend (SAGPB) were compared with spiced papaya RTS beverage (SPB). Periodic analysis was carried out up to five months for various physicochemical parameters, sugar profile, bioactive compounds, microbial quality, instrumental color, and sensory acceptability. The SAGPB exhibited superior quality characteristics compared to SPB both in fresh and in stored samples. The SPB was acceptable up to four months and SAGPB for five months. The results indicate that nutraceutical rich AG could be successfully utilized to develop functional fruit beverages with improved quality and shelf life. PMID:26904652
Iraklis, Boubourakas; Kanda, Hiroko; Nabeshima, Tomoyuki; Onda, Mayu; Ota, Nao; Koeda, Sota; Hosokawa, Munetaka
2016-08-01
CSVd could not infect Nicotiana benthamiana when the plants were pretreated with crude leaf extract of Capsicum chinense 'Sy-2'. C. chinense leaves were revealed to contain strong RNA-digesting activity. Several studies have identified active antiviral and antiviroid agents in plants. Capsicum plants are known to contain antiviral agents, but the mechanism of their activity has not been determined. We aimed to elucidate the mechanism of Capsicum extract's antiviroid activity. Chrysanthemum stunt viroid (CSVd) was inoculated into Nicotiana benthamiana plants before or after treating the plants with a leaf extract of Capsicum chinense 'Sy-2'. CSVd infection was determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 3 weeks after inoculation. When Capsicum extract was sprayed or painted onto N. benthamiana before inoculation, it was effective in preventing infection by CSVd. To evaluate CSVd digestion activity in leaf extracts, CSVd was mixed with leaf extracts of Mirabilis, Phytolacca, Pelargonium and Capsicum. CSVd-digesting activities were examined by quantifying undigested CSVd using qRT-PCR, and RNA gel blotting permitted visualization of the digested CSVd. Only Capsicum leaf extract digested CSVd, and in the Capsicum treatment, small digested CSVd products were detected by RNA gel blot analysis. When the digesting experiment was performed for various cultivars and species of Capsicum, only cultivars of C. chinense showed strong CSVd-digesting activity. Our observations indicated that Capsicum extract contains strong RNA-digesting activity, leading to the conclusion that this activity is the main mechanism for protection from infection by CSVd through spraying or painting before inoculation. To our knowledge, this is the first report of a strong RNA-digesting activity by a plant extract.
Ma, Chih-Ming; Cheng, Chih-Lun; Lee, Shang-Chieh; Hong, Gui-Bing
2018-04-30
The aim of this study was to examine the effect of process factors such as ethanol concentration, extraction time and temperature on the extraction yield and the bioactive contents of Tagetes lemmonii leaf extracts using response surface methodology (RSM). ANOVA results showed that the response variables were affected by the ethanol concentration to a very significant degree and by extraction temperature to a lesser degree. GC/MS characterization showed that the extract is rich in bioactive compounds and those present exhibited important biological activities such as antioxidant, insect repellence and insecticidal activities. The results from the toxicity assay demonstrate that the extract obtained from the leaves of Tagetes lemmonii was an effective insect toxin against Tribolium castaneum. The radical scavenging activity and p-anisidine test results of olive oil spiked with different concentrations of leaf extract showed that the phenolic compounds can retard lipid oxidation. Copyright © 2018 Elsevier Inc. All rights reserved.
New approach for papaya latex storage without virus degradation
Rodrigues, Silas P.; Andrade, Josemar S.; Ventura, José A.; Fernandes, Patricia M. B.
2009-01-01
Papaya meleira virus (PMeV) is the causal agent of papaya (Carica papaya L.) sticky disease, which has been detected through analysis of its double-stranded RNA (dsRNA) genome from plant latex. In this work we demonstrate that PMeV dsRNA is protected during 25 days when latex is diluted in citrate buffer pH 5.0 (1:1 v/v) and maintained at -20ºC. At the same temperature, some protection was observed for pure latex or latex diluted in ultra-pure water. Conversely, the dsRNA was almost completely degraded after 25 days when maintained at 25ºC, indicating the need for freezing. The proper procedures to collect and store papaya latex described here will contribute to efficient and large scale use of molecular diagnosis of PMeV. PMID:24031329
Hypoxia affects cellular responses to plant extracts.
Liew, Sien-Yei; Stanbridge, Eric J; Yusoff, Khatijah; Shafee, Norazizah
2012-11-21
Microenvironmental conditions contribute towards varying cellular responses to plant extract treatments. Hypoxic cancer cells are known to be resistant to radio- and chemo-therapy. New therapeutic strategies specifically targeting these cells are needed. Plant extracts used in Traditional Chinese Medicine (TCM) can offer promising candidates. Despite their widespread usage, information on their effects in hypoxic conditions is still lacking. In this study, we examined the cytotoxicity of a series of known TCM plant extracts under normoxic versus hypoxic conditions. Pereskia grandifolia, Orthosiphon aristatus, Melastoma malabathricum, Carica papaya, Strobilanthes crispus, Gynura procumbens, Hydrocotyle sibthorpioides, Pereskia bleo and Clinacanthus nutans leaves were dried, blended into powder form, extracted in methanol and evaporated to produce crude extracts. Human Saos-2 osteosarcoma cells were treated with various concentrations of the plant extracts under normoxia or hypoxia (0.5% oxygen). 24h after treatment, an MTT assay was performed and the IC(50) values were calculated. Effect of the extracts on hypoxia inducible factor (HIF) activity was evaluated using a hypoxia-driven firefly luciferase reporter assay. The relative cytotoxicity of each plant extract on Saos-2 cells was different in hypoxic versus normoxic conditions. Hypoxia increased the IC(50) values for Pereskia grandifola and Orthosiphon aristatus extracts, but decreased the IC(50) values for Melastoma malabathricum and Carica papaya extracts. Extracts of Strobilanthes crispus, Gynura procumbens, Hydrocotyle sibthorpioides had equivalent cytotoxic effects under both conditions. Pereskia bleo and Clinacanthus nutans extracts were not toxic to cells within the concentration ranges tested. The most interesting result was noted for the Carica papaya extract, where its IC(50) in hypoxia was reduced by 3-fold when compared to the normoxic condition. This reduction was found to be associated with HIF
Sex determination in flowering plants: papaya as a model system.
Aryal, Rishi; Ming, Ray
2014-03-01
Unisexuality in flowering plants evolved from a hermaphrodite ancestor. Transition from hermaphrodite to unisexual flowers has occurred multiple times across the different lineages of the angiosperms. Sexuality in plants is regulated by genetic, epigenetic and physiological mechanisms. The most specialized mechanism of sex determination is sex chromosomes. The sex chromosomes ensure the stable segregation of sexual phenotypes by preventing the recombination of sex determining genes. Despite continuous efforts, sex determining genes of dioecious plants have not yet been cloned. Concerted efforts with various model systems are necessary to understand the complex mechanism of sex determination in plants. Papaya (Carica papaya L.) is a tropical fruit tree with three sex forms, male, hermaphrodite, and female. Sexuality in papaya is determined by an XY chromosome system that is in an early evolutionary stage. The male and hermaphrodite of papaya are controlled by two different types of Y chromosomes: Y and Y(h). Large amounts of information in the area of genetics, genomics, and epigenetics of papaya have been accumulated over the last few decades. Relatively short lifecycle, small genome size, and readily available genetic and genomic resources render papaya an excellent model system to study sex determination and sex chromosomes in flowering plants. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Immunomodulatory Effect of Gymnema sylvestre (R.Br.) Leaf Extract: An In Vitro Study in Rat Model.
Singh, Vineet Kumar; Dwivedi, Padmanabh; Chaudhary, B R; Singh, Ramesh
2015-01-01
Gymnema sylvestre Wild R.Br (family: Asclepidaceae) is a valuable medicinal plant used in folk medicine to treat diabetes, obesity, asthma etc. in India for antiquity. Diabetes mellitus is a syndrome characterized immunologically by lymphocyte apoptosis and reduced cell-mediated and humoral immunity. Modulation of immune responses to alleviate diseases has been of interest, and traditional herbal medicines may play an important role in this regard. In this study, we aim to evaluate the immunomodulatory potential of methanolic extract of G. sylvestre leaf using rat model. HPLC analysis of leaf extract was carried out for gymnemic acid. The method involves the initial hydrolysis of gymnemic acids, the active ingredients, to a common aglycone followed by the quantitative estimation of gymnemagenin, using gymnemagenin as reference standard. Gymnemic acid content was 2.40% (w/w) in G. sylvestre leaf extract. In vitro immunomodulatory activity of the methanolic extract of G. sylvestre leaf (1-200μg/ml) was evaluated by gauging its effects on nitroblue tetrazolium reduction and nitrite release in rat peritoneal macrophages and on mitogen (ConA, PHA and LPS) induced splenic lymphocyte proliferation. G. sylvestre leaf extract showed significant (<0.05) enhancement in NO and ROS generation in macrophages and in proliferation of lymphocytes in dose dependent manner. EC50 value was 3.10, 3.75 and 2.68 μg/ml for NBT reduction, nitrite release and lymphoproliferation, respectively. Potential effect was observed at 100 μg/ml in NO and ROS generation in macrophages and 20 μg/ml in lymphocyte proliferation. G. sylvestre leaf extract stimulates macrophage reactivity, increasing the level of activity even higher when combined with PMA or LPS. These findings suggest the presence of active compounds, gymnemic acid, in methanolic extract of G. sylvestre leaf that stimulates both myeloid and lymphoid components of immune system, and therefore can restore the innate immune function
Immunomodulatory Effect of Gymnema sylvestre (R.Br.) Leaf Extract: An In Vitro Study in Rat Model
Dwivedi, Padmanabh; Chaudhary, B. R.
2015-01-01
Gymnema sylvestre Wild R.Br (family: Asclepidaceae) is a valuable medicinal plant used in folk medicine to treat diabetes, obesity, asthma etc. in India for antiquity. Diabetes mellitus is a syndrome characterized immunologically by lymphocyte apoptosis and reduced cell-mediated and humoral immunity. Modulation of immune responses to alleviate diseases has been of interest, and traditional herbal medicines may play an important role in this regard. In this study, we aim to evaluate the immunomodulatory potential of methanolic extract of G. sylvestre leaf using rat model. HPLC analysis of leaf extract was carried out for gymnemic acid. The method involves the initial hydrolysis of gymnemic acids, the active ingredients, to a common aglycone followed by the quantitative estimation of gymnemagenin, using gymnemagenin as reference standard. Gymnemic acid content was 2.40% (w/w) in G. sylvestre leaf extract. In vitro immunomodulatory activity of the methanolic extract of G. sylvestre leaf (1–200μg/ml) was evaluated by gauging its effects on nitroblue tetrazolium reduction and nitrite release in rat peritoneal macrophages and on mitogen (ConA, PHA and LPS) induced splenic lymphocyte proliferation. G. sylvestre leaf extract showed significant (<0.05) enhancement in NO and ROS generation in macrophages and in proliferation of lymphocytes in dose dependent manner. EC50 value was 3.10, 3.75 and 2.68μg/ml for NBT reduction, nitrite release and lymphoproliferation, respectively. Potential effect was observed at 100 μg/ml in NO and ROS generation in macrophages and 20 μg/ml in lymphocyte proliferation. G. sylvestre leaf extract stimulates macrophage reactivity, increasing the level of activity even higher when combined with PMA or LPS. These findings suggest the presence of active compounds, gymnemic acid, in methanolic extract of G. sylvestre leaf that stimulates both myeloid and lymphoid components of immune system, and therefore can restore the innate immune function
Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Shahidi, Fakhri; Noorbakhsh, Hamid; Vasiee, Alireza; Alghooneh, Ali
2018-01-01
In this study, the effects of water, ethanol, methanol and glycerin at five levels (0, 31.25, 83.33, 125 and 250 ml) were investigated on the efficiency of mangrove leaf extraction using mixture optimal design. The antimicrobial effect of the extracts on Streptococcus pneumoniae, Enterococcus faecium and Klebsiella pneumoniae was evaluated using disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. The mangrove leaf extraction components were identified through gas chromatography/mass spectrometry (GC/MS). Phytochemical analysis (alkaloids, tannins, saponins, flavone and glycosides) were evaluated based on qualitative methods. Antioxidant activity of extracts was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) methods. Maximum antimicrobial effect was observed in Enterococcus faecium and highest resistance against mangrove leaf extract in Enterococcus faecium and Klebsiella pneumoniae, respectively. Increasing concentration of mangrove extracts had a significant effect (p ≤ 0.05) on inhibition zone diameter. The MICs of the mangrove leaf extraction varied from 4 mg/ml to 16 mg/ml. The optimum formulation was found to contain glycerin (0 ml), water (28.22 ml), methanol (59.83 ml) and ethanol (161.95 ml). The results showed that the highest antioxidant activity was related to optimum extract of mangrove leaf and ethanolic extract respectively. The results of phytochemical screening of Avicennia marina leaves extract showed the existence of alkaloids, tannins, saponins, flavone and glycosides. 2-Propenoic acid, 3-phenyl- was the major compound of Avicennia marina. The results of non-significant lack of fit tests, and F value (14.62) indicated that the model was sufficiently accurate. In addition, the coefficient of variations (16.8%) showed an acceptable reproducibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparative ovicidal activity of Moringa oleifera leaf extracts on Fasciola gigantica eggs
Hegazi, Ahmed G.; Megeed, Kadria N. Abdel; Hassan, Soad E.; Abdelaziz, M. M.; Toaleb, Nagwa I.; Shanawany, Eman E. El; Aboelsoued, Dina
2018-01-01
Background: Fasciolosis is an important zoonotic disease affecting the productive performance of farm animals in Egypt. Aim: The aim of the present study was comparing the ovicidal effect of different extracts as an alcoholic (Methanolic and Ethanolic) and aqueous Moringa oleifera leaf extracts on Fasciola gigantica non-embryonated and developed eggs. Materials and Methods: Tested concentrations of extracts ranged from 12.5 to 800 mg/ml. Nitroxynil was used as reference drug with a dose of 100 mg/ml. Results: M. oleifera alcoholic and aqueous extracts showed a concentration-dependent ovicidal effect on F. gigantica non-embryonated and developed eggs. Based on LC50 values, water extract showed the highest ovicidal activity since it registered the lowest values of 2.6 mg/ml on non-embryonated eggs. Non-embryonated eggs were more susceptible to aqueous extract than developed eggs. On the other hand, the developed eggs were more susceptible to ethanolic extract than non-embryonated eggs even the lowest LC50 (12.38 mg/ml). Conclusion: M. oleifera leaf extracts especially aqueous extract could be a promising step in the field of controlling fascioliasis. Further, in vivo studies are needed to enlighten the therapeutic potential of M. oleifera extracts in treating F. gigantica infection. PMID:29657406
NASA Astrophysics Data System (ADS)
Jayakumarai, G.; Gokulpriya, C.; Sudhapriya, R.; Sharmila, G.; Muthukumaran, C.
2015-12-01
Simple effective and rapid approach for the green synthesis of copper oxide nanoparticles (CONPs) using of Albizia lebbeck leaf extract was investigated in this study. Various instrumental techniques were adopted to characterize the synthesized CONPs, viz. UV-Vis spectroscopy, SEM, TEM, EDS and XRD. The synthesized CONPs were found to be spherical in shape and size less than 100 nm. It could be concluded that A. lebbeck leaf extract can be used as a cheap and effective reducing agent for CONPs production in large scale.
Evaluation of Aqueous Leaf Extract of Cardiospermum halicacabum (L.) on Fertility of Male Rats.
Peiris, L Dinithi C; Dhanushka, M A T; Jayathilake, T A H D G
2015-01-01
Treatment with 100 mg/kg and 200 mg/kg body weight of aqueous leaf extract (ALE) of Cardiospermum halicacabum for 30 days produced a significant dose dependent increase in the sperm counts and sperm motility in both caput and cauda regions. Further, significant increase in serum testosterone level was evident at all applied doses. However, no significant changes in the weight of sex organs were observed. Aqueous leaf extract also increased the number of females impregnated, number of implantations, and number of viable fetuses while decreasing the total number of resorption sites in the pregnant females. However, the total cholesterol level in the serum remained unchanged and there were no records on renotoxicity; nevertheless ALE exhibited a hepatoprotective effect. It was concluded that aqueous leaf extract of Cardiospermum halicacabum enhanced sperm concentration, motility, and testosterone, leading to positive results in fertility.
Salleh, Mohd Nizar; Runnie, Irine; Roach, Paul D; Mohamed, Suhaila; Abeywardena, Mahinda Y
2002-06-19
Twelve edible plant extracts rich in polyphenols were screened for their potential to inhibit oxidation of low-density lipoprotein (LDL) in vitro and to modulate LDL receptor (LDLr) activity in cultured HepG2 cells. The antioxidant activity (inhibition of LDL oxidation) was determined by measuring the formation of conjugated dienes (lag time) and thiobarbituric acid reagent substances (TBARS). Betel leaf (94%), cashew shoot (63%), Japanese mint (52%), semambu leaf (50%), palm frond (41%), sweet potato shoot, chilli fruit, papaya shoot, roselle calyx, and maman showed significantly increased lag time (>55 min, P < 0.05) and inhibition of TBARS formation (P < 0.05) compared to control. LDLr was significantly up-regulated (P < 0.05) by Japanese mint (67%), semambu (51%), cashew (50%), and noni (49%). Except for noni and betel leaf, most plant extracts studied demonstrated a positive association between antioxidant activity and the ability to up-regulate LDL receptor. Findings suggest that reported protective actions of plant polyphenols on lipoprotein metabolism might be exerted at different biochemical mechanisms.
Pharmacological Studies of Artichoke Leaf Extract and Their Health Benefits.
Ben Salem, Maryem; Affes, Hanen; Ksouda, Kamilia; Dhouibi, Raouia; Sahnoun, Zouheir; Hammami, Serria; Zeghal, Khaled Mounir
2015-12-01
Artichoke (Cynara scolymus) leaf extract was one of the few herbal remedies which the clinical and experimental trials have complemented each other. Both experimental and clinical effects have been verified through extensive biomedical herbal remedy research. Specifically, antioxidant, choleretic, hepatoprotective, bile-enhancing and lipid-lowering effects have been demonstrated, which corresponded with its historical use. Ongoing research seems to indicate that artichoke indeed have medicinal qualities. Most significant appears to be its beneficial effect on the liver. In animal studies, liquid extracts of the roots and leaves of artichoke have demonstrated an ability to protect the liver, with possibly even to help liver cells regenerate. Although research is not yet conclusive, scientists were optimistic that its long-standing use in humans for digestive and bowel problems was indeed justified. It may also play a role in lowering cholesterol and thus help to prevent heart disease. Boiled wild artichoke reduced postprandial glycemic and insulinemic responses in normal subjects but has no effect on metabolic syndrome patients. This article intended to review the wide ranging pharmacological effects of artichoke leaf extract.
Antidiarrhoeal activity of leaf methanolic extract of Rauwolfia serpentina
Ezeigbo, II; Ezeja, MI; Madubuike, KG; Ifenkwe, DC; Ukweni, IA; Udeh, NE; Akomas, SC
2012-01-01
Objective To evaluate the antidiarrhoeal property of methanol extract of the leaves of Rauwolfia serpentina (R. serpentina) in experimental diarrhoea induced by castor oil in mice. Methods Doses of 100, 200 and 400 mg/kg R. serpentina leaf methanol extracts were administered to castor oil induced diarrhoea mice to determine its antidiarrhoeal activity. Results All doses of the extract and the reference drug atropine sulphate (3 mg/kg, i.p.) produced a dose-dependent reduction in intestinal weight and fluid volume. The extracts also significantly reduced the intestinal transit in charcoal meal test when compared to diphenoxylate Hcl (5 mg/kg, p.o.). Conclusions The results show that the extract of R. serpentina leaves has a significant antidiarrhoeal activity and supports its traditional uses in herbal medicine. PMID:23569944
Dhayalan, Arunachalam; Gracilla, Daniel E; Dela Peña, Renato A; Malison, Marilyn T; Pangilinan, Christian R
2018-01-01
The study investigated the medicinal properties of Spathiphyllum cannifolium (Dryand. ex Sims) Schott as a possible source of antimicrobial compounds. The phytochemical constituents were screened using qualitative methods and the antibacterial and antifungal activities were determined using agar well diffusion method. One-way analysis of variance and Fisher's least significant difference test were used. The phytochemical screening showed the presence of sterols, flavonoids, alkaloids, saponins, glycosides, and tannins in both ethanol and chloroform leaf extracts, but triterpenes were detected only in the ethanol leaf extract. The antimicrobial assay revealed that the chloroform leaf extract inhibited Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa , whereas the ethanol leaf extract inhibited E. coli , S. aureus , and B. subtilis only. The ethanol and chloroform leaf extracts exhibited the highest zone of inhibition against B. subtilis . The antifungal assay showed that both the leaf extracts have no bioactivity against Aspergillus niger and C. albicans . Results suggest that chloroform is the better solvent for the extraction of antimicrobial compounds against the test organisms used in this study. Findings of this research will add new knowledge in advancing drug discovery and development in the Philippines.
Pasupuleti, Visweswara Rao; Prasad, TNVKV; Shiekh, Rayees Ahmad; Balam, Satheesh Krishna; Narasimhulu, Ganapathi; Reddy, Cirandur Suresh; Rahman, Ismail Ab; Gan, Siew Hua
2013-01-01
Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries. PMID:24039419
Pasupuleti, Visweswara Rao; Prasad, T N V; Shiekh, Rayees Ahmad; Balam, Satheesh Krishna; Narasimhulu, Ganapathi; Reddy, Cirandur Suresh; Ab Rahman, Ismail; Gan, Siew Hua
2013-01-01
Nanotechnology is gaining momentum due to its ability to transform metals into nanoparticles. The synthesis, characterization, and applications of biologically synthesized nanomaterials have become an important branch of nanotechnology. Plant extracts are a cost-effective, ecologically friendly, and efficient alternative for the large-scale synthesis of nanoparticles. In this study, silver nanoparticles (AgNps) were synthesized using Rhinacanthus nasutus leaf extract. After exposing the silver ions to the leaf extract, the rapid reduction of silver ions led to the formation of AgNps in solution. The synthesis was confirmed by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The in vitro antimicrobial activity of the AgNps synthesized using R. nasutus leaf extract was investigated against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Aspergillus niger, and Aspergillus flavus using a disc diffusion method. The AgNps showed potential activity against all of the bacterial strains and fungal colonies, indicating that R. nasutus has the potential to be used in the development of value-added products in the biomedical and nanotechnology-based industries.
Karuppanan, Muthupillai; Krishnan, Manigandan; Padarthi, Pavankumar; Namasivayam, Elangovan
2014-01-01
To explore the antioxidant and hepatoprotective effect of ethanolic Mangifera indica (EMI) and methanolic Mangifera indica (MMI) leaf extracts in mercuric chloride (HgCl 2 ) induced toxicity in Swiss albino mice. Toxicity in mice was induced with HgCl 2 (5.0 mg/kg, i.p.), followed by oral intervention with EMI and MMI extracts (25 mg and 50 mg/kg. body wt.) for 30 days. The extent of liver damage was assessed from the extents of histopathological, morphological, antioxidant and liver enzymes. Mercuric chloride-induced mice showed an increased cellular damage whereas leaf extracts of EMI and MMI-treated mice showed recovery of damaged hepatocytes. Mercuric chloride intoxicated mice exhibited a significant (p < 0.05) elevation in the liver enzymes (Aspartate amino transferase and Alanine amino transferase) and gradual decline in the cellular radical scavenging enzyme levels (Catalase, Glutathione-s-transferase and Glutathione peroxidase. The combined treatment with EMI and MMI leaf extracts significantly (p < 0.05) reversed these parameters. However, the effects of MMI leaf extract (50 mg/kg) were superior to those of EMI- treated mice possibly due to its potent radical scavenging property. These results suggest that oral supplementation of Mangifera indica extract remarkably reduces hepatotoxicity in mice possibly through its antioxidant potentials. How to cite this article: Karuppanan M, Krishnan M, Padarthi P, Namasivayam E. Hepatoprotec-tive and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice. Euroasian J Hepato-Gastroenterol 2014;4(1):18-24.
Ahmed, Hanaa H; El-Abhar, Hanan S; Hassanin, Elsayed Abdul Khalik; Abdelkader, Noha F; Shalaby, Mohamed B
2017-11-01
In Egypt, colorectal cancer (CRC) is the 6th cancer in both gender and CRC rates are high in subjects under 40 years of age. This study goaled to determine the development of CRC using relevant biochemical markers and to elucidate the potent mechanism of Ginkgo biloba L. leaf extract in retrogression of experimental CRC. Adult male Sprague-Dawley rats were administered N-methylnitrosourea (N-MNU; 2mg in 0.5ml water/rat) intrarectally thrice a week for five weeks to induce CRC, followed by treatment with either 5-fluorouracil (5-FU; 12.5mg/kg, i.p.) or Ginkgo biloba L. leaf extract in a dose of 0.675 and 1.35g/kg, p.o. respectively. The developed tumor enhanced plasma TGF-β, and Bcl 2 , serum EGF, CEA, CCSA, and MMP-7 significantly. Also, gene expression analysis showed significant upregulation of colonic β-Catenin, K-ras and C-myc genes. Besides, immunohistochemical findings revealed significant increase in COX-2, cyclin D1 and survivin content in colon tissue. These data were further supported by the histological observations. Ginkgo biloba L. leaf extract-treated rats; particularly those treated with dose of 1.35g/kg, exhibited significant reduction in the aforementioned parameters and improvement in the histological organization of the colon tissue. The therapeutic effect of Ginkgo biloba L. leaf extract was comparable with that mediated by 5-FU. The current research proved that Ginkgo biloba L. leaf extract could suppress tumor cell proliferation, promote apoptosis, and mitigat inflammation in vivo. The amelioration of these key events might be linked with the inhibition of Wnt/β-Catenin signaling module. The outcomes of the present investigation encourage the use of Ginkgo biloba L. leaf extract as a complementary and alternative therapeutic approach to abate CRC. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Nakamura, Kosuke; Kondo, Kazunari; Akiyama, Hiroshi; Ishigaki, Takumi; Noguchi, Akio; Katsumata, Hiroshi; Takasaki, Kazuto; Futo, Satoshi; Sakata, Kozue; Fukuda, Nozomi; Mano, Junichi; Kitta, Kazumi; Tanaka, Hidenori; Akashi, Ryo; Nishimaki-Mogami, Tomoko
2016-08-15
Identification of transgenic sequences in an unknown genetically modified (GM) papaya (Carica papaya L.) by whole genome sequence analysis was demonstrated. Whole genome sequence data were generated for a GM-positive fresh papaya fruit commodity detected in monitoring using real-time polymerase chain reaction (PCR). The sequences obtained were mapped against an open database for papaya genome sequence. Transgenic construct- and event-specific sequences were identified as a GM papaya developed to resist infection from a Papaya ringspot virus. Based on the transgenic sequences, a specific real-time PCR detection method for GM papaya applicable to various food commodities was developed. Whole genome sequence analysis enabled identifying unknown transgenic construct- and event-specific sequences in GM papaya and development of a reliable method for detecting them in papaya food commodities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guo, Jinchao; Yang, Litao; Liu, Xin; Zhang, Haibo; Qian, Bingjun; Zhang, Dabing
2009-08-12
The virus-resistant papaya (Carica papaya L.), Huanong no. 1, was the genetically modified (GM) fruit approved for growing in China in 2006. To implement the labeling regulation of GM papaya and its derivates, the development of papaya endogenous reference gene is very necessary for GM papaya detection. Herein, we reported one papaya specific gene, Chymopapain (CHY), as one suitable endogenous reference gene, used for GM papaya identification. Thereafter, we established the conventional and real-time quantitative PCR assays of the CHY gene. In the CHY conventional PCR assay, the limit of detection (LOD) was 25 copies of haploid papaya genome. In the CHY real-time quantitative PCR assay, both the LOD and the limit of quantification (LOQ) were as low as 12.5 copies of haploid papaya genome. Furthermore, we revealed the construct-specific sequence of Chinese GM papaya Huanong no. 1 and developed its conventional and quantitative PCR systems employing the CHY gene as endogenous reference gene. This work is useful for papaya specific identification and GM papaya detection.
Antiulcerogenic activity of Carica papaya seed in rats.
Pinto, Lorraine Aparecida; Cordeiro, Kátia Wolff; Carrasco, Viviane; Carollo, Carlos Alexandre; Cardoso, Cláudia Andréa Lima; Argadoña, Eliana Janet Sanjinez; Freitas, Karine de Cássia
2015-03-01
The purpose of the present study was to evaluate the gastroprotective and healing effects of the methanolic extract of the seed of the papaya Carica papaya L. (MECP) in rats. Models of acute gastric ulcer induction by ethanol and indomethacin and of chronic ulcer by acetic acid were used. The gastric juice and mucus parameters were evaluated using the pylorus ligation model, and the involvement of sulfhydryl compounds (GSH) and nitric oxide in the gastroprotective effect was analyzed using the ethanol model. The toxicity was assessed through toxicity tests. No signs of toxicity were observed when the rats received a single dose of 2000 mg/kg of extract. The MECP in doses of 125, 250, and 500 mg/kg significantly reduced the gastric lesion with 56, 76, and 82 % inhibition, respectively, and a dose of 30 mg/kg lansoprazole showed 79 % inhibition in the ethanol model. MECP (125, 250, 500 mg/kg) and cimetidine (200 mg/kg) reduced the gastric lesion in the indomethacin model, with 62, 67, 81, and 85 % inhibition, respectively. The MECP (500 mg/kg) and cimetidine (200 mg/kg) treatments showed a reduction in ulcerative symptoms induced by acetic acid by 84 and 73 %, respectively. The antiulcerogenic activity seems to involve GSH because the inhibition dropped from 72 to 13 % in the presence of a GSH inhibitor. Moreover, the MECP showed systemic action, increasing the mucus production and decreasing gastric acidity. Treatments with MECP induce gastroprotection without signs of toxicity. This effect seems to involve sulfhydryl compounds, increased mucus, and reduced gastric acidity.
Mbosso Teinkela, Jean Emmanuel; Assob Nguedia, Jules Clément; Meyer, Franck; Vouffo Donfack, Erik; Lenta Ndjakou, Bruno; Ngouela, Silvère; Tsamo, Etienne; Adiogo, Dieudonné; Guy Blaise Azebaze, Anatole; Wintjens, René
2016-01-01
African medicinal plants represent a prominent source of new active substances. In this context, three plants were selected for biological investigations based on their traditional uses. The antimicrobial and anti-proliferative features of three plants used for medicinal purpose were evaluated. The antimicrobial activities of methanol extracts of Ficus bubu Warb. (Moraceae) stem bark and leaves, of Spathodea campanulata P. Beauv. (Bignoniaceae) flowers, as well as those of Carica papaya Linn. (Caricaceae) latex, were determined using the microbroth dilution method against a set of bacteria and fungi pathogens including: Enterococcus faecalis, Staphylococcus aureus, S. saprophyticus, S. epidermididis, Escherichia coli, Klebsiella pneumonia, Salmonella typhimurium, Candida albicans, and Trichophyton rubrum. The tested concentrations of extracts ranged from 2500.0 to 2.4 μg/mL and MIC values were evaluated after 24 h incubation at 37 °C. Subsequently, MTT assay was used to estimate anti-proliferative activity of these methanol extracts and of F. bubu latex on three human cancer cell lines (U373 glioblastoma, A549 NSCLC, and SKMEL-28 melanoma). The methanol extract of F. bubu stem bark exhibited the highest antimicrobial activity against C. albicans with a MIC value of 9.8 μg/mL, while the F. bubu latex and the methanol extract of F. bubu leaves induced significant anti-proliferative activity against lung (IC50 values of 10 and 14 μg/mL, respectively) and glioma (IC50 values of 13 and 16 μg/mL, respectively) cancer cells. These results indicate that effective drugs could be derived from the three studied plants.
Ming, Ray; Yu, Qingyi; Moore, Paul H
2007-06-01
Sex determination is an intriguing system in trioecious papaya. Over the past seven decades various hypotheses, based on the knowledge and information available at the time, have been proposed to explain the genetics of the papaya's sex determination. These include a single gene with three alleles, a group of closely linked genes, a genic balance of sex chromosome over autosomes, classical XY chromosomes, and regulatory elements of the flower development pathway. Recent advancements in genomic technology make it possible to characterize the genomic region involved in sex determination at the molecular level. High density linkage mapping validated the hypothesis that predicted recombination suppression at the sex determination locus. Physical mapping and sample sequencing of the non-recombination region led to the conclusion that sex determination is controlled by a pair of primitive sex chromosomes with a small male-specific region (MSY) of the Y chromosome. We now postulate that two sex determination genes control the sex determination pathway. One, a feminizing or stamen suppressor gene, causes stamen abortion before or at flower inception while the other, a masculinizing or carpel suppressor gene, causes carpel abortion at a later flower developmental stage. Detailed physical mapping is beginning to reveal structural details about the sex determination region and sequencing is expected to uncover candidate sex determining genes. Cloning of the sex determination genes and understanding the sex determination process could have profound application in papaya production.
Effect of Methanolic Leaf Extract of Ocimum basilicum L. on Benzene-Induced Hematotoxicity in Mice
Saha, S.; Mukhopadhyay, M. K.; Ghosh, P. D.; Nath, D.
2012-01-01
The aim of the present study was to investigate the protective role of methanolic leaf extract of Ocimum basilicum L. against benzene-induced hematotoxicity in Swiss albino mice. GC analysis and subacute toxicity level of the extract were tested. Mice were randomly divided into three groups among which II and III were exposed to benzene vapour at a dose 300 ppm × 6 hr/day × 5 days/week for 2 weeks and group I was control. Group III of this experiment was treated with the leaf methanolic extract at a dose of 100 mg/kg body weight, a dose in nontoxic range. Hematological parameters (Hb%, RBC and WBC counts), cell cycle regulatory proteins expression and DNA fragmentation analysis of bone marrow cells was performed. There was an upregulation of p53 and p21 and downregulation of levels of CDK2, CDK4, CDK6, and cyclins D1 and E in leaf extract-treated group. DNA was less fragmented in group III compared to group II (P < 0.05). The present study indicates that the secondary metabolites of O. basilicum L. methanolic leaf extract, comprising essential oil monoterpene geraniol and its oxidized form citral as major constituents, have modulatory effect in cell cycle deregulation and hematological abnormalities induced by benzene in mice. PMID:22988471
Antiproliferative and phytochemical analyses of leaf extracts of ten Apocynaceae species
Wong, Siu Kuin; Lim, Yau Yan; Abdullah, Noor Rain; Nordin, Fariza Juliana
2011-01-01
Background: The anticancer properties of Apocynaceae species are well known in barks and roots but less so in leaves. Materials and Methods: In this study, leaf extracts of 10 Apocynaceae species were assessed for antiproliferative (APF) activities using the sulforhodamine B assay. Their extracts were also analyzed for total alkaloid content (TAC), total phenolic content (TPC), and radical scavenging activity (RSA) using the Dragendorff precipitation, Folin–Ciocalteu, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, respectively. Results: Leaf extracts of Alstonia angustiloba, Calotropis gigantea, Catharanthus roseus, Nerium oleander, Plumeria obtusa, and Vallaris glabra displayed positive APF activities. Extracts of Allamanda cathartica, Cerbera odollam, Dyera costulata, and Kopsia fruticosa did not show any APF activity. Dichloromethane (DCM) extract of C. gigantea, and DCM and DCM:MeOH extracts of V. glabra showed strong APF activities against all six human cancer cell lines. Against breast cancer cells of MCF-7 and MDA-MB-231, DCM extracts of C. gigantea and N. oleander were stronger than or comparable to standard drugs of xanthorrhizol, curcumin, and tamoxifen. All four extracts of N. oleander were effective against MCF-7 cells. Extracts of Kopsia fruticosa had the highest TAC while those of Dyera costulata had the highest TPC and RSA. Extracts of C. gigantea and V. glabra inhibited the growth of all six cancer cell lines while all extracts of N. oleander were effective against MCF-7 cells. Conclusion: Extracts of C. gigantea, V. glabra, and N. oleander therefore showed great promise as potential candidates for anticancer drugs. The wide-spectrum APF activities of these three species are reported for the first time and their bioactive compounds warrant further investigation. PMID:21772753
Zorić, Nataša; Kopjar, Nevenka; Kraljić, Klara; Oršolić, Nada; Tomić, Siniša; Kosalec, Ivan
2016-09-01
Olive leaf extract is characterized by a high content of polyphenols (oleuropein, hydroxytyrosol and their derivatives), which is associated with its therapeutic properties. The objective of the present research was to evaluate the antifungal activity of olive leaf extract against Candida albicans ATCC 10231 and C. dubliniensis CBS 7987 strains. Minimum inhibitory concentrations (MIC) of the extract were determined by several in vitro assays. The extract showed a concentration depended effect on the viability of C. albicans with MIC value of 46.875 mg mL-1 and C. dubliniensis with MIC value 62.5 mg mL-1. Most sensitive methods for testing the antifungal effect of the extracts were the trypan blue exclusion method and fluorescent dye exclusion method while MIC could not be determined by the method according to the EUCAST recommendation suggesting that herbal preparations contain compounds that may interfere with this susceptibility testing. The fluorescent dye exclusion method was also used for the assessment of morphological changes in the nuclei of treated cells. According to the obtained results, olive leaf extract is less effective against the tested strains than hydroxytyrosol, an olive plant constituent tested in our previous study.
Investigation of Some Metals in Leaves and Leaf Extracts of Lippia javanica: Its Daily Intake
Florence, Kunsamala
2017-01-01
Consumption of plant extracts can be a source of essential elements or a route of human exposure to toxicants. Metal concentrations in leaves, leaf brew, and infusion of L. javanica collected from five sites were determined by atomic absorption spectrometry after acid and aqueous extraction. Estimated daily intakes of metals in extracts were compared with recommended dietary allowances. Total metal concentrations in leaves varied with sampling sites (p < 0.05): Mn > Fe > Cu > Cr > Pb for sites SS2–SS5. The highest metal concentrations in leaves were recorded for SS3 (Cu: 15.32 ± 4.53 and Mn: 734.99 ± 105.49), SS5 (Fe: 210.27 ± 17.17), SS2 (Pb: 3.11 ± 0.21), and SS4 (Cr: 4.40 ± 0.75 mg/kg). Leaf infusion appeared to release higher Cu and Mn concentrations in leaves across sites (Cu: 21.65; Mn: 28.01%) than leaf brew (Cu: 11.95; Mn: 19.74%). Lead was not detected in leaf extracts. Estimated dietary intakes of Cr, Cu, Fe, and Mn were below recommended dietary allowances. A 250 ml cup of leaf infusion contributed 0.30–1.18% Cu and 4.46–13.83% Mn to the recommended dietary allowances of these elements per day. Lead did not pose any potential hazard when consumed in tea beverage made from brew and infusion of leaves of L. javanica. PMID:28781598
Evaluation of anti-inflammatory potential of leaf extracts of Skimmia anquetilia
Kumar, Vijender; Bhat, Zulfiqar Ali; Kumar, Dinesh; Khan, NA; Chashoo, IA
2012-01-01
Objective To evaluate anti-inflammatory potential of leaf extract of Skimmia anquetilia by in-vitro and in-vivo anti-inflammatory models. Methods Acute toxicity study was carried out to determine the toxicity level of different extract using acute toxic class method as described in Organization of Economic Co-operation and Development Guidelines No.423. Carrageenan (1% w/w) was administered and inflammation was induced in rat paw. The leaf extracts of Skimmia anquetilia were evaluated for anti-inflammatory activity by in-vitro human red blood cell (HRBC) membrane stabilization method and in-vivo carrangeenan-induced rat paw edema method. Results The in-vitro membrane stabilizing test showed petroleum ether (PE), chloroform (CE), ethyl acetate (EE), methanol (ME) and aqueous extracts (AE) showed 49.44%, 59.39%, 60.15%, 68.40% and 52.18 % protection, respectively as compared to control groups. The in-vivo results of CE, EE and ME showed 58.20%, 60.17% and 67.53% inhibition of inflammation after 6h administration of test drugs in albino rats. The potency of the leaf extracts of Skimmia anquetilia were compared with standard diclofenac (10 mg/kg) which showed 74.18% protection in in-vitro HRBC membrane stabilization test and 71.64% inhibition in in-vivo carrangeenan-induced rat paw edema model. The ME showed a dose dependent significant (P< 0.01) anti-inflammatory activity in human red blood cell membrane stabilization test and reduction of edema in carrageenan induced rat paw edema. Conclusions The present investigation has confirmed the anti-inflammatory activity of Skimmia anquetilia due to presence of bioactive phytoconstitutes for the first time and provide the pharmacological evidence in favor of traditional claim of Skimmia anquetilia as an anti- inflammatory agent. PMID:23569983
Transcriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya.
Madroñero, Johana; Rodrigues, Silas P; Antunes, Tathiana F S; Abreu, Paolla M V; Ventura, José A; Fernandes, A Alberto R; Fernandes, Patricia Machado Bueno
2018-03-21
Global gene expression analysis indicates host stress responses, mainly those mediated by SA, associated to the tolerance to sticky disease symptoms at pre-flowering stage in Carica papaya. Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance.
Kujawska, Małgorzata; Ewertowska, Małgorzata; Adamska, Teresa; Ignatowicz, Ewa; Flaczyk, Ewa; Przeor, Monika; Kurpik, Monika; Liebert, Jadwiga Jodynis
The leaves of white mulberry (Morus alba L.) contain various polyphenolic compounds possessing strong antioxidant activity and anticancer potential. This study was designed to investigate the chemopreventive effect of aqueous extract of mulberry leaves against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. Wistar rats were divided into four groups: control, mulberry extract-treated, NDEA-treated, and mulberry extract plus NDEA-treated. Mulberry extract was given in the diet (1,000 mg/kg b.w./day); NDEA was given in drinking water. Mulberry extract reduced the incidence of hepatocellular carcinoma, dysplastic nodules, lipid peroxidation, protein carbonyl formation, and DNA degradation. Treatment with mulberry leaf extract along with NDEA challenge did not affect the activity of antioxidant enzymes and glutathione content. Treatment with mulberry leaf extract partially protected the livers of rats from NDEA-induced hepatocarcinogenesis and a direct antioxidant mechanism appears to contribute to its anticarcinogenic activity. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
NASA Astrophysics Data System (ADS)
Ishak, Muhamad Safwan; Sahid, Ismail
2014-09-01
A laboratory experiment was conducted to study the allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala. The aqueous extracts were individually tested on three selected weed species, namely goatweed (Ageratum conyzoides), coat buttons (Tridax procumbens) and lilac tasselflower (Emilia sonchifolia). The allelopathic effects of the leaf and seed extracts on germination, shoot length, root length and fresh weight of each of the selected weed species were determined. Germination of goatweed, coat buttons and lilac tasselflower were inhibited by the aqueous extracts of both the leaf and seed of L. leucocephala and was concentration dependent. Different concentrations of the aqueous extracts showed various germination patterns on the selected weeds species. Seedling length and fresh weight of goatweed, coat buttons and lilac tasselflower were reduced in response to respective increasing concentrations of the seed extracts. Maximum inhibition by the aqueous seed extract was observed more on the root rather than the shoot growth. The aqueous seed extract at T3 concentration reduced root length of goatweed, coat buttons and lilac tasselflower by 95%, 86% and 91% (of the control) respectively. The aqueous seed extract showed greater inhibitory effects than that of the aqueous leaf extract.
Ramos, H C C; Pereira, M G; Pereira, T N S; Barros, G B A; Ferreguetti, G A
2014-12-04
The low number of improved cultivars limits the expansion of the papaya crop, particularly because of the time required for the development of new varieties using classical procedures. Molecular techniques associated with conventional procedures accelerate this process and allow targeted improvements. Thus, we used microsatellite markers to perform genetic-molecular characterization of papaya genotypes obtained from 3 backcross generations to monitor the inbreeding level and parental genome proportion in the evaluated genotypes. Based on the analysis of 20 microsatellite loci, 77 genotypes were evaluated, 25 of each generation of the backcross program as well as the parental genotypes. The markers analyzed were identified in 11 of the 12 linkage groups established for papaya, ranging from 1 to 4 per linkage group. The average values for the inbreeding coefficient were 0.88 (BC1S4), 0.47 (BC2S3), and 0.63 (BC3S2). Genomic analysis revealed average values of the recurrent parent genome of 82.7% in BC3S2, 64.4% in BC1S4, and 63.9% in BC2S3. Neither the inbreeding level nor the genomic proportions completely followed the expected average values. This demonstrates the significance of molecular analysis when examining different genotype values, given the importance of such information for selection processes in breeding programs.
Liu, Kaidong; Yuan, Changchun; Li, Haili; Lin, Wanhuang; Yang, Yanjun; Shen, Chenjia; Zheng, Xiaolin
2015-11-05
Auxin and auxin signaling are involved in a series of developmental processes in plants. Auxin Response Factors (ARFs) is reported to modulate the expression of target genes by binding to auxin response elements (AuxREs) and influence the transcriptional activation of down-stream target genes. However, how ARF genes function in flower development and fruit ripening of papaya (Carica papaya L.) is largely unknown. In this study, a comprehensive characterization and expression profiling analysis of 11 C. papaya ARF (CpARF) genes was performed using the newly updated papaya reference genome data. We analyzed CpARF expression patterns at different developmental stages. CpARF1, CpARF2, CpARF4, CpARF5, and CpARF10 showed the highest expression at the initial stage of flower development, but decreased during the following developmental stages. CpARF6 expression increased during the developmental process and reached its peak level at the final stage of flower development. The expression of CpARF1 increased significantly during the fruit ripening stages. Many AuxREs were included in the promoters of two ethylene signaling genes (CpETR1 and CpETR2) and three ethylene-synthesis-related genes (CpACS1, CpACS2, and CpACO1), suggesting that CpARFs might be involved in fruit ripening via the regulation of ethylene signaling. Our study provided comprehensive information on ARF family in papaya, including gene structures, chromosome locations, phylogenetic relationships, and expression patterns. The involvement of CpARF gene expression changes in flower and fruit development allowed us to understand the role of ARF-mediated auxin signaling in the maturation of reproductive organs in papaya.
Karuppanan, Muthupillai; Krishnan, Manigandan; Padarthi, Pavankumar
2014-01-01
ABSTRACT Background To explore the antioxidant and hepatoprotective effect of ethanolic Mangifera indica (EMI) and methanolic Mangifera indica (MMI) leaf extracts in mercuric chloride (HgCl2) induced toxicity in Swiss albino mice. Materials and methods Toxicity in mice was induced with HgCl2 (5.0 mg/kg, i.p.), followed by oral intervention with EMI and MMI extracts (25 mg and 50 mg/kg. body wt.) for 30 days. Results and discussion The extent of liver damage was assessed from the extents of histopathological, morphological, antioxidant and liver enzymes. Mercuric chloride-induced mice showed an increased cellular damage whereas leaf extracts of EMI and MMI-treated mice showed recovery of damaged hepatocytes. Mercuric chloride intoxicated mice exhibited a significant (p < 0.05) elevation in the liver enzymes (Aspartate amino transferase and Alanine amino transferase) and gradual decline in the cellular radical scavenging enzyme levels (Catalase, Glutathione-s-transferase and Glutathione peroxidase. The combined treatment with EMI and MMI leaf extracts significantly (p < 0.05) reversed these parameters. However, the effects of MMI leaf extract (50 mg/kg) were superior to those of EMI- treated mice possibly due to its potent radical scavenging property. These results suggest that oral supplementation of Mangifera indica extract remarkably reduces hepatotoxicity in mice possibly through its antioxidant potentials. How to cite this article: Karuppanan M, Krishnan M, Padarthi P, Namasivayam E. Hepatoprotec-tive and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice. Euroasian J Hepato-Gastroenterol 2014;4(1):18-24. PMID:29264314
Acute and sub-chronic toxicity of Cajanus cajan leaf extracts.
Tang, Rong; Tian, Ru-Hua; Cai, Jia-Zhong; Wu, Jun-Hui; Shen, Xiao-Ling; Hu, Ying-Jie
2017-12-01
The leaves of Cajanus cajan (L.) Millsp. (Fabaceae) have diverse bioactivities, but little safety data are reported. This study examines the toxicological profiles of C. cajan leaf extracts. The leaves were extracted by water or 90% ethanol to obtain water or ethanol extract (WEC or EEC). EEC was suspended in water and successively fractionated into dichloroform and n-butanol extracts (DEC and BEC). Marker compounds of the extracts were monitored by high-performance liquid chromatography (HPLC). Kunming mice were administered with a single maximum acceptable oral dose (15.0 g/kg for WEC, EEC and BEC and 11.3 g/kg for DEC) to determine death rate or maximal tolerated doses (MTDs). In sub-chronic toxicity investigation, Sprague-Dawley rats were orally given WEC or EEC at 1.5, 3.0 or 6.0 g/kg doses for four weeks and observed for two weeks after dosing to determine toxicological symptoms, histopathology, biochemistry and haematology. Flavonoids and stilbenes in the extracts were assayed. In acute toxicity test, no mortality and noted alterations in weight and behavioural abnormality were observed, and the maximum oral doses were estimated as MTDs. In sub-chronic toxicity study, no mortality and significant variances in haematological and biochemical parameters or organ histopathology were observed, but increased kidney weight in 3.0 g/kg WEC- or 3.0 and 6.0 g/kg EEC-treated female rats, and reduced testes and epididymis weight in EEC-treated male rats were recorded. These changes returned to the level of control after recovery period. Acute and sub-chronic toxicity of Cajanus cajan leaf extracts was not observed.
Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan
2015-09-30
Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.
Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N.; Guo, Lei; Mei, Nan
2015-01-01
Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition. PMID:26419945
Liu, Kaidong; Wang, Jinxiang; Li, Haili; Zhong, Jundi; Feng, Shaoxian; Pan, Yaoliang; Yuan, Changchun
2016-01-01
Auxin plays essential roles in plant development. Gretchen Hagen 3 (GH3) genes belong to a major auxin response gene family and GH3 proteins conjugate a range of acylsubstrates to alter the levels of hormones. Currently, the role of GH3 genes in postharvest physiological regulation of ripening and softening processes in papaya fruit is unclear. In this study, we identified seven CpGH3 genes in a papaya genome database. The CpGH3.1a, CpGH3.1b, CpGH3.5, CpGH3.6, and CpGH3.9 proteins were identified as indole-3-acetic acid (IAA)-specific amido synthetases. We analyzed the changes in IAA-amido synthetase activity using aspartate as a substrate for conjugation and found a large increase (over 5-fold) during the postharvest stages. Ascorbic acid (AsA) application can extend the shelf life of papaya fruit. Our data showed that AsA treatment regulates postharvest fruit maturation processes by promoting endogenous IAA levels. Our findings demonstrate the important role of GH3 genes in the regulation of auxin-associated postharvest physiology in papaya. PMID:27812360
Price, Charles A; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S
2011-01-01
Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.
Machado, Levi Pompermayer; Matsumoto, Silvia Tamie; Jamal, Claudia Masrouah; da Silva, Marcelo Barreto; Centeno, Danilo da Cruz; Colepicolo Neto, Pio; de Carvalho, Luciana Retz; Yokoya, Nair S
2014-07-01
Banana and papaya are among the most important crops in the tropics, with a value amounting to millions of dollars per year. However, these fruits suffer significant losses due to anthracnose, a fungal disease. It is well known that certain seaweed extracts possess antifungal activity, but no published data appear to exist on the practical application of this property. In the present study, five organic Brazilian seaweed extracts were screened for their activity against banana and papaya anthracnose fungi. Furthermore, cytotoxic and mutagenic effects of the extracts were evaluated by the brine shrimp lethality assay and the Allium cepa root-tip mutagenicity test respectively, while their major components were identified by gas chromatography/mass spectrometry. Strong fungus-inhibitory effects of Ochtodes secundiramea and Laurencia dendroidea extracts were observed on both papaya (100 and 98% respectively) and banana (89 and 78% respectively). This impressive activity could be associated with halogenated terpenes, the major components of both extracts. Only Hypnea musciformis extract showed cytotoxic and mutagenic effects. The results of this study suggest the potential use of seaweed extracts as a source of antifungal agents with low toxicity to control anthracnose in papaya and banana during storage. © 2013 Society of Chemical Industry.
Wasabi leaf extracts attenuate adipocyte hypertrophy through PPARγ and AMPK.
Oowatari, Yasuo; Ogawa, Tetsuro; Katsube, Takuya; Iinuma, Kiyohisa; Yoshitomi, Hisae; Gao, Ming
2016-08-01
Hypertrophy of adipocytes in obese adipose tissues causes metabolic abnormality by adipocytokine dysregulation, which promotes type 2 diabetes mellitus, hypertension, and dyslipidemia. We investigated the effects of wasabi (Wasabia japonica Matsum) leaf extracts on metabolic abnormalities in SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP/ZF), which are a model of metabolic syndrome. Male SHRSP/ZF rats aged 7 weeks were divided into two groups: control and wasabi leaf extract (WLE) groups, which received water or oral treatment with 4 g/kg/day WLE for 6 weeks. WLE improved the body weight gain and high blood pressure in SHRSP/ZF rats, and the plasma triglyceride levels were significantly lower in the WLE group. Adipocyte hypertrophy was markedly prevented in adipose tissue. The expression of PPARγ and subsequent downstream genes was suppressed in the WLE group adipose tissues. Our data suggest that WLE inhibits adipose hypertrophy by suppressing PPARγ expression in adipose tissue and stimulating the AMPK activity by increased adiponectin.
Retnani, Y; Dan, T M Wardiny; Taryati
2014-04-01
The objective of this study was to apply effect of Morinda citrifolia L. citrifolia L. leaf extract as antibacterial of Salmonella typhimurium on mortality of Day Old Quail (DOQ), egg production and Hen day, hatchability of layer quail. This research was conducted at Laboratory of microbiology and laboratory of poultry nutrition, faculty of animal science, bogor agricultural university and slamet quail farms cilangkap, sukabumi, west java, Indonesia on March-July 2012. Two hundred and forty heads of quail were randomly assigned to four dietary treatments (sixty heads of quail/treatment). Experimental design used was Completely Randomized Design (CRD). The treatments consist of level of biscuit Morinda citrifolia L. Citrifolia L. leaf extract i.e R1 = 0%, R2 = 5%, R3 = 10%, R4 = 15%. The results indicated the treatments had significant effect (p < 0.05) on mortality of Day Old Quail (DOQ). The average mortality of Day Old Quail (DOQ) was given extract Morinda citrifolia L. leaf were R1 (4.00%), R2 (1.00%), R3 (1.33%), R4 (0.67%). The average mortality of Day Old Quail (DOQ) was given 15% extract Morinda citrifolia L. leaf (R4) was lowest than control treatment (R1). The results of the analysis indicated that Morinda citrifolia L. leaf of quail drink had not significant effect (p > 0.05) on egg production, hen day and hatchability. It was concluded that the Morinda citrifolia L. leaf extract 15% can reduce mortality of Day Old Quail (DOQ) and can increase its egg production, hen day and hatchability.
Helmy, Shahinaz A; Morsy, Nashwa F S; Elaby, Shahenda M; Ghaly, Mohammed A A
2017-08-01
The leaves of Moringa oleifera Lam possess some potential medicinal value. The aim of this study was to evaluate the protective effect of M. oleifera leaf powder and its extract against hyperlipidemia in rats. Adult male albino rats were divided into six groups. The first group was fed on a basal diet that served as a negative control, whereas the others were fed on a high-fat diet (HFD) containing moringa leaf powder at 0.737% or 1.475% or administered daily with 200 or 400 mg dry moringa leaf extract/kg bw for 60 days. A positive control group was fed on the HFD. Serum indices related to lipid profile, oxidative status, and liver function were analyzed. Feeding rats on an HFD containing moringa leaf powder at 0.737% or an oral dose of its dry extract at 400 mg/kg bw alleviated the harmful elevation of cholesterol, triglycerides, low-density lipoprotein cholesterol, malondialdehyde, and the activities of alanine aminotransferase and aspartate aminotransferase in serum that were induced by the HFD. This is the first study demonstrating the hypocholesterolemic effect of M. oleifera leaf powder.
Sex specific expression and distribution of small RNAs in papaya.
Aryal, Rishi; Jagadeeswaran, Guru; Zheng, Yun; Yu, Qingyi; Sunkar, Ramanjulu; Ming, Ray
2014-01-13
Regulatory function of small non-coding RNAs (sRNA) in response to environmental and developmental cues has been established. Additionally, sRNA, also plays an important role in maintaining the heterochromatin and centromere structures of the chromosome. Papaya, a trioecious species with recently evolved sex chromosomes, has emerged as an excellent model system to study sex determination and sex chromosome evolution in plants. However, role of small RNA in papaya sex determination is yet to be explored. We analyzed the high throughput sRNAs reads in the Illumina libraries prepared from male, female, and hermaphrodite flowers of papaya. Using the sRNA reads, we identified 29 miRNAs that were not previously reported from papaya. Including this and two previous studies, a total of 90 miRNAs has been identified in papaya. We analyzed the expression of these miRNAs in each sex types. A total of 65 miRNAs, including 31 conserved and 34 novel mirNA, were detected in at least one library. Fourteen of the 65 miRNAs were differentially expressed among different sex types. Most of the miRNA expressed higher in male flowers were related to the auxin signaling pathways, whereas the miRNAs expressed higher in female flowers were the potential regulators of the apical meristem identity genes. Aligning the sRNA reads identified the sRNA hotspots adjacent to the gaps of the X and Y chromosomes. The X and Y chromosomes sRNA hotspots has a 7.8 and 4.4 folds higher expression of sRNA, respectively, relative to the chromosome wide average. Approximately 75% of the reads aligned to the X chromosome hotspot was identical to that of the Y chromosome hotspot. By analyzing the large-scale sRNA sequences from three sex types, we identified the sRNA hotspots flanking the gaps of papaya X, Y, and Yh chromosome. The sRNAs expression patterns in these regions were reminiscent of the pericentromeric region indicating that the only remaining gap in each of these chromosomes is likely the
Jafari, Saeid; Meng, Goh Yong; Rajion, Mohamed Ali; Jahromi, Mohammad Faseleh; Ebrahimi, Mahdi
2016-06-08
Different solvents (hexane, chloroform, ethyl acetate, butanol, and water) were used to identify the effect of papaya leaf (PL) fractions (PLFs) on ruminal biohydrogenation (BH) and ruminal methanogenesis in an in vitro study. PLFs at a concentration of 0 (control, CON) and 15 mg/250 mg dry matter (DM) were mixed with 30 mL of buffered rumen fluid and were incubated for 24 h. Methane (CH4) production (mL/250 mg DM) was the highest (P < 0.05) for CON (7.65) and lowest for the chloroform fraction (5.41) compared to those of other PLFs at 24 h of incubation. Acetate to propionate ratio was the lowest for PLFs compared to that of CON. Supplementation of the diet with PLFs significantly (P < 0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), and C18:3n-3 (α-linolenic acid; LNA) compared to that of CON after 24 h of incubation. Real time PCR indicated that total protozoa and total methanogen population in PLFs decreased (P < 0.05) compared to those of CON.
Gasmalla, Mohammed Abdalbasit A; Yang, Ruijin; Hua, Xiao
2015-09-01
Optimization of steviol glycosides extraction from Stevia rebaudiana Bertoni leaf was carried out by investigating the effects of isopropyl alcohol concentration (60 %, v/v), time (6-24 min), temperature (30 °C) and sonic power (300-480 W) on extraction of rebaudioside A from Stevia rebaudiana leaves and decolorization of the extract by polymer (Separan AP30 and Resin ADS-7). The results showed that isopropyl alcohol was suitable for the extraction of rebaudioside A from Stevia rebaudiana leaves and the yield of rebaudioside A achieved 35.61 g/100 g when the output power was 360 W and treatment time was 18 min. The sonication had influence on the particle size of stevia leaf and the color of the extracted solution. As the sonication intensity increased, the particle size decreased. The colour of differently treated stevia solutions were significantly different (P < 0.05). Separan AP30 and adsorption resin ADS-7 were performed to remove the colour impurity. The results showed that more than 65 % of the coloured impurity was removed by Separan AP30 combined with Calcium oxide (CaO).
Michael, J Savarimuthu; Kalirajan, A; Padmalatha, C; Singh, A J A Ranjit
2013-09-01
To investigate the in vitro antioxidant activity and total phenolic content of the methanolic leaf extract of Nyctanthes arbor-tristis L. (NA). The sample was tested using five in vitro antioxidant methods (1, 1-diphenyl-2-picryl hydrazine radical scavenging activity (DPPH), hydroxyl radical-scavenging activity (-OH), nitric oxide scavenging activity (NO), superoxide radical-scavenging activity, and total antioxidant activity) to evaluate the in vitro antioxidant potential of NA and the total phenolic content (Folin-Ciocalteu method). The extract showed good free radical scavenging property which was calculated as an IC50 value. IC50 (Half maximal inhibitory concentration) of the methanolic extract was found to be 57.93 μg·mL(-1) for DPPH, 98.61 μg·mL(-1) for -OH, 91.74 μg·mL(-1) for NO, and 196.07 μg·mL(-1) for superoxide radical scavenging activity. Total antioxidant capacity of the extract was found to be (1198 ± 24.05) mg ascorbic acid for the methanolic extract. Free radical scavenging activity observed in the extracts of NA showed a concentration-dependent reaction. The in vitro scavenging tested for free radicals was reported to be due to high phenolic content in the leaf extract. The leaf extract of NA showed the highest total phenolic content with a value of 78.48 ± 4.2 equivalent mg TAE/g (tannic acid equivalent). N. arbor-tristis leaf extract exhibited potent free radical scavenging activity. The finding suggests that N. arbor-tristis leaves could be a potential source of natural antioxidant. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Direct LAMP Assay without Prior DNA Purification for Sex Determination of Papaya
Tsai, Chi-Chu; Shih, Huei-Chuan; Ko, Ya-Zhu; Wang, Ren-Huang; Li, Shu-Ju; Chiang, Yu-Chung
2016-01-01
Papaya (Carica papaya L.) is an economically important tropical fruit tree with hermaphrodite, male and female sex types. Hermaphroditic plants are the major type used for papaya production because their fruits have more commercial advantages than those of female plants. Sex determination of the seedlings, or during the early growth stages, is very important for the papaya seedling industry. Thus far, the only method for determining the sex type of a papaya at the seedling stage has been DNA analysis. In this study, a molecular technique—based on DNA analysis—was developed for detecting male-hermaphrodite-specific markers to examine the papaya’s sex type. This method is based on the loop-mediated isothermal amplification (LAMP) and does not require prior DNA purification. The results show that the method is an easy, efficient, and inexpensive way to determine a papaya’s sex. This is the first report on the LAMP assay, using intact plant materials-without DNA purification-as samples for the analysis of sex determination of papaya. We found that using high-efficiency DNA polymerase was essential for successful DNA amplification, using trace intact plant material as a template DNA source. PMID:27669237
Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity.
Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S
2015-01-05
Green synthesis of silver nanoparticles has been achieved using environmentally acceptable plant extract. It is observed that Abutilon indicum leaf extract can reduce silver ions into silver nanoparticles within 15 min of reaction time. The formation and stability of the reduced silver nanoparticles in the colloidal solution were monitored by UV-Vis spectrophotometer analysis. The mean particle diameter of silver nanoparticles was calculated from the XRD pattern. FT-IR spectra of the leaf extract after the development of nanoparticles are determined to allow identification of possible functional groups responsible for the conversion of metal ions to metal nanoparticles. The AgNPs thus obtained showed highly potent antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus subtilis) and Gram-negative (Salmonella typhi and Escherichia coli) microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Suganya, Ponnusamy; Natarajan, Devarajan; Kweka, Eliningaya J.; Shivakumar, Muthugounder S.
2016-01-01
Background The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted. Methods Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis. Results The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds. Conclusions The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors. PMID:27391146
Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Suganya, Ponnusamy; Natarajan, Devarajan; Kweka, Eliningaya J; Shivakumar, Muthugounder S
2016-01-01
The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted. Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis. The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds. The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors.
Wang, Ning; Wu, Xiaolin; Ku, Lixia; Chen, Yanhui; Wang, Wei
2016-01-01
Leaf morphology is closely related to the growth and development of maize (Zea mays L.) plants and final kernel production. As an important part of the maize leaf, the midrib holds leaf blades in the aerial position for maximum sunlight capture. Leaf midribs of adult plants contain substantial sclerenchyma cells with heavily thickened and lignified secondary walls and have a high amount of phenolics, making protein extraction and proteome analysis difficult in leaf midrib tissue. In the present study, three protein-extraction methods that are commonly used in plant proteomics, i.e., phenol extraction, TCA/acetone extraction, and TCA/acetone/phenol extraction, were qualitatively and quantitatively evaluated based on 2DE maps and MS/MS analysis using the midribs of the 10th newly expanded leaves of maize plants. Microscopy revealed the existence of substantial amounts of sclerenchyma underneath maize midrib epidermises (particularly abaxial epidermises). The spot-number order obtained via 2DE mapping was as follows: phenol extraction (655) > TCA/acetone extraction (589) > TCA/acetone/phenol extraction (545). MS/MS analysis identified a total of 17 spots that exhibited 2-fold changes in abundance among the three methods (using phenol extraction as a control). Sixteen of the proteins identified were hydrophilic, with GRAVY values ranging from -0.026 to -0.487. For all three methods, we were able to obtain high-quality protein samples and good 2DE maps for the maize leaf midrib. However, phenol extraction produced a better 2DE map with greater resolution between spots, and TCA/acetone extraction produced higher protein yields. Thus, this paper includes a discussion regarding the possible reasons for differential protein extraction among the three methods. This study provides useful information that can be used to select suitable protein extraction methods for the proteome analysis of recalcitrant plant tissues that are rich in sclerenchyma cells.
Yokoi, Michinori; Shimoda, Mitsuya
2017-03-01
A low-density polyethylene (LDPE) membrane pouch method was developed to extract volatile flavor compounds from tobacco leaf. Tobacco leaf suspended in water was enclosed in a pouch prepared from a LDPE membrane of specific gravity 0.92 g/cm3 and 0.03 mm thickness and then extracted with diethyl ether. In comparison with direct solvent extraction, LDPE membrane excluded larger and higher boiling point compounds which could contaminate a gas chromatograph inlet and damage a column. Whilst being more convenient than a reduced-pressure steam distillation, it could extract volatile flavor compounds of wide range of molecular weight and polarity. Repeatabilities in the extracted amounts were ranged from 0.38% of 2.3-bipyridyl to 26% of β-ionone, and average value of 39 compounds was 5.9%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract.
Umer, Shemsu; Tekewe, Alemu; Kebede, Nigatu
2013-01-28
In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH) extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Swiss albino mice of either sex were divided into five groups (five/group): Group I served as control and received vehicle (1% Tween 80) at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation) and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg) significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output) and weight of faeces. C. aurea leaf extract also showed good antimicrobial
Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract
2013-01-01
Background In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH) extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Methods Swiss albino mice of either sex were divided into five groups (five/group): Group I served as control and received vehicle (1% Tween 80) at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation) and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Results In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg) significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output) and weight of faeces. C. aurea leaf extract
Singh, S K; Yadav, R P; Singh, A
2010-11-01
The leaf and bark of Thevetia peruviana (Family: Apocynaceae) plant was administered for 24 h to the freshwater fish Catla catla (Hamilton) to evaluate their piscicidal activity in laboratory and cemented pond condition. The LC0 values of lef and bark extracts of different solvents (i.e., acetone, diethyl ether, ethyl alcohol, chloroform and carbon tetrachloride) of this plant to fish Catla catla were determined. The LC50 values of acetone leaf extract of Thevetia peruviana plant is 88.80 mg/L (24h) in laboratory condition and 529.38 mg/L (24h) in cemented pond condition; acetone bark extract of this plant is 99.43 mg/L (24h) in laboratory condition and 591.78 mg/L (24h) in cemented pond condition against freshwater fish Catla catla. Similar trend was also observed in case of other solvent (i.e., diethyl ether, ethyl alcohol, chloroform and carbon tetrachloride) of leaf and bark extracts of Thevetia peruviana plant against freshwater fish Catla catla in laboratory and cemented pond conditions. The acetone leaf and bark extract of this plant was very effective in comparison to other solvent extract in both the conditions. So, the biochemical analysis is taken only acetone leaf and bark extract of Thevetia peruviana plant in laboratory condition. Exposure of sub-lethal doses (40% and 80% of LC,) of acetone leaf and bark extract of this plant over 24 h caused significant (P < 0.05) alterations in total protein, free amino acids, DNA & RNA, protease and acid and alkaline phosphatase activity in muscle, liver and gonadal tissues of fish Catla catla in laboratory condition.
Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S
2014-01-01
Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.
Gao, Le; Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng
2015-02-01
The interaction of papaya eukaryotic translation initiation factor 3 subunit G (CpeIF3G) with Papaya ringspot virus (PRSV) NIa-Pro was validated using a bimolecular fluorescence complementation assay in papaya protoplasts based on the previous yeast two-hybrid assay results. The C-terminal (residues 133-239) fragment of PRSV NIa-Pro and the central domain (residues 59-167) of CpeIF3G were required for effective interaction between NIa-Pro and CpeIF3G as shown by a Sos recruitment yeast two-hybrid system with several deletion mutants of NIa-Pro and CpeIF3G. The central domain of CpeIF3G, which contains a C2HC-type zinc finger motif, is required to bind to other eIFs of the translational machinery. In addition, quantitative real-time reverse transcription PCR assay confirmed that PRSV infection leads to a 2- to 4.5-fold up-regulation of CpeIF3G mRNA in papaya. Plant eIF3G is involved in various stress response by enhancing the translation of resistance-related proteins. It is proposed that the NIa-Pro-CpeIF3G interaction may impair translation preinitiation complex assembly of defense proteins and interfere with host defense.
Protective Action of Carica papaya on β-Cells in Streptozotocin-Induced Diabetic Rats.
Miranda-Osorio, Pedro H; Castell-Rodríguez, Andrés E; Vargas-Mancilla, Juan; Tovilla-Zárate, Carlos A; Ble-Castillo, Jorge L; Aguilar-Domínguez, Dora E; Juárez-Rojop, Isela E; Díaz-Zagoya, Juan C
2016-04-27
The aim of the present study was to investigate the effect of C. papaya L. leaf extract (CPLE) on pancreatic islets in streptozotocin (STZ)-induced diabetic rats, as well as on cultured normal pancreatic cells with STZ in the medium. CPLE (3-125 mg/Kg) was administered orally for 20 days, while a group of diabetic rats received 5 IU/Kg/day of insulin. At the end of the treatment the rats were sacrificed. Blood was obtained to assess glucose and insulin levels. The pancreas was dissected to evaluate β cells by immunohistochemistry. In addition, normal pancreatic cells were cultured in a medium that included CPLE (3-12 mg). One half of the cultured cells received simultaneously CPLE and STZ (6 mg), while the other half received CPLE and five days later the STZ. After three days of incubation, insulin was assayed in the incubation medium. The CPLE administered to diabetic rats improved the fasting glycemia and preserved the number and structure of pancreatic islets. However, when CPLE was added to pancreatic cells in culture along with STZ, the insulin concentration was higher in comparison with the cells that only received STZ. In conclusion, the CPLE preserves the integrity of pancreatic islets, improves the basal insulin secretion and protects cultured cells from the adverse effects of STZ.
Cipriano, Jamile L D; Cruz, Ana Cláudia F; Mancini, Karina C; Schmildt, Edilson R; Lopes, José Carlos; Otoni, Wagner C; Alexandre, Rodrigo S
2018-01-01
The aim of this study was to evaluate somatic embryogenesis in juvenile explants of the THB papaya cultivar. Apical shoots and cotyledonary leaves were inoculated in an induction medium composed of different concentrations of 2,4-D (6, 9, 12, 15 and 18 µM) or 4-CPA (19, 22, 25, 28 and 31 µM). The embryogenic calluses were transferred to a maturation medium for 30 days. Histological analysis were done during the induction and scanning electron microscopy after maturing. For both types of auxin, embryogenesis was achieved at higher frequencies with cotyledonary leaves incubated in induction medium than with apical shoots; except for callogenesis. The early-stage embryos (e.g., globular or heart-shape) predominated. Among the auxins, best results were observed in cotyledonary leaves induced with 4-CPA (25 µM). Histological analyses of the cotyledonary leaf-derived calluses confirmed that the somatic embryos (SEs) formed from parenchyma cells, predominantly differentiated via indirect and multicellular origin and infrequently via synchronized embryogenesis. The secondary embryogenesis was observed during induction and maturation phases in papaya THB cultivar. The combination of ABA (0.5 µM) and AC (15 g L-1) in maturation medium resulted in the highest somatic embryogenesis induction frequency (70 SEs callus-1) and the lowest percentage of early germination (4%).
NASA Astrophysics Data System (ADS)
Setyawati, I.; Wiratmini, N. I.; Narayani, I.
2018-03-01
This research examined the phytoestrogen potential of Calliandra calothyrsus leaf extract in prepubertal female rat (Rattus norvegicus). Sixty weaned female rats (21 days old) were divided into five groups i.e. control (K), negative control which was given 0.5% Na CMC suspension (KN) and treatment groups which were given with C. calothyrsus ethanolic leaf extract doses 25 mg/kg bw (P1), 50 mg/kg bw (P2) and 75 mg/kg bw (P3). The treatment suspension was administered 0.5 mL/rat/day by gavage for 28 days, started at the age of 21st days old. The rats were sacrificed and the blood samples were collected from 4 rats / group at the age of 28th, 42nd and 56th days old, each. The concentration of estrogen hormone levels were measured from blood serum by ELISA kit and were read at 450 nm wavelength with an ELISA Spectrophotometer. Data was analyzed statistically by General Linear Model with 95% of confidence. The result showed that rat’s body weight decreased significantly with the higher doses and the longer the treatment of C. calothyrsus leaf extract due to the anti-nutritive activity of calliandra tannins. The estrogen hormone level was significantly increased at the highest dose. The highest estrogen levels were found in the group of female rats which were given the exctract of 75 mg/kg bw until the age of 42nd days. This results showed that there was a phytoestrogen potential in the C. calothyrsus leaf extract.
Weingartner, Laura A; Moore, Richard C
2012-12-01
The sex chromosomes of the tropical crop papaya (Carica papaya) are evolutionarily young and consequently allow for the examination of evolutionary mechanisms that drive early sex chromosome divergence. We conducted a molecular population genetic analysis of four X/Y gene pairs from a collection of 45 wild papaya accessions. These population genetic analyses reveal striking differences in the patterns of polymorphism between the X and Y chromosomes that distinguish them from other sex chromosome systems. In most sex chromosome systems, the Y chromosome displays significantly reduced polymorphism levels, whereas the X chromosome maintains a level of polymorphism that is comparable to autosomal loci. However, the four papaya sex-linked loci that we examined display diversity patterns that are opposite this trend: the papaya X alleles exhibit significantly reduced polymorphism levels, whereas the papaya Y alleles maintain greater than expected levels of diversity. Our analyses suggest that selective sweeps in the regions of the X have contributed to this pattern while also revealing geographically restricted haplogroups on the Y. We discuss the possible role sexual selection and/or genomic conflict have played in shaping the contrasting patterns of polymorphism found for the papaya X and Y chromosomes.
Padma, P R; Amonkar, A J; Bhide, S V
1989-03-01
Epidemiological studies have implicated chewing tobacco alone to be more hazardous than chewing tobacco with betel quid. Experimental studies have shown that betel leaf is antimutagenic against standard mutagens like benzo[a]pyrene and dimethylbenz[a]anthracene. Since the tobacco-specific N-nitrosamines (TSNA) are the only carcinogens present in unburnt forms of tobacco, including chewing tobacco, we tested the effect of an extract of betel leaf against the mutagenicity of the two important TSNA, viz., N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, using the Ames Salmonella/microsome assay with TA100 +S9 and the in vivo micronucleus test. In both the test systems it was observed that betel leaf extract suppressed the mutagenic effects of both the nitrosamines to a significant extent.
Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae
2008-08-01
The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.
Hydroethanolic extract of Psidium guajava leaf for induced osteoarthritis using a guinea pig model.
Tanideh, N; Zare, Z; Jamshidzadeh, A; Lotfi, M; Azarpira, Negar; Sepehrimanesh, M; Koohi-Hosseinabadi, O
2017-01-01
We investigated the therapeutic effects of an extract of Psidium guajava (guava) leaf on experimentally induced osteoarthritis in guinea pig. The left knee of 30 male guinea pigs was anesthetized and the cranial cruciate ligament was severed. The animals were followed for 8 weeks until osteoarthritis was confirmed by radiography and histopathology. Animals were divided randomly into five groups; group 1, the ligament was severed and untreated; group 2, the ligament was severed and treated with piascledine, an extract of soybean and avocado; group 3, the ligament was severed and treated with 200 mg/kg hydroethanolic extract of guava; group 4, the ligament was severed and treated with 400 mg/kg hydroethanolic extract of guava; and group 5, control animals without surgery or extracts. Radiological and histopathological evaluations after 8 weeks showed reduced severity of osteoarthritis in the piascledine treatment group compared to group 1. The guava extract also reduce the severity of osteoarthritis compared to controls. Histopathological examination of treatment and control groups showed that treatment the guava extract improved lesions significantly. Hydroethanolic extracts of guava leaf appears to prevent osteoarthritis by inhibition of free radical formation in the knee joint.
Asante, Du-Bois; Effah-Yeboah, Emmanuel; Barnes, Precious; Abban, Heckel Amoabeng; Ameyaw, Elvis Ofori; Boampong, Johnson Nyarko; Ofori, Eric Gyamerah; Dadzie, Joseph Budu
2016-01-01
The young leaves of Vernonia amygdalina are often utilized as vegetable and for medicinal purpose compared to the old leaves. This study was designed to evaluate and compare the antidiabetic effects between ethanolic leaf extracts of old and young V. amygdalina on streptozotocin (STZ) induced diabetic rat for four weeks. Preliminary screening of both young and old ethanolic extracts revealed the presence of the same phytochemicals except flavonoids which was only present in the old V. amygdalina. Difference in antioxidant power between the young and old leaf extracts was statistically significant (p < 0.05). Both leaf extracts produced a significant (p < 0.05) antihyperglycaemic effect. Also results from treated rats revealed increasing effect in some haematological parameters. Similarly, the higher dose (300 mg/kg) of both extracts significantly (p < 0.05) reduced serum ALT, AST, and ALP levels as compared to the diabetic control rats. Results also showed significant (p < 0.05) decrease in LDL-C and VLDL-C in the extract-treated rats with a corresponding increase in HDL-C, as compared to the diabetic control rats. Moreover histopathological analysis revealed ameliorative effect of pathological insults induced by the STZ in the pancreas, liver, and spleen, most significantly the regeneration of the beta cells of the islets of Langerhans in treated rats. PMID:27294153
Beverages of lemon juice and exotic noni and papaya with potential for anticholinergic effects.
Gironés-Vilaplana, Amadeo; Valentão, Patrícia; Andrade, Paula B; Ferreres, Federico; Moreno, Diego A; García-Viguera, Cristina
2015-03-01
Lemon (Citrus limon (L.) Burm. f.) juice beverages enriched either with noni (Morinda citrifolia L.) (LN) or papaya (Carica papaya L.) (LP), were characterized by HPLC-DAD-ESI/MS(n), the antioxidant capacity was evaluated by (DPPH·), superoxide (O2(·-)), hydroxyl radicals (·OH) and hypochlorous acid (HOCl) assays, and their potential as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors was also assessed. The fruits are rich in a wide range of bioactive phenolics. Regarding DPPH·, ·OH and HOCl assays, the LP displayed strong activity, and LN was the most active against O2(·-). Concerning cholinesterases, LP was the most active, mainly due to lemon juice contribution. The effect on the cholinesterases was not as strong as in previous reports on purified extracts, but the bioactive-rich beverages offer the possibility of dietary coadjutants for daily consumption of health-promoting substances by adults with aging-related cognitive or physical disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.
Berkovich, Liron; Earon, Gideon; Ron, Ilan; Rimmon, Adam; Vexler, Akiva; Lev-Ari, Shahar
2013-08-19
Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells' chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells.
Morinda citrifolia edible leaf extract enhanced immune response against lung cancer.
Lim, Swee-Ling; Goh, Yong-Meng; Noordin, M Mustapha; Rahman, Heshu S; Othman, Hemn H; Abu Bakar, Nurul Ain; Mohamed, Suhaila
2016-02-01
Lung cancer causes 1.4 million deaths annually. In the search for functional foods as complementary therapies against lung cancer, the immuno-stimulatory properties of the vegetable Morinda citrifolia leaves were investigated and compared with the anti-cancer drug erlotinib. Lung tumour-induced BALB/c mice were fed with 150 mg kg(-1) or 300 mg kg(-1) body weight of the leaf extract, or erlotinib (50 mg kg(-1) body-weight) for 21 days. The 300 mg kg(-1) body weight extract significantly (and dose-dependently) suppressed lung tumour growth; the extract worked more effectively than the 50 mg kg(-1) body weight erlotinib treatment. The extract significantly increased blood lymphocyte counts, and spleen tissue B cells, T cells and natural killer cells, and reduced the epidermal growth factor receptor (EGFR) which is a lung adenocarcinoma biomarker. The extract also suppressed the cyclooxygenase 2 (COX2) inflammatory markers, and enhanced the tumour suppressor gene (phosphatase and tensin homolog, PTEN). It inhibited tumour growth cellular gene (transformed mouse 3T3 cell double minute 2 (MDM2), V-raf-leukemia viral oncogene 1 (RAF1), and mechanistic target of rapamycin (MTOR)) mRNA expression in the tumours. The extract is rich in scopoletin and epicatechin, which are the main phenolic compounds. The 300 mg kg(-1)Morinda citrifolia leaf 50% ethanolic extract showed promising potential as a complementary therapeutic dietary supplement which was more effective than the 50 mg kg(-1) erlotinib in suppressing lung adenocarcinoma. Part of the mechanisms involved enhancing immune responses, suppressing proliferation and interfering with various tumour growth signalling pathways.
Barrajón-Catalán, Enrique; Taamalli, Amani; Quirantes-Piné, Rosa; Roldan-Segura, Cristina; Arráez-Román, David; Segura-Carretero, Antonio; Micol, Vicente; Zarrouk, Mokhtar
2015-02-01
A new differential metabolomic approach has been developed to identify the phenolic cellular metabolites derived from breast cancer cells treated with a supercritical fluid extracted (SFE) olive leaf extract. The SFE extract was previously shown to have significant antiproliferative activity relative to several other olive leaf extracts examined in the same model. Upon SFE extract incubation of JIMT-1 human breast cancer cells, major metabolites were identified by using HPLC coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry (ESI-Q-TOF-MS). After treatment, diosmetin was the most abundant intracellular metabolite, and it was accompanied by minor quantities of apigenin and luteolin. To identify the putative antiproliferative mechanism, the major metabolites and the complete extract were assayed for cell cycle, MAPK and PI3K proliferation pathways modulation. Incubation with only luteolin showed a significant effect in cell survival. Luteolin induced apoptosis, whereas the whole olive leaf extract incubation led to a significant cell cycle arrest at the G1 phase. The antiproliferative activity of both pure luteolin and olive leaf extract was mediated by the inactivation of the MAPK-proliferation pathway at the extracellular signal-related kinase (ERK1/2). However, the flavone concentration of the olive leaf extract did not fully explain the strong antiproliferative activity of the extract. Therefore, the effects of other compounds in the extract, probably at the membrane level, must be considered. The potential synergistic effects of the extract also deserve further attention. Our differential metabolomics approach identified the putative intracellular metabolites from a botanical extract that have antiproliferative effects, and this metabolomics approach can be expanded to other herbal extracts or pharmacological complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
Ueno, Hiroki; Urasaki, Naoya; Natsume, Satoshi; Yoshida, Kentaro; Tarora, Kazuhiko; Shudo, Ayano; Terauchi, Ryohei; Matsumura, Hideo
2015-04-01
The sex type of papaya (Carica papaya) is determined by the pair of sex chromosomes (XX, female; XY, male; and XY(h), hermaphrodite), in which there is a non-recombining genomic region in the Y and Y(h) chromosomes. This region is presumed to be involved in determination of males and hermaphrodites; it is designated as the male-specific region in the Y chromosome (MSY) and the hermaphrodite-specific region in the Y(h) chromosome (HSY). Here, we identified the genes determining male and hermaphrodite sex types by comparing MSY and HSY genomic sequences. In the MSY and HSY genomic regions, we identified 14,528 nucleotide substitutions and 965 short indels with a large gap and two highly diverged regions. In the predicted genes expressed in flower buds, we found no nucleotide differences leading to amino acid changes between the MSY and HSY. However, we found an HSY-specific transposon insertion in a gene (SVP like) showing a similarity to the Short Vegetative Phase (SVP) gene. Study of SVP-like transcripts revealed that the MSY allele encoded an intact protein, while the HSY allele encoded a truncated protein. Our findings demonstrated that the SVP-like gene is a candidate gene for male-hermaphrodite determination in papaya.
Elemike, Elias E; Fayemi, Omolola E; Ekennia, Anthony C; Onwudiwe, Damian C; Ebenso, Eno E
2017-04-29
Synthesis of metallic and semiconductor nanoparticles through physical and chemical routes has been extensively reported. However, green synthesized metal nanoparticles are currently in the limelight due to the simplicity, cost-effectiveness and eco-friendliness of their synthesis. This study explored the use of aqueous leaf extract of Costus afer in the synthesis of silver nanoparticles (CA-AgNPs). The optical and structural properties of the resulting silver nanoparticles were studied using UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infra-red spectrophotometer (FTIR). TEM images of the silver nanoparticles confirmed the existence of monodispersed spherical nanoparticles with a mean size of 20 nm. The FTIR spectra affirmed the presence of phytochemicals from the Costus afer leaf extract on the surface of the silver nanoparticles. The electrochemical characterization of a CA-AgNPs/multiwalled carbon nanotubes (MWCNT)-modified electrode was carried out to confirm the charge transfer properties of the nanocomposites. The comparative study showed that the CA-AgNPs/MWCNT-modified electrode demonstrated faster charge transport behaviour. The anodic current density of the electrodes in Fe(CN)₆] 4- /[Fe(CN)₆] 3- redox probe follows the order: GCE/CA-Ag/MWCNT (550 mA/cm²) > GCE/MWCNT (270 mA/cm²) > GCE (80 mA/cm²) > GCE/CA-Ag (7.93 mA/cm²). The silver nanoparticles were evaluated for their antibacterial properties against Gram negative ( Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa ) and Gram positive ( Bacillus subtilis and Staphylococcus aureus ) pathogens. The nanoparticles exhibited better inhibition of the bacterial strains compared to the precursors (leaf extract of Costus afer and silver nitrate). Furthermore, the ability of the nanoparticles to scavenge DPPH radicals at different concentrations was studied using the DPPH radical scavenging assay and compared to
A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract
NASA Astrophysics Data System (ADS)
Li, Chengyang; Zhuang, Zechao; Jin, Xiaoying; Chen, Zuliang
2017-11-01
In this paper, a green and facile synthesis of reduced graphene oxide (GO) by Eucalyptus leaf extract (EL-RGO) was investigated, which was characterized with ultraviolet-visible spectroscopy (UV), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Thermal gravimetric analysis (TG). Eucalyptus leaf extract also play both reducing and capping stabilizing agents prepared EL-RGO as shown a good stability and electrochemical properties. This approach could provide an alternative method to prepare EL-RGO in large-scale production. Moreover, the good electrochemical property and biocompatibility can be used in various applications. In addition, the merit of this study is that both the oxidized products and the reducing agents are environmental friendly by green reduction.
Bhide, S V; Padma, P R; Amonkar, A J
1991-01-01
Earlier studies showed that betel leaf inhibits the mutagenic action of standard mutagens like benzo[a]pyrene and dimethylbenz[a]anthracene. Since tobacco-specific nitrosamines are the major carcinogens present in unburnt forms of tobacco, we studied the effect of an extract of betel leaf on the mutagenic and carcinogenic actions of one of the most potent, 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK). Betel-leaf extract and hydroxychavicol suppressed the mutagenicity of NNK in both the Ames and the micronucleus test. In studies in mice, betel-leaf extract reduced the tumorigenic effects of NNK by 25%. Concurrent treatment with the extract also inhibited the decreases in levels of vitamin A in liver and plasma induced by NNK. Betel leaf thus has protective effects against the mutagenic, carcinogenic and adverse metabolic effects of NNK in mice.
NASA Astrophysics Data System (ADS)
Warsi; Sholichah, A. R.
2017-11-01
Basil leaf (Ocimum basilicum L.) contains various compounds such as flavonoid, alkaloid, phenol and essential oil, so it needs to be fractionated to find out the flavonoid compound with the greatest potential as an antioxidant. This research was aimed to know the chemical compound, antioxidant potential of ethanolic extract and ethyl acetate fraction from basil leaf. The basil leaf was extracted by maceration using ethanol 70 %. The crude extract was fractionated with ethyl acetate. The ethanolic extract and ethyl acetate fraction were screened of phytochemical content including identification of flavonoids, alkaloids and polyphenolics. The antioxidant activity of the ethanolic extract and ethyl acetate fraction were tested qualitatively with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdate. Its antioxidant activity was determined quantitatively using DPPH radical scavenging method. Phytochemical screening test showed that ethanolic extract and ethyl acetate fraction from basil leaf contain flavonoids, polyphenolics, and alkaloids. The qualitative analysis of antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf showed an antioxidant activity. The IC50 value of ethanolic extract, ethyl acetate fraction and quercetin were 1,374.00±6.20 389.00±1.00 2.10±0.01μg/mL, respectively. The research showed that antioxidant activity of the ethyl acetate fraction more potential than the ethanol extract of the basil leaf, but less than quercetin.
Pano-Farias, Norma S; Ceballos-Magaña, Silvia G; Gonzalez, Jorge; Jurado, José M; Muñiz-Valencia, Roberto
2015-04-01
To improve the analysis of pesticides in complex food matrices with economic importance, alternative chromatographic techniques, such as supercritical fluid chromatography, can be used. Supercritical fluid chromatography has barely been applied for pesticide analysis in food matrices. In this paper, an analytical method using supercritical fluid chromatography coupled to a photodiode array detection has been established for the first time for the quantification of pesticides in papaya and avocado. The extraction of methyl parathion, atrazine, ametryn, carbofuran, and carbaryl was performed through the quick, easy, cheap, effective, rugged, and safe methodology. The method was validated using papaya and avocado samples. For papaya, the correlation coefficient values were higher than 0.99; limits of detection and quantification ranged from 130-380 and 220-640 μg/kg, respectively; recovery values ranged from 72.8-94.6%; precision was lower than 3%. For avocado, limit of detection values were ˂450 μg/kg; precision was lower than 11%; recoveries ranged from 50.0-94.2%. Method feasibility was tested for lime, banana, mango, and melon samples. Our results demonstrate that the proposed method is applicable to methyl parathion, atrazine, ametryn, and carbaryl, toxics pesticides used worldwide. The methodology presented in this work could be applicable to other fruits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heidarian, Esfandiar; Jafari-Dehkordi, Effat; Valipour, Parisa; Ghatreh-Samani, Keihan; Ashrafi-Eshkaftaki, Leila
2017-09-03
Gentamicin in overdose can lead to tubular injury and kidney dysfunction. Some antioxidants can protect kidneys against nephrotoxicity. This study was undertaken to evaluate the protective effects of Pistacia atlantica (P. atlantica) leaf hydroethanolic extract against gentamicin-induced nephrotoxicity in rats. Forty rats were divided into five groups: the first group received a daily intraperitoneal (i.p.) injection of normal saline. The second group received gentamicin (120 mg/kg, i.p.). The third, fourth, and fifth groups were orally treated with 200, 400, and 800 mg/kg of P. atlantica leaf hydroethanolic extract, respectively, and they also received gentamicin (120 mg/kg, i.p.). After seven days, serum malondialdehyde (MDA), creatinine (Cr), urea, uric acid, lipids profile, protein carbonyl (PC), and tumor necrosis factor-α (TNF-α) were determined. Also, a piece of kidney was used to determine catalase (CAT) and superoxide dismutase (SOD) activities, vitamin C, the gene expression of TNF-α, and for subsequent histopathological studies. Treatment with P. atlantica leaf hydroethanolic extract resulted in a significant increase (p < 0.05) in CAT, SOD, vitamin C, and high-density lipoprotein cholesterol, and significantly decreased (p < 0.05) the levels of Cr, urea, uric acid, MDA, PC, triglyceride, total cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, TNF-α protein, and the gene expression of TNF-α compared with the untreated group. Histopathological studies show that in lymphocyte infiltration, remarkable reduction was observed in P. atlantica leaf hydroethanolic extract-treated groups, compared with the untreated group. The present study suggests that P. atlantica leaf hydroethanolic extract has protective effects against gentamicin-induced nephrotoxicity.
NASA Astrophysics Data System (ADS)
Moodley, Jerushka S.; Babu Naidu Krishna, Suresh; Pillay, Karen; Sershen; Govender, Patrick
2018-03-01
In this study we report on the synthesis of silver nanoparticles (AgNPs) from the leaf extracts of Moringa oleifera using sunlight irradiation as primary source of energy, and its antimicrobial potential. Silver nanoparticle formation was confirmed by surface plasmon resonance at 450 nm and 440 nm, respectively for both fresh and freeze-dried leaf samples. Crystanality of AgNPs was confirmed by transmission electron microscopy, scanning electron microscopy with energy dispersive x-ray spectroscopy and Fourier transform infrared (FTIR) spectroscopy analysis. FTIR spectroscopic analysis suggested that flavones, terpenoids and polysaccharides predominate and are primarily responsible for the reduction and subsequent capping of AgNPs. X-ray diffraction analysis also demonstrated that the size range of AgNPs from both samples exhibited average diameters of 9 and 11 nm, respectively. Silver nanoparticles showed antimicrobial activity on both bacterial and fungal strains. The biosynthesised nanoparticle preparations from M. oleifera leaf extracts exhibit potential for application as broad-spectrum antimicrobial agents.
Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes.
Cheng, Fang-Chi; Shen, Szu-Chuan; Wu, James Swi-Bea
2009-06-01
People in oriental countries, including Japan and Taiwan, boil guava leaves (Psidium guajava L.) in water and drink the extract as a folk medicine for diabetes. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound. The extract was eluted with MeOH-H(2)O solutions through Diaion, Sephadex, and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-(14)C] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC). The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and that quercetin is the major active compound. We suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells, and contributes to the alleviation of hypoglycemia in diabetes as a consequence.
Effects of potato and lotus leaf extract intake on body composition and blood lipid concentration
Lee, Keuneil; Kim, Jongkyu; Lee, Namju; Park, Sok; Cho, Hyunchul; Chun, Yoonseok
2015-01-01
[Purpose] The purpose of this study was to investigate the effects of potato and lotus leaf extract intake on body composition, abdominal fat, and blood lipid concentration in female university students. [Methods] A total of 19 female university students participated in this 8-week study, and they were randomly assigned into 2 groups; potato and lotus leaf extract (skinny-line) administered group (SKG, n =9) and placebo group (PG, n = 10). The main results of the present study are presented below. [Results] 1) Body mass index, and percent body fat and abdominal fat in students of the SKG showed a decreasing tendency without significant interaction, 2) total cholesterol (TC), triglyceride (TG), and low density lipoprotein (LDL-C) in students of the SKG showed an averagely decreasing tendency and there was a significant interaction of TC only, 3) high density lipoprotein (HDL-C) in students of the SKG showed an increasing tendency without significant interaction, and 4) Z-score of fatness testing interaction in group × repetition did not show a significant interaction; however, there was a significant interaction of TC in group × repetition. Based on these results, 8-week intake of potato and lotus leaf extract had a positive effect of lowering TC. On the other hand, it had no significant effect on other types of lipids and percent body fat changes. [Conclusion] There was a positive tendency of blood lipids in students of the SKG and it seems that potato and lotus leaf extract intake might prevent obesity and improve obesity related syndromes. PMID:25960952
Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand
2013-01-01
Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039
Panax ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats.
Lee, Seul-Gi; Lee, Yoon-Jeong; Jang, Myeong-Hwan; Kwon, Tae-Ryong; Nam, Ju-Ock
2017-09-10
Recent studies have reported that the aerial parts of ginseng contain various saponins, which have anti-oxidative, anti-inflammatory, and anti-obesity properties similar to those of ginseng root. However, the leaf extracts of Korean ginseng have not yet been investigated. In this study, we demonstrate the anti-obesity effects of green leaf and dried leaf extracts (GL and DL, respectively) of ginseng in high-fat diet (HFD)-induced obese rats. The administration of GL and DL to HFD-induced obese rats significantly decreased body weight (by 96.5% and 96.7%, respectively), and epididymal and abdominal adipose tissue mass. Furthermore, DL inhibited the adipogenesis of 3T3-L1 adipocytes through regulation of the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)-γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, GL had little effect on the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of PPARγ compared with that in untreated cells. These results were not consistent with an anti-obesity effect in the animal model, which suggested that the anti-obesity effect of GL in vivo resulted from specific factors released by other organs, or from increased energy expenditure. To our knowledge, these findings are the first evidence for the anti-obesity effects of the leaf extracts of Korean ginseng in vivo.
NASA Astrophysics Data System (ADS)
da Silva, M. G.; Santos, E. O.; Sthel, M. S.; Cardoso, S. L.; Cavalli, A.; Monteiro, A. R.; de Oliveira, J. G.; Pereira, M. G.; Vargas, H.
2003-01-01
Ripening studies of nontreated and treated papaya (papaya L) are accomplished by monitoring the ethylene and CO2 emission rates of that climacteric fruit, to evaluate its shelf life. The treatments simulate the commercial Phitosanitarian process used to avoid the fly infestation. Ethylene emission was measured using a commercial CO2 laser driven photoacoustic setup and CO2, using a commercial gas analysis also based on the photothermal effect. The results show a marked change in ethylene and CO2 emission rate pattern for treated fruits when compared to the ones obtained for nontreated fruits and a displacement of the climacteric pick shown that the treatment causes a decrease of shelf life of fruit.
2013-01-01
Background Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells’ chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. Methods The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Results Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Conclusion Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells. PMID
Antioxidant activities and phenolics profiling of different parts of Carica papaya by LCMS-MS.
Zunjar, V; Mammen, D; Trivedi, B M
2015-01-01
This article deals with the comparison of the antioxidant activity of aqueous extracts of various parts of Carica papaya L. The evaluation of total phenolic content and total flavonoid content revealed high antioxidant potential of the seeds and fruits. The free radical-scavenging potential of the aqueous extracts indicated the seeds to have better DPPH-scavenging activity than fruits. The results were augmented by the FRAP activity as well. The phenolics present in the extracts were separated and identified as 5-hydroxy feruloyl quinic acid, acetyl p-coumaryl quinic acid, quercetin-3-O-rhamnoside, syringic acid hexoside, 5-hydroxy caffeic quinic acid, peonidin-3-O-glucoside, sinapic acid-O-hexoside, cyaniding-3-O-glucose and methyl feruloyl glycoside by LCMS-MS technique.
Kulkarni, Paresh; Paul, Rajkumar; Ganesh, N
2010-07-01
Persea americana is much sought after both for the nutritional value of its fruit and the medicinal values of its various plant parts. A chromosomal aberration assay was undertaken to evaluate the potential genotoxicity of crude extracts from avocado fruits and leaves. Chromosomal aberrations were observed in cultured human peripheral lymphocytes exposed to separately increasing concentrations of 50% methanolic extracts of Persea americana fruit and leaves. The groups exposed to leaf and fruit extracts, respectively, showed a concentration-dependent increase in chromosomal aberrations as compared to that in a control group. The mean percentage total aberrant metaphases at 100 mg/kg, 200 mg/kg, and 300 mg/kg concentrations of leaf extract were found respectively to be 58 ± 7.05, 72 ± 6.41, and 78 ± 5.98, which were significantly higher (p < 0.0001 each) than that in the control group (6 ± 3.39). The mean percentage total aberrant metaphases at 100 mg/kg, 200 mg/kg, and 300 mg/kg concentrations of fruit extract were found to be 18 ± 5.49, 40 ± 10.00, and 52 ± 10.20, respectively, which were significantly higher (p = 0.033, p < 0.0001, and p < 0.0001, respectively) than that for control (6 ± 3.39). Acrocentric associations and premature centromeric separation were the two most common abnormalities observed in both the exposed groups. The group exposed to leaf extracts also showed a significant number of a variety of other structural aberrations, including breaks, fragments, dicentrics, terminal deletion, minutes, and Robertsonian translocations. The group exposed to leaf extract showed higher frequency of all types of aberrations at equal concentrations as compared to the group exposed to fruit extract.
Chromosomal location and gene paucity of the male specific region on papaya Y chromosome.
Yu, Qingyi; Hou, Shaobin; Hobza, Roman; Feltus, F Alex; Wang, Xiue; Jin, Weiwei; Skelton, Rachel L; Blas, Andrea; Lemke, Cornelia; Saw, Jimmy H; Moore, Paul H; Alam, Maqsudul; Jiang, Jiming; Paterson, Andrew H; Vyskot, Boris; Ming, Ray
2007-08-01
Sex chromosomes in flowering plants evolved recently and many of them remain homomorphic, including those in papaya. We investigated the chromosomal location of papaya's small male specific region of the hermaphrodite Y (Yh) chromosome (MSY) and its genomic features. We conducted chromosome fluorescence in situ hybridization mapping of Yh-specific bacterial artificial chromosomes (BACs) and placed the MSY near the centromere of the papaya Y chromosome. Then we sequenced five MSY BACs to examine the genomic features of this specialized region, which resulted in the largest collection of contiguous genomic DNA sequences of a Y chromosome in flowering plants. Extreme gene paucity was observed in the papaya MSY with no functional gene identified in 715 kb MSY sequences. A high density of retroelements and local sequence duplications were detected in the MSY that is suppressed for recombination. Location of the papaya MSY near the centromere might have provided recombination suppression and fostered paucity of genes in the male specific region of the Y chromosome. Our findings provide critical information for deciphering the sex chromosomes in papaya and reference information for comparative studies of other sex chromosomes in animals and plants.
Analgesic and Anti-Inflammatory Activities of Leaf Extract of Mallotus repandus (Willd.) Muell. Arg.
Hasan, Md. Mahadi; Uddin, Nizam; Hasan, Md. Rakib; Islam, A. F. M. Mahmudul; Hossain, Md. Monir; Rahman, Akib Bin; Hossain, Md. Sazzad; Chowdhury, Ishtiaque Ahmed; Rana, Md. Sohel
2014-01-01
In folk medicine Mallotus repandus (Willd.) Muell. Arg. is used to treat muscle pain, itching, fever, rheumatic arthritis, snake bite, hepatitis, and liver cirrhosis. This study aimed to evaluate the antinociceptive as well as the anti-inflammatory activities of the methanol extract of leaf. The leaves were extracted with methanol following hot extraction and tested for the presence of phytochemical constituents. Analgesic and anti-inflammatory activities were evaluated using acetic acid induced writhing test, xylene induced ear edema, cotton pellet induced granuloma, and tail immersion methods at doses of 500, 1000, and 2000 mg/kg body weight. The presence of flavonoids, saponins, and tannins was identified in the extract. The extract exhibited considerable antinociceptive and anti-inflammatory activities against four classical models of pain. In acetic acid induced writhing, xylene induced ear edema, and cotton pellet granuloma models, the extract revealed dose dependent activity. Additionally, it increased latency time in tail immersion model. It can be concluded that M. repandus possesses significant antinociceptive potential. These findings suggest that this plant can be used as a potential source of new antinociceptive and anti-inflammatory candidates. The activity of methanol extract is most likely mediated through central and peripheral inhibitory mechanisms. This study justified the traditional use of leaf part of this plant. PMID:25629031
Identification of a putative triacylglycerol lipase from papaya latex by functional proteomics.
Dhouib, R; Laroche-Traineau, J; Shaha, R; Lapaillerie, D; Solier, E; Rualès, J; Pina, M; Villeneuve, P; Carrière, F; Bonneu, M; Arondel, V
2011-01-01
Latex from Caricaceae has been known since 1925 to contain strong lipase activity. However, attempts to purify and identify the enzyme were not successful, mainly because of the lack of solubility of the enzyme. Here, we describe the characterization of lipase activity of the latex of Vasconcellea heilbornii and the identification of a putative homologous lipase from Carica papaya. Triacylglycerol lipase activity was enriched 74-fold from crude latex of Vasconcellea heilbornii to a specific activity (SA) of 57 μmol·min(-1)·mg(-1) on long-chain triacylglycerol (olive oil). The extract was also active on trioctanoin (SA = 655 μmol·min(-1)·mg(-1) ), tributyrin (SA = 1107 μmol·min(-1)·mg(-1) ) and phosphatidylcholine (SA = 923 μmol·min(-1)·mg(-1) ). The optimum pH ranged from 8.0 to 9.0. The protein content of the insoluble fraction of latex was analyzed by electrophoresis followed by mass spectrometry, and 28 different proteins were identified. The protein fraction was incubated with the lipase inhibitor [(14) C]tetrahydrolipstatin, and a 45 kDa protein radiolabeled by the inhibitor was identified as being a putative lipase. A C. papaya cDNA encoding a 55 kDa protein was further cloned, and its deduced sequence had 83.7% similarity with peptides from the 45 kDa protein, with a coverage of 25.6%. The protein encoded by this cDNA had 35% sequence identity and 51% similarity to castor bean acid lipase, suggesting that it is the lipase responsible for the important lipolytic activities detected in papaya latex. © 2010 The Authors Journal compilation © 2010 FEBS.
Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si
2015-02-11
Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Ashit; Mahajan, Ketakee; Bankar, Ashok
Highlights: ► Pomegranate leaf extracts mediated rapid gold nanoparticle (AuNP) synthesis. ► The phyto-inspired AuNPs were size-tuned and characterized. ► The reducing and capping agents in the extract were identified. ► The nanoparticles reacted specifically with arsenate (V) ions. - Abstract: When pomegranate leaf extracts were incubated with chloroauric acid (HAuCl{sub 4}), gold nanoparticles (AuNPs) were synthesized. These were characterized by a variety of techniques. With an increasing content of the leaf extract, a gradual decrease in size and an increase in monodispersity were observed. Transmission electron microscope (TEM) images showed that the phyto-fabricated AuNPs were surrounded by an amorphousmore » layer. Gallic acid in the extract mediated the reduction and a natural decapeptide capped the nanostructures. Blocking of thiol groups in the decapeptide cysteine residues caused the nanoparticles to aggregate. On interaction with arsenate (V) ions, the UV–vis spectra of the nanoparticles showed a decrease in intensity and a red-shift. Energy dispersive spectra confirmed the presence of arsenate associated with the AuNPs. Thus, by using these AuNPs, a method for sensing the toxic arsenate ions could be developed.« less
ESR detection procedure of irradiated papaya containing high water content
NASA Astrophysics Data System (ADS)
Kikuchi, Masahiro; Shimoyama, Yuhei; Ukai, Mitsuko; Kobayashi, Yasuhiko
2011-05-01
ESR signals were recorded from irradiated papaya at liquid nitrogen temperature (77 K), and freeze-dried irradiated papaya at room temperature (295 K). Two side peaks from the flesh at the liquid nitrogen temperature indicated a linear dose response for 3-14 days after the γ-irradiation. The line shapes recorded from the freeze-dried specimens were sharper than those at liquid nitrogen temperature.
Gordanian, B.; Behbahani, M.; Carapetian, J.; Fazilati, M.
2014-01-01
The present study was carried out to investigate cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species against breast cancer cell line (MCF7) and human embryonic kidney normal cell line (HEK293). The studied Artemisia species were A. absinthium, A. vulgaris, A. incana, A. fragrans and A. spicigera. The cytotoxic activity was measured by MTT assay at different concentrations (62.5, 125, 250, 500 μg/ml). Among these five species, methanol extracts of flower, leaf, stem and root of A. absinthium and A. vulgaris exhibited considerable cytotoxic activity. The flower extracts of these two species were found to have higher cytotoxic effect on MCF7 cell with an IC50 value of 221.5 and >500 μg/ml, respectively. Leaf methanol extract of A. incana also showed cytotoxic activity. Cytotoxic activity of different extracts of A. absinthium, A. vulgaris and A. incana against MCF7 was 10%-40% more than HEK293 cells. Not only the extracts of A. spicigera and A. fragrans did not show any cytotoxic effect against both cell lines, but also increased the number of cells. This study revealed that A. absinthium and A. vulgaris may have a great potential to explore new anticancer drugs. PMID:25657777
Brighenti, Fernanda Lourenção; Gaetti-Jardim, Elerson; Danelon, Marcelle; Evangelista, Gustavo Vaz; Delbem, Alberto Carlos Botazzo
2012-08-01
Previous evaluations of Psidium cattleianum leaf extract were not done in conditions similar to the oral environment. The aim of this study was to evaluate the effect of P. cattleianum leaf extract on enamel demineralisation, extracellular polysaccharide formation, and the microbial composition of dental biofilms formed in situ. Ten volunteers took part in this crossover study. They wore palatal appliances containing 4 enamel blocks for 14 days. Each volunteer dripped 20% sucrose 8 times per day on the enamel blocks. Twice a day, deionised water (negative control), extract, or a commercial mouthwash (active control) was dripped after sucrose application. On the 12th and 13th days of the experiment, plaque acidogenicity was measured with a microelectrode, and the pH drop was calculated. On the 14th day, biofilms were harvested and total anaerobic microorganisms (TM), total streptococci (TS), mutans streptococci (MS), and extracellular polysaccharides (EPS) were evaluated. Enamel demineralisation was evaluated by the percentage change of surface microhardness (%ΔSMH) and integrated loss of subsurface hardness (ΔKHN). The researcher was blinded to the treatments during data collection. The extract group showed lower TM, TS, MS, EPS, %ΔSMH, and ΔKHN values than the negative control group. There were no differences between the active and negative control groups regarding MS and EPS levels. There were no differences in pH drop between the extract and active control groups, although they were significantly different from the negative control group. For all other parameters, the extract differed from the active control group. Psidium cattleianum leaf extract exhibits a potential anticariogenic effect. Copyright © 2012 Elsevier Ltd. All rights reserved.
Optimization of process parameters for foam-mat drying of papaya pulp.
Kandasamy, Palani; Varadharaju, N; Kalemullah, S; Maladhi, D
2014-10-01
Experiments were carried out to optimize the process parameters for production of papaya powder using foam-mat drying. Papaya pulp was foamed by incorporating methyl cellulose (0.25, 0.5, 0.75 and 1 %, w/w), glycerol-mono-stearate (1, 2, 3 and 4 %, w/w) and egg white (5, 10, 15 and 20 %, w/w) as foaming agents. The maximum stable foam formation was 72, 90 and 125% at 0.75 % methyl cellulose, 3 % glycerol-mono-stearate and 15 % egg white respectively with 9°Brix pulp and whipping time of 20 min. The foamed pulp was dried at air temperature of 60, 65 and 70 °C with foam thickness of 2, 4, 6, 8 and 10 mm in a batch type cabinet dryer. The drying time required for foamed papaya pulp was lower than non-foamed pulp at all selected temperatures. Biochemical analysis results showed a significant reduction in ascorbic acid, β-carotene and total sugars in the foamed papaya dried product at higher foam thickness (6, 8 and 10 mm) and temperature (65 and 70 °C due to destruction at higher drying temperature and increasing time. There was no significant change in other biochemical constituents such as pH and acidity. The organoleptic and sensory evaluation of the quality attributes of papaya powder obtained from the pulp of 9°Brix added with 3 % glycerol-mono-stearate, whipped for 20 min and dried with a foam thickness of 4 mm at a temperature of 60 °C was found to be optimum to produce the foam-mat dried papaya powder.
Price, Charles A.; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S.
2011-01-01
Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure. PMID:21057114
Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract.
Maqbool, Qaisar; Nazar, Mudassar; Naz, Sania; Hussain, Talib; Jabeen, Nyla; Kausar, Rizwan; Anwaar, Sadaf; Abbas, Fazal; Jan, Tariq
This article reports the green fabrication of cerium oxide nanoparticles (CeO 2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO 2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO 2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm -1 , showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO 2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis.
Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract
Maqbool, Qaisar; Nazar, Mudassar; Naz, Sania; Hussain, Talib; Jabeen, Nyla; Kausar, Rizwan; Anwaar, Sadaf; Abbas, Fazal; Jan, Tariq
2016-01-01
This article reports the green fabrication of cerium oxide nanoparticles (CeO2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm−1, showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis. PMID:27785011
ANTI-INFLAMMATORY ACTIVITY OF EUCALYPTUS SPP. AND PISTASCIA LENTISCUS LEAF EXTRACTS.
Qabaha, Khaled; Ras, Sari Abu; Abbadi, Jehad; Al-Rimawi, Fuad
2016-01-01
Eucalyptus spp. and Pistascia lentiscus are among the Palestinian trees that are traditionally used in folkloric medicine in treating many diseases; leaves of which are thought to have anti-inflammatory, antibacterial and antioxidant effects. The goal of this study is to evaluate the in vitro inhibitory effect of Eucalyptus spp . and Pistascia lentiscus extracts on Lipopolysacaride (LPS)-induced Interlukin-6 (Il-6) and Tumor Necrosis Factor-α (TNF-α) by polymorphonuclear Cells (PMNCs). Polymorphonuclear cells were isolated from the whole blood using Histopaque (Ficol-1077) method and then cultured in an enriched Roswell Park Memorial Institute (RBMI) medium. Supernatants' Interlukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α) levels were determined 24 hour after LPS stimulation. HPLC was employed to determine the concentration of phenolic compounds in the extracts. The concentrations of TNF-α and IL-6 were compared using paired-samples t test. Eucalyptus spp . and Pistascia lentiscus leaves extracts have shown significant reduction in the levels of both Il-6 and TNF-α Gallic acid; a strong anti-inflammatory agent was found to be the major phenolic compound in both leaf extracts. However, other anti-inflammatory phenolic compounds were detected in Pitascia lentiscus extract including syringic acid and p-coumaric acid, while chlorogenic acid was detected in Eucalyptus spp . leaf extract. Reduction in the levels of Il-6 and TNF-α upon the effect of both Eucalyptus spp . and Pistascia lentiscus extract is an indication of their anti-inflammatory effects. Our results may also indicate that the observed anti-inflammatory effect of the above extracts may be due to the presence of gallic acid and other phenolic compounds. List of Abbreviations and Nomenclature: LPS: Lipopolysacaride, Il-6: Interlukin-6, TNF-α: Tumor Necrosis Factor-α, PMNCs: Polymorphonuclear Cells, HPLC: High Performance Liquid Chromatography, ELISA: Enzyme Linked Immune Sorbent Assay, EDTA
ANTI-INFLAMMATORY ACTIVITY OF EUCALYPTUS SPP. AND PISTASCIA LENTISCUS LEAF EXTRACTS
Qabaha, Khaled; Ras, Sari Abu; Abbadi, Jehad; Al-Rimawi, Fuad
2016-01-01
Background: Eucalyptus spp. and Pistascia lentiscus are among the Palestinian trees that are traditionally used in folkloric medicine in treating many diseases; leaves of which are thought to have anti-inflammatory, antibacterial and antioxidant effects. The goal of this study is to evaluate the in vitro inhibitory effect of Eucalyptus spp. and Pistascia lentiscus extracts on Lipopolysacaride (LPS)-induced Interlukin-6 (Il-6) and Tumor Necrosis Factor-α (TNF-α) by polymorphonuclear Cells (PMNCs). Materials and Methods: Polymorphonuclear cells were isolated from the whole blood using Histopaque (Ficol-1077) method and then cultured in an enriched Roswell Park Memorial Institute (RBMI) medium. Supernatants’ Interlukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α) levels were determined 24 hour after LPS stimulation. HPLC was employed to determine the concentration of phenolic compounds in the extracts. The concentrations of TNF-α and IL-6 were compared using paired-samples t test. Results: Eucalyptus spp. and Pistascia lentiscus leaves extracts have shown significant reduction in the levels of both Il-6 and TNF-α Gallic acid; a strong anti-inflammatory agent was found to be the major phenolic compound in both leaf extracts. However, other anti-inflammatory phenolic compounds were detected in Pitascia lentiscus extract including syringic acid and p-coumaric acid, while chlorogenic acid was detected in Eucalyptus spp. leaf extract. Conclusion: Reduction in the levels of Il-6 and TNF-α upon the effect of both Eucalyptus spp. and Pistascia lentiscus extract is an indication of their anti-inflammatory effects. Our results may also indicate that the observed anti-inflammatory effect of the above extracts may be due to the presence of gallic acid and other phenolic compounds. List of Abbreviations and Nomenclature: LPS: Lipopolysacaride, Il-6: Interlukin-6, TNF-α: Tumor Necrosis Factor-α, PMNCs: Polymorphonuclear Cells, HPLC: High Performance Liquid Chromatography
2012-01-01
Background Sickle cell disease (SCD) is a genetic disease caused by an individual inheriting an allele for sickle cell hemoglobin from both parents and is associated with unusually large numbers of immature blood cells, containing many long, thin, crescent-shaped erythrocytes. It is a disease prevalent throughout many populations. The use of medicinal plants and nutrition in managing SCD is gaining increasing attention. Methods The antisickling effects of Solenostemon monostachyus (SolMon), Carica papaya seed oil (Cari-oil) and Ipomoea involucrata (Ipocrata) in male (HbSSM) and female (HbSSF) human sickle cell blood was examined in vitro and compared with controls, or cells treated with glutathione or an antisickling plant (Vernonia amygdalina; VerMyg). Results Levels of sickle blood cells were significantly reduced (P < 0.05) in all the plant-extract treated SCD patients’ blood compared with that of untreated SCD patients. RBCs in SolMon, Ipocrata, and Cari-oil treated samples were significantly higher (P < 0.05) compared with VerMyg-treated samples. The Fe2+/Fe3+ ratio was significantly reduced (P < 0.05) in all plant extract-treated HbSSM samples compared with controls. Hemoglobin concentration was significantly increased (P < 0.05) by SolMon treatment in HbSSF compared with VerMyg. Sickle cell polymerization inhibition exhibited by SolMon was significantly higher (P < 0.05) compared with that of VerMyg in HbSSF blood. Sickle cell polymerization inhibition in SolMon and Ipocrata were significantly higher (P < 0.05) compared with VerMyg in HbSSM blood. All plant extracts significantly reduced (P < 0.05) lactate dehydrogenase activity in both HbSSM and HbSSF-treated blood. Catalase activity was significantly increased (P < 0.05) in HbSSF blood treated with Ipocrata compared with glutathione. Cari-oil treated HbSSM and HbSSF blood had significantly increased (P < 0.05) peroxidase activity compared with controls. Conclusions Methanolic extracts from S
Formulation and evaluation of antihyperglycemic leaf extracts of Zizyphus spina-christi (L.) Willd.
Nesseem, D I; Michel, C G; Sleem, A A; El-Alfy, T S
2009-02-01
This study deals with the formulation of antihyperglycemic leaf extracts of Zizyphus spina-christi (L.) Willd. A bioactivity guided fractionation of different leaf extracts [defatted ethanol 70% (a), butanol (b), ethanol 70% (c), ethyl acetate (d) and petroleum ether (e) extracts] revealed that extract (c) possessed the highest antihyperglycemic activity followed by (b) and (a). HPLC was adopted for standardization of the extract (c) based on evaluation of the major saponin christinin-A which was used as marker. The detection limit was 9.45 mg/ml for Christinin-A. Extracts (a), (b) and (c) were separately formulated in soft (S) and hard (H) gelatin capsules. Two different formulations (F1 and F2) were tried using different excipients suitable for oral drug delivery. Formula 1, used for soft gelatin capsules [(F1) Sa, Sb, Sc] Formula 2, used for hard gelatin capsules [(F2) - Ha, Hb, Hc]. The recovery rates of the samples of saponin were in the range 99.43-101.86% at 200, 800 microg/ml and 1200 microg/ml. Saponin release rates from different formulae were carried out using dissolution tester USP XXIV. The highest release was obtained from formulation Sc. The release of the extracts followed diffusion mechanism. The selected formula Sc exhibited highest anti-diabetic activity (P < 0.01) on acute and long-term administration and highest saponin release. This formula (Sc) contained poly-oxyethylene (20) cetyl ether (BC-20TX), PEG 400, PEG 6000, purified water, meglyol 810, ascorbic acid and 200 mg of extract (c).
Release Profile of Andrographis paniculata Leaf Extract Nanocapsule as α-Glucosidase Inhibitors
NASA Astrophysics Data System (ADS)
Zahrani, K.; Imansari, F.; Utami, T. S.; Arbianti, R.
2017-07-01
Andrographis paniculata is one of 13 leading commodities Indonesian medicinal plants through the Ditjen POM. Andrographolide as main active compound has been shown to have many pharmacological activities, one of which is as α-glucosidase enzyme inhibitors which has clinical potential as an antitumor, antiviral, antidiabetic, and immunoregulator agents. This study aims to do nanoencapsulation of Andrographis paniculatar leaf extract to increase its active compound bioavailability and get a release profile through synthetic fluids media simulation. Nanoencapsulation with ionic gelation method result the encapsulation efficiency and loading capacity values of 73.47% and 46.29% at 2%: 1% of chitosan: STPP ratio. The maximum α-glucosidase inhibition of 37.17% was obtained at 16% concentration. Burst release at gastric pH conditions indicate that most of the drug (in this study is an Andrographis paniculata leaf extract) adsorbed on the surface of the nanoparticles an indicates that the kind of nanoparticle formed is nanosphere.
NASA Astrophysics Data System (ADS)
Majumdar, Rakhi; Bag, Braja Gopal; Maity, Nabasmita
2013-09-01
The leaf extract of Acacia nilotica (Babool) is rich in different types of plant secondary metabolites such as flavanoids, tannins, triterpenoids, saponines, etc. We have demonstrated the use of the leaf extract for the synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete in several minutes, and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the leaf extract. The gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy, and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 4-nitrophenol to 4-aminophenol in water at room temperature.
Ghaffar, Ammara; Tahir, Mohammad; Lone, Khalid Pervez; Faisal, Bushra; Latif, Waqas
2015-01-01
Gentamicin is an aminoglycoside isolated from Micromonospora purpurea known for its nephrotoxicity. Ficus carica L is known to treat many ailments. This study was designed to investigate the effects of Ficus carica L. (Anjir) leaf extract on renal oxidative stress induced by gentamicin in albino mice. In this laboratory based experimental study 30 mice were divided into three groups, containing 10 mice each. Group A being the control; groups B and C were experimental and treated with gentamicin 200 mg/kg/day intraperitoneally and, Ficus carica L. leaf extract 400 mg/kg/day orally with gentamicin 200 mg/kg/day intraperitoneally respectively for a period of 8 days. Blood samples were taken 24 hours after completion of the experimental period by cardiac puncture under anesthesia and kidneys of each mouse were taken out for microscopic examination. Gentamicin treatment increased serum urea and creatinine levels (group B). Ficus carica L. leaf extract treated animals showed significant reduction in biochemical markers of kidney functions in group C. The histopathological examination of group A showed normal renal structure which was deranged in group B treated with only gentamicin, whereas, group C exhibited marked improvement in histological structure. Ficus carica L. leaf extract is effective in preventing gentamicin induced functional and structural changes in kidney of albino mice.
Potential of Three Ethnomedicinal Plants as Antisickling Agents.
Nurain, Ismaila O; Bewaji, Clement O; Johnson, Jarrett S; Davenport, Robertson D; Zhang, Yang
2017-01-03
Sickle cell disease (SCD) is a genetic blood disorder that affects the shape and transportation of red blood cells (RBCs) in blood vessels, leading to various clinical complications. Many drugs that are available for treating the disease are insufficiently effective, toxic, or too expensive. Therefore, there is a pressing need for safe, effective, and inexpensive therapeutic agents from indigenous plants used in ethnomedicines. The potential of aqueous extracts of Cajanus cajan leaf and seed, Zanthoxylum zanthoxyloides leaf, and Carica papaya leaf in sickle cell disease management was investigated in vitro using freshly prepared 2% sodium metabisulfite for sickling induction. The results indicated that the percentage of sickled cells, which was initially 91.6% in the control, was reduced to 29.3%, 41.7%, 32.8%, 38.2%, 47.6%, in the presence of hydroxyurea, C. cajan seed, C. cajan leaf, Z. zanthoxyloides leaf, and C. papaya leaf extracts, respectively, where the rate of polymerization inhibition was 6.5, 5.9, 8.0, 6.6, and 6.0 (×10 -2 ) accordingly. It was also found that the RBC resistance to hemolysis was increased in the presence of the tested agents as indicated by the reduction of the percentage of hemolyzed cells from 100% to 0%. The phytochemical screening results indicated the presence of important phytochemicals including tannins, saponins, alkaloids, flavonoids, and glycosides in all the plant extracts. Finally, gas chromatography-mass spectrometry analysis showed the presence of important secondary metabolites in the plants. These results suggest that the plant extracts have some potential to be used as alternative antisickling therapy to hydroxyurea in SCD management.
Yang, Jun-Peng; He, Hao; Lu, Yan-Hua
2014-08-06
Bamboo leaf extract as a food additive has been used for preventing the oxidation of food. In the present study, we investigated the influence of Phyllostachys edulis leaf extract on starch digestion. Orientin, isoorientin, vitexin, and isovitexin were determined as its α-amylase inhibitory constituents. An inhibitory kinetics experiment demonstrated that they competitively inhibit α-amylase with Ki values of respectively 152.6, 11.5, 569.6, and 75.8 μg/mL. Molecular docking showed the four flavones can interact with the active site of α-amylase, and their inhibitory activity was greatly influenced by the glucoside linking position and 3'-hydroxyl. Moreover, the results of starch-iodine complex spectroscopy, X-ray diffraction, and scanning electron microscopy indicated that P. edulis flavonoids retard the digestion of starch not only through interaction with digestive enzymes, but also through interaction with starch. Thus, P. edulis leaf extract can be potentially used as a starch-based food additive for adjusting postprandial hyperglycemia.
Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique
2015-01-01
In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution
Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique
2015-01-01
In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3-1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution
Rodrigues, Silas P.; Ventura, José A.; Aguilar, Clemente; Nakayasu, Ernesto S.; Choi, HyungWon; Sobreira, Tiago J. P.; Nohara, Lilian L.; Wermelinger, Luciana S.; Almeida, Igor C.; Zingali, Russolina B.; Fernandes, Patricia M. B.
2012-01-01
Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers’ regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses. PMID:22465191
Maniyar, Yasmeen; Bhixavatimath, Prabhu
2012-01-01
Background: India is considered as the diabetic capital of the world. The study of plants having antihyperglycemic and hypolipidemic activities may give a new approach in the treatment of diabetes mellitus. Objective: The study was intended to evaluate the antihyperglycemic and hypolipidemic activity of aqueous extract of leaves of Carica papaya Linn. (AECPL) in alloxan-induced diabetic albino rats. Materials and Methods: Diabetes was induced in albino rats by administration of alloxan monohydrate (120 mg/kg, i.p.). Rats were divided into 6 groups of 6 animals each. First group served as non-diabetic control, second group as diabetic control, third group as standard and was treated with 0.1 mg/kg/day of glibenclamide. Group 4, 5, and 6 received 100, 200, and 400 mg/kg body weight of AECPL. Blood samples were analyzed for blood glucose on day 0, 1, 7, 14, 21 and lipid profile on day 21. Results: The AECPL showed significant reduction (P<0.01) in blood glucose level and serum lipid profile levels with 400 mg/kg body weight in alloxan-induced diabetic rats as compared with the control. Conclusion: It is concluded that AECPL is effective in controlling blood glucose levels and in improving lipid profile in diabetic rats. PMID:22707862
Ali, A; Wee Pheng, T; Mustafa, M A
2015-06-01
To evaluate the potential use of lemongrass essential oil vapour as an alternative for synthetic fungicides in controlling anthracnose of papaya. Lemongrass oil used in the study was characterized using gas chromatography-flame ionization detection (GC-FID) before it was tested against anthracnose of papaya in vitro and in vivo. The GC-FID analysis showed that geranial (45·6%) and neral (34·3%) were the major components in lemongrass oil. In vitro study revealed that lemongrass oil vapour at all concentrations tested (33, 66, 132, 264 and 528 μl l(-1) ) suppressed the mycelial growth and conidial germination of Colletotrichum gloeosporioides. For the in vivo study, 'Sekaki' papaya were exposed to lemongrass oil fumigation (0, 7, 14, 28 μl l(-1) ) for 18 h and at room temperature for 9 days. Lemongrass oil vapour at the concentration of 28 μl l(-1) was most effective against anthracnose of artificially inoculated papaya fruit while quality parameters of papaya were not significantly altered. This suggests that lemongrass oil vapour can control anthracnose disease development on papaya without affecting its natural ripening process. The potential practical application of this technology can reduce reliance on synthetic fungicides for the control of postharvest diseases in papaya. © 2015 The Society for Applied Microbiology.
Isolation of ripening-related genes from ethylene/1-MCP treated papaya through RNA-seq.
Shen, Yan Hong; Lu, Bing Guo; Feng, Li; Yang, Fei Ying; Geng, Jiao Jiao; Ming, Ray; Chen, Xiao Jing
2017-08-31
Since papaya is a typical climacteric fruit, exogenous ethylene (ETH) applications can induce premature and quicker ripening, while 1-methylcyclopropene (1-MCP) slows down the ripening processes. Differential gene expression in ETH or 1-MCP-treated papaya fruits accounts for the ripening processes. To isolate the key ripening-related genes and better understand fruit ripening mechanisms, transcriptomes of ETH or 1-MCP-treated, and non-treated (Control Group, CG) papaya fruits were sequenced using Illumina Hiseq2500. A total of 18,648 (1-MCP), 19,093 (CG), and 15,321 (ETH) genes were detected, with the genes detected in the ETH-treatment being the least. This suggests that ETH may inhibit the expression of some genes. Based on the differential gene expression (DGE) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, 53 fruit ripening-related genes were selected: 20 cell wall-related genes, 18 chlorophyll and carotenoid metabolism-related genes, four proteinases and their inhibitors, six plant hormone signal transduction pathway genes, four transcription factors, and one senescence-associated gene. Reverse transcription quantitative PCR (RT-qPCR) analyses confirmed the results of RNA-seq and verified that the expression pattern of six genes is consistent with the fruit senescence process. Based on the expression profiling of genes in carbohydrate metabolic process, chlorophyll metabolism pathway, and carotenoid metabolism pathway, the mechanism of pulp softening and coloration of papaya was deduced and discussed. We illustrate that papaya fruit softening is a complex process with significant cell wall hydrolases, such as pectinases, cellulases, and hemicellulases involved in the process. Exogenous ethylene accelerates the coloration of papaya changing from green to yellow. This is likely due to the inhibition of chlorophyll biosynthesis and the α-branch of carotenoid metabolism. Chy-b may play an important role in the yellow color of papaya
Nondestructive evaluation of degradation in papaya fruit using intensity based algorithms
NASA Astrophysics Data System (ADS)
Kumari, Shubhashri; Nirala, Anil Kumar
2018-05-01
In the proposed work degradation in Papaya fruit has been evaluated nondestructively using laser biospeckle technique. The biospeckle activity inside the fruit has been evaluated qualitatively and quantitatively during its maturity to degradation stage using intensity based algorithms. Co-occurrence matrix (COM) has been used for qualitative analysis whereas Inertia Moment (IM), Absolute value Difference (AVD) and Autocovariance methods have been used for quantitative analysis. The biospeckle activity has been found to first increase and then decrease during study period of five days. In addition Granulometric size distribution (GSD) has also been used for the first time for the evaluation of degradation of the papaya. It is concluded that the degradation process of papaya fruit can be evaluated nondestructively using all the mentioned algorithms.
Assessment of the antimobial activity of olive leaf extract against foodborne bacterial pathogens
USDA-ARS?s Scientific Manuscript database
Olive leaf extract (OLE) has been used traditionally as an herbal supplement since it contains polyphenolic compounds with beneficial properties ranging from increasing energy levels, lowering blood pressure, and supporting the cardiovascular and immune systems. In addition to the beneficial effect...
Potential Hypoglycaemic and Antiobesity Effects of Senna italica Leaf Acetone Extract.
Malematja, R O; Bagla, V P; Njanje, I; Mbazima, V; Poopedi, K W; Mampuru, L; Mokgotho, M P
2018-01-01
Type II diabetes is on the rise while obesity is one of the strongest risk factors of type II diabetes. The search for a drug for type II that can equally mitigate obesity related complication is desired. The acetone leaf extract of Senna italica was evaluated for its cytotoxic, antiglycation, and lipolytic effect, glucose uptake, and GLUT4 translocation and expression using published methods, while that for adipogenesis and protein expression levels of obesity related adipokines was assessed using adipogenesis assay and mouse adipokine proteome profiler kit, respectively. The possible mechanism of glucose uptake was assessed through the inhibition of PI3K pathway. The extract had no adverse effect on 3T3-L1 cell viability (CC50 > 1000 μ g/ml). High antiglycation effect was attained at 10 mg/ml, while at 25-200 μ g/ml it showed no significant increase in adipogenesis and lipolysis. The extract at 100 μ g/ml was shown to decrease the expression levels of various adipokines and minimal glucose uptake at 50-100 μ g/ml with a nonsignificant antagonistic effect when used in combination with insulin. GLUT4 translocation and expression were attained at 50-100 μ g/ml with an increase in GLUT4 expression when in combination with insulin. The acetone leaf extract of S. italica stimulates glucose uptake through the PI3K-dependent pathway and can serve as a source of therapeutic agent for the downregulation of obesity-associated adipokines in obesity and antiglycation agents.
Abdelkafi, Slim; Ogata, Hiroyuki; Barouh, Nathalie; Fouquet, Benjamin; Lebrun, Régine; Pina, Michel; Scheirlinckx, Frantz; Villeneuve, Pierre; Carrière, Frédéric
2009-11-01
An esterase (CpEst) showing high specific activities on tributyrin and short chain vinyl esters was obtained from Carica papaya latex after an extraction step with zwitterionic detergent and sonication, followed by gel filtration chromatography. Although the protein could not be purified to complete homogeneity due to its presence in high molecular mass aggregates, a major protein band with an apparent molecular mass of 41 kDa was obtained by SDS-PAGE. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (679 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 1029 bp encoding a protein of 343 amino acid residues, with a theoretical molecular mass of 38 kDa. From sequence analysis, CpEst was identified as a GDSL-motif carboxylester hydrolase belonging to the SGNH protein family and four potential N-glycosylation sites were identified. The putative catalytic triad was localised (Ser(35)-Asp(307)-His(310)) with the nucleophile serine being part of the GDSL-motif. A 3D-model of CpEst was built from known X-ray structures and sequence alignments and the catalytic triad was found to be exposed at the surface of the molecule, thus confirming the results of CpEst inhibition by tetrahydrolipstatin suggesting a direct accessibility of the inhibitor to the active site.
7 CFR 319.56-25 - Papayas from Central America and South America.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Papayas from Central America and South America. 319.56-25 Section 319.56-25 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND... Vegetables § 319.56-25 Papayas from Central America and South America. Commercial consignments of the Solo...
7 CFR 319.56-25 - Papayas from Central America and South America.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Papayas from Central America and South America. 319.56-25 Section 319.56-25 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND... Vegetables § 319.56-25 Papayas from Central America and South America. Commercial consignments of the Solo...
7 CFR 319.56-25 - Papayas from Central America and South America.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Papayas from Central America and South America. 319.56-25 Section 319.56-25 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND... Vegetables § 319.56-25 Papayas from Central America and South America. Commercial consignments of the Solo...
7 CFR 319.56-25 - Papayas from Central America and South America.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Papayas from Central America and South America. 319.56-25 Section 319.56-25 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND... Vegetables § 319.56-25 Papayas from Central America and South America. Commercial consignments of the Solo...
Schweiggert, Ralf M; Steingass, Christof B; Esquivel, Patricia; Carle, Reinhold
2012-03-14
Papaya (Carica papaya L.) F1 hybrids and inbred lines grown in Costa Rica were screened for morphological and nutritionally relevant fruit traits. The qualitative composition of carotenoids showed great similarity, being mostly composed of free and esterified β-cryptoxanthins accompanied by β-carotene, lycopene, and biosynthetic precursors. High levels of (all-E)-lycopene and its isomers were distinctive for red-fleshed hybrids, whereas yellow-fleshed fruits were virtually devoid of lycopenes. Because carotenoid levels among the investigated hybrids and lines differed significantly, this study supports the hypothesis of an exploitable genetic variability, and a potential heterotic effect regarding carotenoid expression may be instrumental in papaya-breeding programs. Due to significantly higher levels of provitamin A carotenoids and coinciding high levels of total lycopene, particularly red-fleshed hybrids might represent prospective sources of these compounds. Furthermore, the nutritional value of some genotypes was boosted by substantial amounts of ascorbic acid (up to 73 mg/100 g of fresh weight), which correlated to total soluble solids (R(2) = 0.86).
Fang, Jingping; Lin, Aiting; Qiu, Weijing; Cai, Hanyang; Umar, Muhammad; Chen, Rukai; Ming, Ray
2016-01-01
Papaya is a productive and nutritious tropical fruit. Papaya Ringspot Virus (PRSV) is the most devastating pathogen threatening papaya production worldwide. Development of transgenic resistant varieties is the most effective strategy to control this disease. However, little is known about the genome-wide functional changes induced by particle bombardment transformation. We conducted transcriptome sequencing of PRSV resistant transgenic papaya SunUp and its PRSV susceptible progenitor Sunset to compare the transcriptional changes in young healthy leaves prior to infection with PRSV. In total, 20,700 transcripts were identified, and 842 differentially expressed genes (DEGs) randomly distributed among papaya chromosomes. Gene ontology (GO) category analysis revealed that microtubule-related categories were highly enriched among these DEGs. Numerous DEGs related to various transcription factors, transporters and hormone biosynthesis showed clear differences between the two cultivars, and most were up-regulated in transgenic papaya. Many known and novel stress-induced and disease-resistance genes were most highly expressed in SunUp, including MYB, WRKY, ERF, NAC, nitrate and zinc transporters, and genes involved in the abscisic acid, salicylic acid, and ethylene signaling pathways. We also identified 67,686 alternative splicing (AS) events in Sunset and 68,455 AS events in SunUp, mapping to 10,994 and 10,995 papaya annotated genes, respectively. GO enrichment for the genes displaying AS events exclusively in Sunset was significantly different from those in SunUp. Transcriptomes in Sunset and transgenic SunUp are very similar with noteworthy differences, which increased PRSV-resistance in transgenic papaya. No detrimental pathways and allergenic or toxic proteins were induced on a genome-wide scale in transgenic SunUp. Our results provide a foundation for unraveling the mechanism of PRSV resistance in transgenic papaya. PMID:27379138
Yan, P; Gao, X Z; Shen, W T; Zhou, P
2011-02-01
The fruit flesh color of papaya is an important nutritional quality trait and is due to the accumulation of carotenoid. To elucidate the carotenoid biosynthesis pathway in Carica papaya, the phytoene desaturase (PDS) and the ζ-carotene desaturase (ZDS) genes were isolated from papaya (named CpPDS and CpZDS) using the rapid amplification of cDNA ends (RACE) approach, and their expression levels were investigated in red- and yellow-fleshed papaya varieties. CpPDS contains a 1749 bp open reading frame coding for 583 amino acids, while CpZDS contains a 1716 bp open reading frame coding for 572 amino acids. The deduced CpPDS and CpZDS proteins contain a conserved dinucleotide-binding site at the N-terminus and a carotenoid-binding domain at the C-terminus. Papaya genome sequence analysis revealed that CpPDS and CpZDS are single copy; the CpPDS was mapped to papaya chromosome LG6, and the CpZDS was mapped to chromosome LG3. Quantitative PCR showed that both CpPDS and CpZDS were expressed in all tissues examined with the highest expression in maturing fruits, and that the expression of CpPDS and CpZDS were higher in red-fleshed fruits than in yellow-fleshed fruits. These results indicated that the differential accumulation of carotenoids in red- and yellow-fleshed papaya varieties might be partly explained by the transcriptional level of CpPDS and CpZDS.
Qujeq, Durdi; Tatar, Mohsen; Feizi, Farideh; Parsian, Hadi; Sohan Faraji, Alieh; Halalkhor, Sohrab
2013-01-01
Urtica dioica has been known as a plant that decreases blood glucose. Despite the importance of this plant in herbal medicine, relatively little research has been down on effects of this plant on islets yet. The objective of the current study was to evaluate the effect of dried Urtica dioica leaf alcoholic and aqueous extracts on the number and the diameter of the islets and histological parameters in streptozocin-induced diabetic rats. Six rats were used in each group. Group I: Normal rats were administered saline daily for 8 weeks. Group II: Diabetic rats were administered streptozotocin, 50 mg/kg of body weight; Group III: Diabetic rats were administered dried Urtica dioica leaf aqueous extracts for 8 weeks; Group IV: Diabetic rats were administered dried Urtica dioica leaf alcoholic extracts for 8 weeks. The animals, groups of diabetic and normal, were sacrificed by ether anaesthesia. Whole pancreas was dissected. The tissue samples were formalin fixed and paraffin embedded for microscopic examination. Histologic examination and grading were carried out on hematoxylin-eosin stained sections. The effects of administration of dried Urtica dioica leaf alcoholic and aqueous extracts to diabetic rats were determined by histopathologic examination. The pancreas from control rats showed normal pancreatic islets histoarchitecture. Our results also, indicate that the pancreas from diabetic rats show injury of pancreas tissue while the pancreas from diabetic rats treated with dried Urtica dioica leaf alcoholic and aqueous extracts show slight to moderate rearrangement of islets. According to our findings, dried Urtica dioica leaf alcoholic and aqueous extracts can cause a suitable repair of pancreatic tissue in streptozocin-induced diabetic experimental model.
Qujeq, Durdi; Tatar, Mohsen; Feizi, Farideh; Parsian, Hadi; Sohan Faraji, Alieh; Halalkhor, Sohrab
2013-01-01
Urtica dioica has been known as a plant that decreases blood glucose. Despite the importance of this plant in herbal medicine, relatively little research has been down on effects of this plant on islets yet. The objective of the current study was to evaluate the effect of dried Urtica dioica leaf alcoholic and aqueous extracts on the number and the diameter of the islets and histological parameters in streptozocin-induced diabetic rats. Six rats were used in each group. Group I: Normal rats were administered saline daily for 8 weeks. Group II: Diabetic rats were administered streptozotocin, 50 mg/kg of body weight; Group III: Diabetic rats were administered dried Urtica dioica leaf aqueous extracts for 8 weeks; Group IV: Diabetic rats were administered dried Urtica dioica leaf alcoholic extracts for 8 weeks. The animals, groups of diabetic and normal, were sacrificed by ether anaesthesia. Whole pancreas was dissected. The tissue samples were formalin fixed and paraffin embedded for microscopic examination. Histologic examination and grading were carried out on hematoxylin-eosin stained sections. The effects of administration of dried Urtica dioica leaf alcoholic and aqueous extracts to diabetic rats were determined by histopathologic examination. The pancreas from control rats showed normal pancreatic islets histoarchitecture. Our results also, indicate that the pancreas from diabetic rats show injury of pancreas tissue while the pancreas from diabetic rats treated with dried Urtica dioica leaf alcoholic and aqueous extracts show slight to moderate rearrangement of islets. According to our findings, dried Urtica dioica leaf alcoholic and aqueous extracts can cause a suitable repair of pancreatic tissue in streptozocin-induced diabetic experimental model. PMID:24551786
Salvamani, Shamala; Gunasekaran, Baskaran; Shukor, Mohd Yunus; Shaharuddin, Noor Azmi; Sabullah, Mohd Khalizan
2016-01-01
Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase. PMID:27051453
Rodrigues, Silas P; Ventura, José A; Aguilar, Clemente; Nakayasu, Ernesto S; Choi, HyungWon; Sobreira, Tiago J P; Nohara, Lilian L; Wermelinger, Luciana S; Almeida, Igor C; Zingali, Russolina B; Fernandes, Patricia M B
2012-06-18
Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers' regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses. Copyright © 2012 Elsevier B.V. All rights reserved.
Phytochemical, sub-acute toxicity, and antibacterial evaluation of Cordia sebestena leaf extracts.
Osho, Adeleke; Otuechere, Chiagoziem A; Adeosun, Charles B; Oluwagbemi, Tolu; Atolani, Olubunmi
2016-03-01
In Nigeria, Cordia sebestena (Boraginaceae), an understudied medicinal plant, is used in traditional medicine for the treatment of gastrointestinal disorders. In this study, we investigated the chemical composition, antibacterial potential, and sub-acute toxicity of C. sebestena leaves. Ethyl acetate extracts were analyzed using thin layer chromatography (TLC) and Fourier transform infrared (FTIR) spectrophotometry. The antibacterial potential of the extracts was tested against five standard bacteria, namely Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clinical observations and blood parameters were used to evaluate the possible toxicity of C. sebestena. The TLC profile yielded 39 fractions, which were pooled to nine combined sub-fractions (A-I). The FTIR spectrum of sub-fraction H indicated the presence of aliphatic C-H stretching vibration at 2922 and 2850 cm-1, C=O stretch at 1734 and 1708 cm-1, and C=C stretch of aromatics and aliphatics at 1464 and (shoulder) 1618 cm-1, respectively. The fractions of the C. sebestena ethyl acetate leaf extract showed antibacterial potential across board, but fraction H had the highest antibacterial activity against B. cereus and S. aureus. The study also indicated the relatively low toxicity profile of the ethyl acetate leaf extract of C. sebestena in the liver of rats. The study showed that C. sebestena leaves have strong antibacterial potential and low toxicity, thereby underlying the scientific basis for their folkloric use in the management of microbial infections and its associated complications.
Varadarajan, Saranya; Narasimhan, Malathi; Malaisamy, Malaiyandi; Duraipandian, Chamundeeswari
2015-08-01
Candidiasis is one of the most common opportunistic infections caused by Candida albicans. Fluconazole is the drug of choice for prevention and management of this condition. However, the emergence of fluconazole resistant candidal strains has become a major concern. Many herbs like fenugreek, cinnamon, papaya, oregano, garlic are rich in phytochemical constituents known to express antimycotic activity. With the available information, the present research study was carried out to assess the invitro anti-mycotic activity of hydro alcoholic extracts of Trigonella foenum-graecum seeds, Cinnamomum verum bark and Carica papaya leaves and seeds against fluconazole resistant Candida albicans. Hydro alcoholic extracts of Trigonella foenum-graecum (seeds), Cinnamomum verum (bark), Carica papaya CO.2 strain (male and female leaves) and Carica papaya CO.2 strain (seeds) were prepared by maceration. The anti-mycotic activity of the prepared extracts against Candida albicans was assessed by agar well diffusion method. Three independent experiments were performed in triplicates and the mean and standard deviation were calculated. Minimum inhibitory concentration was determined. The results of the present study revealed that all the extracts exhibited anti-mycotic activity in a dose dependent manner and minimum inhibitory concentration of all the extracts was found to be 15.62 μg/ml. The results of the present study shed light on the fact that plant extracts could be used not only as an alternate drug for management of fluconazole resistant candidiasis but also explored further for oral cancer prevention as a therapeutic adjunct.
Gobi, Narayanan; Ramya, Chinnu; Vaseeharan, Baskaralingam; Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Murugan, Kadarkarai; Benelli, Giovanni
2016-11-01
In this research, we focused on the efficacy of aqueous and ethanol leaf extracts of Psidium guajava L. (guava) based experimental diets on the growth, immune, antioxidant and disease resistance of tilapia, Oreochromis mossambicus following challenge with Aeromonas hydrophila. The experimental diets were prepared by mixing powdered (1, 5 and 10 mg/g) aqueous and ethanol extract of guava leaf with commercial diet. The growth (FW, FCR and SGR), non-specific cellular immune (myeloperoxidase activity, reactive oxygen activity and reactive nitrogen activity) humoral immune (complement activity, antiprotease, alkaline phosphatase activity and lysozyme activity) and antioxidant enzyme responses (SOD, GPX, and CAT) were examined after 30 days of post-feeding. A significant enhancement in the biochemical and immunological parameters of fish were observed fed with experimental diets compared to control. The dietary supplementation of P. guajava leaf extract powder for 30 days significantly reduced the mortality and increased the disease resistance of O. mossambicus following challenge with A. hydrophila at 50 μl (1 × 10 7 cells ml -1 ) compared to control after post-infection. The results suggest that the guava leaf extract could be used as a promising feed additive in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ali, Akhtar
2017-01-12
In the United States, the Papaya ringspot virus was first reported from papaya in Florida in 1949. Here, we determined the first complete genome sequence (10,302 nucleotides) of a Papaya ringspot virus-W isolate, which was collected from a commercial field of gourd in Tulsa, OK. Copyright © 2017 Ali.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...
Ghosh, Subarna; Saha, Mandira; Bandyopadhyay, Probir Kumar; Jana, Monoranjan
2017-10-01
The relative efficacy of the isolated pure compound, extracted from Carica papaya seed has been tested against live fish, Channa punctatus infected with pathogenic strains of KlebsiellaPKBSG14 (gene bank accession no.KJ162158) at a dose of 0.75 CFU/ml in vivo. The isolated compound has been characterized by chromatography and mass spectroscopy studies using FTIR, 1 HNMR and 13c NMR to identify as well as to determine the nature of the pure compound. This study revealed the extracted biological molecule is oleic acid, a long chained saturated fatty acid (LFAs) with a molecular formula C 18 H 34 O 2 . Later this compound was analyzed for its efficacy as an antibacterial agent in vivo through cytotoxicological and genotoxicological assays. A dose of 0.5 mg/kg and 1 mg/kg b.w of isolated pure oleic acid has been tested and it showed effective result in regard to DNA fragmentation, comet tail length and toxicity biomarkers like ROS generation. The results of in vivo studies showed similar effects on spleen cells with regard to cell viability by PI staining, cell cycle analysis and also Annexin-FITC assay. Thus, the overall results suggest that oleic acid increases drug bioavailability and thereby has a better chemo-preventive action against bacterial infection in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ahmed, A Bakrudeen Ali; Rao, A S; Rao, M V
2010-11-01
A methanol extract of Gymnema sylvestre leaf and callus showed anti-diabetic activities through regenerating β-cells. Optimum callus was developed under stress conditions of blue light with 2,4-D (1.5 mg/l) and KN (0.5 mg/l), which induced maximum biomass of green compact callus at 45 days, as determined by growth curve analysis. Leaf and optimum callus extracts contains gymnemic acid, which was analyzed using TLC, HPTLC and HPLC methods. The research reported here deals with leaf and callus extracts of G. sylvestre, which significantly increase the weight of the whole body, liver, pancreas and liver glycogen content in alloxan-induced diabetic rats (Wistar rats). The gymnemic acid of leaf and callus extracts significantly increases the regeneration of β-cells in treated rats, when compared with the standard diabetic rats. It could have potential as a pharmaceutical drug for insulin-dependent diabetes mellitus (IDDM). Copyright © 2010 Elsevier GmbH. All rights reserved.
Potential Hypoglycaemic and Antiobesity Effects of Senna italica Leaf Acetone Extract
Njanje, I.; Poopedi, K. W.
2018-01-01
Background Type II diabetes is on the rise while obesity is one of the strongest risk factors of type II diabetes. The search for a drug for type II that can equally mitigate obesity related complication is desired. Methods The acetone leaf extract of Senna italica was evaluated for its cytotoxic, antiglycation, and lipolytic effect, glucose uptake, and GLUT4 translocation and expression using published methods, while that for adipogenesis and protein expression levels of obesity related adipokines was assessed using adipogenesis assay and mouse adipokine proteome profiler kit, respectively. The possible mechanism of glucose uptake was assessed through the inhibition of PI3K pathway. Results The extract had no adverse effect on 3T3-L1 cell viability (CC50 > 1000 μg/ml). High antiglycation effect was attained at 10 mg/ml, while at 25–200 μg/ml it showed no significant increase in adipogenesis and lipolysis. The extract at 100 μg/ml was shown to decrease the expression levels of various adipokines and minimal glucose uptake at 50–100 μg/ml with a nonsignificant antagonistic effect when used in combination with insulin. GLUT4 translocation and expression were attained at 50–100 μg/ml with an increase in GLUT4 expression when in combination with insulin. Conclusion The acetone leaf extract of S. italica stimulates glucose uptake through the PI3K-dependent pathway and can serve as a source of therapeutic agent for the downregulation of obesity-associated adipokines in obesity and antiglycation agents. PMID:29713364
Gonçalves, Flávia A; Andrade Neto, Manoel; Bezerra, José N S; Macrae, Andrew; Sousa, Oscarina Viana de; Fonteles-Filho, Antonio A; Vieira, Regine H S F
2008-01-01
Guava leaf tea of Psidium guajava Linnaeus is commonly used as a medicine against gastroenteritis and child diarrhea by those who cannot afford or do not have access to antibiotics. This study screened the antimicrobial effect of essential oils and methanol, hexane, ethyl acetate extracts from guava leaves. The extracts were tested against diarrhea-causing bacteria: Staphylococcus aureus, Salmonella spp. and Escherichia coli. Strains that were screened included isolates from seabob shrimp, Xiphopenaeus kroyeri (Heller) and laboratory-type strains. Of the bacteria tested, Staphylococcus aureus strains were most inhibited by the extracts. The methanol extract showed greatest bacterial inhibition. No statistically significant differences were observed between the tested extract concentrations and their effect. The essential oil extract showed inhibitory activity against S. aureus and Salmonella spp. The strains isolated from the shrimp showed some resistance to commercially available antibiotics. These data support the use of guava leaf-made medicines in diarrhea cases where access to commercial antibiotics is restricted. In conclusion, guava leaf extracts and essential oil are very active against S. aureus, thus making up important potential sources of new antimicrobial compounds.
Vale, Ellen Moura; Reis, Ricardo Souza; Passamani, Lucas Zanchetta; Santa-Catarina, Claudete; Silveira, Vanildo
2018-03-01
Efficient protocols for somatic embryogenesis of papaya ( Carica papaya L.) have great potential for selecting elite hybrid genotypes. Addition of polyethylene glycol (PEG), a nonplasmolyzing osmotic agent, to a maturation medium increases the production of somatic embryos in C . papaya . To study the effects of PEG on somatic embryogenesis of C . papaya , we analyzed somatic embryo development and carbohydrate profile changes during maturation treatments with PEG (6%) or without PEG (control). PEG treatment (6%) increased the number of normal mature somatic embryos followed by somatic plantlet production. In both control and PEG treatments, pro-embryogenic differentiation to the cotyledonary stage was observed and was significantly higher with PEG treatment. Histomorphological analysis of embryonic cultures with PEG revealed meristematic centers containing small isodiametric cells with dense cytoplasm and evident nuclei. Concomitant with the increase in the differentiation of somatic embryos in PEG cultures, there was an increase in the endogenous content of sucrose and starch, which appears to be related to a rising demand for energy, a key point in the conversion of C . papaya somatic embryos. The endogenous carbohydrate profile may be a valuable parameter for developing optimized protocols for the maturation of somatic embryos in papaya.
NASA Astrophysics Data System (ADS)
Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.
2014-07-01
This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect.
Maqbool, Qaisar; Iftikhar, Sidra; Nazar, Mudassar; Abbas, Fazal; Saleem, Asif; Hussain, Talib; Kausar, Rizwan; Anwaar, Sadaf; Jabeen, Nyla
2017-06-01
In present investigation, copper oxide (CuO) nanostructures have been prepared via green chemistry. Olea europaea leaf extract act as strong chelating agent for tailoring physical as well as bio-medical characteristics of CuO at the nano-size. Physical characterisation such as scanning electron microscope analysis depicts the formation of homogenised spherical shape nanoparticles (NPs) with average size of 42 nm. X-ray diffraction and Fourier transform infrared spectroscopy further confirmed the crystalline pure phase and monoclinic structure. High performance liquid chromatography (HPLC) testing is performed to evaluate the relative concentration of bioactive molecules in the O. europaea leaf extract. From HPLC results capping action of organic molecules around CuO-NPs is hypothesised. The antimicrobial potency of biosynthesised CuO-NPs have been evaluated using colony forming unit (CFU) counting assay and disc diffusion method which shows a significant zone of inhibition against bacterial and fungal strains may be highly potential for future antimicrobial pharmaceutics. Furthermore, reduction of various precursors by plant extract will reduce environmental impact over chemical synthesis.
Anabolic effect of Hibiscus rosasinensis Linn. leaf extracts in immature albino male rats.
Olagbende-Dada, S O; Ezeobika, E N; Duru, F I
2007-01-01
Many plants remedies have been employed in solving man's health needs especially the nutritive value which enhances health living. Aphrodisiac plants are plants with anabolic properties i.e. they help in protein synthesis and enhances sexual abilities in males. They are also known as androgenic plants because their properties are similar to that of androgen a male hormone. Cold aqueous extract of Hibiscus rosasinensis leaves is reported by local traditional practioners in Western Nigeria to be aphrodisiac. To investigate the anabolic properties of Hibiscus rosasinensis. Three groups (8/group) of immature male rats of known weights were administered equal doses of aqueous (cold and hot) and alcoholic extracts of Hibiscus rosasinensis leaves for 8 weeks. The gain in body and isolated sexual organs (testis, epididymis, seminal vesicle and prostate) weights were determined after treatment and compared to the value obtained from a fourth untreated group which served as the control. Section through the testes of both the treated and untreated rats were also examined microscopically and displayed as a photomicrograph for comparism. All data were statistically analysed and displaced in graphic form. Over the 8 weeks of treatment, the control, the cold aqueous extract dosed, hot aqueous extract dosed and alcoholic extract dosed rats gained 8%, 15%, 18% and 22% in body weights respectively. The increase in the weight of testis, epididymis, seminal vesicle and prostate of the alcoholic extract dosed rats was 19%, 30%, 31% and 40% respectively. The anabolic effect of the leaf extracts of H. rosasinensis is hereby established. More work needs to be done on these leaf extracts to know their effect on the gonadotrophin hormones which regulate the activity of the androgens in relation to spermatogenesis.
USDA-ARS?s Scientific Manuscript database
White peach scale, Pseudaulacaspis pentagona (Hemiptera:Diaspididae) is a serious economic pest of papaya, Carica papaya L. The parasitic wasp Encarsia diaspidicola (Hymenoptera: Aphelinidae) was brought from Samoa into a quarantine containment facility in Hawaii for evaluation and potential release...
Wang, Bo; Liu, Heng-Chuan; Hong, Jun-Rong; Li, Hong-Gu; Huang, Cheng-Yu
2007-03-01
To investigate the inhibition effect of Psidium guajava linn (PGL), a leaf water-soluble extract, on the activities of alpha-glucosidases. The PGL water-soluble extract (PGL WE) was obtained by the procedure of distilled water immersion, filtration, extracted fluid concentration and dry of Psidium guajava leaf. The diabetes of Kunming mice was induced by intraperitoneal injection of Streptozotocin (STZ). The small intestinal mucosa of diabetic mice was scraped to make the homogenate for the preparation of alpha-glucosidases. In vitro, the homogenates were incubated with sucrose and maltose. The formed glucose represented the activities of alpha-glucosidases. The Lineweaver-Burk plot was applied to determine the type of alpha-glucosidase activity inhibited. The water-soluble extract from PGL significantly inhibited, in the dose-dependent manner, the activities of alpha-glucosidase from small intestinal mucosa of diabetic mice. The PGL extract inhibition concentration (IC50) to sucrase or maltase was 1.0 g/L or 3.0 g/L respectively. The mixed inhibition type was showed to be the competitive and non-competitive inhibition. The GPL water-soluble extract possesses the potential effect of inhibition on the alpha-glucosidase activity from the small intestinal mucosa of diabetic mouse.
Saniasiaya, Jeyasakthy; Salim, Rosdan; Mohamad, Irfan; Harun, Azian
2017-01-01
Aloe barbadensis miller or Aloe vera has been used for therapeutic purposes since ancient times with antifungal activity known to be amongst its medicinal properties. We conducted a pilot study to determine the antifungal properties of Malaysian Aloe vera leaf extract on otomycosis species including Aspergillus niger and Candida albicans. This laboratory-controlled prospective study was conducted at the Universiti Sains Malaysia. Extracts of Malaysian Aloe vera leaf was prepared in ethanol and solutions via the Soxhlet extraction method. Sabouraud dextrose agar cultured with the two fungal isolates were inoculated with the five different concentrations of each extract (50 g/mL, 25 g/mL, 12.5 g/mL, 6.25 g/mL, and 3.125 g/mL) using the well-diffusion method. Zone of inhibition was measured followed by minimum inhibitory concentration (MIC). For A. niger, a zone of inhibition for alcohol and aqueous extract was seen for all concentrations except 3.125 g/mL. There was no zone of inhibition for both alcohol and aqueous extracts of Aloe vera leaf for C. albicans . The MIC values of aqueous and alcohol extracts were 5.1 g/mL and 4.4 g/mL for A. niger and since no zone of inhibition was obtained for C. albicans the MIC was not determined. The antifungal effect of alcohol extracts of Malaysian Aloe vera leaf is better than the aqueous extract for A. niger ( p < 0.001). Malaysian Aloe vera has a significant antifungal effect towards A. niger.
NASA Astrophysics Data System (ADS)
Abidin, Noraziani Zainal; Janam, Anathasia; Zubairi, Saiful Irwan
2016-11-01
Adsorption of saponin compound in papaya leaves juice extract using Amberlite® IRA-67 resin was not reported in previous studies. In this research, Amberlite® IRA-67 was used to determine the amount of saponin that can be adsorbed using different weights of dry resin (0.1 g and 0.5 g). Peleg model was used to determine the maximum yield of saponin (43.67 mg) and the exhaustive time (5.7 days) prior to a preliminary resin-saponin adsorption study. After adsorption process, there was no significant difference (p>0.05) in total saponin content (mg) for sample treated with 0.1 g (3.79 ± 0.55 mg) and sample treated with 0.5 g (3.43 ± 0.51 mg) dry weight resin. Long-term kinetic adsorption of resin-saponin method (>24 hours) should be conducted to obtain optimum freed saponin extract. Besides that, sample treated with 0.1 g dry weight resin had high free radical scavenging value of 50.33 ± 2.74% compared to sample treated with 0.5 g dry weight resin that had low free radical scavenging value of 24.54 ± 1.66% dry weights. Total saponin content (mg), total phenolic content (mg GAE) and free radical scavenging activity (%) was investigated to determine the interaction of those compounds with Amberlite® IRA-67. The RP-HPLC analysis using ursolic acid as standard at 203 nm showed no peak even though ursolic acid was one of the saponin components that was ubiquitous in plant kingdom. The absence of peak was due to weak solubility of ursolic acid in water and since it was only soluble in solvent with moderate polarity. The Pearson's correlation coefficient for total saponin content (mg) versus total phenolic content (mg GAE) and radical scavenging activity (%) were +0.959 and +0.807. Positive values showed that whenever there was an increase in saponin content (mg), the phenolic content (mg GAE) and radical scavenging activity (%) would also increase. However, as the resin-saponin adsorption was carried out, there was a significant decrease of radical scavenging activity
Glioprotective effects of Ashwagandha leaf extract against lead induced toxicity.
Kumar, Praveen; Singh, Raghavendra; Nazmi, Arshed; Lakhanpal, Dinesh; Kataria, Hardeep; Kaur, Gurcharan
2014-01-01
Withania somnifera (Ashwagandha), also known as Indian Ginseng, is a well-known Indian medicinal plant due to its antioxidative, antistress, antigenotoxic, and immunomodulatory properties. The present study was designed to assess and establish the cytoprotective potential of Ashwagandha leaf aqueous extract against lead induced toxicity. Pretreatment of C6 cells with 0.1% Ashwagandha extract showed cytoprotection against 25 μM to 400 μM concentration of lead nitrate. Further pretreatment with Ashwagandha extract to lead nitrate exposed cells (200 μM) resulted in normalization of glial fibrillary acidic protein (GFAP) expression as well as heat shock protein (HSP70), mortalin, and neural cell adhesion molecule (NCAM) expression. Further, the cytoprotective efficacy of Ashwagandha extract was studied in vivo. Administration of Ashwagandha extract provided significant protection to lead induced altered antioxidant defense that may significantly compromise normal cellular function. Ashwagandha also provided a significant protection to lipid peroxidation (LPx) levels, catalase, and superoxide dismutase (SOD) but not reduced glutathione (GSH) contents in brain tissue as well as peripheral organs, liver and kidney, suggesting its ability to act as a free radical scavenger protecting cells against toxic insult. These results, thus, suggest that Ashwagandha water extract may have the potential therapeutic implication against lead poisoning.
Guo, Jinchao; Yang, Litao; Liu, Xin; Guan, Xiaoyan; Jiang, Lingxi; Zhang, Dabing
2009-08-26
Genetically modified (GM) papaya (Carica papaya L.), Huanong No. 1, was approved for commercialization in Guangdong province, China in 2006, and the development of the Huanong No. 1 papaya detection method is necessary for implementing genetically modified organism (GMO) labeling regulations. In this study, we reported the characterization of the exogenous integration of GM Huanong No. 1 papaya by means of conventional polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR strategies. The results suggested that one intact copy of the initial construction was integrated in the papaya genome and which probably resulted in one deletion (38 bp in size) of the host genomic DNA. Also, one unintended insertion of a 92 bp truncated NptII fragment was observed at the 5' end of the exogenous insert. Furthermore, we revealed its 5' and 3' flanking sequences between the insert DNA and the papaya genomic DNA, and developed the event-specific qualitative and quantitative PCR assays for GM Huanong No. 1 papaya based on the 5' integration flanking sequence. The relative limit of detection (LOD) of the qualitative PCR assay was about 0.01% in 100 ng of total papaya genomic DNA, corresponding to about 25 copies of papaya haploid genome. In the quantitative PCR, the limits of detection and quantification (LOD and LOQ) were as low as 12.5 and 25 copies of papaya haploid genome, respectively. In practical sample quantification, the quantified biases between the test and true values of three samples ranged from 0.44% to 4.41%. Collectively, we proposed that all of these results are useful for the identification and quantification of Huanong No. 1 papaya and its derivates.
Prado, Ligia Carolina da Silva; Silva, Denise Brentan; de Oliveira-Silva, Grasielle Lopes; Hiraki, Karen Renata Nakamura; Canabrava, Hudson Armando Nunes; Bispo-da-Silva, Luiz Borges
2014-01-01
We applied a taxonomic approach to select the Eugenia dysenterica (Myrtaceae) leaf extract, known in Brazil as "cagaita," and evaluated its gastroprotective effect. The ability of the extract or carbenoxolone to protect the gastric mucosa from ethanol/HCl-induced lesions was evaluated in mice. The contributions of nitric oxide (NO), endogenous sulfhydryl (SH) groups and alterations in HCl production to the extract's gastroprotective effect were investigated. We also determined the antioxidant activity of the extract and the possible contribution of tannins to the cytoprotective effect. The extract and carbenoxolone protected the gastric mucosa from ethanol/HCl-induced ulcers, and the former also decreased HCl production. The blockage of SH groups but not the inhibition of NO synthesis abolished the gastroprotective action of the extract. Tannins are present in the extract, which was analyzed by matrix assisted laser desorption/ionization (MALDI); the tannins identified by fragmentation pattern (MS/MS) were condensed type-B, coupled up to eleven flavan-3-ol units and were predominantly procyanidin and prodelphinidin units. Partial removal of tannins from the extract abolished the cytoprotective actions of the extract. The extract exhibits free-radical-scavenging activity in vitro, and the extract/FeCl3 sequence stained gastric surface epithelial cells dark-gray. Therefore, E. dysenterica leaf extract has gastroprotective effects that appear to be linked to the inhibition of HCl production, the antioxidant activity and the endogenous SH-containing compounds. These pleiotropic actions appear to be dependent on the condensed tannins contained in the extract, which bind to mucins in the gastric mucosa forming a protective coating against damaging agents. Our study highlights the biopharmaceutical potential of E. dysenterica.
Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie
2014-01-01
Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.
Yadav, Arun K; Temjenmongla
2011-10-01
The leaves of Houttuynia cordata Thunb. (Saururaceae) are considered to have anthelmintic properties in the traditional medicine of Naga tribes in Northeast India and, therefore, are used by the natives to treat the intestinal worm infections. In the present study, the anticestodal activity of H. cordata leaf extract was investigated against Hymenolepis diminuta, a zoonotic cestode, in experimentally infected albino rats. For the assessment of anticestodal efficacy, the eggs per gram (EPG) of faeces counts and worm loads of animals were monitored following treatment with 200, 400 and 800 mg/kg p.o. doses of leaf extract to different groups of rats harbouring larval, immature and mature H. diminuta infections. The efficacy of the extract was found to be dose-dependent (P < 0.05). Further, the extract showed its maximum efficacy against the mature Hymenolepis worms. In this case, the 800 mg/kg dose of extract significantly reduced (P < 0.001) the EPG counts of animals by 57.09% and worm load by 75.00%, at post-treatment. In comparison, the reference drug praziquantel at 5 mg/kg showed a reduction in the EPG counts and worm load of experimental animals by 80.37 and 87.50%, respectively. These findings indicate that leaves of H. cordata possess significant anticestodal property and provide a rationale for their use in traditional medicine as an anthelmintic.
Valentim, Diego; Bueno, Carlos Roberto Emerenciano; Marques, Vanessa Abreu Sanches; Vasques, Ana Maria Veiga; Cury, Marina Tolomei Sandoval; Cintra, Luciano Tavares Angelo; Dezan, Eloi
2017-07-03
The aim of this study was to evaluate edemogenic activity and subcutaneous inflammatory reaction induced by Psidium cattleianum leaf extracts associated with Ca(OH)2. Thirty male Wistar rats, split equally into three groups [aqueous extract + Ca(OH)2; ethanolic extract + Ca(OH)2; and propylene glycol + Ca(OH)2], were assessed every 3 h or 6 h (five animals in each period). Under general anesthesia, 0.2 mL of 1% Evans blue per 100 g of body weight was injected into the penile vein and each combination to be evaluated was subcutaneously injected into the dorsal region 30 min thereafter. Edemogenic activity was analyzed by spectrophotometry (λ=630 nm). For inflammatory reaction analysis, 50 rats received four polyethylene tubes (three experimental groups) and an empty tube (control group). The assessments were made at 7, 15, 30, 60, and 90 days, followed by hematoxylin-eosin staining and by the assignment of scores for evaluation of tissue response intensity. Ethanolic extract + Ca(OH)2 yielded the largest edemogenic activity at 3 h. Intergroup differences at 6 h were not significant. The histological analysis showed progressive repair over time (p<0.05) and aqueous and ethanolic extracts produced similar responses to those of the control and Ca(OH)2 + propylene glycol groups. Psidium cattleianum leaf extracts used as Ca(OH)2 vehicles evoked similar tissue response when compared to Ca(OH)2 associated with propylene glycol.
Sekiguchi, Hirotaka; Takabayashi, Fumiyo; Deguchi, Yuya; Masuda, Hideki; Toyoizumi, Tomoyasu; Masuda, Shuichi; Kinae, Naohide
2010-01-01
Infection with Helicobacter pylori (H. pylori) can induce gastric disorders, and though its presence cannot explain disease pathogenesis and does not have associations with other factors, it is well known that H. pylori infection causes stomach inflammation following oxidative stress. We examined the suppressive effects of a leaf extract of Wasabia japonica on H. pylori infection and on stress loading in Mongolian gerbils. Following oral administration of wasabi extract of 50 and 200 mg/kg B.W./d for 10 d, the animals were exposed to restraint stress for 90 and 270 min. As for the results, the level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in the stomach and oxidative DNA damage in peripheral erythrocytes at 270 min significantly increased. That elevation was significantly suppressed by the addition of the leaf extract. We concluded that the simultaneous loading of H. pylori infection and physical stress loading might induce oxidative DNA damage additively, while a leaf extract attenuated this DNA damage in the stomach as well as the peripheral erythrocytes.
USDA-ARS?s Scientific Manuscript database
Papaya (Carica papaya L.) cultivars and breeding lines were evaluated for resistance to Enterobacter cloacae (Jordan) Hormaeche & Edwards, the bacterial causal agent of internal yellowing disease (IY), using a range of concentrations of the bacterium. Linear regression analysis was performed and IY ...
NASA Astrophysics Data System (ADS)
Sharmila, G.; Farzana Fathima, M.; Haries, S.; Geetha, S.; Manoj Kumar, N.; Muthukumaran, C.
2017-06-01
Synthesis of metal nanoparticles through green chemistry route is an emerging eco-friendly approach in the present days. An eco-friendly, biogenic synthesis of palladium nanoparticles (PdNPs) using Filicium decipiens leaf extract was reported in the present study. The synthesized PdNPs were characterized by UV-visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The PdNPs formation was confirmed by UV-visible spectrophotometer and spherical shaped PdNPs with size range of 2-22 nm was observed in TEM analysis. Energy dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of palladium in the synthesized nanoparticles. The crystalline nature of PdNPs was confirmed by XRD pattern and compared with the standard. The phytochemicals and proteins were identified by their functional groups in FT-IR spectrum and revealed the amide, amine groups present in F. decipiens may have involved in the bio-reduction reaction for PdNPs synthesis. Prepared PdNPs showed potential antibacterial activity against both Gram-positive and Gram-negative bacteria. F. decipiens leaf extract based PdNPs showed high bactericidal activity against Escherichia coli, Pseudomonas aeruginosa as compared to Staphylococcus aureus and Bacillus subtilis Results showed that phytochemicals rich F. decipiens leaf extract may be utilized as an effective non-toxic reducing agent for PdNPs synthesis and prepared PdNPs may useful in biomedical applications.
Ibrahim, M A; Aliyu, A B; Sallau, A B; Bashir, M; Yunusa, I; Umar, T S
2010-05-01
The in vitro and in vivo antitrypanosomal effects of the ethanol extract of Senna occidentalis leaf were investigated. The crude extract exhibited an in vitro activity against Trypanosoma brucei brucei as it completely eliminated parasites' motility within 10 minutes postincubation with 6.66 mg/ml of effective extract concentration. The extract was further used to treat experimentally T. brucei brucei infected rats at concentrations of 100 and 200 mg/kg body weight, beginning on day 5 post infections (p.i.). At the termination of the experiment on Day 11 p.i., the extract significantly (P < 0.05) kept the parasitemia lower than was recorded in the infected untreated rats. All the infected animals developed anemia, the severity of which was significantly (P < 0.05) ameliorated by the extract treatment. The infection caused significant (P < 0.05) increases in serum alanine and aspartate aminotransferases as well as serum urea and creatinine levels. However, treatment of infected animals with the extract significantly (P < 0.05) prevented the trypanosome-induced increase in these biochemical indices. Furthermore, the T. brucei infection caused hepatomegaly and splenomegaly that were significantly (P < 0.05) ameliorated by the extract administration. It was concluded that orally administered ethanol extract of S. occidentalis leaf possessed anti-T. brucei brucei activity and could ameliorate the disease-induced anemia and organ damage.
Liu, Ya-Ling; Lin, Lei-Chen; Tung, Yu-Tang; Ho, Shang-Tse; Chen, Yao-Li; Lin, Chi-Chen; Wu, Jyh-Horng
2017-01-01
Some members of Rhododendron genus are traditionally used as medicinal plants for arthritis, acute and chronic bronchitis, asthma, pain, inflammation, rheumatism, hypertension and metabolic diseases. To the best of our knowledge, there is no report on the protective effects of R. oldhamii leaf extract on non-alcoholic fatty liver disease (NAFLD) in vivo and in vitro . In this study, the effects of R. oldhamii leaf extract on inhibiting the free fatty acid (FFA)-induced accumulation of fat in HepG2 cells and on improving fatty liver syndrome in mice with high fat diet (HFD)-induced NAFLD were investigated. For the in vitro assay, HepG2 cells were treated with FFAs (oleate/palmitate = 2:1) with or without treatment with R. oldhamii leaf ethyl acetate (EtOAc) fraction to observe lipid accumulation using Nile red and oil red O stains. For the in vivo assay, C57BL/6 mice were randomly assigned to three groups ( n = 5), including the normal diet group, the HFD group and the HFD+EtOAc group. After 11 weeks, body weight, serum biochemical indices and the mRNA expressions of the liver tissue, as well as the outward appearance, weight and histopathological analysis of liver and adipose tissues were evaluated. Among the fractions derived from R. oldhamii leaf, the EtOAc fraction exhibited a strong fat-accumulation inhibitory activity. Following reverse-phase high-performance liquid chromatography (HPLC), four specific phytochemicals, including (2 R , 3 R )-astilbin (AS), hyposide (HY), guaijaverin (GU) and quercitrin (QU), were isolated and identified from the EtOAc fraction of R. oldhamii leaf extract. Among them, AS and HY showed excellent fat-accumulation inhibitory activity. Thus, the EtOAc fraction of R. oldhamii leaf and its derived phytochemicals have great potential in preventing FFA-induced fat accumulation. In addition, the EtOAc fraction of R. oldhamii leaf significantly improved fatty liver syndrome and reduced total cholesterol (TC) and triglyceride (TG) in HFD
NASA Astrophysics Data System (ADS)
Kusbandari, A.; Susanti, H.
2017-11-01
Maranta arundinacea L is one of herbaceous plants in Indonesia which have flavonoid content. Flavonoids has antioxidants activity by inhibition of free radical oxidation reactions. The study aims were to determination total phenolic content and antioxidant activity of methanol extract of fresh leaf and tuber of M. arundinacea L by UV-Vis spectrophotometer. The methanol extracts were obtained with maceration and remaseration method of fresh leaves and tubers. The total phenolic content was assayed with visible spectrophotometric using Folin Ciocalteau reagent. The antioxidant activity was assayed with 1,1-diphenyl-2-picrilhidrazil (DPPH) compared to gallic acid. The results showed that methanol extract of tuber and fresh leaf of M. arundinacea L contained phenolic compound with total phenolic content (TPC) in fresh tuber of 3.881±0.064 (% GAE) and fresh leaf is 6.518±0.163 (% b/b GAE). IC50 value from fresh tuber is 1.780±0.0005 μg/mL and IC50 fresh leaf values of 0.274±0.0004 μg/mL while the standard gallic acid is IC50 of 0.640±0.0002 μg/mL.
Webster, Rachel E.; Waterworth, Wanda M.; Stuppy, Wolfgang; West, Christopher E.; Ennos, Roland; Bray, Clifford M.; Pritchard, Hugh W.
2016-01-01
Carica papaya (papaya) seed germinate readily fresh from the fruit, but desiccation induces a dormant state. Dormancy can be released by exposure of the hydrated seed to a pulse of elevated temperature, typical of that encountered in its tropical habitat. Carica papaya is one of only a few species known to germinate in response to heat shock (HS) and we know little of the mechanisms that control germination in tropical ecosystems. Here we investigate the mechanisms that mediate HS-induced stimulation of germination in pre-dried and re-imbibed papaya seed. Exogenous gibberellic acid (GA3 ≥250 µM) overcame the requirement for HS to initiate germination. However, HS did not sensitise seeds to GA3, indicative that it may act independently of GA biosynthesis. Seed coat removal also overcame desiccation-imposed dormancy, indicative that resistance to radicle emergence is coat-imposed. Morphological and biomechanical studies identified that neither desiccation nor HS alter the physical structure or the mechanical strength of the seed coat. However, cycloheximide prevented both seed coat weakening and germination, implicating a requirement for de novo protein synthesis in both processes. The germination antagonist abscisic acid prevented radicle emergence but had no effect on papaya seed coat weakening. Desiccation therefore appears to reduce embryo growth potential, which is reversed by HS, without physically altering the mechanical properties of the seed coat. The ability to germinate in response to a HS may confer a competitive advantage to C. papaya, an opportunistic pioneer species, through detection of canopy removal in tropical forests. PMID:27811004
Liberato, José R; Barreto, Robert W; Louro, Ricardo P
2004-10-01
A new powdery mildew infecting papaya (Carica papaya) in Brazil, Streptopodium caricae sp. nov., is described. The species is compared with other anamorphic Erysiphales known to infect papaya: Oidiopsis sicula, Ovulariopsis papayae, Oidium caricae, O. papayae, O. caricicola, O. indicum, O. caricae-papayae, Podosphaera (syn. Sphaerotheca) spp., and Erysiphe spp. An emended description Streptopodium and a key to the anamorphs of powdery mildews on papaya are also presented. A re-examination of the type material of Phyllactinia caricaefolia showed that conidia in this material are dimorphic, indicating that its anamorph does not belong to Ovulariopsis and that the teleomorph is not conspecific with Phyllactinia guttata. Oidium caricae, the common powdery mildew of papaya, was re-examined, recognized as a member of subgenus Pseudoidium, an emended description was prepared, and a new type was indicated. O. papayae was recognized as a synonym of O. caricae, and many of the records of this fungus are considered to be doubtful or incorrect, either omitting a description of the fungus or including a description or illustration of an euodium conidiophore morphology.
Brighenti, F L; Luppens, S B I; Delbem, A C B; Deng, D M; Hoogenkamp, M A; Gaetti-Jardim, E; Dekker, H L; Crielaard, W; ten Cate, J M
2008-01-01
Plants naturally produce secondary metabolites that can be used as antimicrobials. The aim of this study was to assess the effects of Psidium cattleianum leaf extract on Streptococcus mutans. The extract (100%) was obtained by decoction of 100 g of leaves in 600 ml of deionized water. To assess killing, S. mutans biofilms were treated with water (negative control) or various extract dilutions [100, 50, 25% (v/v) in water] for 5 or 60 min. To evaluate the effect on protein expression, biofilms were exposed to water or 1.6% (v/v) extract for 120 min, proteins were extracted and submitted to 2-dimensional difference gel electrophoresis. Differentially expressed proteins were identified by mass spectrometry. The effect of 1.6% (v/v) extract on acid production was determined by pH measurements and compared to a water control. Viability was similar after 5 min of treatment with the 100% extract or 60 min with the 50% extract (about 0.03% survival). There were no differences in viability between the biofilms exposed to the 25 or 50% extract after 60 min of treatment (about 0.02% survival). Treatment with the 1.6% extract significantly changed protein expression. The abundance of 24 spots was decreased compared to water (p < 0.05). The extract significantly inhibited acid production (p < 0.05). It is concluded that P. cattleianum leaf extract kills S. mutans grown in biofilms when applied at high concentrations. At low concentrations it inhibits S. mutans acid production and reduces the expression of proteins involved in general metabolism, glycolysis and lactic acid production. (c) 2008 S. Karger AG, Basel
Aiyegoro, Olayinka A; Okoh, Anthony I
2009-11-13
We evaluated the in vitro antioxidant property and phytochemical constituents of the aqueous crude leaf extract of Helichrysum pedunculatum. The scavenging activity on superoxide anions, DPPH, H₂O₂, NO and ABTS; and the reducing power were determined, as well as the flavonoid, proanthocyanidin and phenolic contents of the extract. The extract exhibited scavenging activity towards all radicals tested due to the presence of relatively high total phenol and flavonoids contents. Our findings suggest that H. pedunculatum is endowed with antioxidant phytochemicals and could serve as a base for future drugs.
Aiyegoro, Olayinka A.; Okoh, Anthony I.
2009-01-01
We evaluated the in vitro antioxidant property and phytochemical constituents of the aqueous crude leaf extract of Helichrysum pedunculatum. The scavenging activity on superoxide anions, DPPH, H2O2, NO and ABTS; and the reducing power were determined, as well as the flavonoid, proanthocyanidin and phenolic contents of the extract. The extract exhibited scavenging activity towards all radicals tested due to the presence of relatively high total phenol and flavonoids contents. Our findings suggest that H. pedunculatum is endowed with antioxidant phytochemicals and could serve as a base for future drugs. PMID:20087473
USDA-ARS?s Scientific Manuscript database
We purified a single stable pectin methylesterase (CpL-PME; EC 3.1.1.11) from a commercial papain preparation, which is isolated from Carica papaya (L.) fruit latex. This CpL-PME was separated from the abundant cysteine endopeptidases activities using sequential hydrophobic interaction and cation-ex...
Shashidhara, S; Bhandarkar, Anant V; Deepak, M
2008-06-01
Successive chloroform, methanol and water extracts of bark and leaves of Albizzia lebbeck were tested for its in vitro mast cell stabilizing effect against compound 48/80. Methanolic extract of leaf and methanolic and water extracts of bark have shown maximum activity comparable to that of disodium chromoglycate.
Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya
2012-01-01
Background The small RNAs (sRNA) are a regulatory class of RNA mainly represented by the 21 and 24-nucleotide size classes. The cellular sRNAs are processed by RNase III family enzyme dicer (Dicer like in plant) from a self-complementary hairpin loop or other type of RNA duplexes. The papaya genome has been sequenced, but its microRNAs and other regulatory RNAs are yet to be analyzed. Results We analyzed the genomic features of the papaya sRNA population from three sRNA deep sequencing libraries made from leaves, flowers, and leaves infected with Papaya Ringspot Virus (PRSV). We also used the deep sequencing data to annotate the micro RNA (miRNA) in papaya. We identified 60 miRNAs, 24 of which were conserved in other species, and 36 of which were novel miRNAs specific to papaya. In contrast to the Chargaff’s purine-pyrimidine equilibrium, cellular sRNA was significantly biased towards a purine rich population. Of the two purine bases, higher frequency of adenine was present in 23nt or longer sRNAs, while 22nt or shorter sRNAs were over represented by guanine bases. However, this bias was not observed in the annotated miRNAs in plants. The 21nt species were expressed from fewer loci but expressed at higher levels relative to the 24nt species. The highly expressed 21nt species were clustered in a few isolated locations of the genome. The PRSV infected leaves showed higher accumulation of 21 and 22nt sRNA compared to uninfected leaves. We observed higher accumulation of miRNA* of seven annotated miRNAs in virus-infected tissue, indicating the potential function of miRNA* under stressed conditions. Conclusions We have identified 60 miRNAs in papaya. Our study revealed the asymmetric purine-pyrimidine distribution in cellular sRNA population. The 21nt species of sRNAs have higher expression levels than 24nt sRNA. The miRNA* of some miRNAs shows higher accumulation in PRSV infected tissues, suggesting that these strands are not totally functionally redundant. The
Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya.
Aryal, Rishi; Yang, Xiaozeng; Yu, Qingyi; Sunkar, Ramanjulu; Li, Lei; Ming, Ray
2012-12-05
The small RNAs (sRNA) are a regulatory class of RNA mainly represented by the 21 and 24-nucleotide size classes. The cellular sRNAs are processed by RNase III family enzyme dicer (Dicer like in plant) from a self-complementary hairpin loop or other type of RNA duplexes. The papaya genome has been sequenced, but its microRNAs and other regulatory RNAs are yet to be analyzed. We analyzed the genomic features of the papaya sRNA population from three sRNA deep sequencing libraries made from leaves, flowers, and leaves infected with Papaya Ringspot Virus (PRSV). We also used the deep sequencing data to annotate the micro RNA (miRNA) in papaya. We identified 60 miRNAs, 24 of which were conserved in other species, and 36 of which were novel miRNAs specific to papaya. In contrast to the Chargaff's purine-pyrimidine equilibrium, cellular sRNA was significantly biased towards a purine rich population. Of the two purine bases, higher frequency of adenine was present in 23nt or longer sRNAs, while 22nt or shorter sRNAs were over represented by guanine bases. However, this bias was not observed in the annotated miRNAs in plants. The 21nt species were expressed from fewer loci but expressed at higher levels relative to the 24nt species. The highly expressed 21nt species were clustered in a few isolated locations of the genome. The PRSV infected leaves showed higher accumulation of 21 and 22nt sRNA compared to uninfected leaves. We observed higher accumulation of miRNA* of seven annotated miRNAs in virus-infected tissue, indicating the potential function of miRNA* under stressed conditions. We have identified 60 miRNAs in papaya. Our study revealed the asymmetric purine-pyrimidine distribution in cellular sRNA population. The 21nt species of sRNAs have higher expression levels than 24nt sRNA. The miRNA* of some miRNAs shows higher accumulation in PRSV infected tissues, suggesting that these strands are not totally functionally redundant. The findings open a new avenue for further
Observation of Muntingia Calabura’s Leaf Extract as Feed Additive for Livestock Diet
NASA Astrophysics Data System (ADS)
Pujaningsih, R. I.; Sulistiyanto, B.; Sumarsih, S.
2018-02-01
Using of synthetic antioxidants in feedstuffs continuously can cause negative effect for the livestock. This study observed the constituent compounds of cherry leaf powder using format method of descriptive qualitative. Comparative study was done between young and old leaves to identify the content of antioxidant and antimicrobial. Based on the results of phytochemical tests that have been done, old cherry leaves contain compounds of flavonoids more than young cherry leaves. From the results of this study can be concluded that the results of old cherry leaf isolation using soxhlet extraction has antibacterial power against E. coli bacteria, and S. aureus at concentration of 75% have greater inhibitory ability.
Ou, Zong-Quan; Schmierer, David M; Rades, Thomas; Larsen, Lesley; McDowell, Arlene
2013-02-01
To use an online assay to identify key antioxidants in Sonchus oleraceus leaf extracts and to investigate the effect of leaf position and extraction conditions on antioxidant concentration and activity. Separation of phytochemicals and simultaneous assessment of antioxidant activity were performed online using HPLC and post-column reaction with a free-radical reagent (2, 2-diphenylpicrylhydrazyl, DPPH). Active compounds were identified using nuclear magnetic resonance spectroscopy and mass spectrometry. We applied the online HPLC-DPPH radical assay to evaluate antioxidants in leaves from different positions on the plant and to assess the effect of pre-treatment of leaves with liquid N(2) before grinding, extraction time, extraction temperature and method of concentrating extracts. Key antioxidants identified in S. oleraceus leaf extracts were caftaric acid, chlorogenic acid and chicoric acid. Middle leaves contained the highest total amount of the three key antioxidant compounds, consisting mainly of chicoric acid. Pre-treatment with liquid N(2), increasing the extraction temperature and time and freeze-drying the extract did not enhance the yield of the key antioxidants. The online HPLC-DPPH radical assay was validated as a useful screening tool for investigating individual antioxidants in leaf extracts. Optimized extraction conditions were middle leaves pre-treated with liquid N(2), extraction at 25°C for 0.5 h and solvent removal by rotary evaporation. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.
In vitro antioxidant activities of leaf and root extracts of Albizia antunesiana harms.
Chipiti, Talent; Ibrahim, Mohammed Auwal; Koorbanally, Neil Anthony; Islam, Md Shahidul
2013-01-01
The antioxidative activities of the ethanol and aqueous extracts of the leaf and root samples of Albizia antunesiana were determined across a series of four in vitro models. The results showed that all the extracts had reducing power (Fe(3+)- Fe2+), DPPH, hydroxyl and nitric oxide radical scavenging abilities. The ethanol root extract had more potent antioxidant power in all the experimental models and possesses a higher total phenol content of 216.6 +/- 6.7 mg/g. The GC-MS analysis of the aqueous and ethanol extracts of the roots and leaves indicated that several aromatic phenolic compounds, a coumarin and some common triterpenoids were present in these extracts. Data from this study suggest that the leaves and roots of Albizia antunesiana possessed antioxidative activities that varied depending on the solvents.
Awakan, Oluwakemi Josephine; Malomo, Sylvia Omonirume; Adejare, Abdullahi Adeyinka; Igunnu, Adedoyin; Atolani, Olubunmi; Adebayo, Abiodun Humphrey; Owoyele, Bamidele Victor
2018-01-01
Anacardium occidentale L. leaf is useful in the treatment of inflammation and asthma, but the bioactive constituents responsible for these activities have not been characterized. Therefore, this study was aimed at identifying the bioactive constituent(s) of A. occidentale ethanolic leaf extract (AOEL) and its solvent-soluble portions, and evaluating their effects on histamine-induced paw edema and bronchoconstriction. The bronchodilatory effect was determined by measuring the percentage protection provided by plant extracts in the histamine-induced bronchoconstriction model in guinea pigs. The anti-inflammatory effect of the extracts on histamine-induced paw edema in rats was determined by measuring the increase in paw diameter, after which the percent edema inhibition was calculated. The extracts were analyzed using gas chromatography-mass spectrometry to identify the bioactive constituents. Column chromatography and Fourier transform infrared spectroscopy were used respectively to isolate and characterize the constituents. The bronchodilatory and anti-inflammatory activities of the isolated bioactive constituent were evaluated. Histamine induced bronchoconstriction in the guinea pigs and edema in the rat paw. AOEL, hexane-soluble portion of AOEL, ethyl acetate-soluble portion of AOEL, and chloroform-soluble portion of AOEL significantly increased bronchodilatory and anti-inflammatory activities (P < 0.05). Oleamide (9-octadecenamide) was identified as the most abundant compound in the extracts and was isolated. Oleamide significantly increased bronchodilatory and anti-inflammatory activities by 32.97% and 98.41%, respectively (P < 0.05). These results indicate that oleamide is one of the bioactive constituents responsible for the bronchodilatory and anti-inflammatory activity of A. occidentale leaf, and can therefore be employed in the management of bronchoconstriction and inflammation. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B
Gomes, Jacyra Antunes dos Santos; Geraldo Amaral, Juliano; Lopes, Norberto Peporine; Tabosa do Egito, Eryvaldo Sócrates; da Silva-Júnior, Arnóbio Antônio; Maria Zucolotto, Silvana
2016-01-01
Snakebites are a serious worldwide public health problem. In Brazil, about 90% of accidents are attributed to snakes from the Bothrops genus. The specific treatment consists of antivenom serum therapy, which has some limitations such as inability to neutralize local effects, difficult access in some regions, risk of immunological reactions, and high cost. Thus, the search for alternative therapies to treat snakebites is relevant. Jatropha mollissima (Euphorbiaceae) is a medicinal plant popularly used in folk medicine as an antiophidic remedy. Therefore, this study aims to evaluate the effect of the aqueous leaf extract from J. mollissima on local effects induced by Bothrops venoms. High Performance Liquid Chromatography with Diode Array Detection analysis and Mass Spectrometry analysis of aqueous leaf extract confirmed the presence of the flavonoids isoschaftoside, schaftoside, isoorientin, orientin, vitexin, and isovitexin. This extract, at 50–200 mg/kg doses administered by intraperitoneal route, showed significant inhibitory potential against local effects induced by Bothrops erythromelas and Bothrops jararaca snake venoms. Local skin hemorrhage, local edema, leukocyte migration, and myotoxicity were significantly inhibited by the extract. These results demonstrate that J. mollissima extract possesses inhibitory potential, especially against bothropic venoms, suggesting its potential as an adjuvant in treatment of snakebites. PMID:27847818
7 CFR 319.56-13 - Fruits and vegetables allowed importation subject to specified conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
...). Banana Musa spp. Fruit (b)(4)(i). Pineapple Ananas comosus Fruit (b)(2)(vi), (b)(5)(vi). Costa Rica... Flower and leaf (b)(2)(i). Oregano or sweet marjoram Origanum spp. Leaf and stem (b)(2)(i). Parsley... Matricaria recutita and Matricaria chamomilla Flower and leaf (b)(2)(i). Papaya Carica papaya Fruit (b)(1)(i...
7 CFR 319.56-13 - Fruits and vegetables allowed importation subject to specified conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
...). Banana Musa spp. Fruit (b)(4)(i). Pineapple Ananas comosus Fruit (b)(2)(vi), (b)(5)(vi). Costa Rica... Flower and leaf (b)(2)(i). Oregano or sweet marjoram Origanum spp. Leaf and stem (b)(2)(i). Parsley... Matricaria recutita and Matricaria chamomilla Flower and leaf (b)(2)(i). Papaya Carica papaya Fruit (b)(1)(i...
7 CFR 319.56-13 - Fruits and vegetables allowed importation subject to specified conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
...). Banana Musa spp. Fruit (b)(4)(i). Pineapple Ananas comosus Fruit (b)(2)(vi), (b)(5)(vi). Costa Rica... Flower and leaf (b)(2)(i). Oregano or sweet marjoram Origanum spp. Leaf and stem (b)(2)(i). Parsley... Matricaria recutita and Matricaria chamomilla Flower and leaf (b)(2)(i). Papaya Carica papaya Fruit (b)(1)(i...
7 CFR 319.56-13 - Fruits and vegetables allowed importation subject to specified conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
...). Banana Musa spp. Fruit (b)(4)(i). Pineapple Ananas comosus Fruit (b)(2)(vi), (b)(5)(vi). Costa Rica... Flower and leaf (b)(2)(i). Oregano or sweet marjoram Origanum spp. Leaf and stem (b)(2)(i). Parsley... Matricaria recutita and Matricaria chamomilla Flower and leaf (b)(2)(i). Papaya Carica papaya Fruit (b)(1)(i...
7 CFR 319.56-13 - Fruits and vegetables allowed importation subject to specified conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
...). Banana Musa spp. Fruit (b)(4)(i). Pineapple Ananas comosus Fruit (b)(2)(vi), (b)(5)(vi). Costa Rica... Flower and leaf (b)(2)(i). Oregano or sweet marjoram Origanum spp. Leaf and stem (b)(2)(i). Parsley... Matricaria recutita and Matricaria chamomilla Flower and leaf (b)(2)(i). Papaya Carica papaya Fruit (b)(1)(i...
NASA Astrophysics Data System (ADS)
Subba Rao, Y.; Kotakadi, Venkata S.; Prasad, T. N. V. K. V.; Reddy, A. V.; Sai Gopal, D. V. R.
2013-02-01
A simple method for the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of Lakshmi tulasi (Ocimum sanctum) leaf as a reducing and stabilizing agent. AgNPs were rapidly synthesized using aqueous extract of tulasi leaf with AgNO3 solution within 15 min. The green synthesized AgNPs were characterized using physic-chemical techniques viz., UV-Vis, X-ray diffraction (XRD), scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy (EDX) and Fourier transform-infrared spectroscopy (FT-IR). Characterization data reveals that the particles were crystalline in nature and triangle shaped with an average size of 42 nm. The zeta potential of AgNPs were found to be -55.0 mV. This large negative zeta potential value indicates repulsion among AgNPs and their dispersion stability.
Varadarajan, Saranya; Malaisamy, Malaiyandi; Duraipandian, Chamundeeswari
2015-01-01
Background Candidiasis is one of the most common opportunistic infections caused by Candida albicans. Fluconazole is the drug of choice for prevention and management of this condition. However, the emergence of fluconazole resistant candidal strains has become a major concern. Many herbs like fenugreek, cinnamon, papaya, oregano, garlic are rich in phytochemical constituents known to express antimycotic activity. With the available information, the present research study was carried out to assess the invitro anti-mycotic activity of hydro alcoholic extracts of Trigonella foenum-graecum seeds, Cinnamomum verum bark and Carica papaya leaves and seeds against fluconazole resistant Candida albicans Materials and Methods Hydro alcoholic extracts of Trigonella foenum-graecum (seeds), Cinnamomum verum (bark), Carica papaya CO.2 strain (male and female leaves) and Carica papaya CO.2 strain (seeds) were prepared by maceration. The anti-mycotic activity of the prepared extracts against Candida albicans was assessed by agar well diffusion method. Three independent experiments were performed in triplicates and the mean and standard deviation were calculated. Minimum inhibitory concentration was determined. Results The results of the present study revealed that all the extracts exhibited anti-mycotic activity in a dose dependent manner and minimum inhibitory concentration of all the extracts was found to be 15.62 μg/ml. Conclusion The results of the present study shed light on the fact that plant extracts could be used not only as an alternate drug for management of fluconazole resistant candidiasis but also explored further for oral cancer prevention as a therapeutic adjunct. PMID:26436036
Popa, Claudia Valentina; Lungu, Liliana; Cristache, Ligia Florentina; Ciuculescu, Crinu; Danet, Andrei Florin; Farcasanu, Ileana Cornelia
2015-01-01
To gain new insight into the antimicrobial potential of Ailanthus altissima Swingle, ethanol leaf extracts were evaluated for the antifungal effects against the model yeast Saccharomyces cerevisae. The extracts inhibited the yeast growth in a dose-dependent manner, and this effect could be augmented by heat shock, exposure to visible light or exposure to high concentrations of Ca(2+). Using transgenic yeast cells expressing the Ca(2+)-dependent photoprotein, aequorin, it was found that the leaf extracts induced cytosolic Ca(2+) elevation. Experiments on yeast mutants with defects in Ca(2+) transport demonstrated that the cytotoxicity of the A. altissima leaf extracts (AaLEs) was mediated by transient pulses of Ca(2+) ions which were released into the cytosol predominantly from the vacuole. The investigation of the antifungal synergies involving AaLEs may contribute to the development of optimal and safe combination therapies for the treatment of drug-resistant fungal infections.
Roy, Bishnupada; Dutta, B K
2003-11-01
Leaf extract of C. sativa causes paralysis leading to death in larvae of C. samoensis. The extract brought a drastic change in the morphology of sensilla trichoidea and the general body cuticle. The larvae exposed to the leaf extract also showed a significant reduction in the concentration of Mg and Fe, while Mn showed only slight average increase. Since the sensilla trichoidea has nerve connection, it is expected that the toxic principle of the leaf extract has affected the central nervous system. The significant reduction of the level of Fe indicates that the extract could cause the reduction in oxygen binding capacity of the haemolymph, thereby acting as a respiratory poison in addition to its known role as a neurotoxic substance.
Ginseng leaf-stem: bioactive constituents and pharmacological functions
Wang, Hongwei; Peng, Dacheng; Xie, Jingtian
2009-01-01
Ginseng root is used more often than other parts such as leaf stem although extracts from ginseng leaf-stem also contain similar active ingredients with pharmacological functions. Ginseng's leaf-stems are more readily available at a lower cost than its root. This article reviews the pharmacological effects of ginseng leaf-stem on some diseases and adverse effects due to excessive consumption. Ginseng leaf-stem extract contains numerous active ingredients, such as ginsenosides, polysaccharides, triterpenoids, flavonoids, volatile oils, polyacetylenic alcohols, peptides, amino acids and fatty acids. The extract contains larger amounts of the same active ingredients than the root. These active ingredients produce multifaceted pharmacological effects on the central nervous system, as well as on the cardiovascular, reproductive and metabolic systems. Ginseng leaf-stem extract also has anti-fatigue, anti-hyperglycemic, anti-obesity, anti-cancer, anti-oxidant and anti-aging properties. In normal use, ginseng leaf-stem extract is quite safe; adverse effects occur only when it is over dosed or is of poor quality. Extracts from ginseng root and leaf-stem have similar multifaceted pharmacological activities (for example central nervous and cardiovascular systems). In terms of costs and source availability, however, ginseng leaf-stem has advantages over its root. Further research will facilitate a wider use of ginseng leaf-stem. PMID:19849852
Aleksic, Ivana; Ristivojevic, Petar; Pavic, Aleksandar; Radojević, Ivana; Čomić, Ljiljana R; Vasiljevic, Branka; Opsenica, Dejan; Milojković-Opsenica, Dušanka; Senerovic, Lidija
2018-08-10
Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P
Ofusori, David A; Komolafe, Omobola A; Adewole, Olarinde S; Arayombo, Babatunde E; Margolis, Denise; Naicker, Thajasvarie
2016-01-01
To investigate the histological and immunohistochemical effects of aqueous leaf extract of Xylo- pia aethiopica on the pancreas in streptozotocin-induced diabetic rats, 30 adult Wistar rats were divided into three groups (n=10). Group A was the control (administered with equivalent vol- ume of citrate buffer), group B animals were made diabetic by a single intraperitoneal injection of streptozotocin dissolved in citrate buffer (65 mg/kg), group C animals were made diabetic as above and treated with 200mg/kg body weight of aqueous leave extract of Xylopia aethiop- ica for 25 days. Upon animal sacrifice, the pancreas were excised, fixed in 10% formol saline and processed for light microscopy and immunohistochemistry.. The results revealed destruc- tion of the islet cells in the untreated diabetic group as compared with the controls. The extract treated group was characterized by recovery/regenerative processes indicated by improvement in islet morphology. In untreated diabetic rats immunoreactive P-cells were sparse, at variance from the controls. The group treated with aqueous leaf extract of Xylopia aethiopica revealed more intense staining for insulin and significant (p<0.05) increase in the percentage of immuno- labelled surface area when compared with the untreated diabetic group, suggesting the ability of P-cells to secrete insulin in the extract treated rats. We conclude that the aqueous leaf extract of Xylopia aethiopica improves recovery process of P-cells in streptozotocin-induced diabetic rats and might become useful in the management of diabetes related complications.
Vivekanandhan, Singaravelu; Schreiber, Makoto; Mason, Cynthia; Mohanty, Amar Kumar; Misra, Manjusri
2014-01-01
The functionalization of ZnO powders with silver nanoparticles (AgNPs) through a novel maple leaf extract mediated biological process was demonstrated. Maple leaf extract was found to be a very effective bioreduction agent for the reduction of silver ions. The reduction rate of Ag(+) into Ag(0) was found to be much faster than other previously reported bioreduction rates and was comparable to the reduction rates obtained through chemical means. The functionalization of ZnO particles with silver nanoparticles through maple leaf extract mediated bioreduction of silver was investigated through UV-visible spectrophotometry, transmission electron microscopy (TEM), and X-ray diffraction analysis. It was found that the ZnO particles were coated with silver nanoparticles 5-20 nm in diameter. The photocatalytic ability of the ZnO particles functionalized with silver nanoparticles was found to be significantly improved compared to the photocatalytic ability of the neat ZnO particles. The silver functionalized ZnO particles reached 90% degradation of the dye an hour before the neat ZnO particles. Copyright © 2013 Elsevier B.V. All rights reserved.
Jue, Dengwei; Sang, Xuelian; Shu, Bo; Liu, Liqin; Wang, Yicheng; Jia, Zhiwei; Zou, Yu; Shi, Shengyou
2017-01-01
Ripening affects the quality and nutritional contents of fleshy fruits and is a crucial process of fruit development. Although several studies have suggested that ubiquitin-conjugating enzyme (E2s or UBC enzymes) are involved in the regulation of fruit ripening, little is known about the function of E2s in papaya (Carica papaya). In the present study, we searched the papaya genome and identified 34 putative UBC genes, which were clustered into 17 phylogenetic subgroups. We also analyzed the nucleotide sequences of the papaya UBC (CpUBC) genes and found that both exon-intron junctions and sequence motifs were highly conserved among the phylogenetic subgroups. Using real-time PCR analysis, we also found that all the CpUBC genes were expressed in roots, stems, leaves, male and female flowers, and mature fruit, although the expression of some of the genes was increased or decreased in one or several specific organs. We also found that the expression of 13 and two CpUBC genes were incresesd or decreased during one and two ripening stages, respectively. Expression analyses indicates possible E2s playing a more significant role in fruit ripening for further studies. To the best of our knowledge, this is the first reported genome-wide analysis of the papaya UBC gene family, and the results will facilitate further investigation of the roles of UBC genes in fruit ripening and will aide in the functional validation of UBC genes in papaya.
Schweiggert, Ralf M.; Kopec, Rachel E.; Villalobos-Gutierrez, Maria G.; Högel, Josef; Quesada, Silvia; Esquivel, Patricia; Schwartz, Steven J.; Carle, Reinhold
2014-01-01
Carrot, tomato and papaya represent important dietary sources of β-carotene and lycopene. The main objective of the present study was to compare the bioavailability of carotenoids from these food sources in healthy human subjects. A total of sixteen participants were recruited for a randomised cross-over study. Test meals containing raw carrots, tomatoes and papayas were adjusted to deliver an equal amount of β-carotene and lycopene. For the evaluation of bioavailability, TAG-rich lipoprotein (TRL) fractions containing newly absorbed carotenoids were analysed over 9.5 h after test meal consumption. The bioavailability of β-carotene from papayas was approximately three times higher than that from carrots and tomatoes, whereas differences in the bioavailability of β-carotene from carrots and tomatoes were insignificant. Retinyl esters appeared in the TRL fractions at a significantly higher concentration after the consumption of the papaya test meal. Similarly, lycopene was approximately 2.6 times more bioavailable from papayas than from tomatoes. Furthermore, the bioavailability of β-cryptoxanthin from papayas was shown to be 2.9 and 2.3 times higher than that of the other papaya carotenoids β-carotene and lycopene, respectively. The morphology of chromoplasts and the physical deposition form of carotenoids were hypothesised to play a major role in the differences observed in the bioavailability of carotenoids from the foods investigated. Particularly, the liquid-crystalline deposition of β-carotene and the storage of lycopene in very small crystalloids in papayas were found to be associated with their high bioavailability. In conclusion, papaya was shown to provide highly bioavailable β-carotene, β-cryptoxanthin and lycopene and may represent a readily available dietary source of provitamin A for reducing the incidence of vitamin A deficiencies in many subtropical and tropical developing countries. PMID:23931131
Evaluation of Senna singueana leaf extract as an alternative or adjuvant therapy for malaria.
Hiben, Mebrahtom Gebrelibanos; Sibhat, Gereziher Gebremedhin; Fanta, Biruk Sintayehu; Gebrezgi, Haile Desta; Tesema, Shewaye Belay
2016-01-01
The emergence of malarial resistance to most antimalarial drugs is the main factor driving the continued effort to identify/discover new agents for combating the disease. Moreover, the unacceptably high mortality rate in severe malaria has led to the consideration of adjuvant therapies. Senna singueana leaves are traditionally used against malaria and fever. Extracts from the leaves of this plant demonstrated in vitro and in vivo antioxidant activities, which in turn could reduce the severity of malaria. Extracts from the root bark of this plant exhibited antiplasmodial activity; however, the leaves are the more sustainable resource. Thus, S. singueana leaf was selected for in vivo evaluation as a potential alternative or adjuvant therapy for malaria. Using malaria [Plasmodium berghei ANKA, chloroquine (CQ) sensitive]-infected Swiss albino mice of both sexes, 70% ethanol extract of S. singueana leaves (alone and in combination with CQ) was tested for antimalarial activity and adjuvancy potential. The 4-day suppressive test was used to evaluate antimalarial activity. The dose of S. singueana extract administered was safe to mice and exhibited some parasite suppression effect: extract doses of 200 mg/kg/d, 400 mg/kg/d, and 800 mg/kg/d caused 34.54%, 44.52%, and 47.32% parasite suppression, respectively. Concurrent administration of the extract with CQ phosphate at varied dose levels indicated that the percentage of parasite suppression of this combination was higher than administering CQ alone, but less than the sum of the effects of the extract and CQ acting separately. In conclusion, the study indicated that 70% ethanol extract of S. singueana leaf was safe to mice and possessed some parasite suppression effect. Coadministration of the extract with CQ appeared to boost the overall antimalarial effect, indicating that the combination may have a net health benefit if used as an adjuvant therapy.
Ashraf, Aisha; Sarfraz, Raja Adil; Rashid, Muhammad Abid; Mahmood, Adeel; Shahid, Muhammad; Noor, Nadia
2016-10-01
Context Psidium guajava L. (Myrtaceae) leaves are used in traditional medicines for the treatment of cancer, inflammation and other ailments. Objective The current study explores scientific validation for this traditional medication. Materials and methods We used ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl hydrazil (DPPH) assays to estimate antioxidant activity of P. guajava leaf extracts (methanol, hexane and chloroform). Antitumour and in vivo cytotoxic activities were determined using potato disc assay (PDA) and brine shrimp lethality assay, respectively. Three human carcinoma cell lines (KBM5, SCC4 and U266) were incubated with different doses (10-100 μg/mL) of extracts and the anticancer activity was estimated by MTT assay. NF-κB suppressing activity was determined using electrophoretic mobility shift assay (EMSA). Chemical composition of the three extracts was identified by GC-MS. Total phenolic and flavonoid contents were measured by colorimetric assays. Results and discussions The order of antioxidant activity of three extracts was methanol > chloroform > hexane. The IC50 values ranged from 22.73 to 51.65 μg/mL for KBM5; 22.82 to 70.25 μg/mL for SCC4 and 20.97 to 89.55 μg/mL for U266 cells. The hexane extract exhibited potent antitumour (IC50 value = 65.02 μg/mL) and cytotoxic (LC50 value = 32.18 μg/mL) activities. This extract also completely inhibited the TNF-α induced NF-κB activation in KBM5 cells. GC-MS results showed that pyrogallol, palmitic acid and vitamin E were the major components of methanol, chloroform and hexane extracts. We observed significant (p < 0.05) difference in total phenolic and flavonoid contents of different solvent extracts. Conclusion The present study demonstrates that P. guajava leaf extracts play a substantial role against cancer and down-modulate inflammatory nuclear factor kB.
Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara
2017-01-01
Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (-)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model.
A polymorphic pseudoautosomal boundary in the Carica papaya sex chromosomes.
Lappin, Fiona M; Medert, Charles M; Hawkins, Kevin K; Mardonovich, Sandra; Wu, Meng; Moore, Richard C
2015-08-01
Sex chromosomes are defined by a non-recombining sex-determining region (SDR) flanked by one or two pseudoautosomal regions (PARs). The genetic composition and evolutionary dynamics of the PAR is also influenced by its linkage to the differentiated non-recombining SDR; however, understanding the effects of this linkage requires a precise definition of the PAR boundary. Here, we took a molecular population genetic approach to further refine the location of the PAR boundary of the evolutionary young sex chromosomes of the tropical plant, Carica papaya. We were able to map the position of the papaya PAR boundary A to a 100-kb region between two genetic loci approximately 2 Mb upstream of the previously genetically identified PAR boundary. Furthermore, this boundary is polymorphic within natural populations of papaya, with an approximately 100-130 kb expansion of the non-recombining SDR found in 16 % of individuals surveyed. The expansion of the PAR boundary in one Y haplotype includes at least one additional gene. Homologs of this gene are involved in male gametophyte and pollen development in other plant species.
Wei, Jiaojun; Li, Feiwu; Guo, Jinchao; Li, Xiang; Xu, Junfeng; Wu, Gang; Zhang, Dabing; Yang, Litao
2013-11-27
The papaya (Carica papaya L.) Chymopapain (CHY) gene has been reported as a suitable endogenous reference gene for genetically modified (GM) papaya detection in previous studies. Herein, we further validated the use of the CHY gene and its qualitative and quantitative polymerase chain reaction (PCR) assays through an interlaboratory collaborative ring trial. A total of 12 laboratories working on detection of genetically modified organisms participated in the ring trial and returned test results. Statistical analysis of the returned results confirmed the species specificity, low heterogeneity, and single-copy number of the CHY gene among different papaya varieties. The limit of detection of the CHY qualitative PCR assay was 0.1%, while the limit of quantification of the quantitative PCR assay was ∼25 copies of haploid papaya genome with acceptable PCR efficiency and linearity. The differences between the tested and true values of papaya content in 10 blind samples ranged from 0.84 to 6.58%. These results indicated that the CHY gene was suitable as an endogenous reference gene for the identification and quantification of GM papaya.
Webster, Rachel E; Waterworth, Wanda M; Stuppy, Wolfgang; West, Christopher E; Ennos, Roland; Bray, Clifford M; Pritchard, Hugh W
2016-12-01
Carica papaya (papaya) seed germinate readily fresh from the fruit, but desiccation induces a dormant state. Dormancy can be released by exposure of the hydrated seed to a pulse of elevated temperature, typical of that encountered in its tropical habitat. Carica papaya is one of only a few species known to germinate in response to heat shock (HS) and we know little of the mechanisms that control germination in tropical ecosystems. Here we investigate the mechanisms that mediate HS-induced stimulation of germination in pre-dried and re-imbibed papaya seed. Exogenous gibberellic acid (GA 3 ≥250 µM) overcame the requirement for HS to initiate germination. However, HS did not sensitise seeds to GA 3 , indicative that it may act independently of GA biosynthesis. Seed coat removal also overcame desiccation-imposed dormancy, indicative that resistance to radicle emergence is coat-imposed. Morphological and biomechanical studies identified that neither desiccation nor HS alter the physical structure or the mechanical strength of the seed coat. However, cycloheximide prevented both seed coat weakening and germination, implicating a requirement for de novo protein synthesis in both processes. The germination antagonist abscisic acid prevented radicle emergence but had no effect on papaya seed coat weakening. Desiccation therefore appears to reduce embryo growth potential, which is reversed by HS, without physically altering the mechanical properties of the seed coat. The ability to germinate in response to a HS may confer a competitive advantage to C. papaya, an opportunistic pioneer species, through detection of canopy removal in tropical forests. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Preparation of Nanoporous TiO2 for Dye-Sensitized Solar Cell (DSSC) Using Various Dyes
NASA Astrophysics Data System (ADS)
Yuliarto, Brian; Fanani, Fahiem; Fuadi, M. Kasyful; Nugraha
2010-10-01
This article reports the development of organic dyes as an attempt to reduce material costs of Dye-Sensitized Solar Cell (DSSC). Indonesia, a country with variety and considerable number of botanical resources, is suitable to perform the research. Indonesian black rice, curcuma, papaya leaf, and the combination were chosen as organic dyes source. Dyes were extracted using organic solvent and adsorbed on mesoporous Titanium Dioxide (TiO2) which has been optimized in our laboratory. The best dyes light absorbance and performance obtained from papaya leaf as chlorophyll dyes that gives two peaks at 432 nm and 664 nm from UV-Vis Spectrophotometry and performance under 100 mW/cm2 Xenon light solar simulator gives VOC = 0.566 Volt, JSC = 0.24 mA/cm2, Fill Factor = 0.33, and efficiency of energy conversion 0,045%.
NASA Astrophysics Data System (ADS)
Rashid, M. H. A.; Grout, B. W. W.; Continella, A.; Mahmud, T. M. M.
2015-05-01
Low-dose gamma irradiation (0.08 kGy over 10 min), a level significantly below that required to satisfy the majority of international quarantine regulations, has been employed to provide a significant reduction in visible fungal infection on papaya fruit surfaces. This is appropriate for local and national markets in producer countries where levels of commercial acceptability can be retained despite surface lesions due to fungal infection. Irradiation alone and in combination with hot-water immersion (50 °C for 10 min) has been applied to papaya (Carica papaya L.) fruits at both the mature green and 1/3 yellow stages of maturity. The incidence and severity of surface fungal infections, including anthracnose, were significantly reduced by the combined treatment compared to irradiation or hot water treatment alone, extending storage at 11 °C by 13 days and retaining commercial acceptability. The combined treatment had no significant, negative impact on ripening, with quality characteristics such as surface and internal colour change, firmness, soluble solids, acidity and vitamin C maintained at acceptable levels.
Ajitha, B; Ashok Kumar Reddy, Y; Sreedhara Reddy, P
2014-07-15
This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect. Copyright © 2014 Elsevier B.V. All rights reserved.
García-Solís, Pablo; Yahia, Elhadi M; Morales-Tlalpan, Verónica; Díaz-Muñoz, Mauricio
2009-01-01
We evaluated the antiproliferative effect of aqueous extracts of 14 plant foods consumed in Mexico on the breast cancer cell line MCF-7. The plant foods used were avocado, black sapote, guava, mango, prickly pear cactus stems (called nopal in Mexico, cooked and raw), papaya, pineapple, four different cultivars of prickly pear fruit, grapes and tomato. β-Carotene, total phenolics and gallic acid contents and the antioxidant capacity, measured by the ferric reducing/antioxidant power and the 2,2-diphenyl-1,1-picrylhydrazyl radical scavenging assays, were analyzed in each aqueous extract. Only the papaya extract had a significant antiproliferative effect measured with the methylthiazolydiphenyl-tetrazolium bromide assay. We did not notice a relationship between the total phenolic content and the antioxidant capacity with antiproliferative effect. It is suggested that each extract of plant food has a unique combination of the quantity and quality of phytochemicals that could determine its biological activity. Besides, papaya represents a very interesting fruit to explore its antineoplastic activities.
Gandhi, P Rajiv; Jayaseelan, C; Mary, R Regina; Mathivanan, D; Suseem, S R
2017-10-01
The aim of the present study was to evaluate the acaricidal, pediculicidal and larvicidal effect of synthesized zinc oxide nanoparticles (ZnO NPs) using Momordica charantia leaf extract against the larvae of Rhipicephalus (Boophilus) microplus, adult of Pediculus humanus capitis, and the larvae of Anopheles stephensi, Culex quinquefasciatus. The ZnO NPs were characterized by using UV, XRD, FTIR and SEM-EDX. The SEM image confirms that the synthesized nanoparticles were spherical in shape with a size of 21.32 nm. The results of GC-MS analysis indicates the presence of the major compound of Nonacosane (C 29 H 60 ) in the M. charantia leaf extract. Cattle tick, head lice and mosquito larvae were exposed to a varying concentrations of the synthesized ZnO NPs and M. charantia leaf extract for 24 h. Compared to the leaf aqueous extract, biosynthesized ZnO NPs showed higher toxicity against R. microplus, P. humanus capitis, An. stephensi, and Cx. Quinquefasciatus with the LC 50 values of 6.87, 14.38, 5.42, and 4.87 mg/L, respectively. The findings revealed that synthesized ZnO NPs possess excellent anti-parasitic activity. These results suggest that the green synthesized ZnO NPs has the potential to be used as an ideal ecofriendly approach for the control of R. microplus, P. humanus capitis and the mosquito larvae of An. Stephensi and Cx. quinquefasciatus. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal
2011-07-01
Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.
Palmeri, Rosa; Restuccia, Cristina; Monteleone, Julieta Ines; Sperlinga, Elisa; Siracusa, Laura; Serafini, Mauro; Finamore, Alberto; Spagna, Giovanni
2017-06-01
Olive leaves represent a quantitatively significant by-product of agroindustry. They are rich in phenols, mainly oleuropein, which can be hydrolyzed into several bioactive compounds, including hydroxytyrosol. In this study, water extract from olive leaves 'Biancolilla' was analyzed for polyphenol profile, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and protective effect on differentiated Caco-2 cells. The efficacy of two enzymatic treatments in promoting the release of bioactive phenols was investigated: a) enzymatic extract from Wickerhamomyces anomalus, characterized by β-glucosidase and esterase activities; b) commercial β-glucosidase. Composition and bioactivity of the resulting extracts were compared. The results showed that the yeast-treated extract presented hydroxytyrosol content and DPPH radical scavenging activity comparable to those obtained using commercial β-glucosidase; however, it was showed the additional presence of hydroxycinnamic acids. In experiments on Caco-2 cells, the leaf extracts promoted the recovery of cell membrane barrier at different minimum effective concentrations. The high specificity of W. anomalus enzymatic extract may represent an effective tool for the release of bioactive phenols from olive by-products.
Chemical investigations of male and female leaf extracts from Schinus molle L.
Garzoli, Stefania; Laghezza Masci, Valentina; Turchetti, Giovanni; Pesci, Lorenzo; Tiezzi, Antonio; Ovidi, Elisa
2018-05-29
The pepper-tree Schinus molle is an evergreen ornamental plant with various and diversified list of medical uses. In this article we analysed the chemical composition of male and female leaves of this plant during the off-flowering and flowering seasons. The leaf extracts were obtained by using a sequential extraction with solvents of different polarities and the chemical composition was investigated by GC-MS. The results showed a total of twenty-three components, in which elemol is the most abundant constituent followed by bicyclogermacrene, γ-eudesmol, α-eudesmol, β-eudesmol and isocalamendiol. The petroleum ether and diethyl ether extracts from male and female flowering and off-flowering leaves consisted of sesquiterpene hydrocarbons as a major constituent followed by monoterpene hydrocarbons, while the acetone extracts showed a different composition. The obtained results show differences in the chemical composition between male and female and flowering and not flowering.
USDA-ARS?s Scientific Manuscript database
Whole-canopy gas exchange measurement in papaya can provide a scientific basis to optimize irrigation, and fruit yield and quality. The objectives of this study were to: 1) verify the relationship between xylem sap flow measured by the heat coefficient method and whole canopy transpiration in ‘Gra...
Jue, Dengwei; Sang, Xuelian; Shu, Bo; Liu, Liqin; Wang, Yicheng; Jia, Zhiwei; Zou, Yu; Shi, Shengyou
2017-01-01
Background Ripening affects the quality and nutritional contents of fleshy fruits and is a crucial process of fruit development. Although several studies have suggested that ubiquitin-conjugating enzyme (E2s or UBC enzymes) are involved in the regulation of fruit ripening, little is known about the function of E2s in papaya (Carica papaya). Methodology/Principal findings In the present study, we searched the papaya genome and identified 34 putative UBC genes, which were clustered into 17 phylogenetic subgroups. We also analyzed the nucleotide sequences of the papaya UBC (CpUBC) genes and found that both exon-intron junctions and sequence motifs were highly conserved among the phylogenetic subgroups. Using real-time PCR analysis, we also found that all the CpUBC genes were expressed in roots, stems, leaves, male and female flowers, and mature fruit, although the expression of some of the genes was increased or decreased in one or several specific organs. We also found that the expression of 13 and two CpUBC genes were incresesd or decreased during one and two ripening stages, respectively. Expression analyses indicates possible E2s playing a more significant role in fruit ripening for further studies. Conclusions To the best of our knowledge, this is the first reported genome-wide analysis of the papaya UBC gene family, and the results will facilitate further investigation of the roles of UBC genes in fruit ripening and will aide in the functional validation of UBC genes in papaya. PMID:28231288
Antiulcer activity of the chloroform extract of Bauhinia purpurea leaf.
Hisam, Elly Ezlinda Abdul; Zakaria, Zainul Amiruddin; Mohtaruddin, Norhafizah; Rofiee, Mohd Salleh; Hamid, Hasiah Ab; Othman, Fezah
2012-12-01
Bauhinia purpurea L. (Fabaceae) is a native plant species of many Asian countries, including Malaysia and India. In India, the root, stem, bark, and leaf of B. purpurea are used to treat various ailments, including ulcers and stomach cancer. In an attempt to establish its pharmacological potential, we studied the antiulcer activity of lipid-soluble extract of B. purpurea obtained via extraction of air-dried leaves using chloroform. The rats were administered the chloroform extract (dose range of 100-1000 mg/kg) orally after 24 h fasting. They were subjected to the absolute ethanol- and indomethacin-induced gastric ulcer, and pyloric ligation assays after 30 min. The acute toxicity study was conducted using a single oral dose of 5000 mg/kg extract and the rats were observed for the period of 14 days. omeprazole (30 mg/kg) was used as the standard control. At 5000 mg/kg, the extract produced no sign of toxicity in rats. The extract exhibited significant (p < 0.05) dose-dependent antiulcer activity for the ethanol-induced model. The extract also significantly (p < 0.05) increased the gastric wall mucus production and pH of gastric content, while significantly (p < 0.05) reducing the total volume and total acidity of the gastric content in the pylorus ligation assay. The extract possesses antiulcer, antisecretory and cytoprotective activities, which could be attributed to its flavonoid and tannin content. These findings provide new information regarding the potential of lipid-soluble compounds of B. purpurea for the prevention and treatment of gastric ulcers.
NASA Astrophysics Data System (ADS)
Sudewi, S.; Lolo, W. A.; Warongan, M.; Rifai, Y.; Rante, H.
2017-11-01
Abelmoschus manihot L. has reported to have flavonoids content. This study aims were to determine the ability of A. manihot extract in counteracting free radical DPPH and determine the content of total flavonoids. A. manihot leaf was taken from 2 regions in North Sulawesi, namely Tomohon and Kotamobagu. The maceration was carried out to extract the active compound in a 96% ethanol solvent. Free radical scavenging analysis was carried out by DPPH and determination of its total flavonoid in the extract was measured using spectrophotometri method. The results showed that A. manihot extract from Tomohon and Kotamobagu could counteract free radical of DPPH with value of free radical activity of 88.151 and 88.801 %, respectively. A. manihot leaf from Kotamobagu has higher total flavonoids content 61.763 mg/g compare to Tomohon 46.679 mg/g which presented as quercetin. A. manihot has antioxidant activity.
Senna leaf extracts induced Ca(+2) homeostasis in a zoonotic tapeworm Hymenolepis diminuta.
Roy, Saptarshi; Kundu, Suman; Lyndem, Larisha M
2016-10-01
Context Plants and plant products have been used in traditional medicine as anthelmintic agents in human and veterinary medicine. Three species of Senna plant, S. alata (L), S. alexandrina (M) and S. occidentalis (L.) Link (Fabaceae) have been shown to have a vermicidal/vermifugal effect on a zoonotic tapeworm Hymenolepis diminuta (Rudolphi) (Cyclophyllidean). Objective The present study validates the mode of action of these Senna plants on the parasite. The alcoholic leaf extract was determined to obtain information on the intracellular free calcium concentration level. Materials and methods Hymenolepis diminuta was maintained in Sprague-Dawley rat model for 2 months. Live parasites collected from infected rat intestine were exposed to 40 mg/mL concentration of each plant extracts prepared in phosphate buffer saline at 37 °C, till parasite gets paralyzed. The rate of efflux of calcium from the parasite tissue to the medium and the level of intracellular Ca(2+ )concentration were determined by an atomic absorption spectroscopy. Results This study revealed that exposure of the worms to the plant extract leads to disruption in intracellular calcium homeostasis. A significant increase (44.6% and 25%) of efflux in Ca(2+ )from the tissue to the incubated medium was observed. Senna alata showed high rate of efflux (5.32 mg/g) followed by S. alexandria and S. occidentalis (both 4.6 mg/g) compared with control (3.68 mg/g). Discussion and conclusion These results suggest that leaf extracts caused membrane permeability to Ca(2+ )after vacuolization of the tegument under stress and the extracts may contain compound that can be used as a chemotherapeutic agent.
USDA-ARS?s Scientific Manuscript database
In 1992 papaya ringpsot virus (PRSV) was discovered in Puna district of Hawaii Island where 95% of the state of Hawaii’s papaya was being grown. By 1998 production in Puna had decreased 50% from 1998 levels. A PRSV-resistant transgenic papaya ‘Rainbow’ expressing the coat protein gene of PRSV was ...
Kim, Sung-Jo; Hwang, Eunmi; Yi, Sun Shin; Song, Ki Duk; Lee, Hak-Kyo; Heo, Tae-Hwe; Park, Sang-Kyu; Jung, Yun Joo; Jun, Hyun Sik
2017-08-01
Hippophae rhamnoides L., also known as sea buckthorn (SBT), possesses a wide range of biological and pharmacological activities. However, the underlying mechanism is largely unknown. The present study examined whether SBT leaf extract could inhibit proliferation and promote apoptosis of rat glioma C6 cells. The results revealed that the treatment with SBT leaf extract inhibited proliferation of rat C6 glioma cells in a dose-dependent manner. SBT-induced reduction of C6 glioma cell proliferation and viability was accompanied by a decrease in production of reactive oxygen species (ROS), which are critical for the proliferation of tumor cells. SBT treatment not only significantly upregulated the expression of the pro-apoptotic protein Bcl-2-associated X (Bax) but also promoted its localization in the nucleus. Although increased expression and nuclear translocation of Bax were observed in SBT-treated C6 glioma cells, the induced nuclear morphological change was distinct from that of typical apoptotic cells in that most of SBT-treated cells were characterized by convoluted nuclei with cavitations and clumps of chromatin. All of these results suggest that SBT leaf extract could inhibit the rapid proliferation of rat C6 glioma cells, possibly by inducing the early events of apoptosis. Thus, SBT may serve as a potential therapeutic candidate for the treatment of glioma.
Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina
2011-01-01
Background Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity. Methods Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts. Results These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS.+. Conclusion The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves. PMID:22132863
Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina.
Boubaker, Jihed; Mansour, Hedi Ben; Ghedira, Kamel; Chekir-Ghedira, Leila
2011-12-01
Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity. Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts. These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS(.+). The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves. © 2011 Boubaker et al; licensee BioMed Central Ltd.
Origin and domestication of papaya Yh chromosome
USDA-ARS?s Scientific Manuscript database
Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previo...
USDA-ARS?s Scientific Manuscript database
Olive leaf is a sizable by-product from the olive industry. Its use as antimicrobial/antioxidant ingredient in edible films for fish preservation was evaluated. Olive leaf powder (OLP) and its water/ethanol extract (OLPE) were tested against three foodborne pathogens: Listeria monocytogenes, Escheri...
Morales-Del-Rio, Juan Alfredo; Gutiérrez-Lomelí, Melesio; Robles-García, Miguel Angel; Aguilar, Jose Antonio; Lugo-Cervantes, Eugenia; Guerrero-Medina, Pedro Javier; Ruiz-Cruz, Saul; Cinco-Moroyoqui, Francisco J.; Wong-Corral, Francisco J.; Del-Toro-Sánchez, Carmen Lizette
2015-01-01
Vitex mollis is used in traditional Mexican medicine for the treatment of some ailments. However, there are no studies on what happens to the anti-inflammatory activity or antioxidant properties and total phenolic content of leaves and stem extracts of Vitex mollis during the digestion process; hence, this is the aim of this work. Methanolic, acetonic, and hexanic extracts were obtained from both parts of the plant. Extract yields and anti-inflammatory activity (elastase inhibition) were measured. Additionally, changes in antioxidant activity (DPPH and ABTS) and total phenols content of plant extracts before and after in vitro digestion were determined. The highest elastase inhibition to prevent inflammation was presented by hexanic extracts (leaf = 94.63% and stem = 98.30%). On the other hand, the major extract yield (16.14%), antioxidant properties (ABTS = 98.51% and DPPH = 94.47% of inhibition), and total phenols (33.70 mg GAE/g of dried sample) were showed by leaf methanolic extract. Finally, leaf and stem methanolic extracts presented an antioxidant activity increase of 35.25% and 27.22%, respectively, in comparison to their initial values after in vitro digestion process. All samples showed a decrease in total phenols at the end of the digestion. These results could be the basis to search for new therapeutic agents from Vitex mollis. PMID:26451153
2011-01-01
Background The cysteine proteinases in papaya latex have been shown to have potent anthelmintic properties in monogastric hosts such as rodents, pigs and humans, but this has not been demonstrated in ruminants. Methods In two experiments, sheep were infected concurrently with 5,000 infective larvae of Haemonchus contortus and 10,000 infective larvae of Trichostrongylus colubriformis and were then treated with the supernatant from a suspension of papaya latex from day 28 to day 32 post-infection. Faecal egg counts were monitored from a week before treatment until the end of the experiment and worm burdens were assessed on day 35 post-infection. Results We found that the soluble fraction of papaya latex had a potent in vivo effect on the abomasal nematode H. contortus, but not on the small intestinal nematode T. colubriformis. This effect was dose-dependent and at tolerated levels of gavage with papaya latex (117 μmol of active papaya latex supernatant for 4 days), the H. contortus worm burdens were reduced by 98%. Repeated treatment, daily for 4 days, was more effective than a single dose, but efficacy was not enhanced by concurrent treatment with the antacid cimetidine. Conclusions Our results provide support for the idea that cysteine proteinases derived from papaya latex may be developed into novel anthelmintics for the treatment of lumenal stages of gastro-intestinal nematode infections in sheep, particularly those parasitizing the abomasum. PMID:21406090
Soman, Soumya; Ray, J G
2016-10-01
Biological approach to synthesis of metal nanoparticles using aqueous leaf extract is a highly relevant and recent theme in nanotechnological research. Phytosynthesized AgNPs have better inhibitory and antimicrobial effects compared to aqueous leaf extract and silver nitrate. In the present investigation crystalline silver nanoparticles (AgNPs) with size of 10nm have been successfully synthesized using aqueous leaf extract (AQLE) of Ziziphus oenoplia (L.) Mill., which act as both reducing as well as capping agent. The particles were characterized using UV Visible spectroscopy, HRTEM-EDAX, XRD, FT-IR and DLS. An evaluation of the anti bacterial activity was carried out using Agar well diffusion method and MIC determination against four bacterial strains, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi; the AgNPs exhibited quite high antibacterial activity. Furthermore, bactericidal studies with TEM at different time intervals after AgNPs treatment showed the presence of AgNPs near cell membrane of bacteria at about 30min exposure and the bacterial-lysis was found completed at 24h. This gave an insight on the mechanism of bacterial-lysis by direct damage to the cell membrane. Copyright © 2016 Elsevier B.V. All rights reserved.
Iwalewa, E O; Iwalewa, O J; Adeboye, J O
2003-06-01
The chloroform, methanolic and ether extracts of Vernonia cinerea (Asteraceae; Less) leaf (100, 200 and 400mg/kg intraperitoneally) were tested in: acetic acid-induced writhing in mice, carrageenin-induced oedema and brewer's yeast-induced pyrexia in rats to assess their analgesic, anti-inflammatory, antipyretic and behavioral activities, respectively. The changes in writhings and behavioural activities in mice, the pyrexia and paw volumes in rats were reduced significantly (P<0.05) compared to the control. There was an increase in pain threshold on the oedematous right hind limb paw of the rats. These results indicate that the extracts could possess analgesic, antipyretic and anti-inflammatory properties. All these effects and the changes in the behavioural activities could be suggested as contributory effects to the use of V. cinerea leaf in the treatment of malaria.
Dimo, T; Ntchapda, F; Atchade, A T; Yewah, M P; Kamtchouing, P; Ngassam, P
2005-07-01
Celtis durandii is a medicinal plant widely used in some part of Cameroon for the treatment of cardiovascular disorders. The vasorelaxant effects of the methylene chloride/methanol leaf extract of C. durandii were examined on isolated rat thoracic aorta. The relaxant effects of C. durandii on vascular preparation from rat aorta precontracted with KCl or norepinephrine was concentration dependent. This relaxing effect was significantly reduced with KCl-induced contraction following mechanical damage to the aortic endothelium. Relaxation elicited by C. durandii was not significantly affected by glibenclamide (10(-6) M), a selective inhibitor of K-ATP-dependent channels or tetraethylammonium (10(-6) M), a non selective K+ channel blocker. Indomethacin (10(-6) M) significantly inhibited relaxation induced by the plant extract. These findings indicate that the vasorelaxation effect of the methylene chloride/methanol leaf extract of C. durandii may be mediated at least in part by prostacyclin.
Han, Jae Woo; Shim, Sang Hee; Jang, Kyoung Soo; Choi, Yong Ho; Dang, Quang Le; Kim, Hun; Choi, Gyung Ja
2018-02-01
As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.
Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan
2017-03-01
A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Audah, K. A.; Amsyir, J.; Almasyhur, F.; Hapsari, A. M.; Sutanto, H.
2018-03-01
Antibacterial drugs derived from natural sources play significant roles in the prevention and treatment of bacterial infections since antibiotics have become less effective against many infectious diseases. Mangroves are very potential natural antibacterial sources among great numbers of wild medicinal plants. Bruguiera cylindrica is one of the many mangroves species which spread along Indonesian coastline. The aim of this study was to explore the antibacterial activity of B. cylindrica wet and dried leaf extracts. The wet extracts study was conducted with three different solvents system (water, ethanol, and n-Hexane) against Escherichia coli and Staphylococcus aureus. While, the dried extracts study was conducted with four different solvents system (water, ethanol, chloroform and n-Hexane) against three types of bacteria, Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus. The study showed that ethanol was the best solvent for extraction of phenolic and flavonoid. Antibacterial actitivity was measured by zone of inhibition which obtained from agar-disk diffusion method. The widest area of zone of inhibition was showed by wet extracts with ethanol against S. aureus and E. coli are 14.30 and 13.30 mm, respectively. While, the zone of inhibition dried extracts with ethanol against S. aureus, S. epidermidis and E. coli are 9.32, 6.59 and 6.20 mm, respectively. In conclusion, both type of extracts showed significant antibacterial activity against gram-positive bacteria as crude extracts.
Lipidomics of tobacco leaf and cigarette smoke.
Dunkle, Melissa N; Yoshimura, Yuta; T Kindt, Ruben; Ortiz, Alexia; Masugi, Eri; Mitsui, Kazuhisa; David, Frank; Sandra, Pat; Sandra, Koen
2016-03-25
Detailed lipidomics experiments were performed on the extracts of cured tobacco leaf and of cigarette smoke condensate (CSC) using high-resolution liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-Q-TOF MS). Following automated solid-phase extraction (SPE) fractionation of the lipid extracts, over 350 lipids could be annotated. From a large-scale study on 22 different leaf samples, it was determined that differentiation based on curing type was possible for both the tobacco leaf and the CSC extracts. Lipids responsible for the classification were identified and the findings were correlated to proteomics data acquired from the same tobacco leaf samples. Prediction models were constructed based on the lipid profiles observed in the 22 leaf samples and successfully allowed for curing type classification of new tobacco leaves. A comparison of the leaf and CSC data provided insight into the lipidome changes that occur during the smoking process. It was determined that lipids which survive the smoking process retain the same curing type trends in both the tobacco leaf and CSC data. Copyright © 2015 Elsevier B.V. All rights reserved.
Prins, Theo W; Scholtens, Ingrid M J; Bak, Arno W; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Laurensse, Emile J; Kok, Esther J
2016-12-15
During routine monitoring for GMOs in food in the Netherlands, papaya-containing food supplements were found positive for the genetically modified (GM) elements P-35S and T-nos. The goal of this study was to identify the unknown and EU unauthorised GM papaya event(s). A screening strategy was applied using additional GM screening elements including a newly developed PRSV coat protein PCR. The detected PRSV coat protein PCR product was sequenced and the nucleotide sequence showed identity to PRSV YK strains indigenous to China and Taiwan. The GM events 16-0-1 and 18-2-4 could be identified by amplifying and sequencing events-specific sequences. Further analyses showed that both papaya event 16-0-1 and event 18-2-4 were transformed with the same construct. For use in routine analysis, derived TaqMan qPCR methods for events 16-0-1 and 18-2-4 were developed. Event 16-0-1 was detected in all samples tested whereas event 18-2-4 was detected in one sample. This study presents a strategy for combining information from different sources (literature, patent databases) and novel sequence data to identify unknown GM papaya events. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N
2015-01-01
A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation. Copyright © 2014 Elsevier B.V. All rights reserved.
Maharaj, Ariana; Rampersad, Sephra N
2012-03-01
Members of the genus Colletotrichum include some of the most economically important fungal pathogens in the world. Accurate diagnosis is critical to devising disease management strategies. Two species, Colletotrichum gloeosporioides and C. truncatum, are responsible for anthracnose disease in papaya (Carica papaya L.) and bell pepper (Capsicum annuum L.) in Trinidad. The ITS1-5.8S-ITS2 region of 48 Colletotrichum isolates was sequenced, and the ITS PCR products were analyzed by PCR-RFLP analysis. Restriction site polymorphisms generated from 11 restriction enzymes enabled the identification of specific enzymes that were successful in distinguishing between C. gloeosporioides and C. truncatum isolates. Species-specific restriction fragment length polymorphisms generated by the enzymes AluI, HaeIII, PvuII, RsaI, and Sau3A were used to consistently resolve C. gloeosporioides and C. truncatum isolates from papaya. AluI, ApaI, PvuII, RsaI, and SmaI reliably separated isolates of C. gloeosporioides and C. truncatum from bell pepper. PvuII, RsaI, and Sau3A were also capable of distinguishing among the C. gloeosporioides isolates from papaya based on the different restriction patterns that were obtained as a result of intra-specific variation in restriction enzyme recognition sites in the ITS1-5.8S-ITS2 rDNA region. Of all the isolates tested, C. gloeosporioides from papaya also had the highest number of PCR-RFLP haplotypes. Cluster analysis of sequence and PCR-RFLP data demonstrated that all C. gloeosporioides and C. truncatum isolates clustered separately into species-specific clades regardless of host species. Phylograms also revealed consistent topologies which suggested that the genetic distances for PCR-RFLP-generated data were comparable to that of ITS sequence data. ITS PCR-RFLP fingerprinting is a rapid and reliable method to identify and differentiate between Colletotrichum species.
Kharat, Sopan N; Mendhulkar, Vijay D
2016-05-01
The simple, eco-friendly and cost effective method of green synthesis of silver nanoparticle in the leaf extract of medicinal plant Elephantopus scaber L. is illustrated in the present work. The synthesized silver nanoparticles (AgNPs) were characterized with UV-Vis-spectroscopy, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The UV-spectra show maximum absorbance at 435 nm, NTA analysis shows 78 nm average sizes of nanoparticles, TEM analysis indicates spherical shape of the nanoparticles with the average diameter of 50 nm. The XRD peaks at 2θ range of 30-80° correspond to (111), (200), (220), (311) reflection planes that indicate the structure of metallic silver. FTIR analysis reveals surface capping of phenolic groups. Existence of peaks in the range of 1611 to 1400 cm(-1) indicates the presence of aromatic rings in the leaf extract. The peak at 1109 cm(-1) is due to the presence of OH groups. The antioxidant activity of synthesized nanoparticles was evaluated performing DPPH assay and it is observed that the photosynthesized nanoparticle also possesses antioxidant potentials. Thus, it can be used as potential free radical scavenger. Silver particles have tremendous applications in the field of diagnostics and therapeutics. To this context, the surface coating of plant metabolite constituents has great potentials. Therefore, the present work has been undertaken to synthesize the AgNPs using leaf extract of medicinal plant, E. scaber, to characterize and access their antioxidant properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara
2017-01-01
Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (−)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model. PMID
Li, Hao-Xi; Gottilla, Thomas M; Brewer, Marin Talbot
2017-10-01
Population divergence and speciation of closely related lineages can result from reproductive differences leading to genetic isolation. An increasing number of fungal diseases of plants and animals have been determined to be caused by morphologically indistinguishable species that are genetically distinct, thereby representing cryptic species. We were interested in identifying if mating systems among three Stagonosporopsis species (S. citrulli, S. cucurbitacearum, and S. caricae) causing gummy stem blight (GSB) of cucurbits or leaf spot and dry rot of papaya differed, possibly underlying species divergence. Additionally, we were interested in identifying evolutionary pressures acting on the genes controlling mating in these fungi. The mating-type loci (MAT1) of three isolates from each of the three species were identified in draft genome sequences. For the three species, MAT1 was structurally identical and contained both mating-type genes necessary for sexual reproduction, which suggests that all three species are homothallic. However, both MAT1-1-1 and MAT1-2-1 were divergent among species showing rapid evolution with a much greater number of amino acid-changing substitutions detected for the reproductive genes compared with genes flanking MAT1. Positive selection was detected in MAT1-2-1, especially in the highly conserved high mobility group (MATA_HMG-box) domain. Thus, the mating-type genes are rapidly evolving in GSB fungi, but a difference in mating systems among the three species does not underlie their divergence. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Cieniak, Carolina; Walshe-Roussel, Brendan; Liu, Rui; Muhammad, Asim; Saleem, Ammar; Haddad, Pierre S; Cuerrier, Alain; Foster, Brian C; Arnason, John T
2015-01-01
The Cree of Eeyou Istchee in Northern Quebec identified Sarracenia purpurea L. as an important plant for the treatment of Type 2 diabetes. Traditionally the plant is used as a decoction (boiling water extract) of the leaf, however, in order to study the extract in a laboratory setting, an 80% ethanol extract was used. In this study, the phytochemistry of both extracts of the leaves was compared and quantified. Two S. purpurea leaf extracts were prepared, one a traditional hot water extract and the other an 80% ethanol extract. Using UPLC-ESI-MS, the extracts were phytochemically compared for 2 triterpenes, betulinic acid and ursolic acid, using one gradient method and for 10 additional substances, including the actives quercetin-3-O-galactoside and morroniside, using a different method. The concentrations of the nine phenolic substances present, as well as an active principle, the iridoid glycoside morroniside, were very similar between the two extracts, with generally slightly higher concentrations of phenolics in the ethanol extract as expected. However, two triterpenes, betulinic acid and ursolic acid, were 107 and 93 times more concentrated, respectively, in the ethanol extract compared to the water extract. The main phytochemical markers and most importantly the antidiabetic active principles, quercetin-3-O-galactoside and morroniside, were present in similar amounts in the two extracts, which predicts similar bioactivity.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Evaluation of Senna singueana leaf extract as an alternative or adjuvant therapy for malaria
Hiben, Mebrahtom Gebrelibanos; Sibhat, Gereziher Gebremedhin; Fanta, Biruk Sintayehu; Gebrezgi, Haile Desta; Tesema, Shewaye Belay
2015-01-01
The emergence of malarial resistance to most antimalarial drugs is the main factor driving the continued effort to identify/discover new agents for combating the disease. Moreover, the unacceptably high mortality rate in severe malaria has led to the consideration of adjuvant therapies. Senna singueana leaves are traditionally used against malaria and fever. Extracts from the leaves of this plant demonstrated in vitro and in vivo antioxidant activities, which in turn could reduce the severity of malaria. Extracts from the root bark of this plant exhibited antiplasmodial activity; however, the leaves are the more sustainable resource. Thus, S. singueana leaf was selected for in vivo evaluation as a potential alternative or adjuvant therapy for malaria. Using malaria [Plasmodium berghei ANKA, chloroquine (CQ) sensitive]-infected Swiss albino mice of both sexes, 70% ethanol extract of S. singueana leaves (alone and in combination with CQ) was tested for antimalarial activity and adjuvancy potential. The 4-day suppressive test was used to evaluate antimalarial activity. The dose of S. singueana extract administered was safe to mice and exhibited some parasite suppression effect: extract doses of 200 mg/kg/d, 400 mg/kg/d, and 800 mg/kg/d caused 34.54%, 44.52%, and 47.32% parasite suppression, respectively. Concurrent administration of the extract with CQ phosphate at varied dose levels indicated that the percentage of parasite suppression of this combination was higher than administering CQ alone, but less than the sum of the effects of the extract and CQ acting separately. In conclusion, the study indicated that 70% ethanol extract of S. singueana leaf was safe to mice and possessed some parasite suppression effect. Coadministration of the extract with CQ appeared to boost the overall antimalarial effect, indicating that the combination may have a net health benefit if used as an adjuvant therapy. PMID:26870688
Mba-Jonas, Adamma; Culpepper, Wright; Hill, Thomas; Cantu, Venessa; Loera, Julie; Borders, Julie; Saathoff-Huber, Lori; Nsubuga, Johnson; Zambrana, Ingrid; Dalton, Shannon; Williams, Ian; Neil, Karen P
2018-05-17
Nontyphoidal Salmonella causes ~1 million food-borne infections annually in the United States. We began investigating a multistate outbreak of Salmonella serotype Agona infections in April 2011. A case was defined as infection with the outbreak strain of Salmonella Agona occurring between 1 January and 25 August 2011. We developed hypotheses through iterative interviews. Product distribution analyses and traceback investigations were conducted. The Food and Drug Administration (FDA) tested papayas from Mexico for Salmonella. We identified 106 case patients from 25 states. Their median age was 21 years (range, 1-91). Thirty-nine of 61 case patients (64%) reported Hispanic/Latino ethnicity; 11 of 65 (17%) travelled to Mexico before illness. Thirty-two of 56 case patients (57%) reported papaya consumption. Distribution analyses revealed that three firms, including Distributor A, distributed papaya to geographic areas that aligned with both the location and timing of illnesses. Traceback of papayas purchased by ill persons in four states identified Distributor A as the common supplier. FDA testing isolated the outbreak strain from a papaya sample collected at distributor A and from another sample collected at the US-Mexico border, destined for distributor A. FDA isolated Salmonella species from 62 of 388 papaya import samples (16%). The investigation led to a recall of fresh, whole papayas from Distributor A and an FDA import alert for all papayas from Mexico. This is the first reported Salmonella outbreak in the United States linked to fresh, whole papayas. The outbreak highlights important issues regarding the safety of imported produce.
Govindarajan, Marimuthu; Rajeswary, Mohan
2015-05-01
Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus, and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. In the present study, hexane, benzene, chloroform, ethyl acetate, and methanol extracts of leaf and seed of Albizia lebbeck were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. One hundred percent mortality was observed at 250, 200, and 150 ppm for leaf methanol extract and 375, 300, and 225 ppm for seed methanol extract of A. lebbeck against C. quinquefasciatus, Ae. aegypti, and An. stephensi, respectively. The adulticidal activity of plant leaf and seed extracts showed moderate toxic effect on the adult mosquitoes after 24 h of exposure period. However, the highest adulticidal activity was observed in the leaf methanol extract of A. lebbeck against An. stephensi where the LC₅₀ and LC₉₀ values were 65.12 and 117.70 ppm, respectively. Compared to leaf extracts, seeds have low potency against three mosquito species. No mortality was recorded in the control. Our data suggest that the crude hexane, benzene, chloroform, ethyl acetate, and methanol solvent extracts of A. lebbeck have the potential to be used as an eco-friendly approach for the control of the An. stephensi, Ae. aegypti, and C. quinquefasciatus. These results suggest that the leaf and seed extracts have the potential to be used as an ideal
Rajkumar, S.; Jebanesan, A.
2005-01-01
The leaf extract of Solanum trilobatum (Solanaceae) was tested under laboratory conditions for oviposition deterrent and skin repellent activities against the adult mosquito Anopheles stephensi. Concentrations of 0.01, 0.025, 0.05, 0.075 and 0.1% reduced egg laying by gravid females from 18 to 99% compared to ethanol-treated controls. In skin repellent tests, concentrations of 0.001, 0.005, 0.01, 0.015, and 0.02 % provided 70 to 120 minutes protection against mosquito bites, whereas the ethanol control provided only 2.2 minutes of protection. Both oviposition deterrent and skin repellent activity were dose dependent. The results suggest that the leaf extract of S. trilobatum is an effective oviposition deterrent and skin repellent against An. stephensi. PMID:16341247
Ojewole, J A O; Kamadyaapa, D R; Gondwe, M M; Moodley, K; Musabayane, C T
2007-01-01
The cardiovascular effects of Persea americana Mill (Lauraceae) aqueous leaf extract (PAE) have been investigated in some experimental animal paradigms. The effects of PAE on myocardial contractile performance was evaluated on guinea pig isolated atrial muscle strips, while the vasodilatory effects of the plant extract were examined on isolated portal veins and thoracic aortic rings of healthy normal Wistar rats in vitro. The hypotensive (antihypertensive) effect of the plant extract was examined in healthy normotensive and hypertensive Dahl salt-sensitive rats in vivo. P americana aqueous leaf extract (25-800 mg/ml) produced concentration-dependent, significant (p < 0.05-0.001), negative inotropic and negative chronotropic effects on guinea pig isolated electrically driven left and spontaneously beating right atrial muscle preparations, respectively. Moreover, PAE reduced or abolished, in a concentration-dependent manner, the positive inotropic and chronotropic responses of guinea pig isolated atrial muscle strips induced by noradrenaline (NA, 10(-10)-10(-5) M), and calcium (Ca(2+), 5-40 mM). PAE (50-800 mg/ml) also significantly reduced (p < 0.05-0.001) or abolished, in a concentration-dependent manner, the rhythmic, spontaneous, myogenic contractions of portal veins isolated from healthy normal Wistar rats. Like acetylcholine (ACh, 10(-8)-10(-5) M), the plant extract (25- 800 mg/ml) produced concentration-related relaxations of isolated endothelium-containing thoracic aortic rings pre-contracted with noradrenaline. The vasorelaxant effects of PAE in the isolated, endothelium-intact aortic rings were markedly inhibited or annulled by N(G)-nitro-L-arginine methyl ester (L-NAME, 10(-5) M), a nitric oxide synthase inhibitor. Furthermore, PAE (25-400 mg/kg iv) caused dose-related, transient but significant reductions (p < 0.05-0.001) in the systemic arterial blood pressure and heart rates of the anaesthetised normotensive and hypertensive rats used. The results of
Flemmig, Jörg; Rusch, Dorothea; Czerwińska, Monika Ewa; Rauwald, Hans-Wilhelm; Arnhold, Jürgen
2014-05-01
We investigated in vitro the ability of a standardised olive leaf dry extract (Ph. Eur.) (OLE) as well as of its single components to circumvent the hydrogen peroxide-induced inhibition of the hypothiocyanite-producing activity of lactoperoxidase (LPO). The rate of hypothiocyanite (⁻OSCN) formation by LPO was quantified by spectrophotometric detection of the oxidation of 5-thio-2-nitrobenzoic acid (TNB). By using excess hydrogen peroxide, we forced the accumulation of inactive enzymatic intermediates which are unable to promote the two-electronic oxidation of thiocyanate. Both OLE and certain extract components showed a strong LPO-reactivating effect. Thereby an o-hydroxyphenolic moiety emerged to be essential for a good reactivity with the inactive LPO redox states. This basic moiety is found in the main OLE components oleuropein, oleacein, hydroxytyrosol, caffeic acid as well as in different other constituents including the OLE flavone luteolin. As LPO is a key player in the humoral immune response, these results propose a new mode of action regarding the well-known bacteriostatic and anti-inflammatory properties of the leaf extract of Olea europaea L. Copyright © 2014 Elsevier Inc. All rights reserved.
Comparative proteomic analysis of somatic embryo maturation in Carica papaya L.
2014-01-01
Background Somatic embryogenesis is a complex process regulated by numerous factors. The identification of proteins that are differentially expressed during plant development could result in the development of molecular markers of plant metabolism and provide information contributing to the monitoring and understanding of different biological responses. In addition, the identification of molecular markers could lead to the optimization of protocols allowing the use of biotechnology for papaya propagation and reproduction. This work aimed to investigate the effects of polyethylene glycol (PEG) on somatic embryo development and the protein expression profile during somatic embryo maturation in papaya (Carica papaya L.). Results The maturation treatment supplemented with 6% PEG (PEG6) resulted in the greatest number of somatic embryos and induced differential protein expression compared with cultures grown under the control treatment. Among 135 spots selected for MS/MS analysis, 76 spots were successfully identified, 38 of which were common to both treatments, while 14 spots were unique to the control treatment, and 24 spots were unique to the PEG6 treatment. The identified proteins were assigned to seven categories or were unclassified. The most representative class of proteins observed in the control treatment was associated with the stress response (25.8%), while those under PEG6 treatment were carbohydrate and energy metabolism (18.4%) and the stress response (18.4%). Conclusions The differential expression of three proteins (enolase, esterase and ADH3) induced by PEG6 treatment could play an important role in maturation, and these proteins could be characterized as candidate biomarkers of somatic embryogenesis in papaya. PMID:25076862
Rebai, Olfa; Belkhir, Manel; Boujelben, Adnen; Fattouch, Sami; Amri, Mohamed
2017-04-01
Recent studies demonstrate that glyphosate exposure is associated with oxidative stress and some neurological disorders such as Parkinson's pathology. Therefore, phytochemicals, in particular phenolic compounds, have attracted increasing attention as potential agents for neuroprotection. In the present study, we investigate the impact of glyphosate on the rat brain following i.p. injection and the possible molecular target of neuroprotective activity of the phenolic fraction from Morus alba leaf extract (MALE) and its ability to reduce oxidative damage in the brain. Wistar rats from 180 to 240 g were i.p. treated with a single dose of glyphosate (100 mg kg -1 b.w.) or MALE (100 μg mL -1 kg -1 b.w.) for 2 weeks. Brain homogenates were used to evaluate neurotoxicity induced by the pesticide. For this, biochemical parameters were measured. Data shows that MALE regulated oxidative stress and counteracted glyphosate-induced deleterious effects and oxidative damage in the brain, as it abrogated LDH, protein carbonyls, and malonyldialdehyde. MALE also appears to be able to scavenge H 2 O 2 levels, maintain iron and Ca 2+ homeostasis, and increase SOD activity. Thus, in vivo results showed that mulberry leaf extract is a potent protector against glyphosate-induced toxicity, and its protective effect could result from synergism or antagonism between the various bioactive phenolic compounds in the acetonic fraction from M. alba leaf extract.
2014-01-01
Background The primary objective of the present investigation is to evaluate the antidiabetic, antihyperlidemic and antioxidant activity of the methanolic extract of the Paederia foetida Linn. (PF) leaf extract in the streptozotocin induced diabetic rats. Methods Single intraperitoneal injection (IP) of streptozotocin (60 mg/kg body weight) was used for induction of diabetes is swiss albino (wistar strain) rats. The induction of diabetes was confirmed after 3 days as noticing the increase in blood sugar level of tested rats. PF at a once a daily dose of 100 mg/kg, 250 mg/kg, 500 mg/kg, p.o. along with glibenclamide 10 mg/kg, p.o. was also given for 28 days. On the 28th day rats from all the groups fasted overnight fasted and the blood was collected from the puncturing the retro orbit of the eye under mild anesthetic condition. There collected blood sample was used to determine the antihyperlipidemic, hypoglycemic and antioxidant parameters. Results The oral acute toxicity studies did not show any toxic effect till the dose at 2000 mg/kg. While oral glucose tolerance test showed better glucose tolerance in tested rats. The statistical data indicated that the different dose of the PF significantly increased the body weight, hexokinase, plasma insulin, high density lipoprotein cholesterol, superoxide dismutase, catalase and glutathione peroxides. It also decreases the level of fasting blood glucose, total cholesterol, triglycerides, low density lipoprotein cholesterol, very low density lipoprotein cholesterol, malonaldehyde, glucose-6-phosphate, fructose-1-6-biphosphate and glycated hemoglobin in STZ induced diabetic rats. The histopathology of STZ induce diabetic rats, as expected the test dose of PF extract considerably modulates the pathological condition of various vital organ viz. heart, kidney, liver, pancreas as shown in the histopathology examinations. Conclusions Our investigation has clearly indicated that the leaf extract of Paederia foetida Linn
Ayón-Reyna, Lidia Elena; López-Valenzuela, José Ángel; Delgado-Vargas, Francisco; López-López, Martha Edith; Molina-Corral, Francisco Javier; Carrillo-López, Armando; Vega-García, Misael Odín
2017-01-01
Anthracnose of papaya fruit caused by the fungus Colletotrichum gloeosporioides is one of the most economically important postharvest diseases. Hot water immersion (HW) and calcium chloride (Ca) treatments have been used to control papaya postharvest diseases; however, the effect of the combination HW-Ca on the pathogen growth and the development of the disease in infected papaya fruit has been scarcely studied. The aim of this study was to evaluate the effect of the HW-Ca treatment on the in vitro growth of C. gloesporioides conidia and the quality of infected papaya. In vitro, the HW-Ca treated conidia showed reduced mycelial growth and germination. In vivo, the HW-Ca treatment of infected papaya delayed for 5 days the onset of the anthracnose symptoms and improved the papaya postharvest quality. The combined treatment HW-Ca was better than any of the individual treatments to inhibit the in vitro development of C. gloeosporioides and to reduce the negative effects of papaya anthracnose. PMID:29238280
Colak, Emine; Ustuner, Mehmet Cengiz; Tekin, Neslihan; Colak, Ertugrul; Burukoglu, Dilek; Degirmenci, Irfan; Gunes, Hasan Veysi
2016-01-01
Cynara scolymus is a pharmacologically important medicinal plant containing phenolic acids and flavonoids. Experimental studies indicate antioxidant and hepatoprotective effects of C. scolymus but there have been no studies about therapeutic effects of liver diseases yet. In the present study, hepatocurative effects of C. scolymus leaf extract on carbon tetrachloride (CCl4)-induced oxidative stress and hepatic injury in rats were investigated by serum hepatic enzyme levels, oxidative stress indicator (malondialdehyde-MDA), endogenous antioxidants, DNA fragmentation, p53, caspase 3 and histopathology. Animals were divided into six groups: control, olive oil, CCl4, C. scolymus leaf extract, recovery and curative. CCl4 was administered at a dose of 0.2 mL/kg twice daily on CCl4, recovery and curative groups. Cynara scolymus extract was given orally for 2 weeks at a dose of 1.5 g/kg after CCl4 application on the curative group. Significant decrease of serum alanine-aminotransferase (ALT) and aspartate-aminotransferase (AST) levels were determined in the curative group. MDA levels were significantly lower in the curative group. Significant increase of superoxide dismutase (SOD) and catalase (CAT) activity in the curative group was determined. In the curative group, C. scolymus leaf extract application caused the DNA % fragmentation, p53 and caspase 3 levels of liver tissues towards the normal range. Our results indicated that C. scolymus leaf extract has hepatocurative effects of on CCl4-induced oxidative stress and hepatic injury by reducing lipid peroxidation, providing affected antioxidant systems towards the normal range. It also had positive effects on the pathway of the regulatory mechanism allowing repair of DNA damage on CCl4-induced hepatotoxicity.
Abdel-Gayoum, Abdelgayoum A; Al-Hassan, Abdelrahman A; Ginawi, Ibrahim A; Alshankyty, Ibraheem M
2015-01-01
Amikacin is an important antibiotic, and its use is limited because of the induced nephrotoxicity. Thus, search for natural and synthetic agents that can moderate amikacin toxicity never stopped. The present study aims to investigate the possible ameliorative effects of virgin olive oil and olive leaf extract against the amikacin-induced nephrotoxicity in rat. 48 rats were distributed into 6 groups: 1-Animals of control (C) group were injected intraperitoneally (ip) with saline, 2-(AK); injected ip with amikacin {300 mg/kg/day for 12days}, 3-(OO) group: given olive oil {7 ml/kg/day for 16days}, 4-(OOAK) group: given olive oil as in OO and amikacin for 12days, 5-(OL) group: given olive leaf extract {50 mg/kg/day for 16days}, 6-(OLAK) group: given leaf extract as in OL and amikacin for 12days. Animals were fasted and sacrificed. Serum was used for biochemical analysis and kidneys for histopathology. Serum urea and creatinine were significantly ( P < 0.001) elevated in AK, and significantly dropped in the OOAK and OLAK groups. Serum uric acid was reduced in AK by 45.29%. Kidneys from AK showed necrosis, whereas, those from OOAK and OLAK showed mild histology. The serum triglyceride was decreased by 17.8% in OL, by 37.02% in OOAK and by 31.48% in OLAK. The calculated amikacin effect showed a significant positive correlation with urea ( r = 0.521, P = 0.0004), and a negative correlation with uric acid ( r =  0.58, P < 0.0001). The study confirmed nephrotoxicity of amikacin in rat which was ameliorated by virgin olive oil and by olive leaf extract. Amikacin did not cause dyslipidemia but reduced serum uric acid.
Phothiset, Suphatta; Charoenrein, Sanguansri
2014-01-30
During storage, frozen fruit may be thawed and refrozen many times before consumption, which may be extremely damaging to the texture of the frozen fruit and reverse the advantage of fast freezing. The effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues were investigated. The frozen-thawed papayas had an increase in drip loss and a decrease in firmness with increasing number of freeze-thaw cycles. Light microscopy showed irregular shapes and cell damage in parenchyma cells of frozen-thawed papayas, whereas transmission electron microscopy showed loss of cell wall materials in middle lamella. Moreover, destruction of cell wall was observed after being subjected to five freeze-thaw cycles. These changes related with a significant decrease in alcohol-insoluble solids, Na₂CO₃- and 24% KOH-soluble fractions and an increase in the water-, EDTA- and 4% KOH-soluble fractions. This was due to a decrease in the molecular mass of pectic and hemicellulosic polymers in frozen-thawed papayas using high-performance size-exclusion chromatography. The freezing and thawing processes caused fine structural damage and cell wall composition changes which contributed to a loss of drip volume and firmness of papaya tissues. © 2013 Society of Chemical Industry.
Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract
NASA Astrophysics Data System (ADS)
Sari, I. P.; Yulizar, Y.
2017-04-01
Magnetite nanoparticles (MNPs) attracted the attention of many researchers due to their unique properties. In this research, nanoscale magnetite particles have been successfully synthesized through an environmentally friendly method using aqueous extract of Graptophyllum pictum leaf (GPLE). In MNPs formation, GPLE acted as a base source and capping agent. Alkaloids in GPLE were hydrolyzed in water and hydroxilated Fe2+ to form Fe3O4 nanoparticles powder through calcination. After the addition of leaf extract, MNPs formation was observed by color change from pale yellow to dark brown. The synthesized nanoparticles were characterized using UV-Vis spectrophotometer, X-Ray diffraction (XRD), and Fourier transform infra red (FTIR) spectroscopy. The results confirmed that MNPs formation indicated the surface plasmon resonance at a maximum wavelength, λmax 291 nm. The average crystallite size is 23.17 nm. The formed MNPs through green synthesis method promise in various medical applications such as drug carrier and targeted therapy.
Effects of papaya leaves on thrombocyte counts in dengue--a case report.
Siddique, Osama; Sundus, Ayesha; Ibrahim, Mohammad Faisal
2014-03-01
Dengue fever is on the rise in developing nations like India, Pakistan, Sri Lanka and Bangladesh. There is no antiviral chemotherapy or vaccine for dengue virus and management of the disease is done on supportive measures. The decline in the thrombocyte count leads to dengue haemorrhagic fever accounting for complications and mortality. Oral administration of Carica papaya leaves extract is said to have a positive impact on thrombocyte count. A 23-year-old man was administered a calculated dose for five days. Blood samples were tested for complete blood count before and after the administration of the juice. Thrombocyte count had increased from 28000/micro liter to 138000/micro liter at the end of five days. We present our experience here.
Adeyemi, Olufunmilayo O; Ishola, Ismail O; Okoro, Uzodinma
2013-01-01
Bryophyllum pinnatum Lam. Kurtz (Crassulaceae) is used in traditional African medicine in the treatment of diarrhoea. To investigate the antidiarrhoeal action of the hydroethanolic leaf extract of Bryophyllum pinnatum (BP). Normal intestinal transit, castor oil-induced intestinal transit, castor oil-induced diarrhoea, gastric emptying and enteropooling models in rodents were used to investigate antidiarrhoeal effect. The possible mechanism of antidiarrhoeal activity was investigated using prazosin (1 mg/kg, s.c; α1, adrenoceptor antagonist), yohimbine (1 mg/kg, s.c; α2 adrenoceptor antagonist), propranolol (1 mg/kg, i.p; α- adrenoceptor non-selective antagonist), atropine (1 mg/kg, s.c; muscarinic cholinergic antagonist), pilocarpine (1 mg/kg, s.c; muscarinic cholinergic agonist), and isosorbide dinitrate (IDN) (150 mg/kg, p.o; nitric oxide donor). BP (25-100 mg/kg, p.o) produced dose-dependent and significant (P < 0.001) decrease in intestinal propulsion in normal and castor oil-induced intestinal transit models in comparison to distilled water (10 ml/kg, p.o.) treated control. This antidiarrhoeal effect was inhibited by propranolol pretreatment but yohimbine, prazosin, or atropine pretreatment failed to block this effect. BP treatment reduced the increased peristaltic activity induced by pilocarpine, however, co-treatment with IDN significantly (P < 0.001) enhanced the antidiarrhoeal effect of the extract. In castor oil-induced diarrhoea test, the extract produced a dose-dependent and significant (P < 0.001) increase in onset of diarrhoea, decreased diarrhoea score, the number and weight of wet stools when compared to control. The in vivo antidiarrhoeal index (ADI(in) vivo)) of 53.52 produced by the extract (50 mg/kg, p.o.) was similar to 76.28 ADI(in vivo) produced by morphine (10 mg/kg, s.c.). The extract produced dose- dependent and significant (P < 0.05; P < 0.001) decrease in the weight and volume of intestinal content in the intestinal fluid accumulation