Science.gov

Sample records for par scintillation evolution

  1. Compositional evolution of magma from Parícutin Volcano, Mexico: The tephra record

    NASA Astrophysics Data System (ADS)

    Erlund, E. J.; Cashman, K. V.; Wallace, P. J.; Pioli, L.; Rosi, M.; Johnson, E.; Granados, H. Delgado

    2010-11-01

    The birth of Parícutin Volcano, Mexico, in 1943 provides an unprecedented opportunity to document the development of a monogenetic cinder cone and its associated lava flows and tephra blanket. Three 'type' sections provide a complete tephra record for the eruption, which is placed in a temporal framework by comparing both bulk tephra and olivine phenocryst compositions to dated samples of lava and tephra. Our data support the hypothesis of Luhr (2001) that the first four months of activity were fed by a magma batch (Phase 1) that was distinct from the magma that supplied the subsequent eight years of activity. We further suggest that the earliest erupted (vanguard) magma records evidence of temporary residence at shallow levels prior to eruption, suggesting early development of a dike and sill complex beneath the vent. Depletion of this early batch led to diminished eruptive activity in June and July of 1943, while arrival of the second magma batch (Phase 2) reinvigorated activity in late July. Phase 2 fed explosive activity from mid-1943 through 1946, although most of the tephra was deposited by the end of 1945. Phase 3 of the eruption began in mid-1947 with rapid evolution of magma compositions from basaltic andesite to andesite and dominance of lava effusion. The combined physical and chemical characteristics of the erupted material present a new interpretation of the physical conditions that led to compositional evolution of the magma. We believe that syn-eruptive assimilation of wall rock in a shallow complex of dikes and sills is more likely than pre-eruptive assimilation within a large magma chamber, as previously assumed. We further suggest that waning rates of magma supply from the deep feeder system allowed evolved, shallowly stored magma to enter the conduit in 1947, thus triggering the rapid observed change in the erupted magma composition. This physical model predicts that assimilation should be observable in other monogenetic eruptions, particularly

  2. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  3. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  4. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  5. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  6. Scintillation Counters

    NASA Astrophysics Data System (ADS)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  7. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  8. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    SciTech Connect

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-07-15

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter.

  9. Identification of proopiomelanocortin-related peptides in the rostral pars distalis of the pituitary in coelacanth: evolutional implications.

    PubMed

    Takahashi, Akiyoshi; Yasuda, Akikazu; Sullivan, Craig V; Kawauchi, Hiroshi

    2003-02-15

    The coelacanth fish, genus Latimeria, flourished during the Devonian Period and is considered among the closest living relatives of tetrapods. It may therefore provide important information on the evolution of fishes into tetrapods. However, little is known about the components of the endocrine system in this fish. Here we describe the structural characterization of pituitary hormones derived from proopiomelanocortin (POMC) in Latimeria chalumnae. We identified alpha-melanocyte-stimulating hormone (MSH), N-Des-acetyl-alpha-MSH, beta-MSH, N-terminal peptide containing gamma-MSH, corticotropin-like intermediate lobe peptide (CLIP), and N-acetyl-beta-endorpin (END) in an extract from the rostral pars distalis of the pituitary by reversed-phase high-performance liquid chromatography, amino acid sequence analysis, and mass spectrometry. The occurrence of three different MSHs and one beta-END indicates that the structural organization of coelacanth POMC is the same as that of lungfish, tetrapods, and primitive ray-finned fish. The coelacanth alpha-MSH is identical to its mammalian counterpart. The coelacanth beta-MSH shows the highest sequence identity with the amphibian counterpart, and gamma-MSH and CLIP show the highest sequence identity with their amphibian and bird counterparts, whereas coelacanth beta-END is most similar to the sturgeon peptide. The coexistence of tetrapod-type and fish-type characteristics in the putative coelacanth POMC molecule reflects the phylogenetic position of this fish. When each hormonal segment was compared between coelacanth, lungfish, and tetrapod, MSH and CLIP of coelacanth were closer to their tetrapod counterparts than those of lungfish, whereas beta-MSH and beta-END of coelacanth are less closely related to their tetrapod counterparts than those of lungfish. gamma-MSH and CLIP may have evolved at a different rate from beta-MSH and beta-END in both the coelacanth and lungfish.

  10. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2015-09-01

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  11. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2014-07-15

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  12. Scintillator materials for calorimetry

    SciTech Connect

    Weber, M.J.

    1994-09-01

    Requirements for fast, dense scintillator materials for calorimetry in high energy physics and approaches to satisfying these requirements are reviewed with respect to possible hosts and luminescent species. Special attention is given to cerium-activated crystals, core-valence luminescence, and glass scintillators. The present state of the art, limitations, and suggestions for possible new scintillator materials are presented.

  13. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  14. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  15. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  16. LHCb Upgrade: Scintillating Fibre Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark

    2016-07-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  17. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  18. Study of equatorial scintillations

    NASA Technical Reports Server (NTRS)

    Pomalaza, J.; Woodman, R.; Tisnado, G.; Nakasone, E.

    1972-01-01

    Observations of the amplitude scintillations produced by the F-region in equatorial areas are presented. The equipment used for conducting the observations is described. The use of transmissions from the ATS-1, ATS-3, and ATS-5 for obtaining data is described. The two principal subjects discussed are: (1) correlation between satellite and incoherent radar observations of scintillations and (2) simultaneous observations of scintillations at 136 MHz and 1550 MHz.

  19. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  20. Scintillation Forecasting Using NPOESS Data

    NASA Astrophysics Data System (ADS)

    Basu, B.; Retterer, J.; Demajistre, R.; de La Beaujardiere, O.; Scro, K.

    2005-12-01

    We have conducted a theoretical study of the use of NPOESS data for the forecasting of equatorial radio scintillation using knowledge of the equatorial Appleton anomaly, e.g., the peak-to-valley ratio of TEC (Total Electron Content) between the anomaly crests and the magnetic equator. The peak-to-valley ratio can be obtained from the UV (ultraviolet) imagery of the anomaly region that will be provided by the NPOESS sensors. The post-sunset enhancement of the upward drift velocity of the equatorial plasma has been shown, both theoretically and observationally, to be an important determinant of both the onset of scintillation and the strength of the anomaly. The technical approach is to run PBMOD, the AFRL low-latitude ionosphere model, with a range of post-sunset vertical drift velocities to determine the quantitative relationship between the peak-to-valley ratio and the maximum value of the pot-sunset upward drift velocity of equatorial plasma. Once the relationship is validated, it will be used to estimate the maximum value of the drift velocity from the peak-to-valley ratio, which is derived from the UV imagery data provided by NPOESS-like sensor, such as GUVI on TIMED satellite. The drift velocity will then be used in PBMOD to simulate the formation and evolution of equatorial plasma `bubbles' and calculate the distribution of the amplitude scintillation index S4. Results of the study will be discussed.

  1. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    SciTech Connect

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Orrell, John L.; Panisko, Mark E.; Warren, Glen A.; Wright, Michael E.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processing to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.

  2. Scintillating pad detectors

    SciTech Connect

    Adams, D.; Baumbaugh, B.; Borcherding, F.

    1996-12-31

    We have been investigating the performance of scintillating pad detectors, individual small tiles of scintillator that are read out with wavelength-shifting fibers and visible light photon counters, for application in high luminosity colliding beam experiments such as the D0 Upgrade. Such structures could provide {open_quotes}pixel{close_quotes} type readout over large fiducial volumes for tracking, preshower detection and triggering.

  3. THE MEASURES PAR PROJECT

    NASA Astrophysics Data System (ADS)

    Frouin, R. J.; Franz, B.

    2009-12-01

    The solar energy available for photosynthesis, known as PAR, controls the growth of phytoplankton and, therefore, regulates the composition and evolution of marine ecosystems. Knowing the spatial and temporal distribution of PAR over the oceans is critical to understanding biogeochemical cycles of carbon, nutrients, and oxygen, and to address important climate and global change issues such as the fate of anthropogenic atmospheric carbon dioxide. In view of this, a 12-year time series of PAR at the ocean surface, starting in September 1997, is being produced by the NASA Ocean Biology Processing Group from SeaWiFS, MODIS-Terra, and MODIS-Aqua data. The product covers the global oceans, with a spatial resolution of about 9.3x9.3 km (equal area grid) and a temporal resolution of one day. PAR is computed as the difference between the 400-700 nm solar flux incident on the top of the atmosphere (known) and reflected back to space by the atmosphere and surface (derived from satellite radiance), taking into account atmospheric absorption (modeled). Knowledge of pixel composition is not required, eliminating the need for cloud screening and arbitrary assumptions about sub-pixel cloudiness. Combining data from satellite sensors with different equatorial crossing times accounts for the diurnal variability of clouds and, therefore, increases accuracy on a daily time scale. The processing system, including routine check of accuracy and control of quality, is designed to operate during the entire lifetime of SeaWiFS and MODIS, and to accommodate future sensors with ocean-color capabilities. Maps of daily, weekly, and monthly PAR obtained from individual sensors are presented, as well as merged products. Accuracy is quantified in comparisons with other satellite estimates, the National Centers for Environmental Prediction reanalysis product, and in-situ measurements from fixed buoys and platforms. The good statistical performance makes the satellite PAR product suitable for large

  4. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    The segregation of DNA prior to cell division is essential for faithful genetic inheritance. In many bacteria, segregation of the low-copy-number plasmids involves an active partition system composed of ParA ATPase and its stimulator protein ParB. Recent experiments suggest that ParA/ParB system motility is driven by a diffusion-ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. We develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB bound cargo. Paradoxically, the resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work sheds light on a new emergent phenomenon in which non-motor proteins work collectively via mechanochemical coupling to propel cargos -- an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  5. Scintillator Measurements for SNO+

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, Tanner; SNO+ Collaboration

    2016-03-01

    SNO+ is a neutrino detector located 2km underground in the SNOLAB facility with the primary goal of searching for neutrinoless double beta decay. The detector will be filled with a liquid scintillator target primarily composed of linear alkyl benzene (LAB). As charged particles travel through the detector the LAB produces scintillation light which is detected by almost ten thousand PMTs. The LAB is loaded with Te130, an isotope known to undergo double beta decay. Additionally, the LAB is mixed with an additional fluor and wavelength shifter to improve the light output and shift the light to a wavelength regime in which the PMTs are maximally efficient. The precise scintillator optics drastically affect the ultimate sensitivity of SNO+. I will present work being done to measure the optical properties of the SNO+ scintillator cocktail. The measured properties are used as input to a scintillation model that allows us to extrapolate to the SNO+ scale and ultimately predict the sensitivity of the experiment. Additionally, I will present measurements done to characterize the R5912 PMT, a candidate PMT for the second phase of SNO+ that provides better light collection, improved charge resolution, and a narrower spread in timing.

  6. Scintillator plate calorimetry

    SciTech Connect

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin.

  7. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  8. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  9. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  10. Boron loaded scintillator

    SciTech Connect

    Bell, Zane William; Brown, Gilbert Morris; Maya, Leon; Sloop, Jr., Frederick Victor; Sloop, Jr., Frederick Victor

    2009-10-20

    A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.

  11. Polysiloxane scintillator composition

    DOEpatents

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  12. Polysiloxane scintillator composition

    DOEpatents

    Walker, James K.

    1992-01-01

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  13. Quenching equation for scintillation

    NASA Astrophysics Data System (ADS)

    Kato, Takahisa

    1980-06-01

    A mathematical expression is postulated showing the relationship between counting rate and quenching agent concentration in a liquid scintillation solution. The expression is more suited to a wider range of quenching agent concentrations than the Stern-Volmer equation. An estimation of the quenched correction is demonstrated using the expression.

  14. Investigating the Anisotropic Scintillation Response in Organic Crystal Scintillator Detectors

    NASA Astrophysics Data System (ADS)

    Schuster, Patricia Frances

    This dissertation presents several studies that experimentally characterize the scintillation anisotropy in organic crystal scintillators. These include measurements of neutron, gamma-ray and cosmic muon interactions in anthracene, a historical benchmark among organic scintillator materials, to confirm and extend measurements previously available in the literature. The gamma-ray and muon measurements provide new experimental confirmation that no scintillation anisotropy is present in their interactions. Observations from these measurements have updated the hypothesis for the physical mechanism that is responsible for the scintillation anisotropy concluding that a relatively high dE/dx is required in order to produce a scintillation anisotropy. The directional dependence of the scintillation output in liquid and plastic materials was measured to experimentally confirm that no scintillation anisotropy correlated to detector orientation exists in amorphous materials. These observations confirm that the scintillation anisotropy is not due to an external effect on the measurement system, and that a fixed, repeating structure is required for a scintillation anisotropy. The directional dependence of the scintillation output in response to neutron interactions was measured in four stilbene crystals of various sizes and growth-methods. The scintillation anisotropy in these materials was approximately uniform, indicating that the crystal size, geometry, and growth method do not significantly impact the effect. Measurements of three additional pure crystals and two mixed crystals were made. These measurements showed that 1) the magnitude of the effect varies with energy and material, 2) the relationship between the light output and pulse shape anisotropy varies across materials, and 3) the effect in mixed materials is very complex. These measurements have informed the hypothesis of the mechanism that produces the directional dependence. By comparing the various relationships

  15. Composite scintillator screen

    DOEpatents

    Zeman, Herbert D.

    1994-01-01

    A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.

  16. Analysis of Ionospheric Scintillation spectral and TEC in the Chinese low latitude region

    NASA Astrophysics Data System (ADS)

    Li, Guozhu; Ning, Baiqi; Yuan, Hong

    GPS L-band scintillations and total electron content TEC were recorded at Sanya 18 33° N 109 52° E for the period July 2004 - July 2005 Automatic recorded raw digital scintillation data are analyzed to obtain the spectral characteristics of irregularities producing ionospheric scintillations and to estimate the correlation between amplitude scintillation and power spectral density Concurrent measurements of TEC were used to analyze ROTI defined as the standard deviation of the rate of change of TEC Results show that spectral slope and auto correlation interval correspond quite well with amplitude scintillation index S4 during the generation evolution and decay phase of scintillation activity which indicates the formation evolution and erosion of small-scale irregularities The statistical results of S4 indices and spectral slopes indicate that the spectral slopes increase with S4 indices for weak scintillation S4 0 3 but for moderate and strong scintillation spectral slopes tend to be in saturation It is also find that the large and small scale irregularities coexist when scintillation occurs In the analyzed dataset the ratio of ROTI S4 is found to vary between 0 3 and 8

  17. Neutron crosstalk between liquid scintillators

    SciTech Connect

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  18. Neutron crosstalk between liquid scintillators

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-09-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  19. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    NASA Astrophysics Data System (ADS)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of

  20. GPS Scintillation Analysis.

    DTIC Science & Technology

    2007-11-02

    Rev. 2-89) Prescribed by ANSI Std. Z39-1 298-102 TABLE OF CONTENTS 1. INTRODUCTION 1 2. GPS COMPARISON WITH ALL-SKY IMAGES OVER AGUA VERDE...Depletions from 1 October 1994 2 3. GPS data from Agua Verde, Chile on the night of 1 October 1994 3 4. PL-SCINDA display of GPS ionospheric...comparison of GPS measurements with GOES8 L-band scintillation data, are discussed. 2. GPS COMPARISON WITH ALL-SKY IMAGES OVER AGUA VERDE, CHILE As

  1. Scintillation detector for carbon-14

    NASA Technical Reports Server (NTRS)

    Knoll, G. F.; Rogers, W. L.

    1971-01-01

    Detector consists of plastic, cylindrical double-wall scintillation cell, which is filled with gas to be analyzed. Thin, inner cell wall is isolated optically from outer (guard) scintillator wall by evaporated-aluminum coating. Bonding technique provides mechanical support to cell wall when device is exposed to high temperatures.

  2. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Davidson, M.; Keller, J.; Foster, G.; Pla-Dalmau, A.; Harmon, J.; Biagtan, E.; Schueneman, G.; Senchishin, V.; Gustfason, H.; Rivard, M.

    1993-11-01

    The authors have demonstrated that the radiation stability of scintillators made from styrene polymer is very much improved by compounding with pentaphenyltrimethyltrisiloxane (DC 705 vacuum pump oil). The resulting scintillators are softer than desired, so they decided to make the scintillators directly from monomer where the base resin could be easily crosslinked to improve the mechanical properties. They can now demonstrate that scintillators made directly from the monomer, using both styrene and 4-methyl styrene, are also much more radiation resistant when modified with DC705 oil. In fact, they retain from 92% to 95% of their original light output after gamma irradiation to 10 Mrads in nitrogen with air annealing. When these scintillators made directly from monomer are compared with scintillators of the same composition made from polymer the latter have much higher light outputs. They commonly reach 83% while those made form monomer give only 50% to 60% relative to the reference, BC408. When oil modified scintillators using both p-terphenyl and tetraphenylbutadiene are compared with identical scintillators except that they use 3 hydroxy-flavone as the only luminophore the radiation stability is the same. However the 3HF system gives only 30% as much light as BC408 instead of 83% when both are measured with a green extended Phillips XP2081B phototube.

  3. Hybrid scintillators for neutron discrimination

    DOEpatents

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  4. Extruding plastic scintillator at Fermilab

    SciTech Connect

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  5. Development of intrinsic IPT scintillator

    SciTech Connect

    Bross, A.D.

    1989-07-31

    We report on the development of a new polystyrene based plastic scintillator. Optical absorption, fluorescence and light output measurements are presented. Preliminary results of radiation damage effects are also given and compared to the effects on a commercial plastic scintillator, NE 110. 6 refs., 12 figs.

  6. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  7. Effective decay time of CF4 secondary scintillation

    NASA Astrophysics Data System (ADS)

    Margato, L. M. S.; Morozov, A.; Fraga, M. M. F. R.; Pereira, L.; Fraga, F. A. F.

    2013-07-01

    We report on the time evolution of CF4 secondary scintillation in the pressure range from 1 to 5 bar. Two types of MSGC plates were used for generation of the secondary scintillation in electron avalanches. Time spectra of the scintillation were recorded using several broadband and interference filters in the wavelength range from 220 to 800 nm. The visible emission (450-800 nm) shows a mono-exponential profile with a decay time of ~ 15 ns. The UV emission (220-450 nm) exhibits two components. The fast component has an effective decay time ranging from ~ 2 ns (1 bar) to ~ 10 ns (3-5 bar), while the slow component shows a decay time of ~ 40 ns. The slow component accounts for not more than 10% of the integrated UV emission intensity.

  8. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  9. Liquid scintillator tiles for calorimetry

    SciTech Connect

    Amouzegar, M.; Belloni, A.; Bilki, B.; Calderon, J.; Barbaro, P. De; Eno, S. C.; Hatakeyama, K.; Hirschauer, J.; Jeng, G. Y.; Pastika, N. J.; Pedro, K.; Rumerio, Paolo; Samuel, J.; Sharp, E.; Shin, Y. H.; Tiras, E.; Vishnevskiy, D.; Wetzel, J.; Yang, Z.; Yao, Y.; Youn, S. W.

    2016-11-28

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity, and some preliminary results on radiation hardness.

  10. Liquid scintillator tiles for calorimetry

    NASA Astrophysics Data System (ADS)

    Amouzegar, M.; Belloni, A.; Bilki, B.; Calderon, J.; De Barbaro, P.; Eno, S. C.; Hatakeyama, K.; Hirschauer, J.; Jeng, G. Y.; Pastika, N. J.; Pedro, K.; Rumerio, Paolo; Samuel, J.; Sharp, E.; Shin, Y. H.; Tiras, E.; Vishnevskiy, D.; Wetzel, J.; Yang, Z.; Yao, Y.; Youn, S. W.

    2016-11-01

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. The light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity, and some preliminary results on radiation hardness.

  11. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, William W.

    1991-01-01

    An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

  12. High energy resolution plastic scintillator

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Feng, Patrick; Markosyan, Gary; Shirwadkar, Urmila; Doty, Patrick; Shah, Kanai S.

    2016-09-01

    In this paper we present results on a novel tin-loaded plastic scintillator. We will show that this particular plastic scintillator has a light output similar to that of BGO, a fast scintillation decay (< 10 ns), exhibits good neutron/gamma PSD with a Figure-of-Merit of 1.3 at 2.5 MeVee cut-off energy, and excellent energy resolution of about 12% (FWHM) at 662 keV. Under X-ray excitation, the radioluminescence spectrum exhibits a broad band between 350 and 500 nm peaking at 420 nm which is well-matched to bialkali photomultiplier tubes and UV-enhanced photodiodes.

  13. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  14. Properties of scintillator solutes

    SciTech Connect

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, {lambda}{sub avg}, at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, {lambda}{sub max}, and emission {lambda}{sub avg} values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs.

  15. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  16. Neutron crosstalk between liquid scintillators

    DOE PAGES

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators wasmore » modeled to illustrate the improvement of the mass reconstruction.« less

  17. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom; Spector, Garry B.

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  18. About NICADD extruded scintillating strips

    SciTech Connect

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Chakraborty, D.; Francis, K.; Kubik, D.; Lima, J.G.; Rykalin, V.; Zutshi, v.; Baldina, E.; Bross, A.; Deering, P.; Nebel, T.; Pla-Dalmau, A.; Schellpfeffer, J.; Serritella, C.; Zimmerman, J.; /Fermilab

    2005-04-01

    The results of control measurements of extruded scintillating strip responses to a radioactive source Sr-90 are provided, and details of strip choice, preparation, and method of measurement are included. About four hundred one meter long extruded scintillating strips were measured at four different points. These results were essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  19. Extruded plastic scintillator including inorganic powders

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  20. Molecular origins of scintillation in organic scintillators (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Feng, Patrick; Mengesha, Wondwosen; Myllenbeck, Nicholas

    2016-09-01

    Organic-based scintillators are indispensable materials for radiation detection owing to their high sensitivity to fast neutrons, low cost, and tailorable properties. There has been a recent resurgence of interest in organic scintillators due to exciting discoveries related to neutron discrimination and gamma-ray spectroscopy, which represent capabilities previously thought not possible in these materials. I will discuss our development of crystalline and polymer-based scintillators for these applications. Structure-property relationships related to intermolecular interactions and host-guest electronic exchange will be discussed in the context of energy-transfer pathways relevant to scintillation. An emphasis will be placed on the rational design of these materials, as guided by first principles and DFT calculations. Two related topics will be discussed: 1) Incorporation of organometallic triplet-harvesting additives to plastic scintillator matrices to confer a 'two-state' (singlet and triplet) luminescence signature to different types of ionizing radiation. This approach relies upon energetic and spatial overlap between the donor and acceptor excited states for efficient electronic exchange. Key considerations also include synthetic modification of the luminescence spectra and kinetics, as well as the addition of secondary additives to increase the recombination efficiency. 2) Design of organotin-containing plastic scintillators as a route towards gamma-ray spectroscopy. Organometallic compounds were selected on the basis of distance-dependent quenching relationships, phase compatibility with the polymer matrix, and the gamma-ray cross sections. This approach is guided by molecular modeling and radiation transport modeling to achieve the highest possible detection sensitivity luminescence intensity.

  1. FNAL-NICADD extruded scintillator

    SciTech Connect

    Beznosko, D.; Bross, A.; Dyshkant, A.; Pla-Dalmau, A.; Rykalin, V.; /Northern Illinois U.

    2005-09-01

    The possibility to produce a scintillator that satisfies the demands of physicists from different science areas has emerged with the installation of an extrusion line at Fermi National Accelerator Laboratory (FNAL). The extruder is the product of the fruitful collaboration between FNAL and Northern Illinois Center for Accelerator and Detector Development (NICADD) at Northern Illinois University (NIU). The results from the light output, light attenuation length and mechanical tolerance indicate that FNAL-NICADD scintillator is of high quality. Improvements in the extrusion die will yield better scintillator profiles and decrease the time needed for initial tuning. This paper will present the characteristics of the FNAL-NICADD scintillator based on the measurements performed. They include the response to MIPs from cosmic rays for individual extruded strips and irradiation studies where extruded samples were irradiated up to 1 Mrad. We will also discuss the results achieved with a new die design. The attractive perspective of using the extruded scintillator with MRS (Metal Resistive Semiconductor) photodetector readout will also be shown.

  2. Radiopure metal-loaded liquid scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-08-17

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  3. Radiopure Metal-Loaded Liquid Scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  4. Advances in scintillators for medical imaging applications

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Shah, Kanai S.

    2014-09-01

    A review is presented of some recent work in the field of inorganic scintillator research for medical imaging applications, in particular scintillation detectors for Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET).

  5. Scintillating glass fiber neutron senors

    SciTech Connect

    Abel, K.H.; Arthur, R.J.; Bliss, M.

    1994-04-01

    Cerium-doped lithium-silicate glass fibers have been developed at Pacific Northwest Laboratory (PNL) for use as thermal neutron detectors. By using highly-enriched {sup 6} Li , these fibers efficiently capture thermal neutrons and produce scintillation light that can be detected at the ends of the fibers. Advantages of scintillating fibers over {sup 3}He or BF{sub 3} proportional tubes include flexibility in geometric configuration, ruggedness in high-vibration environments, and less detector weight for the same neutron sensitivity. This paper describes the performance of these scintillating fibers with regard to count rates, pulse height spectra, absolute efficiencies, and neutron/gamma discrimination. Fibers with light transmission lengths (1/e) of greater than 2 m have been produced at PNL. Neutron sensors in fiber form allow development of a variety of neutron detectors packaged in previously unavailable configurations. Brief descriptions of some of the devices already produced are included to illustrate these possibilities.

  6. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  7. Liquid scintillator tiles for calorimetry

    DOE PAGES

    Amouzegar, M.; Belloni, A.; Bilki, B.; ...

    2016-11-28

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity,more » and some preliminary results on radiation hardness.« less

  8. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  9. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  10. Fracture-resistant lanthanide scintillators

    DOEpatents

    Doty, F. Patrick

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  11. Development of radiation hard scintillators

    SciTech Connect

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G. ); Blackburn, R. )

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro.

  12. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  13. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  14. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  15. Composite scintillators for detection of ionizing radiation

    DOEpatents

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  16. Photonic crystal scintillators and methods of manufacture

    SciTech Connect

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  17. Study of transionospheric signal scintillation: Quasi- particle approach

    NASA Astrophysics Data System (ADS)

    Lyle, Ruthie D.

    1998-07-01

    A quasi-particle approach is applied to study amplitude scintillation of transionospheric signals caused by Bottomside Sinusoidal (BSS) irregularities. The quasi- particle method exploits wave-particle duality, viewing the wave as a distribution of quasi-particles. This is accomplished by transforming the autocorrelation of the wave function into a Wigner distribution function, which serves as a distribution of quasi-particles in the (/vec r,/ /vec k) phase space. The quasi-particle distribution at any instant of time represents the instantaneous state of the wave. Scattering of the signal by the ionospheric irregularities is equivalent to the evolution of the quasi-particle distribution, due to the collision of the quasi-particles with objects arising from the presence of the BSS irregularities. Subsequently, the perturbed quasi-particle distribution facilitates the computation of average space time propagation properties of the wave. Thus, the scintillation index S4 is determined. Incorporation of essential BSS features in the analysis is accomplished by analytically modeling the power spectrum of the BSS irregularities measured in-situ by the low orbiting Atmosphere-E (AE - E) Satellite. The effect of BSS irregularities on transionospheric signals has been studied. The numerical results agree well with multi-satellite scintillation observations made at Huancayo Peru in close time correspondence with BSS irregularities observed by the AE - E satellite over a few nights (December 8-11, 1979). During this period, the severity of the scintillation varied from moderate to intense, S4 = 0.1-0.8.

  18. Retrieving parameters of the anisotropic refractive index fluctuations spectrum in the stratosphere from balloon-borne observations of stellar scintillation.

    PubMed

    Robert, Clélia; Conan, Jean-Marc; Michau, Vincent; Renard, Jean-Baptiste; Robert, Claude; Dalaudier, Francis

    2008-02-01

    Scintillation effects are not negligible in the stratosphere. We present a model based on a 3D model of anisotropic and isotropic refractive index fluctuations spectra that predicts scintillation rates within the so-called small perturbation approximation. Atmospheric observations of stellar scintillation made from the AMON-RA (AMON, Absorption par les Minoritaires Ozone et NO(x); RA, rapid) balloon-borne spectrometer allows us to remotely probe wave-turbulence characteristics in the stratosphere. Data reduction from these observations brings out values of the inner scale of the anisotropic spectrum. We find metric values of the inner scale that are compatible with space-based measurements. We find a major contribution of the anisotropic spectrum relative to the isotropic contribution. When the sight line plunges into the atmosphere, strong scintillation occurs as well as coupled chromatic refraction effects.

  19. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    NASA Astrophysics Data System (ADS)

    Santiago, L. M.; Bagán, H.; Tarancón, A.; Garcia, J. F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3H, 51.2% for 14C, 180.6% for 90Sr/90Y and 76.7% for 241Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition of

  20. Extruded plastic scintillator for MINERvA

    SciTech Connect

    Pla-Dalmau, Anna; Bross, Alan D.; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  1. SNO+ Scintillator Purification and Assay

    SciTech Connect

    Ford, R.; Vazquez-Jauregui, E.; Chen, M.; Chkvorets, O.; Hallman, D.

    2011-04-27

    We describe the R and D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O{sub 2}, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed ''natural'' radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  2. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  3. Characterization of the scintillation anisotropy in crystalline stilbene scintillator detectors

    SciTech Connect

    Schuster, P.; Brubaker, E.

    2016-11-23

    This study reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline melt-grown and solution-grown trans-stilbene to incident DT and DD neutrons. These measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature for melt-grown stilbene and providing the first measurements for solution-grown stilbene. In similar measurements of liquid and plastic detectors, no directional dependence was observed, confirming the hypothesis that the anisotropy in stilbene and other organic crystal scintillators is a result of internal effects due to the molecular or crystal structure and not an external effect on the measurement system.

  4. Characterization of the scintillation anisotropy in crystalline stilbene scintillator detectors

    DOE PAGES

    Schuster, P.; Brubaker, E.

    2016-11-23

    This study reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline melt-grown and solution-grown trans-stilbene to incident DT and DD neutrons. These measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature for melt-grown stilbene and providing the first measurements for solution-grown stilbene. In similar measurements of liquid and plastic detectors, no directional dependence was observed, confirming the hypothesis that the anisotropy in stilbene and other organic crystal scintillators is a result of internal effects duemore » to the molecular or crystal structure and not an external effect on the measurement system.« less

  5. Scintillation Monitoring Using Asymmetry Index

    NASA Astrophysics Data System (ADS)

    Shaikh, Muhammad Mubasshir; Mahrous, Ayman; Abdallah, Amr; Notarpietro, Riccardo

    Variation in electron density can have significant effect on GNSS signals in terms of propagation delay. Ionospheric scintillation can be caused by rapid change of such delay, specifically, when they last for a longer period of time. Ionospheric irregularities that account for scintillation may vary significantly in spatial range and drift with the background plasma at speeds of 45 to 130 m/sec. These patchy irregularities may occur several times during night, e.g. in equatorial region, with the patches move through the ray paths of the GNSS satellite signals. These irregularities are often characterized as either ‘large scale’ (which can be as large as several hundred km in East-West direction and many times that in the North-South direction) or ‘small scale’ (which can be as small as 1m). These small scale irregularities are regarded as the main cause of scintillation [1,2]. In normal solar activity conditions, the mid-latitude ionosphere is not much disturbed. However, during severe magnetic storms, the aurora oval extends towards the equator and the equator anomaly region may stretched towards poles extending the scintillation phenomena more typically associated with those regions into mid-latitudes. In such stormy conditions, the predicted TEC may deviate largely from the true value of the TEC both at low and mid-latitudes due to which GNSS applications may be strongly degraded. This work is an attempt to analyze ionospheric scintillation (S4 index) using ionospheric asymmetry index [3]. The asymmetry index is based on trans-ionospheric propagation between GPS and LEO satellites in a radio occultation (RO) scenario, using background ionospheric data provided by MIDAS [4]. We attempted to simulate one of the recent geomagnetic storms (NOAA scale G4) occurred over low/mid-latitudes. The storm started on 26 September 2011 at UT 18:00 and lasted until early hours of 27 September 2011. The scintillation data for the storm was taken from an ionospheric

  6. Detecting scintillations in liquid helium

    NASA Astrophysics Data System (ADS)

    Huffman, P. R.; McKinsey, D. N.

    2013-09-01

    We review our work in developing a tetraphenyl butadiene (TPB)-based detection system for a measurement of the neutron lifetime using magnetically confined ultracold neutrons (UCN). As part of the development of the detection system for this experiment, we studied the scintillation properties of liquid helium itself, characterized the fluorescent efficiencies of different fluors, and built and tested three detector geometries. We provide an overview of the results from these studies as well as references for additional information.

  7. A Review of Ionospheric Scintillation Models.

    PubMed

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  8. Recording of relativistic particles in thin scintillators

    SciTech Connect

    Tolstukhin, I A.; Somov, Alexander S.; Somov, S. V.; Bolozdynya, A. I.

    2014-11-01

    Results of investigating an assembly of thin scintillators and silicon photomultipliers for registering relativistic particles with the minimum ionization are presented. A high efficiency of registering relativistic particles using an Ej-212 plastic scintillator, BSF-91A wavelength-shifting fiber (Saint-Gobain), and a silicon photomultiplier (Hamamtsu) is shown. The measurement results are used for creating a scintillation hodoscope of the magnetic spectrometer for registering γ quanta in the GlueX experiment.

  9. Scintillator tiles read out with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Pooth, O.; Radermacher, T.; Weingarten, S.; Weinstock, L.

    2015-10-01

    A detector prototype based on a fast plastic scintillator read out with silicon photomultipliers is presented. All studies have been done with cosmic muons and focus on parameter optimization such as coupling the SiPM to the scintillator or wrapping the scintillator with reflective material. The prototype shows excellent results regarding the light-yield and offers a detection efficiency of 99.5% with a signal purity of 99.9% for cosmic muons.

  10. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of

  11. Recombination in the Human Pseudoautosomal Region PAR1

    PubMed Central

    Hinch, Anjali G.; Altemose, Nicolas; Noor, Nudrat; Donnelly, Peter; Myers, Simon R.

    2014-01-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome. PMID:25033397

  12. Recombination in the human Pseudoautosomal region PAR1.

    PubMed

    Hinch, Anjali G; Altemose, Nicolas; Noor, Nudrat; Donnelly, Peter; Myers, Simon R

    2014-07-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome.

  13. New Scintillators for Photosensitive Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Charpak, G.; Peskov, V.; Scigocki, D.; Valbis, J.

    A new family of scintillators are presented. Their properties are similar to those of barium fluoride, and the spectrum of the scintillation emission is between 140 and 300 nm. Our latest efficiency measurements of ethyl ferrocene and triethylamine liquid or caesium iodide solid photocathodes, in parallel-plate avalanche chambers (PPACs) at high electric field, are also presented. We discuss the revolutionary consequences of the combination of the new scintillators with PPACs with semitransparent photocathodes deposited on the crystals, such as high speed, high resistance to radiation damage, compacity, high gamma efficiency, and applications to tracking devices with scintillation optical fibres.

  14. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  15. Waveshifters and Scintillators for Ionizing Radiation Detection

    SciTech Connect

    B.Baumgaugh; J.Bishop; D.Karmgard; J.Marchant; M.McKenna; R.Ruchti; M.Vigneault; L.Hernandez; C.Hurlbut

    2007-12-11

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments.

  16. Radio wave scintillations at equatorial regions

    NASA Technical Reports Server (NTRS)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  17. Accelerated discovery of elpasolite scintillators

    SciTech Connect

    Doty, F. Patrick; Yang, Pin; Zhou, Xiaowang

    2014-12-01

    Elpasolite scintillators are a large family of halides which includes compounds reported to meet the NA22 program goals of <3% energy resolution at 662 keV1. This work investigated the potential to produce quality elpasolite compounds and alloys of useful sizes at reasonable cost, through systematic experimental and computational investigation of crystal structure and properties across the composition space. Discovery was accelerated by computational methods and models developed previously to efficiently identify cubic members of the elpasolite halides, and to evaluate stability of anion and cation exchange alloys.

  18. Photodetectors for Scintillator Proportionality Measurement

    SciTech Connect

    Moses, William W.; Choong, Woon-Seng; Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, J.D.

    2010-10-18

    We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high ({approx}50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable.

  19. Current status on plastic scintillators modifications

    SciTech Connect

    Hamel, Matthieu; Bertrand, Guillaume H.V.; Carrel, Frederick; Coulon, Romain; Dumazert, Jonathan; Montbarbon, Eva; Sguerra, Fabien

    2015-07-01

    Recent developments of plastic scintillators are reviewed, from 2000 to March 2015. All examples are distributed into the main purpose, i.e. the nature of the radionuclide provided with the scope of detection of various radiation particles. The main characteristics of these newly created scintillators and their detection properties are given. (authors)

  20. Binderless composite scintillator for neutron detection

    DOEpatents

    Hodges, Jason P [Knoxville, TN; Crow, Jr; Lowell, M [Oak Ridge, TN; Cooper, Ronald G [Oak Ridge, TN

    2009-03-10

    Composite scintillator material consisting of a binderless sintered mixture of a Lithium (Li) compound containing .sup.6Li as the neutron converter and Y.sub.2SiO.sub.5:Ce as the scintillation phosphor, and the use of this material as a method for neutron detection. Other embodiments of the invention include various other Li compounds.

  1. Epoxy resins produce improved plastic scintillators

    NASA Technical Reports Server (NTRS)

    Markley, F. W.

    1967-01-01

    Plastic scintillator produced by the substitution of epoxy resins for the commonly used polystyrene is easy to cast, stable at room temperature, and has the desirable properties of a thermoset or cross-linked system. Such scintillators can be immersed directly in strong solvents, an advantage in many chemical and biological experiments.

  2. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  3. Extruded scintillator for the calorimetry applications

    SciTech Connect

    Dyshkant, A.; Rykalin, V.; Pla-Dalmau, A.; Beznosko, D.; /SUNY, Stony Brook

    2006-08-01

    An extrusion line has been installed and successfully operated at FNAL (Fermi National Accelerator Laboratory) in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new Facility will serve to further develop and improve extruded plastic scintillator. Recently progress has been made in producing co-extruded plastic scintillator, thus increasing the potential HEP applications of this Facility. The current R&D work with extruded and co-extruded plastic scintillator for a potential ALICE upgrade, the ILC calorimetry program and the MINERvA experiment show the attractiveness of the chosen strategy for future experiments and calorimetry. We extensively discuss extruded and co-extruded plastic scintillator in calorimetry in synergy with new Solid State Photomultipliers. The characteristics of extruded and co-extruded plastic scintillator will be presented here as well as results with non-traditional photo read-out.

  4. Extruded scintillator for the Calorimetry applications

    NASA Astrophysics Data System (ADS)

    Dyshkant, A.; Rykalin, V.; Pla-Dalmau, A.; Beznosko, D.

    2006-10-01

    An extrusion line has been installed and successfully operated at FNAL (Fermi National Accelerator Laboratory) in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new Facility will serve to further develop and improve extruded plastic scintillator. Recently progress has been made in producing co-extruded plastic scintillator, thus increasing the potential HEP applications of this Facility. The current R&D work with extruded and co-extruded plastic scintillator for a potential ALICE upgrade, the ILC calorimetry program and the MINERvA experiment show the attractiveness of the chosen strategy for future experiments and calorimetry. We extensively discuss extruded and co-extruded plastic scintillator in calorimetry in synergy with new Solid State Photomultipliers. The characteristics of extruded and co-extruded plastic scintillator will be presented here as well as results with non-traditional photo read-out.

  5. Scintillation Effects on Space Shuttle GPS Data

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Kramer, Leonard

    2001-01-01

    Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.

  6. Simulation of optical interstellar scintillation

    NASA Astrophysics Data System (ADS)

    Habibi, F.; Moniez, M.; Ansari, R.; Rahvar, S.

    2013-04-01

    Aims: Stars twinkle because their light propagates through the atmosphere. The same phenomenon is expected on a longer time scale when the light of remote stars crosses an interstellar turbulent molecular cloud, but it has never been observed at optical wavelengths. The aim of the study described in this paper is to fully simulate the scintillation process, starting from the molecular cloud description as a fractal object, ending with the simulations of fluctuating stellar light curves. Methods: Fast Fourier transforms are first used to simulate fractal clouds. Then, the illumination pattern resulting from the crossing of background star light through these refractive clouds is calculated from a Fresnel integral that also uses fast Fourier transform techniques. Regularisation procedure and computing limitations are discussed, along with the effect of spatial and temporal coherency (source size and wavelength passband). Results: We quantify the expected modulation index of stellar light curves as a function of the turbulence strength - characterised by the diffraction radius Rdiff - and the projected source size, introduce the timing aspects, and establish connections between the light curve observables and the refractive cloud. We extend our discussion to clouds with different structure functions from Kolmogorov-type turbulence. Conclusions: Our study confirms that current telescopes of ~4 m with fast-readout, wide-field detectors have the capability of discovering the first interstellar optical scintillation effects. We also show that this effect should be unambiguously distinguished from any other type of variability through the observation of desynchronised light curves, simultaneously measured by two distant telescopes.

  7. La pelade par plaques

    PubMed Central

    Spano, Frank; Donovan, Jeff C.

    2015-01-01

    Résumé Objectif Présenter aux médecins de famille des renseignements de base pour faire comprendre l’épidémiologie, la pathogenèse, l’histologie et l’approche clinique au diagnostic de la pelade par plaques. Sources des données Une recension a été effectuée dans PubMed pour trouver des articles pertinents concernant la pathogenèse, le diagnostic et le pronostic de la pelade par plaques. Message principal La pelade par plaques est une forme de perte pileuse auto-immune dont la prévalence durant une vie est d’environ 2 %. Des antécédents personnels ou familiaux de troubles auto-immuns concomitants, comme le vitiligo ou une maladie de la thyroïde, peuvent être observés dans un petit sous-groupe de patients. Le diagnostic peut souvent être posé de manière clinique en se fondant sur la perte de cheveux non cicatricielle et circulaire caractéristique, accompagnée de cheveux en « point d’exclamation » en périphérie chez ceux dont le problème en est aux premiers stades. Le diagnostic des cas plus complexes ou des présentations inhabituelles peut être facilité par une biopsie et un examen histologique. Le pronostic varie largement et de mauvais résultats sont associés à une apparition à un âge précoce, une perte importante, la variante ophiasis, des changements aux ongles, des antécédents familiaux ou des troubles auto-immuns concomitants. Conclusion La pelade par plaques est une forme auto-immune de perte de cheveux périodiquement observée en soins primaires. Les médecins de famille sont bien placés pour identifier la pelade par plaques, déterminer la gravité de la maladie et poser le diagnostic différentiel approprié. De plus, ils sont en mesure de renseigner leurs patients à propos de l’évolution clinique de la maladie ainsi que du pronostic général selon le sous-type de patients.

  8. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE PAGES

    Bignell, L. J.; Diwan, M. V.; Hans, S.; ...

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  9. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    SciTech Connect

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % and 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  10. Scintillation Breakdowns in Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  11. Estimation of Fano factor in inorganic scintillators

    PubMed Central

    Bora, Vaibhav; Barrett, Harrison H.; Fastje, David; Clarkson, Eric; Furenlid, Lars; Bousselham, Abdelkader; Shah, Kanai S.; Glodo, Jarek

    2015-01-01

    The Fano factor of an integer-valued random variable is defined as the ratio of its variance to its mean. Correlation between the outputs of two photomultiplier tubes on opposite faces of a scintillation crystal was used to estimate the Fano factor of photoelectrons and scintillation photons. Correlations between the integrals of the detector outputs were used to estimate the photoelectron and photon Fano factor for YAP:Ce, SrI2:Eu and CsI:Na scintillator crystals. At 662 keV, SrI2:Eu was found to be sub-Poisson, while CsI:Na and YAP:Ce were found to be super-Poisson. An experiment setup inspired from the Hanbury Brown and Twiss experiment was used to measure the correlations as a function of time between the outputs of two photomultiplier tubes looking at the same scintillation event. A model of the scintillation and the detection processes was used to generate simulated detector outputs as a function of time for different values of Fano factor. The simulated outputs from the model for different Fano factors was compared to the experimentally measured detector outputs to estimate the Fano factor of the scintillation photons for YAP:Ce, LaBr3:Ce scintillator crystals. At 662 keV, LaBr3:Ce was found to be sub-Poisson, while YAP:Ce was found to be close to Poisson. PMID:26644631

  12. Equatorial scintillations: advances since ISEA-6

    SciTech Connect

    Not Available

    1985-01-01

    Our understanding of the morphology of equatorial scintillations has advanced due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the controlling the magnitude of scintillations has been recognized by interpreting scintillation observations inthe light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation. A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type was identified. These irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (approx. several hours) of uninterrrupted scintillations.

  13. Scintillation counter with WLS fiber readout

    NASA Astrophysics Data System (ADS)

    Bukin, D. A.; Druzhinin, V. P.; Golubev, V. B.; Serednyakov, S. I.

    1997-02-01

    The parameters of a cylindrical scintillation counter of 126 mm in diameter and 370 mm in length with wavelength shifter (WLS) fiber readout are presented. The fibers are glued into machined grooves along the scintillator. Light from both ends of the WLS fibers is transmitted to separate photomultipliers by 1 m long clear optical fibers. The average total signal, collected from both sides of the counter is equivalent to 8 photoelectrons per minimum ionizing particle. The described cylindrical scintillation counter is a part of inner system of collider detector SND.

  14. Scintillating Track Image Camera-SCITIC

    NASA Astrophysics Data System (ADS)

    Sato, Akira; Asai, Jyunkichi; Ieiri, Masaharu; Iwata, Soma; Kadowaki, Tetsuhito; Kurosawa, Maki; Nagae, Tomohumi; Nakai, Kozi

    2004-04-01

    A new type of track detector, scintillating track image camera (SCITIC) has been developed. Scintillating track images of particles in a scintillator are focused by an optical lens system on a photocathode on image intesifier tube (IIT). The image signals are amplified by an IIT-cascade and stored by a CCD camera. The performance of the detector has been tested with cosmic-ray muons and with pion- and proton-beams from the KEK 12-GeV proton synchrotron. Data of the test experiments have shown promising features of SCITIC as a triggerable track detector with a variety of possibilities.

  15. Measurement of light emission in scintillation vials

    SciTech Connect

    Duran Ramiro, M. Teresa; Garcia-Torano, Eduardo

    2005-09-15

    The efficiency and energy resolution of liquid scintillation counting (LSC) systems are strongly dependent on the optical characteristics of scintillators, vials, and reflectors. This article presents the results of measurements of the light-emission profile of scintillation vials. Two measurement techniques, autoradiographs and direct measurements with a photomultiplier tube, have been used to obtain light-emission distribution for standard vials of glass, etched glass and polyethylene. Results obtained with both techniques are in good agreement. For the first time, the effect of the meniscus in terms of light contribution has been numerically estimated. These results can help design LSC systems that are more efficient in terms of light collection.

  16. Advanced plastic scintillators for fast neutron discrimination

    SciTech Connect

    Feng, Patrick L; Anstey, Mitchell; Doty, F. Patrick; Mengesha, Wondwosen

    2014-09-01

    The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.

  17. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  18. La pelade par plaques

    PubMed Central

    Spano, Frank; Donovan, Jeff C.

    2015-01-01

    Résumé Objectif Présenter aux médecins de famille des renseignements de base pour faire comprendre les schémas thérapeutiques et les résultats des traitements pour la pelade par plaques, de même que les aider à identifier les patients pour qui une demande de consultation en dermatologie pourrait s’imposer. Sources des données Une recension a été effectuée dans PubMed pour trouver des articles pertinents concernant le traitement de la pelade par plaques. Message principal La pelade par plaques est une forme auto-immune de perte pileuse qui touche à la fois les enfants et les adultes. Même s’il n’y a pas de mortalité associée à la maladie, la morbidité découlant des effets psychologiques de la perte des cheveux peut être dévastatrice. Lorsque la pelade par plaques et le sous-type de la maladie sont identifiés, un schéma thérapeutique approprié peut être amorcé pour aider à arrêter la chute des cheveux et possiblement faire commencer la repousse. Les traitements de première intention sont la triamcinolone intralésionnelle avec des corticostéroïdes topiques ou du minoxidil ou les 2. Les médecins de famille peuvent prescrire ces traitements en toute sécurité et amorcer ces thérapies. Les cas plus avancés ou réfractaires pourraient avoir besoin de diphénylcyclopropénone topique ou d’anthraline topique. On peut traiter la perte de cils avec des analogues de la prostaglandine. Les personnes ayant subi une perte de cheveux abondante peuvent recourir à des options de camouflage ou à des prothèses capillaires. Il est important de surveiller les troubles psychiatriques en raison des effets psychologiques profonds de la perte de cheveux. Conclusion Les médecins de famille verront de nombreux patients qui perdent leurs cheveux. La reconnaissance de la pelade par plaques et la compréhension du processus pathologique sous-jacent permettent d’amorcer un schéma thérapeutique approprié. Les cas plus graves ou r

  19. Exploring the Multi-Scale Statistical Analysis of Ionospheric Scintillation via Wavelets and Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Piersanti, Mirko; Materassi, Massimo; Spogli, Luca; Cicone, Antonio; Alberti, Tommaso

    2016-04-01

    Highly irregular fluctuations of the power of trans-ionospheric GNSS signals, namely radio power scintillation, are, at least to a large extent, the effect of ionospheric plasma turbulence, a by-product of the non-linear and non-stationary evolution of the plasma fields defining the Earth's upper atmosphere. One could expect the ionospheric turbulence characteristics of inter-scale coupling, local randomness and high time variability to be inherited by the scintillation on radio signals crossing the medium. On this basis, the remote sensing of local features of the turbulent plasma could be expected as feasible by studying radio scintillation. The dependence of the statistical properties of the medium fluctuations on the space- and time-scale is the distinctive character of intermittent turbulent media. In this paper, a multi-scale statistical analysis of some samples of GPS radio scintillation is presented: the idea is that assessing how the statistics of signal fluctuations vary with time scale under different Helio-Geophysical conditions will be of help in understanding the corresponding multi-scale statistics of the turbulent medium causing that scintillation. In particular, two techniques are tested as multi-scale decomposition schemes of the signals: the discrete wavelet analysis and the Empirical Mode Decomposition. The discussion of the results of the one analysis versus the other will be presented, trying to highlight benefits and limits of each scheme, also under suitably different helio-geophysical conditions.

  20. ParABS Systems of the Four Replicons of Burkholderia cenocepacia: New Chromosome Centromeres Confer Partition Specificity†

    PubMed Central

    Dubarry, Nelly; Pasta, Franck; Lane, David

    2006-01-01

    Most bacterial chromosomes carry an analogue of the parABS systems that govern plasmid partition, but their role in chromosome partition is ambiguous. parABS systems might be particularly important for orderly segregation of multipartite genomes, where their role may thus be easier to evaluate. We have characterized parABS systems in Burkholderia cenocepacia, whose genome comprises three chromosomes and one low-copy-number plasmid. A single parAB locus and a set of ParB-binding (parS) centromere sites are located near the origin of each replicon. ParA and ParB of the longest chromosome are phylogenetically similar to analogues in other multichromosome and monochromosome bacteria but are distinct from those of smaller chromosomes. The latter form subgroups that correspond to the taxa of their hosts, indicating evolution from plasmids. The parS sites on the smaller chromosomes and the plasmid are similar to the “universal” parS of the main chromosome but with a sequence specific to their replicon. In an Escherichia coli plasmid stabilization test, each parAB exhibits partition activity only with the parS of its own replicon. Hence, parABS function is based on the independent partition of individual chromosomes rather than on a single communal system or network of interacting systems. Stabilization by the smaller chromosome and plasmid systems was enhanced by mutation of parS sites and a promoter internal to their parAB operons, suggesting autoregulatory mechanisms. The small chromosome ParBs were found to silence transcription, a property relevant to autoregulation. PMID:16452432

  1. Research and Development of Scintillation fiber Trackers

    SciTech Connect

    Kobayashi, A.; ITO, H.; Kawai, H.; Kodama, S.; Kaneko, N.; Han, S.

    2015-07-01

    We are developing the scintillation fiber trackers. This detector is consist of 0.5 mm diameter scintillation fibers and PPDs. This detector has the doughnut shape with outer diameter of 50 cm and inner diameter of 10 cm and thickness of 2 mm. The position resolution is 70 μm. There are no ineffective area. And the cost is several million yen. (authors)

  2. Liquid scintillators for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2, 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudo-cumene. The use of BIBUQ as an additional or primary solute is also disclosed.

  3. Liquid scintillators for optical fiber applications

    SciTech Connect

    Franks, L.A.; Lutz, S.S.

    1982-11-16

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2 , 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudocumene. The use of bibuq as an additional or primary solute is also disclosed.

  4. Ternary liquid scintillator for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  5. Current status on plastic scintillators modifications.

    PubMed

    Bertrand, Guillaume H V; Hamel, Matthieu; Sguerra, Fabien

    2014-11-24

    Recent developments of plastic scintillators are reviewed, from 2000 to March 2014, distributed in two different chapters. First chapter deals with the chemical modifications of the polymer backbone, whereas modifications of the fluorescent probe are presented in the second chapter. All examples are provided with the scope of detection of various radiation particles. The main characteristics of these newly created scintillators and their detection properties are given.

  6. Real-time volumetric scintillation dosimetry

    NASA Astrophysics Data System (ADS)

    Beddar, S.

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential.

  7. Multi-GNSS for Ionospheric Scintillation Studies

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2015-12-01

    GNSS have been widely used for ionospheric monitoring. We anticipate over 160 GNSS satellites broadcasting 400 signals by 2023, nearly double the number today. With their well-defined signal structures, high spatial density and spectral diversity, GNSS offers low cost and distributed passive sensing of ionosphere effects. There are, however, many challenges to utilize GNSS resources to characterize and forecast ionospheric scintillation. Originally intended for navigation purposes, GNSS receivers are designed to filter out nuisance effects due to ionosphere effects. GNSS measurements are plagued with errors from multipath, oscillator jitters, processing artifacts, and neutral atmosphere effects. Strong scintillation events are often characterized by turbulent structures in ionosphere, causing simultaneous deep amplitude fading and abrupt carrier phase changes. The combined weak signal and high carrier dynamics imposes conflicting requirements for GNSS receiver design. Therefore, GNSS receivers often experience cycle slips and loss of lock of signals during strong scintillation events. High quality, raw GNSS signals bearing space weather signatures and robust receiver algorithms designed to capture these signatures are needed in order for GNSS to be a reliable and useful agent for scintillation monitoring and forecasting. Our event-driven, reconfigurable data collection system is designed to achieve this purpose. To date, our global network has collected ~150TB of raw GNSS data during space weather events. A suite of novel receiver processing algorithms has been developed by exploitating GNSS spatial, frequency, temporal, and constellation diversity to process signals experiencing challenging scintillation impact. The algorithms and data have advanced our understanding of scintillation impact on GNSS, lead to more robust receiver technologies, and enabled high spatial and temporal resolution depiction of ionosphere responses to solar and geomagnetic conditions. This

  8. Development of Novel Polycrystalline Ceramic Scintillators

    SciTech Connect

    Wisniewska, Monika; Boatner, Lynn A; Neal, John S; Jellison Jr, Gerald Earle; Ramey, Joanne Oxendine; North, Andrea L; Wisniewski, Monica; Payzant, E Andrew; Howe, Jane Y; Lempicki, Aleksander; Brecher, Charlie; Glodo, J.

    2008-01-01

    For several decades most of the efforts to develop new scintillator materials have concentrated on high-light-yield inorganic single-crystals while polycrystalline ceramic scintillators, since their inception in the early 1980 s, have received relatively little attention. Nevertheless, transparent ceramics offer a promising approach to the fabrication of relatively inexpensive scintillators via a simple mechanical compaction and annealing process that eliminates single-crystal growth. Until recently, commonly accepted concepts restricted the polycrystalline ceramic approach to materials exhibiting a cubic crystal structure. Here, we report our results on the development of two novel ceramic scintillators based on the non-cubic crystalline materials: Lu SiO:Ce (LSO:Ce) and LaBr:Ce. While no evidence for texturing has been found in their ceramic microstructures, our LSO:Ce ceramics exhibit a surprisingly high level of transparency/ translucency and very good scintillation characteristics. The LSO:Ce ceramic scintillation reaches a light yield level of about 86% of that of a good LSO:Ce single crystal, and its decay time is even faster than in single crystals. Research on LaBr:Ce shows that translucent ceramics of the high-light-yield rare-earth halides can also be synthesized. Our LaBr:Ce ceramics have light yields above 42 000 photons/MeV (i.e., 70%of the single-crystal light yield).

  9. Crystal growth and scintillation properties of strontium iodide scintillators

    SciTech Connect

    van Loef, Edgar; Wilson, Cody; Cherepy, Nerine; Payne, Steven; Choong, Woon-Seng; Moses, William W.; Shah, Kanai

    2009-06-01

    Single crystals of SrI{sub 2}:Eu and SrI{sub 2}:Ce/Na were grown from anhydrous iodides by the vertical Bridgman technique in evacuated silica ampoules. Growth rates were of the order of 5-30 mm/day. Radioluminescence spectra of SrI{sub 2}:Eu and SrI{sub 2}:Ce/Na exhibit a broad band due to Eu{sup 2+} and Ce{sup 3+} emission, respectively. The maximum in the luminescence spectrum of SrI{sub 2}:Eu is found at 435 nm. The spectrum of SrI{sub 2}:Ce/Na exhibits a doublet peaking at 404 and 435 nm attributed to Ce{sup 3+} emission, while additional impurity - or defected - related emission is present at approximately 525 nm. The strontium iodide scintillators show very high light yields of up to 120,000 photons/MeV, have energy resolutions down to 3% at 662 keV (Full Width Half Maximum) and exhibit excellent light yield proportionality with a standard deviation of less than 5% between 6 and 460 keV.

  10. Validating the use of scintillation proxies to study ionospheric scintillation over the Ugandan region

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2015-06-01

    In this study, we compare the standard scintillation indices (S4 and σΦ) from a SCINDA receiver with scintillation proxies (S4p and | sDPR |) derived from two IGS GPS receivers. Amplitude (S4) and phase (σΦ) scintillation data were obtained from the SCINDA installed at Makerere University (0.34°N, 32.57°E). The corresponding amplitude (S4p) and phase (| sDPR |) scintillation proxies were derived from data archived by IGS GPS receivers installed at Entebbe (0.04°N, 32.44°E) and Mbarara (0.60°S, 30.74°E). The results show that for most of the cases analysed in this study, σΦ and | sDPR | are in agreement. Amplitude scintillation occurrence estimated using the S4p are fairly consistent with the standard S4, mainly between 17:00 UT and 21:00 UT, despite a few cases of over and under estimation of scintillation levels by S4p. Correlation coefficients between σΦ and the | sDPR | proxy revealed positive correlation. Generally, S4p and S4 exhibits both moderate and strong positive correlation. TEC depletions associated with equatorial plasma bubbles are proposed as the cause of the observed scintillation over the region. These equatorial plasma bubbles were evident along the ray paths to satellites with PRN 2, 15, 27 and 11 as observed from MBAR and EBBE. In addition to equatorial plasma bubbles, atmospheric gravity waves with periods similar to those of large scale traveling ionospheric disturbances were also observed as one of the mechanisms for scintillation occurrence. The outcome of this study implies that GPS derived scintillation proxies can be used to quantify scintillation levels in the absence of standard scintillation data in the equatorial regions.

  11. Brulures par Diluant

    PubMed Central

    Benbrahim, A.; Jerrah, H.; Diouri, M.; Bahechar, N.; Boukind, E.H.

    2009-01-01

    Summary La flamme de diluant est une cause non rare de brûlure dans le contexte marocain. Nous avons jugé intéressant de faire une étude épidémiologique sur la brûlure par flamme de diluant (BFD) au centre national des brûlés (CNB) du CHU Ibn-Rochd de Casablanca. Ce travail a été réalisé sur une période de 10 mois (septembre 2007/juin 2008). Le but du travail est de montrer les caractéristiques de ce type de brûlures pour les prévenir et ce par l'information sur le diluant, produit causant ces brûlures, et ses différents dangers, la brûlure notamment. Durant cette période, nous avons colligé 17 cas de BFD sur un total de 356 patients admis au CNB pour brûlures aiguës toute étiologie confondue. La moyenne d'age des patients concernés est de 32 ans. Ils sont presque tous de sexe masculin (16 hommes/1 femme) et ont des antécédents de toxicomanie et/ou de délinquance. Tous nos patients sont de bas niveau socio-économique et habitent dans des bidonvilles pour la plupart. La brûlure est souvent secondaire à une agression dans la rue (92% des cas). Concernant les caractéristiques de la brûlure, la surface cutanée brûlée moyenne est de 23%; elle est souvent profonde et siège surtout au niveau des membres supérieurs et du tronc. PMID:21991179

  12. SciFi - A large scintillating fibre tracker for LHCb

    NASA Astrophysics Data System (ADS)

    Kirn, Thomas

    2017-02-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. Concept, design and operational parameters are driven by the challenging LHC environment including significant ionising and neutron radiation levels. Over a total active surface of 360 m2 the SciFi Tracker will use scintillating fibres (∅ = 0.25 mm) read out by state-of-the-art multi-channel Silicon Photomultipliers (SiPMs) arrays. A custom ASIC will be used to digitise the signals from the SiPMs. The project is now at the transition from R&D to series production. We will present the evolution of the design and the latest lab and test beam results.

  13. Mercuric iodide photodetectors for scintillation spectroscopy

    SciTech Connect

    Markakis, J.; Dabrowski, A.; Iwanczyk, J.; Ortale, C.; Schnepple, W.

    1985-02-01

    We have measured the responses to /sup 137/Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-..mu..mthick mercuric iodide (HgI/sub 2/) photodetector, and a 1-cmdiam by 1-cm-thick CaWO/sub 4/ scintillator coupled to a 1.3-cm-diam by 600-..mu..m-thick HgI/sub 2/ photodetector. Best spectral resolution to /sup 137/Cs was 7.8% FWHM for the NaI(Tl)-HgI/sub 2/ and 12.5% FWHM for the CaWO/sub 4/-HgI/sub 2/ detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI/sub 2/ detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal.

  14. Mercuric iodide photodetectors for scintillation spectroscopy

    SciTech Connect

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1984-01-01

    We have measured the responses to /sup 137/Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-..mu..m-thick mercuric iodide (HgI/sub 2/) photodetector, and a 1-cm-diam by 1-cm-thick CaWO/sub 4/ scintillator coupled to a 1.3-cm-diam by 600-..mu..m-thick HgI/sub 2/ photodetector. Best spectral resolution to /sup 137/Cs was 7.8% FWHM for the NaI(Tl)-HgI/sub 2/ and 12.5% FWHM for the CaWO/sub 4/-HgI/sub 2/ detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI/sub 2/ detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal.

  15. Isotopic response with small scintillator based gamma-ray spectrometers

    DOEpatents

    Madden, Norman W [Sparks, NV; Goulding, Frederick S [Lafayette, CA; Asztalos, Stephen J [Oakland, CA

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  16. Scintillating-glass-fiber neutron sensors

    NASA Astrophysics Data System (ADS)

    Abel, K. H.; Arthur, R. J.; Bliss, M.; Brite, D. W.; Brodzinski, R. L.; Craig, R. A.; Geelhood, B. D.; Goldman, D. S.; Griffin, J. W.; Perkins, R. W.; Reeder, P. L.; Richey, W. R.; Stahl, K. A.; Sunberg, D. S.; Warner, R. A.; Wogman, N. A.; Weber, M. J.

    1994-12-01

    Cerium-doped lithium-silicate glass fibers have been developed at Pacific Northwest Laboratory (PNL) for use as thermal neutron detectors. By using highly-enriched 6Li, these fibers efficiently capture thermal neutrons and produce scintillation light that can be detected at the ends of the fibers. Advantages of scintillating fibers over 3He or BF 3 proportional tubes include flexibility in geometric configuration, ruggedness in high-vibration environments, and less detector weight for the same neutron sensitivity. This paper describes the performance of these scintillating fibers with regard to count rates, pulse height spectra, absolute efficiencies, and neutron/gamma discrimination. Fibers with light transmission lengths ( {1}/{e}) of greater than 2 m have been produced at PNL. Neutron sensors in fiber form allow development of a variety of neutron detectors packaged in previously unavailable configurations. Brief descriptions of some of the devices already produced are included to illustrate these possibilities.

  17. Purification of large liquid scintillators for Borexino

    SciTech Connect

    Benziger, J.B.; Calaprice, F.P.; Vogelaar, R.B.

    1993-10-01

    Distillation extraction and crystallization have been used on scintillator mixtures for solar neutrino physics to remove cosmo- genically produced impurities ({sup 7}Be) and naturally occurring impurities ({sup 238}U, {sup 232}Th, and {sup 40}K), and to improve the optical transmission. Distillation was effective at removing {sup 7}Be and other impurities from aromatic solvents (p-xylene and pseudocumene) used as scintillator solvents. Distillation also provided the greatest improvement in the optical clarity of the solvents. Commercially available fluors (PPO and PMP) have high levels of potassium, far in excess of those tolerable for Borexino. Extraction techniques have been found to be effective at removing radioactive impurities, particularly potassium, from the fluors. An overall strategy for on-line purification of the scintillator for Borexino will be presented.

  18. Current trends in scintillator detectors and materials

    SciTech Connect

    Moses, William W.

    2001-10-23

    The last decade has seen a renaissance in inorganic scintillator development for gamma ray detection. Lead tungstate (PbWO4) has been developed for high energy physics experiments, and possesses exceptionally high density and radiation hardness, albeit with low luminous efficiency. Lutetium orthosilicate or LSO (Lu2SiO5:Ce) possesses a unique combination of high luminous efficiency, high density, and reasonably short decay time, and is now incorporated in commercial positron emission tomography (PET) cameras. There have been advances in understanding the fundamental mechanisms that limit energy resolution, and several recently discovered materials (such as LaBr3:Ce) possess energy resolution that approaches that of direct solid state detectors. Finally, there are indications that a neglected class of scintillator materials that exhibit near band-edge fluorescence could provide scintillators with sub-nanosecond decay times and high luminescent efficiency.

  19. On the scintillation efficiency of carborane-loaded liquid scintillators for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Okoye, Nkemakonam C.; Urffer, Matthew J.; Green, Alexander D.; Childs, Kyle E.; Miller, Laurence F.

    2015-01-01

    The scintillation efficiency in response to thermal neutrons was studied by loading different concentrations of carborane (0-8.5 wt%) and naphthalene (0 and 100 g/L) in five liquid organic scintillators. The sample was characterized in Pb and Cd shields under the irradiation of the thermal neutrons from a 252Cf source. A method was developed to extract the net neutron response from the pulse-height spectra. It was found that the order of scintillation efficiencies for both γ-rays and thermal neutrons is as follows: diisopropylnaphthalene>toluene (concentrated solutes)>toluene~pseudocumene~m-xylene. The quench constants, obtained by fitting the Stern-Volmer model to the plots of light output versus carborane concentration, are in the range of 0.35-1.4 M-1 for all the scintillators. The Birks factors, estimated using the specific energy loss profiles of the incident particles, are in the range of 9.3-14 mg cm-2 MeV-1 for all the samples. The light outputs are in the range of 63-86 keV electron equivalents (keVee) in response to thermal neutrons. Loading naphthalene generally promotes the scintillation efficiency of the scintillator with a benzene derivative solvent. Among all the scintillators tested, the diisopropylnaphthalene-based scintillator shows the highest scintillation efficiency, lowest Birks factor, and smallest quench constants. These properties are primarily attributed to the double fused benzene-ring structure of the solvent, which is more efficient to populate to the excited singlet state under ionizing radiation and to transfer the excitation energy to the fluorescent solutes.

  20. The design of the TASD (totally active scintillator detector) prototype

    SciTech Connect

    Mefodiev, A. V. Kudenko, Yu. G.

    2015-12-15

    Totally active and magnetic segmented scintillation neutrino detectors are developed for the nextgeneration accelerator neutrino experiments. Such detectors will incorporate scintillation modules with scintillation counters that form X and Y planes. A single counter is a 7 × 10 × 90 mm{sup 3} scintillation bar with gluedin wavelength-shifting fibers and micropixel avalanche photodiodes. The results of measurements of the parameters of these detectors are presented.

  1. A step toward CNO solar neutrino detection in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Villante, F. L.; Ianni, A.; Lombardi, F.; Pagliaroli, G.; Vissani, F.

    2011-07-01

    The detection of CNO solar neutrinos in ultrapure liquid scintillator detectors is limited by the background produced by bismuth-210 nuclei that undergo β-decay to polonium-210 with a lifetime of ˜7 days. Polonium-210 nuclei are unstable and decay with a lifetime equal to ˜200 days emitting α particles that can be also detected. In this Letter, we show that the Bi-210 background can be determined by looking at the time evolution of α-decay rate of Po-210, provided that α particle detection efficiency is stable over the data acquisition period and external sources of Po-210 are negligible. A sufficient accuracy can be obtained in a relatively short time. As an example, if the initial Po-210 event rate is ˜2000 cpd/100 ton or lower, a Borexino-like detector could start discerning CNO neutrino signal from Bi-210 background in Δt˜1 yr.

  2. Statistics of time averaged atmospheric scintillation

    SciTech Connect

    Stroud, P.

    1994-02-01

    A formulation has been constructed to recover the statistics of the moving average of the scintillation Strehl from a discrete set of measurements. A program of airborne atmospheric propagation measurements was analyzed to find the correlation function of the relative intensity over displaced propagation paths. The variance in continuous moving averages of the relative intensity was then found in terms of the correlation functions. An empirical formulation of the variance of the continuous moving average of the scintillation Strehl has been constructed. The resulting characterization of the variance of the finite time averaged Strehl ratios is being used to assess the performance of an airborne laser system.

  3. Plastic scintillator centrality detector for BRAHMS

    NASA Astrophysics Data System (ADS)

    Lee, Y. K.; Debbe, R.; Lee, J. H.; Ito, Hironori; Sanders, S. J.

    2004-01-01

    An array of 40 tiles of thin plastic scintillators is used to construct the outer layer of the charged particle multiplicity detector for the BRAHMS experiment at the Relativistic Heavy Ion Collider (RHIC). Each tile is a square with 12 cm long sides and 5 mm thickness. The light from each of the scintillators is collected by wavelength shifting fibers embedded on the periphery. The light collection is uniform within 5% over the tile with the edge effect limited to 4 mm along the edge. The response is found to be linear in the high-multiplicity environment at RHIC with Au+Au beams at s NN of 200 GeV.

  4. Quality study of the purified liquid scintillator

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Nakajima, K.; Kibe, Y.

    2008-07-01

    We have been distilling the KamLAND liquid scintillator (LS) for the low energy solar neutrino observation. The distillation removes radioactive impurities from LS efficiently. We developed two types of high sensitivity radon detectors to monitor 222Rn contamination which causes a primary background source 210Pb. Their required sensitivity is several mBq/m3. The features and the measurement results of these detectors are presented. We also report the study of liquid scintillator properties after the distillation: attenuation length, light output and PPO density.

  5. Effects of radiation on scintillating fiber performance

    SciTech Connect

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Parr, H.

    1992-12-31

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented.

  6. Effects of radiation on scintillating fiber performance

    SciTech Connect

    Young, K.G.; Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E. ); Carey, R.; Rothman, M.; Sulak, L.; Worstell, W. ); Paar, H. )

    1993-08-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculational procedures used in performing predictions for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented.

  7. Near-infrared scintillation of liquid argon

    SciTech Connect

    Alexander, T.; Escobar, C. O.; Lippincott, W. H.; Rubinov, P.

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  8. The homestake surface-underground scintillations: Description

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Corbato, S.; Daily, T.; Fenyves, E. J.; Kieda, D.; Lande, K.; Lee, C. K.

    1985-01-01

    Two new detectors are currently under construction at the Homestake Gold Mine a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters, a geometry factor (for an isotropic flux) of 1200 square meters, sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters, spanning an area of approximately square kilometers. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described.

  9. Plastic scintillators modifications for a selective radiation detection

    SciTech Connect

    Hamel, Matthieu; Bertrand, Guillaume H.V.; Carrel, Frederick; Coulon, Romain; Dumazert, Jonathan; Montbarbon, Eva; Sguerra, Fabien

    2015-07-01

    Recent developments of plastic scintillators are reviewed, from January 2000 to June 2015. All examples are distributed into the main application, i.e. how the plastic scintillator was modified to enhance the detection towards a given radiation particle. The main characteristics of these newly created scintillators and their detection properties are given. (authors)

  10. New liquid scintillators for fiber-optic applications

    SciTech Connect

    Lutz, S.S.; Franks, L.A.; Flournoy, J.M.; Lyons, P.B.

    1981-01-01

    New long-wavelength-emitting, high-speed, liquid scintillators have been developed and tailored specifically for plasma diagnostic experiments employing fiber optics. These scintillators offer significant advantages over commercially available plastic scintillators in terms of sensitivity and bandwidth. FWHM response times as fast as 350 ps have been measured. Emission spectra, time response data, and relative sensitivity information are presented.

  11. Upconverting nanoparticles for optimizing scintillator based detection systems

    DOEpatents

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  12. Solar wind density structure at 1 AU and comparison to Doppler scintillation measurements

    NASA Astrophysics Data System (ADS)

    Huddleston, D. E.; Woo, R.; Neugebauer, M.

    1996-07-01

    Results of a survey of solar wind density fluctuations in different flow types observed by ISEE-3 at 1 AU are presented and compared with Doppler scintillation measurements. We consider coronal hole, plasma sheet, interstream, CME and sheath interaction region flow types. For the quasi-stationary solar wind, densities (N) and density fluctuation levels (ΔN) are low in coronal hole flow, and high in the plasma sheet containing the heliospheric current sheet (HCS). The highest fluctuation levels are found in the sheath compression regions between CMEs and associated forward shocks. The streamer structure around the HCS broadens and erodes with distance from the Sun, and the broadened Doppler scintillation signature at 1 AU is in good qualitative agreement with ISEE-3 superposed epoch analysis. The observed asymmetry about the HCS is an expected result of solar wind dynamic evolution. A greater contrast between flow types is seen in ΔN levels rather than in N itself. Doppler scintillation responds to ΔN and thus provides a sensitive means of detecting interplanetary disturbances. However, we find that ΔN/N is not constant in the solar wind, and thus enhanced scintillation cannot unambiguously imply enhanced density.

  13. Assessment of scintillation proxy maps for a scintillation study during geomagnetically quiet and disturbed conditions over Uganda

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2017-02-01

    The objective of this paper is demonstrate the validity and usefulness of scintillation proxies derived from IGS data, through its comparison with data from dedicated scintillation monitors and its application to GNSS scintillation patterns. The paper presents scintillation patterns developed by using data from the dedicated scintillation monitors of the scintillation network decision aid (SCINDA) network, and proxy maps derived from IGS GPS data for 2011 and 2012 over low latitude stations in Uganda. The amplitude and phase scintillation indicies (S4 and σΦ) were obtained from the Novatel GSV4004B ionospheric scintillation and total electron content (TEC) monitor managed by SCINDA at Makerere (0.340N, 32.570E). The corresponding IGS GPS proxy data were obtained from the receivers at Entebbe (0.040N, 32.440E) and Mbarara (0.600S, 30.740E). The derived amplitude (S4p) and phase (sDPR) scintillation proxy maps were compared with maps of S4 and σΦ during geomagnetic storms (moderate and strong) and geomagnetically quiet conditions. The scintillation patterns using S4 and σΦ and their respective proxies revealed similar diurnal and seasonal patterns of strong scintillation occurrence. The peaks of scintillation occurrence with mean values in the range 0.3 < (S4p , sDPR) ≤ 0.6 were observed during nighttime (17:00-22:00 UT) and in the months of March-April and September-October. The results also indicate that high level scintillations occur during geomagnetically disturbed (moderate and strong) and quiet conditions over the Ugandan region. The results show that SCINDA and IGS based scintillation patterns reveal the same nighttime and seasonal occurrence of irregularities over Uganda irrespective of the geomagnetic conditions. Therefore, the amplitude and phase scintillation proxies presented here can be used to fill gaps in low-latitude data where there are no data available from dedicated scintillation receivers, irrespective of the geomagnetic conditions.

  14. Development of new Polysiloxane Based Liquid Scintillators

    SciTech Connect

    Dalla Palma, M.; Quaranta, A.; Gramegna, F.; Marchi, T.; Cinausero, M.; Carturan, S.; Collazuol, G.; Checchia, C.; Degerlier, M.

    2015-07-01

    In the last decade, attention toward neutron detection has been growing in the scientific community, driven by new requirements in different fields of application ranging from homeland security to medical and material analysis, from research physics, to nuclear energy production. So far neutron detection, with particular attention to fast neutrons, has been mainly based on organic liquid scintillators, owing to their good efficiency and pulse shape discrimination (PSD) capability. Most of these liquids have however some main drawbacks given by toxicity, flammability, volatility and sensitivity to dissolved oxygen that limits the duration and the quality of their performances with worse handiness and increased costs. Phenyl-substituted polysiloxanes could address most of these issues, being characterized by low toxicity, low volatility and low flammability. Their optical properties can be tailored by changing the phenyl distribution and concentration thus allowing to increase the solubility of organic dyes, to modify the fluorescence spectra and to vary the refractive index of the medium. Furthermore, polysiloxanes have been recently exploited for the production of plastic scintillators with very good chemical and thermal stability and very good radiation hardness and the development of polysiloxane liquid scintillators could allow to combine these interesting properties with the supremacy of liquid scintillators as regarding PSD over plastics. For these reasons, the properties of several phenyl-substituted polysiloxane with different phenyl amounts and different viscosities have been investigated, with particular attention to the scintillation response and the pulse shape discrimination capability, and the results of the investigation are reported in this work. More in details, the scintillation light yield towards gamma rays ({sup 60}Co and {sup 137}Cs) of several polysiloxane liquids has been analyzed and compared with the light yield of a commercial non

  15. Robust GPS carrier tracking under ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance

  16. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    SciTech Connect

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today`s and tomorrow`s colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed.

  17. The SNO+ Scintillator Purification Plant and Projected Sensitivity to Solar Neutrinos in the Pure Scintillator Phase

    NASA Astrophysics Data System (ADS)

    Pershing, Teal; SNO+ Collaboration

    2016-03-01

    The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.

  18. Characterizing Scintillation and Cherenkov Light in Water-Based Liquid Scintillators

    NASA Astrophysics Data System (ADS)

    Land, Benjamin; Caravaca, Javier; Descamps, Freija; Orebi Gann, Gabriel

    2016-09-01

    The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light which lends itself well to a broad program of neutrino physics. Here we explore the light yields and time profiles of WbLS materials in development for Theia (formerly ASDC) as measured in CheSS: our bench-top Cherenkov and scintillation separation R&D project at Berkeley Lab. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.

  19. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains

    NASA Astrophysics Data System (ADS)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Izaki, Kenji; Tsubota, Youichi; Higuchi, Mikio; Nishiyama, Shusuke

    2014-01-01

    A scintillator plate with high energy resolution was developed to produce an alpha particle monitor used in nuclear fuel reprocessing plants and mixed plutonium-uranium oxide (MOX) fuel plants. Grains of a Gd2Si2O7 (GPS) scintillator of several 10 to 550 μm were fixed on a glass substrate and were then mechanically polished. By increasing the size of scintillator grains and removing fine powders, the collected light yield and energy resolution for alpha particles were drastically improved. Energy resolution of 9.3% was achieved using average grain size of 91 μm. Furthermore, the ratios between counts in a peak and total counts were improved by more than 60% by the further increase of grain size and adoption of mechanically polished surfaces on both sides. Beta and gamma ray influences were suppressed sufficiently by the thin 100 μm scintillator plates.

  20. Liquid Scintillator Production for the NOvA Experiment

    DOE PAGES

    Mufson, S.; Baugh, B.; Bower, C.; ...

    2015-04-15

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  1. Liquid scintillator production for the NOvA experiment

    NASA Astrophysics Data System (ADS)

    Mufson, S.; Baugh, B.; Bower, C.; Coan, T. E.; Cooper, J.; Corwin, L.; Karty, J. A.; Mason, P.; Messier, M. D.; Pla-Dalmau, A.; Proudfoot, M.

    2015-11-01

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  2. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  3. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  4. Fluorescent compounds for plastic scintillation applications

    SciTech Connect

    Pla-Dalmau, A.; Bross, A.D.

    1994-04-01

    Several 2-(2{prime}-hydroxyphenyl)benzothiazole, -benzoxazole, and -benzimidazole derivatives have been prepared. Transmittance, fluorescence, light yield, and decay time characteristics of these compounds have been studied in a polystyrene matrix and evaluated for use in plastic scintillation detectors. Radiation damage studies utilizing a {sup 60}C source have also been performed.

  5. Scintillator Development for the PROSPECT Experiment

    NASA Astrophysics Data System (ADS)

    Yeh, Minfang

    2014-03-01

    Doped scintillator is the target material of choice for antineutrino detection as it utilizes the time-delayed coincidence signature of the positron annihilation and neutron capture resulting from the Inverse Beta Decay (IBD) interaction. Additionally, the multiple gamma rays or heavy ions emitted after neutron capture on either Gd or 6Li respectively provide a distinct signal for the identification of antineutrino events and therefore significantly enhance accidental background reduction. The choice of scintillator and dopant depends on the detector requirements and scintillator performance criteria. Both Gd and 6Li doped scintillators have been used in past reactor antineutrino experiments such as Double Chooz, Daya Bay, RENO, and Bugey3 and are currently under investigation by the PROSPECT collaboration. Their properties in terms of light yield, optical transparency, chemical stability and background rejection efficiency using Pulse Shape Discrimination (PSD) will be reported. Research sponsored by the U.S. Department of Energy, Office of Nuclear Physics and Office of High Energy Physics, under contract with Brookhaven National Laboratory-Brookhaven Science Associates.

  6. Progress in studying scintillator proportionality: Phenomenological model

    SciTech Connect

    Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard

    2009-04-30

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  7. Optimization of Shielded Scintillator for Neutron Detection

    NASA Astrophysics Data System (ADS)

    Belancourt, Patrick; Morrison, John; Akli, Kramer; Freeman, Richard; High Energy Density Physics Team

    2011-10-01

    The High Energy Density Physics group is interested in the basic science of creating a neutron and gamma ray source. The neutrons and gamma rays are produced by accelerating ions via a laser into a target and creating fusion neutrons and gamma rays. A scintillator and photomultiplier tube will be used to detect these neutrons. Neutrons and photons produce ionizing radiation in the scintillator which then activates metastable states. These metastable states have both short and long decay rates. The initial photon count is orders of magnitude higher than the neutron count and poses problems for accurately detecting the neutrons due to the long decay state that is activated by the photons. The effects of adding lead shielding on the temporal response and signal level of the neutron detector will be studied in an effort to minimize the photon count without significant reduction to the temporal resolution of the detector. MCNP5 will be used to find the temporal response and energy deposition into the scintillator by adding lead shielding. Results from the simulations will be shown. Optimization of our scintillator neutron detection system is needed to resolve the neutron energies and neutron count of a novel neutron and gamma ray source.

  8. Equitorial Scintillations: Advances Since ISEA-6.

    DTIC Science & Technology

    1985-01-01

    thermospheric neutral wind have been postulated to describe the observe l longitudinal variation._--.-, A distinct class of equatorial irregularities...Unclassified SECURITY CLASSIFICATION OF THIS PAGE associated with frequency spread on ionograms . Scintillations caused by such irregularities exist only...another based on the influence of a transequatorial thermospheric neutral wind have been postu- lated to describe the observed longitudinal variation. A

  9. Outward atmospheric scintillation effects and inward atmospheric scintillation effects comparisons for direct detection ladar applications

    NASA Astrophysics Data System (ADS)

    Youmans, Douglas G.

    2014-06-01

    Atmospheric turbulence produces intensity modulation or "scintillation" effects on both on the outward laser-mode path and on the return backscattered radiation path. These both degrade laser radar (ladar) target acquisition, ranging, imaging, and feature estimation. However, the finite sized objects create scintillation averaging on the outgoing path and the finite sized telescope apertures produce scintillation averaging on the return path. We expand on previous papers going to moderate to strong turbulence cases by starting from a 20kft altitude platform and propagating at 0° elevation (with respect to the local vertical) for 100km range to a 1 m diameter diffuse sphere. The outward scintillation and inward scintillation effects, as measured at the focal plane detector array of the receiving aperture, will be compared. To eliminate hard-body surface speckle effects in order to study scintillation, Goodman's M-parameter is set to 106 in the analytical equations and the non-coherent imaging algorithm is employed in Monte Carlo realizations. The analytical equations of the signal-to-noise ratio (SNRp), or mean squared signal over a variance, for a given focal plane array pixel window of interest will be summarized and compared to Monte Carlo realizations of a 1m diffuse sphere.

  10. Par Pond vegetation status 1996

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1996-12-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into the early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned.

  11. Systematic study of particle quenching in organic scintillators

    NASA Astrophysics Data System (ADS)

    Santiago, L. M.; Bagán, H.; Tarancón, A.; Rauret, G.; Garcia, J. F.

    2013-01-01

    Among the different factors that affect measurements by organic scintillators, the majority of attention has been focused on those related to the scintillator (i.e., ionization, chemical, color and optical quenching), and less attention has been paid to the loss of energy before the particle (i.e., alpha or beta) arrives at the scintillator (i.e., particle quenching). This study evaluates the effect of particle quenching in different scintillation methods (i.e., using two plastic scintillation microspheres (PSm1 and PSm2), liquid scintillator and gel scintillator) by measuring solutions that contain increasing concentrations of NaCl, BaCl2 and glycerin. The results show the importance of particle quenching in PSm measurements because detection efficiency decreases with increasing concentrations of the quenching component, although the spectrum position and external standard parameter remain constant. The results have shown evidence of particle quenching, although at a lower magnitude, in the liquid scintillation or gel scintillation measurements. Moreover, the use of two PSm with different diameters and salty compound that alters the equilibrium of the liquid and gel emulsions also exemplified the importance of the transmission of optical photons through different scintillation media (i.e., optical quenching). Improvement and deterioration of the optical conditions on the scintillation media is manifested as a movement of the spectrum to higher and lower energies, respectively. The results obtained with PSm were confirmed by Monte Carlo simulation.

  12. Comparative analysis of spread-F signature and GPS scintillation occurrences at Tucumán, Argentina

    NASA Astrophysics Data System (ADS)

    Spogli, L.; Lucilla, A.; Pezzopane, M.; Romano, V.; Zuccheretti, E.; De Franceschi, G.; Cabrera, M.; Ezquer, R. G.

    2013-12-01

    A deep understanding of the temporal and spatial evolution of the ionosphere can be achieved by using a multi-instrument approach which provides complementary information. Bearing this in mind, we analyze data recorded from October 2010 to September 2011, during the ascending phase of the 24th solar cycle, from an Advanced Ionospheric Sounder-Istituto Nazionale di Geofisica e Vulcanologia ionosonde and a GPS Ionospheric Scintillation and Total Electron Content (TEC) monitor receiver, located in the same site at low latitude in the Southern American longitudinal sector (Tucumán, 26.9°S, 294.6°E, magnetic latitude 15.5°S, Argentina). Such site offers the opportunity to perform combined spread-F and GPS scintillation statistics of occurrence under the southern crest of the equatorial ionospheric anomaly. Spread-F signatures, classified into four types (strong range spread-F (SSF), range spread-F, frequency spread-F (FSF), and mixed spread-F), the phase and amplitude scintillation index (σΦ and S4, respectively), the TEC, and the rate of TEC parameter, marker of the TEC gradients, that can cause scintillation, are considered. The seasonal behavior results as follows: the occurrence of all four types of spread-F is higher in summer and lower in winter, while the occurrence of scintillation peaks at equinoxes in the postsunset sector and shows a minimum in winter. The correspondence between SSF and scintillation seems to be systematic, and a possible correlation between S4 and FSF peaks is envisaged at the terminator. Evidence that scintillation, unlike ESF, is recorded all-day long, allows to speculate also on the relationship between the features of the sporadic E irregularities and scintillation patterns. Our results indicate that the daytime amplitude scintillation is in correspondence with the appearance of a dense Es layer, with critical frequency above 4 MHz. The investigation focused also on two particular periods, from 12 to 16 March 2011 and from 23 to 29

  13. Non-Carbon Dyes For Platic Scintillators- Report

    SciTech Connect

    Teprovich, J.; Colon-Mercado, H.; Gaillard, J.; Sexton, L.; Washington, A.; Ward, P.; Velten, J.

    2015-10-19

    Scintillation based detectors are desirable for many radiation detection applications (portal and border monitoring, safeguards verification, contamination detection and monitoring). The development of next generation scintillators will require improved detection sensitivity for weak gamma ray sources, and fast and thermal neutron quantification. Radiation detection of gamma and neutron sources can be accomplished with organic scintillators, however, the single crystals are difficult to grow for large area detectors and subject to cracking. Alternatives to single crystal organic scintillators are plastic scintillators (PS) which offer the ability to be shaped and scaled up to produce large sized detectors. PS is also more robust than the typical organic scintillator and are ideally suited for deployment in harsh real-world environments. PS contain a mixture of dyes to down-convert incident radiation into visible light that can be detected by a PMT. This project will evaluate the potential use of nano-carbon dyes in plastic scintillators.

  14. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  15. Nonproportionality of Scintillator Detectors: Theory and Experiment

    SciTech Connect

    Payne, Stephen; Cherepy, Nerine; Hull, Giulia; Valentine, John; Moses, William; Choong, Woon-Seng

    2009-08-17

    On the basis of nonproportionality data obtained for several scintillators, we have developed a theory to describe the carrier dynamics to fit the light yield versus electron energy. The theory of Onsager was adapted to explain how the carriers form excitons or sequentially arrive at the activators to promote the ion to an excited state, and the theory of Birks was employed to allow for exciton-exciton annihilation. We then developed a second theory to deduce the degradation in resolution that results from nonproportionality by evoking Landau fluctuations, which are essentially variations in the deposited energy density that occur as the high energy electron travels along its trajectory. In general there is good agreement with the data, in terms of fitting the nonproportionality curves and reproducing the literature values of nonproportionality's contribution to the scintillator resolution. With the resurgence of interest in developing scintillator detectors that have good energy resolution, an improved understanding of nonproportionality has become a crucial matter since it presents the fundamental limit to the achievable resolution. In order to hasten an improved understanding of scintillator nonproportionality, we have constructed an instrument referred to as SLYNCI (Scintillator Light Yield Nonproportionality Compton Instrument). This is a second-generation instrument to the original device developed by Valentine and coworkers, wherein several new principles of operation have served to increase the data rate by an order of magnitude as discussed in detail in References. In the present article, the focus is on a theory to describe the measured electron response, which is the light yield as a function of the electron energy. To do this, we account for transport of carriers and excitons, in terms of how they transfer their energy to the activators with competition from nonradiative decay pathways. This work builds on the original work of Murray and coworkers, and

  16. Neutron spectroscopy with scintillation detectors using wavelets

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica

    The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the

  17. Monitoring and Forecasting Ionospheric Scintillation at High Latitudes (Invited)

    NASA Astrophysics Data System (ADS)

    Prikryl, P.; Jayachandran, P. T.; Chadwick, R.; Kelly, T.

    2013-12-01

    Ionospheric scintillation (rapid signal amplitude fading and phase fluctuation) poses a threat to reliable and safe operation of modern technology that relies on Global Navigation Satellite Systems (GNSS). Ionospheric scintillation of GNSS signal severely degrades positional accuracy, causes cycle slips leading to loss of lock that affects performance of radio communication and navigation systems. At high latitudes, the scintillation is caused by ionospheric irregularities produced through coupling between solar wind plasma and the magnetosphere. Climatology of GPS scintillation at high latitudes in both hemispheres shows that phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. Solar wind disturbances, in particular the co-rotating interaction regions (CIR) on the leading edge of high-speed streams (HSS) and interplanetary coronal mass ejections (ICME), have been closely correlated with the occurrence of scintillation at high latitudes. These results demonstrated a technique of probabilistic forecast of high-latitude phase scintillation occurrence relative to arrival times of HSS and ICME. The Canadian High Arctic Ionospheric Network (CHAIN) has been monitoring GPS ionospheric scintillation and total electron content (TEC) since November 2007. One-minute amplitude and phase scintillation indices from L1 GPS signals and TEC from L1 and L2 GPS signals are computed from amplitude and phase data sampled at 50 Hz. Since 2012, significant expansion of CHAIN has begun with installation of new receivers, each capable of tracking up to 30 satellites including GLONASS and Galileo. The receivers log the raw phase and amplitude of the signal up to a 100-Hz rate for scintillation measurements. We briefly review observations of ionospheric scintillation and highlight new results from CHAIN, including the climatology of scintillation occurrence, collocation with aurora and HF radar backscatter, correlation with CIRs and ICMEs

  18. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    DOE PAGES

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; ...

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI2:Eu2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, atmore » least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.« less

  19. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    SciTech Connect

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI2:Eu2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the

  20. Simulation of scintillation light output in LYSO scintillators through a full factorial design

    NASA Astrophysics Data System (ADS)

    Loignon-Houle, Francis; Bergeron, Mélanie; Pepin, Catherine M.; Charlebois, Serge A.; Lecomte, Roger

    2017-01-01

    Individually coupled scintillation detectors used in positron emission tomography (PET) imaging suffer from important signal losses due to the suboptimal light collection from crystals. As only a fraction of the light is generally extracted from long and thin scintillators, it is important to identify and understand the predominant causes of signal loss in order to eventually recover it. This simulation study investigates the multiple factors affecting the light transport in high-aspect ratio LYSO scintillators wrapped in specular reflectors through a full factorial design. By exploring various combinations of crystal geometry, readout conditions and wrapping conditions, it was found that an optimum light output can only be achieved through a careful selection of highly reflective material along with high-transmittance optical adhesive used to bond the reflector. Decreasing the adhesive thickness was also found to have a positive outcome in most explored configurations, however to a much lesser extent. Suboptimal reflectivity and adhesive transmittance also lead to an asymmetric light output distribution dependent on the depth of interaction of the radiation, potentially degrading energy resolution. By identifying the factors causing the most significant scintillation light losses through a factorial design, the most promising detector configurations have been identified in the quest for optimal light collection from scintillators.

  1. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  2. Plastic scintillator detector for pulsed flux measurements

    NASA Astrophysics Data System (ADS)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  3. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    SciTech Connect

    Cherepy, N J; Kuntz, J D; Roberts, J J; Hurst, T A; Drury, O B; Sanner, R D; Tillotson, T M; Payne, S A

    2008-08-24

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed.

  4. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  5. Reflectance of polytetrafluoroethylene for xenon scintillation light

    SciTech Connect

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-15

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region ({lambda}{approx_equal}175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  6. Plastic fiber scintillator response to fast neutrons

    SciTech Connect

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.

    2014-11-15

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  7. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  8. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen Edward; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  9. Development of High-Resolution Scintillator Systems

    SciTech Connect

    Larry A. Franks; Warnick J. Kernan

    2007-09-01

    Mercuric iodide (HgI2) is a well known material for the direct detection of gamma-rays; however, the largest volume achievable is limited by the thickness of the detector which needs to be a small fraction of the average trapping length for electrons. We report results of using HgI2 crystals to fabricate photocells used in the readout of scintillators. The optical spectral response and efficiency of these photocells were measured and will be reported. Nuclear response from an HgI2 photocell that was optically matched to a cerium-activated scintillator is presented and discussed. Further improvements can be expected by optimizing the transparent contact technology.

  10. Nanophosphor composite scintillators comprising a polymer matrix

    DOEpatents

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  11. Sorohalide scintillators, phosphors, and uses thereof

    SciTech Connect

    Yang, Pin; Deng, Haoran; Doty, F. Patrick; Zhou, Xiaowang

    2016-05-10

    The present invention relates to sorohalide compounds having formula A.sub.3B.sub.2X.sub.9, where A is an alkali metal, B is a rare earth metal, and X is a halogen. Optionally, the sorohalide includes a dopant D. Such undoped and doped sorohalides are useful as scintillation materials or phosphors for any number of uses, including for radiation detectors, solid-state light sources, gamma-ray spectroscopy, medical imaging, and drilling applications.

  12. Characteristics of Yerevan High Transparency Scintillators

    SciTech Connect

    Zorn, Carl; Asryan, Gegham; Egiyan, Kim; Tarverdyan, M.; Amaryan, Moscov; Amaryan, Moskov; Demirchyan, Raphael; Stepanyan, Stepan; Burkert, Volker; Sharabian, Youri

    1992-08-01

    Optical transmission, light output and time characteristics are given for long scintillator strips fabricated at the Yerevan Physics Institute using the extrusion method. It is shown that at 45% relative (to anthracene) light output, good transmission (2.5/2.9 m attenuation length with photomultiplier direct readout and 3/3.5 m attenuation length fiber readout) and time characteristics (average decay time 2.8 nsec) were obtained.

  13. Simulating Silicon Photomultiplier Response to Scintillation Light.

    PubMed

    Jha, Abhinav K; van Dam, Herman T; Kupinski, Matthew A; Clarkson, Eric

    2013-02-01

    The response of a Silicon Photomultiplier (SiPM) to optical signals is affected by many factors including photon-detection efficiency, recovery time, gain, optical crosstalk, afterpulsing, dark count, and detector dead time. Many of these parameters vary with overvoltage and temperature. When used to detect scintillation light, there is a complicated non-linear relationship between the incident light and the response of the SiPM. In this paper, we propose a combined discrete-time discrete-event Monte Carlo (MC) model to simulate SiPM response to scintillation light pulses. Our MC model accounts for all relevant aspects of the SiPM response, some of which were not accounted for in the previous models. We also derive and validate analytic expressions for the single-photoelectron response of the SiPM and the voltage drop across the quenching resistance in the SiPM microcell. These analytic expressions consider the effect of all the circuit elements in the SiPM and accurately simulate the time-variation in overvoltage across the microcells of the SiPM. Consequently, our MC model is able to incorporate the variation of the different SiPM parameters with varying overvoltage. The MC model is compared with measurements on SiPM-based scintillation detectors and with some cases for which the response is known a priori. The model is also used to study the variation in SiPM behavior with SiPM-circuit parameter variations and to predict the response of a SiPM-based detector to various scintillators.

  14. a Subminiature Scintillation Detector for Catheter Operation

    NASA Astrophysics Data System (ADS)

    Scafè, R.; Montani, L.; Burgio, N.; Iurlaro, G.; Santagata, A.; Ciavola, C.; Alonge, G.

    2006-04-01

    The feasibility of a subminiature scintillation detector to be inserted in a catheter for lesion localization in nuclear medicine SPECT has been studied. Measurements on a simple laboratory setup have been performed and compared with Monte Carlo results. Further simulations, at 30keV and 140keV, concerning a configuration reproducing severe clinical conditions have shown poor lesion detectability. Several factors affecting the response have to be investigated to improve the capability of lesion localization characterizing such detector.

  15. Improved Neutron Scintillators Based on Nanomaterials

    SciTech Connect

    Dennis Friesel, PhD

    2008-06-30

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd{sub 2}O{sub 3} foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved {sup 6}LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  16. Studies of NICADD Extruded Scintillator Strips

    SciTech Connect

    Dychkant, Alexandre; et al.

    2005-03-01

    About four hundred one meter long, 10 cm wide and 5 mm thick extruded scintillating strips were measured at four different points. The results of measurements strip responses to a radioactive source {sup 90}Sr are provided, and details of strip choice, preparation, and method of measurement are included. This work was essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  17. Exploration of locomotion in the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Jindal, Lavisha; Emberly, Eldon

    2015-03-01

    In many bacteria the ParA/ParB system is responsible for actively segregating DNA during replication. ParB precessively moves by hydrolyzing DNA bound ParA-ATP forming a depleted ParA region in its wake. Recent in-vitro experiments have shown that a ParB covered bead can traverse a ParA bound DNA substrate. It has been suggested that the formation of a gradient in ParA leads to diffusion-ratchet like motion of the ParB bead but its origin and potential consequences requires investigation. We have developed a deterministic model for the in-vitro ParA/ParB system and show that any amount of spatial noise in ParA can lead to the spontaneous formation of its gradient. The velocity of the bead is independent of this noise but depends on the scale over which ParA exerts a force on the bead and the scale over which ParB hydrolyzes ParA from the substrate. There is a particular ratio of these scales at which the velocity is a maximum. We also explore the effects of cooperative vs independent rebinding of ParA to the substrate. Our model shows how the driving force for ParB originates and highlights necessary conditions for directed motion in the in-vitro system that may provide insight into the in-vivo behaviour of the ParA/ParB system.

  18. Boron-Loaded Silicone Rubber Scintillators

    SciTech Connect

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  19. Cerium fluoride, a new fast, heavy scintillator

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.

    1988-11-01

    We describe the scintillation properties of Cerium Fluoride (CeF/sub 3/), a newly discovered, heavy (6.16 g/cm/sup 3/), inorganic scintillator. Its fluorescence decay lifetime, measured with the delayed coincidence method, is described by a single exponential with a 27 /+-/ ns time constant. The emission spectrum peaks at a wavelength of 340 nm, and drops to less than 10% of its peak value at 315 nm and 460 nm. When a 1 cm optical quality cube of CeF/sub 3/ is excited with 511 keV photons, a photopeak with a 20% full width at half maximum is observed at approximately half the light output of a Bismuth Germanate (BGO) crystal with similar geometry. We also present measurements of the decay time and light output of CeF/sub 3/ doped with three rare-earth elements (Dy, Er, and Pr). The short fluorescence lifetime, high density, and reasonable light output of this new scintillator suggest that it would be useful for applications where high counting rates, good stopping power, and nanosecond timing are important, such as medical imaging and nuclear science. 5 refs., 6 figs., 1 tab.

  20. Detecting dark matter with scintillating bubble chambers

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjie; Dahl, C. Eric; Jin, Miaotianzi; Baxter, Daniel

    2016-03-01

    Threshold based direct WIMP dark matter detectors such as the superheated bubble chambers developed by the PICO experiment have demonstrated excellent electron-recoil and alpha discrimination, excellent scalability, ease of change of target fluid, and low cost. However, the nuclear-recoil like backgrounds have been a limiting factor in their dark matter sensitivity. We present a new type of detector, the scintillating bubble chamber, which reads out the scintillation pulse of the scattering events as well as the pressure, temperature, acoustic traces, and bubble images as a conventional bubble chamber does. The event energy provides additional handle to discriminate against the nuclear-recoil like backgrounds. Liquid xenon is chosen as the target fluid in our prototyping detector for its high scintillation yield and suitable vapor pressure which simplifies detector complexity. The detector can be used as an R&D tool to study the backgrounds present in the current PICO bubble chambers or as a prototype for standalone dark matter detectors in the future. Supported by DOE Grant DE-SC0012161.

  1. Chloride, bromide and iodide scintillators with europium

    DOEpatents

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  2. Pulse height model for deuterated scintillation detectors

    NASA Astrophysics Data System (ADS)

    Wang, Haitang; Enqvist, Andreas

    2015-12-01

    An analytical model of light pulse height distribution for finite deuterated scintillation detectors is created using the impulse approximation. Particularly, the energy distribution of a scattered neutron is calculated based on an existing collision probability scheme for general cylindrical shaped detectors considering double differential cross-sections. The light pulse height distribution is analytically and numerically calculated by convoluting collision sequences with the light output function for an EJ-315 detector from our measurements completed at Ohio University. The model provides a good description of collision histories capturing transferred neutron energy in deuterium-based scintillation materials. The resulting light pulse height distribution details pulse compositions and their corresponding contributions. It shows that probabilities of neutron collision with carbon and deuterium nuclei are comparable, however the light pulse amplitude due to collisions with carbon nuclei is small and mainly located at the lower region of the light pulse distribution axis. The model can explore those neutron interaction events that generate pulses near or below a threshold that would be imposed in measurements. A comparison is made between the light pulse height distributions given by the analytical model and measurements. It reveals a significant probability of a neutron generating a small light pulse due to collisions with carbon nuclei when compared to larger light pulse generated by collisions involving deuterium nuclei. This model is beneficial to understand responses of scintillation materials and pulse compositions, as well as nuclei information extraction from recorded pulses.

  3. A large Scintillating Fibre Tracker for LHCb

    NASA Astrophysics Data System (ADS)

    Greim, R.

    2017-02-01

    The LHCb experiment will be upgraded during LHC Long Shutdown 2 to be able to record data at a higher instantaneous luminosity. The readout rate is currently limited to 1 MHz by the Level 1 trigger. In order to achieve the target integrated luminosity of 50 fb‑1 during LHC Run 3, all subdetectors have to be read out by a 40 MHz trigger-less readout system. Especially, the current tracking detectors downstream of the LHCb dipole magnet suffer from large detector dead times and a small granularity in the Outer Tracker, which consists of proportional straw tubes. Therefore, the Downstream Tracker will be replaced by a Scintillating Fibre Tracker with Silicon Photomultiplier readout. The total sensitive area of 340 m2 is made up of 2.5 m long fibre mats consisting of six staggered layers of 250 μm thin scintillating fibres. The scintillation light created by the charged particles traversing the fibre mats is transported to the fibre ends via total internal reflection and detected by state-of-the-art multi-channel SiPM arrays. This paper presents the detector concept, design, challenges, custom-made readout chips, as well as laboratory and beam test results.

  4. New Scintillating Crystals for PET Scanners

    NASA Astrophysics Data System (ADS)

    Lecoq, Paul

    2002-01-01

    Systematic R&D on basic mechanism in inorganic scintillators, initiated by the Crystal Clear Collaboration at CERN 10 years ago, has contributed not to a small amount, to the development of new materials for a new generation of medical imaging devices with increased resolution and sensitivity. The first important requirement for a scintillator to be used in medical imaging devices is the stopping power for the given energy range of X and γ rays to be considered, and more precisely the conversion efficiency. A high light yield is also mandatory to improve the energy resolution, which is essentially limited by the photostatistics and the electronic noise at these energies. A short scintillation decay time allows to reduce the dead time and therefore to increase the limiting counting rate. When all these requirements are fulfilled the sensitivity and image contrast are increased for a given patient dose, or the dose can be reduced. Examples of new materials under development by the Crystal Clear Collaboration will be given with an emphasis on the major breakthrough they can bring in medical imaging, as compared to present equipments.

  5. Metal-loaded organic scintillators for neutrino physics

    NASA Astrophysics Data System (ADS)

    Buck, Christian; Yeh, Minfang

    2016-09-01

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.

  6. Metal-loaded organic scintillators for neutrino physics

    DOE PAGES

    Buck, Christian; Yeh, Minfang

    2016-08-03

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can bemore » used under stable conditions for many years even in ton scale experiments. Lastly, we review applications of metal loaded scintillators in neutrino experiments and compare the performance as well as the prospects of different scintillator types.« less

  7. Metal-loaded organic scintillators for neutrino physics

    SciTech Connect

    Buck, Christian; Yeh, Minfang

    2016-08-03

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Lastly, we review applications of metal loaded scintillators in neutrino experiments and compare the performance as well as the prospects of different scintillator types.

  8. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    SciTech Connect

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillation light yield was measured to be(1.01±0.12)×103photons/MeV.

  9. Methods for the continuous production of plastic scintillator materials

    DOEpatents

    Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry

    1999-10-19

    Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.

  10. Optical scintillation measurements in a desert environment IV: simulated effects of scintillation on communications links

    NASA Astrophysics Data System (ADS)

    Suite, Michele; Rabinovich, W. S.; Mahon, Rita; Moore, Christopher; Ferraro, Mike; Burris, H. R., Jr.; Thomas, L. M.

    2011-09-01

    Optical scintillation is an effect that limits the performance of many optical systems including imagers and free space optical communication links. The Naval Research Laboratory is undertaking a series of measurement campaigns of optical scintillation in a variety of environments. In December of 2010 measurements were made over a one week period in the desert at China Lake, CA. The NRL TATS system was used to measure time resolved scintillation over a variety of different ranges and terrains. This data has been used to determine fade rate and duration as a function of weather and link margin. Temporal correlation of fades has also been calculated. This data allows simulation of a variety of communication protocols and the effects of those protocols on link throughput. In this paper we present a comparison of different protocols for both direct and retroreflector links.

  11. Cresst-II: dark matter search with scintillating absorbers

    NASA Astrophysics Data System (ADS)

    Angloher, G.; Bucci, C.; Cozzini, C.; von Feilitzsch, F.; Frank, T.; Hauff, D.; Henry, S.; Jagemann, Th.; Jochum, J.; Kraus, H.; Majorovits, B.; Ninkovic, J.; Petricca, F.; Pröbst, F.; Ramachers, Y.; Rau, W.; Seidel, W.; Stark, M.; Uchaikin, S.; Stodolsky, L.; Wulandari, H.

    2004-03-01

    In the CRESST-II experiment, scintillating CaWO4 crystals are used as absorbers for direct weakly interacting massive particles (WIMP) detection. Nuclear recoils can be discriminated against electron recoils by measuring phonons and scintillation light simultaneously. The absorber crystal and the silicon light detector are read out by tungsten superconducting phase transition thermometers. Results on the sensitivity of the phonon and the light channel, radiopurity, the scintillation properties of CaWO4, and on the WIMP sensitivity are presented.

  12. Composite solid-state scintillators for neutron detection

    DOEpatents

    Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.

    2006-09-12

    Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.

  13. Ionospheric scintillation observations over Kenyan region - Preliminary results

    NASA Astrophysics Data System (ADS)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  14. Scintillation of Un-doped ZnO Single Crystals

    SciTech Connect

    Colosimo, A. M.; Ji, Jianfeng; Stepanov, P. S.; Boatner, L. A.; Selim, F. A.

    2016-01-07

    In this paper, scintillation properties are often studied by photo-luminescence (PL) and scintillation measurements. In this work, we combine X-ray-induced luminescence (XRIL) spectroscopy [Review of Scientific Instruments 83, 103112 (2012)] with PL and standard scintillation measurements to give insight into the scintillation properties of un-doped ZnO single crystals. XRIL revealed that ZnO luminescence proportionally increases with X-ray power and exhibits excellent linearity - indicating the possibility of developing radiation detectors with good energy resolution. Finally, by coupling ZnO crystals to fast photomultiplier tubes and monitoring the anode signal, rise times as fast as 0.9 ns were measured.

  15. Development of polystyrene-based scintillation materials and its mechanisms

    NASA Astrophysics Data System (ADS)

    Nakamura, Hidehito; Kitamura, Hisashi; Shinji, Osamu; Saito, Katashi; Shirakawa, Yoshiyuki; Takahashi, Sentaro

    2012-12-01

    Scintillation materials based on polystyrene (PS) have been investigated. Para-terphenyl was employed as a fluorescent molecule (fluor) that functions as a wavelength shifter. A clear increase in photon yield of the scintillation materials relative to the pure PS was observed, which cannot be explained by the conventional theory of scintillation mechanism. Furthermore, the photon yield increased with flour concentration in accordance with a power-law. Here we reveal the emergence of a luminescence of PS-based scintillation materials and demonstrate that their photon yields can be controlled by the fluor concentration.

  16. Plasmonic light yield enhancement of a liquid scintillator

    NASA Astrophysics Data System (ADS)

    Bignell, Lindsey J.; Mume, Eskender; Jackson, Timothy W.; Lee, George P.

    2013-05-01

    We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

  17. Energy Transfer Based Nanocomposite Scintillator for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Aslam, Soha; Sahi, Sunil; Chen, Wei; Ma, Lun; Kenarangui, Rasool

    2014-09-01

    Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum

  18. Multifrequency equatorial ionospheric scintillations in American and Indian zones

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.; Aarons, J.; Whitney, H. E.; Mullen, J. P.; Pantoja, J.; Deshpande, M. R.; Vats, H. O.; Chandra, H.; Davies, K.

    1980-01-01

    Amplitude scintillations of 40/41, 140 and 360 MHz transmissions recorded at Huancayo (phase I) and at Ootacamund (phase II) of the ATS-6 program are compared. The scintillations were found to be strongest between 20 and 24 hr LT with another peak around midday. The daytime scintillations do not show a significant seasonal variation at either of these stations. The nighttime scintillations were maximum during December solstices at Huancayo and during equinoxes at Ootacamund and suggested to be due to non-q type of sporadic E following the occurrence of counter-electrojet.

  19. Lanthanide doped strontium-barium cesium halide scintillators

    DOEpatents

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  20. Report on radiation exposure of lead-scintillator stack

    SciTech Connect

    Underwood, D.G.

    1990-11-08

    A stack of lead and scintillator was placed in a neutral beam obtained from targeting 800 GeV protons. Small pieces of film containing radiochromic dye were placed adjacent to the layers of scintillator for the purpose of measuring the radiation dose to the scintillator. Our motivation was to calibrate the radiation dose obtainable in this manner for future tests of scintillator for SSC experiments and to relate dose to flux to check absolute normalization for calculations. We also observed several other radiation effects which should be considered for both damage and compensation in a calorimeter.

  1. Plasmonic light yield enhancement of a liquid scintillator

    SciTech Connect

    Bignell, Lindsey J.; Jackson, Timothy W.; Mume, Eskender; Lee, George P.

    2013-05-27

    We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

  2. The Scintillation Prediction Observations Research Task (SPORT) Mission

    NASA Astrophysics Data System (ADS)

    Spann, James; Le, Guan; Swenson, Charles; Denardini, Clezio Marcos; Bishop, Rebecca L.; Abdu, Mangalathayil A.; Cupertino Durao, Otavio S.; Heelis, Roderick; Loures, Luis; Krause, Linda; Fonseca, Eloi

    2016-07-01

    Structure in the charged particle number density in the equatorial ionosphere can have a profound impact on the fidelity of HF, VHF and UHF radio signals that are used for ground-to-ground and space-to-ground communication and navigation. The degree to which such systems can be compromised depends in large part on the spatial distribution of the structured regions in the ionosphere and the background plasma density in which they are embedded. In order to address these challenges it is necessary to accurately distinguish the background ionospheric conditions that favor the generation of irregularities from those that do not. Additionally we must relate the evolution of those conditions to the subsequent evolution of the irregular plasma regions themselves. The background ionospheric conditions are conveniently described by latitudinal profiles of the plasma density at nearly constant altitude, which describe the effects of ExB drifts and neutral winds, while the appearance and growth of plasma structure requires committed observations from the ground from at least one fixed longitude. This talk will present an international collaborative CubeSat mission called SPORT that stands for the Scintillation Prediction Observations Research Task. This mission will advance our understanding of the nature and evolution of ionospheric structures around sunset to improve predictions of disturbances that affect radio propagation and telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator. This approach promises Explorer class science at a CubeSat price.

  3. The Scintillation Prediction Observations Research Task (SPORT) Mission

    NASA Astrophysics Data System (ADS)

    Spann, James; Swenson, Charles; Durão, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Nardin, Clezio; Fonseca, Eloi

    2016-04-01

    Structure in the charged particle number density in the equatorial ionosphere can have a profound impact on the fidelity of HF, VHF and UHF radio signals that are used for ground-to-ground and space-to-ground communication and navigation. The degree to which such systems can be compromised depends in large part on the spatial distribution of the structured regions in the ionosphere and the background plasma density in which they are embedded. In order to address these challenges it is necessary to accurately distinguish the background ionospheric conditions that favor the generation of irregularities from those that do not. Additionally we must relate the evolution of those conditions to the subsequent evolution of the irregular plasma regions themselves. The background ionospheric conditions are conveniently described by latitudinal profiles of the plasma density at nearly constant altitude, which describe the effects of ExB drifts and neutral winds, while the appearance and growth of plasma structure requires committed observations from the ground from at least one fixed longitude. This talk will present an international collaborative CubeSat mission called SPORT that stands for the Scintillation Prediction Observations Research Task. This mission will advance our understanding of the nature and evolution of ionospheric structures around sunset to improve predictions of disturbances that affect radio propagation and telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator. This approach promises Explorer class science at a CubeSat price.

  4. Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Hutcheson, Anthony L.; Gwon, Chul; Phlips, Bernard F.; Wulf, Eric A.

    2015-06-01

    This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or γ rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm×10 cm×10 cm cube and a 10-cm diameter×10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the 7Li(p,n)7Be reaction (Q-value: -1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5-3.2 MeV neutrons in 200-300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted γ background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (Ee.e.) vs. proton equivalent energy (Ep.e.), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for <1.0 MeV neutrons; and ranging between a 5-35% reduction for 2.5-3.0 MeV neutrons compared to the EJ-301/309, depending on the scintillator and geometry. Monte Carlo modeling techniques were

  5. Low latitude ionospheric scintillation and zonal irregularity drifts observed with GPS-SCINDA system and closely spaced VHF receivers in Kenya

    NASA Astrophysics Data System (ADS)

    Olwendo, O. J.; Baluku, T.; Baki, P.; Cilliers, P. J.; Mito, C.; Doherty, P.

    2013-05-01

    In this study we have used VHF and GPS-SCINDA receivers located at Nairobi (36.8°E, 1.3°S, dip -24.1°) in Kenya, to investigate the ionospheric scintillation and zonal drift irregularities of a few hundred meter-scale irregularities associated with equatorial plasma density bubbles for the period 2011. From simultaneous observations of amplitude scintillation at VHF and L-band frequencies, it is evident that the scintillation activity is higher during the post sunset hours of the equinoctial months than at the solstice. While it is noted that there is practically no signatures of the L-band scintillation in solstice months (June, July, December, January) and after midnight, VHF scintillation does occur in the solstice months and show post midnight activity through all the seasons. VHF scintillation is characterized by long duration of activity and slow fading that lasts till early morning hours (05:00 LT). Equinoctial asymmetry in scintillation occurs with higher occurrence in March-April than in September-October. The occurrence of post midnight VHF scintillation in this region is unusual and suggests some mechanisms for the formation of scintillation structure that might not be clearly understood. Zonal drift velocities of irregularities were measured using cross-correlation analysis with time series of the VHF scintillation structure from two closely spaced antennas. Statistical analyses of the distribution of zonal drift velocities after sunset hours indicate that the range of the velocities is 30-160 m/s. This is the first analysis of the zonal plasma drift velocity over this region. Based on these results we suggest that the east-west component of the plasma drift velocity may be related to the evolution of plasma bubble irregularities caused by the prereversal enhancement of the eastward electric fields. The equinoctial asymmetry of the drift velocities and scintillation could be attributed to the asymmetry of neutral winds in the thermosphere that drives

  6. Par Pond Fish, Water, and Sediment Chemistry

    SciTech Connect

    Paller, M.H.; Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond.

  7. Fundamental Limits of Scintillation Detector Timing Precision

    PubMed Central

    Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.

    2014-01-01

    In this paper we review the primary factors that affect the timing precision of a scintillation detector. Monte Carlo calculations were performed to explore the dependence of the timing precision on the number of photoelectrons, the scintillator decay and rise times, the depth of interaction uncertainty, the time dispersion of the optical photons (modeled as an exponential decay), the photodetector rise time and transit time jitter, the leading-edge trigger level, and electronic noise. The Monte Carlo code was used to estimate the practical limits on the timing precision for an energy deposition of 511 keV in 3 mm × 3 mm × 30 mm Lu2SiO5:Ce and LaBr3:Ce crystals. The calculated timing precisions are consistent with the best experimental literature values. We then calculated the timing precision for 820 cases that sampled scintillator rise times from 0 to 1.0 ns, photon dispersion times from 0 to 0.2 ns, photodetector time jitters from 0 to 0.5 ns fwhm, and A from 10 to 10,000 photoelectrons per ns decay time. Since the timing precision R was found to depend on A−1/2 more than any other factor, we tabulated the parameter B, where R = BA−1/2. An empirical analytical formula was found that fit the tabulated values of B with an rms deviation of 2.2% of the value of B. The theoretical lower bound of the timing precision was calculated for the example of 0.5 ns rise time, 0.1 ns photon dispersion, and 0.2 ns fwhm photodetector time jitter. The lower bound was at most 15% lower than leading-edge timing discrimination for A from 10 to 10,000 photoelectrons/ns. A timing precision of 8 ps fwhm should be possible for an energy deposition of 511 keV using currently available photodetectors if a theoretically possible scintillator were developed that could produce 10,000 photoelectrons/ns. PMID:24874216

  8. Global Morphology of Ionospheric Scintillations II

    DTIC Science & Technology

    1975-03-11

    Fading at Huancayo , Peru 3. Scintillation Contours at 136 MHz for 6 Years Data from Huancayo , Peru 4. Fading on 254 MHz as Observed at Kwajalein 5...Flight Center, NASA Z861-71-239. 8 3.2 Dependence on Magnetic Activity Data from Huancayo , Peru, when analyzed over a long period has shown as a gross...a second increase, that is, after midnight during magnetically disturbed days. 60 HUANCAYO , PERU LES - 6, 254 MHz S1 > 60 -- Kp = 0 - 3 ---Kp=4-9

  9. Thin GSO scintillator for neutron detection

    SciTech Connect

    Reeder, P.L.

    1994-05-01

    The new scintillator cerium-doped gadolinium orthosilicate (GSO -- Gd{sub 2}SiO{sub 5}:Ce) has a light output that is about 20% that of NaI(T1). The enormous cross section of Gd for capture of.thermal neutrons makes GSO a candidate for novel types of neutron.detectors. The characteristic radiations from neutron capture in Gd can be stopped in about 75 {mu}m of GSO. Data obtained from a GSO detector that was about 0.6-mm thick demonstrated that thermal neutrons could easily be detected and that higher energy gamma rays caused minimal interference.

  10. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  11. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  12. Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon

    NASA Astrophysics Data System (ADS)

    Cao, H.; Alexander, T.; Aprahamian, A.; Avetisyan, R.; Back, H. O.; Cocco, A. G.; Dejongh, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Guardincerri, Y.; Kendziora, C.; Lippincott, W. H.; Love, C.; Lyons, S.; Manenti, L.; Martoff, C. J.; Meng, Y.; Montanari, D.; Mosteiro, P.; Olvitt, D.; Pordes, S.; Qian, H.; Rossi, B.; Saldanha, R.; Sangiorgio, S.; Siegl, K.; Strauss, S. Y.; Tan, W.; Tatarowicz, J.; Walker, S.; Wang, H.; Watson, A. W.; Westerdale, S.; Yoo, J.; Scene Collaboration

    2015-05-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V /cm . For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V /cm . We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from Krm83 internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni ) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  13. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    SciTech Connect

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  14. Microprocessor-based single particle calibration of scintillation counter

    NASA Technical Reports Server (NTRS)

    Mazumdar, G. K. D.; Pathak, K. M.

    1985-01-01

    A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available.

  15. Applications for New Scintillator Technologies in Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    McConnell, Mark L.; Bloser, Peter F.; Legere, Jason; Ryan, James M.

    2016-10-01

    Scintillators have long been used for probing the high energy universe. The reliability and low cost of scintillator-PMT detectors have made them the de facto standard for experiments on high altitude balloons and in orbiting satellites. New scintillators and new readout technologies offer important opportunities for more capable experiments. Recent scintillator developments include faster signals, increased light output, improved energy resolution, and better handling characteristics. Although PMTs remain effective for scintillator readout, new technologies offer more compact, rugged devices with much lower operational voltages. The adoption of these technologies is not without its difficulties, especially for space applications, where the technology readiness level can be an important consideration. To illustrate these issues, we will discuss the use of scintillators in Compton imaging experiments. At energies from about 500 keV to 30 MeV, Compton telescopes are the most effective means of imaging the gamma ray sky. To date, the only Compton telescope that has flown in space was the COMPTEL instrument on NASA's Compton Gamma Ray Observatory (CGRO). CGRO, launched in 1991 and de-orbited in 2000, was based entirely on the use of technologies from the 1980’s. We have been working on an improved Compton telescope design, called the Advanced Scintillator Compton Telescope (ASCOT). It is much like COMPTEL, but utilizes up-to-date scintillator and readout technologies.

  16. Scintillation of nonuniformly correlated beams in atmospheric turbulence.

    PubMed

    Gu, Yalong; Gbur, Greg

    2013-05-01

    We investigated the scintillation properties of nonuniformly correlated (NUC) beams in atmospheric turbulence and have shown that NUC beams can not only have lower scintillation but also higher intensity than Gaussian-Schell model beams and even higher intensity than coherent Gaussian beams over certain propagation distances.

  17. Characterizing Properties and Performance of 3D Printed Plastic Scintillators

    NASA Astrophysics Data System (ADS)

    McCormick, Jacob

    2015-10-01

    We are determining various characteristics of the performance of 3D printed scintillators. A scintillator luminesces when an energetic particle raises electrons to an excited state by depositing some of its energy in the atom. When these excited electrons fall back down to their stable states, they emit the excess energy as light. We have characterized the transmission spectrum, emission spectrum, and relative intensity of light produced by 3D printed scintillators. We are also determining mechanical properties such as tensile strength and compressibility, and the refractive index. The emission and transmission spectra were measured using a monochromator. By observing the transmission spectrum, we can see which optical wavelengths are absorbed by the scintillator. This is then used to correct the emission spectrum, since this absorption is present in the emission spectrum. Using photomultiplier tubes in conjunction with integration hardware (QDC) to measure the intensity of light emitted by 3D printed scintillators, we compare with commercial plastic scintillators. We are using the characterizations to determine if 3D printed scintillators are a viable alternative to commercial scintillators for use at Jefferson Lab in nuclear and accelerated physics detectors. I would like to thank Wouter Deconinck, as well as the Parity group at the College of William and Mary for all advice and assistance with my research.

  18. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  19. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  20. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  1. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  2. Some studies of avalanche photodiode readout of fast scintillators

    SciTech Connect

    Holl, I.; Lorenz, E.; Natkaniez, S.; Renker, D.; Schmelz, C. |; Schwartz, B.

    1995-08-01

    Photomultipliers (PMs) are the classical readout element for scintillation detectors in high energy particle physics, nuclear physics, medical physics, industrial radiation monitors etc. Here, large area avalanche photodiodes with high performance, narrow operation tolerances and high reliability have recently become available. The authors report on some tests of their performance in the readout of fast scintillators.

  3. Purification of KamLAND-Zen liquid scintillator

    SciTech Connect

    Ikeda, Haruo

    2013-08-08

    KamLAND-Zen is neutrino-less double-beta decay search experiment using enriched 300 kg of {sup 136}Xe dissolved in pure liquid scintillator. This report is purification work of liquid scintillator for KamLAND-Zen experiment before installation in the inner-balloon and background rejection processes after installation.

  4. Analysis of Ionospheric Scintillation Characteristics in Sub-Antarctica Region with GNSS Data at Macquarie Island.

    PubMed

    Guo, Kai; Liu, Yang; Zhao, Yan; Wang, Jinling

    2017-01-12

    Ionospheric scintillation has a great impact on radio propagation and electronic system performance, thus is extensively studied currently. The influence of scintillation on Global Navigation Satellite System (GNSS) is particularly evident, making GNSS an effective medium to study characteristics of scintillation. Ionospheric scintillation varies greatly in relation with temporal and spatial distribution. In this paper, both temporal and spatial characteristics of scintillation are investigated based on Macquarie Island's GNSS scintillation data collected from 2011 to 2015. Experiments demonstrate that occurrence rates of amplitude scintillation have a close relationship with solar activity, while phase scintillation is more likely to be generated by geomagnetic activity. In addition, scintillation distribution behaviors related to elevation and azimuth angles are statistically analyzed for both amplitude and phase scintillation. The proposed work is valuable for a deeper understanding of theoretical mechanisms of ionospheric scintillation in this region, and provides a reference for GNSS applications in certain regions around sub-Antarctica.

  5. Analysis of Ionospheric Scintillation Characteristics in Sub-Antarctica Region with GNSS Data at Macquarie Island

    PubMed Central

    Guo, Kai; Liu, Yang; Zhao, Yan; Wang, Jinling

    2017-01-01

    Ionospheric scintillation has a great impact on radio propagation and electronic system performance, thus is extensively studied currently. The influence of scintillation on Global Navigation Satellite System (GNSS) is particularly evident, making GNSS an effective medium to study characteristics of scintillation. Ionospheric scintillation varies greatly in relation with temporal and spatial distribution. In this paper, both temporal and spatial characteristics of scintillation are investigated based on Macquarie Island’s GNSS scintillation data collected from 2011 to 2015. Experiments demonstrate that occurrence rates of amplitude scintillation have a close relationship with solar activity, while phase scintillation is more likely to be generated by geomagnetic activity. In addition, scintillation distribution behaviors related to elevation and azimuth angles are statistically analyzed for both amplitude and phase scintillation. The proposed work is valuable for a deeper understanding of theoretical mechanisms of ionospheric scintillation in this region, and provides a reference for GNSS applications in certain regions around sub-Antarctica. PMID:28085087

  6. GPS Amplitude Scintillations over Kampala, Uganda, During 2010-2011

    NASA Astrophysics Data System (ADS)

    Akala, Andrew O.; Idolor, Raphael; D'Ujanga, Florence M.; Doherty, Patricia H.

    2016-10-01

    This study characterizes equatorial scintillations at L1/L2 GPS frequency over Kampala (0.30°N, 32.50°E, mag. lat. 9.26°S), Uganda, on different time scales during the minimum and ascending phases of solar cycle 24 (2010-2011). Of all the days investigated, 25 October 2011 recorded the highest occurrence of scintillation, and it was attributed to geomagnetic storm occurrence. We used the data of 25 October to generate plots of the elevation angle and S4 index against local time on a satellite- by-satellite basis, with a view to distinguishing satellites links whose signals were impaired by ionospheric irregularities from those impaired by multipath. Conclusively, GPS amplitude scintillations over Kampala occur predominantly during post sunset hours and decay around midnight. Equinoctial months recorded the highest occurrences of scintillations, while June solstice recorded the least. Scintillation occurrences also increase with solar and geomagnetic activity.

  7. Comparison of tropospheric scintillation prediction models of the Indonesian climate

    NASA Astrophysics Data System (ADS)

    Chen, Cheng Yee; Singh, Mandeep Jit

    2014-12-01

    Tropospheric scintillation is a phenomenon that will cause signal degradation in satellite communication with low fade margin. Few studies of scintillation have been conducted in tropical regions. To analyze tropospheric scintillation, we obtain data from a satellite link installed at Bandung, Indonesia, at an elevation angle of 64.7° and a frequency of 12.247 GHz from 1999 to 2000. The data are processed and compared with the predictions of several well-known scintillation prediction models. From the analysis, we found that the ITU-R model gives the lowest error rate when predicting the scintillation intensity for fade at 4.68%. However, the model should be further tested using data from higher-frequency bands, such as the K and Ka bands, to verify the accuracy of the model.

  8. Comparison and analysis of tropospheric scintillation models for Northern Malaysia

    NASA Astrophysics Data System (ADS)

    Mandeep, J. S.; Yee, Anthony Cheng Chen; Abdullah, M.; Tariqul, M.

    2011-07-01

    This paper presents the results of a study on tropospheric scintillation on satellite link that has been performed at University Sains Malaysia (USM) to obtain statistics of scintillation from the 12.255 GHz Superbird-C satellite with an elevation angle of 40.1°. Comparison of existing tropospheric scintillation models, namely the International Telecommunication Union (ITU), Direct Physical-Statistical Prediction (DPSP), Modeled Physical-Statistical Prediction (MPSP), Kamp-Tervonen-Salonen (KVS), and Karasawa were done for the measurement site. Then, cumulative distributions of measured scintillation intensity compared to the result of the prediction models for tropospheric scintillation were plotted and analyzed. ITU-R model gave the best prediction of 5.8% of error at 0.1% of fading time, compared with the other models.

  9. Measurement of ortho-positronium properties in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Perasso, S.; Consolati, G.; Franco, D.; Hans, S.; Jollet, C.; Meregaglia, A.; Tonazzo, A.; Yeh, M.

    2013-08-01

    Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.

  10. Measurement of ortho-positronium properties in liquid scintillators

    SciTech Connect

    Perasso, S.; Franco, D.; Tonazzo, A.; Consolati, G.; Hans, S.; Yeh, M.; Jollet, C.; Meregaglia, A.

    2013-08-08

    Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.

  11. Interplanetary and ionosphere scintillation produced by ICME 20 December 2015

    NASA Astrophysics Data System (ADS)

    Chashei, I. V.; Tyul'bashev, S. A.; Shishov, V. I.; Subaev, I. A.

    2016-09-01

    Observational data of scintillation monitoring with typical time about 1 s at the frequency 111 MHz are presented for the period between 18 and 23 December when interplanetary coronal mass ejection (ICME) of flare origin resulted in the geomagnetic storm on 20-21 December 2015 with Dst ≈ -200 nT. Our estimates show that the mean ICME speed between the solar corona and the start of interplanetary scintillation enhancement is close to the mean speed between the corona and the Earth. The strong increase of the nighttime scintillation level is observed after ICME coming to the Earth. Scintillation analysis of the individual radio sources shows that the 1 s night scintillation is of ionospheric origin and can be explained by an order increase of irregularity drift speed in the disturbed ionosphere.

  12. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    DOE PAGES

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; ...

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be(1.01±0.12)×103photons/MeV.« less

  13. Visible scintillation photodetector device incorporating chalcopyrite semiconductor crystals

    DOEpatents

    Stowe, Ashley C.; Burger, Arnold

    2017-04-04

    A photodetector device, including: a scintillator material operable for receiving incident radiation and emitting photons in response; a photodetector material coupled to the scintillator material operable for receiving the photons emitted by the scintillator material and generating a current in response, wherein the photodetector material includes a chalcopyrite semiconductor crystal; and a circuit coupled to the photodetector material operable for characterizing the incident radiation based on the current generated by the photodetector material. Optionally, the scintillator material includes a gamma scintillator material and the incident radiation received includes gamma rays. Optionally, the photodetector material is further operable for receiving thermal neutrons and generating a current in response. The circuit is further operable for characterizing the thermal neutrons based on the current generated by the photodetector material.

  14. Scintillation fluctuations of optical communication lasers in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Panich, Michael G.; Coffaro, Joseph T.; Belichki, Sara B.; Splitter, Landon J.; Phillips, Ronald L.; Andrews, Larry C.; Fountain, Wayne; Tucker, Frank M.

    2014-06-01

    The purpose of this research is to evaluate scintillation fluctuations on optical communication lasers and evaluate potential system improvements to reduce scintillation effects. This research attempts to experimentally verify mathematical models developed by Andrews and Phillips [1] for scintillation fluctuations in atmospheric turbulence using two different transmitting wavelengths. Propagation range lengths and detector quantities were varied to confirm the theoretical scintillation curve. In order to confirm the range and wavelength dependent scintillation curve, intensity measurements were taken from a 904nm and 1550nm laser source for an assortment of path distances along the 1km laser range at the Townes Laser Institute. The refractive index structure parameter (Cn2) data was also taken at various ranges using two commercial scintillometers. This parameter is used to characterize the strength of atmospheric turbulence, which induces scintillation effects on the laser beam, and is a vital input parameter to the mathematical model. Data was taken and analyzed using a 4-detector board array. The material presented in this paper outlines the verification and validation of the theoretical scintillation model, and steps to improve the scintillation fluctuation effects on the laser beam through additional detectors and a longer transmitting wavelength. Experimental data was post processed and analyzed for scintillation fluctuations of the two transmitting wavelengths. The results demonstrate the benefit of additional detectors and validate a mathematical model that can be scaled for use in a variety of communications or defense applications. Scintillation is a problem faced by every free space laser communication system and the verification of an accurate mathematical model to simulate these effects has strong application across the industry.

  15. SDC conceptual design: Scintillating fiber outer tracker

    SciTech Connect

    Adams, D.; Baumbaugh, A.; Bird, F.; SDC Collaboration

    1992-01-22

    The authors propose an all-scintillating fiber detector for the purpose of outer tracking for the SDC. The objectives of this tracking system are to: (1) provide a first level trigger for {vert_bar}{eta}{vert_bar} < 2.3 with sharp p{sub T} threshold with the ability to resolve individual beam crossings; (2) provide pattern recognition capability and momentum resolution which complements and extends the capabilities of the inner silicon tracking system; (3) provide three dimensional linkage with outer detection systems including the shower maximum detector, muon detectors, and calorimetry; (4) provide robust tracking and track-triggering at the highest luminosities expected at the SSC. The many attractive features of a fiber tracker include good position resolution, low occupancy, low mass in the active volume, and excellent resistance to radiation damage. An additional important feature, especially at the SSC, is the intrinsically prompt response time of a scintillating fiber. This property is exploited in the construction of a level 1 trigger sensitive to individual beam crossings.

  16. High-latitutde scintillations using NNSS satellites

    NASA Astrophysics Data System (ADS)

    Kersley, L.

    1985-11-01

    An experiment is described which has been established in Northern Sweden since September 1984 to monitor scintillations using transmissions from NNSS satellites. Designed for long-term nearly-unattended operation, with control and data handling based around a PDP 11/23 minicomputer, the equipment records and processes data from more than 20 NNSS passes per day. Stored on magnetic tape for further study for each 20s segment of received signal after suitable detrending, are S4-indices for both frequencies, the r.m.s. differential phase fluctuations, the differential phase rotation (differential doppler), together with statistics of signal fading below selected thresholds and durations of individual fades. Determination of satellite position in nearly-real time from the transmitted ephemeris parameters enables estimates of effective ionospheric irregularity height to be made for high-elevation passes by means of the cross correlation of signals received on two separated antennas. A second mode of operation allows the raw data to be stored for subsequent analysis. This has been used successfully for coordinated special program experiments in conjunction with the EISCAT ionospheric radar facility in the study of the physical processes reponsible for the scintillation-producing irregularities.

  17. Buried plastic scintillator muon telescope (BATATA)

    NASA Astrophysics Data System (ADS)

    Alfaro, R.; de Donato, C.; D'Olivo, J. C.; Guzmán, A.; Medina-Tanco, G.; Moreno Barbosa, E.; Paic, G.; Patiño Salazar, E.; Salazar Ibarguen, H.; Sánchez, F. A.; Supanitsky, A. D.; Valdés-Galicia, J. F.; Vargas Treviño, A. D.; Vergara Limón, S.; Villaseñor, L. M.; Auger Collaboration

    2010-05-01

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm2. Each layer is 4m2 and is composed by 49 rectangular strips of 4cm×2m, oriented at a 90∘ angle with respect to its companion layer, which gives an xy-coincidence pixel of 4×4cm2. The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2μs data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  18. Fast Scintillating Paddles for DarkLight

    NASA Astrophysics Data System (ADS)

    Palumbo, Daniel

    2017-01-01

    The DarkLight experiment proposes to search for a dark photon in the 10-100 MeV mass range via its production in fixed-target electron-proton collisions. The experimental design is driven by the desire to detect the complete final state including the recoiling proton, while also sustaining a very high luminosity in order to search for this rare process. Although the final design of the DarkLight experiment calls for fully streamed detector readout, initial studies will rely on traditional, triggered approaches. In order to facilitate precision measurements at high rate, a fast, thin, finely-segmented trigger detector based on plastic scintillating paddles and custom amplifiers was developed. I will discuss this design and its performance in recent DarkLight beam studies, as well as the work we have done to develop detectors using individual scintillating fibers. The DarkLight project is supported by DOE grant DE-FG02-94ER40818.

  19. Liquid Scintillation Detectors for High Energy Neutrinos

    SciTech Connect

    Smith, Stefanie N.; Learned, John G.

    2010-03-30

    Large open volume (not segmented) liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long-baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat's principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we are calling the 'Fermat surface', and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long-baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long-baseline detector in this same beam, and LENA in Europe for future long-baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long-baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.

  20. Characterization of cerium fluoride nanocomposite scintillators

    SciTech Connect

    Stange, Sy; Esch, Ernst I; Brown, Leif O; Couture, Aaron J; Mckigney, Edward A; Muenchausen, Ross E; Del Sesto, Rico E; Gilbertson, Robert D; Mccleskey, T Mark; Reifarth, Rene

    2009-01-01

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF{sub 3}) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  1. Relative light yield and temporal response of a stilbene-doped bibenzyl organic scintillator for neutron detection

    SciTech Connect

    Brown, J. A.; Goldblum, B. L. Brickner, N. M.; Daub, B. H.; Kaufman, G. S.; Bibber, K. van; Vujic, J.; Bernstein, L. A.; Bleuel, D. L.; Caggiano, J. A.; Hatarik, R.; Phillips, T. W.; Zaitseva, N. P.; Wender, S. A.

    2014-05-21

    The neutron time-of-flight (nTOF) diagnostics used to characterize implosions at the National Ignition Facility (NIF) has necessitated the development of novel scintillators that exhibit a rapid temporal response and high light yield. One such material, a bibenzyl-stilbene mixed single-crystal organic scintillator grown in a 99.5:0.5 ratio in solution, has become the standard scintillator used for nTOF diagnostics at NIF. The prompt fluorescence lifetime and relative light yield as a function of proton energy were determined to calibrate this material as a neutron detector. The temporal evolution of the intensity of the prompt fluorescent response was modeled using first-order reaction kinetics and the prompt fluorescence decay constant was determined to be 2.46 ± 0.01 (fit) ± 0.13 (systematic) ns. The relative response of the bibenzyl-stilbene mixed crystal generated by recoiling protons was measured, and results were analyzed using Birks' relation to quantify the non-radiative quenching of excitation energy in the scintillator.

  2. suPAR: The Molecular Crystal Ball

    PubMed Central

    Thunø, Maria; Macho, Betina; Eugen-Olsen, Jesper

    2009-01-01

    soluble urokinase Plasminogen Activator Receptor (suPAR) levels reflect inflammation and elevated suPAR levels are found in several infectious diseases and cancer. suPAR exists in three forms; suPARI-III, suPARII-III and suPARI which show different properties due to structural differences. Studies suggest that full-length suPAR is a regulator of uPAR/uPA by acting as uPA-scavenger, whereas the cleaved suPARII-III act as a chemotactic agent promoting the immune response via the SRSRY sequence in the linker-region. This review focus on the various suPAR fragments and their involvement in inflammation and pathogenic processes. We focus on the molecular mechanisms of the suPAR fragments and the link to the inflammatory process, as this could lead to medical applications in infectious and pathological conditions. PMID:19893210

  3. Comparison of gamma-ray detectors: Scintillators, scintillating fibers, and semiconductors

    SciTech Connect

    Moss, C.E.

    1994-12-31

    New scintillators that have advantages relative to NaI(Tl) and BGO include GSO, LSO, YAP, and BaF{sub 2}. GSO, for example, is very radiation hard, and BaF{sub 2} is very fast. Scintillating fibers, which allow good spatial resolution and complex geometries, have been used extensively in high energy physics, but they can also be used at lower energies. Semiconductors such as germanium, silicon, CdTe, CdZnTe, and HgI{sub 2} can provide good resolution. The proliferation of types has made selection of a gamma-ray detector for a particular application difficult. The authors compare the different types and give examples of choices that have been made for laboratory experiments, portable instruments, and space applications.

  4. Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors

    SciTech Connect

    Crow, Lowell; Funk, Loren L; Hannan, Bruce W; Hodges, Jason P; Riedel, Richard A; Wang, Cai-Lin

    2016-01-01

    In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52% higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.

  5. A Generic Receiver Tracking Model for GPS Ionospheric Amplitude Scintillation

    NASA Astrophysics Data System (ADS)

    Paula, E. R.; Moraes, A. D.; Perrella, W. J.; Galera Monico, J. F.

    2012-12-01

    Ionospheric scintillations result in rapid variations in phase and amplitude of the radio signal, which propagates through the ionosphere. Depending on the temporal and spatial situation, the scintillation can represent a problem in the availability and precision of the Global Navigation Satellite Systems (GNSS). Scintillations affect the receiver performance, specially the tracking loop level. Depending on the scintillation level, the receiver might increase the measurement errors or even can lead to a loss of lock of the carrier and code loops. In extreme cases, the scintillation can result in full disrupting of the receiver. In this work we introduce a generic model to evaluate the effects of ionospheric amplitude scintillation on GPS receiver tracking loops. This model is based on α-μ distribution, which can be seen as a generalized fading model, that includes a variety of distributions such as Gamma, Nakagami-m, Exponential, Weibull, one-sided Gaussian and Rayleigh. Differently from the model based only on Nakagami-m, this one is not limited to S4< 0,71 which allows using it to predict amplitude scintillation effects for stronger scenarios. The estimation of α-μ coefficients, the empirical parameterization based on field measurements and the typical values estimated based on observations made during the last solar maximum are presented and discussed.

  6. Development of scintillation materials for medical imaging and other applications

    SciTech Connect

    Melcher, C. L.

    2013-02-05

    Scintillation materials that produce pulses of visible light in response to the absorption of energetic photons, neutrons, and charged particles, are widely used in various applications that require the detection of radiation. The discovery and development of new scintillators has accelerated in recent years, due in large part to their importance in medical imaging as well as in security and high energy physics applications. Better understanding of fundamental scintillation mechanisms as well as the roles played by defects and impurities have aided the development of new high performance scintillators for both gamma-ray and neutron detection. Although single crystals continue to dominate gamma-ray based imaging techniques, composite materials and transparent optical ceramics potentially offer advantages in terms of both synthesis processes and scintillation performance. A number of promising scintillator candidates have been identified during the last few years, and several are currently being actively developed for commercial production. Purification and control of raw materials and cost effective crystal growth processes can present significant challenges to the development of practical new scintillation materials.

  7. Regional Arctic observations of TEC gradients and scintillations

    NASA Astrophysics Data System (ADS)

    Durgonics, Tibor; Høeg, Per; Benzon, Hans-Henrik

    2015-04-01

    In recent years, there has been growing scientific interest in Arctic ionospheric properties and variations. However our understanding of the fundamental ionospheric processes present in this area is still incomplete. GNSS networks present in Greenland today make it possible to acquire near-real time observations of the state and variations of the high-latitude ionosphere. This data can be employed to obtain relevant geophysical variables and statistics. In our study GPS-derived total electron content (TEC) measurements have been complemented with amplitude scintillation indices (S4), and phase scintillation indices (σφ). The investigation of the relationship between these geophysical variables will likely lead to new ways to study the underlying physical processes and to build tools for monitoring and predicting large-scale patterns in Arctic TEC and scintillations. A number of specific ionosphere events will be presented and the underlying geophysical process will be identified and described. In particular, results will be presented where large-scale gradients in the regional TEC are compared with the growth of scintillations. The statistics of the scintillations will be investigated, with emphasis on how well the scintillations follow the Nakagami-m distribution. The spectra of both the intensities and phase will be calculated, and the corner frequency of these spectra will also be determined. These corner frequencies will be used to compute a number of important geophysical and ionospheric parameters. Furthermore, we will discuss how the spectral characteristics of the scintillations during large TEC gradients vary, and how values of the power spectra slopes change during increasing scintillations. These values will be validated against values found in prior studies. TEC and scintillation time-series and maps will also be presented over the Greenlandic region. We will show how the expansion of the auroral oval during geomagnetic storms can be detected from

  8. Surface preparation and coupling in plastic scintillator dosimetry.

    PubMed

    Ayotte, Guylaine; Archambault, Louis; Gingras, Luc; Lacroix, Frédéric; Beddar, A Sam; Beaulieu, Luc

    2006-09-01

    One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity.

  9. Surface preparation and coupling in plastic scintillator dosimetry

    SciTech Connect

    Ayotte, Guylaine; Archambault, Louis; Gingras, Luc; Lacroix, Frederic; Beddar, A. Sam; Beaulieu, Luc

    2006-09-15

    One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity.

  10. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  11. Scintillation properties of N2 and CF4 and performances of a scintillating ionization chamber

    NASA Astrophysics Data System (ADS)

    Lehaut, G.; Salvador, S.; Fontbonne, J.-M.; Lecolley, F.-R.; Perronnel, J.; Vandamme, Ch.

    2015-10-01

    In this work, we studied the emission yields, decay times and coincidence resolving times (CRT) of two gases, nitrogen (N2) and tetrafluoromethane (CF4), used for particle detection in the context of fission products measurement. The set-up was made of an ionization chamber and two photomultiplier tubes (PMTs) placed front-to-front on each side of the active zone of the chamber. Using the photomultiplier tubes, the number of photoelectrons (phe) converted at the photocathodes from the scintillation processes in each gas was quantified and the scintillation time spectra were recorded. A scintillation emission yield of 24 phe MeV-1 with a decay time of τd = 2.5 ns in N2, and 225 phe MeV-1 with τd = 6.2 ns for CF4, has been measured. With our set-up, the coincidence resolving time (σ values) between the two PMTs have been measured using alpha particles at 1.4 ns and 0.34 ns for N2 and CF4, respectively.

  12. CRESST-II: dark matter search with scintillating absorbers

    NASA Astrophysics Data System (ADS)

    Angloher, G.; Bucci, C.; Cozzini, C.; von Feilitzsch, F.; Frank, T.; Hauff, D.; Henry, S.; Jagemann, Th.; Jochum, J.; Kraus, H.; Majorovits, B.; Ninkovic, J.; Petricca, F.; Pröbst, F.; Ramachers, Y.; Rau, W.; Seidel, W.; Stark, M.; Uchaikin, S.; Stodolsky, L.; Wulandari, H.

    2005-01-01

    In the CRESST-II experiment, scintillating CaWO 4 crystals are used as absorbers for direct WIMP (weakly interacting massive particles) detection. Nuclear recoils can be discriminated against electron recoils by measuring phonons and scintillation light simultaneously. The absorber crystal and the silicon light detector are read out by tungsten superconducting phase transition thermometers (W-SPTs). Results on the sensitivity of the phonon and the light channel, radiopurity, the scintillation properties of CaWO 4, and on the WIMP sensitivity are presented.

  13. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.

    PubMed

    Zhou, Xiang; Liu, Qian; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhang, Zhenyu; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-07-01

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.

  14. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors

    SciTech Connect

    Zhou, Xiang Zhang, Zhenyu; Liu, Qian; Zheng, Yangheng; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-07-15

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.

  15. Neutron detector using lithiated glass-scintillating particle composite

    SciTech Connect

    Wallace, Steven; Stephan, Andrew C.; Dai, Sheng; Im, Hee-Jung

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  16. Alpha counting and spectrometry using liquid scintillation methods

    SciTech Connect

    McDowell, W J

    1986-01-01

    The material in this report is intended to be a practical introduction and guide to the use of liquid scintillation for alpha counting and spectrometry. Other works devoted to the development of the theory of liquid scintillation exist and a minimum of such material is repeated here. Much remains to be learned and many improvements remain to be made in the use of liquid scintillation for alpha counting and spectrometry. It is hoped that this modest work will encourage others to continue development in the field.

  17. Design and Prototyping of a High Granularity Scintillator Calorimeter

    SciTech Connect

    Zutshi, Vishnu

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  18. Water-based scintillators for large-scale liquid calorimetry

    SciTech Connect

    Winn, D.R.; Raftery, D.

    1985-02-01

    We have investigated primary and secondary solvent intermediates in search of a recipe to create a bulk liquid scintillator with water as the bulk solvent and common fluors as the solutes. As we are not concerned with energy resolution below 1 MeV in large-scale experiments, light-output at the 10% level of high-quality organic solvent based scintillators is acceptable. We have found encouraging performance from industrial surfactants as primary solvents for PPO and POPOP. This technique may allow economical and environmentally safe bulk scintillator for kiloton-sized high energy calorimetry.

  19. Method for measuring multiple scattering corrections between liquid scintillators

    SciTech Connect

    Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.; Wurtz, R. E.

    2016-04-11

    In this study, a time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  20. Method for measuring multiple scattering corrections between liquid scintillators

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.; Wurtz, R. E.

    2016-07-01

    A time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  1. Scintillating glass fiber-optic neutron sensors

    NASA Astrophysics Data System (ADS)

    Abel, K. H.; Arthur, R. J.; Bliss, M.

    1994-04-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated lithium silicate scintillating fibers via a hot-downdraw process. These fibers, which, as produced, typically have a transmission length (e(sup -1) length) of greater than 2 meters, are found to undergo aging when subjected to room air. The aging, which is complete in a few weeks, reduces the transmission length to the order of 0.5 meter. Because of the high alkali content of the glass (on the order of 20-30 mole percent lithia), we have attributed this aging to aqueous corrosion at the polymer cladding/glass interface. Changes in transmission with chemical treatment of the surface support the corrosion model. Fiber transmission performance has been preserved by modifying the hot-downdraw to a double crucible to produce glass-on-glass waveguides.

  2. Sound and light from fractures in scintillators.

    PubMed

    Tantot, A; Santucci, S; Ramos, O; Deschanel, S; Verdier, M-A; Mony, E; Wei, Y; Ciliberto, S; Vanel, L; Di Stefano, P C F

    2013-10-11

    Prompted by intriguing events observed in certain particle-physics searches for rare events, we study light and acoustic emission simultaneously in some inorganic scintillators subject to mechanical stress. We observe mechanoluminescence in Bi4Ge3O12, CdWO4, and ZnWO4, in various mechanical configurations at room temperature and ambient pressure. We analyze the temporal and amplitude correlations between the light emission and the acoustic emission during fracture. A novel application of the precise energy calibration of Bi4Ge3O12 provided by radioactive sources allows us to deduce that the fraction of elastic energy converted to light is at least 3×10(-5).

  3. Barium iodide single-crystal scintillator detectors

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Hull, Giulia; Niedermayr, Thomas R.; Drobshoff, Alexander; Payne, Stephen A.; Roy, Utpal N.; Cui, Yunlong; Bhattacharaya, Ajanta; Harrison, Melissa; Guo, Mingsheng; Groza, Michael; Burger, Arnold

    2007-09-01

    We find that the high-Z crystal Barium Iodide is readily growable by the Bridgman growth technique and is less prone to crack compared to Lanthanum Halides. We have grown Barium Iodide crystals: undoped, doped with Ce 3+, and doped with Eu 2+. Radioluminescence spectra and time-resolved decay were measured. BaI II(Eu) exhibits luminescence from both Eu 2+ at 420 nm (~450 ns decay), and a broad band at 550 nm (~3 μs decay) that we assign to a trapped exciton. The 550 nm luminescence decreases relative to the Eu 2+ luminescence when the Barium Iodide is zone refined prior to crystal growth. We also describe the performance of BaI II(Eu) crystals in experimental scintillator detectors.

  4. Scintillating glass fiber-optic neutron sensors

    SciTech Connect

    Abel, K.H.; Arthur, R.J.; Bliss, M.

    1994-04-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated lithium silicate scintillating fibers via a hot-downdraw process. These fibers, which, as produced, typically have a transmission length (e{sup {minus}1} length) of greater than 2 meters, are found to undergo aging when subjected to room air. The aging, which is complete in a few weeks, reduces the transmission length to the order of 0.5 meter. Because of the high alkali content of the glass (on the order of 20--30 mole % lithia), we have attributed this aging to aqueous corrosion oat the polymer cladding/glass interface. changes in transmission with chemical treatment of the surface support the corrosion model. Fiber transmission performance has been preserved by modifying the hot-downdraw to a double crucible to produce glass-on-glass waveguides.

  5. The Oriented Scintillation Spectrometer Experiment - Instrument description

    NASA Technical Reports Server (NTRS)

    Johnson, W. N.; Kinzer, R. L.; Kurfess, J. D.; Strickman, M. S.; Purcell, W. R.; Grabelsky, D. A.; Ulmer, M. P.; Hillis, D. A.; Jung, G. V.; Cameron, R. A.

    1993-01-01

    The Oriented Scintillation Spectrometer Experiment on the Arthur Holly Compton Gamma Ray Observatory satellite uses four actively shielded NaI (Tl)-CsI(Na) phoswich detectors to provide gamma-ray line and continuum detection capability in the 0.05-10 MeV energy range. The instrument includes secondary capabilities for gamma-ray and neutron detection between 10 and 250 MeV. The detectors have 3.8 deg x 11.04 deg (FWHM) fields of view defined by tungsten collimators. Each detector has an independent, single-axis orientation system which permits offset pointing from the spacecraft Z-axis for background measurements and multitarget observations. The instrument, and its calibration and performance, are described.

  6. The Oriented Scintillation Spectrometer Experiment - Instrument description

    NASA Astrophysics Data System (ADS)

    Johnson, W. N.; Kinzer, R. L.; Kurfess, J. D.; Strickman, M. S.; Purcell, W. R.; Grabelsky, D. A.; Ulmer, M. P.; Hillis, D. A.; Jung, G. V.; Cameron, R. A.

    1993-06-01

    The Oriented Scintillation Spectrometer Experiment on the Arthur Holly Compton Gamma Ray Observatory satellite uses four actively shielded NaI (Tl)-CsI(Na) phoswich detectors to provide gamma-ray line and continuum detection capability in the 0.05-10 MeV energy range. The instrument includes secondary capabilities for gamma-ray and neutron detection between 10 and 250 MeV. The detectors have 3.8 deg x 11.04 deg (FWHM) fields of view defined by tungsten collimators. Each detector has an independent, single-axis orientation system which permits offset pointing from the spacecraft Z-axis for background measurements and multitarget observations. The instrument, and its calibration and performance, are described.

  7. SSPM Scintillator Readout for Gamma Radiation Detection

    SciTech Connect

    Baker, S A; Wendelberger, B; Young, J A; Green, J A; Guise, R E; Franks, L; Staples, C

    2011-09-01

    Silicon-based photodetectors offer several benefits relative to photomultiplier tube–based scintillator systems. Solid-state photomultipliers (SSPM) can realize the gain of a photomultiplier tube (PMT) with the quantum efficiency of silicon. The advantages of the solid-state approach must be balanced with adverse trade-offs, for example from increased dark current, to optimize radiation detection sensitivity. We are designing a custom SSPM that will be optimized for green emission of thallium-doped cesium iodide (CsI(Tl)). A typical field gamma radiation detector incorporates thallium doped sodium iodide (NaI(Tl)) and a radiation converter with a PMT. A PMT’s sensitivity peaks in the blue wavelengths and is well matched to NaI(Tl). This paper presents results of photomultiplier sensitivity relative to conventional SSPMs and discusses model design improvements. Prototype fabrications are in progress.

  8. SSPM scintillator readout for gamma radiation detection

    NASA Astrophysics Data System (ADS)

    Baker, Stuart A.; Stapels, Christopher; Green, J. Andrew; Guise, Ronald E.; Young, Jason A.; Franks, Larry; Stokes, Britany; Wendelberger, Elizabeth

    2011-09-01

    Silicon-based photodetectors offer several benefits relative to photomultiplier tube-based scintillator systems. Solid-state photomultipliers (SSPM) can realize the gain of a photomultiplier tube (PMT) with the quantum efficiency of silicon. The advantages of the solid-state approach must be balanced with adverse trade-offs, for example from increased dark current, to optimize radiation detection sensitivity. We are designing a custom SSPM that will be optimized for green emission of thallium-doped cesium iodide (CsI(Tl)). A typical field gamma radiation detector incorporates thallium doped sodium iodide (NaI(Tl)) and a radiation converter with a PMT. A PMT's sensitivity peaks in the blue wavelengths and is well matched to NaI(Tl). This paper presents results of photomultiplier sensitivity relative to conventional SSPMs and discusses model design improvements. Prototype fabrications are in progress.

  9. Bulk semiconducting scintillator device for radiation detection

    DOEpatents

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  10. Spectroscopic neutron detection using composite scintillators

    NASA Astrophysics Data System (ADS)

    Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.

    2016-09-01

    Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.

  11. Equatorial Scintillation Predictions from C/NOFS Planar Langmuir Probe Electron Density Fluctuation Data

    DTIC Science & Technology

    2014-09-05

    scintillation index S4 . The results from the calculations were compared with corresponding scintillation measurements by a 244-MHz Scintillation...the scintillation index S4 (the standard deviation of I/<I>, where I is the received intensity and <I> its average value) at the VHF SCINDA...combination of immediately available C/NOFS PLP data with a propagation model was used to forecast the scintillation index S4 and the results compared with

  12. Study of scintillation in natural and synthetic quartz and methacrylate

    NASA Astrophysics Data System (ADS)

    Amaré, J.; Borjabad, S.; Cebrián, S.; Cuesta, C.; Fortuño, D.; García, E.; Ginestra, C.; Gómez, H.; Herrera, D. C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2014-06-01

    Samples from different materials typically used as optical windows or light guides in scintillation detectors were studied in a very low background environment, at the Canfranc Underground Laboratory, searching for scintillation. A positive result can be confirmed for natural quartz: two distinct scintillation components have been identified, not being excited by an external gamma source. Although similar effect has not been observed neither for synthetic quartz nor for methacrylate, a fast light emission excited by intense gamma flux is evidenced for all the samples in our measurements. These results could affect the use of these materials in low energy applications of scintillation detectors requiring low radioactive background conditions, as they entail a source of background.

  13. A scintillator purification plant and fluid handling system for SNO+

    NASA Astrophysics Data System (ADS)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  14. YAP:Ce scintillator characteristics for neutron detection

    SciTech Connect

    Viererbl, L.; Klupak, V.; Vins, M.; Soltes, J.

    2015-07-01

    YAP:Ce (YAlO{sub 3}:Ce{sup +}, Yttrium Aluminum Perovskite, Ce{sup +} doped) crystals with appropriate converters seem like prospective scintillators for neutron detection. An important aspect for neutron detection with inorganic scintillators is the ability to discriminate neutron radiation from gamma radiation by pulse height of signals. For a detailed measurement of the aspect, a YAP:Ce crystal scintillator with lithium or hydrogen converters and a photomultiplier was used. A plutonium-beryllium neutron source and horizontal neutron channel beams of the LVR-15 research reactor were used as neutron sources. The measurement confirmed the possibility to use the YAP:Ce scintillator for neutron radiation detection. The degree of discrimination between neutron and gamma radiation for different detection configurations was studied. (authors)

  15. A scintillator purification plant and fluid handling system for SNO+

    SciTech Connect

    Ford, Richard J.

    2015-08-17

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  16. Experimental efforts and results in finding new heavy scintillators

    SciTech Connect

    Derenzo, S.E.; Moses, W.W.

    1992-09-01

    New heavy scintillators are being discovered with increasing frequency. In recent years NaI(Tl) (with its high light output and energy resolution) has been joined by BGO (with its high stopping power), BaF{sub 2} (with its excellent timing resolution), and CeF{sub 3} (with its speed and short Moliere radius). More than 10 potentially useful scintillators have been under development in the past five years, such as PbSO{sub 4} and Lu{sub 2}SiO{sub 5}(Ce). We tabulate the characteristics of these and other scintillators, including wavelength, luminous efficiency, decay time, and initial intensity. We describe a search strategy and the prospects for finding the ``ideal`` heavy scintillator, which would combine the light output of NaI(Tl) and CsI(Tl), the stopping power of BGO, and the speed of BaF{sub 2} and ZnO(Ga).

  17. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in the body by means of a photon radiation detector. This generic type of device may include...

  18. Final LDRD report : advanced plastic scintillators for neutron detection.

    SciTech Connect

    Vance, Andrew L.; Mascarenhas, Nicholas; O'Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  19. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  20. High effective atomic number polymer scintillators for gamma ray spectroscopy

    DOEpatents

    Cherepy, Nerine Jane; Sanner, Robert Dean; Payne, Stephen Anthony; Rupert, Benjamin Lee; Sturm, Benjamin Walter

    2014-04-15

    A scintillator material according to one embodiment includes a bismuth-loaded aromatic polymer having an energy resolution at 662 keV of less than about 10%. A scintillator material according to another embodiment includes a bismuth-loaded aromatic polymer having a fluor incorporated therewith and an energy resolution at 662 keV of less than about 10%. Additional systems and methods are also presented.

  1. Fluorescence decay-time constants in organic liquid scintillators

    SciTech Connect

    Marrodan Undagoitia, T.; Feilitzsch, F. von; Oberauer, L.; Potzel, W.; Ulrich, A.; Winter, J.; Wurm, M.

    2009-04-15

    The fluorescence decay-time constants have been measured for several scintillator mixtures based on phenyl-o-xylylethane (PXE) and linear alkylbenzene (LAB) solvents. The resulting values are of relevance for the physics performance of the proposed large-volume liquid scintillator detector Low Energy Neutrino Astronomy (LENA). In particular, the impact of the measured values to the search for proton decay via p{yields}K{sup +}{nu} is evaluated in this work.

  2. Geomagnetic Activity and the Equatorial Scintillation of Satellite Signals.

    DTIC Science & Technology

    1980-05-19

    BEORE COMPLETING FORM i. �T NUMBER 2 GOVT ACCESSION No. 3 . RECIPIENT’S CATALOG NUMBER NOSC Technical Report 554 (TR 554) /. 4. TITLE (and SW 441111...Occurrence and intensity of equatorial scintillation have been correlated with daily summed geomagnetic 3 -hour Kp indices, through scintillation data from...satellites at two elevation angles for uhf and 1--hand. They also have been correlated with the individual 3 -hour Kp indices and the correlations

  3. A Gas Proportional Scintillation Counter with krypton filling

    NASA Astrophysics Data System (ADS)

    Monteiro, C. M. B.; Mano, R. D. P.; Barata, E. C. G. M.; Fernandes, L. M. P.; Freitas, E. D. C.

    2016-12-01

    A Gas Proportional Scintillation Counter filled with pure krypton was studied. Energy resolution below 10% for 5.9-keV X-rays was obtained with this prototype. This value is much better than the energy resolution obtained with proportional counters or other MPGDs with krypton filling. The krypton electroluminescence scintillation and ionisation thresholds were found to be about 0.5 and 3.5 kV cm-1bar-1, respectively.

  4. Distribution Models for Optical Scintillation Due to Atmospheric Turbulence

    DTIC Science & Technology

    2005-12-12

    beam jitter is found to be a dominant effect when this radius is close to unity, and the relationship between pointing error and scintillation is...phase errors in the near Field of the transmitter. If the optical phase at each point in the transmitter plane is described by the residual, 9, within...is close to unity, and the relationship between pointing error and scintillation is examined in detail. As a result of this work, models for the mean

  5. Ternary liquid scintillator for optical-fiber applications

    SciTech Connect

    Franks, L.A.; Lutz, S.S.

    1981-06-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  6. Gamma ray spectroscopy in astrophysics: Future role of scintillation detectors

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.

    1978-01-01

    The future role of conventional scintillation detector telescopes for line gamma-ray astronomy is discussed. Although the energy resolution of the germanium detectors now being used by several groups is clearly desirable, the larger effective areas and higher efficiencies available with scintillation detectors is advantageous for many observations. This is particularly true for those observations of astrophysical phenomena where significant line broadening is expected.

  7. PAR for the Course: A Congruent Pedagogical Approach for a PAR Methods Class

    ERIC Educational Resources Information Center

    Hammond, Joyce D.; Hicks, Maria; Kalman, Rowenn; Miller, Jason

    2005-01-01

    In the past two years, three graduate students and a senior faculty member have co-taught a participatory action research (PAR) course to undergraduate and graduate students. In this article the co-teachers advocate a set of pedagogical principles and practices in a PAR-oriented classroom that establishes congruency with community PAR projects in…

  8. Response of plastic scintillators to low-energy photons.

    PubMed

    Peralta, Luis; Rêgo, Florbela

    2014-08-21

    Diagnostic radiology typically uses x-ray beams between 25 and 150 kVp. Plastic scintillation detectors (PSDs) are potentially successful candidates as field dosimeters but careful selection of the scintillator is crucial. It has been demonstrated that they can suffer from energy dependence in the low-energy region, an undesirable dosimeter characteristic. This dependence is partially due to the nonlinear light yield of the scintillator to the low-energy electrons set in motion by the photon beam. In this work, PSDs made of PMMA, PVT or polystyrene were studied for the x-ray beam range 25 to 100 kVp. For each kVp data has been acquired for additional aluminium filtrations of 0.5, 1.0, 2.0 and 4.0 mm. Absolute dose in the point of measurement was obtained with an ionization chamber calibrated to dose in water. From the collected data, detector sensitivities were obtained as function of the beam kVp and additional filtration. Using Monte Carlo simulations relative scintillator sensitivities were computed. For some of the scintillators these sensitivities show strong energy-dependence for beam average energy below 35 keV for each additional filtration but fair constancy above. One of the scintillators (BC-404) has smaller energy-dependence at low photon average energy and could be considered a candidate for applications (like mammography) where beam energy has small span.

  9. Scintillation recording and playback in free-space optical links

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Mahon, Rita; Ferraro, Mike S.; Murphy, James L.; Moore, Christopher I.

    2016-11-01

    The performance of a free-space optical (FSO) communication system is strongly affected by optical scintillation. Scintillation fades can cause errors when the power on a detector falls below its noise floor while surges can overload a detector. The very long time scale of scintillation compared to a typical bit in an FSO link means that error-correcting protocols designed for fiber optic links are inappropriate for FSO links. Comparing the performance effects of different components, such as photodetectors or protocols, such as forward error correction, in the field is difficult because conditions are constantly changing. On the other hand, laboratory-based turbulence simulators may not really simulate the effects of long-range propagation through the atmosphere. We have investigated a different approach. Scintillation has been measured during field tests using FSO terminals by sending a continuous wave beam through the atmosphere. A high dynamic range photodetector was digitized at a 5-KHz rate and files of the intensity variations were saved. Many hours of scintillation data under different environmental conditions and at different sites have been combined into a library of data. A fiber-optic-based scintillation playback system was then used in the laboratory to test modems and protocols with the recorded irradiance files. This enabled comparisons using the same atmospheric conditions allowing optimization of such parameters as detector dynamic range. It also allowed comparison and optimization of different error correcting protocols.

  10. An instrument for measuring scintillators efficiently based on silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Yang, M. J.; Zhang, Z. M.; Wang, Y. J.; Li, D. W.; Zhou, W.; Tang, H. H.; Liu, Y. T.; Chai, P.; Shuai, L.; Huang, X. C.; Liu, S. Q.; Zhu, M. L.; Jiang, X. P.; Zhang, Y. W.; Li, T.; Ma, B.; Sun, S. F.; Sun, L. Y.; Wang, Q.; Lu, Z. R.; Zhang, T.; Wei, L.

    2016-11-01

    An instrument used for measuring multiple scintillators' light output and energy resolution was developed. The instrument consisted of a light sensor array which was composed of 64 discrete SiPMs (Silicon Photomultipliers), a corresponding individual channel readout electronics system, and a data processing algorithm. A Teflon grid and a large interval between adjacent SiPMs were employed to eliminate the optical cross talk among scintillators. The scintillators' light output was obtained by comparing with a reference sample with known light output. Given the SiPM temperature dependency and the difference among each SiPM, a temperature offset correction algorithm and a non-uniformity correction algorithm were added to the instrument. A positioning algorithm, based on nine points, was designed to evaluate the performance of a scintillator array. Tests were performed to evaluate the instrument's performance. The uniformity of 64 channels for light output measurement was better than 98%, the stability was better than 98% when temperature varied from 15 °C to 40 °C, and the nonlinearity under 511 keV was better than 2%. This instrument was capable of selecting scintillators and evaluating the packaging technology of scintillator arrays with high efficiency and accuracy.

  11. The space weather of the global ionosphere S4 scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Jann-Yenq; Chen, Shih-Ping; Yeh, Wen-Hao

    2016-04-01

    In this paper, a method is introduced which converts S4 index observations by radio occultation of FORMOSAT-3/COSMIC (F3/C) to the scintillation on the ground. To carry out the conversion, three dimensional (3D) structures of S4max, the maximum value on each profile probed by F3/C, are constructed, which allows us to understand GPS scintillation variations at various local times, seasons, and solar activity conditions, as well as the geographical distribution from the space-based point of view. By applying the method to data of the 3D structure, maps of the worst case scenario on the ground as functions of geomagnetic local time and geographic coordinates are constructed and reported here. The converted S4max for the first time estimates the global distribution of ionospheric scintillations in the GPS L1 band C/A code signal on the ground. The results show that the worst-case scintillations appear within the low latitude region of ±30°N, peaking around ±20°N magnetic latitude; they begin at 1900 MLT, reach their maximum at 2100 MLT, and vanish by about 0200-0300 MLT. The most pronounced low-latitude scintillation occurs over the South American and African sectors. Finally, based on the above the above data, an empirical model is constructed. For a given time, location, and solar activity, the model forecasts the ionospheric S4 scintillation in the L1 band signal on the ground.

  12. An instrument for measuring scintillators efficiently based on silicon photomultipliers.

    PubMed

    Yang, M J; Zhang, Z M; Wang, Y J; Li, D W; Zhou, W; Tang, H H; Liu, Y T; Chai, P; Shuai, L; Huang, X C; Liu, S Q; Zhu, M L; Jiang, X P; Zhang, Y W; Li, T; Ma, B; Sun, S F; Sun, L Y; Wang, Q; Lu, Z R; Zhang, T; Wei, L

    2016-11-01

    An instrument used for measuring multiple scintillators' light output and energy resolution was developed. The instrument consisted of a light sensor array which was composed of 64 discrete SiPMs (Silicon Photomultipliers), a corresponding individual channel readout electronics system, and a data processing algorithm. A Teflon grid and a large interval between adjacent SiPMs were employed to eliminate the optical cross talk among scintillators. The scintillators' light output was obtained by comparing with a reference sample with known light output. Given the SiPM temperature dependency and the difference among each SiPM, a temperature offset correction algorithm and a non-uniformity correction algorithm were added to the instrument. A positioning algorithm, based on nine points, was designed to evaluate the performance of a scintillator array. Tests were performed to evaluate the instrument's performance. The uniformity of 64 channels for light output measurement was better than 98%, the stability was better than 98% when temperature varied from 15 °C to 40 °C, and the nonlinearity under 511 keV was better than 2%. This instrument was capable of selecting scintillators and evaluating the packaging technology of scintillator arrays with high efficiency and accuracy.

  13. Scintillation index of Gaussian waves in weak turbulent ocean

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Zhang, Pengfei; Qiao, Chunhong; Lu, Lu; Fan, Chengyu; Ji, Xiaoling

    2016-12-01

    The analytical expressions of radial and the longitudinal components of scintillation index are derived in weak oceanic turbulence. The effects of off-axis distance, propagation distance, and three oceanic parameters (i.e., the ratio of temperature to salinity contribution to the refractive index spectrum w, the rate of dissipation of the mean squared temperature χT and the rate of dissipation of the turbulent kinetic energy ε) on radial component of scintillation index are examined. The influences of propagation distance and three oceanic parameters on the longitudinal component of scintillation index are investigated. It is shown that the radial component of scintillation increases as off-axis distance increases. Both radial and longitudinal components of scintillation increase as propagation distance, w and χT increase while decreases as ε increases. Besides, the longitudinal component of scintillation increases more drastically for plane wave than others, which indicates the plane wave is affected the most at the fixed turbulent strength. The longest weak turbulence distance for a plane wave is shorter than that for a Gaussian or spherical wave.

  14. A multipurpose test stand for scintillator decay lifetimes

    NASA Astrophysics Data System (ADS)

    Mangan, Tymothy; P-23, Neutron Science; Technology Team

    2016-09-01

    We built a prototype test stand in order to measure novel scintillator materials' decay lifetimes. Radiography and imaging are valuable diagnostic tools for studying dynamic experiments, thus new scintillator materials are needed to improve the resolution of the current observational systems. A collaborative effort by the neutron imaging and x-ray radiography teams is underway to study the novel scintillator materials developed at LANL and by outside collaborators. Decay lifetimes are an important characteristic of a scintillator material and so by developing this prototype we have provided an avenue to further scintillator development. We confirmed the effectiveness of this prototype by comparing known scintillator decay lifetimes of LYSO and polystyrene samples. In our proof-of-concept prototype we use an 80 Gs/s oscilloscope. With future implementation of a fully developed test stand, we will use a digital data acquisition system to record complete waveforms to conduct a post-processing analysis of the decay times. Results of the prototype test and potential improvements to final test stand design will be presented. LA-UR-16-25229 Los Alamos National Lab, Physics Division.

  15. Does the finite size of the proto-neutron star preclude supernova neutrino flavor scintillation due to turbulence?

    DOE PAGES

    Kneller, James P.; Mauney, Alex W.

    2013-08-23

    Here, the transition probabilities describing the evolution of a neutrino with a given energy along some ray through a turbulent supernova profile are random variates unique to each ray. If the proto-neutron-star source of the neutrinos were a point, then one might expect the evolution of the turbulence would cause the flavor composition of the neutrinos to vary in time i.e. the flavor would scintillate. But in reality the proto-neutron star is not a point source—it has a size of order ˜10km, so the neutrinos emitted from different points at the source will each have seen different turbulence. The finitemore » source size will reduce the correlation of the flavor transition probabilities along different trajectories and reduce the magnitude of the flavor scintillation. To determine whether the finite size of the proto-neutron star will preclude flavor scintillation, we calculate the correlation of the neutrino flavor transition probabilities through turbulent supernova profiles as a function of the separation δx between the emission points. The correlation will depend upon the power spectrum used for the turbulence, and we consider two cases: when the power spectrum is isotropic, and the more realistic case of a power spectrum which is anisotropic on large scales and isotropic on small. Although it is dependent on a number of uncalibrated parameters, we show the supernova neutrino source is not of sufficient size to significantly blur flavor scintillation in all mixing channels when using an isotropic spectrum, and this same result holds when using an anisotropic spectrum, except when we greatly reduce the similarity of the turbulence along parallel trajectories separated by ˜10km or less.« less

  16. Does the finite size of the proto-neutron star preclude supernova neutrino flavor scintillation due to turbulence?

    SciTech Connect

    Kneller, James P.; Mauney, Alex W.

    2013-08-23

    Here, the transition probabilities describing the evolution of a neutrino with a given energy along some ray through a turbulent supernova profile are random variates unique to each ray. If the proto-neutron-star source of the neutrinos were a point, then one might expect the evolution of the turbulence would cause the flavor composition of the neutrinos to vary in time i.e. the flavor would scintillate. But in reality the proto-neutron star is not a point source—it has a size of order ˜10km, so the neutrinos emitted from different points at the source will each have seen different turbulence. The finite source size will reduce the correlation of the flavor transition probabilities along different trajectories and reduce the magnitude of the flavor scintillation. To determine whether the finite size of the proto-neutron star will preclude flavor scintillation, we calculate the correlation of the neutrino flavor transition probabilities through turbulent supernova profiles as a function of the separation δx between the emission points. The correlation will depend upon the power spectrum used for the turbulence, and we consider two cases: when the power spectrum is isotropic, and the more realistic case of a power spectrum which is anisotropic on large scales and isotropic on small. Although it is dependent on a number of uncalibrated parameters, we show the supernova neutrino source is not of sufficient size to significantly blur flavor scintillation in all mixing channels when using an isotropic spectrum, and this same result holds when using an anisotropic spectrum, except when we greatly reduce the similarity of the turbulence along parallel trajectories separated by ˜10km or less.

  17. Scintillation Observations and Response of The Ionosphere to Electrodynamics (SORTIE)

    NASA Astrophysics Data System (ADS)

    Crowley, G.

    2015-12-01

    The Scintillation Observations and Response of The Ionosphere to Electrodynamics, or SORTIE, mission is a 6U NASA Heliophysics CubeSat designed to study the ionosphere at altitudes below 400km. The SORTIE mission is being developed by a team including ASTRA (lead institution), AFRL, University of Texas at Dallas (UTD), COSMIAC (Satellite Integrator), and Boston College. SORTIE will address cutting-edge science in the area of ionospheric dynamics. The SORTIE mission will address the following science questions: Q1) Discover the sources of wave-like plasma perturbations in the F-region ionosphere. Q2) Determine the relative role of dynamo action and more direct mechanical forcing in the formation of wave-like plasma perturbations. To address these questions we plan to fly a CubeSat with novel sensors that measure key plasma parameters in a circular, low to middle inclination orbit near 350-400 km altitude. The sensors include an ion velocity meter (built by UTD) and a Planar Langmuir Probe (built by AFRL). The SORTIE mission plan is to describe the distribution of wave-like structures in the plasma density of the ionospheric F-region. In doing so, the SORTIE team will determine the possible role of these perturbations in aiding the growth of plasma instabilities. SORTIE will provide (1) the initial spectrum of wave perturbations which are the starting point for the RT calculation; (2) measured electric fields which determine the magnitude of the instability growth rate near the region where plasma bubbles are generated; (3) initial observations of irregularities in plasma density which result from RT growth. SORTIE results will be used as input to PBMOD, an assimilative first-principles physical model of the ionosphere, in order to predict evolution of EPBs. In this presentation, we will review the science objectives, provide an overview of the spacecraft and instrument design, and present a concept of operations plan.

  18. Study of cosmic ray scintillations from 5-minute data of the scintillations telescope Izmran and world-wide network stations

    NASA Technical Reports Server (NTRS)

    Gulinsky, O. V.; Dorman, L. I.; Libin, I. Y.; Prilutsky, R. E.; Yudakhin, K. F.

    1985-01-01

    During cosmic ray propagation in interplanetary space there appear characteristic cosmic-ray intensity scintillations which are due to charged particle scattering on random inhomogeneities of the interplanetary magnetic field. The power spectra of cosmic ray scintillations on the Earth during some intervals from 1977 to 1982 (for quiet periods, for solar flares and Forbush decreases due to power shock waves) have been calculated from five-minute, one and two-hour values of the cosmic-ray intensity measured by the scintillator supertelescope IZMIRAN. The spectra were estimated by the methods of spectral analysis and by autoregressive methods which mutually control each other and make it possible not only to analyze scintillation powers at distinguished frequencies, but also to determine the behavior of spectrum slopes in some frequency ranges.

  19. Par Pond vegetation status Summer 1995 -- Summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar to the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.

  20. Scintillating glass fiber neutron sensors: 2, Light transmission in scintillating fibers

    SciTech Connect

    Abel, K.H.; Arthur, R.J.; Bliss, M.

    1993-10-01

    The capture and transmission of light from an event through a scintillating fiber is somewhat different than in conventional optical waveguide applications. A theoretical all-ray model that depends on surface and bulk loss factors is developed for this transmission. The capture fraction can be significantly greater than that predicted on the basis of meridional rays alone and the gross loss is nonexponential for short distances (less than or of the order of one 1/e distance). The latter phenomenon occurs because high-angle and skew rays are more rapidly attenuated than meridional rays.

  1. Using ionospheric scintillation indices to estimate GPS receiver tracking performance

    NASA Astrophysics Data System (ADS)

    Elmas, Zeynep G.; Aquino, Marcio; Dodson, Alan

    2010-05-01

    The Institute of Engineering Surveying and Space Geodesy (IESSG), at the University of Nottingham, has been involved with ionospheric scintillation research and its impact on users of Global Navigation Satellite Systems (GNSS) since 2001. The IESSG hosts a comprehensive archive of scintillation data recorded during the last high of the solar cycle (2001-2003) by four GSV4004 receivers (GPS Silicon Valley) in the UK and Norway, at geographic latitudes varying from 53N to 71N. The scintillation data that forms this ~3-year archive is given solely by the widely used scintillation indices S4 and σφ (in particular the latter's 60 second version). Aquino et al (2007) describe a strategy devised to enable the combination of these scintillation indices and the spectral parameters T (the spectral strength of the phase noise at 1 Hz) and p (the spectral slope), extracted from high-rate GPS phase and amplitude data, with state-of-the-art receiver tracking models in order to study receiver tracking performance under scintillation conditions. Strangeways (2009) later devised a method to calculate the scintillation parameters T and p over a range of Fresnel frequencies based only on the scintillation indices, i.e. when high rate data is not available, as in the case of the IESSG archive of 2001-2003. This paper shows initial investigations on the retrieval of the spectral parameters p and T from actual GPS scintillation indices recorded more recently in Trondheim (app. Lat 64N, Long 10E) on 23 April 2008. T and p values are estimated from S4 and σφ and compared with actual spectral parameters obtained from high rate data that are now being recorded. The paper then takes investigations a step further, by comparing the output of a state of the art tracking model when the estimated and actual spectral parameters are used as input, respectively. This paper gives an initial insight on the applicability of the method to mitigate the effects of the ionospheric scintillation on

  2. Lutetium oxide-based transparent ceramic scintillators

    DOEpatents

    Seeley, Zachary; Cherepy, Nerine; Kuntz, Joshua; Payne, Stephen A.

    2016-01-19

    In one embodiment, a transparent ceramic of sintered nanoparticles includes gadolinium lutetium oxide doped with europium having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YEu.sub.YO.sub.3, where X is any value within a range from about 0.05 to about 0.45 and Y is any value within a range from about 0.01 to about 0.2, and where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm. In another embodiment, a transparent ceramic scintillator of sintered nanoparticles, includes a body of sintered nanoparticles including gadolinium lutetium oxide doped with a rare earth activator (RE) having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YRE.sub.YO.sub.3, where RE is selected from the group consisting of: Sm, Eu, Tb, and Dy, where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm.

  3. Excitonic effects in oxyhalide scintillating host compounds

    SciTech Connect

    Shwetha, G.; Kanchana, V.; Valsakumar, M. C.

    2014-10-07

    Ab-initio calculations based on density functional theory have been performed to study the electronic, optical, mechanical, and vibrational properties of scintillator host compounds YOX (X = F, Cl, Br, and I). Semiempirical dispersion correction schemes are used to find the effect of van der Waals forces on these layered compounds and we found this effect to be negligible except for YOBr. Calculations of phonons and elastic constants showed that all the compounds studied here are both dynamically and mechanically stable. YOF and YOI are found to be indirect band gap insulators while YOCl and YOBr are direct band gap insulators. The band gap is found to decrease as we move from fluorine to iodine, while the calculated refractive index shows the opposite trend. As the band gap decreases on going down the periodic table from YOF to YOI, the luminescence increases. The excitonic binding energy calculated, within the effective mass approximation, is found to be more for YOF than the remaining compounds, suggesting that the excitonic effect to be more in YOF than the other compounds. The optical properties are calculated within the Time-Dependent Density Functional Theory (TDDFT) and compared with results obtained within the random phase approximation. The TDDFT calculations, using the newly developed bootstrap exchange-correlation kernel, showed significant excitonic effects in all the compounds studied here.

  4. A large area liquid scintillation multiphoton detector

    NASA Astrophysics Data System (ADS)

    Bharadwaj, V. K.; Cain, M. P.; Caldwell, D. O.; Denby, B. H.; Eisner, A. M.; Joshi, U. P.; Kennett, R. G.; Lu, A.; Morrison, R. J.; Pfost, D. R.; Stuber, H. R.; Summers, D. J.; Yellin, S. J.; Appel, J. A.

    1985-01-01

    A 60 layer lead-liquid scintillator shower detector, which we call the SLIC, has been used for multiphoton detection in the Fermilab tagged photon spectrometer. The detector has an unimpeded active area which is 2.44 m by 4.88 m and is segmented, by means of teflon coated channels, into 3.17 cm wide strips. The 60 layers in depth are broken into three directions of alternating readouts so that three position coordinates are determined for each shower. At present the readouts are made by 334 photomultiplier tubes coupled to BBQ doped wavelength shifter bars which integrate the entire depth of the detector. It is relatively straightforward to increase the number of readouts to include longitudinal segmentation and to increase the segmentation of the outer region which are at present read out two strips to a readout. The energy and position resolutions of isolated showers are about {12%}/{√E} and 3 mm., respectively. The SLIC has been used to study the K-π+π0 decay of the D 0 [1], as well as for electron and muon identification in ψ → e +e - and ψ → μ+μ- plus π0 identification in γp → ψχ [8].

  5. A Geant Study of the Scintillating Optical Fiber (SOFCAL) Cosmic Ray Detector

    NASA Technical Reports Server (NTRS)

    Munroe, Ray B., Jr.

    1998-01-01

    Recent energy measurements by balloon-borne passive emulsion chambers indicate that the flux ratios of protons to helium nuclei and of protons to all heavy nuclei decrease as the primary cosmic ray energy per nucleon increases above approx. 200 GeV/n, and suggest a "break" in the proton spectrum between 200 GeV and 5 TeV. However, these passive emulsion chambers are limited to a lower energy threshold of approx. 5 TeV/n, and cannot fully explore this energy regime. Because cosmic ray flux and composition details may be significant to acceleration models, a hybrid detector system called the Scintillating Optical Fiber Calorimeter (SOFCAL) has been designed and flown. SOFCAL incorporates both conventional passive emulsion chambers and an active calorimeter utilizing scintillating plastic fibers as detectors. These complementary types of detectors allow the balloon-borne SOFCAL experiment to measure the proton and helium spectra from approx. 400 GeV/n to approx. 20 TeV. The fundamental purpose of this study is to use the GEANT simulation package to model the hadronic and electromagnetic shower evolution of cosmic rays incident on the SOFCAL detector. This allows the interpretation of SOFCAL data in terms of charges and primary energies of cosmic rays, thus allowing the determinations of cosmic ray flux and composition as functions of primary energy.

  6. Scintillation properties of polycrystalline LaxY1-xO3 ceramic

    NASA Astrophysics Data System (ADS)

    Sahi, Sunil; Chen, Wei; Kenarangui, Rasool

    2015-03-01

    Scintillators are the material that absorbs the high-energy photons and emits visible photons. Scintillators are commonly used in radiation detector for security, medical imaging, industrial applications and high energy physics research. Two main types of scintillators are inorganic single crystals and organic (plastic or liquid) scintillators. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, some efficient inorganic scintillator such as NaI and CsI are not environmental friendly. But on the other hand, organic scintillators have low density and hence poor energy resolution which limits their use in gamma spectroscopy. Polycrystalline ceramic can be a cost effective alternative to expensive inorganic single crystal scintillators. Here we have fabricated La0.2Y1.8O3 ceramic scintillator and studied their luminescence and scintillation properties. Ceramic scintillators were fabricated by vacuum sintering of La0.2Y1.8O3 nanoparticles at temperature below the melting point. La0.2Y1.8O3 ceramic were characterized structurally using XRD and TEM. Photoluminescence and radioluminescence studies were done using UV and X-ray as an excitation source. We have used gamma isotopes with different energy to studies the scintillation properties of La0.2Y1.8O3 scintillator. Preliminary studies of La0.2Y1.8O3 scintillator shows promising result with energy resolution comparable to that of NaI and CsI.

  7. Radar measurement of ionospheric scintillation in the polar region

    NASA Astrophysics Data System (ADS)

    Knepp, Dennis L.

    2015-10-01

    This paper considers several estimators that use radar data to measure the S4 scintillation index that characterizes the severity of amplitude scintillation that may occur during RF propagation through ionospheric irregularities. S4 is defined to be the standard deviation of the fluctuations in received power normalized by division by the mean power. Estimates of S4 are based on radar returns obtained during track of targets which may themselves have intrinsic radar cross-section fluctuations. Key to this work is the consideration of thresholding, which is used in many radars to remove (from further processing) signals whose SNR is considered too low. We consider several estimators here. The "direct" estimator attempts to estimate S4 through the direct calculation of the mean and standard deviation of the SNR from a number of radar returns. The maximum likelihood (ML) estimator uses multiple hypothesis testing and the assumption of Nakagami-m statistics to estimate the scintillation index that best fits the radar returns from some number of pulses. The ML estimator has perfect knowledge of the number of radar returns that are below the threshold. The direct estimator is accurate for the case where there is no threshold and there are many returns or samples from which to estimate S4. However, the direct estimator is flawed (especially for strong scintillation) if deep fades that fall below the radar threshold are ignored. The modified ML estimator here is based on the ML technique but is useful if the count of missed returns is unavailable. We apply the modified ML estimator to several years of radar tracks of large calibration satellites to obtain the statistics of UHF scintillation as viewed from the early warning radar at Thule, Greenland. One-way S4 was measured from 5000 low Earth orbit tracks during the 3 year period after solar maximum in May 2000. The data are analyzed to quantify the exceedance or the level of scintillation experienced at various

  8. A scintillating fission detector for neutron flux measurements

    SciTech Connect

    Stange, Sy; Esch, Ernst I; Burgett, Eric A; May, Iain; Muenchausen, Ross E; Taw, Felicia; Tovesson, Fredrik K

    2010-01-01

    Neutron flux monitors are commonly used for a variety of nuclear physics applications. A scintillating neutron detector, consisting of a liquid scintillator loaded with fissionable material, has been developed, characterized, and tested in the beam line at the Los Alamos Neutron Science Center, and shows a significant improvement in neutron sensitivity compared with a conventional fission chamber. Recent research on nanocomposite-based scintillators for gamma-ray detection indicates that this approach can be extended to load nanoparticles of fissionable material into a scintillating matrix, with up to three orders of magnitude higher loading than typical fission chambers. This will result in a rugged, cost-efficient detector with high efficiency, a short signal rise time, and the ability to be used in low neutron-flux environments. Initial efforts to utilize the luminescence of uranyl oxide to eliminate the need for wavelength-shifting dyes were unsuccessful. Excitation of uranyl compounds has been reported at wavelengths ranging from 266 nm to 532 nm. However, neither the 300 nm emission of toluene, nor the 350 nm emission of PPO, nor the 410 nm emission of POPOP resulted in significant excitation of and emission by uranyl oxide. As indicated by UV/visible spectroscopy, light emitted at these wavelengths was absorbed by the colored solution. {sup 235}U remains the most attractive candidate for a fissionable scintillator, due to its high fission cross-section and lack of a threshold fission energy, but all solutions containing molecular uranium compounds will be colored, most more highly than the U{sup 6+} compounds used here. Research is therefore continuing toward the fabrication of uranium nanoparticles, in which, due to Rayleigh scattering, the coloration should be less pronounced. The characterization of the thorium-loaded liquid scintillator and the fabrication of the 100 mL detectors for use at LANSCE demonstrated the feasibility of loading fissionable

  9. Scintillator Probe Alpha-loss diagnostic for JET*

    NASA Astrophysics Data System (ADS)

    Baeumel, S.; Werner, A.; Darrow, D.; Ellis, R.; Cecil, F. E.; Kiptily, V.; Altmann, H.; Pedrick, L.

    2003-10-01

    Currently two fast ion loss diagnostics are under design for future JET experimental campaigns - a Faraday cup system(see contribution by F.E. Cecil et al. at this meeting) and a scintillator probe diagnostic. These diagnostics will investigate the physics of fusion products, the ion cyclotron resonance heated tail ions and losses induced by magnetohydrodynamic instabilities. The scintillator probe will consist of a scintillator plate which is viewed simultaneously by a CCD camera with a time resolution of 20 ms and an array of 10-20 photomultipliers with a time resolution of 3 ms, the latter being limited by the decay time of the scintillator (P56). The image will allow measurements of the particles striking the scintillator with a gyroradius resolution of 15angle resolution of 5plasma edge imposes significant physical constraints on the design by virtue of the heat loads and the forces due to plasma halo and eddy currents during disruptions. The physics goals and the technical realization of the diagnostic will be described.

  10. Tests of Multibeam Scintillation Mitigation on Laser Uplinks

    NASA Technical Reports Server (NTRS)

    Wilson, Keith

    2004-01-01

    A report presents additional details about parts of the program of research and development that is the topic of the immediately preceding article. The report emphasizes those aspects of the program that pertain to the use of multiple uplink laser beams in a ground-to-spacecraft optical communication system to reduce (relative to the case of a single uplink laser beam) the depth and frequency of occurrence of fades in the uplink signal received at the spacecraft. The underlying multibeam scintillation-mitigation concept was described in "Multiple-Beam Transmission for Optical Communication" (NPO-20384), NASA Tech Briefs, Vol. 22, No. 11 (November 1998), page 56. The report discusses the need for mitigating uplink scintillation; briefly describes the Optical Communications Telescope Laboratory and its role as the ground station in the research; summarizes prior experiments in uplink scintillation and multibeam mitigation of scintillation in ground-to-spacecraft laser communications; and describes key experiments planned to be performed in the next five years. The report then elaborates somewhat on the initial experiments, which are to be dedicated to understanding and perfecting the multibeam scintillation-mitigation strategy.

  11. On the second order statistics for GPS ionospheric scintillation modeling

    NASA Astrophysics Data System (ADS)

    Oliveira Moraes, Alison; Paula, Eurico Rodrigues; Assis Honorato Muella, Marcio Tadeu; Perrella, Waldecir João.

    2014-02-01

    Equatorial ionospheric scintillation is a phenomenon that occurs frequently, typically during nighttime, affecting radio signals that propagate through the ionosphere. Depending on the temporal and spatial distribution, ionospheric scintillation can represent a problem in the availability and precision for the Global Navigation Satellite System's users. This work is concerned with the statistical evaluation of the amplitude ionospheric scintillation fading events, namely, level crossing rate (LCR) and average fading duration (AFD). Using α-μ model, the LCR and AFD are validated against experimental data obtained in São José dos Campos (23.1°S; 45.8°W; dip latitude 17.3°S), Brazil, a station located near the southern crest of the ionospheric equatorial ionization anomaly. The amplitude scintillation data were collected between December 2001 and January 2002, a period of high solar flux conditions. The obtained results with the proposed model fitted quite well with the experimental data and performed better when compared to the widely used Nakagami-m model. Additionally, this work discusses the estimation of α and μ parameters, and the best fading coefficients found in this analysis are related to scintillation severity. Finally, for theoretical situations in which no set of experimental data are available, this work also presents parameterized equations to describe these fading statistics properly.

  12. Measurement of ortho-positronium properties in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Perasso, S.; Consolati, G.; Franco, D.; Jollet, C.; Meregaglia, A.; Tonazzo, A.; Yeh, M.

    2014-03-01

    Pulse shape discrimination is a well-established technique for background rejection in liquid scintillator detectors. It is particularly effective in separating heavy particles from light particles, but not in distinguishing electrons from positrons. This inefficiency can be overtaken by exploiting the formation of ortho-positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants used in neutrino-less double beta decay experiments (Nd and Te) and in anti-neutrino and neutron detection (Gd and Li respectively). We found that the o-Ps properties are similar in all the tested scintillators, with a lifetime around 3 ns and a formation probability of about 50%. This result indicates that an o-Ps-enhanced pulse shape discrimination can be applied in liquid scintillator detectors for neutrino and anti-neutrino detection and for neutrino-less double beta decay search.

  13. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    SciTech Connect

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn; Paviet, Patricia Denise; Drigert, Mark William

    2016-11-29

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution of the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.

  14. Scintillation luminescence for high-pressure xenon gas

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Hasebe, N.; Igarashi, T.; Kobayashi, M.-N.; Miyachi, T.; Miyajima, M.; Okada, H.; Okudaira, O.; Tezuka, C.; Yokoyama, E.; Doke, T.; Shibamura, E.; Dmitrenko, V. V.; Ulin, S. E.; Vlasik, K. F.

    2004-09-01

    Scintillation and ionization yields in xenon gas for 5.49MeV alpha-particles were measured in the range of pressure from 0.35 to 3.7MPa and the electric field strength (E) over the number density of xenon atoms (N), E/N from 0 to 5×10-18Vcm2. When our data are normalized at the data point measured by Saito et al., the number of scintillation photons is 2.3×105 while the number of ionization electrons is 2.0×105 at 2.6MPa and at 3.7×10-18Vcm2. The scintillation and ionization yields of xenon doped with 0.2% hydrogen, High-Pressure Xenon gas[H2-0.2%], at 2.6MPa was also measured. Scintillation yield of the Xe-H2 mixture gas is 80% as high as that of pure xenon. It is found that the scintillation yield is luminous enough to generate a trigger pulse of the high-pressure xenon time projection chamber, which is expected as a promising MeV Compton gamma-ray camera.

  15. Maximum likelihood positioning and energy correction for scintillation detectors.

    PubMed

    Lerche, Christoph W; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten

    2016-02-21

    An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30 × 30 scintillator pixel array with an 8 × 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner's spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner's overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time.

  16. Temperature dependence of the plastic scintillator detector for DAMPE

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-Min; Yu, Yu-Hong; Sun, Zhi-Yu; Yue, Ke; Yan, Duo; Zhang, Yong-Jie; Zhou, Yong; Fang, Fang; Huang, Wen-Xue; Chen, Jun-Ling

    2017-01-01

    The Plastic Scintillator Detector (PSD) is one of the main sub-detectors in the DArk Matter Particle Explorer (DAMPE) project. It will be operated over a large temperature range from -10 to 30 °C, so the temperature effect of the whole detection system should be studied in detail. The temperature dependence of the PSD system is mainly contributed by the three parts: the plastic scintillator bar, the photomultiplier tube (PMT), and the Front End Electronics (FEE). These three parts have been studied in detail and the contribution of each part has been obtained and discussed. The temperature coefficient of the PMT is -0.320(±0.033)%/°C, and the coefficient of the plastic scintillator bar is -0.036(±0.038)%/°C. This result means that after subtracting the FEE pedestal, the variation of the signal amplitude of the PMT-scintillator system due to temperature mainly comes from the PMT, and the plastic scintillator bar is not sensitive to temperature over the operating range. Since the temperature effect cannot be ignored, the temperature dependence of the whole PSD has been also studied and a correction has been made to minimize this effect. The correction result shows that the effect of temperature on the signal amplitude of the PSD system can be suppressed. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-3) and Youth Innovation Promotion Association, CAS

  17. Counterintuitive MCNPX Results for Scintillator Surface Roughness Effect

    SciTech Connect

    Yuan, Ding; Guss, Paul

    2012-10-01

    We performed a number of comparative MCNPX simulations of gamma energy depositions of scintillation crystals with smooth and rough surfaces. In the study, nine surface patterns (8 micro-roughness + 1 smooth) were coupled with eight common scintillation crystals for a total of 72 possible combinations. Although this was a preliminary study, the outcome was counterintuitive; results generally favored surfaces with micro-roughness over a conventional smooth surface as measured in terms of average energy depositions. The advantage gained through surface roughness is less significant for CdSe and LaCl3, but is most significant for the common NaI and the glass-like SiO2 scintillators. Based on the results of the 64 rough-surface coupled MCNPX simulations, 57 of the 64 (~89%) simulations showed some improvement in energy deposition. The mean improvement in energy deposition was 2.52%. The maximum improvement was about 8.75%, which was achieved when roughening the surface of a SiO2 scintillator using a micro cutting pattern. Further, for a conventional NaI scintillator, MCNPX results suggest that any roughness pattern would improve the energy deposition, with an average improvement of 3.83%. Although the likely causes remain unclear, we intend to focus on presenting simulation results instead of offering a sound explanation of the underlying physics.

  18. Preparation and characterization of a novel UV-curable plastic scintillator

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Ding, Yunyu; Zhu, Jiayi; Qi, Di; Su, Ming; Xu, Yewei; Bi, Yutie; Lin, Runxiong; Zhang, Lin

    2016-05-01

    A novel UV-curable plastic scintillator was first prepared by using the technology of photosensitivity rapid prototyping. It used the copolymer of 621A-80, TPGDA and styrene as the matrix doped with PPO and POPOP. Its fluorescence spectra displayed a maximum emission wavelength at 428 nm. The light yield of the plastic scintillator was approximately 7.1% of anthracene on the basis of a comparison with the commercially available scintillator (ST-401). The as-prepared plastic scintillator also displayed a fast scintillation decay. Its decay time is 2.6 ns approximately. Importantly, through the technology of photosensitivity rapid prototyping, the plastic scintillator could be prepared in a short period of time at low temperature. What's more, this preparation method provides the possibility of combining the plastic scintillator with 3D printing technology, and then the applications of the plastic scintillator may be expanded greatly.

  19. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    SciTech Connect

    Bircher, Chad; Shao Yiping

    2012-02-15

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 x 1.5 and 2.0 x 2.0 mm{sup 2} cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be used

  20. Evolution of the protease-activated receptor family in vertebrates

    PubMed Central

    JIN, MIN; YANG, HAI-WEI; TAO, AI-LIN; WEI, JI-FU

    2016-01-01

    Belonging to the G protein-coupled receptor (GPcr) family, the protease-activated receptors (Pars) consist of 4 members, PAR1-4. PARs mediate the activation of cells via thrombin, serine and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis and other normal pathological processes. In the present study, we examined the evolution of PARs by analyzing phylogenetic trees, chromosome location, selective pressure and functional divergence based on the 169 functional gene alignment sequences from 57 vertebrate gene sequences. We found that the 4 PARs originated from 4 invertebrate ancestors by phylogenetic trees analysis. The selective pressure results revealed that only PAR1 appeared by positive selection during its evolution, while the other PAR members did not. In addition, we noticed that although these PARs evolved separately, the results of functional divergence indicated that their evolutional rates were similar and their functions did not significantly diverge. The findings of our study provide valuable insight into the evolutionary history of the vertebrate PAR family. PMID:26820116

  1. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  2. Development of a liquid scintillator neutron multiplicity counter (LSMC)

    NASA Astrophysics Data System (ADS)

    Frame, Katherine; Clay, Willam; Elmont, Tim; Esch, Ernst; Karpius, Peter; MacArthur, Duncan; McKigney, Edward; Santi, Peter; Smith, Morag; Thron, Jonathan; Williams, Richard

    2007-08-01

    A new neutron multiplicity counter is being developed that utilizes the fast response of liquid scintillator detectors. The ability to detect fast (vs. moderated) fission neutrons makes possible a coincidence gate of the order of tens of nanoseconds (vs. tens of microseconds). A neutron counter with such a narrow gate will be virtually insensitive to accidental coincidences, making it possible to measure items with a high single neutron background to greater accuracy in less time. This includes impure Pu items with high (α, n) rates as well as items of low-mass HEU where a strong active interrogation source is needed. Liquid scintillator detectors also allow for energy discrimination between interrogation source neutrons and fission neutrons, allowing for even greater assay sensitivity. Designing and building a liquid scintillator multiplicity counter (LSMC) requires a symbiotic effort of simulation and experiment to optimize performance and mitigate hardware costs in the final product. We present preliminary Monte-Carlo studies using the GEANT toolkit.

  3. Scintillation counters in modern high-energy physics experiments (Review)

    NASA Astrophysics Data System (ADS)

    Kharzheev, Yu. N.

    2015-07-01

    Scintillation counters (SCs) based on organic plastic scintillators (OPSs) are widely used in modern high-energy physics (HEP) experiments. A comprehensive review is given to technologies for production of OPS strips and tiles (extrusion, injection molding, etc.), optical and physical characteristics of OPSs, and methods of light collection based on the use of wavelength-shifting (WLS) fibers coupled to multipixel vacuum and silicon PMs. Examples are given of the use of SCs in modern experiments involved in the search for quarks and new particles, including the Higgs boson (D0, CDF, ATLAS, CMS), new states of matter (ALICE), CP violation (LHCb, KLOE), neutrino oscillations (MINOS, OPERA), and cosmic particles in a wide mass and energy interval (AMS-02). Scintillation counters hold great promise for future HEP experiments (at the ILC, NICA, FAIR) due to properties of a high segmentation, WLS fiber light collection, and multipixel silicon PMT readout.

  4. Evaluate Scintillation Response Over a Continuous Energy Region

    SciTech Connect

    Zhang, Yanwen; Elfman, Mikael; Milbrath, Brian D.; Weber, William J.

    2008-06-26

    A recently developed fast analysis technique utilizing a time of flight (TOF) telescope is demonstrated to obtain relevant quantitative data on material scintillation response to energetic He particles. With superior energy resolution and fast response of the TOF telescope, energy of individual particle before impinging on a scintillating crystal can be determined with a high counting rate, which allows quantitative study of material performance over a continuous energy range in a relatively short time. Scintillation performances in terms of light output, nonlinearity and energy resolution in bismuth germinate (BGO) and europium-doped calcium fluoride (CaF2:Eu) Crystals are demonstrated, and the corresponding energy resolution is compared with gamma-ray tests on the same crystals.

  5. Photon and Hadron Interactions in a Scintillating Fiber Target

    NASA Astrophysics Data System (ADS)

    Mountain, Raymond Joseph Michael, III

    The prosecution and development of a particular technique for the measurement of the mean lifetimes of states containing heavy quarks are presented. The technique employs a novel active target consisting of about a million individual channels of rm Ce_2O_3 doped glass scintillating fiber-optic waveguides coupled to efficient single-photon imaging and recording hardware. Events occurring in the scintillating fiber matrix are imaged optically and stored electronically. The principles and details of operation of glass scintillators, fiber waveguides, electro-optic image intensification, and high-speed data acquisition and monitoring are described. Data taken in the context of a variety of test beams and Fermilab Experiment E687 are analyzed for detector performance characteristics. Extensive work on image event analysis and reconstruction is reported, and results from visual and electronic algorithms performing tracking and vertexing are summarized. Finally, a critique of this technique is presented.

  6. Doping of polysiloxane rubbers for the production of organic scintillators

    NASA Astrophysics Data System (ADS)

    Quaranta, A.; Carturan, S.; Marchi, T.; Cinausero, M.; Scian, C.; Kravchuk, V. L.; Degerlier, M.; Gramegna, F.; Poggi, M.; Maggioni, G.

    2010-08-01

    Polysiloxane rubbers have been produced with different concentrations of phenyl groups and of dye molecules in order to find the best synthesis conditions for reaching a high light yield. In particular, two different polymer compositions were examined, namely with 15% and 22% of phenyl units in the starting resin. 2,5-Diphenyl oxazole (PPO) as a primary dopant and Lumogen F Violet 570 as secondary dopant were dispersed in the polysiloxane. Ion beam induced luminescence (IBIL) technique was employed for studying radioluminescence and radiation hardness properties. The α and γ scintillation yields were analyzed by measuring the pulse height spectra from 241Am and 60Co radioactive sources. First tests on the suitability of these materials to the detection of fast neutrons were also performed with a TOF procedure. Preliminary results indicate that these materials exhibit a scintillation yield comparable with NE102 plastic scintillator.

  7. Gadolinium loaded plastic scintillators for high efficiency neutron detection

    NASA Astrophysics Data System (ADS)

    Ovechkina, Lena; Riley, Kent; Miller, Stuart; Bell, Zane; Nagarkar, Vivek

    2009-08-01

    Gadolinium has the highest thermal neutron absorption cross section of any naturally occurring element, and emits conversion electrons as well as atomic X-rays in over 50% of its neutron captures, which makes it a useful dopant in scintillators for detecting thermal neutrons. Gadolinium isopropoxide was studied as a possible dopant for styrene-based plastic scintillators as a convenient and inexpensive method to produce high-efficiency thermal neutron detectors. Plastic scintillators with gadolinium weight concentrations of up to 3% were transparent, uniform and defect-free and were characterized with spectral measurements performed under x-ray and neutron irradiation. The new material has the same characteristic emission of styrene with a maximum at approximately 425 nm, and a light output of 76% relative to the undoped plastic. A 13 mm thick sample containing 0.5% gadolinium by weight detected 46% of incident thermal neutrons, which makes this an attractive material for a variety of applications.

  8. Scintillator-based fast ion loss measurements in the EAST

    NASA Astrophysics Data System (ADS)

    Chang, J. F.; Isobe, M.; Ogawa, K.; Huang, J.; Wu, C. R.; Xu, Z.; Jin, Z.; Lin, S. Y.; Hu, L. Q.

    2016-11-01

    A new scintillator-based fast ion loss detector (FILD) has been installed on Experimental Advanced Superconducting Tokamak (EAST) to investigate the fast ion loss behavior in high performance plasma with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). A two dimensional 40 mm × 40 mm scintillator-coated (ZnS:Ag) stainless plate is mounted in the front of the detector, capturing the escaping fast ions. Photons from the scintillator plate are imaged with a Phantom V2010 CCD camera. The lost fast ions can be measured with the pitch angle from 60° to 120° and the gyroradius from 10 mm to 180 mm. This paper will describe the details of FILD diagnostic on EAST and describe preliminary measurements during NBI and ICRH heating.

  9. High Latitude Scintillations during the ICI-4 Rocket Campaign.

    NASA Astrophysics Data System (ADS)

    Patra, S.; Moen, J.

    2015-12-01

    We present the first results from the Norwegian ICI-4 sounding rocket campaign in February 2015. The ICI-4 was launched into F-region auroral blobs from the Andøya Space Center. The multi needle langmuir probe (m-NLP) on board the rocket sampled the ionospheric density structures at a sub-meter spatial resolution. A multi-phase screen model has been developed to estimate the scintillations from the density measurements acquired on-board spacecrafts. The phase screen model is validated and the comparison of the estimated values with scintillations measured by ground receivers during the campaign will be presented. A combination of scintillation receivers in Svalbard and surrounding areas as well as all sky imagers at Ny Ålesund, Longyerbyen, and Skibotn are used to improve the performance of the model.

  10. A potential base substrate for deformable scintillation materials

    NASA Astrophysics Data System (ADS)

    Nakamura, Hidehito; Sato, Nobuhiro; Kitamura, Hisashi; Shirakawa, Yoshiyuki; Takahashi, Sentaro

    2016-05-01

    Deformable scintillation materials for radiation detection are an original concept that will impact many applications. Here we reveal the optical characteristics of readily available, transparent grease that consists of adhesive aromatic ring polymers. The aromatic ring polymer is methyl phenyl polysiloxane, commonly used in cosmetics, lubrication, heat conduction, and mechanical damping. It has a 285-nm excitation maximum and emits short wavelength light that peaks at 315 nm. The stopping power for 1 MeV electrons is 1.78 MeV cm2/g. The light-yield distribution has distinct peaks at 976 keV from internal conversion electrons and at 5486 keV from alpha particles. In addition, this particular methyl phenyl polysiloxane is safe for use and disposal, which is an excellent advantage. These aromatic ring polymers are potential base substrates for deformable scintillation materials and make an important addition to the categories of scintillation materials.

  11. Scintillation Properties of Eu2+-Activated Barium Fluoroiodide

    SciTech Connect

    Gundiah, Gautam; Bourret-Courchesne, Edith; Bizarri, Gregory; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew; Moses, William W.; Derenzo, Stephen E.

    2009-11-18

    The scintillation properties of powders and single-crystals of BaFI doped with Eu2+ are presented. Single crystals were grown by the vertical Bridgman technique. Under optical and X-ray excitation, the samples exhibit a narrow E2+ 5d-4f transition emission centered at 405 nm. The scintillation light output is estimated to be 55,000+-5,000 photons/MeV at 662 keV with 85percent of the light decaying within 600 ns. An energyresolution of 8.5percent full width at half maximum (FWHM) has been achieved using this scintillator for 662 keV excitation (137Cs source) at room temperature.

  12. Comparative cactus architecture and par interception

    SciTech Connect

    Geller, G.N.; Nobel, P.S. )

    1987-07-01

    Because CO{sup 2} uptake by cacti can be limited by low levels of photosynthetically active radiation (PAR) and because plant form affects PAR interception, various cactus forms were studied using a computer model, field measurements, and laboratory phototropic studies. Model predictions indicated that CO{sub 2} uptake by individual stems at an equinox was greatest when the stem were vertical, but at the summer and the winter solstice CO{sub 2} uptake was greatest for stems titled 30{degree} away from the equator. Stem tilting depended on form and taxonomic group. Not only can the shape of cacti be affected by PAR, but also shape influences PAR interception and hence CO{sub 2} uptake.

  13. Study of decameter-wavelength ionospheric scintillation by astronomical methods using the URAN-1 radiotelescope

    NASA Astrophysics Data System (ADS)

    Rashkovsky, S. L.

    2004-09-01

    We present and analyze the results of monitoring of ionospheric scintillation at frequencies 16.7 25 MHz in 2002-2002. Extensive experimental evidence allowed us to obtain the laws of the amplitude distribution of signals, temporal variations in scintillation indices, autocorrelation times, and parameters of the temporal spectra of signals and find the frequency dependences of scintillation indices. The influence of scintillation on estimates of the received signal power and refraction angle is studied.

  14. Three-dimensional modeling of high-latitude scintillation observations

    NASA Astrophysics Data System (ADS)

    Chartier, Alex; Forte, Biagio; Deshpande, Kshitija; Bust, Gary; Mitchell, Cathryn

    2016-07-01

    Global Navigation Satellite System signals exhibit rapid fluctuations at high and low latitudes as a consequence of propagation through drifting ionospheric irregularities. We focus on the high-latitude scintillation problem, taking advantage of a conjunction of European Incoherent Scatter Radar (EISCAT) observations and a GPS scintillation monitor viewing the same line of sight. Just after 20:00 UT on 17 October 2013, an auroral E region ionization enhancement occurred with associated phase scintillations. This investigation uses the scintillation observations to estimate the ionospheric electron density distribution beyond the spatial resolution of EISCAT (5-15 km along the line of sight in this case). Following the approach of Deshpande et al. (2014), signal propagation is modeled through a specified density distribution. A multiple phase screen propagation algorithm is applied to irregularities conforming to the description of Costa and Kelley (1977) and constrained to match the macroscopic conditions observed by EISCAT. A 50-member ensemble of modeled outputs is approximately consistent with the observations according to the standard deviation of the phase (σp). The observations have σp = 0.23 rad, while the ensemble of modeled realizations has σp = 0.23 + 0.04-0.04. By comparison of the model output with the scintillation observations, we show that the density fluctuations cannot be a constant fraction of the mean density. The model indicates that E region density fluctuations whose standard deviation varies temporally between 5 and 25% of the mean (EISCAT-observed) density are required to explain the observed phase scintillations.

  15. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  16. A Unified Low-Elevation-Angle Scintillation Model

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Cheung, K.-M.; Ho, C.

    2011-05-01

    Enabling communications at very low elevation angles can lengthen the duration of a tracking pass between a satellite and a ground station, which in turn can increase the amount of data return and possibly reduce the number of required supporting ground station tracking passes. Link performance, especially at very low angles and high frequencies, depends heavily on terrain, atmosphere, and weather conditions. Among the different contributions to attenuation, scintillation fading plays a very significant role and can impair the performance of the link. It is therefore necessary to accurately model the overall impact to the link due to scintillation fading. The current International Telecommunication Union ITU-R P.618-10 Recommendation describes three scintillation loss models as a function of elevation angle and percentage of time for which the loss exceeds a certain threshold. Implementation of the recommendation resulted in the uncovering of several issues. Particularly, it was identified that (i) iterative solutions to an implicit nonlinear exponential model, in some cases, are not guaranteed to exist, (ii) there is a discontinuity in fading values between models at the cross-over elevation angle, (iii) at certain low elevation angles scintillation from the shallow fade model generates unrealistically small losses, and (iv) for elevation angles lying between 4 and 5 deg, there are two applicable scintillation models that yield conflicting values. In this article, we develop a new approach to unify the different fading models within the current ITU recommendation and fully remove the discrepancies. We further validated our models with ITU-adopted scintillation data measured at Goonhilly, Great Britain, and data from several recent NASA Space Shuttle launches. This improved model was provisionally approved at the ITU International Meeting in Italy, November 2010, and is being evaluated by the ITU members for adoption into the next-version ITU Recommendation.

  17. DSB:Ce3+ scintillation glass for future

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Akchurin, N.; Benaglia, A.; Borisevich, A.; Cowden, C.; Damgov, J.; Dormenev, V.; Dragoiu, C.; Dudero, P.; Korjik, M.; Kozlov, D.; Kunori, S.; Lecoq, P.; Lee, S. W.; Lucchini, M.; Mechinsky, V.; Pauwels, K.

    2015-02-01

    One of the main challenges for detectors at future high-energy collider experiments is the high precision measurement of hadron and jet energy and momentum. One possibility to achieve this is the dual-readout technique, which allows recording simultaneously scintillation and Cherenkov light in an active medium in order to extract the electromagnetic fraction of the total shower energy on an event- by-event basis. Making use of this approach in the high luminosity LHC, however, puts stringent requirements on the active materials in terms of radiation hardness. Consequently, the R&D carried out on suitable scintillating materials focuses on the detector performance as well as on radiation tolerance. Among the different scintillating materials under study, scintillating glasses can be a suitable solution due to their relatively simple and cost effective production. Recently a new type of inorganic scintillating glass: Cerium doped DSB has been developed by Radiation Instruments and New Components LLC in Minsk for oil logging industry. This material can be produced either in form of bulk or fiber shape with diameter 0.3-2mm and length up to 2000 mm. It is obtained by standard glass production technology at temperature 1400°C with successive thermal annealing treatment at relatively low temperature. The production of large quantities is relatively easy and the production costs are significantly lower compared to crystal fibers. Therefore, this material is considered as an alternative and complementary solution to crystal fibers in view of a production at industrial scale, as required for a large dual readout calorimeter. In this paper, the first results on optical, scintillation properties as well as the radiation damage behaviour obtained on different samples made with different raw materials and various cerium concentrations will be presented.

  18. Flux tube analysis of L-band ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Mannucci, A. J.; Butala, M. D.; Pi, X.; Valladares, C. E.

    2013-06-01

    This manuscript presents magnetic flux tube analysis of L-band signal scintillation in the nighttime equatorial and low-latitude ionosphere. Residues of the scintillation index S4 estimated from the L-band signals received from Geostationary Earth Orbit (GEO) satellites are employed in the analysis. The S4 estimates have been shown to be associated with simultaneous GPS VTEC variations derived from JPL's GIPSY-GIM package. We have applied the wavelet decomposition technique simultaneously on the S4 time series in a flux tube over the equatorial and low-latitude regions. The technique decomposes the S4 signal to identify the dominant mode of variabilities and the temporal variations of scintillation-producing irregularities in the context of a flux tube. Statistically significant regions of the wavelet power spectra considered in our study have mainly shown that (a) dominant plasma irregularities associated with S4 variabilities in a flux tube have periods of about 4 to 15 minutes (horizontal irregularity scales of about 24 to 90 km). These periods match short period gravity waves, (b) scintillation-producing irregularities are anisotropic along the flux tube and in the east-west direction, and (c) the occurrences of scintillation-producing irregularities along the flux tube indicate that the entire flux tube became unstable. However, plasma instability occurrences were not simultaneous in most cases along the flux tube, there were time delays of various orders. Understanding the attributes of L-band scintillation-producing irregularities could be important for developing measures to mitigate L-band signal degradation.

  19. Correlation analysis between ionospheric scintillation levels and receiver tracking performance

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Aquino, M.; Elmas, Z. G.; Forte, B.

    2012-06-01

    Rapid fluctuations in the amplitude and phase of a transionospheric radio signal caused by small scale plasma density irregularities in the ionosphere are known as scintillation. Scintillation can seriously impair a GNSS (Global Navigation Satellite Systems) receiver tracking performance, thus affecting the required levels of availability, accuracy and integrity, and consequently the reliability of modern day GNSS based applications. This paper presents an analysis of correlation between scintillation levels and tracking performance of a GNSS receiver for GPS L1C/A, L2C and GLONASS L1, L2 signals. The analyses make use of data recorded over Presidente Prudente (22.1°S, 51.4°W, dip latitude ˜12.3°S) in Brazil, a location close to the Equatorial Ionisation Anomaly (EIA) crest in Latin America. The study presents for the first time this type of correlation analysis for GPS L2C and GLONASS L1, L2 signals. The scintillation levels are defined by the amplitude scintillation index, S4 and the receiver tracking performance is evaluated by the phase tracking jitter. Both S4 and the phase tracking jitter are estimated from the post correlation In-Phase (I) and Quadra-Phase (Q) components logged by the receiver at a high rate. Results reveal that the dependence of the phase tracking jitter on the scintillation levels can be represented by a quadratic fit for the signals. The results presented in this paper are of importance to GNSS users, especially in view of the forthcoming high phase of solar cycle 24 (predicted for 2013).

  20. L-Band TEC Measurements and Lower Frequency Scintillation

    NASA Astrophysics Data System (ADS)

    Pedersen, T. R.; Beach, T. L.

    2003-12-01

    Signal amplitude measurements from the GPS satellites are currently limited to L-band frequencies above 1 GHz, which often remain unaffected by conditions causing even severe scintillation at more sensitive lower frequencies. Use of differential carrier phase data from dual frequency receivers to drive phase screen models and estimate scintillation at other frequencies is one potential means of monitoring scintillation over a wider range of frequencies. However, this process is complicated by the presence of a diffractive component in the L-band signal phase which can obscure the true structure in total electron content (TEC) needed as input to phase screen models. Signal amplitudes and phases at L1 and L2 frequencies (1.57 and 1.23 GHz, respectively) are calculated after propagation through one-dimensional power-law phase screens and then the resulting differential carrier phase compared with the initial phase values in the screen. Scintillation at a variety of frequencies is then computed from both the original screen and the simulated differential carrier phase, and the two results compared to examine the effects of the unobservable diffractive phase component contained in observational TEC data. Initial results show an increase of ~10% in S4 index computed at 250 MHz from simulated differential carrier phase compared to the direct phase screen computation. These results suggest that under many conditions L-band TEC observations can be used effectively to estimate VHF and UHF scintillation over a wide range of scintillation levels, and that the differences resulting from use of observed TEC instead of true ionospheric phase can be accounted for by a relatively simple correction factor.

  1. Discrete scintillator coupled mercuric iodide photodetector arrays for breast imaging

    SciTech Connect

    Tornai, M.P.; Levin, C.S.; Hoffman, E.J.

    1996-12-31

    Multi-element (4x4) imaging arrays with high resolution collimators, size matched to discrete CsI(Tl) scintillator arrays and mercuric iodide photodetector arrays (HgI{sub 2} PDA) are under development as prototypes for larger 16 x 16 element arrays. The compact nature of the arrays allows detector positioning in proximity to the breast to eliminate activity not in the line-of-sight of the collimator, thus reducing image background. Short collimators, size matched to {le}1.5 x 1.5 mm{sup 2} scintillators show a factor of 2 and 3.4 improvement in spatial resolution and efficiency, respectively, compared to high resolution collimated gamma cameras for the anticipated compressed breast geometries. Monte Carlo simulations, confirmed by measurements, demonstrated that scintillator length played a greater role in efficiency and photofraction for 140 keV gammas than cross sectional area, which affects intrinsic spatial resolution. Simulations also demonstrated that an increase in the ratio of scintillator area to length corresponds to an improvement in light collection. Electronic noise was below 40 e{sup -} RMS indicating that detector resolution was not noise limited. The high quantum efficiency and spectral match of prototype unity gain HgI{sub 2} PDAs coupled to 1 x 1 x 2.5 mm{sup 3} and 2 x 2 x 4 mm{sup 3} CsI(Tl) scintillators demonstrated energy resolutions of 9.4% and 8.8% FWHM at 140 keV, respectively, without the spectral tailing observed in standard high-Z, compound semi-conductor detectors. Line spread function measurements matched the scintillator size and pitch, and small, complex phantoms were easily imaged.

  2. Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere

    SciTech Connect

    Berman, Gennady P; Gorshkov, V. N.; Torous, S. V.

    2010-12-14

    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams (PCBs), including the optical vortices, propagating in turbulent atmospheres, The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analyzed. A method for significantly reducing the SI, by averaging the signal at the detector over a set of PCBs, is described, This novel method is to generate the PCBs by combining two laser beams - Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the SI is effectively suppressed without any high-frequency modulators.

  3. Scintillating Bolometer Monte Carlo for Rare Particle Event Searches

    NASA Astrophysics Data System (ADS)

    Deporzio, Nicholas

    2016-09-01

    This study uses the Geant4 physics simulation toolkit to characterize various scintillating bolometer constructions for potential experimental commissioning. Emphasis is placed on detector sensitivity to neutrinoless double-beta decay. Constructions minimally include a scintillating source material for the decay and an absorber material. Tellurium, Selenium, Germanium and other candidate isotopes are studied as source materials. Various background discrimination techniques are analyzed including reflective housings and anti-reflective coatings upon the source material. Different geometric optimizations are considered. Ability to discriminate incident alpha and beta radiation, as well as photon detection efficiency for each construction is presented.

  4. Using cosmic rays to monitor large scintillator arrays

    SciTech Connect

    Knauer, J.P.; Kremens, R.L.; Russotto, M.A.; Tudman, S. )

    1995-01-01

    Large arrays of scintillator-photomultiplier detectors are becoming the technique of choice to measure neutron spectrum from ICF implosions. A 32[times]30 array of detectors is currently under construction at LLE (MEDUSA). This array is at an angle of 26[degree] relative to vertical and thus cosmic rays can be used to monitor individual channel performance. We will present: an analysis of the expected count rates and expected signal levels for single scintillator-photomultiplier detectors; a comparison of the above analysis to a test string of 30 detectors mounted in the MEDUSA frame; and the triggering scheme used to acquire data for routine operation of the instrument.

  5. Bismuth germanate as a potential scintillation detector in positron cameras.

    PubMed

    Cho, Z H; Farukhi, M R

    1977-08-01

    Timing and energy resolutions of the bismuth germanate (Bi4Ge3O12) scintillation crystals were studied, with particular respect to a positron-camera application. In comparison with the NaI(Tl) system, the detection efficiency for annihilation radiation is more than triple, and coincidence detection efficiency is more than ten times as good. This paper explores the properties of the new scintillator material and their bearing on the spatial resolution and the efficiency of coincidence detection in positron cameras with stationary ring detectors.

  6. The Scintillating Optical Fiber Calorimeter Instrument Performance (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. J.; Benson, C. M.; Berry, F. A.; Fountain, W. F.; Gregory, J. C.; Johnson, J. S.; Munroe, R. B.; Parnell, T. A.; Takahashi, Y.; Watts, J. W.

    1999-01-01

    SOFCAL is a balloon-borne instrument designed to measure the P-He cosmic ray spectra from about 200 GeV/amu - 20 TeV/amu. SOFCAL uses a thin lead and scintillating-fiber ionization calorimeter to measure the cascades produced by cosmic rays interacting in the hybrid detector system. Above the fiber calorimeter is an emulsion chamber that provides the interaction target, primary particle identification and in-flight energy calibration for the scintillating fiber data. The energy measurement technique and its calibration are described, and the present results from the analysis of a 1 day balloon flight will be presented.

  7. Data Analysis for the Scintillating Optical Fiber Calorimeter (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    1997-01-01

    The scintillating optical fiber calorimeter is a hybrid instrument with both active and passive components for measuring the proton and helium cosmic ray spectra from 0.2 to IO TeV kinetic energy. A thin emulsion/x-ray film chamber is situated between a cerenkov counter and an imaging calorimeter. Scintillating optical fibers sample the electromagnetic showers that develop in the calorimeter and identify the trajectory of cosmic rays that interact in SOFCAL. The emulsion/x-ray film data provide an in flight calibration for SOFCAL. The data reduction techniques used will be discussed and interim results of the analysis from a 20 hour balloon flight will be presented.

  8. A decametric wavelength radio telescope for interplanetary scintillation observations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.

    1975-01-01

    A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.

  9. Scintillator-fiber charged-particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector has been developed using a bundle of square cross-section plastic scintillator fiber optics, proximity focused onto an image intensified Charge Injection Device (CID) camera. Detector to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei have been exposed and images of their tracks are obtained. This paper presents details of the detector technique, properties of the tracks obtained, and range measurements of 15 MeV protons stopping in the fiber bundle.

  10. Computer model of high-latitude scintillation. [WBMOD program

    SciTech Connect

    Fremouw, E.J.

    1982-01-01

    The DNA Wideband satellite experiment provided extensive data on scintillation produced in high-altitude structured plasmas. A computer program, WBMOD, is being developed to summarize those data in an applications-oriented way. The program contains the phase-screen scattering theory of Rino and a morphological description of ionospheric irregularities (thus far only at auroral latitudes) based on Wideband observations. It permits a user to compute scintillation indices for both phase and intensity as a function of system operating parameters and solar-ionospheric disturbance level. Correction is made for multiple scatter, and the user may choose either one-way (communication) or two-way (radar) propagation.

  11. Scintillating tile/fiber calorimetry development at FNAL

    NASA Astrophysics Data System (ADS)

    Foster, G. W.; Freeman, J.; Hagstrom, R.

    1991-07-01

    The technique of calorimetry using scintillating tiles with waveshifting fibers imbedded in them for readout has been refined for use in SSC test calorimeters and for the CDF Endplug upgrade. The technique offers high light yield, good spatial uniformity, flexible readout mechanics and a very small "readout crack". Various production techniques have been developed and optimized, including control and correction of scintillator plate uniformity, techniques for splicing plastic fibers with low light losses, and laser-cutting of the groove in which the fiber is placed.

  12. Extractive-scintillating resin produced by radiation polymerization

    NASA Astrophysics Data System (ADS)

    Vincze, Á.; Solymosi, J.; Kása, I.; Sáfrány, Á.

    2007-08-01

    The characterization of a resin material is presented, which contains selective complexing and scintillating molecules in chemically bound form. The resin material is produced via radiation polymerization of the solution of 2-(4-allyloxy-phenyl)-5-phenyl oxazole, 5-(allyloxy-phenyl)-2-[4-(5-phenyl-oxazole-2-il)-phenyl] oxazole, diethylene glycol dimethacrylate (DEGMA), styrene and the allyl derivative of a 18C6 crown ether-dicarbolic acid complexing agent. The product is a macroporous polymer matrix, which shows both excellent scintillation properties and ion binding capacity for radioanalytical purposes.

  13. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  14. Silica scintillating materials prepared by sol-gel methods

    SciTech Connect

    Werst, D.W.; Sauer, M.C. Jr.; Cromack, K.R.; Lin, Y.; Tartakovsky, E.A.; Trifunac, A.D.

    1993-12-31

    Silica was investigated as a rad-hard alternative to organic polymer hosts for organic scintillators. Silica sol-gels were prepared by hydrolysis of tetramethoxysilane in alcohol solutions. organic dyes were incorporated into the gels by dissolving in methanol at the sol stage of gel formation. The silica sol-gel matrix is very rad-hard. The radiation stability of silica scintillators prepared by this method is dye-limited. Transient radioluminescence was measured following excitation with 30 ps pulses of 20 MeV electrons.

  15. Scintillator Evaluation for High-Energy X-Ray Diagnostics

    SciTech Connect

    S. S. Lutz; S. A. Baker

    2001-09-01

    This report presents results derived from a digital radiography study performed using x-rays from a 2.3 MeV, rod-pinch diode. Detailed is a parameter study of cerium-doped lutetium ortho-silicate (LSO) scintillator thickness, as it relates to system resolution and detection quantum efficiency (DQE). Additionally, the detection statistics of LSO were compared with that of CsI(Tl). As a result of this study we found the LSO scintillator with a thickness of 3 mm to yield the highest system DQE over the range of spatial frequencies from 0.75 to 2.5 mm{sup -1}.

  16. Effects of radiation on scintillating fiber performance. [SSC hadron calorimeter

    SciTech Connect

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G. ); Carey, R.; Rothman, M.; Sulak, L.; Worstell, W. ); Parr, H. )

    1992-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented.

  17. Methods of alleviation of ionospheric scintillation effects on digital communications

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1974-01-01

    The degradation of the performance of digital communication systems because of ionospheric scintillation effects can be reduced either by diversity techniques or by coding. The effectiveness of traditional space-diversity, frequency-diversity and time-diversity techniques is reviewed and design considerations isolated. Time-diversity signaling is then treated as an extremely simple form of coding. More advanced coding methods, such as diffuse threshold decoding and burst-trapping decoding, which appear attractive in combatting scintillation effects are discussed and design considerations noted. Finally, adaptive coding techniques appropriate when the general state of the channel is known are discussed.

  18. Polystyrene-based scintillator with pulse-shape discrimination capability

    NASA Astrophysics Data System (ADS)

    Zhmurin, P. N.; Lebedev, V. N.; Titskaya, V. D.; Adadurov, A. F.; Elyseev, D. A.; Pereymak, V. N.

    2014-10-01

    Polystyrene-based scintillators with 2-phenyl-5-(4-tert-butylephenyl)-1,3,4-oxadiazole (tert-BuPPD) or 2,5-di-(3-methylphenyl)-1,3,4 oxadiazole (m-DMePPD) are proposed for pulse-shape n/γ-discrimination. These scintillators have improved mechanical properties, long operational time and high n/γ discrimination parameter - figure of merit (1.49 and 1.81 in a wide energy region), so they can be used as detectors of fast neutrons in the presence of gamma radiation background.

  19. Time statistics of the photoelectron emission process in scintillation counters

    NASA Astrophysics Data System (ADS)

    Ranucci, Gioacchino

    1993-10-01

    In this work the statistical time properties of the photoelectron emission process in scintillation counters are evaluated assuming that the total number of emitted photoelectrons is distributed according to a generic random distribution. Under this general assumption, the probability density function of the time of emission of the ith photoelectron is computed; it is also demonstrated that if the number of emitted photoelectrons is Poisson distributed, this probability density function reduces to the expression already published for this particular case. Finally the procedure adopted is extended to give the expressions predicting the performances of organic scintillators for the pulse shape discrimination of particles of different type.

  20. Characterization of a SrF2 Scintillating Bolometer

    NASA Astrophysics Data System (ADS)

    Ginestra, C.; Coron, N.; García, E.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; Redon, T.; Torres, L.

    2012-06-01

    We present the analysis of the data obtained with a 53 g SrF2 scintillating bolometer operated at 20 mK. We have analyzed its heat and light response (time constants, linearity and energy resolution) and measured its scintillation relative efficiency factor for different particles (alpha, beta/gamma and neutrons). We have studied the spatial uniformity of the light output profiting from its internal contamination. The light amplitude of alphas from the delayed coincidence 224Ra→220Rn→216Po (emitted from the same crystal position) shows a positive correlation, evidence of a non-uniformity that worsens the light signal energy resolution by more than 50%.

  1. Scintillating Bolometer Monte Carlo for Rare Particle Event Searches

    NASA Astrophysics Data System (ADS)

    Deporzio, Nicholas

    2017-01-01

    This study uses the Geant4 physics simulation toolkit to characterize various scintillating bolometer constructions for potential experimental commissioning. Emphasis is placed on detector sensitivity to neutrinoless double-beta decay. Constructions minimally include a scintillating source material for the decay and an absorber material. Tellurium, Selenium, Germanium and other candidate isotopes are studied as source materials. Various background discrimination techniques are analyzed including reflective housings and anti-reflective coatings upon the source material. Different geometric optimizations are considered. Ability to discriminate incident alpha and beta radiation, as well as photon detection efficiency for each construction is presented.

  2. Lithium-containing scintillators for thermal neutron, fast neutron, and gamma detection

    DOEpatents

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.

    2016-03-01

    In one embodiment, a scintillator includes a scintillator material; a primary fluor, and a Li-containing compound, where the Li-containing compound is soluble in the primary fluor, and where the scintillator exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays.

  3. Simulation results of liquid and plastic scintillator detectors for reactor antineutrino detection - A comparison

    NASA Astrophysics Data System (ADS)

    Kashyap, V. K. S.; Pant, L. M.; Mohanty, A. K.; Datar, V. M.

    2016-03-01

    A simulation study of two kinds of scintillation detectors has been done using GEANT4. We compare plastic scintillator and liquid scintillator based designs for detecting electron antineutrinos emitted from the core of reactors. The motivation for this study is to set up an experiment at the research reactor facility at BARC for very short baseline neutrino oscillation study and remote reactor monitoring.

  4. Methods of Fabricating Scintillators with Radioisotopes for Beta Battery Applications

    NASA Technical Reports Server (NTRS)

    Rensing, Noa M.; Squillante, Michael R.; Tieman, Timothy C.; Higgins, William; Shiriwadkar, Urmila

    2013-01-01

    Technology has been developed for a class of self-contained, long-duration power sources called beta batteries, which harvest the energy contained in the radioactive emissions from beta decay isotopes. The new battery is a significant improvement over the conventional phosphor/solar cell concept for converting this energy in three ways. First, the thin phosphor is replaced with a thick scintillator that is transparent to its own emissions. By using a scintillator sufficiently thick to completely stop all the beta particles, efficiency is greatly improved. Second, since the energy of the beta particles is absorbed in the scintillator, the semiconductor photodetector is shielded from radiation damage that presently limits the performance and lifetime of traditional phosphor converters. Finally, instead of a thin film of beta-emitting material, the isotopes are incorporated into the entire volume of the thick scintillator crystal allowing more activity to be included in the converter without self-absorption. There is no chemical difference between radioactive and stable strontium beta emitters such as Sr-90, so the beta emitter can be uniformly distributed throughout a strontium based scintillator crystal. When beta emitter material is applied as a foil or thin film to the surface of a solar cell or even to the surface of a scintillator, much of the radiation escapes due to the geometry, and some is absorbed within the layer itself, leading to inefficient harvesting of the energy. In contrast, if the emitting atoms are incorporated within the scintillator, the geometry allows for the capture and efficient conversion of the energy of particles emitted in any direction. Any gamma rays associated with secondary decays or Bremsstrahlung photons may also be absorbed within the scintillator, and converted to lower energy photons, which will in turn be captured by the photocell or photodiode. Some energy will be lost in this two-stage conversion process (high-energy particle

  5. Luminescent and scintillation properties of composites based on sol-gel SiO2 matrices and organic scintillators

    NASA Astrophysics Data System (ADS)

    Vyagin, O. G.; Bespalova, I. I.; Masalov, A. A.; Zelenskaya, O. V.; Tarasov, V. A.; Malyukin, Yu. V.

    2014-11-01

    Luminescent composites based on SiO2 matrices synthesized using the sol-gel method and organic scintillators PPO and o-POPOP are produced, and their optical, luminescent, and scintillation characteristics are studied. It is shown that these composites generate an intense photoluminescence signal, possess a nanosecond decay time, and have a transparency in the range of 400-700 nm of no less than 70%. The absolute light output during excitation by α radiation with an energy of 5.46 MeV is 4400-5100 photon/MeV, and the amplitude resolution is 27-32%.

  6. On The Collocation of the Cusp Aurora and the GPS Phase Scintillation: A Statistical Study

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Moen, J.; Miloch, W.

    2015-12-01

    The climatology map of the GPS phase scintillation identifies two regions of high scintillation occurrences at high latitudes: around magnetic noon and around magnetic midnight. The scintillation occurrence rate is higher around magnetic noon, while the scintillation level is stronger around magnetic midnight. This study focuses on the dayside scintillation region. In order to resolve the role of the cusp auroral processes in the production of irregularities, we put the GPS phase scintillation in the context of the observed auroral morphology. Results show that the occurrence rate of the GPS phase scintillation is highest inside the auroral cusp, regardless of the scintillation strength and the interplanetary magnetic field (IMF). On average the scintillation occurrence rate in the cusp region is about 5 times as high as in the region immediately poleward of it. The scintillation occurrence rate is higher when the IMF BZ is negative. When partitioning the scintillation data by the IMF BY, the distribution of the scintillation occurrence rate around magnetic noon is similar to that of the poleward moving auroral form (PMAF) statistics: there is a higher occurrence rate at earlier (later) magnetic local time when the IMF BY is positive (negative). This indicates that the irregularities which give rise to scintillations follow the IMF BY controlled East-West motion of the aurora and plasma. Furthermore, the scintillation occurrence rate is higher when IMF BY is positive when the cusp is shifted towards the post-noon sector where it may get easier access to the higher density plasma. This suggests that the combined auroral activities (e.g., PMAF) and the density of the intake solar EUV ionized plasma are crucial for the production of scintillations.

  7. Techniques for measuring intercepted and absorbed PAR in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.

    1984-01-01

    The quantity of radiation potentially available for photosynthesis that is captured by the crop is best described as absorbed photosynthetically active radiation (PAR). Absorbed PAR (APAR) is the difference between descending and ascending fluxes. The four components of APAR were measured above and within two planting densities of corn (Zea mays L.) and several methods of measuring and estimating APAR were examined. A line quantum sensor that spatially averages the photosynthetic photon flux density provided a rapid and portable method of measuring APAR. PAR reflectance from the soil (Typic Argiaquoll) surface decreased from 10% to less than 1% of the incoming PAR as the canopy cover increased. PAR reflectance from the canopy decreased to less than 3% at maximum vegetative cover. Intercepted PAR (1 - transmitted PAR) generally overestimated absorbed PAR by less than 4% throughout most of the growing season. Thus intercepted PAR appears to be a reasonable estimate of absorbed PAR.

  8. Protease-activated receptor (PAR) 1 and PAR4 differentially regulate factor V expression from human platelets.

    PubMed

    Duvernay, Matthew; Young, Summer; Gailani, David; Schoenecker, Jonathan; Hamm, Heidi E; Hamm, Heidi

    2013-04-01

    With the recent interest of protease-activated receptors (PAR) 1 and PAR4 as possible targets for the treatment of thrombotic disorders, we compared the efficacy of protease-activated receptor (PAR)1 and PAR4 in the generation of procoagulant phenotypes on platelet membranes. PAR4-activating peptide (AP)-stimulated platelets promoted thrombin generation in plasma up to 5 minutes earlier than PAR1-AP-stimulated platelets. PAR4-AP-mediated factor V (FV) association with the platelet surface was 1.6-fold greater than for PAR1-AP. Moreover, PAR4 stimulation resulted in a 3-fold greater release of microparticles, compared with PAR1 stimulation. More robust FV secretion and microparticle generation with PAR4-AP was attributable to stronger and more sustained phosphorylation of myosin light chain at serine 19 and threonine 18. Inhibition of Rho-kinase reduced PAR4-AP-mediated FV secretion and microparticle generation to PAR1-AP-mediated levels. Thrombin generation assays measuring prothrombinase complex activity demonstrated 1.5-fold higher peak thrombin levels on PAR4-AP-stimulated platelets, compared with PAR1-AP-stimulated platelets. Rho-kinase inhibition reduced PAR4-AP-mediated peak thrombin generation by 25% but had no significant effect on PAR1-AP-mediated thrombin generation. In conclusion, stimulation of PAR4 on platelets leads to faster and more robust thrombin generation, compared with PAR1 stimulation. The greater procoagulant potential is related to more efficient FV release from intracellular stores and microparticle production driven by stronger and more sustained myosin light chain phosphorylation. These data have implications about the role of PAR4 during hemostasis and are clinically relevant in light of recent efforts to develop PAR antagonists to treat thrombotic disorders.

  9. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  10. Use of a large time-compensated scintillation detector in neutron time-of-flight measurements

    DOEpatents

    Goodman, Charles D.

    1979-01-01

    A scintillator for neutron time-of-flight measurements is positioned at a desired angle with respect to the neutron beam, and as a function of the energy thereof, such that the sum of the transit times of the neutrons and photons in the scintillator are substantially independent of the points of scintillations within the scintillator. Extrapolated zero timing is employed rather than the usual constant fraction timing. As a result, a substantially larger scintillator can be employed that substantially increases the data rate and shortens the experiment time.

  11. Measurement of gamma quantum interaction point in plastic scintillator with WLS strips

    NASA Astrophysics Data System (ADS)

    Smyrski, J.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Jasińska, B.; Kajetanowicz, M.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Salabura, P.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Wojnarska, J.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2017-04-01

    The feasibility of measuring the aśxial coordinate of a gamma quantum interaction point in a plastic scintillator bar via the detection of scintillation photons escaping from the scintillator with an array of wavelength-shifting (WLS) strips is demonstrated. Using a test set-up comprising a BC-420 scintillator bar and an array of sixteen BC-482A WLS strips we achieved a spatial resolution of 5 mm (σ) for annihilation photons from a 22Na isotope. The studied method can be used to improve the spatial resolution of a plastic-scintillator-based PET scanner which is being developed by the J-PET collaboration.

  12. Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy

    NASA Astrophysics Data System (ADS)

    Beaulieu, Luc; Beddar, Sam

    2016-10-01

    While scintillation dosimetry has been around for decades, the need for a dosimeter tailored to the reality of modern radiation therapy—in particular a real-time, water-equivalent, energy-independent dosimeter with high spatial resolution—has generated renewed interest in scintillators over the last 10 years. With the advent of at least one commercial plastic scintillation dosimeter and the ever-growing scientific literature on this subject, this topical review is intended to provide the medical physics community with a wide overview of scintillation physics, related optical concepts, and applications of plastic scintillation dosimetry.

  13. A study of liquid scintillator and fiber materials for use in a fiber calorimeter

    SciTech Connect

    Altice, P.P. Jr.

    1990-04-01

    This reports an investigation into the performance of selected scintillation oils and fiber materials to test their applicability in high energy, liquid scintillator calorimetry. Two scintillating oils, Bicron BC-517 and an oil mixed for the MACRO experiment, and two fiber materials, Teflon and GlassClad PS-252, were tested for the following properties: light yield, attenuation length and internal reflection angle. The results of these tests indicated that the scintillation oils and the fiber materials had an overall good performance with lower energies and would meet the requirements of liquid scintillator detection at SSC energies. 6 refs.

  14. Laser beam scintillation beyond the turbulent atmosphere A numerical computation

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.; Taylor, L. S.

    1976-01-01

    The extended Huygens-Fresnel formulation for propagation through turbulence is used to examine scintillation of a finite laser beam. The method is demonstrated analytically for propagation beyond a weak Gaussian phase screen. A numerical integration technique is used to extend the results to a more realistic turbulence model. Results are compared with existing Gaussian beam propagation theory.

  15. Direct determination of lead-210 by liquid-scintillation counting

    NASA Technical Reports Server (NTRS)

    Fairman, W. D.; Sedlet, J.

    1969-01-01

    Soft betas, the internal conversion electrons, and unconverted gamma rays from lead-210 are efficiently detected in a liquid scintillation counting system with efficiency of 97 percent. The counter is interfaced with a multichannel pulse height analyzer. The spectra obtained is stored on paper tape and plotted on an x-y plotter.

  16. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    SciTech Connect

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  17. DESCANT - the deuterated scintillator array for neutron tagging

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.

    2014-01-01

    The DESCANT array is a new device for neutron detection based on deuterated liquid scintillator. It has been designed to be coupled with the TIGRESS and GRIFFIN γ-ray spectrometers to enable neutron tagging in fusion-evaporation reactions, and β-delayed neutron studies.

  18. Optical artefact characterization and correction in volumetric scintillation dosimetry

    PubMed Central

    Robertson, Daniel; Hui, Cheukkai; Archambault, Louis; Mohan, Radhe; Beddar, Sam

    2014-01-01

    The goals of this study were (1) to characterize the optical artefacts affecting measurement accuracy in a volumetric liquid scintillation detector, and (2) to develop methods to correct for these artefacts. The optical artefacts addressed were photon scattering, refraction, camera perspective, vignetting, lens distortion, the lens point spread function, stray radiation, and noise in the camera. These artefacts were evaluated by theoretical and experimental means, and specific correction strategies were developed for each artefact. The effectiveness of the correction methods was evaluated by comparing raw and corrected images of the scintillation light from proton pencil beams against validated Monte Carlo calculations. Blurring due to the lens and refraction at the scintillator tank-air interface were found to have the largest effect on the measured light distribution, and lens aberrations and vignetting were important primarily at the image edges. Photon scatter in the scintillator was not found to be a significant source of artefacts. The correction methods effectively mitigated the artefacts, increasing the average gamma analysis pass rate from 66% to 98% for gamma criteria of 2% dose difference and 2 mm distance to agreement. We conclude that optical artefacts cause clinically meaningful errors in the measured light distribution, and we have demonstrated effective strategies for correcting these optical artefacts. PMID:24321820

  19. Studies of Transionospheric Scintillation Using Orbiting Satellite Data.

    DTIC Science & Technology

    1980-04-01

    discrete-time are reliable only for frequencies below (2’ where T is the sampling period ( Lathi , 1974). In this case, TSO0.01 seconds so 50 Hz is the...Early Results from the DNA Wideband Satellite Experiment -- Complex Signal Scintillation, Radio Science, vol. 13, no. 1, 167-187. Lathi , B. P., (1974

  20. Water-equivalent fiber radiation dosimeter with two scintillating materials

    PubMed Central

    Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed

    2016-01-01

    An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties. PMID:28018715

  1. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  2. ATLAS ALFA—measuring absolute luminosity with scintillating fibres

    NASA Astrophysics Data System (ADS)

    Franz, S.; Barrillon, P.

    2009-10-01

    ALFA is a high-precision scintillating fibre tracking detector under construction for the absolute determination of the LHC luminosity at the ATLAS interaction point. This detector, mounted in so-called Roman Pots, will track protons elastically scattered under μrad angles at IP1.In total there are four pairs of vertically arranged detector modules which approach the LHC beam axis to mm distance. Each detector module consists of ten layers of two times 64 scintillating fibres each (U and V planes). The fibres are coupled to 64 channels Multi-Anodes PhotoMultipliers Tubes read out by compact front-end electronics. Each detector module is complemented by so-called overlap detectors: Three layers of two times 30 scintillating fibres which will be used to measure the relative positioning of two vertically arranged main detectors. The total number of channels is about 15000. Conventional plastic scintillator tiles are mounted in front of the fibre detectors and will serve as trigger counter. The extremely restricted space inside the pots makes the coupling to the read out devices very challenging. Several technologies have been tested in a beam at DESY and a cosmic-ray setup at CERN. A possible upgrade of the photo detection could consist in the replacement of the PMT by Geiger-mode avalanche photodiodes. Preliminary tests are being performed comparing the performance of these devices with the ones of the PMTs.

  3. Ca2+-Doped CeBr3 Scintillating Materials

    SciTech Connect

    Guss, Paul; Foster, Michael E.; Wong, Bryan M.; Doty, F. Patrick; Shah, Kanai; Squillante, Michael R.; Shirwadkar, Urmila; Hawrami, Rastgo; Tower, Josh; Yuan, Ding

    2014-01-01

    Despite the outstanding scintillation performance characteristics of cerium tribromide (CeBr3) and cerium-activated lanthanum tribromide, their commercial availability and application are limited due to the difficulties of growing large, crack-free single crystals from these fragile materials. This investigation employed aliovalent doping to increase crystal strength while maintaining the optical properties of the crystal. One divalent dopant (Ca2+) was used as a dopant to strengthen CeBr3 without negatively impacting scintillation performance. Ingots containing nominal concentrations of 1.9% of the Ca2+ dopant were grown. Preliminary scintillation measurements are presented for this aliovalently doped scintillator. Ca2+-doped CeBr3 exhibited little or no change in the peak fluorescence emission for 371 nm optical excitation for CeBr3. The structural, electronic, and optical properties of CeBr3 crystals were studied using the density functional theory within the generalized gradient approximation. The calculated lattice parameters are in good agreement with the experimental data. The energy band structures and density of states were obtained. The optical properties of CeBr3, including the dielectric function, were calculated.

  4. A scintillator purification system for the Borexino solar neutrino detector

    NASA Astrophysics Data System (ADS)

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.; Loeser, F.; McCarty, K.; McKinsey, D.; Nelson, A.; Pocar, A.; Salvo, C.; Schimizzi, D.; Shutt, T.; Sonnenschein, A.

    2008-03-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system that combines distillation, water extraction, gas stripping, and filtration. This paper describes the principles of operation, design, and construction of that purification system, and reviews the requirements and methods to achieve system cleanliness and leak-tightness.

  5. Monitoring of I-125 contamination using a portable scintillation camera.

    PubMed

    Taylor, A; Verba, J W; Alazraki, N P; McCutchen, W C

    1978-04-01

    A technique has been developed using a portable scintillation camera to monitor I-125 contamination of personnel. The procedure takes less than a minute to complete and can detect 3 nanocuries; its use minimizes dissemination of I-125 throughout the hospital, emphasizes safe iodination practices and proper handling of radioactive materials, and reduces radiation exposure by undetected contamination.

  6. Using Thin Films to Screen Possible Scintillator Materials

    SciTech Connect

    Milbrath, Brian D.; Caggiano, Joseph A.; Engelhard, Mark H.; Joly, Alan G.; Matson, Dean W.; Nachimuthu, Ponnusamy; Olsen, Larry C.

    2009-06-30

    The discovery and optimization of new scintillators has traditionally been a rather slow process due to the difficulties of single crystal growth. This paper discusses the production of polycrystalline scintillator thin films (a few microns thick) which were tested in order to determine what characterizations could be made concerning a material’s ultimate potential as a scintillator prior to pursuing crystal growth. Thin films of CaF2(Eu), CeF3, and CeCl3, all known scintillators, were produced by vapor deposition. The hygroscopic CeCl3 was coated with multiple polymer-aluminum oxide bi-layers. Emission spectra peak wavelengths and decay times agreed with single crystal values. The films were too thin to measure gamma photopeaks, but using alpha energy deposition peaks, one could compare the relative photon yield/MeV between materials. The values obtained appear to give a relevant indication of a material’s light yield potential. The technique also appears useful for quickly determining the proper dopant amount for a given material.

  7. Complex Electronic Structure of Rare Earth Activators in Scintillators

    SciTech Connect

    Aberg, D.; Yu, S. W.; Zhou, F.

    2015-10-27

    To aid and further the understanding of the microscopic mechanisms behind the scintillator nonproportionality that leads to degradation of the attainable energy resolution, we have developed theoretical and experimental algorithms and procedures to determine the position of the 4f energy levels of rare earth dopants relative to the host band edge states.

  8. The Scintillator-Layered Imaging Microscope for Environmental Research

    NASA Astrophysics Data System (ADS)

    Buchanan, Emily; Kidd, M. F.; Elliott, S. R.; Rielage, K.

    2016-03-01

    In microbial ecosystems, a high-throughput analysis can match microorganisms with the compounds they metabolize. This is a vital process, but the current tools are limited in both time and resolution. A new tool, SLIMER (the Scintillator-Layered Imaging Microscope for Environmental Research), will incorporate a thin-film microcolumnar scintillator in a standard fluorescent microscope, to allow measurement of both fluorescence and radioactivity in a single step and to improve by a factor of 10 the resolution of current tools. In order to study the properties of SLIMER, a simulation to illustrate the topology of events was developed from the ground up with the GEANT4 toolkit. The simulation consists of CsI tubes, 1 um in diameter, in a 1 cm by 1 cm array, with a C-14 source. The GEANT4 package for radioactive decay was used to model the decay of C-14, and the package for optical photon processes was used to realistically model the optics of scintillation. The HepRApp Visualization Browser was used to provide a visual model of the scintillator, source, and particle tracks. The developed simulation provides useful information about the capabilities and properties of SLIMER, which in turn will impact the way microbial ecosystems and their impact on the environment are studied.

  9. Optical artefact characterization and correction in volumetric scintillation dosimetry

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Hui, Cheukkai; Archambault, Louis; Mohan, Radhe; Beddar, Sam

    2014-01-01

    The goals of this study were (1) to characterize the optical artefacts affecting measurement accuracy in a volumetric liquid scintillator detector, and (2) to develop methods to correct for these artefacts. The optical artefacts addressed were photon scattering, refraction, camera perspective, vignetting, lens distortion, the lens point spread function, stray radiation, and noise in the camera. These artefacts were evaluated by theoretical and experimental means, and specific correction strategies were developed for each artefact. The effectiveness of the correction methods was evaluated by comparing raw and corrected images of the scintillation light from proton pencil beams against validated Monte Carlo calculations. Blurring due to the lens and refraction at the scintillator tank-air interface were found to have the largest effect on the measured light distribution, and lens aberrations and vignetting were important primarily at the image edges. Photon scatter in the scintillator was not found to be a significant source of artefacts. The correction methods effectively mitigated the artefacts, increasing the average gamma analysis pass rate from 66% to 98% for gamma criteria of 2% dose difference and 2 mm distance to agreement. We conclude that optical artefacts cause clinically meaningful errors in the measured light distribution, and we have demonstrated effective strategies for correcting these optical artefacts.

  10. Organic Scintillator Detector Response Simulations with DRiFT

    DOE PAGES

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen; ...

    2016-06-11

    Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plotsmore » and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less

  11. Positronium signature in organic liquid scintillators for neutrino experiments

    SciTech Connect

    Franco, D.; Consolati, G.; Trezzi, D.

    2011-01-15

    Electron antineutrinos are commonly detected in liquid scintillator experiments via inverse {beta} decay by looking at the coincidence between the reaction products: neutrons and positrons. Prior to positron annihilation, an electron-positron pair may form an orthopositronium (o-Ps) state, with a mean lifetime of a few nanoseconds. Even if the o-Ps decay is speeded up by spin-flip or pick-off effects, it may introduce distortions in the photon emission time distribution, crucial for position reconstruction and pulse shape discrimination algorithms in antineutrino experiments. Reversing the problem, the o-Ps-induced time distortion represents a new signature for tagging antineutrinos in liquid scintillator. In this article, we report the results of measurements of the o-Ps formation probability and lifetime for the most used solvents for organic liquid scintillators in neutrino physics (pseudocumene, linear alkyl benzene, phenylxylylethane, and dodecane). We characterize also a mixture of pseudocumene +1.5 g/l of 2,5-diphenyloxazole, a fluor acting as wavelength shifter. In the second part of the article, we demonstrate that the o-Ps-induced distortion of the scintillation photon emission time distributions represent an optimal signature for tagging positrons on an event by event basis, potentially enhancing the antineutrino detection.

  12. X-ray Scintillation in Lead Halide Perovskite Crystals

    PubMed Central

    Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C.

    2016-01-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications. PMID:27849019

  13. X-ray Scintillation in Lead Halide Perovskite Crystals

    NASA Astrophysics Data System (ADS)

    Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C.

    2016-11-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications.

  14. Organic Scintillator Detector Response Simulations with DRiFT

    SciTech Connect

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen; Solomon, Clell Jeffrey Jr.; Sood, Avneet

    2016-06-11

    Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  15. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  16. Event localization in bulk scintillator crystals using coded apertures

    NASA Astrophysics Data System (ADS)

    Ziock, K. P.; Braverman, J. B.; Fabris, L.; Harrison, M. J.; Hornback, D.; Newby, J.

    2015-06-01

    The localization of radiation interactions in bulk scintillators is generally limited by the size of the light distribution at the readout surface of the crystal/light-pipe system. By finding the centroid of the light spot, which is typically of order centimeters across, practical single-event localization is limited to 2 mm/cm of crystal thickness. Similar resolution can also be achieved for the depth of interaction by measuring the size of the light spot. Through the use of near-field coded-aperture techniques applied to the scintillation light, light transport simulations show that for 3-cm-thick crystals, more than a five-fold improvement (millimeter spatial resolution) can be achieved both laterally and in event depth. At the core of the technique is the requirement to resolve the shadow from an optical mask placed in the scintillation light path between the crystal and the readout. In this paper, experimental results are presented that demonstrate the overall concept using a 1D shadow mask, a thin-scintillator crystal and a light pipe of varying thickness to emulate a 2.2-cm-thick crystal. Spatial resolutions of 1 mm in both depth and transverse to the readout face are obtained over most of the crystal depth.

  17. Scintillation Characterization of Doped Cesium Hafnium Chloride (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rowe, Emmanuel; Goodwin, Brandon; Bhattacharya, Pijush; Burger, Arnold; Stowe, Ashley; Cherepy, Nerine; Payne, Steve

    2016-09-01

    The scintillators currently providing the best energy resolution lower than 2.6% at 662 keV and sizes larger than 1 in. dia. 1 in. height are LaBr3(Ce) and SrI2(Eu). Despite energy resolution and decay time performance of LaBr3(Ce), the intrinsic radioactivity, due to naturally occurring 138La isotope in the matrix is a limitation for low count rate applications such as radioisotope identification of weak sources. Cesium Hafnium Chloride (CHC) is a high effective atomic number (Zeff=58) moderate density (3.86 g/cm3) scintillator for gamma spectroscopy, offering a cubic crystal structure, no intrinsic radioactivity, and highly proportional light yield, without intentional doping. CHC boasts a cubic crystal structure that is isostructural to K2HfCl6 and analogous to calcium fluoride with cesium ions in the fluorine ion position and the [HfCl6]2- octahedral replacing calcium ions. The scintillation of CHC is centered at 400 nm, with a principal decay time of 4.37 μs, a light yield of up to 54,000 photons/MeV and energy resolution of 3.3% at 662 keV and we report on the effects of doping on the scintillation properties of CHC.

  18. Water-equivalent fiber radiation dosimeter with two scintillating materials.

    PubMed

    Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed

    2016-12-01

    An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties.

  19. Development of novel UV emitting single crystalline film scintillators

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Nikl, M.; Mares, J. A.; Martin, T.; Douissard, P.-A.

    2011-04-01

    The work is dedicated to development of new types of UV -emitting scintillators based on single crystalline films (SCF) of aluminimum perovskites and garnets grown by the liquid phase epitaxy (LPE) method. The development of the following three types of UV SCF scintillators is considered in this work: i) Ce-doped SCF of Y-Lu-Al-perovskites with Ce3+ emission in the 360-370 nm range with a decay time of 16-17 ns; ii) Pr-doped SCF of Y-Lu-Al garnets with Pr3+ emission in the 300-400 nm range with a decay time of 13-17 ns; iii) La3+ and Sc3+ doped SCF of Y-Lu-Al-garnets, emitting in the 290-400 nm range due to formation of the LaY,Lu, ScY,Lu and ScAl centers with decay time of 250-575 ns. The results of testing the several novel UV-emitting SCFs scintillators for visualization of X-ray images at ESFR are presented. It is shown that the UV emission of the LuAG:Sc, LuAG:La and LuAG:Pr SCFs is efficient enough for conversion of X-ray to the UV light and that these scintillators can be used for improvement of the resolution of imaging detectors in synchrotron radiation applications.

  20. Event Localization in Bulk Scintillator Crystals Using Coded Apertures

    SciTech Connect

    Ziock, Klaus-Peter; Braverman, Joshua B.; Fabris, Lorenzo; Harrison, Mark J.; Hornback, Donald Eric; Newby, Jason

    2015-06-01

    The localization of radiation interactions in bulk scintillators is generally limited by the size of the light distribution at the readout surface of the crystal/light-pipe system. By finding the centroid of the light spot, which is typically of order centimeters across, practical single-event localization is limited to ~2 mm/cm of crystal thickness. Similar resolution can also be achieved for the depth of interaction by measuring the size of the light spot. Through the use of near-field coded-aperture techniques applied to the scintillation light, light transport simulations show that for 3-cm-thick crystals, more than a five-fold improvement (millimeter spatial resolution) can be achieved both laterally and in event depth. At the core of the technique is the requirement to resolve the shadow from an optical mask placed in the scintillation light path between the crystal and the readout. In this paper, experimental results are presented that demonstrate the overall concept using a 1D shadow mask, a thin-scintillator crystal and a light pipe of varying thickness to emulate a 2.2-cm-thick crystal. Spatial resolutions of ~ 1 mm in both depth and transverse to the readout face are obtained over most of the crystal depth.

  1. Approaching Long Genomic Regions and Large Recombination Rates with msParSm as an Alternative to MaCS

    PubMed Central

    Montemuiño, Carlos; Espinosa, Antonio; Moure, Juan C.; Vera, Gonzalo; Hernández, Porfidio; Ramos-Onsins, Sebastián

    2016-01-01

    The msParSm application is an evolution of msPar, the parallel version of the coalescent simulation program ms, which removes the limitation for simulating long stretches of DNA sequences with large recombination rates, without compromising the accuracy of the standard coalescence. This work introduces msParSm, describes its significant performance improvements over msPar and its shared memory parallelization details, and shows how it can get better, if not similar, execution times than MaCS. Two case studies with different mutation rates were analyzed, one approximating the human average and the other approximating the Drosophila melanogaster average. Source code is available at https://github.com/cmontemuino/msparsm. PMID:27721650

  2. Co-doping effects on luminescence and scintillation properties of Ce doped (Lu,Gd)3(Ga,Al)5O12 scintillator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroaki; Kamada, Kei; Kurosawa, Shunsuke; Pejchal, Jan; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2016-11-01

    Mg co-doping effects on scintillation properties of Ce:Lu1Gd2(Ga,Al)5O12 (LGGAG) were investigated. Mg 200 ppm co-doped Ce:LGGAG single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg co-doping. Ce4+ charge transfer absorption was observed below 300 nm in Mg,Ce:LGGAG which is in good agreement with previous reports. The scintillation decay times were accelerated by Mg co-doping.

  3. PAR2 regulates regeneration, transdifferentiation, and death

    PubMed Central

    Piran, Ron; Lee, Seung-Hee; Kuss, Pia; Hao, Ergeng; Newlin, Robbin; Millán, José Luis; Levine, Fred

    2016-01-01

    Understanding the mechanisms by which cells sense and respond to injury is central to developing therapies to enhance tissue regeneration. Previously, we showed that pancreatic injury consisting of acinar cell damage+β-cell ablation led to islet cell transdifferentiation. Here, we report that the molecular mechanism for this requires activating protease-activated receptor-2 (PAR2), a G-protein-coupled receptor. PAR2 modulation was sufficient to induce islet cell transdifferentiation in the absence of β-cells. Its expression was modulated in an islet cell type-specific manner in murine and human type 1 diabetes (T1D). In addition to transdifferentiation, PAR2 regulated β-cell apoptosis in pancreatitis. PAR2's role in regeneration is broad, as mice lacking PAR2 had marked phenotypes in response to injury in the liver and in digit regeneration following amputation. These studies provide a pharmacologically relevant target to induce tissue regeneration in a number of diseases, including T1D. PMID:27809303

  4. Bright Lu2O3:Eu thin-film scintillators for high-resolution radioluminescence microscopy

    PubMed Central

    Sengupta, Debanti; Miller, Stuart; Marton, Zsolt; Chin, Frederick; Nagarkar, Vivek

    2015-01-01

    We investigate the performance of a new thin-film Lu2O3:Eu scintillator for single-cell radionuclide imaging. Imaging the metabolic properties of heterogeneous cell populations in real time is an important challenge with clinical implications. We have developed an innovative technique called radioluminescence microscopy, to quantitatively and sensitively measure radionuclide uptake in single cells. The most important component of this technique is the scintillator, which converts the energy released during radioactive decay into luminescent signals. The sensitivity and spatial resolution of the imaging system depend critically on the characteristics of the scintillator, i.e. the material used and its geometrical configuration. Scintillators fabricated using conventional methods are relatively thick, and therefore do not provide optimal spatial resolution. We compare a thin-film Lu2O3:Eu scintillator to a conventional 500 μm thick CdWO4 scintillator for radioluminescence imaging. Despite its thinness, the unique scintillation properties of the Lu2O3:Eu scintillator allow us to capture single positron decays with over fourfold higher sensitivity, a significant achievement. The thin-film Lu2O3:Eu scintillators also yield radioluminescence images where individual cells appear smaller and better resolved on average than with the CdWO4 scintillators. Coupled with the thin-film scintillator technology, radioluminescence microscopy can yield valuable and clinically relevant data on the metabolism of single cells. PMID:26183115

  5. ATP-regulated interactions between P1 ParA, ParB and non-specific DNA that are stabilized by the plasmid partition site, parS

    PubMed Central

    Havey, James C.; Vecchiarelli, Anthony G.; Funnell, Barbara E.

    2012-01-01

    Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB–parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein–DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein–DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition. PMID:21965538

  6. N-(2-Ethylhexyl)carbazole: A New Fluorophore Highly Suitable as a Monomolecular Liquid Scintillator.

    PubMed

    Montbarbon, Eva; Sguerra, Fabien; Bertrand, Guillaume H V; Magnier, Élodie; Coulon, Romain; Pansu, Robert B; Hamel, Matthieu

    2016-08-16

    The synthesis, photophysical properties, and applications in scintillation counting of N-(2-ethylhexyl)carbazole (EHCz) are reported. This molecule displays all of the required characteristics for an efficient liquid scintillator (emission wavelength, scintillation yield), and can be used without any extra fluorophores. Thus, its scintillation properties are discussed, as well as its fast neutron/gamma discrimination. For the latter application, the material is compared with the traditional liquid scintillator BC-501 A, and other liquid fluorescent molecules classically used as scintillation solvents, such as xylene, pseudocumene (PC), linear alkylbenzenes (LAB), diisopropylnaphthalene (DIN), 1-methylnaphthalene (1-MeNapht), and 4-isopropylbiphenyl (iPrBiph). For the first time, an excimeric form of a molecule has been advantageously used in scintillation counting. A moderate discrimination between fast neutrons and gamma rays was observed in bulk EHCz, with an apparent neutron/gamma discrimination potential half of that of BC-501 A.

  7. NEXT GENERATION NEUTRON SCINTILLATORS BASED ON SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect

    Cai-Lin Wang

    2008-06-30

    The results reported here successfully demonstrate the technical feasibility of ZnS QDs/{sup 6}LiF/polymer composites as thermal neutron scintillators. PartTec has obtained stable ZnS QDs with a quantum yield of 17% induced by UV light, and light pulse decay lifetimes of 10-30 ns induced by both UV and neutrons. These lifetime values are much shorter than those of commercial ZnS microparticle and {sup 6}Li-glass scintillators. Clear pulse height peaks induced by neutron irradiation were seen for PartTec's ZnS nanocomposites. By adjusting the concentrations, particle size and degree of dispersion of ZnS QD/{sup 6}LiF in a PVA matrix, the light absorption and light yield of films at 420-440 nm can be optimized. PartTec's novel scintillators will replace traditional {sup 6}Li-glass and ZnS/{sup 6}LiF:Ag scintillators if the PL quantum yield can be improved above 30%, and/or increase the transparency of present nanoscintillators. Time and resources inhibited PartTec's total success in Phase I. For example, bulk doping preparations of ZnS QDs with Ag{sup +}, Eu{sup 3+} or Ce{sup 3+} QDs was impractical given those constraints, nor did they permit PartTec to measure systematically the change of PL decay lifetimes in different samples. PartTec will pursue these studies in the current proposal, as well as develop a better capping and dopant along with developing brighter and faster ZnS QD scintillators.

  8. Lithium indium diselenide: A new scintillator for neutron imaging

    DOE PAGES

    Lukosi, Eric; Herrera, Elan; Hamm, Daniel; ...

    2016-05-20

    Lithium indium diselenide, 6LiInSe2 or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. The 24% atomic density of 6Li yields a thermal neutron mean free path of only 920 μm. This paper reports on the performance of LISe crystals in scintillation mode for its potential use as a converter screen for thermal/cold neutron imaging. The spatial resolution of LISe, determined using a 10% value of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 μm or larger resulted in an average spatial resolutionmore » of 67 μm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 μm thick LISe (27 μm) outperforms a commercial 50 μm thick ZnS(Cu):6LiF scintillation screen (100 μm) by more than a factor of three. For the thicknesses considered in this study, it has been found that the light yield of LISe did not scale with its thickness, suggesting the need for optimizing the synthesis to enhance the scintillation mechanism. Absorption measurements indicate that the 6Li concentration is uniform throughout the samples and its absorption efficiency as a function of thickness follows general nuclear theory, indicating that the variation in apparent brightness is likely due to a combination of particle escape, light transport, and activation of the scintillation mechanisms. As a result, the presence of 115In and its long-lived 116In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential for using LISe for imaging transient systems.« less

  9. Lithium indium diselenide: A new scintillator for neutron imaging

    SciTech Connect

    Lukosi, Eric; Herrera, Elan; Hamm, Daniel; Lee, Kyung -Min; Wiggins, Brenden; Trtik, Pavel; Penumadu, Dayakar; Young, Stephen; Santodonato, Louis; Bilheux, Hassina; Burger, Arnold; Matei, Liviu; Stowe, Ashley C.

    2016-05-20

    Lithium indium diselenide, 6LiInSe2 or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. The 24% atomic density of 6Li yields a thermal neutron mean free path of only 920 μm. This paper reports on the performance of LISe crystals in scintillation mode for its potential use as a converter screen for thermal/cold neutron imaging. The spatial resolution of LISe, determined using a 10% value of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 μm or larger resulted in an average spatial resolution of 67 μm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 μm thick LISe (27 μm) outperforms a commercial 50 μm thick ZnS(Cu):6LiF scintillation screen (100 μm) by more than a factor of three. For the thicknesses considered in this study, it has been found that the light yield of LISe did not scale with its thickness, suggesting the need for optimizing the synthesis to enhance the scintillation mechanism. Absorption measurements indicate that the 6Li concentration is uniform throughout the samples and its absorption efficiency as a function of thickness follows general nuclear theory, indicating that the variation in apparent brightness is likely due to a combination of particle escape, light transport, and activation of the scintillation mechanisms. As a result, the presence of 115In and its long-lived 116In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential for using LISe for imaging transient systems.

  10. Lithium indium diselenide: A new scintillator for neutron imaging

    NASA Astrophysics Data System (ADS)

    Lukosi, Eric; Herrera, Elan; Hamm, Daniel; Lee, Kyung-Min; Wiggins, Brenden; Trtik, Pavel; Penumadu, Dayakar; Young, Stephen; Santodonato, Louis; Bilheux, Hassina; Burger, Arnold; Matei, Liviu; Stowe, Ashley C.

    2016-09-01

    Lithium indium diselenide, 6LiInSe2 or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. This paper reports on the performance of scintillating LISe crystals for its potential use as a converter screen for cold neutron imaging. The spatial resolution of LISe, determined using a 10% threshold of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 μm or larger resulted in an average spatial resolution of 67 μm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 μm thick LISe (27 μm) outperforms a commercial 50 μm thick ZnS(Cu):6LiF scintillation screen by more than a factor of three. For the LISe dimensions considered in this study, it was found that the light yield of LISe did not scale with its thickness. However, absorption measurements indicate that the 6Li concentration is uniform and the neutron absorption efficiency of LISe as a function of thickness follows general nuclear theory. This suggests that the differences in apparent brightness observed for the LISe samples investigated may be due to a combination of secondary charged particle escape, scintillation light transport in the bulk and across the LISe-air interface, and variations in the activation of the scintillation mechanism. Finally, it was found that the presence of 115In and its long-lived 116In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential of LISe for imaging transient systems.

  11. Maximum likelihood positioning and energy correction for scintillation detectors

    NASA Astrophysics Data System (ADS)

    Lerche, Christoph W.; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten

    2016-02-01

    An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30× 30 scintillator pixel array with an 8× 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner’s spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner’s overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time.

  12. Characteristics of High-latitude and Equatorial Ionospheric Scintillation of GNSS Signals

    NASA Astrophysics Data System (ADS)

    Morton, Y.; Jiao, Y.

    2014-12-01

    In this paper, several years of multi-constellation global navigation satellite scintillation data collected at Alaska, Peru, and Ascension Island are analyzed to characterize scintillation features observed at high latitude and equatorial locations during the current solar maximum. Recognizing that strong scintillation data are often lost due to the lack of robustness in conventional GPS receivers used for ionosphere scintillation monitoring (ISM), an autonomous event driven scintillation data collection system using software-defined raw RF sampling devices have been developed deployed at a number of strategically selected high latitude and equatorial locations since 2009. This unique scintillation data recording system is triggered by indicators computed from a continuously operating ISM receiver and the raw RF data is post processed using advanced receiver signal processing algorithms designed to minimize carrier phase cycle slips and loss of lock of signals during strong scintillations. Based on scintillation events extracted from the raw data, several statistical distributions are established to characterize the intensity, duration and occurrence frequency of scintillation. Results confirm that scintillation at low latitudes is generally more intense and longer lasting, while high-latitude scintillation is milder and usually dominated by phase fluctuations. Results also reveal the impacts of solar activity, geomagnetic activity and seasons on scintillation in different areas. Combining measurements from a co-located geo-magnetometer and corresponding global geomagnetic activities, qualitative and quantitative correlations between scintillation and both local and global geomagnetic activities have been obtained. Results show that in Alaska, the occurrence frequency and intensity of scintillation, especially phase fluctuations, have strong correlations with geomagnetic field intensity disturbances, while in equatorial stations, the correlation is not obvious.

  13. Scintillating glass fiber neutron sensors: 3, Photon economy in scintillating fibers

    SciTech Connect

    Abel, K.H.; Arthur, R.J.; Bliss, M.

    1993-10-01

    In an optical detector such as those constructed from scintillating glass fibers, the photons represent information. This study of the flow of information in a system of devices using PNL glass fibers was undertaken in order to resolve the conflict between expected and observed peak heights. This work concentrates on the number of photons produced and the fraction of photons trapped. It is found that the number of photons produced in bulk samples of the standard glass is about one-third that expected, based on published values; there is evidence that, in fiberized glass, this may be as small as one-fifth the expected value. Additionally, the fraction of trapped photons is found to be about three-fourths that expected because the glass has a smaller refractive index and the cladding a larger refractive index than published values in the spectral region of importance. These factors, taken together, are sufficient to resolve the conflict between the expected and observed peak heights. This analysis provides guidance for those who would use published materials properties to fabricate detectors in a new geometry where the materials properties may have been changed by the fabrication process.

  14. Humanizing the Protease-Activated Receptor (PAR) Expression Profile in Mouse Platelets by Knocking PAR1 into the Par3 Locus Reveals PAR1 Expression Is Not Tolerated in Mouse Platelets

    PubMed Central

    French, Shauna L.; Paramitha, Antonia C.; Moon, Mitchell J.; Dickins, Ross A.; Hamilton, Justin R.

    2016-01-01

    Anti-platelet drugs are the mainstay of pharmacotherapy for heart attack and stroke prevention, yet improvements are continually sought. Thrombin is the most potent activator of platelets and targeting platelet thrombin receptors (protease-activated receptors; PARs) is an emerging anti-thrombotic approach. Humans express two PARs on their platelets–PAR1 and PAR4. The first PAR1 antagonist was recently approved for clinical use and PAR4 antagonists are in early clinical development. However, pre-clinical studies examining platelet PAR function are challenging because the platelets of non-primates do not accurately reflect the PAR expression profile of human platelets. Mice, for example, express Par3 and Par4. To address this limitation, we aimed to develop a genetically modified mouse that would express the same repertoire of platelet PARs as humans. Here, human PAR1 preceded by a lox-stop-lox was knocked into the mouse Par3 locus, and then expressed in a platelet-specific manner (hPAR1-KI mice). Despite correct targeting and the predicted loss of Par3 expression and function in platelets from hPAR1-KI mice, no PAR1 expression or function was detected. Specifically, PAR1 was not detected on the platelet surface nor internally by flow cytometry nor in whole cell lysates by Western blot, while a PAR1-activating peptide failed to induce platelet activation assessed by either aggregation or surface P-selectin expression. Platelets from hPAR1-KI mice did display significantly diminished responsiveness to thrombin stimulation in both assays, consistent with a Par3-/- phenotype. In contrast to the observations in hPAR1-KI mouse platelets, the PAR1 construct used here was successfully expressed in HEK293T cells. Together, these data suggest ectopic PAR1 expression is not tolerated in mouse platelets and indicate a different approach is required to develop a small animal model for the purpose of any future preclinical testing of PAR antagonists as anti-platelet drugs. PMID

  15. Photosynthesis of Littorella uniflora grown under two PAR regimes: C3 and CAM gas exchange and the regulation of internal CO2 and O2 concentrations.

    PubMed

    Robe, W E; Griffiths, H

    1990-11-01

    The submersed aquatic macrophyte Littorella uniflora was grown under 50 and 300 μmol m(-2) s(-1) photosynthetically active radiation (PAR) (low and high PAR regimes) but identical sediment CO2 supply (1.0 mol m(-3)). The interactions between plant morphology, whole plant CO2 and O2 exchange, CAM activity, [CO2] i and [O2] i have been investigated in comparison with in vitro CO2 and PAR response characteristics (using 1 mm leaf sections). In terms of morphology, high-PAR-grown plants were smaller and leaves contained less chlorophyll, although root growth was proportionally larger. Gas exchange fluxes over roots and shoots of intact plants were similar in direction under the two PAR regimes, with the majority of CO2 uptake via the roots. Photosynthetic O2 evolution from intact plants was greater in high-PAR-grown L. uniflora (2.18 compared with 1.49 μmol O2g(-1) fresh weight h(-1) for the low PAR regime). Although net daytime CO2 uptake was similar for both PAR regimes (0.79 and 0.75 μmol g(-1) fwt h(-1)), net dark CO2 uptake was at a higher rate (0.92 compared with 0.52 μmol CO2 g(-1) fwt h(-1)), and dark fixation (as malic acid) was threefold greater in high PAR plants (ΔH(+) 117 compared with 42 μmol H(+) g(-1) fwt). Comparison of dark CO2 uptake with dark fixation suggested that much of the CO2 fixed at night and regenerated during the day may be respiratory in origin (60% low PAR plants, 71% high PAR plants). Regeneration of CO2 from CAM could account for 62% of daytime CO2 supply in low PAR plants and 81% in high PAR plants. [CO2] i values (ranging from 0.42 to 1.03 mol m(-3)) were close to or above the concentration required to saturate photosynthesis in vitro (0.5 mol m(-3)) under both PAR regimes, and combined with the low [O2] i (2.6-4.3 mol m(-3)) should have suppressed photorespiration. However, PAR inside leaves would have been well below the in vitro light saturation requirement (850-1000 μmol m(-2) s(-1) for both treatments). Thus PAR rather

  16. Climatology of GNSS ionospheric scintillation at high latitudes

    NASA Astrophysics Data System (ADS)

    Spogli, L.; Alfonsi, L.; de Franceschi, G.; Romano, V.; Aquino, M.; Dodson, A.; Mitchell, C. N.

    2009-12-01

    Under perturbed conditions caused by intense solar wind magnetosphere coupling, the ionosphere may become highly turbulent and irregularities, typically enhancements or depletions of the electron density embedded in the ambient ionosphere, can form. Such irregularities cause diffraction effects, mainly due to the random fluctuations of the refractive index of the ionosphere, on the satellites signals passing through them and consequent perturbations may cause GNSS navigation errors and outages, abruptly corrupting its performance. Due to the morphology of the geomagnetic field, whose lines are almost vertical at high latitude, polar areas are characterized by the presence of significant ionospheric irregularities having scale sizes ranging from hundreds of kilometers down to a few centimeters and with highly dynamic structures. The understanding of the effect of such phenomena is important, not only in preparation for the next solar cycle (24), whose maximum is expected in 2012, but also for a deeper comprehension of the dynamics of the high-latitude ionosphere. We analyze the fluctuations in the carrier frequency of the radio waves received on the ground, commonly referred to as ionospheric amplitude and phase scintillations, to investigate the physical processes causing them. The phase scintillations on GNSS signals are likely caused by ionospheric irregularities of scale size of hundreds of meters to few kilometers. The amplitude scintillations on GNSS signals are caused by ionospheric irregularities of scale size smaller than the Fresnel radius, which is of the order of hundreds of meters for GNSS signals, typically embedded into the patches. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Institute of Engineering Surveying and Space Geodesy (IESSG) of the University of Nottingham manage the same kind of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers over the European high and mid latitude regions and over Antarctica. The

  17. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation

    PubMed Central

    Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta

    2016-01-01

    In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces. To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins. PMID:27248800

  18. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation.

    PubMed

    Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara

    2016-04-01

    In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins.

  19. suPAR and Team Nephrology

    PubMed Central

    2014-01-01

    Primary focal segmental glomerulosclerosis (FSGS) accounts for nearly 10 % of patients who require renal replacement therapy. Elevated circulating levels of soluble urokinase receptor (suPAR) have been identified as a biomarker to discriminate primary FSGS from other glomerulopathies. Subsequent reports have questioned the diagnostic utility of this test. In a study in BMC Medicine, Huang et al. demonstrate that urinary soluble urokinase receptor (suPAR) excretion assists in distinguishing primary FSGS from other glomerular diseases, and that high plasma suPAR concentrations are not directly linked to a decline in glomerular filtration rate (GFR). This observation suggests that further investigation of suPAR is warranted in patients with FSGS. It should be interpreted in light of a recent report that B7-1 is expressed in the podocytes of a subset of patients with FSGS, and that blocking this molecule may represent the first successful targeted intervention for this disease. These advances highlight the rapid pace of scientific progress in the field of nephrology. Nephrologists should work together, share resources, and expedite the design of protocols to evaluate these novel biomarkers in a comprehensive and scientifically valid manner. Please see related article http://www.biomedcentral.com/1741-7015/12/81. PMID:24885021

  20. Auger recombination in sodium-iodide scintillators from first principles

    NASA Astrophysics Data System (ADS)

    McAllister, Andrew; Åberg, Daniel; Schleife, André; Kioupakis, Emmanouil

    2015-04-01

    Scintillator radiation detectors suffer from low energy resolution that has been attributed to non-linear light yield response to the energy of the incident gamma rays. Auger recombination is a key non-radiative recombination channel that scales with the third power of the excitation density and may play a role in the non-proportionality problem of scintillators. In this work, we study direct and phonon-assisted Auger recombination in NaI using first-principles calculations. Our results show that phonon-assisted Auger recombination, mediated primarily by short-range phonon scattering, dominates at room temperature. We discuss our findings in light of the much larger values obtained by numerical fits to z-scan experiments.

  1. FLARES: A flexible scintillation light apparatus for rare event searches

    NASA Astrophysics Data System (ADS)

    Sisti, M.; Baldazzi, G.; Bonvicini, V.; Campana, R.; Capelli, S.; Evangelista, Y.; Feroci, M.; Fuschino, F.; Gironi, L.; Labanti, C.; Marisaldi, M.; Previtali, E.; Rignanese, L.; Rachevsky, A.; Vacchi, A.; Zampa, G.; Zampa, N.; Zuffa, M.

    2016-07-01

    FLARES is a project for an innovative detector technology to be applied to rare event searches, and in particular to neutrinoless double beta decay experiments. Its novelty is the enhancement and optimization of the collection of the scintillation light emitted by ultra-pure crystals through the use of arrays of high performance silicon photodetectors cooled to 120 K. This would provide scintillation detectors with 1% level energy resolution, with the advantages of a technology offering relatively simple low cost mass scalability and powerful background reduction handles, as requested by future neutrinoless double beta decay experimental programs. The performances of a first production of matrices of Silicon Drift Detectors are presented and discussed in this paper.

  2. Modeling solar wind with boundary conditions from interplanetary scintillations

    DOE PAGES

    Manoharan, P.; Kim, T.; Pogorelov, N. V.; ...

    2015-09-30

    Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AUmore » to 1 AU with the boundary conditions based on both Ooty and WSA data.« less

  3. Recent progresses in scintillating doped silica fiber optics

    NASA Astrophysics Data System (ADS)

    De Mattia, Cristina; Mones, Eleonora; Veronese, Ivan; Fasoli, Mauro; Chiodini, Norberto; Cantone, Marie Claire; Vedda, Anna

    2014-09-01

    The recent progresses in the development and characterization of doped silica fiber optics for dosimetry applications in the modern radiation therapy, and for high energy physics experiments, are presented and discussed. In particular, the main purpose was the production of scintillating fiber optics with an emission spectrum which can be easily and efficiently distinguished from that of other spurious luminescent signals originated in the fiber optic material as consequence of the exposition to ionizing radiations (e.g. Cerenkov light and intrinsic fluorescence phenomena). In addition to the previously investigated dopant (Ce), other rare earth elements (Eu and Yb) were considered for the scintillating fiber optic development. The study of the luminescent and dosimetric properties of these new systems was carried out by using X and gamma rays of different energies and field sizes.

  4. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    NASA Astrophysics Data System (ADS)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-08-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  5. An apparatus for studying scintillator properties at high isostatic pressures

    SciTech Connect

    Gaume, R. M.; Lam, S.; Gascon, M.; Feigelson, R. S.; Setyawan, W.; Curtarolo, S.

    2013-01-15

    We describe the design and operation of a unique hydraulic press for the study of scintillator materials under isostatic pressure. This press, capable of developing a pressure of a gigapascal, consists of a large sample chamber pressurized by a two-stage hydraulic amplifier. The optical detection of the scintillation light emitted by the sample is performed, through a large aperture optical port, by a photodetector located outside the pressure vessel. In addition to providing essential pressure-dependent studies on the emission characteristics of radioluminescent materials, this apparatus is being developed to elucidate the mechanisms behind the recently observed dependency of light-yield nonproportionality on electronic band structure. The variation of the light output of a Tl:CsI crystal under 511-keV gamma excitation and hydrostatic pressure is given as an example.

  6. Auger recombination in sodium-iodide scintillators from first principles

    SciTech Connect

    McAllister, Andrew; Åberg, Daniel; Schleife, André; Kioupakis, Emmanouil

    2015-04-06

    Scintillator radiation detectors suffer from low energy resolution that has been attributed to non-linear light yield response to the energy of the incident gamma rays. Auger recombination is a key non-radiative recombination channel that scales with the third power of the excitation density and may play a role in the non-proportionality problem of scintillators. In this work, we study direct and phonon-assisted Auger recombination in NaI using first-principles calculations. Our results show that phonon-assisted Auger recombination, mediated primarily by short-range phonon scattering, dominates at room temperature. We discuss our findings in light of the much larger values obtained by numerical fits to z-scan experiments.

  7. Modeling solar wind with boundary conditions from interplanetary scintillations

    SciTech Connect

    Manoharan, P.; Kim, T.; Pogorelov, N. V.; Arge, C. N.

    2015-09-30

    Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AU to 1 AU with the boundary conditions based on both Ooty and WSA data.

  8. Evaluation of scintillation cameras by spherical lesion detectability.

    PubMed

    Shinohara, H; Koga, Y

    1980-12-01

    The lesion detectability with a scintillation camera as a function of count density was determined for the four spherical cold lesions with diameter 0.9-2.5 cm (in square root 2 step) within a uniform background activity. It can be seen from the curves that the lesion detectability increases with an increase in count density until 2 kcounts/cm2, however it does not appreciably improve for count densities above 2 kcounts/cm2. The curves also show that, for a giving count density, the lesion detectability decreases as the lesion size or object contrast decreases. From these curves minimum count density required for recognition of each cold lesion is deduced. This value is applied to the evaluation of scintillation camera system.

  9. Scintillation Light Background Discrimination in the SBND Experiment

    NASA Astrophysics Data System (ADS)

    Hill, Colton; Szelc, Andrzej; Garcia-Gamez, Diego

    2017-01-01

    SBND is a liquid argon detector being constructed along the Fermilab Booster Neutrino Beamline. As a part of the Short Baseline Neutrino Program, it will attempt to resolve the MiniBooNE low energy excess hinting at possible oscillations into sterile neutrinos. SBND will install a light detection system with a much higher expected light yield than previous argon neutrino experiments. This will enable scintillation light to play a key role in measuring the properties of neutrinos, and improve the sensitivity to interesting low energy physics such as supernova neutrinos or nucleon decay. A challenge for low energy measurements in large liquid argon detectors is the contribution from 39Ar, which being present in atmospheric argon, provides a steady source of scintillation light. I will present studies to develop methods of reducing the impact of 39Ar backgrounds while maintaining sensitivity to low energy physics signals.

  10. An analysis of side readouts of monolithic scintillation crystals

    NASA Astrophysics Data System (ADS)

    Li, Xin; Furenlid, Lars R.

    2016-10-01

    We have explored a method of using the side surfaces of a thin monolithic scintillation crystal for reading out scintillation photons. A Monte-Carlo simulation was carried out for an LYSO crystal of 50:8mmx50:8mmx3mm with 5 silicon photomultipliers attached on each of the four side surfaces. With 511 keV gamma-rays, X-Y spatial resolution of 2:10mm was predicted with an energy resolution of 9:0%. We also explored adding optical barriers to improve the X-Y spatial resolution, and an X-Y spatial resolution of 786um was predicted with an energy resolution of 9:2%. Multiple layers can be stacked together and readout channels can be combined. Depth-of- interaction information (DOI) can be directly read out. This method provides an attractive detector module design for positron emission tomography (PET).

  11. Progress report for the scintillator plate calorimeter subsystem

    SciTech Connect

    Not Available

    1990-12-31

    This report covers the work completed in FY90 by ANL staff and those of Westinghouse STC and BICRON Corporation under subcontract to ANL towards the design of a compensating calorimeter based on the use of scintillator plate as the sensitive medium. It is presented as five task sections dealing with respectively mechanical design; simulation studies; optical system design; electronics development; development of rad hard plastic scintillator and wavelength shifter and a summary. The work carried out by the University of Tennessee under a subcontract from ANL is reported separately. Finally, as principal institution with responsibility for the overall management of this subsystem effort, the summary here reports the conclusions resulting from the work of the collaboration and their impact on our proposed direction of effort in FY91. This proposal, for obvious reasons is given separately.

  12. SCINTILLATOR COMPOSITION FOR COUNTERS AND METHOD OF MAKING

    DOEpatents

    Buck, W.L.; Swank, R.K.

    1958-02-25

    This patent deals with a new composition for plastic scintillators and the method of making them. This is accomplished by mixing a solvent, selected from the group consisting of styrene, methylstyrene where the methyl group is attached to the ring, and p-vinylbiphenyl with p-terphenyl as a primary fluor. Marked improvement in the fluorescent properties of this scintillator composition is obtained by incorporating as a second fluor, a small amount of a highly conjugated hydrocarbon having four phenyl groups such as quaterphenyl or 1,1,4,4- tetraphenyl-1,3-butadiene. It is advisable to use very pure monomers in this composition, and to carry out its preparation in the absence of air.

  13. Fine-grained hodoscopes based on scintillating optical fibers

    NASA Astrophysics Data System (ADS)

    Borenstein, S. R.; Strand, R. C.

    In order to exploit the high event rates at ISABELLE, it will be necessary to have fast detection with fine spatial resolution. The authors are currently constructing a prototype fine grained hodoscope, the elements of which are scintillating optical fibers. The fibers have been drawn from commercially available plastic scintillator which has been clad with a thin layer of silicone. So far it has been demonstrated with one mm diameter fibers, that with a photodetector at each end, the fibers are more than 99% efficient for lengths of about 60 cm. The readout will be accomplished either with small diameter photomultiplier tubes or avalanche photodiodes used either in the linear or Geiger mode. The program of fiber development and evaluation will be described. The status of the APD as a readout element will be discussed. Finally, an optical encoding readout scheme will be described for events of low multiplicity.

  14. Fine-grained hodoscopes based on scintillating optical fibers

    NASA Astrophysics Data System (ADS)

    Borenstein, S. R.; Strand, R. C.

    In order to exploit the high event rates at ISABELLE, it is necessary to have fast detection with fine spatial resolution. A prototype fine-grained hodoscope, the elements of which are scintillating optical fibers, is currently being constructed. The fibers were drawn from commercially available plastic scintillator which has been clad with a thin layer of silicone. It was demonstrated with one mm diameter fibers that with a photo-detector at each end, the fibers are more than 99% efficient for lengths of about 60 cm. The readout will be accomplished either with small diameter photomultiplier tubes or avalanche photodiodes (APD) used either in the linear or Geiger mode. The program of fiber development and evaluation is described. The status of the APD as a readout element is discussed, and an optical encoding readout scheme is described for events of low multiplicity.

  15. Optical properties of quantum-dot-doped liquid scintillators

    PubMed Central

    Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.

    2014-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

  16. Transparent lithium loaded plastic scintillators for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Breukers, R. D.; Bartle, C. M.; Edgar, A.

    2013-02-01

    The fabrication of a series of novel, optically transparent, bulk plastic scintillators loaded with lithium methacrylate, and incorporating 2,5-diphenyloxazole and 5-phenyl-2-[4-(5-phenyl-1,3-oxazol-2-yl)phenyl]-1,3-oxazole fluorescent centres, is described. The attenuation length, photoluminescence, and both gamma ray and thermal neutron scintillation responses were compared over a range of lithium methacrylate concentrations. The maximum concentration corresponded to a weight percentage of lithium-6 of 0.63%. The photoluminescence shows a composite 2,5-diphenyloxazole and 5-phenyl-2-[4-(5-phenyl-1,3-oxazol-2-yl)phenyl]-1,3-oxazole broad band with vibronic features in the range 350-500 nm, and lifetimes in the range 0.9-2.7 ns. An increasing luminescence in a thermal neutron beam with increasing lithium-6 content is demonstrated.

  17. Atmospheric Scintillations: A Clue for Bird Orientation and Navigation

    NASA Astrophysics Data System (ADS)

    Petty, Charles; Bowden, Andrew; Benard, Andre

    2014-11-01

    The index-of-refraction of the troposphere is anisotropic at all scales even if the local turbulent velocity field is statistically homogeneous. This anisotropy is partly due to the coupling between the fluctuating velocity field with the Coriolis field and the Lorentz field. Thus, the redistribution of turbulent kinetic energy and the concomitant anisotropy in the index-of-refraction may provide a practical means for birds (and other animals and insects) to orient and navigate. Consequently, if birds migrate between two points on the Earth by following a great circle path, then local anisotropic scintillation phenomena may provide a means to determine the latitude, the longitude, and the bearing along an orthodromic migration path. Thus, scintillation phenomena may be an important fundamental component in the underlying mechanics that support bird orientation and navigation.

  18. Boronated Scintillator Detector for Use in Space with Ionization Calorimeters

    NASA Astrophysics Data System (ADS)

    Britvich, G. I.; Chernichenko, S. K.; Demichev, M. A.; Gnezdilov, I. I.; Mukhin, V. I.; Soukhih, A. V.

    2016-02-01

    Boronated Scintillator Detector (BSD) for use in space with ionization calorimeters was suggested. BSD improved e/h showers separation, which are initiated in the ionization calorimeter in interaction it with high energy particles. Improve the rejection is based on the hadron-induced showers tend to be accompanied by significantly more neutron activity than electromagnetic showers. The detector is composed of natural boron-loaded (5%) castable plastic scintillation plates. To collect light using wavelength-shifting (WLS) fibers. The experiment showed that the photoelectron yield is ∼ 40 ph.el./MeV with using PMT EMI 9954KB. Simulation on GEANT4 was obtained neutron detection efficiency. The simulation was conducted in the assumption that neutrons have the spectrum 252Cf and fall plane-parallel on the entry surface of the detector.

  19. Radiation effects on wavelength shifting fibers used with liquid scintillators

    SciTech Connect

    Ables, E.; Armatis, P.; Bionta, R.; Britt, H.; Clamp, O.; Cochran, C.; Graham, G.; Lowry, M.; Masquelier, D.; Skulina, K.; Wuest, C.; Bolen, L.; Cremaldi, L.; Harper, S.; Moore, B.; Quinn, B.; Reidy, J.; Zhou, J.; Croft, L.; Piercey, R.; Bauer, M.L.; Bishop, B.L.; Cohn, H.O.; Gabriel, T.A.; Gordeev, A.; Kamyshkov, Yu.; Lillei, R.A.; Plasil, F.; Read, K.; Rennich, M.J.; Savin, A.; Shmakov, K.; Singeltary, B.H.; Smirnov, A.; Tarkovsky, E.; Todd, R.A.; Young, K.G.; Berridge, S.C.; Bugg, W.M.; Handler, T.; Pisharody, M.; Aziz, T.; Banerjee, S.; Chendvankar, S.R.; Ganfuli, S.N.; Malhotra, K.; Mazumdar, K.; Raghavan, R.; Shankar, K.; Sudhakar, K.; Tonwar, S.C.; Arefiev, A.; Baranov, O.; Efremenko, Yu.; Gorodkov, Yu.; Malinin, A.; Nikitin, A.; Markizov, V.; Onoprienko, D.; Rozjkov, A.; Shoumilov, E.; Shoutko, V.

    1992-06-01

    The chemical compatibility of wave length shifting fibers with several liquid scintillators has been investigated. Based on systematic characterization of the behavior of the BC-517 family, a time of life of 70{endash}450 years was estimated for the polystyrene based wave length shifting fiber in BC-517P scintillator. WLS (wavelength shifting) fibers irradiated continuously to a dose of 6.4 Mrads (at .377Mrad/hr of Co-60) were observed to decrease from 100% to 5% transmission; however, after 100 hours of annealing, the transmission increased to 90%. Geant simulations of a simplified calorimeter located behind a BaF2 electromagnetic calorimeter for the GEM detector at SSC showed that the constant term in the energy resolution will change from 1.8 to 2.9 in five years at 10{star}{star}34 luminosity for psuedorapidity eta=3.

  20. Mercuric Iodide Photocell Technology for Room Temperature Readout of Scintillators

    SciTech Connect

    Warnick Kernan et al.

    2007-08-31

    Mercuric iodide (HgI2) is a well known material for the direct detection of gamma rays; however, the largest volume achievable is limited by thickness of the detector, which needs to be a small fraction of the average trapping length for electrons. We are reporting here preliminary results in using HgI2 crystals to fabricate photocells used in the readout of various scintillators. The optical spectral response and efficiency of these photocells were measured and will be reported. Preliminary nuclear response from a HgI2 photocell that was optically matched to a Ce3+ :LaBr3 scintillator will also be presented and discussed. Further improvements will be sought by optimizing the transparent contact technology.

  1. Scintillation Proximity Radioimmunoassay Utilizing 125I-Labeled Ligands

    NASA Astrophysics Data System (ADS)

    Udenfriend, Sidney; Diekmann Gerber, Louise; Brink, Larry; Spector, Sydney

    1985-12-01

    A unique type of radioimmunoassay is described that does not require centrifugation or separation. Microbeads containing a fluorophor are covalently linked to antibody. When an 125I-labeled antigen is added it binds to the beads and, by its proximity, the emitted short-range electrons of the 125I excite the fluorophor in the beads. The light emitted can be measured in a standard scintillation counter. Addition of unlabeled antigen from tissue extracts displaces the labeled ligand and diminishes the fluorescent signal. Application of scintillation proximity immunoassay to tissue enkephalins, serum thyroxin, and urinary morphine is described. Applications of the principle to study the kinetics of interaction between receptors and ligands are discussed.

  2. Scintillation proximity radioimmunoassay utilizing 125I-labeled ligands

    SciTech Connect

    Udenfriend, S.; Gerber, L.D.; Brink, L.; Spector, S.

    1985-12-01

    A unique type of radioimmunoassay is described that does not require centrifugation or separation. Microbeads containing a fluorophor are covalently linked to antibody. When an /sup 125/I-labeled antigen is added it binds to the beads and, by its proximity, the emitted short-range electrons of the /sup 125/I excite the fluorophor in the beads. The light emitted can be measured in a standard scintillation counter. Addition of unlabeled antigen from tissue extracts displaces the labeled ligand and diminishes the fluorescent signal. Application of scintillation proximity immunoassay to tissue enkephalins, serum thyroxin, and urinary morphine is described. Applications of the principle to study the kinetics of interaction between receptors and ligands are discussed.

  3. High Sensitive Scintillation Observations At Very Low Frequencies

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Kalinichenko, N. N.; Olyak, M. R.; Lecacheux, A.; Rosolen, C.; Bougeret, J.-L.; Rucker, H. O.; Tokarev, Yu.

    The observation of interplanetary scintillations of compact radio sources is powerful method of solar wind diagnostics. This method is developed mainly at decimeter- meter wavelengths. New possibilities are opened at extremely low frequencies (decameter waves) especially at large elongations. Now this approach is being actively developed using high effective decameter antennas UTR-2, URAN and Nancay Decameter Array. New class of back-end facility like high dynamic range, high resolution digital spectral processors, as well as dynamic spectra determination ideology give us new opportunities for distinguishing of the ionospheric and interplanetary scintillations and for observations of large number of radio sources, whith different angular sizes and elongations, even for the cases of rather weak objects.

  4. Radon measurement of natural gas using alpha scintillation cells.

    PubMed

    Kitto, Michael E; Torres, Miguel A; Haines, Douglas K; Semkow, Thomas M

    2014-12-01

    Due to their sensitivity and ease of use, alpha-scintillation cells are being increasingly utilized for measurements of radon ((222)Rn) in natural gas. Laboratory studies showed an average increase of 7.3% in the measurement efficiency of alpha-scintillation cells when filled with less-dense natural gas rather than regular air. A theoretical calculation comparing the atomic weight and density of air to that of natural gas suggests a 6-7% increase in the detection efficiency when measuring radon in the cells. A correction is also applicable when the sampling location and measurement laboratory are at different elevations. These corrections to the measurement efficiency need to be considered in order to derive accurate concentrations of radon in natural gas.

  5. Array of square waveguides for scintillation dosimetry in external radiotherapy

    NASA Astrophysics Data System (ADS)

    Naseri, P.; McKenzie, D. R.; Liu, P.; Fleming, S.; Suchowerska, N.

    2013-06-01

    An array of air core scintillation dosimeters (of round or square cross section) is an efficient solution for managing the problem of Cerenkov background light in megavoltage radiation. This array generates a high-resolution dose map in a way that satisfies ICRU dosimetric accuracy recommendations without the need for correction factors. Efficient scintillation signal transportation is vital to sensitivity of the dosimeter. The attenuation of the light irradiance as a function of waveguide length in PMMA and silver hollow square and round waveguides is studied experimentally and theoretically. In practice, the silvered square waveguide has the least attenuation while the PMMA square waveguide performs almost as well as commercially sourced silvered tubes. The attenuation of the commercially sourced tubes is increased by the rough internal silver surfaces.

  6. Optical properties of quantum-dot-doped liquid scintillators

    NASA Astrophysics Data System (ADS)

    Aberle, C.; Li, J. J.; Weiss, S.; Winslow, L.

    2013-10-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  7. SBIR Final Report. Liquid Core Optical Scintillating Fibers

    SciTech Connect

    Beetz, C.P.; Steinbeck, J.; Buerstler, R.

    2000-05-16

    This Phase I SBIR project focused on developing flexible scintillating liquid core optical fibers, with potential uses in high-energy calorimetry, tracking, preradiators, active targets or other fast detectors. Progress on the six tasks of the project is summarized. The technical developments involve three technology components: (1) highly flexible capillaries or tubes of relatively low n (index of refraction) to serve as cladding and liquid core containment; (2) scintillator (and clear) fluids of relatively high n to serve as a core-- these fluids must have a high light transmission and, for some applications, radiation hardness; (3) optical end plugs, plug insertion, and plug-cladding tube sealing technology to contain the core fluids in the tubes, and to transmit the light.

  8. Optical properties of quantum-dot-doped liquid scintillators.

    PubMed

    Aberle, C; Li, J J; Weiss, S; Winslow, L

    2013-10-14

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  9. Characterization and testing of EJ-309 and Stilbene scintillation detectors

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Jandel, M.; Bredeweg, T. A.; Couture, A.; Mosby, S.; Rusev, G.; Ullmann, J. L.; Walker, C. L.

    2015-09-01

    A new neutron detector array (NEUANCE) is under development at the Los Alamos Neutron Science Center (LANSCE). After completion, NEUANCE will be installed in the central cavity of the 3.6π Υ-ray detector array DANCE located at the Lujan Center of LANSCE. The detector system, with simultaneous neutron and -ray detection capability, will be used to study neutron-induced capture and session reactions. The response of a EJ-309 scintillation detector to Υ-ray and neutron radiation was measured using the standard Υ-ray and 252Cf sources. The light from the detector was collected using a Hamamatsu photomultiplier tube or a Silicon photomultiplier GEANT4 was used to understand the light output and the optical photon transport in the scintillation. The detector geometry and optimum parameters for the data acquisition system were determined based on the test results and the simulations.

  10. Detecting energy dependent neutron capture distributions in a liquid scintillator

    NASA Astrophysics Data System (ADS)

    Balmer, Matthew J. I.; Gamage, Kelum A. A.; Taylor, Graeme C.

    2015-03-01

    A novel technique is being developed to estimate the effective dose of a neutron field based on the distribution of neutron captures in a scintillator. Using Monte Carlo techniques, a number of monoenergetic neutron source energies and locations were modelled and their neutron capture response was recorded. Using back propagation Artificial Neural Networks (ANN) the energy and incident direction of the neutron field was predicted from the distribution of neutron captures within a 6Li-loaded liquid scintillator. Using this proposed technique, the effective dose of 252Cf, 241AmBe and 241AmLi neutron fields was estimated to within 30% for four perpendicular angles in the horizontal plane. Initial theoretical investigations show that this technique holds some promise for real-time estimation of the effective dose of a neutron field.

  11. Scintillation properties of LuI 3:Ce

    NASA Astrophysics Data System (ADS)

    Glodo, J.; Shah, K. S.; Klugerman, M.; Wong, P.; Higgins, B.; Dorenbos, P.

    2005-01-01

    Lutetium iodide (LuI3) is a new addition to the family of Ce-doped lanthanide trihalide scintillating materials. Crystals of this material show hexagonal structure with density of 5.6 g/cm3 and have been grown by the Bridgman method. Under X-ray excitation this material exhibits broad, cerium based emission that peaks at 475 and 520 nm. The fastest and major component of scintillation time profile of LuI3:Ce emission decays with a 31 ns time constant. The light yield of LuI3:Ce for thin samples (∼0.2 mm) was estimated to be ∼50,000 photons/MeV.

  12. PAR Corneal Topography System (PAR CTS): the clinical application of close-range photogrammetry.

    PubMed

    Belin, M W; Cambier, J L; Nabors, J R; Ratliff, C D

    1995-11-01

    The PAR Corneal Topography System (CTS) is a computer-driven corneal imaging system which uses close-range photogrammetry (rasterphotogrammetry) to measure and produce a topographic map of the corneal surface. The PAR CTS makes direct point-by-point measurements of surface elevation using a stereo-triangulation technique. The CTS uses a grid pattern composed of horizontal and vertical lines spaced about 0.2 mm (200 microns) apart. Each grid intersection comprises a surface feature which can be located in multiple images and used to generate an (x,y,z) coordinate. Unlike placido disc-based videokeratoscopes, the PAR CTS requires neither a smooth reflective surface nor precise spatial alignment for accurate imaging. In addition to surface elevation, the PAR CTS computes axial and tangential curvatures and refractive power. Difference maps are available in all curvatures, refractive power, and in absolute elevation.

  13. Specific activation, signalling and secretion profiles of human platelets following PAR-1 and PAR-4 stimulation.

    PubMed

    Nguyen, Kim Anh; Hamzeh-Cognasse, Hind; Laradi, Sandrine; Pozzetto, Bruno; Garraud, Olivier; Cognasse, Fabrice

    2015-01-01

    Blood platelets play a central haemostatic function; however, they also play a role in inflammation and are capable of secreting various cytokines, chemokines and related products. The purpose of this study was to identify subtle variations in platelet physiology using proteomics. We compared the levels of membrane proteins (n = 3), α and δ granule proteins (n = 18), and signalling proteins (n = 30) from unstimulated platelets with those of protease-activated receptor (PAR)-1- and PAR-4-stimulated platelets (n = 10). The vast majority of these proteins responded similarly to PAR-1 or PAR-4 engagement. However, differences were observed within membrane CD40L expressed, and α granule GRO-α and MDC secreted proteins.

  14. Variety of neutron sensors based on scintillating glass waveguides

    NASA Astrophysics Data System (ADS)

    Bliss, Mary; Craig, Richard A.

    1995-04-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated lithium silicate glass scintillating fiber waveguide neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e-1 length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors.

  15. A hadron calorimeter with scintillators parallel to the beam

    NASA Astrophysics Data System (ADS)

    Abramov, V.; Goncharov, P.; Gorin, A.; Gurzhiev, A.; Dyshkant, A.; Evdokimov, V.; Kolosov, V.; Korablev, A.; Korneev, Yu.; Kostritskii, A.; Krinitsyn, A.; Kryshkin, V.; Podstavkov, V.; Polyakov, V.; Shtannikov, A.; Tereschenko, S.; Turchanovich, L.; Zaichenko, A.

    1997-02-01

    A hadron calorimeter in which scintillators are arranged nearly parallel to the incident particle direction and light is collected by optical fibres with WLS, has been built. The iron absorber plates are of the tapered shape to fit a barrel structure of the collider geometry. The performance of the calorimeter studied with hadron beam is presented as a function of tilt angle without and with electromagnetic calorimeter in front of the hadron one.

  16. A new water-based liquid scintillator and potential applications

    NASA Astrophysics Data System (ADS)

    Yeh, M.; Hans, S.; Beriguete, W.; Rosero, R.; Hu, L.; Hahn, R. L.; Diwan, M. V.; Jaffe, D. E.; Kettell, S. H.; Littenberg, L.

    2011-12-01

    In this paper we describe a new type of scintillating liquid based on water. We describe the concept, preparation, and properties of this liquid, and how it could be used for a very large, but economical detector. The applications of such a detector range from fundamental physics such as nucleon decay and neutrino physics to physics with broader application such as neutron detection. We briefly describe the scientific requirements of these applications, and how they can be satisfied by the new material.

  17. Liquid scintillation composition for low volume biological specimens

    SciTech Connect

    Mallik, A.; Edelstein, H.

    1984-04-17

    A liquid scintillation cocktail especially suitable for low volume biological specimens comprising an aromatic liquid, preferably pseudocumene, for capturing energy from radiation, at least one fluor, preferably PPO and Bis-MSB, and a mixture of anionic and nonionic surfactants. The cocktails are prepared by treating with a cation exchange resin to clarify and with a solid buffer to raise the temperature at which cloudiness develops upon heating.

  18. Radio wave phase scintillation and precision Doppler tracking of spacecraft

    NASA Astrophysics Data System (ADS)

    Armstrong, J. W.

    Phase scintillation caused by propagation through solar wind, ionospheric, and tropospheric irregularities is a noise process for many spacecraft radio science experiments. In precision Doppler tracking observations, scintillation can be the dominant noise process. Scintillation statistics are necessary for experiment planning and in design of signal processing procedures. Here high-precision tracking data taken with operational spacecraft (Mars Observer, Galileo, and Mars Global Surveyor) and ground systems are used to produce temporal statistics of tropospheric and plasma phase scintillation. The variance of Doppler frequency fluctuations is approximately decomposed into two propagation processes. The first, associated with distributed scattering along the sight line in the solar wind, has a smooth spectrum. The second, associated principally with localized tropospheric scattering for X-band experiments, has a marked autocorrelation peak at the two-way light time between the Earth and the spacecraft (thus a cosine-squared modulation of the fluctuation power spectrum). For X-band data taken in the antisolar hemisphere the average noise levels of this process are in good agreement with average tropospheric noise levels determined independently from water vapor radiometer observations and radio interferometic data. The variance of the process having a smooth spectrum is consistent with plasma noise levels determined independently from dual-frequency observations of the Viking spacecraft made at comparable Sun-Earth-spacecraft angles. The observations reported here are used to refine the propagation noise model for Doppler tracking of deep space probes. In particular, they can be used to predict propagation noise levels for high-precision X- and Ka-band tracking observations (e.g., atmosphere/ionosphere/ring occultations, celestial mechanics experiments, and gravitational wave experiments) to be done using the Cassini spacecraft.

  19. A Comparative Analysis of Equatorial Spread F and VHF Scintillation

    DTIC Science & Technology

    1982-02-01

    longitude because the scintillation activity at Accra, Ghana (Northern Hemisphere) is similar to that at Huancayo , Peru (Southern Hemisphere). 23...Fejer compared the reversal time (from upward by day to downward by night) as a function of time of year at Huancayo and Kodaikanal. This comparison is...of interest because Huancayo is located near Jicamarca and Kodaikanal (India) is reasonably close to Kwajalein.i" 23 Fejer found that the reversal time

  20. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  1. Scintillation properties of pure CaF 2

    NASA Astrophysics Data System (ADS)

    Mikhailik, V. B.; Kraus, H.; Imber, J.; Wahl, D.

    2006-10-01

    The temperature dependence of the decay time and scintillation light yield of pure CaF 2 crystal was measured over the temperature range 8-305 K using the multiphoton coincidence counting technique. Pure CaF 2 exhibits emission of triplet self-trapped excitons at 280 nm with a slow decay, the time constant of which changes significantly with temperature. The main decay time constant increases by three orders of magnitude when cooled, from 0.96±0.06 μs at 295 K to 930±40 μs at 8 K. The results obtained demonstrate that the scintillation light yield of pure CaF 2 increases with decreasing temperature down to 20 K below which it is roughly constant. At low temperatures the light yield of CaF 2 is estimated to be 60% relative to that of pure CaWO 4. It is concluded that undoped calcium fluoride is a very attractive target material for experimental searches for rare events based on the detection of phonon and scintillation signals.

  2. Auger recombination in scintillator materials from first principles

    NASA Astrophysics Data System (ADS)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2015-03-01

    Scintillators convert high energy radiation into lower energy photons which are easier to detect and analyze. One of the uses of these devices is identifying radioactive materials being transported across national borders. However, scintillating materials have a non-proportional light yield in response to incident radiation, which makes this task difficult. One possible cause of the non-proportional light yield is non-radiative Auger recombination. Auger recombination can occur in two ways - direct and phonon-assisted. We have studied both types of Auger recombination from first principles in the common scintillating material sodium iodide. Our results indicate that the phonon-assisted process, assisted primarily by short-range optical phonons, dominates the direct process. The corresponding Auger coefficients are 5 . 6 +/- 0 . 3 ×10-32cm6s-1 for the phonon-assisted process versus 1 . 17 +/- 0 . 01 ×10-33cm6s-1 for the direct process. At higher electronic temperatures the direct Auger recombination rate increases but remains lower than the phonon-assisted rate. This research was supported by the National Science Foundation CAREER award through Grant No. DMR-1254314 and NA-22. Computational Resources provide by LLNL and DOE NERSC Facility.

  3. Comparison of scintillators for positron emission mammography (PEM) systems

    SciTech Connect

    Raymond Raylman; Stanislaw Majewski; Mark Smith; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov; Jamal J. Derakhshan

    2003-02-01

    Positron emission mammography (PEM) has promise as an effective method for the detection of breast lesions. Perhaps the most significant design feature of a PEM system is the choice of scintillator material. In this investigation we compared three scintillators for use in PEM: NaI(Tl), gadolinium oxyorthosilicate (GSO), and lutetium-gadolinium oxyorthosilicate (LGSO). The PEM systems consisted of two 30/spl times/30 arrays of pixelated scintillators (3/spl times/3/spl times/10 mm/sup 3/ for GSO and LGSO and 3/spl times/3/spl times/19 mm/sup 3/ for NaI(Tl)) coupled to arrays of square position-sensitive photomultiplier tubes. The Compton scatter fraction, system energy resolution, spatial resolution, spatial resolution uniformity, and detection sensitivity were compared. Compton scatter fractions for the systems were comparable, between 8% and 9%. The NaI(Tl) system produced the best system energy resolution (18.2%), the GSO system had the worst system energy resolution (28.7%).

  4. LUCIFER: scintillating bolometers for neutrinoless double-beta decay searches

    NASA Astrophysics Data System (ADS)

    Pattavina, Luca

    2014-09-01

    In the field of fundamental particle physics, the nature of the neutrino, if it is a Dirac or a Majorana particle, plays a crucial role not only in neutrino physics, but also in the overall framework of fundamental particle interactions and in cosmology. Neutrinoless double-beta decay (0vDBD) is the key tool for the investigation of this nature. Experimental techniques based on the calorimetric approach with cryogenic particle detectors have demonstrated suitability for the investigation of rare nuclear processes, profiting from excellent energy resolution and scalability to large masses. Unfortunately, the most relevant issue is related to background suppression. In fact, bolometers being fully-active detectors struggle to reach extremely low background level. The LUCIFER project aims to deploy the first array of enriched scintillating bolometers. Thanks to the double read-out - heat and scintillation light produced by scintillating bolometers - a highly efficient background identification and rejection is guaranteed, leading to a background-free experiment. We show the potential of such technology in ZnMoO4 and ZnSe prototypes. We describe the current status of the project, including results of the recent R&D activity.

  5. Scintillator diagnostics for the detection of laser accelerated ion beams

    NASA Astrophysics Data System (ADS)

    Cook, N.; Tresca, O.; Lefferts, R.

    2014-09-01

    Laser plasma interaction with ultraintense pulses present exciting schemes for accelerating ions. One of the advantages conferred by using a gaseous laser and target is the potential for a fast (several Hz) repetition rate. This requires diagnostics which are not only suited for a single shot configuration, but also for repeated use. We consider several scintillators as candidates for an imaging diagnostic for protons accelerated to MeV energies by a CO2 laser focused on a gas jet target. We have measured the response of chromium-doped alumina (chromox) and polyvinyl toluene (PVT) screens to protons in the 2-8 MeV range. We have calibrated the luminescent yield in terms of photons emitted per incident proton for each scintillator. We also discuss how light scattering and material properties affect detector resolution. Furthermore, we consider material damage and the presence of an afterglow under intense exposures. Our analysis reveals a near order of magnitude greater yield from chromox in response to proton beams at > 8 MeV energies, while scattering effects favor PVT-based scintillators at lower energies.

  6. Chloride, bromide and iodide scintillators with europium doping

    DOEpatents

    Zhuravleva, Mariya; Yang, Kan

    2014-08-26

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  7. Separating Nightside Interplanetary and Ionospheric Scintillation with LOFAR

    NASA Astrophysics Data System (ADS)

    Fallows, R. A.; Bisi, M. M.; Forte, B.; Ulich, Th.; Konovalenko, A. A.; Mann, G.; Vocks, C.

    2016-09-01

    Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Kaplan et al. presenting observations using the Murchison Widefield Array (MWA) reports evidence of nightside IPS on two radio sources within their field of view. However, the low time cadence of 2 s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To check this assumption, this Letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of nightside IPS using LOFAR, with solar wind speeds consistent with a slow solar wind stream in one observation and a coronal mass ejection expected to be observed in another.

  8. Optical intensity scintillation in the simulated atmospherical environment

    NASA Astrophysics Data System (ADS)

    Hajek, Lukas; Latal, Jan; Vanderka, Ales; Vitasek, Jan; Bojko, Marian; Bednarek, Lukas; Vasinek, Vladimir

    2016-09-01

    There are several parameters of the atmospheric environment which have an effect on the optical wireless connection. Effects like fog, snow or rain are ones of the effects which appears tendentiously and which are bound by season, geographic location, etc. One of the effects that appear with various intensity for the whole time is airflow. The airflow changes the local refractive index of the air and areas with lower or higher refractive index form. The light going through these areas refracts and due to the optical intensity scintillates on the detector of the receiver. The airflow forms on the basis of two effects in the atmosphere. The first is wind cut and flowing over barriers. The other is thermal flow when warm air rises to the higher layers of the atmosphere. The heart of this article is creation such an environment that will form airflow and the refractive index will scintillate. For the experiment, we used special laboratory box with high-speed ventilators and heating units to simulate atmospheric turbulence. We monitor the impact of ventilator arrangement and air temperature on the scintillation of the gas laser with wavelength 633 nm/15 mW. In the experiment, there is watched the difference in behavior between real measurement and flow simulation with the same peripheral conditions of the airflow in the area of 500 x 500 cm.

  9. The readout electronics for Plastic Scintillator Detector of DAMPE

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Yang, Haibo; Zhao, Hongyun; Su, Hong; Sun, Zhiyu; Yu, Yuhong; JingZhe, Zhang; Wang, XiaoHui; Liu, Jie; Xiao, Guoqing; Ma, Xinwen

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) satellite, which launched in December 2015, is designed to find the evidence of the existence of dark matter particles in the universe via the detection of the high-energy electrons and gamma-ray particles produced possibly by the annihilation of dark matter particles. Plastic Scintillator Detector (PSD) is one of major part of the satellite payload, which is comprised of a crossed pair of layers with 41 plastic scintillator-strips, each read out from both ends by the same Hamamatsu R4443MOD2 photo-multiplier tubes (PMTs). In order to extend linear dynamic range of detector, PMTs read out each plastic scintillator-strip separately with two dynode pickoffs. Therefore, the readout electronics system comprises of four Front-end boards to receive the pulses from 328 PMTs and implement charge measurement, which is based on the Application Specific Integrated Circuit (ASIC) chip VA160, 16 bits ADC and FPGA. The electronics of the detector has been designed following stringent requirements on mechanical and thermal stability, power consumption, radiation hardness and double redundancy. Various experiments are designed and implemented to check the performance of the electronics, some excellent results has been achieved.According to experimental results analysis, it is proved that the readout electronics works well.

  10. Study of nonproportionality in the light yield of inorganic scintillators

    SciTech Connect

    Singh, Jai

    2011-07-15

    Using a phenomenological approach, the light yield is derived for inorganic scintillators as a function of the rates of linear, bimolecular, and Auger processes occurring in the electron track initiated by an x ray or a {gamma}-ray photon. A relation between the track length and incident energy is also derived. It is found that the nonproportionality in the light yield can be eliminated if either nonlinear processes of interaction among the excited electrons, holes, and excitons can be eliminated from occurring or the high density situation can be relieved by diffusion of carriers from the track at a faster rate than the rate of activation of nonlinear processes. The influence of the track length and radius on the yield nonproportionality is discussed in view of the known experimental results. Inventing new inorganic scintillating materials with high carrier mobility can lead to a class of proportional inorganic scintillators. Results agree qualitatively with experimental results for the dependence of light yield on the incident energy.

  11. Scintillation of spacecraft radio signals on the interplanetary plasma

    NASA Astrophysics Data System (ADS)

    Molera Calves, Guifre; Pogrebenko, Sergei; Cimo, Giuseppe; Duev, Dmitry; Bocanegra, Tatiana

    2015-04-01

    Observations of planetary spacecraft radio signals within the solar system give a unique opportunity to study the temporal and spatial behaviour of the signal's phase fluctuations caused by its propagation through the interplanetary plasma and the Earth's ionosphere. The phase scintillation of the telemetry signal of the European Space Agency's (ESA) Venus Express (VEX) and Mars Express (MEX) spacecraft was observed at X-band with a number of radio telescopes of the European VLBI Network (EVN) in the period 2008-15, within the scope of Planetary Radio Interferometry and Doppler Experiment (PRIDE) project. It was found that the phase scintillation spectra follow a Kolmogorov distribution with nearly constant spectral index of -2.42 for a full range of Venus orbital phases, from superior to inferior conjunctions and back. The solar wind plasma dominates the scintillation index and Doppler noise along the orbit from superior conjunction to the greatest elongation. Here, I will present the latest results of these observations, while approaching the inferior conjunction, where the Earth ionosphere starts to dominate, and also at the superior conjunction. Empirical coefficients for both contributions were estimated and compared for VEX and MEX.

  12. Modular design of long narrow scintillating cells for ILC detector

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Maloney, J.; Rykalin, V.; Schellpfeffer, J.; /Fermilab

    2005-09-01

    The experimental results for the narrow scintillating elements with effective area about 20 cm{sup 2} are reported. The elements were formed from the single piece of scintillator and were read out via wavelength shifting fibers with the MRS (Metal/Resistor/Semiconductor) photodiodes on both ends of each fiber. The formation of the cells from the piece of scintillator by using grooves is discussed. The cell performance was tested using the radioactive source by measuring the PMT current and a single rate after amplifier and discrimination with threshold at about three photo electrons in each channel and quad coincidences (double coincidences between sensors on each fiber and double coincidences between two neighboring fibers). This result is of high importance for large multi-channel systems, i.e. module may be used as an active element for calorimeter or muon system for the design of the future electron-positron linear collider detector because cell effective area can be smoothly enlarged or reduced (to 4 cm{sup 2} definitely).

  13. Élaboration de films de molécules organiques par ablation par laser UV

    NASA Astrophysics Data System (ADS)

    Hernandez-Perez, M. A.; Garapon, C.; Champeaux, C.; Coleman, A. W.

    2006-12-01

    Les potentialités des méthodes de dépôt par ablation laser (PLD) pour la préparation de films minces de matériaux organiques sont illustrées par un bref rappel bibliographique et par des résultats expérimentaux concernant des molécules d'intérêt biologique (acides aminés, calix-arènes, protéines). Les films sont préparés par PLD avec un laser KrF sans dégradation de la structure chimique des molécules dans une gamme de fluences de quelques dizaines à quelques centaines de mJ/cm2. Les propriétés structurales et optiques des films sont étudiées en fonction de la fluence du laser et mettent en évidence des arrangements moléculaires particuliers induits par cette méthode de dépôt. Le guidage optique a été obtenu pour des films de toutes ces molécules.

  14. Kallikrein 6 Signals through PAR1 and PAR2 to Promote Neuron Injury and Exacerbate Glutamate Neurotoxicity

    PubMed Central

    Yoon, Hyesook; Radulovic, Maja; Wu, Jianmin; Blaber, Sachiko I.; Blaber, Michael; Fehlings, Michael G.; Scarisbrick, Isobel A.

    2014-01-01

    CNS trauma generates a proteolytic imbalance contributing to secondary injury, including axonopathy and neuron degeneration. Kallikrein 6 (Klk6) is a serine protease implicated in neurodegeneration and here we investigate the role of protease activated receptors 1 (PAR1) and PAR2 in mediating these effects. First we demonstrate Klk6 and the prototypical activator of PAR1, thrombin, as well as PAR1 and PAR2, are each elevated in murine experimental traumatic spinal cord injury (SCI) at acute or subacute time points. Recombinant Klk6 triggered ERK1/2 signaling in cerebellar granule neurons and in the NSC34 spinal cord motoneuron cell line, in a PI3K and MEK-dependent fashion. Importantly, lipopeptide inhibitors of PAR1 or PAR2, and PAR1 genetic deletion, each reduced Klk6-ERK1/2 activation. In addition, Klk6 and thrombin promoted degeneration of cerebellar neurons and exacerbated glutamate neurotoxicity. Moreover, genetic deletion of PAR1 blocked thrombin-mediated cerebellar neurotoxicity and reduced the neurotoxic effects of Klk6. Klk6 also increased glutamate-mediated Bim signaling, PARP cleavage and lactate dehydrogenase (LDH) release in NSC34 motoneurons and these effects were blocked by PAR1 and PAR2 lipopeptide inhibitors. Taken together these data point to a novel Klk6-signaling axis in CNS neurons that is mediated by PAR1 and PAR2 and is positioned to contribute to neurodegeneration. PMID:23647384

  15. A Combined Global and Local Approach to Elucidate Spatial Organization of the Mycobacterial ParB-parS Partition Assembly

    SciTech Connect

    B Chaudhuri; S Gupta; V Urban; M Chance; R DMello; L Smith; K Lyons; J Gee

    2011-12-31

    Combining diverse sets of data at global (size, shape) and local (residue) scales is an emerging trend for elucidating the organization and function of the cellular assemblies. We used such a strategy, combining data from X-ray and neutron scattering with H/D-contrast variation and X-ray footprinting with mass spectrometry, to elucidate the spatial organization of the ParB-parS assembly from Mycobacterium tuberculosis. The ParB-parS participates in plasmid and chromosome segregation and condensation in predivisional bacterial cells. ParB polymerizes around the parS centromere(s) to form a higher-order assembly that serves to recruit cyto-skeletal ParA ATPases and SMC proteins for chromosome segregation. A hybrid model of the ParB-parS was built by combining and correlating computational models with experiment-derived information about size, shape, position of the symmetry axis within the shape, internal topology, DNA-protein interface, exposed surface patches, and prior knowledge. This first view of the ParB-parS leads us to propose how ParB spread on the chromosome to form a larger assembly.

  16. A Combined Global and Local Approach to Elucidate Spatial Organization of the Mycobacterial ParB-parS Partition

    SciTech Connect

    Chaudhuri, Barnali; Gupta, Sayan; Urban, Volker S; Chance, Mark; D'Mello, Rhijuta; Smith, Lauren; Lyons, Kelly; Gee, Jessica

    2010-01-01

    Combining diverse sets of data at global (size, shape) and local (residue) scales is an emerging trend for elucidating the organization and function of the cellular assemblies. We used such a strategy, combining data from X-ray and neutron scattering with H/D-contrast variation and X-ray footprinting with mass spectrometry, to elucidate the spatial organization of the ParB-parS assembly from Mycobacterium tuberculosis. The ParB-parS participates in plasmid and chromosome segregation and condensation in predivisional bacterial cells. ParB polymerizes around the parS centromere(s) to form a higher-order assembly that serves to recruit cyto-skeletal ParA ATPases and SMC proteins for chromosome segregation. A hybrid model of the ParB-parS was built by combining and correlating computational models with experiment-derived information about size, shape, position of the symmetry axis within the shape, internal topology, DNA-protein interface, exposed surface patches, and prior knowledge. This first view of the ParB-parS leads us to propose how ParB spread on the chromosome to form a larger assembly.

  17. Using LEDs to stimulate the recovery of radiation damage to plastic scintillators

    NASA Astrophysics Data System (ADS)

    Wetzel, J.; Tiras, E.; Bilki, B.; Onel, Y.; Winn, D.

    2017-03-01

    In this study, we consider using LEDs to stimulate the recovery of scintillators damaged from radiation in high radiation environments. We irradiated scintillating tiles of polyethylene naphthalate (PEN), Eljen brand EJ-260 (EJN), an overdoped EJ-260 (EJ2P), and a lab-produced elastomer scintillator (ES) composed of p-terphenyl (ptp) in epoxy. Two different high-dose irradiations took place, with PEN dosed to 100 kGy, and the others to 78 kGy. We found that the 'blue' scintillators (PEN and ES) recovered faster and maximally higher with LEDs than without. Conversely exposing the 'green' scintillators (EJ-260) to LED light had a nearly negligible effect on the recovery. We hypothesize that the 'green' scintillators require wavelengths that match their absorption and emission spectra for LED stimulated recovery.

  18. Distance dependent quenching and gamma-ray spectroscopy in tin-loaded polystyrene scintillators

    SciTech Connect

    Feng, Patrick L; Mengesha, Wondwosen; Anstey, Mitchell R.; Cordaro, Joseph Gabriel

    2016-02-01

    In this study, we report the synthesis and inclusion of rationally designed organotin compounds in polystyrene matrices as a route towards plastic scintillators capable of gamma-ray spectroscopy. Tin loading ratios of up to 15% w/w have been incorporated, resulting in photopeak energy resolution values as low as 10.9% for 662 keV gamma-rays. Scintillator constituents were selected based upon a previously reported distance-dependent quenching mechanism. Data obtained using UV-Vis and photoluminescence measurements are consistent with this phenomenon and are correlated with the steric and electronic properties of the respective organotin complexes. We also report fast scintillation decay behavior that is comparable to the quenched scintillators 0.5% trans-stilbene doped bibenzyl and the commercial plastic scintillator BC-422Q-1%. These observations are discussed in the context of practical considerations such as optical transparency, ease-of-preparation/scale-up, and total scintillator cost.

  19. Comparison of neutron spectra measured with three sizes of organic liquid scintillators using differentiation analysis

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Pierce, C. R.

    1972-01-01

    Proton recoil distributions were obtained by using organic liquid scintillators of different size. The measured distributions are converted to neutron spectra by differentiation analysis for comparison to the unfolded spectra of the largest scintillator. The approximations involved in the differentiation analysis are indicated to have small effects on the precision of neutron spectra measured with the smaller scintillators but introduce significant error for the largest scintillator. In the case of the smallest cylindrical scintillator, nominally 1.2 by 1.3 cm, the efficiency is shown to be insensitive to multiple scattering and to the angular distribution to the incident flux. These characteristics of the smaller scintillator make possible its use to measure scalar flux spectra within media high efficiency is not required.

  20. Development of TOF-PET using Compton scattering by plastic scintillators

    NASA Astrophysics Data System (ADS)

    Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.

    2017-02-01

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.