Bifurcation and stability for a nonlinear parabolic partial differential equation
NASA Technical Reports Server (NTRS)
Chafee, N.
1973-01-01
Theorems are developed to support bifurcation and stability of nonlinear parabolic partial differential equations in the solution of the asymptotic behavior of functions with certain specified properties.
Real-time optical laboratory solution of parabolic differential equations
NASA Technical Reports Server (NTRS)
Casasent, David; Jackson, James
1988-01-01
An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.
Model Predictive Control for Nonlinear Parabolic Partial Differential Equations
NASA Astrophysics Data System (ADS)
Hashimoto, Tomoaki; Yoshioka, Yusuke; Ohtsuka, Toshiyuki
In this study, the optimal control problem of nonlinear parabolic partial differential equations (PDEs) is investigated. Optimal control of nonlinear PDEs is an open problem with applications that include fluid, thermal, biological, and chemically-reacting systems. Model predictive control with a fast numerical solution method has been well established to solve the optimal control problem of nonlinear systems described by ordinary differential equations. In this study, we develop a design method of the model predictive control for nonlinear systems described by parabolic PDEs. Our approach is a direct infinite dimensional extension of the model predictive control method for finite-dimensional systems. The objective of this paper is to develop an efficient algorithm for numerically solving the model predictive control problem of nonlinear parabolic PDEs. The effectiveness of the proposed method is verified by numerical simulations.
Fuhrman, Marco Tessitore, Gianmario
2005-05-15
We study a forward-backward system of stochastic differential equations in an infinite-dimensional framework and its relationships with a semilinear parabolic differential equation on a Hilbert space, in the spirit of the approach of Pardoux-Peng. We prove that the stochastic system allows us to construct a unique solution of the parabolic equation in a suitable class of locally Lipschitz real functions. The parabolic equation is understood in a mild sense which requires the notion of a generalized directional gradient, that we introduce by a probabilistic approach and prove to exist for locally Lipschitz functions.The use of the generalized directional gradient allows us to cover various applications to option pricing problems and to optimal stochastic control problems (including control of delay equations and reaction-diffusion equations),where the lack of differentiability of the coefficients precludes differentiability of solutions to the associated parabolic equations of Black-Scholes or Hamilton-Jacobi-Bellman type.
Spectral Deferred Corrections for Parabolic Partial Differential Equations
2015-06-08
linear differential equation ϕ′(t) = λϕ(t), t ≥ 0 ϕ(0) = 1, (3.31) where λ ∈ C, has exact solution ϕ(t) = eλt. (3.32) Traditionally, for a fixed time step...the second-order differentiation matrix with 16 subintervals and 16 points per subinterval. From Figure 5.2, this matrix approximates the exact ...We describe a new class of algorithms for the solution of parabolic partial differential equa- tions (PDEs). This class of schemes is based on three
Improved stochastic approximation methods for discretized parabolic partial differential equations
NASA Astrophysics Data System (ADS)
Guiaş, Flavius
2016-12-01
We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).
NASA Astrophysics Data System (ADS)
Khairullin, Ermek
2016-08-01
In this paper we consider a special boundary value problem for multidimensional parabolic integro-differential equation with boundary conditions that contains as a boundary condition containing derivatives of order higher than the order of the equation. The solution is sought in the form of a thermal potential of a double layer. Shows lemma of finding the limits of the derivatives of the unknown function in the neighborhood of the hyperplane. Using the boundary condition and lemma obtained integral-differential equation (IDE) of parabolic operators, whĐţre an unknown function under the integral contains higher-order space variables derivatives. IDE is reduced to a singular integral equation (SIE), when an unknown function in the spatial variables satisfies the Holder. The characteristic part is solved in the class of distribution function using method of transformation of Fourier-Laplace. Found an algebraic condition for the transition to the classical generalized solution. Integral equation of the resolvent for the characteristic part of SIE is obtained. Integro-differential equation is reduced to the Volterra-Fredholm type integral equation of the second kind by method of regularization. It is shown that the solution of SIE is a solution of IDE. Obtain a theorem on the solvability of the boundary value problem of multidimensional parabolic integro-differential equation, when a known function of the spatial variables belongs to the Holder class and satisfies the solvability conditions.
Du Kai Qiu, Jinniao Tang Shanjian
2012-04-15
This paper is concerned with semi-linear backward stochastic partial differential equations (BSPDEs for short) of super-parabolic type. An L{sup p}-theory is given for the Cauchy problem of BSPDEs, separately for the case of p Element-Of (1,2] and for the case of p Element-Of (2,{infinity}). A comparison theorem is also addressed.
A three-point backward finite-difference method has been derived for a system of mixed hyperbolic_{¯¯}parabolic (convection_{¯¯}diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...
A New Error Bound for Reduced Basis Approximation of Parabolic Partial Differential Equations
2012-01-26
AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Massachusetts Institute of...Technology,Department of Mechanical Engineering,Cambridge,MA,02139 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...croissance exponentielle en eµ1T et qui sont donc inutilisables en pratique . 1. Space-time formulation We first formulate a general linear parabolic
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
Asymptotic behaviour of solutions of semilinear parabolic equations
Egorov, Yu V; Kondratiev, V A
2008-04-30
The asymptotic behaviour of solutions of a second-order semilinear parabolic equation is analyzed in a cylindrical domain that is bounded in the space variables. The dominant term of the asymptotic expansion of the solution as t{yields}+{infinity} is found. It is shown that the solution of this problem is asymptotically equivalent to the solution of a certain non-linear ordinary differential equation. Bibliography: 8 titles.
Improved Parabolization of the Euler Equations
2013-05-01
generalization of linear stability theory call the parabolized stability equations ( PSE ).10 PSE can partially capture nonparallel and nonlinear effects...and has been shown to accurately model many convectively unstable flows. In particular, our group has previously shown that linear PSE can produce...mode analysis. The efficiency of PSE is achieved by using a spatial marching technique in the streamwise direction. Initial conditions are specified
Stability in terms of two measures for a class of semilinear impulsive parabolic equations
Dvirnyj, Aleksandr I; Slyn'ko, Vitalij I
2013-04-30
The problem of stability in terms of two measures is considered for semilinear impulsive parabolic equations. A new version of the comparison method is proposed, and sufficient conditions for stability in terms of two measures are obtained on this basis. An example of a hybrid impulsive system formed by a system of ordinary differential equations coupled with a partial differential equation of parabolic type is given. The efficiency of the described approaches is demonstrated. Bibliography: 24 titles.
NASA Astrophysics Data System (ADS)
Vassiliev, V. A.
2016-10-01
We enumerate the local Petrovskii lacunas (that is, the domains of local regularity of the principal fundamental solutions of strictly hyperbolic PDEs with constant coefficients in {R}^N) close to parabolic singular points of their wavefronts (that is, at the points of types P_8^1, P_8^2, +/- X_9, X_9^1, X_9^2, J10^1 and J10^3). These points form the next most difficult family of classes in the natural classification of singular points after the so-called simple singularities A_k, D_k, E_6, E_7 and E_8, which have been investigated previously. Also we present a computer program which counts the topologically distinct morsifications of critical points of smooth functions, and hence also the local components of the complement of a generic wavefront at its singular points. Bibliography: 22 titles.
Nonlinear Parabolic Equations Involving Measures as Initial Conditions.
1981-09-01
CHART N N N Afl4Uf’t 1N II Il MRC Technical Summary Report # 2277 0 NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL CONDITIONS I Haim Brezis ...NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL CONDITIONS Haim Brezis and Avner Friedman Technical Summary Report #2277 September 1981...with NRC, and not with the authors of this report. * s ’a * ’ 4| NONLINEAR PARABOLIC EQUATIONS INVOLVING MEASURES AS INITIAL CONDITIONS Haim Brezis
Upper bounds for parabolic equations and the Landau equation
NASA Astrophysics Data System (ADS)
Silvestre, Luis
2017-02-01
We consider a parabolic equation in nondivergence form, defined in the full space [ 0 , ∞) ×Rd, with a power nonlinearity as the right-hand side. We obtain an upper bound for the solution in terms of a weighted control in Lp. This upper bound is applied to the homogeneous Landau equation with moderately soft potentials. We obtain an estimate in L∞ (Rd) for the solution of the Landau equation, for positive time, which depends only on the mass, energy and entropy of the initial data.
Higher order parabolic approximations of the reduced wave equation
NASA Technical Reports Server (NTRS)
Mcaninch, G. L.
1986-01-01
Asymptotic solutions of order k to the nth are developed for the reduced wave equation. Here k is a dimensionless wave number and n is the arbitrary order of the approximation. These approximations are an extension of geometric acoustics theory, and provide corrections to that theory in the form of multiplicative functions which satisfy parabolic partial differential equations. These corrections account for the diffraction effects caused by variation of the field normal to the ray path and the interaction of these transverse variations with the variation of the field along the ray. The theory is applied to the example of radiation from a piston, and it is demonstrated that the higher order approximations are more accurate for decreasing values of k.
On numerical solution of multipoint NBVP for hyperbolic-parabolic equations with Neumann condition
NASA Astrophysics Data System (ADS)
Ashyralyev, Allaberen; Ozdemir, Yildirim
2012-08-01
A numerical method is proposed for solving multi-dimensional hyperbolic-parabolic differential equations with the nonlocal boundary condition in t and Neumann condition in space variables. The first and second orders of accuracy difference schemes are presented. The stability estimates for the solution and its first and second orders difference derivatives are established. A procedure of modified Gauss elimination method is used for solving these difference schemes in the case of a one-dimensional hyperbolic-parabolic differential equations with variable in x coefficients.
a Note on Difference Schemes of Nonlocal Boundary Value Problems for Hyperbolic-Parabolic Equations
NASA Astrophysics Data System (ADS)
Ashyralyev, Allaberen; Ozdemir, Yildirim
2010-11-01
A numerical method is proposed for solving multi-dimensional hyperbolic-parabolic differential equations with the nonlocal boundary condition in t and Dirichlet condition in space variables. The first and second orders of accuracy difference schemes are presented. The stability estimates for the solution and its first- and second-orders difference derivatives are established. A procedure of modified Gauss elimination method is used for solving these difference schemes in the case of a one-dimensional hyperbolic-parabolic partial differential equations with variable in x coefficients.
Approximate controllability of a system of parabolic equations with delay
NASA Astrophysics Data System (ADS)
Carrasco, Alexander; Leiva, Hugo
2008-09-01
In this paper we give necessary and sufficient conditions for the approximate controllability of the following system of parabolic equations with delay: where [Omega] is a bounded domain in , D is an n×n nondiagonal matrix whose eigenvalues are semi-simple with nonnegative real part, the control and B[set membership, variant]L(U,Z) with , . The standard notation zt(x) defines a function from [-[tau],0] to (with x fixed) by zt(x)(s)=z(t+s,x), -[tau][less-than-or-equals, slant]s[less-than-or-equals, slant]0. Here [tau][greater-or-equal, slanted]0 is the maximum delay, which is supposed to be finite. We assume that the operator is linear and bounded, and [phi]0[set membership, variant]Z, [phi][set membership, variant]L2([-[tau],0];Z). To this end: First, we reformulate this system into a standard first-order delay equation. Secondly, the semigroup associated with the first-order delay equation on an appropriate product space is expressed as a series of strongly continuous semigroups and orthogonal projections related with the eigenvalues of the Laplacian operator (); this representation allows us to reduce the controllability of this partial differential equation with delay to a family of ordinary delay equations. Finally, we use the well-known result on the rank condition for the approximate controllability of delay system to derive our main result.
Calderón-Zygmund estimates for parabolic measure data equations
NASA Astrophysics Data System (ADS)
Baroni, Paolo; Habermann, Jens
We consider parabolic equations of the type u-div A(x,t,Du)=μ having a Radon measure on the right-hand side and prove fractional integrability and differentiability results of Calderón-Zygmund type for weak solutions. We extend some of the integrability results for elliptic equations achieved by G. Mingione (2007) [24] to the parabolic setting and locally recover the integrability results of L. Boccardo, A. Dall'Aglio, T. Gallouët, and L. Orsina (1997) in [5].
Hölder estimates for non-local parabolic equations with critical drift
NASA Astrophysics Data System (ADS)
Chang-Lara, Héctor A.; Dávila, Gonzalo
2016-03-01
In this paper we extend previous results on the regularity of solutions of integro-differential parabolic equations. The kernels are non-necessarily symmetric which could be interpreted as a non-local drift with the same order as the diffusion. We provide a growth lemma and a Harnack inequality which can be used to prove higher regularity estimates.
Propagation equation for tight-focusing by a parabolic mirror.
Couairon, A; Kosareva, O G; Panov, N A; Shipilo, D E; Andreeva, V A; Jukna, V; Nesa, F
2015-11-30
Part of the chain in petawatt laser systems may involve extreme focusing conditions for which nonparaxial and vectorial effects have high impact on the propagation of radiation. We investigate the possibility of using propagation equations to simulate numerically the focal spot under these conditions. We derive a unidirectional propagation equation for the Hertz vector, describing linear and nonlinear propagation under situations where nonparaxial diffraction and vectorial effects become significant. By comparing our simulations to the results of vector diffraction integrals in the case of linear tight-focusing by a parabolic mirror, we establish a practical criterion for the critical f -number below which initializing a propagation equation with a parabolic input phase becomes inaccurate. We propose a method to find suitable input conditions for propagation equations beyond this limit. Extreme focusing conditions are shown to be modeled accurately by means of numerical simulations of the unidirectional Hertz-vector propagation equation initialized with suitable input conditions.
On an algorithm for solving parabolic and elliptic equations
NASA Astrophysics Data System (ADS)
D'Ascenzo, N.; Saveliev, V. I.; Chetverushkin, B. N.
2015-08-01
The present-day rapid growth of computer power, in particular, parallel computing systems of ultrahigh performance requires a new approach to the creation of models and solution algorithms for major problems. An algorithm for solving parabolic and elliptic equations is proposed. The capabilities of the method are demonstrated by solving astrophysical problems on high-performance computer systems with massive parallelism.
Anisotropic uniqueness classes for a degenerate parabolic equation
Vil'danova, V F; Mukminov, F Kh
2013-11-30
Anisotropic uniqueness classes of Tacklind type are identified for a degenerate linear parabolic equation of the second order in an unbounded domain. The Cauchy problem and mixed problems with boundary conditions of the first and third type are considered. Bibliography: 18 titles.
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Tatari, Mehdi
2006-03-01
Certain types of physical problems can be modelled by a parabolic partial differential equation with temperature overspecification. In this work, the Adomian decomposition method is used to solve the two-dimensional (or three-dimensional) parabolic partial differential equation subject to the overspecification at a point in the spatial domain. This analytic technique can also be used to provide a numerical approximation for the problem without linearization or discretization. The Adomian decomposition procedure does not need to solve any linear or nonlinear system of algebraic equations. It finds the solution in a rapid convergent series. Some theoretical behaviours of the method are investigated. To support the theoretical discussion and show the superiority of the method, two test problems are given and the numerical results are presented.
Parabolic approximation method for the mode conversion-tunneling equation
Phillips, C.K.; Colestock, P.L.; Hwang, D.Q.; Swanson, D.G.
1987-07-01
The derivation of the wave equation which governs ICRF wave propagation, absorption, and mode conversion within the kinetic layer in tokamaks has been extended to include diffraction and focussing effects associated with the finite transverse dimensions of the incident wavefronts. The kinetic layer considered consists of a uniform density, uniform temperature slab model in which the equilibrium magnetic field is oriented in the z-direction and varies linearly in the x-direction. An equivalent dielectric tensor as well as a two-dimensional energy conservation equation are derived from the linearized Vlasov-Maxwell system of equations. The generalized form of the mode conversion-tunneling equation is then extracted from the Maxwell equations, using the parabolic approximation method in which transverse variations of the wave fields are assumed to be weak in comparison to the variations in the primary direction of propagation. Methods of solving the generalized wave equation are discussed. 16 refs.
Parametrically defined differential equations
NASA Astrophysics Data System (ADS)
Polyanin, A. D.; Zhurov, A. I.
2017-01-01
The paper deals with nonlinear ordinary differential equations defined parametrically by two relations. It proposes techniques to reduce such equations, of the first or second order, to standard systems of ordinary differential equations. It obtains the general solution to some classes of nonlinear parametrically defined ODEs dependent on arbitrary functions. It outlines procedures for the numerical solution of the Cauchy problem for parametrically defined differential equations.
PE Workshop II. Proceedings of the Second Parabolic Equation Workshop
1993-01-01
pp. 21-28. [11 ] M. D. Feit and J. A. Fleck, Jr., "Computation of mode properties in optical fiber waveguides by a propagating beam method," Appl...that are, at best, only typical of that region of the worlds oceans. Ocean bottom properties obtained from historical data bases are usually less...the first term of a geometric- optical series," Comm. Pure and Appl. Math. 4, 105-115. Brock, H. K. (1975). "The AESD parabolic equation model," AESD TN
Experimental testing of the variable rotated elastic parabolic equation.
Simpson, Harry J; Collis, Jon M; Soukup, Raymond J; Collins, Michael D; Siegmann, William L
2011-11-01
A series of laboratory experiments was conducted to obtain high-quality data for acoustic propagation in shallow water waveguides with sloping elastic bottoms. Accurate modeling of transmission loss in these waveguides can be performed with the variable rotated parabolic equation method. Results from an earlier experiment with a flat or sloped slab of polyvinyl chloride (PVC) demonstrated the necessity of accounting for elasticity in the bottom and the ability of the model to produce benchmark-quality agreement with experimental data [J. M. Collis et al., J. Acoust. Soc. Am. 122, 1987-1993 (2007)]. This paper presents results of a second experiment, using two PVC slabs joined at an angle to create a waveguide with variable bottom slope. Acoustic transmissions over the 100-300 kHz band were received on synthetic horizontal arrays for two source positions. The PVC slabs were oriented to produce three different simulated waveguides: flat bottom followed by downslope, upslope followed by flat bottom, and upslope followed by downslope. Parabolic equation solutions for treating variable slopes are benchmarked against the data.
Mahillo-Isla, R; Gonźalez-Morales, M J; Dehesa-Martínez, C
2011-06-01
The slowly varying envelope approximation is applied to the radiation problems of the Helmholtz equation with a planar single-layer and dipolar sources. The analyses of such problems provide procedures to recover solutions of the Helmholtz equation based on the evaluation of solutions of the parabolic wave equation at a given plane. Furthermore, the conditions that must be fulfilled to apply each procedure are also discussed. The relations to previous work are given as well.
Solving Ordinary Differential Equations
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1987-01-01
Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.
Nonlinear differential equations
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.
SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER
Collier, D.M.; Meeks, L.A.; Palmer, J.P.
1960-05-10
A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.
Stochastic differential equations
Sobczyk, K. )
1990-01-01
This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshore structures.
2014-03-01
method to the numerical solution of nonlinear and variable coefficient wave equations ,” SIAM, vol. 15, no. 2, pp. 423, Apr. 1973. [3] D. Lee and S. T...DIFFERENT IMPLEMENTATION OPTIONS FOR DENSITY DISCONTINUITY IN SPLIT– STEP FOURIER PARABOLIC EQUATION MODELS by Matthew D. Owens March 2014...FOR DENSITY DISCONTINUITY IN SPLIT–STEP FOURIER PARABOLIC EQUATION MODELS 5. FUNDING NUMBERS 6. AUTHOR(S) Matthew D. Owens 7. PERFORMING
Three-dimensional parabolic equation modeling of mesoscale eddy deflection.
Heaney, Kevin D; Campbell, Richard L
2016-02-01
The impact of mesoscale oceanography, including ocean fronts and eddies, on global scale low-frequency acoustics is examined using a fully three-dimensional parabolic equation model. The narrowband acoustic signal, for frequencies from 2 to 16 Hz, is simulated from a seismic event on the Kerguellen Plateau in the South Indian Ocean to an array of receivers south of Ascension Island in the South Atlantic, a distance of 9100 km. The path was chosen for its relevance to seismic detections from the HA10 Ascension Island station of the International Monitoring System, for its lack of bathymetric interaction, and for the dynamic oceanography encountered as the sound passes the Cape of Good Hope. The acoustic field was propagated through two years (1992 and 1993) of the eddy-permitting ocean state estimation ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) system. The range of deflection of the back-azimuth was 1.8° with a root-mean-square of 0.34°. The refraction due to mesoscale oceanography could therefore have significant impacts upon localization of distant low-frequency sources, such as seismic or nuclear test events.
Do Differential Equations Swing?
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.
2006-01-01
One of the units of in a standard differential equations course is a discussion of the oscillatory motion of a spring and the associated material on forcing functions and resonance. During the presentation on practical resonance, the instructor may tell students that it is similar to when they take their siblings to the playground and help them on…
Modelling by Differential Equations
ERIC Educational Resources Information Center
Chaachoua, Hamid; Saglam, Ayse
2006-01-01
This paper aims to show the close relation between physics and mathematics taking into account especially the theory of differential equations. By analysing the problems posed by scientists in the seventeenth century, we note that physics is very important for the emergence of this theory. Taking into account this analysis, we show the…
Renewed studies on the unsteady boundary layers governed by singular parabolic equations
NASA Astrophysics Data System (ADS)
Wang, J. C. T.
1985-06-01
Two classic problems in unsteady boundary layers, the Stewartson and the Lam and Crocco problems, are formulated with a unified new semi-similar transformation using velocity and static enthalpy as dependent variables. By this formulation, the resulting governing equations - singular parabolic in nature - for these two physically different problems are shown to closely resemble one another in all essential aspects. For both cases, the domain of the streamwise independent variable is mapped onto (0, 1) for all t. The existence of the Reynolds analogy and the exact energy integral are given; their relations are shown to be different from those in the steady boundary layers. Uniformly valid solutions are shown to be obtainable, accurately, by a standard relaxation method commonly applied to the solution of elliptical partial differential equations. Characteristics of the transition from non-similar solutions to downstream similar solutions are discussed.
Perturbed nonlinear differential equations
NASA Technical Reports Server (NTRS)
Proctor, T. G.
1974-01-01
For perturbed nonlinear systems, a norm, other than the supremum norm, is introduced on some spaces of continuous functions. This makes possible the study of new types of behavior. A study is presented on a perturbed nonlinear differential equation defined on a half line, and the existence of a family of solutions with special boundedness properties is established. The ideas developed are applied to the study of integral manifolds, and examples are given.
NORDA Parabolic Equation Workshop, 31 March - 3 April 1981
1982-09-01
equation). These forms will follow as a result of approximations to the pseudo-differential operator Q, whose properties preclude the solution of GPE itself...horizontal range in kin, a id Cd(r) is the soun , speed (mis) at the bottom of the duct. There are three pirts to this test case as defined by the receiver...a * very powerful, efficient, and accurate predictor of sound transmission properties . This was borne out in those test cases for which there was an
On some general properties of parabolic conservation equations
Dresner, L.
1993-10-01
This report deals with certain general properties of partial differential equations of the form S(c)c{sub t} + q{sub z} = Q(c), where t may thought of as time, z as distance, c as an intensive quantity (e.g., temperature), and q its flux (e.g., heat flux), and where q depends on both c and c{sub z}. Six topics are studied, namely: Maximum and minimum principles; ordering of solutions; invariance to stretching (affine) groups; stability of steady states; comparability of solutions; and traveling wave solutions. Illustrative examples are given from the field of nonlinear diffusion, applied superconductivity, and helium cryogenics.
Perturbed nonlinear differential equations
NASA Technical Reports Server (NTRS)
Proctor, T. G.
1972-01-01
The existence of a solution defined for all t and possessing a type of boundedness property is established for the perturbed nonlinear system y = f(t,y) + F(t,y). The unperturbed system x = f(t,x) has a dichotomy in which some solutions exist and are well behaved as t increases to infinity, and some solution exists and are well behaved as t decreases to minus infinity. A similar study is made for a perturbed nonlinear differential equation defined on a half line, R+, and the existence of a family of solutions with special boundedness properties is established. The ideas are applied to integral manifolds.
Galerkin/Runge-Kutta discretizations for semilinear parabolic equations
NASA Technical Reports Server (NTRS)
Keeling, Stephen L.
1987-01-01
A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for semilinear parabolic initial boundary value problems. Unlike any classical counterpart, this class offers arbitrarily high, optimal order convergence. In support of this claim, error estimates are proved, and computational results are presented. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low order method.
Two parabolic equations for propagation in layered poro-elastic media.
Metzler, Adam M; Siegmann, William L; Collins, Michael D; Collis, Jon M
2013-07-01
Parabolic equation methods for fluid and elastic media are extended to layered poro-elastic media, including some shallow-water sediments. A previous parabolic equation solution for one model of range-independent poro-elastic media [Collins et al., J. Acoust. Soc. Am. 98, 1645-1656 (1995)] does not produce accurate solutions for environments with multiple poro-elastic layers. First, a dependent-variable formulation for parabolic equations used with elastic media is generalized to layered poro-elastic media. An improvement in accuracy is obtained using a second dependent-variable formulation that conserves dependent variables across interfaces between horizontally stratified layers. Furthermore, this formulation expresses conditions at interfaces using no depth derivatives higher than first order. This feature should aid in treating range dependence because convenient matching across interfaces is possible with discretized derivatives of first order in contrast to second order.
Eigenfunction approach to the Green's function parabolic equation in outdoor sound: A tutorial.
Gilbert, Kenneth E
2016-03-01
Understanding the physics and mathematics underlying a computational algorithm such as the Green's function parabolic equation (GFPE) is both useful and worthwhile. To this end, the present article aims to give a more widely accessible derivation of the GFPE algorithm than was given originally by Gilbert and Di [(1993). J. Acoust. Soc. Am. 94, 2343-2352]. The present derivation, which uses mathematics familiar to most engineers and physicists, begins with the separation of variables method, a basic and well-known approach for solving partial differential equations. The method leads naturally to eigenvalue-eigenfunction equations. A step-by-step analysis arrives at relatively simple, analytic expressions for the horizontal and vertical eigenfunctions, which are sinusoids plus a surface wave. The eigenfunctions are superposed in an eigenfunction expansion to yield a one-way propagation solution. The one-way solution is generalized to obtain the GFPE algorithm. In addition, and equally important, the eigenfunctions are used to give concrete meaning to abstract operator solutions for one-way acoustic propagation. By using an eigenfunction expansion of the acoustic field, together with an operator solution, one can obtain the GFPE algorithm very directly and concisely.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Kreider, K. L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
Galerkin/Runge-Kutta discretizations of nonlinear parabolic equations
NASA Astrophysics Data System (ADS)
Hansen, Eskil
2007-08-01
Global error bounds are derived for full Galerkin/Runge-Kutta discretizations of nonlinear parabolic problems, including the evolution governed by the p-Laplacian with p[greater-or-equal, slanted]2. The analysis presented here is not based on linearization procedures, but on the fully nonlinear framework of logarithmic Lipschitz constants and an extended B-convergence theory. The global error is bounded in L2 by [Delta]xr/2+[Delta]tq, where r is the convergence order of the Galerkin method applied to the underlying stationary problem and q is the stiff order of the algebraically stable Runge-Kutta method.
Numerical solution of the stochastic parabolic equation with the dependent operator coefficient
Ashyralyev, Allaberen; Okur, Ulker
2015-09-18
In the present paper, a single step implicit difference scheme for the numerical solution of the stochastic parabolic equation with the dependent operator coefficient is presented. Theorem on convergence estimates for the solution of this difference scheme is established. In applications, this abstract result permits us to obtain the convergence estimates for the solution of difference schemes for the numerical solution of initial boundary value problems for parabolic equations. The theoretical statements for the solution of this difference scheme are supported by the results of numerical experiments.
Arada, N.; Raymond, J.-P. raymond@mip.ups-tlse.fr
2002-07-01
This paper is the continuation of the paper 'Dirichlet boundary control of semilinear parabolic equations. Part 1: Problems with no state constraints'. It is concerned with an optimal control problem with distributed and Dirichlet boundary controls for semilinear parabolic equations, in the presence of pointwise state constraints. We first obtain approximate optimality conditions for problems in which state constraints are penalized on subdomains. Next by using a decomposition theorem for some additive measures (based on the Stone-Cech compactification), we pass to the limit and recover Pontryagin's principles for the original problem.
Degtyarev, Sergey P
2010-09-02
The first initial-boundary problem for second-order parabolic and degenerate parabolic equations is investigated in a domain with a conical or angular point. The means of attack is already known and uses weighted classes of smooth or integrable functions. Sufficient conditions for a unique solution to exist and for coercive estimates for the solution to be obtained are formulated in terms of the angular measure of the solid angle and the exponent of the weight. It is also shown that if these conditions fail to hold, then the parabolic problem has elliptic properties, that is, it can have a nonzero kernel or can be nonsolvable, and, in the latter case, it is not even a Fredholm problem. A parabolic equation and an equation with some degeneracy or a singularity at a conical point are considered. Bibliography: 49 titles.
Random Rays, Geometric Acoustics, and the Parabolic Wave Equation
1984-03-01
5). Of course. Nelson’s theory is a stochastic version of the Schrodinger equation of quantum mechanics, but this equation is formally identical... equation is just the Schrodinger equation of quantum mechanics, and since we expect ray theory to be meaningful when k »1, i.e., when 1/k « 1, where (1/k...Wave Equation 5. TYPE OF REPORT & PERIOD COVERED TECHNICAL 6. PERFORMING 07G. REPORT NUMBER LAP-4 7. AUTHORfj; Thad Dankel, Jr. 8
Solution blow-up for a class of parabolic equations with double nonlinearity
Korpusov, Maxim O
2013-03-31
We consider a class of parabolic-type equations with double nonlinearity and derive sufficient conditions for finite time blow-up of its solutions in a bounded domain under the homogeneous Dirichlet condition. To prove the solution blow-up we use a modification of Levine's method. Bibliography: 13 titles.
The asymptotics of a solution of a parabolic equation as time increases without bound
Degtyarev, Denis O; Il'in, Arlen M
2012-11-30
A boundary-value problem for a second order parabolic equation on a half-line is considered. A uniform asymptotic approximation to a solution to within any power of t{sup -1} is constructed and substantiated. Bibliography: 8 titles.
Solving Nonlinear Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Mitchell, L.; David, J.
1986-01-01
Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.
NASA Astrophysics Data System (ADS)
Dobrev, V. K.
2014-05-01
In the present paper we review the progress of the project of classification and construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we called earlier 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduced recently the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E7(7) which is parabolically related to the CLA E7(-25). Other interesting examples are the orthogonal algebras so(p, q) all of which are parabolically related to the conformal algebra so(n, 2) with p + q = n + 2, the parabolic subalgebras including the Lorentz subalgebra so(n - 1,1) and its analogs so(p - 1, q - 1). Further we consider the algebras sl(2n, Bbb R) and for n = 2k the algebras su* (4k) which are parabolically related to the CLA su(n,n). Further we consider the algebras sp(r,r) which are parabolically related to the CLA sp(2r, Bbb R). We consider also E6(6) and E6(2) which are parabolically related to the hermitian symmetric case E6(-14),
NASA Astrophysics Data System (ADS)
Dobrev, V. K.
2013-02-01
In the present paper we continue the project of systematic construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we call 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduce the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G ' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E 7(7) which is parabolically related to the CLA E 7(-25) , the parabolic subalgebras including E 6(6) and E 6(-26). Other interesting examples are the orthogonal algebras so(p, q) all of which are parabolically related to the conformal algebra so( n, 2) with p + q = n + 2, the parabolic subalgebras including the Lorentz subalgebra so( n - 1, 1) and its analogs so( p - 1, q - 1). We consider also E6(6) and E6(2) which are parabolically related to the hermitian symmetric case E6(-14) , the parabolic subalgebras including real forms of sl(6). We also give a formula for the number of representations in the main multiplets valid for CLAs and all algebras that are parabolically related to them. In all considered cases we give the main multiplets of indecomposable elementary representations including the necessary data for all relevant invariant differential operators. In the case of so( p, q) we give also the reduced multiplets. We should stress that the multiplets are given in the most economic way in pairs of shadow fields. Furthermore we should stress that the classification of all invariant differential operators includes as special cases all possible conservation laws and conserved currents, unitary or not.
Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations
1989-12-18
recovered by an iteration scheme, and give sufficient conditions for the unique solution of the inverse problem. Equation (1.1) describes the evolution of...unique fixed point for T, and give conditions on the data for which such a fixed point exists . The solution can then be obtained by the iteration scheme...the solution pair (u, h) in the one dimensional heat equation subject to the nonlinear boundary conditions u. = h(u) on 002. The value of u(0, t) = 8
Spectral methods for time dependent partial differential equations
NASA Technical Reports Server (NTRS)
Gottlieb, D.; Turkel, E.
1983-01-01
The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.
On Unique Ergodicity in Nonlinear Stochastic Partial Differential Equations
NASA Astrophysics Data System (ADS)
Glatt-Holtz, Nathan; Mattingly, Jonathan C.; Richards, Geordie
2017-02-01
We illustrate how the notion of asymptotic coupling provides a flexible and intuitive framework for proving the uniqueness of invariant measures for a variety of stochastic partial differential equations whose deterministic counterpart possesses a finite number of determining modes. Examples exhibiting parabolic and hyperbolic structure are studied in detail. In the later situation we also present a simple framework for establishing the existence of invariant measures when the usual approach relying on the Krylov-Bogolyubov procedure and compactness fails.
Treatment of ice cover and other thin elastic layers with the parabolic equation method.
Collins, Michael D
2015-03-01
The parabolic equation method is extended to handle problems involving ice cover and other thin elastic layers. Parabolic equation solutions are based on rational approximations that are designed using accuracy constraints to ensure that the propagating modes are handled properly and stability constrains to ensure that the non-propagating modes are annihilated. The non-propagating modes are especially problematic for problems involving thin elastic layers. It is demonstrated that stable results may be obtained for such problems by using rotated rational approximations [Milinazzo, Zala, and Brooke, J. Acoust. Soc. Am. 101, 760-766 (1997)] and generalizations of these approximations. The approach is applied to problems involving ice cover with variable thickness and sediment layers that taper to zero thickness.
Solutions to higher-order anisotropic parabolic equations in unbounded domains
NASA Astrophysics Data System (ADS)
Kozhevnikova, L. M.; Leont'ev, A. A.
2014-01-01
The paper is devoted to a certain class of doubly nonlinear higher-order anisotropic parabolic equations. Using Galerkin approximations it is proved that the first mixed problem with homogeneous Dirichlet boundary condition has a strong solution in the cylinder D=(0,\\infty)\\times\\Omega, where \\Omega\\subset R^n, n\\geq 3, is an unbounded domain. When the initial function has compact support the highest possible rate of decay of this solution as t\\to \\infty is found. An upper estimate characterizing the decay of the solution is established, which is close to the lower estimate if the domain is sufficiently 'narrow'. The same authors have previously obtained results of this type for second order anisotropic parabolic equations. Bibliography: 29 titles.
Solutions to higher-order anisotropic parabolic equations in unbounded domains
Kozhevnikova, L M; Leont'ev, A A
2014-01-31
The paper is devoted to a certain class of doubly nonlinear higher-order anisotropic parabolic equations. Using Galerkin approximations it is proved that the first mixed problem with homogeneous Dirichlet boundary condition has a strong solution in the cylinder D=(0,∞)×Ω, where Ω⊂R{sup n}, n≥3, is an unbounded domain. When the initial function has compact support the highest possible rate of decay of this solution as t→∞ is found. An upper estimate characterizing the decay of the solution is established, which is close to the lower estimate if the domain is sufficiently 'narrow'. The same authors have previously obtained results of this type for second order anisotropic parabolic equations. Bibliography: 29 titles.
Conditional stability in determination of initial data for stochastic parabolic equations
NASA Astrophysics Data System (ADS)
Yuan, Ganghua
2017-03-01
In this paper, we solve two kinds of inverse problems in determination of the initial data for stochastic parabolic equations. One is determination of the initial data by lateral boundary observation on arbitrary portion of the boundary, the second one is determination of the initial data by internal observation in a subregion inside the domain. We obtain conditional stability for the two kinds of inverse problems. To prove the results, we estimate the initial data by a terminal observation near the initial time, then we estimate this terminal observation by lateral boundary observation on arbitrary portion of the boundary or internal observation in a subregion inside the domain. To achieve those goals, we derive several new Carleman estimates for stochastic parabolic equations in this paper.
2006-10-01
equation for sound waves in inhomogeneous moving media”, Acustica united with Acta Acustica , Vol 83(3), pp 455-460,1997. [3] L. Dallois, Ph. Blanc...propagation in a turbulent atmosphere within the parabolic approximation”, Acustica united with Acta Acustica , Vol 87(1), pp 659-669, 2001 [6] M. Karweit...approaches", Acta Acustica united with Acustica , 89 (6), 980-991, (2003). [40] Ph. Voisin, Ph. Blanc-Benon, "The influence of meteorological
Acoustic Field Associated with Parabolized Stability Equation Models in Turbulent Jets
2013-05-01
discusses linear models of these wavepackets for supersonic turbulent jets based on Parabolized Stability Equations ( PSE ). In the past, results of...comparisons of the PSE models with near-field pressure fields from LES, filtered by means of Proper Orthogonal Decomposition (POD), demonstrate acceptable...fidelity of the model. Finally, the acoustic far-field associated with the PSE wavepackets is computed using a Kirchhoff surface method, capturing
Algorithm for rapid integration of turbulence model equations on parabolic regions
NASA Technical Reports Server (NTRS)
Wilcox, D. C.
1981-01-01
While developing a three-dimensional boundary layer program using a standard parabolic matching scheme, the author has found computing time with the Wilcox-Rubesin (1979) two-equation turbulence model to be very lengthy. The long computing time occurs because converged solutions are possible only when very small streamwise steps are taken. The proposed remedy reduces computing time by increasing the maximum permissible step size.
Marching iterative methods for the parabolized and thin layer Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Israeli, M.
1985-01-01
Downstream marching iterative schemes for the solution of the Parabolized or Thin Layer (PNS or TL) Navier-Stokes equations are described. Modifications of the primitive equation global relaxation sweep procedure result in efficient second-order marching schemes. These schemes take full account of the reduced order of the approximate equations as they behave like the SLOR for a single elliptic equation. The improved smoothing properties permit the introduction of Multi-Grid acceleration. The proposed algorithm is essentially Reynolds number independent and therefore can be applied to the solution of the subsonic Euler equations. The convergence rates are similar to those obtained by the Multi-Grid solution of a single elliptic equation; the storage is also comparable as only the pressure has to be stored on all levels. Extensions to three-dimensional and compressible subsonic flows are discussed. Numerical results are presented.
Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1986-01-01
The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.
NASA Astrophysics Data System (ADS)
Pan, Hongjing; Xing, Ruixiang
2008-03-01
In this paper, we derive blow-up rates for higher-order semilinear parabolic equations and systems. Our proof is by contradiction and uses a scaling argument. This procedure reduces the problems of blow-up rate to Fujita-type theorems. In addition, we also give some new Fujita-type theorems for higher-order semilinear parabolic equations and systems with the time variable on . These results are not restricted to positive solutions.
A three dimensional parabolic equation method for sound propagation in moving inhomogeneous media.
Cheng, Rui; Morris, Philip J; Brentner, Kenneth S
2009-10-01
In this paper, a formulation of the Helmholtz equation for three dimensional sound propagation in a moving inhomogeneous medium in cylindrical coordinates is derived. Based on this formulation, a three dimensional parabolic equation (PE) is constructed. This PE can be used to model sound propagation in an inhomogeneous arbitrary moving medium. The method is used here to simulate three dimensional outdoor sound propagation above a rigid flat ground surface. The numerical results for two simple wind cases are presented and compared with analytical results to validate the methodology. Examples of propagation problems with more complicated wind are then included to demonstrate the importance of including the wind velocity directly in the PE method.
Alkhutov, Yu A; Zhikov, V V
2014-03-31
The paper is concerned with the solvability of the initial-boundary value problem for second-order parabolic equations with variable nonlinearity exponents. In the model case, this equation contains the p-Laplacian with a variable exponent p(x,t). The problem is shown to be uniquely solvable, provided the exponent p is bounded away from both 1 and ∞ and is log-Hölder continuous, and its solution satisfies the energy equality. Bibliography: 18 titles.
Model Problem for Integro-Differential Zakai Equation with Discontinuous Observation Processes
Mikulevicius, R.; Pragarauskas, H.
2011-08-15
The existence and uniqueness in Hoelder spaces of solutions of the Cauchy problem to a stochastic parabolic integro-differential equation of the order {alpha}{<=}2 is investigated. The equation considered arises in a filtering problem with a jump signal process and a jump observation process.
NASA Astrophysics Data System (ADS)
Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
2014-01-01
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge-Kutta-like time-steps to advance the parabolic terms by a time-step that is s2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge-Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems - a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in
Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
2014-01-15
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s{sup 2} times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very
Non-divergence parabolic equations of second order with critical drift in Lebesgue spaces
NASA Astrophysics Data System (ADS)
Chen, Gong
2017-02-01
We consider uniformly parabolic equations and inequalities of second order in the non-divergence form with drift \\[-u_{t}+Lu=-u_{t}+\\sum_{ij}a_{ij}D_{ij}u+\\sum b_{i}D_{i}u=0\\,(\\geq0,\\,\\leq0)\\] in some domain $\\Omega\\subset \\mathbb{R}^{n+1}$. We prove a variant of Aleksandrov-Bakelman-Pucci-Krylov-Tso estimate with $L^{p}$ norm of the inhomogeneous term for some number $p
Galerkin/Runge-Kutta discretizations for parabolic equations with time dependent coefficients
NASA Technical Reports Server (NTRS)
Keeling, Stephen L.
1987-01-01
A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for linear parabolic initial boundary value problems with time dependent coefficients. Unlike any classical counterpart, this class offers arbitrarily high order convergence while significantly avoiding what has been called order reduction. In support of this claim, error estimates are proved, and computational results are presented. Additionally, since the time stepping equations involve coefficient matrices changing at each time step, a preconditioned iterative technique is used to solve the linear systems only approximately. Nevertheless, the resulting algorithm is shown to preserve the original convergence rate while using only the order of work required by the base scheme applied to a linear parabolic problem with time independent coefficients. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low order method.
Lipschitz regularity of solutions for mixed integro-differential equations
NASA Astrophysics Data System (ADS)
Barles, Guy; Chasseigne, Emmanuel; Ciomaga, Adina; Imbert, Cyril
We establish new Hölder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hölder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the complementary one.
Linear determining equations for differential constraints
Kaptsov, O V
1998-12-31
A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed.
Pendulum Motion and Differential Equations
ERIC Educational Resources Information Center
Reid, Thomas F.; King, Stephen C.
2009-01-01
A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…
Application of the implicit MacCormack scheme to the parabolized Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Lawrence, J. L.; Tannehill, J. C.; Chaussee, D. S.
1984-01-01
MacCormack's implicit finite-difference scheme was used to solve the two-dimensional parabolized Navier-Stokes (PNS) equations. This method for solving the PNS equations does not require the inversion of block tridiagonal systems of algebraic equations and permits the original explicit MacCormack scheme to be employed in those regions where implicit treatment is not needed. The advantages and disadvantages of the present adaptation are discussed in relation to those of the conventional Beam-Warming scheme for a flat plate boundary layer test case. Comparisons are made for accuracy, stability, computer time, computer storage, and ease of implementation. The present method was also applied to a second test case of hypersonic laminar flow over a 15% compression corner. The computed results compare favorably with experiment and a numerical solution of the complete Navier-Stokes equations.
Arada, N.; Raymond, J.-P. raymond@mip.ups-tlse.fr
2002-07-01
This paper is concerned with distributed and Dirichlet boundary controls of semilinear parabolic equations, in the presence of pointwise state constraints. The paper is divided into two parts. In the first part we define solutions of the state equation as the limit of a sequence of solutions for equations with Robin boundary conditions. We establish Taylor expansions for solutions of the state equation with respect to perturbations of boundary control (Theorem 5.2). For problems with no state constraints, we prove three decoupled Pontryagin's principles, one for the distributed control, one for the boundary control, and the last one for the control in the initial condition (Theorem 2.1). Tools and results of Part 1 are used in the second part to derive Pontryagin's principles for problems with pointwise state constraints.
ON THE PIECEWISE PARABOLIC METHOD FOR COMPRESSIBLE FLOW WITH STELLAR EQUATIONS OF STATE
Zingale, Michael; Katz, Max P.
2015-02-01
The piecewise parabolic method and related schemes are widely used to model stellar flows. Several different methods for extending the validity of these methods to a general equation of state (EOS) have been proposed over time, but direct comparisons among one-another and exact solutions with stellar EOSs are not widely available. We introduce some simple test problems with exact solutions run with a popular stellar EOS and test how two existing codes with different approaches to incorporating general gases perform. The source code for generating the exact solutions is made available.
A scaled mapping parabolic equation for sloping range-dependent environments.
Metzler, Adam M; Moran, Daniel; Collis, Jon M; Martin, P A; Siegmann, William L
2014-03-01
Parabolic equation solutions use various techniques for approximating range-dependent interfaces. One is a mapping approach [M. D. Collins et al., J. Acoust. Soc. Am. 107, 1937-1942 (2000)] where at each range the domain is vertically translated so that sloping bathymetry becomes horizontal, and range dependence is transferred to the upper surface. In this paper, a scaled mapping is suggested where the domain is vertically distorted so that both the bathymetry and upper surface are horizontal. Accuracy is demonstrated for problems involving fluid sediments. Generalizations of the approach should be useful for environments with layer thicknesses that vary with range.
Gilbert, Kenneth E; Di, Xiao
2007-05-01
A method for exactly representing a point source starting field in a Fourier parabolic equation calculation is presented. The formulation is based on an exact, analytic expression for the field in vertical wave number space (k space). The field in vertical coordinate space (z space) is obtained via a Fourier transform of the k-space field. Thus, one can directly control the Fourier components of the starting field, so that nonpropagating components are excluded. The relation of the exact starting field to the standard Gaussian starting field is demonstrated analytically. Examples of the numerical implementation of the exact starting field are given.
A higher-order split-step Fourier parabolic-equation sound propagation solution scheme.
Lin, Ying-Tsong; Duda, Timothy F
2012-08-01
A three-dimensional Cartesian parabolic-equation model with a higher-order approximation to the square-root Helmholtz operator is presented for simulating underwater sound propagation in ocean waveguides. The higher-order approximation includes cross terms with the free-space square-root Helmholtz operator and the medium phase speed anomaly. It can be implemented with a split-step Fourier algorithm to solve for sound pressure in the model. Two idealized ocean waveguide examples are presented to demonstrate the performance of this numerical technique.
Stabilization of the solution of a doubly nonlinear parabolic equation
Andriyanova, È R; Mukminov, F Kh
2013-09-30
The method of Galerkin approximations is employed to prove the existence of a strong global (in time) solution of a doubly nonlinear parabolic equation in an unbounded domain. The second integral identity is established for Galerkin approximations, and passing to the limit in it an estimate for the decay rate of the norm of the solution from below is obtained. The estimates characterizing the decay rate of the solution as x→∞ obtained here are used to derive an upper bound for the decay rate of the solution with respect to time; the resulting estimate is pretty close to the lower one. Bibliography: 17 titles.
Hybrid Ray Optics and Parabolic Equation Methods for Radar Propagation Modeling
1992-10-01
FOR PR C1)W RADAR PROPAGATION MODELING P.E: 0602-135N 6 AUTHOR(S) Wld: DN46Th760 H. V. Hitney 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) a...is unlimited. 13. ABSTRACT AMazmsn 200 words) The use of parabolic equation (PE) methods has become very popular in recent years for modeling radar ...made in all regions of practical interest to radar engineers or operators with just one model. However, a significant disadvantage of the split-step
Alternating direction implicit methods for parabolic equations with a mixed derivative
NASA Technical Reports Server (NTRS)
Beam, R. M.; Warming, R. F.
1979-01-01
Alternating direction implicit (ADI) schemes for two-dimensional parabolic equations with a mixed derivative are constructed by using the class of all A sub 0-stable linear two-step methods in conjunction with the method of approximation factorization. The mixed derivative is treated with an explicit two-step method which is compatible with an implicit A sub 0-stable method. The parameter space for which the resulting ADI schemes are second order accurate and unconditionally stable is determined. Some numerical examples are given.
NASA Astrophysics Data System (ADS)
Ali, Z. I.; Sango, M.
2016-07-01
In this paper, we investigate a class of stochastic quasilinear parabolic initial boundary value problems with nonstandard growth in the functional setting of generalized Sobolev spaces. The deterministic version of the equation was first introduced and studied by Samokhin in [45] as a generalized model for polytropic filtration. We establish an existence result of weak probabilistic solutions when the forcing terms do not satisfy Lipschitz conditions. Under the Lipschitz property of the forcing terms, we obtain the uniqueness of weak probabilistic solutions. Combining the uniqueness and the famous Yamada-Watanabe result, we prove the existence of a unique strong probabilistic solution of the problem.
Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface.
Senne, J; Song, A; Badiey, M; Smith, K B
2012-09-01
The present paper examines the temporal evolution of acoustic fields by modeling forward propagation subject to sea surface dynamics with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Surface waves are generated from surface wave spectra, and stepped in time using a Runge-Kutta integration technique applied to linear evolution equations. This evolving, range-dependent surface information is combined with other environmental parameters and input to the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. This merged acoustic model is validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the model is able to approximate the ensemble-averaged acoustic intensity at ranges of about a kilometer for acoustic signals of around 15 kHz. Furthermore, the model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds.
Stability results for backward parabolic equations with time-dependent coefficients
NASA Astrophysics Data System (ADS)
Nho Hào, Dinh; Van Duc, Nguyen
2011-02-01
Let H be a Hilbert space with the norm || sdot || and A(t) (0 <= t <= T) be positive self-adjoint unbounded operators from D(A(t))⊂H to H. In the paper, we establish stability estimates of Hölder type and propose a regularization method for the ill-posed backward parabolic equation with time-dependent coefficients \\left\\lbrace \\begin{array}{@{}ll@{}} u_t+ A(t)u=0, & 0Our stability estimates improve the related results by Krein (1957 Dokl. Akad. Nauk SSSR 114 1162-5), and Agmon and Nirenberg (1963 Commun. Pure Appl. Math. 16 121-239). Our regularization method with a priori and a posteriori parameter choice yields error estimates of Hölder type. This is the only result when a regularization method for backward parabolic equations with time-dependent coefficients provides a convergence rate. Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th birthday.
The numerical solution of the boundary inverse problem for a parabolic equation
NASA Astrophysics Data System (ADS)
Vasil'ev, V. V.; Vasilyeva, M. V.; Kardashevsky, A. M.
2016-10-01
Boundary inverse problems occupy an important place among the inverse problems of mathematical physics. They are connected with the problems of diagnosis, when additional measurements on one of the borders or inside the computational domain are necessary to restore the boundary regime in the other border, inaccessible to direct measurements. The boundary inverse problems belong to a class of conditionally correct problems, and therefore, their numerical solution requires the development of special computational algorithms. The paper deals with the solution of the boundary inverse problem for one-dimensional second-order parabolic equations, consisting in the restoration of boundary regime according to measurements inside the computational domain. For the numerical solution of the inverse problem it is proposed to use an analogue of a computational algorithm, proposed and developed to meet the challenges of identification of the right side of the parabolic equations in the works P.N.Vabishchevich and his students based on a special decomposition of solving the problem at each temporal layer. We present and discuss the results of a computational experiment conducted on model problems with quasi-solutions, including with random errors in the input data.
Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains
NASA Astrophysics Data System (ADS)
Byun, Sun-Sig; Ok, Jihoon; Ryu, Seungjin
We establish the natural Calderón-Zygmund theory for a nonlinear parabolic equation of p-Laplacian type in divergence form, ut-diva(Du,x,t)=div(|F) in ΩT, by essentially proving that |∈Lq(ΩT) ⇒ |∈Lq(ΩT), for every q∈[1,∞). The equation under consideration is of general type and not necessarily of variation form, the involved nonlinearity a=a(ξ,x,t) is assumed to have a small BMO semi-norm with respect to (x,t)-variables and the lateral boundary ∂Ω of the domain is assumed to be δ-Reifenberg flat. As a consequence, we are able to not only relax the known regularity requirements on the nonlinearity for such a regularity theory, but also extend local results to a global one in a nonsmooth domain whose boundary has a fractal property. We also find an optimal regularity estimate in Orlicz-Sobolev spaces for such nonlinear parabolic problems.
Frank, Scott D; Collis, Jon M; Odom, Robert I
2015-06-01
Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.
Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.
Frank, Scott D; Odom, Robert I; Collis, Jon M
2013-03-01
Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.
Perfectly matched layer for an elastic parabolic equation model in ocean acoustics
NASA Astrophysics Data System (ADS)
Xu, Chuanxiu; Zhang, Haigang; Piao, Shengchun; Yang, Shi'e.; Sun, Sipeng; Tang, Jun
2017-02-01
The perfectly matched layer (PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation (PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide (Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer (ABL) both in acoustic and seismo-acoustic sound propagation modeling.
NASA Technical Reports Server (NTRS)
Baker, A. J.; Soliman, M. O.
1978-01-01
A study of accuracy and convergence of linear functional finite element solution to linear parabolic and hyperbolic partial differential equations is presented. A variable-implicit integration procedure is employed for the resultant system of ordinary differential equations. Accuracy and convergence is compared for the consistent and two lumped assembly procedures for the identified initial-value matrix structure. Truncation error estimation is accomplished using Richardson extrapolation.
NASA Technical Reports Server (NTRS)
Nakamura, S.
1982-01-01
A fast method for generating three-dimensional grids for fuselage-wing transonic flow calculations using parabolic difference equations is described. No iterative scheme is used in the three-dimensional sense; grids are generated from one grid surface to the next starting from the fuselage surface. The computational procedure is similar to the iterative solution of the two-dimensional heat conduction equation. The proposed method is at least 10 times faster than the elliptic grid generation method and has much smaller memory requirements. Results are presented for a fuselage and wing of NACA-0012 section and thickness ratio of 10 percent. Although only H-grids are demonstrated, the present technique should be applicable to C-grids and O-grids in three dimensions.
Uniqueness and Long Time Asymptotic for the Keller-Segel Equation: The Parabolic-Elliptic Case
NASA Astrophysics Data System (ADS)
Egaña Fernández, Giani; Mischler, Stéphane
2016-06-01
The present paper deals with the parabolic-elliptic Keller-Segel equation in the plane in the general framework of weak (or "free energy") solutions associated to initial datum with finite mass M, finite second moment and finite entropy. The aim of the paper is threefold: (1) We prove the uniqueness of the "free energy" solution on the maximal interval of existence [0, T*) with T* = ∞ in the case when M ≦ 8π and T* < ∞ in the case when M > 8π. The proof uses a DiPerna-Lions renormalizing argument which makes it possible to get the "optimal regularity" as well as an estimate of the difference of two possible solutions in the critical L 4/3 Lebesgue norm similarly to the 2 d vorticity Navier-Stokes equation.
Carasso, Alfred S
2013-01-01
Identifying sources of ground water pollution, and deblurring nanoscale imagery as well as astronomical galaxy images, are two important applications involving numerical computation of parabolic equations backward in time. Surprisingly, very little is known about backward continuation in nonlinear parabolic equations. In this paper, an iterative procedure originating in spectroscopy in the 1930’s, is adapted into a useful tool for solving a wide class of 2D nonlinear backward parabolic equations. In addition, previously unsuspected difficulties are uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly from the linear, autonomous, self adjoint, canonical model. This paper explores backward continuation in selected 2D nonlinear equations, by creating fictitious blurred images obtained by using several sharp images as initial data in these equations, and capturing the corresponding solutions at some positive time T. Successful backward continuation from t=T to t = 0, would recover the original sharp image. Visual recognition provides meaningful evaluation of the degree of success or failure in the reconstructed solutions. Instructive examples are developed, illustrating the unexpected influence of certain types of nonlinearities. Visually and statistically indistinguishable blurred images are presented, with vastly different deblurring results. These examples indicate that how an image is nonlinearly blurred is critical, in addition to the amount of blur. The equations studied represent nonlinear generalizations of Brownian motion, and the blurred images may be interpreted as visually expressing the results of novel stochastic processes. PMID:26401430
Generalized Ordinary Differential Equation Models.
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-10-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kunisch, K.
1982-01-01
Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.
Wen, Zijuan; Fan, Meng; Asiri, Asim M; Alzahrani, Ebraheem O; El-Dessoky, Mohamed M; Kuang, Yang
2017-04-01
This paper studies the global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with appropriate initial and mixed boundary conditions. Under some practicable regularity criteria on diffusion item and nonlinearity, we establish the local existence and uniqueness of classical solutions based on a contraction mapping. This local solution can be continued for all positive time by employing the methods of energy estimates, Lp-theory, and Schauder estimate of linear parabolic equations. A straightforward application of global existence result of classical solutions to a density-dependent diffusion model of in vitro glioblastoma growth is also presented.
NASA Astrophysics Data System (ADS)
Shishkin, G. I.; Shishkina, L. P.
2010-12-01
For the one-dimensional singularly perturbed parabolic reaction-diffusion equation with a perturbation parameter ɛ, where ɛ ∈ (0, 1], the grid approximation of the Dirichlet problem on a rectangular domain in the ( x, t)-plane is examined. For small ɛ, a parabolic boundary layer emerges in a neighborhood of the lateral part of the boundary of this domain. A new approach to the construction of ɛ-uniformly converging difference schemes of higher accuracy is developed for initial boundary value problems. The asymptotic construction technique is used to design the base decomposition scheme within which the regular and singular components of the grid solution are solutions to grid subproblems defined on uniform grids. The base scheme converges ɛ-uniformly in the maximum norm at the rate of O( N -2ln2 N + N {0/-1}), where N + 1 and N 0 + 1 are the numbers of nodes in the space and time meshes, respectively. An application of the Richardson extrapolation technique to the base scheme yields a higher order scheme called the Richardson decomposition scheme. This higher order scheme convergesɛ-uniformly at the rate of O( N -4ln4 N + N {0/-2}). For fixed values of the parameter, the convergence rate is O( N -4 + N {0/-2}).
Limiting Motion for the Parabolic Ginzburg-Landau Equation with Infinite Energy Data
NASA Astrophysics Data System (ADS)
Côte, Delphine; Côte, Raphaël
2017-03-01
We study a class of solutions to the parabolic Ginzburg-Landau equation in dimension 2 or higher, with ill-prepared infinite energy initial data. We show that, asymptotically, the vorticity evolves according to motion by mean curvature in Brakke's weak formulation. Then, we prove that in the plane, point vortices do not move in the original time scale. These results extend the works of Bethuel, Orlandi and Smets (Ann Math (2) 163(1):37-163, 2006; Duke Math J 130(3):523-614, 2005) to infinite energy data; they allow us to consider point vortices on a lattice (in dimension 2), or filament vortices of infinite length (in dimension 3).
Recovering the source and initial value simultaneously in a parabolic equation
NASA Astrophysics Data System (ADS)
Zheng, Guang-Hui; Wei, Ting
2014-06-01
In this paper, we consider an inverse problem to simultaneously reconstruct the source term and initial data associated with a parabolic equation based on the additional temperature data at a terminal time t = T and the temperature data on an accessible part of a boundary. The conditional stability and uniqueness of the inverse problem are established. We apply a variational regularization method to recover the source and initial value. The existence, uniqueness and stability of the minimizer of the corresponding variational problem are obtained. Taking the minimizer as a regularized solution for the inverse problem, under an a priori and an a posteriori parameter choice rule, the convergence rates of the regularized solution under a source condition are also given. Furthermore, the source condition is characterized by an optimal control approach. Finally, we use a conjugate gradient method and a stopping criterion given by Morozov's discrepancy principle to solve the variational problem. Numerical experiments are provided to demonstrate the feasibility of the method.
Spectral element method-based parabolic equation for EM-scattering problems
NASA Astrophysics Data System (ADS)
He, Zi; Fan, Zhen-Hong; Chen, Ru-Shan
2016-01-01
The traditional parabolic equation (PE) method is based on the finite difference (FD) scheme. However, the scattering object cannot be well approximated for complex geometries. As a result, a large number of meshes are needed to discretize the complex scattering objects. In this paper, the spectral element method is introduced to better approximate the complex geometry in each transverse plane, while the FD scheme is used along the paraxial direction. This proposed algorithm begins with expanding the reduced scattered fields with the Gauss-Lobatto-Legendre polynomials and testing them by the Galerkin's method in each transverse plane. Then, the calculation can be taken plane by plane along the paraxial direction. Numerical results demonstrate that the accuracy can be improved by the proposed method with larger meshes when compared with the traditional PE method.
Metzler, Adam M; Siegmann, William L; Collins, Michael D
2012-02-01
The parabolic equation method with a single-scattering correction allows for accurate modeling of range-dependent environments in elastic layered media. For problems with large contrasts, accuracy and efficiency are gained by subdividing vertical interfaces into a series of two or more single-scattering problems. This approach generates several computational parameters, such as the number of interface slices, an iteration convergence parameter τ, and the number of iterations n for convergence. Using a narrow-angle approximation, the choices of n=1 and τ=2 give accurate solutions. Analogous results from the narrow-angle approximation extend to environments with larger variations when slices are used as needed at vertical interfaces. The approach is applied to a generic ocean waveguide that includes the generation of a Rayleigh interface wave. Results are presented in both frequency and time domains.
Developments of parabolic equation method in the period of 2000-2016
NASA Astrophysics Data System (ADS)
Xu, Chuan-Xiu; Tang, Jun; Piao, Sheng-Chun; Liu, Jia-Qi; Zhang, Shi-Zhao
2016-12-01
Parabolic equation (PE) method is an efficient tool for modelling underwater sound propagation, particularly for problems involving range dependence. Since the PE method was first introduced into the field of underwater acoustics, it has been about 40 years, during which contributions to extending its capability has been continuously made. The most recent review paper surveyed the contributions made before 1999. In the period of 2000-2016, the development of PE method basically focuses on seismo-acoustic problems, three-dimensional problems, and realistic applications. In this paper, a review covering the contribution from 2000 to 2016 is given, and what should be done in future work is also discussed. Project supported by the Foundation of State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201303) and the National Natural Science Foundation of China (Grant Nos. 11104044, 11234002, and 11474073).
Symmetry algebras of linear differential equations
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Shirokov, I. V.
1992-07-01
The local symmetries of linear differential equations are investigated by means of proven theorems on the structure of the algebra of local symmetries of translationally and dilatationally invariant differential equations. For a nonparabolic second-order equation, the absence of nontrivial nonlinear local symmetries is proved. This means that the local symmetries reduce to the Lie algebra of linear differential symmetry operators. For the Laplace—Beltrami equation, all local symmetries reduce to the enveloping algebra of the algebra of the conformal group.
Systems of Nonlinear Hyperbolic Partial Differential Equations
1997-12-01
McKinney) Travelling wave solutions of the modified Korteweg - deVries -Burgers Equation . J. Differential Equations , 116 (1995), 448-467. 4. (with D.G...SUBTITLE Systems of Nonlinear Hyperbolic Partial Differential Equations 6. AUTHOR’S) Michael Shearer PERFORMING ORGANIZATION NAMES(S) AND...DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) This project concerns properties of wave propagation in partial differential equations that are nonlinear
NASA Astrophysics Data System (ADS)
Rosenbaum, Joyce E.
2011-12-01
Commercial air traffic is anticipated to increase rapidly in the coming years. The impact of aviation noise on communities surrounding airports is, therefore, a growing concern. Accurate prediction of noise can help to mitigate the impact on communities and foster smoother integration of aerospace engineering advances. The problem of accurate sound level prediction requires careful inclusion of all mechanisms that affect propagation, in addition to correct source characterization. Terrain, ground type, meteorological effects, and source directivity can have a substantial influence on the noise level. Because they are difficult to model, these effects are often included only by rough approximation. This dissertation presents a model designed for sound propagation over uneven terrain, with mixed ground type and realistic meteorological conditions. The model is a hybrid of two numerical techniques: the parabolic equation (PE) and fast field program (FFP) methods, which allow for physics-based inclusion of propagation effects and ensure the low frequency content, a factor in community impact, is predicted accurately. Extension of the hybrid model to a pseudo-three-dimensional representation allows it to produce aviation noise contour maps in the standard form. In order for the model to correctly characterize aviation noise sources, a method of representing arbitrary source directivity patterns was developed for the unique form of the parabolic equation starting field. With this advancement, the model can represent broadband, directional moving sound sources, traveling along user-specified paths. This work was prepared for possible use in the research version of the sound propagation module in the Federal Aviation Administration's new standard predictive tool.
Motsa, S S; Magagula, V M; Sibanda, P
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Motsa, S. S.; Magagula, V. M.; Sibanda, P.
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252
ON BOUNDARY AND INITIAL CONDITIONS IN \\mathscr{L}_p, p>1, OF SOLUTIONS OF PARABOLIC EQUATIONS
NASA Astrophysics Data System (ADS)
Petrushko, I. M.
1986-02-01
Necessary and sufficient conditions on the solutions of parabolic equations in a cylinder are established for the existence of limits in \\mathscr{L}_p on the lateral surface of the cylinder and in \\mathscr{L}_p with a weight on its lower base.Bibliography: 9 titles.
Helmholtz and parabolic equation solutions to a benchmark problem in ocean acoustics.
Larsson, Elisabeth; Abrahamsson, Leif
2003-05-01
The Helmholtz equation (HE) describes wave propagation in applications such as acoustics and electromagnetics. For realistic problems, solving the HE is often too expensive. Instead, approximations like the parabolic wave equation (PE) are used. For low-frequency shallow-water environments, one persistent problem is to assess the accuracy of the PE model. In this work, a recently developed HE solver that can handle a smoothly varying bathymetry, variable material properties, and layered materials, is used for an investigation of the errors in PE solutions. In the HE solver, a preconditioned Krylov subspace method is applied to the discretized equations. The preconditioner combines domain decomposition and fast transform techniques. A benchmark problem with upslope-downslope propagation over a penetrable lossy seamount is solved. The numerical experiments show that, for the same bathymetry, a soft and slow bottom gives very similar HE and PE solutions, whereas the PE model is far from accurate for a hard and fast bottom. A first attempt to estimate the error is made by computing the relative deviation from the energy balance for the PE solution. This measure gives an indication of the magnitude of the error, but cannot be used as a strict error bound.
Differential operator multiplication method for fractional differential equations
NASA Astrophysics Data System (ADS)
Tang, Shaoqiang; Ying, Yuping; Lian, Yanping; Lin, Stephen; Yang, Yibo; Wagner, Gregory J.; Liu, Wing Kam
2016-11-01
Fractional derivatives play a very important role in modeling physical phenomena involving long-range correlation effects. However, they raise challenges of computational cost and memory storage requirements when solved using current well developed numerical methods. In this paper, the differential operator multiplication method is proposed to address the issues by considering a reaction-advection-diffusion equation with a fractional derivative in time. The linear fractional differential equation is transformed into an integer order differential equation by the proposed method, which can fundamentally fix the aforementioned issues for select fractional differential equations. In such a transform, special attention should be paid to the initial conditions for the resulting differential equation of higher integer order. Through numerical experiments, we verify the proposed method for both fractional ordinary differential equations and partial differential equations.
On a new nonlocal boundary value problem for an equation of the mixed parabolic-hyperbolic type
NASA Astrophysics Data System (ADS)
Dildabek, Gulnar
2016-12-01
In this work a new nonlocal boundary value problem for an equation of the mixed type is formulated. This equation is parabolic-hyperbolic and belongs to the first kind because the line of type change is not a characteristic of the equation. Non-local condition binds points on boundaries of the parabolic and hyperbolic parts of the domain with each other. This problem is generalization of the well-known problems of Frankl type. A boundary value problem for the heat equation with conditions of the Samarskii-Ionlin type arises in solving this problem. Unlike the existing publications of the other authors related to the theme it is necessary to note that in this papers the nonlocal problems were considered in rectangular domains. But in our formulation of the problem the hyperbolic part of the domain coincides with a characteristic triangle. Unique strong solvability of the formulated problem is proved.
NASA Technical Reports Server (NTRS)
Mcaninch, G. L.; Myers, M. K.
1980-01-01
The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.
Inversion of heterogeneous parabolic-type equations using the pilot points method
NASA Astrophysics Data System (ADS)
Alcolea, Andrés; Carrera, Jesús; Medina, Agustín
2006-07-01
The inverse problem (also referred to as parameter estimation) consists of evaluating the medium properties ruling the behaviour of a given equation from direct measurements of those properties and of the dependent state variables. The problem becomes ill-posed when the properties vary spatially in an unknown manner, which is often the case when modelling natural processes. A possibility to fight this problem consists of performing stochastic conditional simulations. That is, instead of seeking a single solution (conditional estimation), one obtains an ensemble of fields, all of which honour the small scale variability (high frequency fluctuations) and direct measurements. The high frequency component of the field is different from one simulation to another, but a fixed component for all of them. Measurements of the dependent state variables are honoured by framing simulation as an inverse problem, where both model fit and parameter plausibility are maximized with respect to the coefficients of the basis functions (pilot point values). These coefficients (model parameters) are used for parameterizing the large scale variability patterns. The pilot points method, which is often used in hydrogeology, uses the kriging weights as basis functions. The performance of the method (both its variants of conditional estimation/simulation) is tested on a synthetic example using a parabolic-type equation. Results show that including the plausibility term improves the identification of the spatial variability of the unknown field function and that the weight assigned to the plausibility term does lead to optimal results both for conditional estimation and for stochastic simulations.
A constrained backpropagation approach for the adaptive solution of partial differential equations.
Rudd, Keith; Di Muro, Gianluca; Ferrari, Silvia
2014-03-01
This paper presents a constrained backpropagation (CPROP) methodology for solving nonlinear elliptic and parabolic partial differential equations (PDEs) adaptively, subject to changes in the PDE parameters or external forcing. Unlike existing methods based on penalty functions or Lagrange multipliers, CPROP solves the constrained optimization problem associated with training a neural network to approximate the PDE solution by means of direct elimination. As a result, CPROP reduces the dimensionality of the optimization problem, while satisfying the equality constraints associated with the boundary and initial conditions exactly, at every iteration of the algorithm. The effectiveness of this method is demonstrated through several examples, including nonlinear elliptic and parabolic PDEs with changing parameters and nonhomogeneous terms.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2004-01-01
The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the -correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.
Development of Vector Parabolic Equation Technique for Propagation in Urban and Tunnel Environments
2010-09-01
lattice when a particle undergoing random walk is endowed with two states of spin in addition to the two states of direction in a 1+1 spacetime dimension...the first and second kind from which the spacetime continuum limits of the diffusion equation and Schrödinger equation follow directly. PACS numbers...Nottale [6] and Ord [7] advanced the idea that spacetime is not differentiable but is of a fractal nature, suggesting that an infinity of geodesics
Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations
NASA Technical Reports Server (NTRS)
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan
2016-01-01
The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.
An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Korte, John J.
1991-01-01
An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required
Lie algebras and linear differential equations.
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
MACSYMA's symbolic ordinary differential equation solver
NASA Technical Reports Server (NTRS)
Golden, J. P.
1977-01-01
The MACSYMA's symbolic ordinary differential equation solver ODE2 is described. The code for this routine is delineated, which is of interest because it is written in top-level MACSYMA language, and may serve as a good example of programming in that language. Other symbolic ordinary differential equation solvers are mentioned.
Solving Differential Equations Using Modified Picard Iteration
ERIC Educational Resources Information Center
Robin, W. A.
2010-01-01
Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…
Symbolic Solution of Linear Differential Equations
NASA Technical Reports Server (NTRS)
Feinberg, R. B.; Grooms, R. G.
1981-01-01
An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.
Stochastic differential equation model to Prendiville processes
NASA Astrophysics Data System (ADS)
Granita, Bahar, Arifah
2015-10-01
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.
Stochastic differential equation model to Prendiville processes
Granita; Bahar, Arifah
2015-10-22
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.
NASA Astrophysics Data System (ADS)
Shishkin, G. I.; Shishkina, L. P.
2015-03-01
An initial-boundary value problem is considered for a singularly perturbed parabolic reaction-diffusion equation. For this problem, a technique is developed for constructing higher order accurate difference schemes that converge ɛ-uniformly in the maximum norm (where ɛ is the perturbation parameter multiplying the highest order derivative, ɛ ∈ (0, 1]). A solution decomposition scheme is described in which the grid subproblems for the regular and singular solution components are considered on uniform meshes. The Richardson technique is used to construct a higher order accurate solution decomposition scheme whose solution converges ɛ-uniformly in the maximum norm at a rate of [InlineMediaObject not available: see fulltext.], where N + 1 and N 0 + 1 are the numbers of nodes in uniform meshes in x and t, respectively. Also, a new numerical-analytical Richardson scheme for the solution decomposition method is developed. Relying on the approach proposed, improved difference schemes can be constructed by applying the solution decomposition method and the Richardson extrapolation method when the number of embedded grids is more than two. These schemes converge ɛ-uniformly with an order close to the sixth in x and equal to the third in t.
NASA Astrophysics Data System (ADS)
Itasse, Maxime; Brazier, Jean-Philippe; Léon, Olivier; Casalis, Grégoire
2015-08-01
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m1, n1), (m2, n2), such that the difference in azimuth and in frequency matches the desired "target" mode (m1 - m2, n1 - n2). A careful setup of the initial amplitudes and phases of the forced modes, defined as the "killer" modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.
A numerical method for solving the three-dimensional parabolized Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Dambrosio, Domenic; Marsilio, Robert
1995-01-01
A numerical technique that solves the parabolized form of the Navier-Stokes equations is presented. Such a method makes it possible to obtain very detailed descriptions of the flowfield in a relatively modest CPU time. The present approach is based on a space-marching technique, uses a finite volume discretization and an upwind flux-difference splitting scheme for the evaluation of the inviscid fluxes. Second order accuracy is achieved following the guidelines of the the ENO schemes. The methodology is used to investigate three-dimensional supersonic viscous flows over symmetric corners. Primary and secondary streamwise vortical structures embedded in the boundary layer and originated by the interaction with shock waves are detected and studied. For purpose of validation, results are compared with experimental data extracted from literature. The agreement is found to be satisfactory. In conclusion, the numerical method proposed seems to be promising as it permits, at a reasonable computational expense, investigation of complex three-dimensional flowfields in great detail.
Prediction of far-field wind turbine noise propagation with parabolic equation.
Lee, Seongkyu; Lee, Dongjai; Honhoff, Saskia
2016-08-01
Sound propagation of wind farms is typically simulated by the use of engineering tools that are neglecting some atmospheric conditions and terrain effects. Wind and temperature profiles, however, can affect the propagation of sound and thus the perceived sound in the far field. A better understanding and application of those effects would allow a more optimized farm operation towards meeting noise regulations and optimizing energy yield. This paper presents the parabolic equation (PE) model development for accurate wind turbine noise propagation. The model is validated against analytic solutions for a uniform sound speed profile, benchmark problems for nonuniform sound speed profiles, and field sound test data for real environmental acoustics. It is shown that PE provides good agreement with the measured data, except upwind propagation cases in which turbulence scattering is important. Finally, the PE model uses computational fluid dynamics results as input to accurately predict sound propagation for complex flows such as wake flows. It is demonstrated that wake flows significantly modify the sound propagation characteristics.
Itasse, Maxime Brazier, Jean-Philippe Léon, Olivier Casalis, Grégoire
2015-08-15
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequency matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.
Sparse dynamics for partial differential equations
Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D.; Osher, Stanley
2013-01-01
We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms. PMID:23533273
Discrete Surface Modelling Using Partial Differential Equations.
Xu, Guoliang; Pan, Qing; Bajaj, Chandrajit L
2006-02-01
We use various nonlinear partial differential equations to efficiently solve several surface modelling problems, including surface blending, N-sided hole filling and free-form surface fitting. The nonlinear equations used include two second order flows, two fourth order flows and two sixth order flows. These nonlinear equations are discretized based on discrete differential geometry operators. The proposed approach is simple, efficient and gives very desirable results, for a range of surface models, possibly having sharp creases and corners.
NASA Astrophysics Data System (ADS)
He, Zi; Chen, Ru-Shan
2016-03-01
An efficient three-dimensional time domain parabolic equation (TDPE) method is proposed to fast analyze the narrow-angle wideband EM scattering properties of electrically large targets. The finite difference (FD) of Crank-Nicolson (CN) scheme is used as the traditional tool to solve the time-domain parabolic equation. However, a huge computational resource is required when the meshes become dense. Therefore, the alternating direction implicit (ADI) scheme is introduced to discretize the time-domain parabolic equation. In this way, the reduced transient scattered fields can be calculated line by line in each transverse plane for any time step with unconditional stability. As a result, less computational resources are required for the proposed ADI-based TDPE method when compared with both the traditional CN-based TDPE method and the finite-different time-domain (FDTD) method. By employing the rotating TDPE method, the complete bistatic RCS can be obtained with encouraging accuracy for any observed angle. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed method.
Ordinary differential equation for local accumulation time.
Berezhkovskii, Alexander M
2011-08-21
Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation.
Parallelizing across time when solving time-dependent partial differential equations
Worley, P.H.
1991-09-01
The standard numerical algorithms for solving time-dependent partial differential equations (PDEs) are inherently sequential in the time direction. This paper describes algorithms for the time-accurate solution of certain classes of linear hyperbolic and parabolic PDEs that can be parallelized in both time and space and have serial complexities that are proportional to the serial complexities of the best known algorithms. The algorithms for parabolic PDEs are variants of the waveform relaxation multigrid method (WFMG) of Lubich and Ostermann where the scalar ordinary differential equations (ODEs) that make up the kernel of WFMG are solved using a cyclic reduction type algorithm. The algorithms for hyperbolic PDEs use the cyclic reduction algorithm to solve ODEs along characteristics. 43 refs.
Flatté, Stanley M; Vera, Michael D
2003-08-01
Line-integral approximations to the acoustic path integral have been used to estimate the magnitude of the fluctuations in an acoustic signal traveling through an ocean filled with internal waves. These approximations for the root-mean-square (rms) fluctuation and the bias of travel time, rms fluctuation in a vertical arrival angle, and the spreading of the acoustic pulse are compared here to estimates from simulations that use the parabolic equation (PE). PE propagations at 250 Hz with a maximum range of 1000 km were performed. The model environment consisted of one of two sound-speed profiles perturbed by internal waves conforming to the Garrett-Munk (GM) spectral model with strengths of 0.5, 1, and 2 times the GM reference energy level. Integral-approximation (IA) estimates of rms travel-time fluctuations were within statistical uncertainty at 1000 km for the SLICE89 profile, and in disagreement by between 20% and 60% for the Canonical profile. Bias estimates were accurate for the first few hundred kilometers of propagation, but became a strong function of time front ID beyond, with some agreeing with the PE results and others very much larger. The IA structure functions of travel time with depth are predicted to be quadratic with the form theta(2)vc0(-2)deltaz(2), where deltaz is vertical separation, c0 is a reference sound speed, and thetav is the rms fluctuation in an arrival angle. At 1000 km, the PE results were close to quadratic at small deltaz, with values of thetav in disagreement with those of the integral approximation by factors of order 2. Pulse spreads in the PE results were much smaller than predicted by the IA estimates. Results imply that acoustic tomography of internal waves at ranges up to 1000 km can use the IA estimate of travel-time variance with reasonable reliability.
Connecting Related Rates and Differential Equations
ERIC Educational Resources Information Center
Brandt, Keith
2012-01-01
This article points out a simple connection between related rates and differential equations. The connection can be used for in-class examples or homework exercises, and it is accessible to students who are familiar with separation of variables.
Normal Forms for Nonautonomous Differential Equations
NASA Astrophysics Data System (ADS)
Siegmund, Stefan
2002-01-01
We extend Henry Poincarés normal form theory for autonomous differential equations x=f(x) to nonautonomous differential equations x=f(t, x). Poincarés nonresonance condition λj-∑ni=1 ℓiλi≠0 for eigenvalues is generalized to the new nonresonance condition λj∩∑ni=1 ℓiλi=∅ for spectral intervals.
Program for solution of ordinary differential equations
NASA Technical Reports Server (NTRS)
Sloate, H.
1973-01-01
A program for the solution of linear and nonlinear first order ordinary differential equations is described and user instructions are included. The program contains a new integration algorithm for the solution of initial value problems which is particularly efficient for the solution of differential equations with a wide range of eigenvalues. The program in its present form handles up to ten state variables, but expansion to handle up to fifty state variables is being investigated.
A class of neutral functional differential equations.
NASA Technical Reports Server (NTRS)
Melvin, W. R.
1972-01-01
Formulation and study of the initial value problem for neutral functional differential equations. The existence, uniqueness, and continuation of solutions to this problem are investigated, and an analysis is made of the dependence of the solutions on the initial conditions and parameters, resulting in the derivation of a continuous dependence theorem in which the fundamental mathematical principles underlying the continuous dependence problem for a very general system of nonlinear neutral functional differential equations are separated out.
A Unified Introduction to Ordinary Differential Equations
ERIC Educational Resources Information Center
Lutzer, Carl V.
2006-01-01
This article describes how a presentation from the point of view of differential operators can be used to (partially) unify the myriad techniques in an introductory course in ordinary differential equations by providing students with a powerful, flexible paradigm that extends into (or from) linear algebra. (Contains 1 footnote.)
Differential geometry techniques for sets of nonlinear partial differential equations
NASA Technical Reports Server (NTRS)
Estabrook, Frank B.
1990-01-01
An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.
NASA Astrophysics Data System (ADS)
Gheitaghy, A. M.; Takabi, B.; Alizadeh, M.
2014-03-01
Hyperbolic and parabolic heat equations are formulated to study a nonperfused homogeneous transparent cornea irradiated by high power and ultrashort pulsed laser in the Laser Thermo Keratoplasty (LTK) surgery. Energy absorption inside the cornea is modeled using the Beer-Lambert law that is incorporated as an exponentially decaying heat source. The hyperbolic and parabolic bioheat models of the tissue were solved by exploiting the mathematical analogy between thermal and electrical systems, by using robust circuit simulation program called Hspice to get the solutions of simultaneous RLC and RC transmission line networks. This method can be used to rapidly calculate the temperature in laser-irradiated tissue at time and space domain. It is found that internal energy gained from the irradiated field results in a rapid rise of temperature in the cornea surface during the early heating period, while the hyperbolic wave model predicts a higher temperature rise than the classical heat diffusion model. In addition, this paper investigates and examines the effect of some critical parameters such as relaxation time, convection coefficient, radiation, tear evaporation and variable thermal conductivity of cornea. Accordingly, it is found that a better accordance between hyperbolic and parabolic models will be achieved by time.
NASA Astrophysics Data System (ADS)
Ozgun, Ozlem; Apaydin, Gökhan; Kuzuoglu, Mustafa; Sevgi, Levent
2011-12-01
A MATLAB-based one-way and two-way split-step parabolic equation software tool (PETOOL) has been developed with a user-friendly graphical user interface (GUI) for the analysis and visualization of radio-wave propagation over variable terrain and through homogeneous and inhomogeneous atmosphere. The tool has a unique feature over existing one-way parabolic equation (PE)-based codes, because it utilizes the two-way split-step parabolic equation (SSPE) approach with wide-angle propagator, which is a recursive forward-backward algorithm to incorporate both forward and backward waves into the solution in the presence of variable terrain. First, the formulation of the classical one-way SSPE and the relatively-novel two-way SSPE is presented, with particular emphasis on their capabilities and the limitations. Next, the structure and the GUI capabilities of the PETOOL software tool are discussed in detail. The calibration of PETOOL is performed and demonstrated via analytical comparisons and/or representative canonical tests performed against the Geometric Optic (GO) + Uniform Theory of Diffraction (UTD). The tool can be used for research and/or educational purposes to investigate the effects of a variety of user-defined terrain and range-dependent refractivity profiles in electromagnetic wave propagation. Program summaryProgram title: PETOOL (Parabolic Equation Toolbox) Catalogue identifier: AEJS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 143 349 No. of bytes in distributed program, including test data, etc.: 23 280 251 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) 2010a. Partial Differential Toolbox and Curve Fitting Toolbox required Computer: PC Operating system: Windows XP and
Metzler, Adam M; Collis, Jon M
2013-04-01
Shallow-water environments typically include sediments containing thin or low-shear layers. Numerical treatments of these types of layers require finer depth grid spacing than is needed elsewhere in the domain. Thin layers require finer grids to fully sample effects due to elasticity within the layer. As shear wave speeds approach zero, the governing system becomes singular and fine-grid spacing becomes necessary to obtain converged solutions. In this paper, a seismo-acoustic parabolic equation solution is derived utilizing modified difference formulas using Galerkin's method to allow for variable-grid spacing in depth. Propagation results are shown for environments containing thin layers and low-shear layers.
NASA Astrophysics Data System (ADS)
Ali, Zakaria Idriss; Sango, Mamadou
2016-06-01
In this paper, we investigate a class of stochastic quasilinear parabolic problems with nonstandard growth in the functional setting of generalized Sobolev spaces. The deterministic version of the equation was first introduced and studied by Samokhin, as a generalized model for polytropic filtration. We establish an existence result of weak probabilistic solutions when the forcing terms do not satisfy Lipschitz conditions. Under Lipschitzity of the nonlinear external forces, f and G, we obtain the uniqueness of the weak probabilistic solutions. Combining the uniqueness and the famous Yamada-Watanabe result we prove the existence of the unique strong probabilistic solution.
Differential equation models for sharp threshold dynamics.
Schramm, Harrison C; Dimitrov, Nedialko B
2014-01-01
We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations.
Stochastic Differential Equation of Earthquakes Series
NASA Astrophysics Data System (ADS)
Mariani, Maria C.; Tweneboah, Osei K.; Gonzalez-Huizar, Hector; Serpa, Laura
2016-07-01
This work is devoted to modeling earthquake time series. We propose a stochastic differential equation based on the superposition of independent Ornstein-Uhlenbeck processes driven by a Γ (α, β ) process. Superposition of independent Γ (α, β ) Ornstein-Uhlenbeck processes offer analytic flexibility and provides a class of continuous time processes capable of exhibiting long memory behavior. The stochastic differential equation is applied to the study of earthquakes by fitting the superposed Γ (α, β ) Ornstein-Uhlenbeck model to earthquake sequences in South America containing very large events (Mw ≥ 8). We obtained very good fit of the observed magnitudes of the earthquakes with the stochastic differential equations, which supports the use of this methodology for the study of earthquakes sequence.
Sensitivity Analysis of Differential-Algebraic Equations and Partial Differential Equations
Petzold, L; Cao, Y; Li, S; Serban, R
2005-08-09
Sensitivity analysis generates essential information for model development, design optimization, parameter estimation, optimal control, model reduction and experimental design. In this paper we describe the forward and adjoint methods for sensitivity analysis, and outline some of our recent work on theory, algorithms and software for sensitivity analysis of differential-algebraic equation (DAE) and time-dependent partial differential equation (PDE) systems.
A differential equation for approximate wall distance
NASA Astrophysics Data System (ADS)
Fares, E.; Schröder, W.
2002-07-01
A partial differential equation to compute the distance from a surface is derived and solved numerically. The benefit of such a formulation especially in combination with turbulence models is shown. The details of the formulation as well as several examples demonstrating the influence of its parameters are presented. The proposed formulation has computational advantages and can be favourably incorporated into one- and two-equation turbulence models like e.g. the Spalart-Allmaras, the Secundov or Menter's SST model. Copyright
Algorithms For Integrating Nonlinear Differential Equations
NASA Technical Reports Server (NTRS)
Freed, A. D.; Walker, K. P.
1994-01-01
Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.
Survey of the status of finite element methods for partial differential equations
NASA Technical Reports Server (NTRS)
Temam, Roger
1986-01-01
The finite element methods (FEM) have proved to be a powerful technique for the solution of boundary value problems associated with partial differential equations of either elliptic, parabolic, or hyperbolic type. They also have a good potential for utilization on parallel computers particularly in relation to the concept of domain decomposition. This report is intended as an introduction to the FEM for the nonspecialist. It contains a survey which is totally nonexhaustive, and it also contains as an illustration, a report on some new results concerning two specific applications, namely a free boundary fluid-structure interaction problem and the Euler equations for inviscid flows.
Collis, Jon M; Frank, Scott D; Metzler, Adam M; Preston, Kimberly S
2016-05-01
Sound propagation predictions for ice-covered ocean acoustic environments do not match observational data: received levels in nature are less than expected, suggesting that the effects of the ice are substantial. Effects due to elasticity in overlying ice can be significant enough that low-shear approximations, such as effective complex density treatments, may not be appropriate. Building on recent elastic seafloor modeling developments, a range-dependent parabolic equation solution that treats the ice as an elastic medium is presented. The solution is benchmarked against a derived elastic normal mode solution for range-independent underwater acoustic propagation. Results from both solutions accurately predict plate flexural modes that propagate in the ice layer, as well as Scholte interface waves that propagate at the boundary between the water and the seafloor. The parabolic equation solution is used to model a scenario with range-dependent ice thickness and a water sound speed profile similar to those observed during the 2009 Ice Exercise (ICEX) in the Beaufort Sea.
NASA Astrophysics Data System (ADS)
Kawakami, Hajime; Tsuchiya, Masaaki
2010-12-01
The paper deals with an inverse problem determining the shape of a time-varying Lipschitz domain by boundary measurements of the temperature; such a domain is treated as a non-cylindrical domain in the time-space. Here we focus on the uniqueness of the shape identification. As a general treatment to show the uniqueness, a comparability condition on a pair of domains is introduced; the condition holds automatically in the time-independent case. Based on the condition, we provide several classes of domains in which the uniqueness of the shape identification holds under an appropriate initial shape condition or initial temperature condition. Each of such classes is characterized by a certain geometric condition on its each single element; in particular, it is verified that the class of polyhedral domains and any class of domains with C1 smoothness and with a common initial shape fulfil the uniqueness property. The inverse problem is studied via a parabolic equation with a mixed boundary condition. Then the unique continuation property of weak solutions and the uniqueness of weak solutions to an induced parabolic equation with the homogeneous Dirichlet boundary condition on a non-cylindrical non-Lipschitz domain play key roles. This work was partially supported by JSPS Grant-in-Aid for Scientific Research 21540160.
Revealing Numerical Solutions of a Differential Equation
ERIC Educational Resources Information Center
Glaister, P.
2006-01-01
In this article, the author considers a student exercise that involves determining the exact and numerical solutions of a particular differential equation. He shows how a typical student solution is at variance with a numerical solution, suggesting that the numerical solution is incorrect. However, further investigation shows that this numerical…
Druskin, V.; Knizhnerman, L.
1994-12-31
The authors solve the Cauchy problem for an ODE system Au + {partial_derivative}u/{partial_derivative}t = 0, u{vert_bar}{sub t=0} = {var_phi}, where A is a square real nonnegative definite symmetric matrix of the order N, {var_phi} is a vector from R{sup N}. The stiffness matrix A is obtained due to semi-discretization of a parabolic equation or system with time-independent coefficients. The authors are particularly interested in large stiff 3-D problems for the scalar diffusion and vectorial Maxwell`s equations. First they consider an explicit method in which the solution on a whole time interval is projected on a Krylov subspace originated by A. Then they suggest another Krylov subspace with better approximating properties using powers of an implicit transition operator. These Krylov subspace methods generate optimal in a spectral sense polynomial approximations for the solution of the ODE, similar to CG for SLE.
Rough differential equations with unbounded drift term
NASA Astrophysics Data System (ADS)
Riedel, S.; Scheutzow, M.
2017-01-01
We study controlled differential equations driven by a rough path (in the sense of T. Lyons) with an additional, possibly unbounded drift term. We show that the equation induces a solution flow if the drift grows at most linearly. Furthermore, we show that the semiflow exists assuming only appropriate one-sided growth conditions. We provide bounds for both the flow and the semiflow. Applied to stochastic analysis, our results imply strong completeness and the existence of a stochastic (semi)flow for a large class of stochastic differential equations. If the driving process is Gaussian, we can further deduce (essentially) sharp tail estimates for the (semi)flow and a Freidlin-Wentzell-type large deviation result.
Solving Parker's transport equation with stochastic differential equations on GPUs
NASA Astrophysics Data System (ADS)
Dunzlaff, P.; Strauss, R. D.; Potgieter, M. S.
2015-07-01
The numerical solution of transport equations for energetic charged particles in space is generally very costly in terms of time. Besides the use of multi-core CPUs and computer clusters in order to decrease the computation times, high performance calculations on graphics processing units (GPUs) have become available during the last years. In this work we introduce and describe a GPU-accelerated implementation of Parker's equation using Stochastic Differential Equations (SDEs) for the simulation of the transport of energetic charged particles with the CUDA toolkit, which is the focus of this work. We briefly discuss the set of SDEs arising from Parker's transport equation and their application to boundary value problems such as that of the Jovian magnetosphere. We compare the runtimes of the GPU code with a CPU version of the same algorithm. Compared to the CPU implementation (using OpenMP and eight threads) we find a performance increase of about a factor of 10-60, depending on the assumed set of parameters. Furthermore, we benchmark our simulation using the results of an existing SDE implementation of Parker's transport equation.
NASA Astrophysics Data System (ADS)
Barles, Guy; Ley, Olivier; Topp, Erwin
2017-02-01
In this paper, we provide suitable adaptations of the ‘weak version of Bernstein method’ introduced by the first author in 1991, in order to obtain Lipschitz regularity results and Lipschitz estimates for nonlinear integro-differential elliptic and parabolic equations set in the whole space. Our interest is to obtain such Lipschitz results to possibly degenerate equations, or to equations which are indeed ‘uniformly elliptic’ (maybe in the nonlocal sense) but which do not satisfy the usual ‘growth condition’ on the gradient term allowing to use (for example) the Ishii-Lions’ method. We treat the case of a model equation with a superlinear coercivity on the gradient term which has a leading role in the equation. This regularity result together with comparison principle provided for the problem allow to obtain the ergodic large time behavior of the evolution problem in the periodic setting.
Lin, Ying-Tsong; Collis, Jon M; Duda, Timothy F
2012-11-01
An alternating direction implicit (ADI) three-dimensional fluid parabolic equation solution method with enhanced accuracy is presented. The method uses a square-root Helmholtz operator splitting algorithm that retains cross-multiplied operator terms that have been previously neglected. With these higher-order cross terms, the valid angular range of the parabolic equation solution is improved. The method is tested for accuracy against an image solution in an idealized wedge problem. Computational efficiency improvements resulting from the ADI discretization are also discussed.
A partial differential equation for pseudocontact shift.
Charnock, G T P; Kuprov, Ilya
2014-10-07
It is demonstrated that pseudocontact shift (PCS), viewed as a scalar or a tensor field in three dimensions, obeys an elliptic partial differential equation with a source term that depends on the Hessian of the unpaired electron probability density. The equation enables straightforward PCS prediction and analysis in systems with delocalized unpaired electrons, particularly for the nuclei located in their immediate vicinity. It is also shown that the probability density of the unpaired electron may be extracted, using a regularization procedure, from PCS data.
Asymptotic stability of singularly perturbed differential equations
NASA Astrophysics Data System (ADS)
Artstein, Zvi
2017-02-01
Asymptotic stability is examined for singularly perturbed ordinary differential equations that may not possess a natural split into fast and slow motions. Rather, the right hand side of the equation is comprised of a singularly perturbed component and a regular one. The limit dynamics consists then of Young measures, with values being invariant measures of the fast contribution, drifted by the slow one. Relations between the asymptotic stability of the perturbed system and the limit dynamics are examined, and a Lyapunov functions criterion, based on averaging, is established.
ERIC Educational Resources Information Center
Savoye, Philippe
2009-01-01
In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
ERIC Educational Resources Information Center
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
Observability of discretized partial differential equations
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
LORENE: Spectral methods differential equations solver
NASA Astrophysics Data System (ADS)
Gourgoulhon, Eric; Grandclément, Philippe; Marck, Jean-Alain; Novak, Jérôme; Taniguchi, Keisuke
2016-08-01
LORENE (Langage Objet pour la RElativité NumériquE) solves various problems arising in numerical relativity, and more generally in computational astrophysics. It is a set of C++ classes and provides tools to solve partial differential equations by means of multi-domain spectral methods. LORENE classes implement basic structures such as arrays and matrices, but also abstract mathematical objects, such as tensors, and astrophysical objects, such as stars and black holes.
Partial differential equation models in macroeconomics.
Achdou, Yves; Buera, Francisco J; Lasry, Jean-Michel; Lions, Pierre-Louis; Moll, Benjamin
2014-11-13
The purpose of this article is to get mathematicians interested in studying a number of partial differential equations (PDEs) that naturally arise in macroeconomics. These PDEs come from models designed to study some of the most important questions in economics. At the same time, they are highly interesting for mathematicians because their structure is often quite difficult. We present a number of examples of such PDEs, discuss what is known about their properties, and list some open questions for future research.
Stationary conditions for stochastic differential equations
NASA Technical Reports Server (NTRS)
Adomian, G.; Walker, W. W.
1972-01-01
This is a preliminary study of possible necessary and sufficient conditions to insure stationarity in the solution process for a stochastic differential equation. It indirectly sheds some light on ergodicity properties and shows that the spectral density is generally inadequate as a statistical measure of the solution. Further work is proceeding on a more general theory which gives necessary and sufficient conditions in a form useful for applications.
A few remarks on ordinary differential equations
Desjardins, B.
1996-12-31
We present in this note existence and uniqueness results for solutions of ordinary differential equations and linear transport equations with discontinuous coefficients in a bounded open subset {Omega} of R{sup N} or in the whole space R{sup N} (N {ge} 1). R.J. Di Perna and P.L. Lions studied the case of vector fields b with coefficients in Sobolev spaces and bounded divergence. We want to show that similar results hold for more general b: we assume in the bounded autonomous case that b belongs to W{sup 1,1}({Omega}), b.n = 0 on {partial_derivative}{Omega}, and that there exists T{sub o} > O such that exp(T{sub o}{vert_bar}div b{vert_bar}) {element_of} L{sup 1}({Omega}). Furthermore, we establish results on transport equations with initial values in L{sup p} spaces (p > 1). 9 refs.
Synchronization with propagation - The functional differential equations
NASA Astrophysics Data System (ADS)
Rǎsvan, Vladimir
2016-06-01
The structure represented by one or several oscillators couple to a one-dimensional transmission environment (e.g. a vibrating string in the mechanical case or a lossless transmission line in the electrical case) turned to be attractive for the research in the field of complex structures and/or complex behavior. This is due to the fact that such a structure represents some generalization of various interconnection modes with lumped parameters for the oscillators. On the other hand the lossless and distortionless propagation along transmission lines has generated several research in electrical, thermal, hydro and control engineering leading to the association of some functional differential equations to the basic initial boundary value problems. The present research is performed at the crossroad of the aforementioned directions. We shall associate to the starting models some functional differential equations - in most cases of neutral type - and make use of the general theorems for existence and stability of forced oscillations for functional differential equations. The challenges introduced by the analyzed problems for the general theory are emphasized, together with the implication of the results for various applications.
A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
White, J. A.; Morrison, J. H.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
NASA Technical Reports Server (NTRS)
Stephenson, B. L.; Hassan, H. A.
1983-01-01
A method based on the Parabolized Navier-Stokes equations is used to calculate the flow field and heat transfer of lifting entry vehicles. The method is based on the Bean and Warming implicit algorithm and uses a new procedure for preventing departure solutions. Calculations are carried out for blunt on-axis and bent biconics, assuming a perfect gas and laminar flow, and compared with available heat transfer, surface pressure and shock shape measurements for a range of Mach numbers and angles of attack. In all calculations presented here, the starting solution is obtained from available inviscid and boundary layer codes. Good agreement with experiment is indicated. Thus, the method provides an accurate and rather inexpensive procedure for calculating three-dimensional flows at supersonic Mach numbers.
Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation
NASA Astrophysics Data System (ADS)
Anada, Koichi; Ishiwata, Tetsuya
2017-01-01
We consider initial-boundary value problems for a quasi linear parabolic equation, kt =k2 (kθθ + k), with zero Dirichlet boundary conditions and positive initial data. It has known that each of solutions blows up at a finite time with the rate faster than √{(T - t) - 1}. In this paper, it is proved that supθ k (θ , t) ≈√{(T - t) - 1 log log (T - t) - 1 } as t ↗ T under some assumptions. Our strategy is based on analysis for curve shortening flows that with self-crossing brought by S.B. Angenent and J.J.L. Velázquez. In addition, we prove some of numerical conjectures by Watterson which are keys to provide the blow-up rate.
A Pseubo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Morrison, J. H.; White, J. A.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
Solution of transonic flows by an integro-differential equation method
NASA Technical Reports Server (NTRS)
Ogana, W.
1978-01-01
Solutions of steady transonic flow past a two-dimensional airfoil are obtained from a singular integro-differential equation which involves a tangential derivative of the perturbation velocity potential. Subcritical flows are solved by taking central differences everywhere. For supercritical flows with shocks, central differences are taken in subsonic flow regions and backward differences in supersonic flow regions. The method is applied to a nonlifting parabolic-arc airfoil and to a lifting NACA 0012 airfoil. Results compare favorably with those of finite-difference schemes.
Stability at systems of usual differential equations in virus dynamics
NASA Astrophysics Data System (ADS)
Schröer, H.
In this paper we discuss different models of differential equations systems, that describe virus dynamics in different situations (HIV-virus and Hepatitis B-virus). We inquire the stability of differential equations. We use theorems of the stability theory.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2005-01-01
Solutions are derived for the generalized mutual coherence function (MCF), i.e., the second order moment, of a random wave field propagating through a random medium within the context of the extended parabolic equation. Here, "generalized" connotes the consideration of both the transverse as well as the longitudinal second order moments (with respect to the direction of propagation). Such solutions will afford a comparison between the results of the parabolic equation within the pararaxial approximation and those of the wide-angle extended theory. To this end, a statistical operator method is developed which gives a general equation for an arbitrary spatial statistical moment of the wave field. The generality of the operator method allows one to obtain an expression for the second order field moment in the direction longitudinal to the direction of propagation. Analytical solutions to these equations are derived for the Kolmogorov and Tatarskii spectra of atmospheric permittivity fluctuations within the Markov approximation.
Use of splines in the solution of parabolized Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Lyttle, Ian; Reed, Helen
1996-11-01
A parabolized Navier-Stokes code is written to investigate the three-dimensional nature of boundary layers. The geometry of interest is a sharp cone, of elliptical cross-section, at zero angle-of-attack. The flow of interest is a calorically perfect ideal gas at free-stream Mach number of 4 and freestream Reynolds number of 4 × 10^6 per meter. The use of cubic splines with an adaptive grid scheme is found to induce small errors in pressure. Though large scale flow features remain unaffected, spurious small scale features can appear. The nature of these errors is investigated. As the solution is transferred between grids, splined quantities are used to reconstruct other quantities through the ideal gas relations. Non-physical oscillations appear in the reconstructed quantities. These oscillations contaminate the solution at small scales. This work is supported by the Air Force Office of Scientific Research (F49620-95-1-0033), and by the National Science Foundation Faculty Awards for Women in Science and Engineering (GER-9022523).
Recovering the reaction and the diffusion coefficients in a linear parabolic equation
NASA Astrophysics Data System (ADS)
Lorenzi, Alfredo; Mola, Gianluca
2012-07-01
Let H be a real separable Hilbert space and A: {D}(A) \\rightarrow H be a positive and self-adjoint (unbounded) operator. We consider the identification problem consisting in searching for an H-valued function u and a couple of real numbers λ and μ, the first one being positive, that fulfil the initial-value problem \\begin{eqnarray*} u^{\\prime }(t) + \\lambda Au(t) = \\mu u(t), \\quad t \\in (0,T), \\quad u(0) = u_0, \\end{eqnarray*} and the additional constraints \\begin{eqnarray*} \\Vert A^{r/2}u(T)\\Vert ^{2} = \\varphi \\quad and \\quad \\Vert A^{s/2}u(T)\\Vert ^{2} = \\psi , \\end{eqnarray*} where we denote by As and Ar the powers of A with exponents r < s. Provided that the given data u0 ∈ H, u0 and φ, ψ > 0 satisfy proper a priori limitations, by means of a finite-dimensional approximation scheme, we construct a unique solution (u, λ, μ) on the whole interval [0, T], and exhibit an explicit continuous dependence estimate of Lipschitz type with respect to the data. Also, we provide specific applications to second- and fourth-order parabolic initial-boundary-value problems.
Solving Partial Differential Equations on Overlapping Grids
Henshaw, W D
2008-09-22
We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.
Lectures on differential equations for Feynman integrals
NASA Astrophysics Data System (ADS)
Henn, Johannes M.
2015-04-01
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space-time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE.
Computer Corner. A Rich Differential Equation for Computer Demonstrations.
ERIC Educational Resources Information Center
Banks, Bernard W.
1990-01-01
Presents an example using a computer to illustrate concepts graphically in an introductory course on differential equations. Discusses the algorithms of the computer program displaying the solutions to an equation and the inclination field of the equation. (YP)
Solving Differential Equations in R: Package deSolve
In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Villarreal, Ramiro
1987-01-01
System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2004-01-01
The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.
Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations
NASA Astrophysics Data System (ADS)
Ma, Wen-Xiu; Zhou, Yuan; Dougherty, Rachael
2016-08-01
Lump-type solutions, rationally localized in many directions in the space, are analyzed for nonlinear differential equations derived from generalized bilinear differential equations. By symbolic computations with Maple, positive quadratic and quartic polynomial solutions to two classes of generalized bilinear differential equations on f are computed, and thus, lump-type solutions are presented to the corresponding nonlinear differential equations on u, generated from taking a transformation of dependent variables u = 2(ln f)x.
A Novel Approach to Modeling of Hydrogeologic Systems Using Fuzzy Differential Equations
NASA Astrophysics Data System (ADS)
Faybishenko, B. A.
2003-12-01
The many simultaneously occurring processes in unsaturated-saturated heterogeneous soils and fractured rocks can cause field observations to become imprecise and incomplete. Consequently, the results of predictions using deterministic and stochastic mathematical models are often uncertain, vague or "fuzzy." One of the alternative approaches to modeling hydrogeologic systems is the application of a fuzzy-systems approach, which is already widely used in such fields as engineering, physics, chemistry, and biology. After presenting a hydrogeologic system as a fuzzy system, the author presents a fuzzy form of Darcy's equation. Based on this equation, second-order fuzzy partial differential equations of the elliptic type (analogous to the Laplace equation) and the parabolic type (analogous to the Richards equation) are derived. These equations are then approximated as fuzzy-difference equations and solved using the basic principles of fuzzy arithmetic. The solutions for the fuzzy-difference equations take the form of fuzzy membership functions for each observation point (node). The author gives examples of the solutions of these equations for flow in unsaturated and saturated media and then compares them with those obtained using deterministic and stochastic methods.
Efficient modified Chebyshev differentiation matrices for fractional differential equations
NASA Astrophysics Data System (ADS)
Dabiri, Arman; Butcher, Eric A.
2017-09-01
This paper compares several fractional operational matrices for solving a system of linear fractional differential equations (FDEs) of commensurate or incommensurate order. For this purpose, three fractional collocation differentiation matrices (FCDMs) based on finite differences are first proposed and compared with Podlubny's matrix previously used in the literature, after which two new efficient FCDMs based on Chebyshev collocation are proposed. It is shown via an error analysis that the use of the well-known property of fractional differentiation of polynomial bases applied to these methods results in a limitation in the size of the obtained Chebyshev-based FCDMs. To compensate for this limitation, a new fast spectrally accurate FCDM for fractional differentiation which does not require the use of the gamma function is proposed. Then, the Schur-Pade and Schur decomposition methods are implemented to enhance and improve numerical stability. Therefore, this method overcomes the previous limitation regarding the size limitation. In several illustrative examples, the convergence and computation time of the proposed FCDMs are compared and their advantages and disadvantages are outlined.
The entropy solution of a hyperbolic-parabolic mixed type equation.
Zhan, Huashui
2016-01-01
The entropy solution of the equation [Formula: see text]is considered. Besides the usual initial value, only a partial boundary value is imposed. By choosing some special test functions, the stability of the solutions is obtained by Kruzkov's bi-variables method, provided that [Formula: see text] is an unit n-dimensional cube or the half space.
Adaptive numerical methods for partial differential equations
Cololla, P.
1995-07-01
This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.
Nonlocal diffusion second order partial differential equations
NASA Astrophysics Data System (ADS)
Benedetti, I.; Loi, N. V.; Malaguti, L.; Taddei, V.
2017-02-01
The paper deals with a second order integro-partial differential equation in Rn with a nonlocal, degenerate diffusion term. Nonlocal conditions, such as the Cauchy multipoint and the weighted mean value problem, are investigated. The existence of periodic solutions is also studied. The dynamic is transformed into an abstract setting and the results come from an approximation solvability method. It combines a Schauder degree argument with an Hartman-type inequality and it involves a Scorza-Dragoni type result. The compact embedding of a suitable Sobolev space in the corresponding Lebesgue space is the unique amount of compactness which is needed in this discussion. The solutions are located in bounded sets and they are limits of functions with values in finitely dimensional spaces.
Stability and control of functional differential equations
NASA Astrophysics Data System (ADS)
Peet, Matthew Monnig
This thesis addresses the question of stability of systems defined by differential equations which contain nonlinearity and delay. In particular, we analyze the stability of a well-known delayed nonlinear implementation of a certain Internet congestion control protocol. We also describe a generalized methodology for proving stability of time-delay systems through the use of semidefinite programming. In Chapters 4 and 5, we consider an Internet congestion control protocol based on the decentralized gradient projection algorithm. For a certain class of utility function, this algorithm was shown to be globally convergent for some sufficiently small value of a gain parameter. Later work gave an explicit bound on this gain for a linearized version of the system. This thesis proves that this bound also implies stability of the original system. The proof is constructed within a generalized passivity framework. The dynamics of the system are separated into a linear, delayed component and a system defined by a nonlinear differential equation with discontinuity in the dynamics. Frequency-domain analysis is performed on the linear component and time-domain analysis is performed on the nonlinear discontinuous system. In Chapter 7, we describe a general methodology for proving stability of linear time-delay systems by computing solutions to an operator-theoretic version of the Lyapunov inequality via semidefinite programming. The result is stated in terms of a nested sequence of sufficient conditions which are of increasing accuracy. This approach is generalized to the case of parametric uncertainty by considering parameter-dependent Lyapunov functionals. Numerical examples are given to demonstrate convergence of the algorithm. In Chapter 8, this approach is generalized to nonlinear time-delay systems through the use of non-quadratic Lyapunov functionals.
Fault Detection in Differential Algebraic Equations
NASA Astrophysics Data System (ADS)
Scott, Jason Roderick
Fault detection and identification (FDI) is important in almost all real systems. Fault detection is the supervision of technical processes aimed at detecting undesired or unpermitted states (faults) and taking appropriate actions to avoid dangerous situations, or to ensure efficiency in a system. This dissertation develops and extends fault detection techniques for systems modeled by differential algebraic equations (DAEs). First, a passive, observer-based approach is developed and linear filters are constructed to identify faults by filtering residual information. The method presented here uses the least squares completion to compute an ordinary differential equation (ODE) that contains the solution of the DAE and applies the observer directly to this ODE. While observers have been applied to ODE models for the purpose of fault detection in the past, the use of observers on completions of DAEs is a new idea. Moreover, the resulting residuals are modified requiring additional analysis. Robustness with respect to disturbances is also addressed by a novel frequency filtering technique. Active detection, as opposed to passive detection where outputs are passively monitored, allows the injection of an auxiliary control signal to test the system. These algorithms compute an auxiliary input signal guaranteeing fault detection, assuming bounded noise. In the second part of this dissertation, a novel active detection approach for DAE models is developed by taking linear transformations of the DAEs and solving a bi-layer optimization problem. An efficient real-time detection algorithm is also provided, as is the extension to model uncertainty. The existence of a class of problems where the algorithm breaks down is revealed and an alternative algorithm that finds a nearly minimal auxiliary signal is presented. Finally, asynchronous signal design, that is, applying the test signal on a different interval than the observation window, is explored and discussed.
Collins, Michael D; Siegmann, William L
2015-01-01
The parabolic equation method is extended to handle problems in seismo-acoustics that have multiple fluid and solid layers, continuous depth dependence within layers, and sloping interfaces between layers. The medium is approximated in terms of a series of range-independent regions, and a single-scattering approximation is used to compute transmitted fields across the vertical interfaces between regions. The approach is implemented in terms of a set of dependent variables that is well suited to piecewise continuous depth dependence in the elastic parameters, but one of the fluid-solid interface conditions in that formulation involves a second derivative that complicates the treatment of sloping interfaces. This issue is resolved by using a non-centered, four-point difference formula for the second derivative. The approach is implemented using a matrix decomposition that is efficient when the parameters of the medium have a general dependence within the upper layers of the sediment but only depend on depth in the water column and deep within the sediment.
NASA Astrophysics Data System (ADS)
Shishkin, G. I.
2013-04-01
For a singularly perturbed parabolic convection-diffusion equation, the conditioning and stability of finite difference schemes on uniform meshes are analyzed. It is shown that a convergent standard monotone finite difference scheme on a uniform mesh is not ɛ-uniformly well conditioned or ɛ-uniformly stable to perturbations of the data of the grid problem (here, ɛ is a perturbation parameter, ɛ ∈ (0, 1]). An alternative finite difference scheme is proposed, namely, a scheme in which the discrete solution is decomposed into regular and singular components that solve grid subproblems considered on uniform meshes. It is shown that this solution decomposition scheme converges ɛ-uniformly in the maximum norm at an O( N -1ln N + N {0/-1}) rate, where N + 1 and N 0 + 1 are the numbers of grid nodes in x and t, respectively. This scheme is ɛ-uniformly well conditioned and ɛ-uniformly stable to perturbations of the data of the grid problem. The condition number of the solution decomposition scheme is of order O(δ-2lnδ-1 + δ{0/-1}); i.e., up to a logarithmic factor, it is the same as that of a classical scheme on uniform meshes in the case of a regular problem. Here, δ = N -1ln N and δ0 = N {0/-1} are the accuracies of the discrete solution in x and t, respectively.
Domínguez, Jorge Bouza; Bérubé-Lauzière, Yves
2011-01-01
We introduce a system of coupled time-dependent parabolic simplified spherical harmonic equations to model the propagation of both excitation and fluorescence light in biological tissues. We resort to a finite element approach to obtain the time-dependent profile of the excitation and the fluorescence light fields in the medium. We present results for cases involving two geometries in three-dimensions: a homogeneous cylinder with an embedded fluorescent inclusion and a realistically-shaped rodent with an embedded inclusion alike an organ filled with a fluorescent probe. For the cylindrical geometry, we show the differences in the time-dependent fluorescence response for a point-like, a spherical, and a spherically Gaussian distributed fluorescent inclusion. From our results, we conclude that the model is able to describe the time-dependent excitation and fluorescent light transfer in small geometries with high absorption coefficients and in nondiffusive domains, as may be found in small animal diffuse optical tomography (DOT) and fluorescence DOT imaging. PMID:21483606
Legendre-Tau approximations for functional differential equations
NASA Technical Reports Server (NTRS)
Ito, K.; Teglas, R.
1983-01-01
The numerical approximation of solutions to linear functional differential equations are considered using the so called Legendre tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time differentiation. The approximate solution is then represented as a truncated Legendre series with time varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximations is made.
Periodic solutions for ordinary differential equations with sublinear impulsive effects
NASA Astrophysics Data System (ADS)
Qian, Dingbian; Li, Xinyu
2005-03-01
The continuation method of topological degree is used to investigate the existence of periodic solutions for ordinary differential equations with sublinear impulsive effects. The applications of the abstract approach include the generalizations of some classical nonresonance theorem for impulsive equations, for instance, the existence theorem for asymptotically positively homogeneous differential systems and the existence theorem for second order equations with Landesman-Lazer conditions.
Differential Equations Compatible with Boundary Rational qKZ Equation
NASA Astrophysics Data System (ADS)
Takeyama, Yoshihiro
2011-10-01
We give diffierential equations compatible with the rational qKZ equation with boundary reflection. The total system contains the trigonometric degeneration of the bispectral qKZ equation of type (Cěen, Cn) which in the case of type GLn was studied by van Meer and Stokman. We construct an integral formula for solutions to our compatible system in a special case.
Compatible Spatial Discretizations for Partial Differential Equations
Arnold, Douglas, N, ed.
2004-11-25
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical
Degtyarev, S P
2008-04-30
Instantaneous support shrinking is studied for a doubly non-linear degenerate parabolic equation in the case of slow diffusion when, in general, the Cauchy initial data are Radon measures. For a non-negative solution, a necessary and sufficient condition for instantaneous support shrinking is obtained in terms of the local behaviour of the mass of the initial data. In the same terms, estimates are obtained for the size of the support, that are sharp with respect to order. Bibliography: 24 titles.
From differential to difference equations for first order ODEs
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Walker, Kevin P.
1991-01-01
When constructing an algorithm for the numerical integration of a differential equation, one should first convert the known ordinary differential equation (ODE) into an ordinary difference equation. Given this difference equation, one can develop an appropriate numerical algorithm. This technical note describes the derivation of two such ordinary difference equations applicable to a first order ODE. The implicit ordinary difference equation has the same asymptotic expansion as the ODE itself, whereas the explicit ordinary difference equation has an asymptotic that is similar in structure but different in value when compared with that of the ODE.
Numerical study of a parametric parabolic equation and a related inverse boundary value problem
NASA Astrophysics Data System (ADS)
Mustonen, Lauri
2016-10-01
We consider a time-dependent linear diffusion equation together with a related inverse boundary value problem. The aim of the inverse problem is to determine, based on observations on the boundary, the nonhomogeneous diffusion coefficient in the interior of an object. The method in this paper relies on solving the forward problem for a whole family of diffusivities by using a spectral Galerkin method in the high-dimensional parameter domain. The evaluation of the parametric solution and its derivatives is then completely independent of spatial and temporal discretizations. In the case of a quadratic approximation for the parameter dependence and a direct solver for linear least squares problems, we show that the evaluation of the parametric solution does not increase the complexity of any linearized subproblem arising from a Gauss-Newtonian method that is used to minimize a Tikhonov functional. The feasibility of the proposed algorithm is demonstrated by diffusivity reconstructions in two and three spatial dimensions.
HEREDITARY DEPENDENCE IN THE THEORY OF DIFFERENTIAL EQUATIONS. PART I,
A general class of differential equations with hereditary dependence is introduced which includes most equations of hereditary type encountered in...of solutions and dependence on initial data and parameters will be considered herein.
HEREDITARY DEPENDENCE IN THE THEORY OF DIFFERENTIAL EQUATIONS, PART II,
A general class of differential equations with hereditary dependence is introduced which includes most equations of hereditary type encountered in...uniqueness of solutions and dependence on initial data and parameters are considered.
Coherent optical feedback for the analog solution of partial differential and integral equations
NASA Astrophysics Data System (ADS)
Cederquist, J. N.
1980-12-01
To extend and improve the capabilities of optical information processing systems, the use of coherent optical feedback was investigated. A confocal feedback system based on the confocal Fabry-Perot interferometer was developed and shown to have a very flexible, complex-valued coherent transfer function unattainable without feedback. This system was used to solve the three types of second order linear partial differential equations in two dimensions-elliptic, hyperbolic, and parabolic- for a variety of inhomogeneous terms and boundary and initial conditions. Space-variant image plane filters were used to allow the solution of partial differential equations with variable coefficients. An optical flat with a small wedge angle was added to perform time sampling of the feedback signal. The resulting system can then solve partial differential equations in three dimensions. A second confocal Fabry-Perot interferometer was placed inside the first to produce multiple feedback. Time sampling was also combined with multiple feedback to create a system capable of solving four dimensional problems. Methods for the solution of Fredholm and Voltera integral equations are also discussed.
Dielectric metasurfaces solve differential and integro-differential equations.
Abdollahramezani, Sajjad; Chizari, Ata; Dorche, Ali Eshaghian; Jamali, Mohammad Vahid; Salehi, Jawad A
2017-04-01
Leveraging subwavelength resonant nanostructures, plasmonic metasurfaces have recently attracted much attention as a breakthrough concept for engineering optical waves both spatially and spectrally. However, inherent ohmic losses concomitant with low coupling efficiencies pose fundamental impediments over their practical applications. Not only can all-dielectric metasurfaces tackle such substantial drawbacks, but also their CMOS-compatible configurations support both Mie resonances that are invariant to the incident angle. Here, we report on a transmittive metasurface comprising arrayed silicon nanodisks embedded in a homogeneous dielectric medium to manipulate phase and amplitude of incident light locally and almost independently. By taking advantage of the interplay between the electric/magnetic resonances and employing general concepts of spatial Fourier transformation, a highly efficient metadevice is proposed to perform mathematical operations including solution of ordinary differential and integro-differential equations with constant coefficients. Our findings further substantiate dielectric metasurfaces as promising candidates for miniaturized, two-dimensional, and planar optical analog computing systems that are much thinner than their conventional lens-based counterparts.
Modeling some real phenomena by fractional differential equations
NASA Astrophysics Data System (ADS)
Almeida, Ricardo; Bastos, Nuno R. O.; Monteiro, M. Teresa T.
2016-11-01
This paper deals with fractional differential equations, with dependence on a Caputo fractional derivative of real order. The goal is to show, based on concrete examples and experimental data from several experiments, that fractional differential equations may model more efficiently certain problems than ordinary differential equations. A numerical optimization approach based on least squares approximation is used to determine the order of the fractional operator that better describes real data, as well as other related parameters.
Exact solutions to nonlinear delay differential equations of hyperbolic type
NASA Astrophysics Data System (ADS)
Vyazmin, Andrei V.; Sorokin, Vsevolod G.
2017-01-01
We consider nonlinear delay differential equations of hyperbolic type, including equations with varying transfer coefficients and varying delays. The equations contain one or two arbitrary functions of a single argument. We present new classes of exact generalized and functional separable solutions. All the solutions involve free parameters and can be suitable for solving certain model problems as well as testing numerical and approximate analytical methods for similar and more complex nonlinear differential-difference equations.
Stochastic symmetries of Wick type stochastic ordinary differential equations
NASA Astrophysics Data System (ADS)
Ünal, Gazanfer
2015-04-01
We consider Wick type stochastic ordinary differential equations with Gaussian white noise. We define the stochastic symmetry transformations and Lie equations in Kondratiev space (S)-1N. We derive the determining system of Wick type stochastic partial differential equations with Gaussian white noise. Stochastic symmetries for stochastic Bernoulli, Riccati and general stochastic linear equation in (S)-1N are obtained. A stochastic version of canonical variables is also introduced.
A complex Noether approach for variational partial differential equations
NASA Astrophysics Data System (ADS)
Naz, R.; Mahomed, F. M.
2015-10-01
Scalar complex partial differential equations which admit variational formulations are studied. Such a complex partial differential equation, via a complex dependent variable, splits into a system of two real partial differential equations. The decomposition of the Lagrangian of the complex partial differential equation in the real domain is shown to yield two real Lagrangians for the split system. The complex Maxwellian distribution, transonic gas flow, Maxwellian tails, dissipative wave and Klein-Gordon equations are considered. The Noether symmetries and gauge terms of the split system that correspond to both the Lagrangians are constructed by the Noether approach. In the case of coupled split systems, the same Noether symmetries are obtained. The Noether symmetries for the uncoupled split systems are different. The conserved vectors of the split system which correspond to both the Lagrangians are compared to the split conserved vectors of the complex partial differential equation for the examples. The split conserved vectors of the complex partial differential equation are the same as the conserved vectors of the split system of real partial differential equations in the case of coupled systems. Moreover a Noether-like theorem for the split system is proved which provides the Noether-like conserved quantities of the split system from knowledge of the Noether-like operators. An interesting result on the split characteristics and the conservation laws is shown as well. The Noether symmetries and gauge terms of the Lagrangian of the split system with the split Noether-like operators and gauge terms of the Lagrangian of the given complex partial differential equation are compared. Folklore suggests that the split Noether-like operators of a Lagrangian of a complex Euler-Lagrange partial differential equation are symmetries of the Lagrangian of the split system of real partial differential equations. This is not the case. They are proved to be the same if the
Robust estimation for ordinary differential equation models.
Cao, J; Wang, L; Xu, J
2011-12-01
Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data.
Parameter Estimation of Partial Differential Equation Models.
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab
2013-01-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.
Electrocardiogram classification using delay differential equations
NASA Astrophysics Data System (ADS)
Lainscsek, Claudia; Sejnowski, Terrence J.
2013-06-01
Time series analysis with nonlinear delay differential equations (DDEs) reveals nonlinear as well as spectral properties of the underlying dynamical system. Here, global DDE models were used to analyze 5 min data segments of electrocardiographic (ECG) recordings in order to capture distinguishing features for different heart conditions such as normal heart beat, congestive heart failure, and atrial fibrillation. The number of terms and delays in the model as well as the order of nonlinearity of the model have to be selected that are the most discriminative. The DDE model form that best separates the three classes of data was chosen by exhaustive search up to third order polynomials. Such an approach can provide deep insight into the nature of the data since linear terms of a DDE correspond to the main time-scales in the signal and the nonlinear terms in the DDE are related to nonlinear couplings between the harmonic signal parts. The DDEs were able to detect atrial fibrillation with an accuracy of 72%, congestive heart failure with an accuracy of 88%, and normal heart beat with an accuracy of 97% from 5 min of ECG, a much shorter time interval than required to achieve comparable performance with other methods.
Kozhevnikova, L M; Mukminov, F Kh
2000-02-28
A quasilinear system of parabolic equations with energy inequality is considered in a cylindrical domain {l_brace}t>0{r_brace}x{omega}. In a broad class of unbounded domains {omega} two geometric characteristics of a domain are identified which determine the rate of convergence to zero as t{yields}{infinity} of the L{sub 2}-norm of a solution. Under additional assumptions on the coefficients of the quasilinear system estimates of the derivatives and uniform estimates of the solution are obtained; they are proved to be best possible in the order of convergence to zero in the case of one semilinear equation.
A Geometric Treatment of Implicit Differential-Algebraic Equations
NASA Astrophysics Data System (ADS)
Rabier, P. J.; Rheinboldt, W. C.
A differential-geometric approach for proving the existence and uniqueness of implicit differential-algebraic equations is presented. It provides for a significant improvement of an earlier theory developed by the authors as well as for a completely intrinsic definition of the index of such problems. The differential-algebraic equation is transformed into an explicit ordinary differential equation by a reduction process that can be abstractly defined for specific submanifolds of tangent bundles here called reducible π-submanifolds. Local existence and uniqueness results for differential-algebraic equations then follow directly from the final stage of this reduction by means of an application of the standard theory of ordinary differential equations.
On maximal parabolic regularity for non-autonomous parabolic operators
NASA Astrophysics Data System (ADS)
Disser, Karoline; ter Elst, A. F. M.; Rehberg, Joachim
2017-02-01
We consider linear inhomogeneous non-autonomous parabolic problems associated to sesquilinear forms, with discontinuous dependence of time. We show that for these problems, the property of maximal parabolic regularity can be extrapolated to time integrability exponents r ≠ 2. This allows us to prove maximal parabolic Lr-regularity for discontinuous non-autonomous second-order divergence form operators in very general geometric settings and to prove existence results for related quasilinear equations.
NASA Astrophysics Data System (ADS)
Tang, Bo; He, Yinnian; Wei, Leilei; Zhang, Xindong
2012-08-01
In this Letter, a generalized fractional sub-equation method is proposed for solving fractional differential equations with variable coefficients. Being concise and straightforward, this method is applied to the space-time fractional Gardner equation with variable coefficients. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that the considered method provides a very effective, convenient and powerful mathematical tool for solving many other fractional differential equations in mathematical physics.
Parameter Estimates in Differential Equation Models for Chemical Kinetics
ERIC Educational Resources Information Center
Winkel, Brian
2011-01-01
We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…
Nonlinear partial differential equations: Integrability, geometry and related topics
NASA Astrophysics Data System (ADS)
Krasil'shchik, Joseph; Rubtsov, Volodya
2017-03-01
Geometry and Differential Equations became inextricably entwined during the last one hundred fifty years after S. Lie and F. Klein's fundamental insights. The two subjects go hand in hand and they mutually enrich each other, especially after the "Soliton Revolution" and the glorious streak of Symplectic and Poisson Geometry methods in the context of Integrability and Solvability problems for Non-linear Differential Equations.
Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle
Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.
2013-01-01
We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853
Sourcing for Parameter Estimation and Study of Logistic Differential Equation
ERIC Educational Resources Information Center
Winkel, Brian J.
2012-01-01
This article offers modelling opportunities in which the phenomena of the spread of disease, perception of changing mass, growth of technology, and dissemination of information can be described by one differential equation--the logistic differential equation. It presents two simulation activities for students to generate real data, as well as…
Nonstandard Topics for Student Presentations in Differential Equations
ERIC Educational Resources Information Center
LeMasurier, Michelle
2006-01-01
An interesting and effective way to showcase the wide variety of fields to which differential equations can be applied is to have students give short oral presentations on a specific application. These talks, which have been presented by 30-40 students per year in our differential equations classes, provide exposure to a diverse array of topics…
Solving fuzzy fractional differential equations using Zadeh's extension principle.
Ahmad, M Z; Hasan, M K; Abbasbandy, S
2013-01-01
We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided.
Monograph - The Numerical Integration of Ordinary Differential Equations.
ERIC Educational Resources Information Center
Hull, T. E.
The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…
BIFURCATIONS OF RANDOM DIFFERENTIAL EQUATIONS WITH BOUNDED NOISE ON SURFACES
Homburg, Ale Jan; Young, Todd R.
2011-01-01
In random differential equations with bounded noise minimal forward invariant (MFI) sets play a central role since they support stationary measures. We study the stability and possible bifurcations of MFI sets. In dimensions 1 and 2 we classify all minimal forward invariant sets and their codimension one bifurcations in bounded noise random differential equations. PMID:22211081
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
The Radially Symmetric Euler Equations as an Exterior Differential System
NASA Astrophysics Data System (ADS)
Baty, Roy; Ramsey, Scott; Schmidt, Joseph
2016-11-01
This work develops the Euler equations as an exterior differential system in radially symmetric coordinates. The Euler equations are studied for unsteady, compressible, inviscid fluids in one-dimensional, converging flow fields with a general equation of state. The basic geometrical constructions (for example, the differential forms, tangent planes, jet space, and differential ideal) used to define and analyze differential equations as systems of exterior forms are reviewed and discussed for converging flows. Application of the Frobenius theorem to the question of the existence of solutions to radially symmetric converging flows is also reviewed and discussed. The exterior differential system is further applied to derive and analyze the general family of characteristic vector fields associated with the one-dimensional inviscid flow equations.
A New Factorisation of a General Second Order Differential Equation
ERIC Educational Resources Information Center
Clegg, Janet
2006-01-01
A factorisation of a general second order ordinary differential equation is introduced from which the full solution to the equation can be obtained by performing two integrations. The method is compared with traditional methods for solving these type of equations. It is shown how the Green's function can be derived directly from the factorisation…
The method of averages applied to the KS differential equations
NASA Technical Reports Server (NTRS)
Graf, O. F., Jr.; Mueller, A. C.; Starke, S. E.
1977-01-01
A new approach for the solution of artificial satellite trajectory problems is proposed. The basic idea is to apply an analytical solution method (the method of averages) to an appropriate formulation of the orbital mechanics equations of motion (the KS-element differential equations). The result is a set of transformed equations of motion that are more amenable to numerical solution.
Intuitive Understanding of Solutions of Partially Differential Equations
ERIC Educational Resources Information Center
Kobayashi, Y.
2008-01-01
This article uses diagrams that help the observer see how solutions of the wave equation and heat conduction equation are obtained. The analytical approach cannot necessarily show the mechanisms of the key to the solution without transforming the differential equation into a more convenient form by separation of variables. The visual clues based…
Analytic Parabolic Equation Solutions.
1989-11-01
problem involving a line source in a homogeneous ocean above a homogeneous , semi-infinite, fast fluid bottom has been analyzed in detail. Various...excited duct with laterally homogeneous bilinear height profile. An exact numerical reference solution can be constructed by modal summation for...have been well documented in the literature [1]. Since the final-field is constructed by beam shooting, one avoids the need for eigenray search which
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2012-01-01
The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.
Algebraic and geometric structures of analytic partial differential equations
NASA Astrophysics Data System (ADS)
Kaptsov, O. V.
2016-11-01
We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.
ERIC Educational Resources Information Center
Goldston, J. W.
This unit introduces analytic solutions of ordinary differential equations. The objective is to enable the student to decide whether a given function solves a given differential equation. Examples of problems from biology and chemistry are covered. Problem sets, quizzes, and a model exam are included, and answers to all items are provided. The…
In-out intermittency in partial differential equation and ordinary differential equation models.
Covas, Eurico; Tavakol, Reza; Ashwin, Peter; Tworkowski, Andrew; Brooke, John M.
2001-06-01
We find concrete evidence for a recently discovered form of intermittency, referred to as in-out intermittency, in both partial differential equation (PDE) and ordinary differential equation (ODE) models of mean field dynamos. This type of intermittency [introduced in P. Ashwin, E. Covas, and R. Tavakol, Nonlinearity 9, 563 (1999)] occurs in systems with invariant submanifolds and, as opposed to on-off intermittency which can also occur in skew product systems, it requires an absence of skew product structure. By this we mean that the dynamics on the attractor intermittent to the invariant manifold cannot be expressed simply as the dynamics on the invariant subspace forcing the transverse dynamics; the transverse dynamics will alter that tangential to the invariant subspace when one is far enough away from the invariant manifold. Since general systems with invariant submanifolds are not likely to have skew product structure, this type of behavior may be of physical relevance in a variety of dynamical settings. The models employed here to demonstrate in-out intermittency are axisymmetric mean-field dynamo models which are often used to study the observed large-scale magnetic variability in the Sun and solar-type stars. The occurrence of this type of intermittency in such models may be of interest in understanding some aspects of such variabilities. (c) 2001 American Institute of Physics.
Towards developing robust algorithms for solving partial differential equations on MIMD machines
NASA Technical Reports Server (NTRS)
Saltz, Joel H.; Naik, Vijay K.
1988-01-01
Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.
Towards developing robust algorithms for solving partial differential equations on MIMD machines
NASA Technical Reports Server (NTRS)
Saltz, J. H.; Naik, V. K.
1985-01-01
Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.
Periodicity and positivity of a class of fractional differential equations.
Ibrahim, Rabha W; Ahmad, M Z; Mohammed, M Jasim
2016-01-01
Fractional differential equations have been discussed in this study. We utilize the Riemann-Liouville fractional calculus to implement it within the generalization of the well known class of differential equations. The Rayleigh differential equation has been generalized of fractional second order. The existence of periodic and positive outcome is established in a new method. The solution is described in a fractional periodic Sobolev space. Positivity of outcomes is considered under certain requirements. We develop and extend some recent works. An example is constructed.
A neuro approach to solve fuzzy Riccati differential equations
Shahrir, Mohammad Shazri; Kumaresan, N. Kamali, M. Z. M.; Ratnavelu, Kurunathan
2015-10-22
There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.
A neuro approach to solve fuzzy Riccati differential equations
NASA Astrophysics Data System (ADS)
Shahrir, Mohammad Shazri; Kumaresan, N.; Kamali, M. Z. M.; Ratnavelu, Kurunathan
2015-10-01
There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.
On the singular perturbations for fractional differential equation.
Atangana, Abdon
2014-01-01
The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.
NASA Astrophysics Data System (ADS)
Grinevich, P. G.; Santini, P. M.
2016-10-01
Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in 2+1 dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form v t = v x v y - ∂ x -1 ∂ y [ v y + v x 2], where the formal integral ∂ x -1 becomes the asymmetric integral - int_x^∞ {dx'} . We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function f( X, Y) over a parabola in the plane ( X, Y) can be expressed in terms of the integrals of f( X, Y) over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.
Numerical integration of ordinary differential equations of various orders
NASA Technical Reports Server (NTRS)
Gear, C. W.
1969-01-01
Report describes techniques for the numerical integration of differential equations of various orders. Modified multistep predictor-corrector methods for general initial-value problems are discussed and new methods are introduced.
Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices
ERIC Educational Resources Information Center
Glaister, P.
2008-01-01
The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.
Comparison theorems for neutral stochastic functional differential equations
NASA Astrophysics Data System (ADS)
Bai, Xiaoming; Jiang, Jifa
2016-05-01
The comparison theorems under Wu and Freedman's order are proved for neutral stochastic functional differential equations with finite or infinite delay whose drift terms satisfy the quasimonotone condition and diffusion term is the same.
Uniqueness and existence results for ordinary differential equations
NASA Astrophysics Data System (ADS)
Cid, J. Angel; Heikkila, Seppo; Pouso, Rodrigo Lopez
2006-04-01
We establish some uniqueness and existence results for first-order ordinary differential equations with constant-signed discontinuous nonlinear parts. Several examples are given to illustrate the applicability of our work.
Variational integrators for nonvariational partial differential equations
NASA Astrophysics Data System (ADS)
Kraus, Michael; Maj, Omar
2015-08-01
Variational integrators for Lagrangian dynamical systems provide a systematic way to derive geometric numerical methods. These methods preserve a discrete multisymplectic form as well as momenta associated to symmetries of the Lagrangian via Noether's theorem. An inevitable prerequisite for the derivation of variational integrators is the existence of a variational formulation for the considered problem. Even though for a large class of systems this requirement is fulfilled, there are many interesting examples which do not belong to this class, e.g., equations of advection-diffusion type frequently encountered in fluid dynamics or plasma physics. On the other hand, it is always possible to embed an arbitrary dynamical system into a larger Lagrangian system using the method of formal (or adjoint) Lagrangians. We investigate the application of the variational integrator method to formal Lagrangians, and thereby extend the application domain of variational integrators to include potentially all dynamical systems. The theory is supported by physically relevant examples, such as the advection equation and the vorticity equation, and numerically verified. Remarkably, the integrator for the vorticity equation combines Arakawa's discretisation of the Poisson brackets with a symplectic time stepping scheme in a fully covariant way such that the discrete energy is exactly preserved. In the presentation of the results, we try to make the geometric framework of variational integrators accessible to non specialists.
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
Classification of five-point differential-difference equations
NASA Astrophysics Data System (ADS)
Garifullin, R. N.; Yamilov, R. I.; Levi, D.
2017-03-01
Using the generalized symmetry method, we carry out, up to autonomous point transformations, the classification of integrable equations of a subclass of the autonomous five-point differential-difference equations. This subclass includes such well-known examples as the Itoh–Narita–Bogoyavlensky and the discrete Sawada–Kotera equations. The resulting list contains 17 equations, some of which seem to be new. We have found non-point transformations relating most of the resulting equations among themselves and their generalized symmetries.
International Conference on Multiscale Methods and Partial Differential Equations.
Thomas Hou
2006-12-12
The International Conference on Multiscale Methods and Partial Differential Equations (ICMMPDE for short) was held at IPAM, UCLA on August 26-27, 2005. The conference brought together researchers, students and practitioners with interest in the theoretical, computational and practical aspects of multiscale problems and related partial differential equations. The conference provided a forum to exchange and stimulate new ideas from different disciplines, and to formulate new challenging multiscale problems that will have impact in applications.
NASA Technical Reports Server (NTRS)
Geddes, K. O.
1977-01-01
If a linear ordinary differential equation with polynomial coefficients is converted into integrated form then the formal substitution of a Chebyshev series leads to recurrence equations defining the Chebyshev coefficients of the solution function. An explicit formula is presented for the polynomial coefficients of the integrated form in terms of the polynomial coefficients of the differential form. The symmetries arising from multiplication and integration of Chebyshev polynomials are exploited in deriving a general recurrence equation from which can be derived all of the linear equations defining the Chebyshev coefficients. Procedures for deriving the general recurrence equation are specified in a precise algorithmic notation suitable for translation into any of the languages for symbolic computation. The method is algebraic and it can therefore be applied to differential equations containing indeterminates.
Effect of Differential Item Functioning on Test Equating
ERIC Educational Resources Information Center
Kabasakal, Kübra Atalay; Kelecioglu, Hülya
2015-01-01
This study examines the effect of differential item functioning (DIF) items on test equating through multilevel item response models (MIRMs) and traditional IRMs. The performances of three different equating models were investigated under 24 different simulation conditions, and the variables whose effects were examined included sample size, test…
Student Difficulties with Units in Differential Equations in Modelling Contexts
ERIC Educational Resources Information Center
Rowland, David R.
2006-01-01
First-year undergraduate engineering students' understanding of the units of factors and terms in first-order ordinary differential equations used in modelling contexts was investigated using diagnostic quiz questions. Few students appeared to realize that the units of each term in such equations must be the same, or if they did, nevertheless…
The Use of Kruskal-Newton Diagrams for Differential Equations
T. Fishaleck and R.B. White
2008-02-19
The method of Kruskal-Newton diagrams for the solution of differential equations with boundary layers is shown to provide rapid intuitive understanding of layer scaling and can result in the conceptual simplification of some problems. The method is illustrated using equations arising in the theory of pattern formation and in plasma physics.
Solution of partial differential equations by agent-based simulation
NASA Astrophysics Data System (ADS)
Szilagyi, Miklos N.
2014-01-01
The purpose of this short note is to demonstrate that partial differential equations can be quickly solved by agent-based simulation with high accuracy. There is no need for the solution of large systems of algebraic equations. This method is especially useful for quick determination of potential distributions and demonstration purposes in teaching electromagnetism.
Canonical coordinates for partial differential equations
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Villarreal, Ramiro
1987-01-01
Necessary and sufficient conditions are found under which operators of the form Sigma(m, j=1) X(2)sub j + X sub 0 can be made constant coefficient. In addition, necessary and sufficient conditions are derived which classify those linear partial differential operators that can be moved to the Kolmogorov type.
Exp-function method for solving fractional partial differential equations.
Zheng, Bin
2013-01-01
We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
Similarity analysis of differential equations by Lie group.
NASA Technical Reports Server (NTRS)
Na, T. Y.; Hansen, A. G.
1971-01-01
Methods for transforming partial differential equations into forms more suitable for analysis and solution are investigated. The idea of Lie's infinitesimal contact transformation group is introduced to develop a systematic method which involves mostly algebraic manipulations. A thorough presentation of the application of this general method to the problem of similarity analysis in a broader sense - namely, the similarity between partial and ordinary differential equations, boundary value and initial value problems, and nonlinear and linear equations - is given with new and very general methods evolved for deriving the possible groups of transformations.
On solutions of polynomial growth of ordinary differential equations
NASA Astrophysics Data System (ADS)
van den Berg, I. P.
We present a theorem on the existence of solutions of polynomial growth of ordinary differential equations of type E: {dY}/{dX} = F(X, Y) , where F is of class C1. We show that the asymptotic behaviour of these solutions and the variation of neighbouring solutions are obtained by solving an asymptotic functional equation related to E, and that this method has practical value. The theorem is standard; its nonstandard proof uses macroscope and microscope techniques. The result is an extension of results by F. and M. Diener and G. Reeb on solutions of polynomial growth of rational differential equations.
Linares, Oscar A; Schiesser, William E; Fudin, Jeffrey; Pham, Thien C; Bettinger, Jeffrey J; Mathew, Roy O; Daly, Annemarie L
2015-01-01
Background There is a need to have a model to study methadone’s losses during hemodialysis to provide informed methadone dose recommendations for the practitioner. Aim To build a one-dimensional (1-D), hollow-fiber geometry, ordinary differential equation (ODE) and partial differential equation (PDE) countercurrent hemodialyzer model (ODE/PDE model). Methodology We conducted a cross-sectional study in silico that evaluated eleven hemodialysis patients. Patients received a ceiling dose of methadone hydrochloride 30 mg/day. Outcome measures included: the total amount of methadone removed during dialysis; methadone’s overall intradialytic mass transfer rate coefficient, km; and, methadone’s removal rate, jME. Each metric was measured at dialysate flow rates of 250 mL/min and 800 mL/min. Results The ODE/PDE model revealed a significant increase in the change of methadone’s mass transfer with increased dialysate flow rate, %Δkm=18.56, P=0.02, N=11. The total amount of methadone mass transferred across the dialyzer membrane with high dialysate flow rate significantly increased (0.042±0.016 versus 0.052±0.019 mg/kg, P=0.02, N=11). This was accompanied by a small significant increase in methadone’s mass transfer rate (0.113±0.002 versus 0.014±0.002 mg/kg/h, P=0.02, N=11). The ODE/PDE model accurately predicted methadone’s removal during dialysis. The absolute value of the prediction errors for methadone’s extraction and throughput were less than 2%. Conclusion ODE/PDE modeling of methadone’s hemodialysis is a new approach to study methadone’s removal, in particular, and opioid removal, in general, in patients with end-stage renal disease on hemodialysis. ODE/PDE modeling accurately quantified the fundamental phenomena of methadone’s mass transfer during hemodialysis. This methodology may lead to development of optimally designed intradialytic opioid treatment protocols, and allow dynamic monitoring of outflow plasma opioid concentrations for model
Solving constant-coefficient differential equations with dielectric metamaterials
NASA Astrophysics Data System (ADS)
Zhang, Weixuan; Qu, Che; Zhang, Xiangdong
2016-07-01
Recently, the concept of metamaterial analog computing has been proposed (Silva et al 2014 Science 343 160-3). Some mathematical operations such as spatial differentiation, integration, and convolution, have been performed by using designed metamaterial blocks. Motivated by this work, we propose a practical approach based on dielectric metamaterial to solve differential equations. The ordinary differential equation can be solved accurately by the correctly designed metamaterial system. The numerical simulations using well-established numerical routines have been performed to successfully verify all theoretical analyses.
Generating functionals and Lagrangian partial differential equations
Vankerschaver, Joris; Liao, Cuicui; Leok, Melvin
2013-08-15
The main goal of this paper is to derive an alternative characterization of the multisymplectic form formula for classical field theories using the geometry of the space of boundary values. We review the concept of Type-I/II generating functionals defined on the space of boundary data of a Lagrangian field theory. On the Lagrangian side, we define an analogue of Jacobi's solution to the Hamilton–Jacobi equation for field theories, and we show that by taking variational derivatives of this functional, we obtain an isotropic submanifold of the space of Cauchy data, described by the so-called multisymplectic form formula. As an example of the latter, we show that Lorentz's reciprocity principle in electromagnetism is a particular instance of the multisymplectic form formula. We also define a Hamiltonian analogue of Jacobi's solution, and we show that this functional is a Type-II generating functional. We finish the paper by defining a similar framework of generating functions for discrete field theories, and we show that for the linear wave equation, we recover the multisymplectic conservation law of Bridges.
Spatial dynamics for lattice differential equations with a shifting habitat
NASA Astrophysics Data System (ADS)
Hu, Changbing; Li, Bingtuan
2015-09-01
We study a lattice differential equation model that describes the growth and spread of a species in a shifting habitat. We show that the long term behavior of solutions depends on the speed of the shifting habitat edge c and a number c* (∞) that is determined by the maximum linearized growth rate and the diffusion coefficient. We demonstrate that if c >c* (∞) then the species will become extinct in the habitat, and that if c
A Difference Differential Equation of Euler-Cauchy Type
NASA Astrophysics Data System (ADS)
Bradley, David M.; Diamond, Harold G.
1997-08-01
We study a class of advanced argument linear difference differential equations analogous to Euler-Cauchy ordinary differential equations. Solutions of two equations of this type have arisen as adjoint functions in sieve theory, and they are also of use in control theory. Here we study the problem in a general setting. Subject to mild assumptions, each of our equations is shown to have a unique solution which is analytic in the right half-plane. In some cases the solution is a polynomial, and in others it has an asymptotic expansion. Finally, the solution is shown to have a representation as an exponential of a Hellinger type integro-differential operator acting on a monomial.
1/f noise from nonlinear stochastic differential equations
NASA Astrophysics Data System (ADS)
Ruseckas, J.; Kaulakys, B.
2010-03-01
We consider a class of nonlinear stochastic differential equations, giving the power-law behavior of the power spectral density in any desirably wide range of frequency. Such equations were obtained starting from the point process models of 1/fβ noise. In this article the power-law behavior of spectrum is derived directly from the stochastic differential equations, without using the point process models. The analysis reveals that the power spectrum may be represented as a sum of the Lorentzian spectra. Such a derivation provides additional justification of equations, expands the class of equations generating 1/fβ noise, and provides further insights into the origin of 1/fβ noise.
Marczynski, Slawomir
2011-09-15
The integro-differential Berk-Breizman (BB) equation, describing the evolution of particle-driven wave mode is transformed into a simple delayed differential equation form {nu}{partial_derivative}a({tau})/{partial_derivative}{tau}=a({tau}) -a{sup 2}({tau}- 1) a({tau}- 2). This transformation is also applied to the two modes extension of the BB theory. The obtained solutions are presented together with the derived asymptotic analytical solutions and the numerical results.
Dedalus: Flexible framework for spectrally solving differential equations
NASA Astrophysics Data System (ADS)
Burns, Keaton J.; Vasil, Geoffrey M.; Oishi, Jeffrey S.; Lecoanet, Daniel; Brown, Benjamin
2016-03-01
Dedalus solves differential equations using spectral methods. It implements flexible algorithms to solve initial-value, boundary-value, and eigenvalue problems with broad ranges of custom equations and spectral domains. Its primary features include symbolic equation entry, multidimensional parallelization, implicit-explicit timestepping, and flexible analysis with HDF5. The code is written primarily in Python and features an easy-to-use interface. The numerical algorithm produces highly sparse systems for many equations which are efficiently solved using compiled libraries and MPI.
Grima, Ramon
2011-11-01
The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.
Multiscale functions, scale dynamics, and applications to partial differential equations
NASA Astrophysics Data System (ADS)
Cresson, Jacky; Pierret, Frédéric
2016-05-01
Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.
NASA Technical Reports Server (NTRS)
Dinar, N.
1978-01-01
Several aspects of multigrid methods are briefly described. The main subjects include the development of very efficient multigrid algorithms for systems of elliptic equations (Cauchy-Riemann, Stokes, Navier-Stokes), as well as the development of control and prediction tools (based on local mode Fourier analysis), used to analyze, check and improve these algorithms. Preliminary research on multigrid algorithms for time dependent parabolic equations is also described. Improvements in existing multigrid processes and algorithms for elliptic equations were studied.
A perturbative solution to metadynamics ordinary differential equation.
Tiwary, Pratyush; Dama, James F; Parrinello, Michele
2015-12-21
Metadynamics is a popular enhanced sampling scheme wherein by periodic application of a repulsive bias, one can surmount high free energy barriers and explore complex landscapes. Recently, metadynamics was shown to be mathematically well founded, in the sense that the biasing procedure is guaranteed to converge to the true free energy surface in the long time limit irrespective of the precise choice of biasing parameters. A differential equation governing the post-transient convergence behavior of metadynamics was also derived. In this short communication, we revisit this differential equation, expressing it in a convenient and elegant Riccati-like form. A perturbative solution scheme is then developed for solving this differential equation, which is valid for any generic biasing kernel. The solution clearly demonstrates the robustness of metadynamics to choice of biasing parameters and gives further confidence in the widely used method.
Entropy and convexity for nonlinear partial differential equations
Ball, John M.; Chen, Gui-Qiang G.
2013-01-01
Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768
Numerical diagnostics of solution blowup in differential equations
NASA Astrophysics Data System (ADS)
Belov, A. A.
2017-01-01
New simple and robust methods have been proposed for detecting poles, logarithmic poles, and mixed-type singularities in systems of ordinary differential equations. The methods produce characteristics of these singularities with a posteriori asymptotically precise error estimates. This approach is applicable to an arbitrary parametrization of integral curves, including the arc length parametrization, which is optimal for stiff and ill-conditioned problems. The method can be used to detect solution blowup for a broad class of important nonlinear partial differential equations, since they can be reduced to huge-order systems of ordinary differential equations by applying the method of lines. The method is superior in robustness and simplicity to previously known methods.
Entropy and convexity for nonlinear partial differential equations.
Ball, John M; Chen, Gui-Qiang G
2013-12-28
Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.
Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.
Baranwal, Vipul K; Pandey, Ram K; Singh, Om P
2014-01-01
We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.
Müller, Eike H; Scheichl, Rob; Shardlow, Tony
2015-04-08
This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.
Müller, Eike H.; Scheichl, Rob; Shardlow, Tony
2015-01-01
This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy. PMID:27547075
Algebraic Riccati equations in zero-sum differential games
NASA Technical Reports Server (NTRS)
Johnson, T. L.; Chao, A.
1974-01-01
The procedure for finding the closed-loop Nash equilibrium solution of two-player zero-sum linear time-invariant differential games with quadratic performance criteria and classical information pattern may be reduced in most cases to the solution of an algebraic Riccati equation. Based on the results obtained by Willems, necessary and sufficient conditions for existence of solutions to these equations are derived, and explicit conditions for a scalar example are given.
Numerical integration of asymptotic solutions of ordinary differential equations
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Advanced methods for the solution of differential equations
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Braun, W. H.
1973-01-01
This book is based on a course presented at the Lewis Research Center for engineers and scientists who were interested in increasing their knowledge of differential equations. Those results which can actually be used to solve equations are therefore emphasized; and detailed proofs of theorems are, for the most part, omitted. However, the conclusions of the theorems are stated in a precise manner, and enough references are given so that the interested reader can find the steps of the proofs.
Difference equations versus differential equations, a possible equivalence for the Rössler system?
NASA Astrophysics Data System (ADS)
Letellier, Christophe; Elaydi, Saber; Aguirre, Luis A.; Alaoui, Aziz
2004-08-01
When a set of nonlinear differential equations is investigated, most of time there is no analytical solution and only numerical integration techniques can provide accurate numerical solutions. In a general way the process of numerical integration is the replacement of a set of differential equations with a continuous dependence on the time by a model for which the time variable is discrete. In numerical investigations a fourth-order Runge-Kutta integration scheme is usually sufficient. Nevertheless, sometimes a set of difference equations may be required and, in this case, standard schemes like the forward Euler, backward Euler or central difference schemes are used. The major problem encountered with these schemes is that they offer numerical solutions equivalent to those of the set of differential equations only for sufficiently small integration time steps. In some cases, it may be of interest to obtain difference equations with the same type of solutions as for the differential equations but with significantly large time steps. Nonstandard schemes as introduced by Mickens [Nonstandard Finite Difference Models of Differential Equations, World Scientific, 1994] allow to obtain more robust difference equations. In this paper, using such nonstandard scheme, we propose some difference equations as discrete analogues of the Rössler system for which it is shown that the dynamics is less dependent on the time step size than when a nonstandard scheme is used. In particular, it has been observed that the solutions to the discrete models are topologically equivalent to the solutions to the Rössler system as long as the time step is less than the threshold value associated with the Nyquist criterion.
Control problems for semilinear neutral differential equations in Hilbert spaces.
Jeong, Jin-Mun; Cho, Seong Ho
2014-01-01
We construct some results on the regularity of solutions and the approximate controllability for neutral functional differential equations with unbounded principal operators in Hilbert spaces. In order to establish the controllability of the neutral equations, we first consider the existence and regularity of solutions of the neutral control system by using fractional power of operators and the local Lipschitz continuity of nonlinear term. Our purpose is to obtain the existence of solutions and the approximate controllability for neutral functional differential control systems without using many of the strong restrictions considered in the previous literature. Finally we give a simple example to which our main result can be applied.
Master integrals for splitting functions from differential equations in QCD
NASA Astrophysics Data System (ADS)
Gituliar, Oleksandr
2016-02-01
A method for calculating phase-space master integrals for the decay process 1 → n masslesspartonsinQCDusingintegration-by-partsanddifferentialequationstechniques is discussed. The method is based on the appropriate choice of the basis for master integrals which leads to significant simplification of differential equations. We describe an algorithm how to construct the desirable basis, so that the resulting system of differential equations can be recursively solved in terms of (G) HPLs as a series in the dimensional regulator ɛ to any order. We demonstrate its power by calculating master integrals for the NLO time-like splitting functions and discuss future applications of the proposed method at the NNLO precision.
GHM method for obtaining rationalsolutions of nonlinear differential equations.
Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo
2015-01-01
In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.
Samples of noncommutative products in certain differential equations
NASA Astrophysics Data System (ADS)
Légaré, M.
2010-11-01
A set of associative noncommutative products is considered in different differential equations of the ordinary and partial types. A method of separation of variables is considered for a large set of those systems. The products involved include for example some * products and some products based on Nijenhuis tensors, which are embedded in the differential equations of the Laplace/Poisson, Lax and Schrödinger styles. A comment on the *-products of Reshetikhin-Jambor-Sykora type is also given in relation to *-products of Vey type.
Analytic solution for Telegraph equation by differential transform method
NASA Astrophysics Data System (ADS)
Biazar, J.; Eslami, M.
2010-06-01
In this article differential transform method (DTM) is considered to solve Telegraph equation. This method is a powerful tool for solving large amount of problems (Zhou (1986) [1], Chen and Ho (1999) [2], Jang et al. (2001) [3], Kangalgil and Ayaz (2009) [4], Ravi Kanth and Aruna (2009) [5], Arikoglu and Ozkol (2007) [6]). Using differential transform method, it is possible to find the exact solution or a closed approximate solution of an equation. To illustrate the ability and reliability of the method some examples are provided. The results reveal that the method is very effective and simple.
Control Problems for Semilinear Neutral Differential Equations in Hilbert Spaces
Jeong, Jin-Mun; Cho, Seong Ho
2014-01-01
We construct some results on the regularity of solutions and the approximate controllability for neutral functional differential equations with unbounded principal operators in Hilbert spaces. In order to establish the controllability of the neutral equations, we first consider the existence and regularity of solutions of the neutral control system by using fractional power of operators and the local Lipschitz continuity of nonlinear term. Our purpose is to obtain the existence of solutions and the approximate controllability for neutral functional differential control systems without using many of the strong restrictions considered in the previous literature. Finally we give a simple example to which our main result can be applied. PMID:24772022
Strongly differentiable solutions of the discrete coagulation-fragmentation equation
NASA Astrophysics Data System (ADS)
McBride, A. C.; Smith, A. L.; Lamb, W.
2010-08-01
We examine an infinite system of ordinary differential equations that models the binary coagulation and multiple fragmentation of clusters. In contrast to previous investigations, our analysis does not involve finite-dimensional truncations of the system. Instead, we treat the problem as an infinite-dimensional differential equation, posed in an appropriate Banach space, and apply perturbation results from the theory of strongly continuous semigroups of operators. The existence and uniqueness of physically meaningful solutions are established for uniformly bounded coagulation rates but with no growth restrictions imposed on the fragmentation rates.
NASA Technical Reports Server (NTRS)
Singer, Bart A.; Choudhari, Meelan; Li, Fei
1995-01-01
A multiple-scales approach is used to approximate the effects of nonparallelism and streamwise surface curvature on the growth of stationary crossflow vortices in incompressible, three-dimesional boundary layers. The results agree with results predicted by solving the parabolized stability equations in regions where the nonparallelism is sufficiently weak. As the nonparallelism increases, the agreement between the two approaches worsens. An attempt has been made to quantify the nonparallelism on flow stability in terms of a nondimensional number that describes the rate of change of the mean flow relative to the disturbance wavelength. We find that the above nondimensional number provides useful information about the adequacy of the multiple-scales approximation for different disturbances for a given flow geometry, but the number does not collapse data for different flow geometries onto a single curve.
Existence of a coupled system of fractional differential equations
Ibrahim, Rabha W.; Siri, Zailan
2015-10-22
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.
On Existence and Uniqueness Results for Nonsmooth Implicit Differential Equations
NASA Astrophysics Data System (ADS)
You, Xiong; Wu, Xinyuan; Chen, Zhaoxia; Yang, Hongli; Fang, Yonglei
2008-09-01
The classical implicit function theorem gives conditions that the function is Fréchet differentiable and the derivative is surjective. In this short article they are generalized to conditions of Lipschitz and monotone type. The newly obtained implicit function theorems are used to derive two sets of sufficient conditions for the existence and uniqueness of solutions to the initial value problems of nonsmooth implicit differential equations.
Power series solutions of ordinary differential equations in MACSYMA
NASA Technical Reports Server (NTRS)
Lafferty, E. L.
1977-01-01
A program is described which extends the differential equation solving capability of MACSYMA to power series solutions and is available via the SHARE library. The program is directed toward those classes of equations with variable coefficients (in particular, those with singularities) and uses the method of Frobenius. Probably the most important distinction between this package and others currently available or being developed is that, wherever possible, this program will attempt to provide a complete solution to the equation rather than an approximation, i.e., a finite number of terms. This solution will take the form of a sum of infinite series.
Excitability in a stochastic differential equation model for calcium puffs.
Rüdiger, S
2014-06-01
Calcium dynamics are essential to a multitude of cellular processes. For many cell types, localized discharges of calcium through small clusters of intracellular channels are building blocks for all spatially extended calcium signals. Because of the large noise amplitude, the validity of noise-approximating model equations for this system has been questioned. Here we revisit the master equations for local calcium release, examine the multiple scales of calcium concentrations in the cluster domain, and derive adapted stochastic differential equations. We show by comparison of discrete and continuous trajectories that the Langevin equations can be made consistent with the master equations even for very small channel numbers. In its deterministic limit, the model reveals that excitability, a dynamical phenomenon observed in many natural systems, is at the core of calcium puffs. The model also predicts a bifurcation from transient to sustained release which may link local and global calcium signals in cells.
Semilinear Kolmogorov Equations and Applications to Stochastic Optimal Control
Masiero, Federica
2005-03-15
Semilinear parabolic differential equations are solved in a mild sense in an infinite-dimensional Hilbert space. Applications to stochastic optimal control problems are studied by solving the associated Hamilton-Jacobi-Bellman equation. These results are applied to some controlled stochastic partial differential equations.
Solving Second-Order Differential Equations with Variable Coefficients
ERIC Educational Resources Information Center
Wilmer, A., III; Costa, G. B.
2008-01-01
A method is developed in which an analytical solution is obtained for certain classes of second-order differential equations with variable coefficients. By the use of transformations and by repeated iterated integration, a desired solution is obtained. This alternative method represents a different way to acquire a solution from classic power…
Building Context with Tumor Growth Modeling Projects in Differential Equations
ERIC Educational Resources Information Center
Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.
2015-01-01
The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…
Integration of CAS in the Didactics of Differential Equations.
ERIC Educational Resources Information Center
Balderas Puga, Angel
In this paper are described some features of the intensive use of math software, primarily DERIVE, in the context of modeling in an introductory university course in differential equations. Different aspects are detailed: changes in the curriculum that included not only course contents, but also the sequence of introduction to various topics and…
On Polynomial Solutions of Linear Differential Equations with Polynomial Coefficients
ERIC Educational Resources Information Center
Si, Do Tan
1977-01-01
Demonstrates a method for solving linear differential equations with polynomial coefficients based on the fact that the operators z and D + d/dz are known to be Hermitian conjugates with respect to the Bargman and Louck-Galbraith scalar products. (MLH)
Phaser-Based Courseware for Ordinary Differential Equations.
ERIC Educational Resources Information Center
Zia, Lee l.
1991-01-01
Presented are classroom-tested examples of instructional materials (courseware) for ordinary differential equations using the software package PHASER. All of the examples include in-class demonstration techniques and commentaries for instructor use, student homework and laboratory exercises, and suggestions for in-class examination questions. (JJK)
Numerical Aspects of Solving Differential Equations: Laboratory Approach for Students.
ERIC Educational Resources Information Center
Witt, Ana
1997-01-01
Describes three labs designed to help students in a first course on ordinary differential equations with three of the most common numerical difficulties they might encounter when solving initial value problems with a numerical software package. The goal of these labs is to help students advance to independent work on common numerical anomalies.…
Do Students Really Understand What an Ordinary Differential Equation Is?
ERIC Educational Resources Information Center
Arslan, Selahattin
2010-01-01
Differential equations (DEs) are important in mathematics as well as in science and the social sciences. Thus, the study of DEs has been included in various courses in different departments in higher education. The importance of DEs has attracted the attention of many researchers who have generally focussed on the content and instruction of DEs.…
Parameter Estimates in Differential Equation Models for Population Growth
ERIC Educational Resources Information Center
Winkel, Brian J.
2011-01-01
We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…
A Simple Derivation of Kepler's Laws without Solving Differential Equations
ERIC Educational Resources Information Center
Provost, J.-P.; Bracco, C.
2009-01-01
Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non-trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple…
Climate Modeling in the Calculus and Differential Equations Classroom
ERIC Educational Resources Information Center
Kose, Emek; Kunze, Jennifer
2013-01-01
Students in college-level mathematics classes can build the differential equations of an energy balance model of the Earth's climate themselves, from a basic understanding of the background science. Here we use variable albedo and qualitative analysis to find stable and unstable equilibria of such a model, providing a problem or perhaps a…
A Second-Year Undergraduate Course in Applied Differential Equations.
ERIC Educational Resources Information Center
Fahidy, Thomas Z.
1991-01-01
Presents the framework for a chemical engineering course using ordinary differential equations to solve problems with the underlying strategy of concisely discussing the theory behind each solution technique without extensions to formal proofs. Includes typical class illustrations, student responses to this strategy, and reaction of the…
Neumann problems for second order ordinary differential equations across resonance
NASA Astrophysics Data System (ADS)
Yong, Li; Huaizhong, Wang
1995-05-01
This paper deals with the existence-uniqueness problem to Neumann problems for second order ordinary differential equations probably across resonance. By the optimal control theory method, some global optimality results about the unique solvability for such boundary value problems are established.
NASA Astrophysics Data System (ADS)
Ibáñez, Javier; Hernández, Vicente
2009-11-01
Differential Matrix Riccati Equations play a fundamental role in control theory, for example, in optimal control, filtering and estimation, decoupling and order reduction, etc. In this paper a piecewise-linearized method based on the conmutant equation to solve Differential Matrix Riccati Equations (DMREs) is described. This method is applied to develop two algorithms which solve these equations: one for time-varying DMREs and another for time-invariant DMREs, also MATLAB implementations of the above algorithms are developed. Since MATLAB does not have functions which solve DMREs, two algorithms based on a BDF method are also developed. All implemented algorithms have been compared, under equal conditions, at both precision and computational costs. Experimental results show the advantages of solving non-stiff DMREs and in particular stiff DMREs by the proposed algorithms.
Differential equation based method for accurate approximations in optimization
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1990-01-01
A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.
[Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].
Murase, Kenya
2014-01-01
Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.
A differential equation for the Generalized Born radii.
Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro
2013-06-28
The Generalized Born (GB) model offers a convenient way of representing electrostatics in complex macromolecules like proteins or nucleic acids. The computation of atomic GB radii is currently performed by different non-local approaches involving volume or surface integrals. Here we obtain a non-linear second-order partial differential equation for the Generalized Born radius, which may be solved using local iterative algorithms. The equation is derived under the assumption that the usual GB approximation to the reaction field obeys Laplace's equation. The equation admits as particular solutions the correct GB radii for the sphere and the plane. The tests performed on a set of 55 different proteins show an overall agreement with other reference GB models and "perfect" Poisson-Boltzmann based values.
Learning partial differential equations via data discovery and sparse optimization
NASA Astrophysics Data System (ADS)
Schaeffer, Hayden
2017-01-01
We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.
Learning partial differential equations via data discovery and sparse optimization.
Schaeffer, Hayden
2017-01-01
We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.
Zhukovsky, K.
2014-01-01
We present a general method of operational nature to analyze and obtain solutions for a variety of equations of mathematical physics and related mathematical problems. We construct inverse differential operators and produce operational identities, involving inverse derivatives and families of generalised orthogonal polynomials, such as Hermite and Laguerre polynomial families. We develop the methodology of inverse and exponential operators, employing them for the study of partial differential equations. Advantages of the operational technique, combined with the use of integral transforms, generating functions with exponentials and their integrals, for solving a wide class of partial derivative equations, related to heat, wave, and transport problems, are demonstrated. PMID:24892051
NASA Astrophysics Data System (ADS)
Michta, Mariusz
2017-02-01
In the paper we study properties of solutions to stochastic differential inclusions and set-valued stochastic differential equations with respect to semimartingale integrators. We present new connections between their solutions. In particular, we show that attainable sets of solutions to stochastic inclusions are subsets of values of multivalued solutions of certain set-valued stochastic equations. We also show that every solution to stochastic inclusion is a continuous selection of a multivalued solution of an associated set-valued stochastic equation. The results obtained in the paper generalize results dealing with this topic known both in deterministic and stochastic cases.
The reservoir model: a differential equation model of psychological regulation.
Deboeck, Pascal R; Bergeman, C S
2013-06-01
Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might "add up" over time (e.g., life stressors, inputs), but individuals simultaneously take action to "blow off steam" (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the "height" (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging.
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems.
NASA Technical Reports Server (NTRS)
Jamison, J. W.
1994-01-01
CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.
Integro-differential equation of non-local wave interaction
Engibaryan, N B; Khachatryan, Aghavard Kh
2007-06-30
The integro-differential equation d{sup 2}f/dx{sup 2} + Af = {integral}{sub 0}{sup {infinity}}K(x-t)f(t)dt + g(x) with kernel K(x)={lambda}{integral}{sub a}{sup {infinity}}e{sup -|x|p}G(p)dp, a{>=}0, is considered, in which A>0, {lambda} element of 9-{infinity},{infinity}), G(p){>=}0, 2{integral}{sub a}{sup {infinity}}1/p g(p)dp=1. These equations arise, in particular, in the theory of non-local wave interaction. A factorization method of their analysis and solution is developed. Bibliography: 9 titles.
Numerical Solution of a Nonlinear Integro-Differential Equation
NASA Astrophysics Data System (ADS)
Buša, Ján; Hnatič, Michal; Honkonen, Juha; Lučivjanský, Tomáš
2016-02-01
A discretization algorithm for the numerical solution of a nonlinear integrodifferential equation modeling the temporal variation of the mean number density a(t) in the single-species annihilation reaction A + A → 0 is discussed. The proposed solution for the two-dimensional case (where the integral entering the equation is divergent) uses regularization and then finite differences for the approximation of the differential operator together with a piecewise linear approximation of a(t) under the integral. The presented numerical results point to basic features of the behavior of the number density function a(t) and suggest further improvement of the proposed algorithm.
Connecting orbits for nonlinear differential equations at resonance
NASA Astrophysics Data System (ADS)
Kokocki, Piotr
We study the existence of orbits connecting stationary points for the first order differential equations being at resonance at infinity, where the right hand side is the perturbations of a sectorial operator. Our aim is to prove an index formula expressing the Conley index of associated semiflow with respect to appropriately large ball, in terms of special geometrical assumptions imposed on the nonlinearity. We also prove that the geometrical assumptions are generalization of the well-known in literature Landesman-Lazer and strong resonance conditions. Obtained index formula will be used to derive the criteria determining the existence of orbits connecting stationary points for the heat equation being at resonance at infinity.
Computer transformation of partial differential equations into any coordinate system
NASA Technical Reports Server (NTRS)
Sullivan, R. D.
1977-01-01
The use of tensors to provide a compact way of writing partial differential equations in a form valid in all coordinate systems is discussed. In order to find solutions to the equations with their boundary conditions they must be expressed in terms of the coordinate system under consideration. The process of arriving at these expressions from the tensor formulation was automated by a software system, TENSR. An allied system that analyzes the resulting expressions term by term and drops those that are negligible is also described.
Solution of partial differential equations on vector and parallel computers
NASA Technical Reports Server (NTRS)
Ortega, J. M.; Voigt, R. G.
1985-01-01
The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed.
ERIC Educational Resources Information Center
Mallet, D. G.; McCue, S. W.
2009-01-01
The solution of linear ordinary differential equations (ODEs) is commonly taught in first-year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognizing what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to…
Addona, Davide
2015-08-15
We obtain weighted uniform estimates for the gradient of the solutions to a class of linear parabolic Cauchy problems with unbounded coefficients. Such estimates are then used to prove existence and uniqueness of the mild solution to a semi-linear backward parabolic Cauchy problem, where the differential equation is the Hamilton–Jacobi–Bellman equation of a suitable optimal control problem. Via backward stochastic differential equations, we show that the mild solution is indeed the value function of the controlled equation and that the feedback law is verified.
Richards' Equation and its Constitutive Relations as a System of Differential-Algebraic Equations
NASA Astrophysics Data System (ADS)
Murray, S. K.; Mead, J. L.
2007-12-01
Richards' Equation is commonly used to understand how water flows in unsaturated soils. We present a new formulation of Richards' Equation which will allow us to incorporate model and observation errors. In addition, we can address spatial and temporal inconsistencies existing between the model and observations. There are two basic formulations for Richards' Equation: the pressure head form and the mixed form, the latter of which explicitly incorporates soil moisture content. The mixed form is typically solved using HYDRUS, a freely available program that uses finite elements with Picard iteration to handle the nonlinearities. However, recent results suggest considering Richards' Equation as a differential-algebraic equation (DAE), where the algebraic models for soil moisture content (van Genuchten's equation) is solved simultaneously with Richards' Equation (Kees, et. al., 2002). This formulation can give more accurate forward model solutions, however, we note that it also allows us to consider the uncertainties in the pressure head ψ and the soil moister content θ during the inversion process. We extend the DAE formulation to include the algebraic constraint for hydraulic conductivity K, so that its uncertainty can also be considered in an inversion. This poster focuses on the efficiency and accuracy of the forward numerical solution of this particular DAE formulation of Richards' Equation and how it compares to other forward solutions, such as HYDRUS.
Data-driven discovery of partial differential equations
NASA Astrophysics Data System (ADS)
Rudy, Samuel; Brunton, Steven; Proctor, Joshua; Kutz, J. Nathan
2016-11-01
Fluid dynamics is inherently governed by spatial-temporal interactions which can be characterized by partial differential equations (PDEs). Emerging sensor and measurement technologies allowing for rich, time-series data collection motivate new data-driven methods for discovering governing equations. We present a novel computational technique for discovering governing PDEs from time series measurements. A library of candidate terms for the PDE including nonlinearities and partial derivatives is computed and sparse regression is then used to identify a subset which accurately reflects the measured dynamics. Measurements may be taken either in a Eulerian framework to discover field equations or in a Lagrangian framework to study a single stochastic trajectory. The method is shown to be robust, efficient, and to work on a variety of canonical equations. Data collected from a simulation of a flow field around a cylinder is used to accurately identify the Navier-Stokes vorticity equation and the Reynolds number to within 1%. A single trace of Brownian motion is also used to identify the diffusion equation. Our method provides a novel approach towards data enabled science where spatial-temporal information bolsters classical machine learning techniques to identify physical laws.
Numerical approaches to fractional calculus and fractional ordinary differential equation
NASA Astrophysics Data System (ADS)
Li, Changpin; Chen, An; Ye, Junjie
2011-05-01
Nowadays, fractional calculus are used to model various different phenomena in nature, but due to the non-local property of the fractional derivative, it still remains a lot of improvements in the present numerical approaches. In this paper, some new numerical approaches based on piecewise interpolation for fractional calculus, and some new improved approaches based on the Simpson method for the fractional differential equations are proposed. We use higher order piecewise interpolation polynomial to approximate the fractional integral and fractional derivatives, and use the Simpson method to design a higher order algorithm for the fractional differential equations. Error analyses and stability analyses are also given, and the numerical results show that these constructed numerical approaches are efficient.
Analytic solution of differential equation for gyroscope's motions
NASA Astrophysics Data System (ADS)
Tyurekhodjaev, Abibulla N.; Mamatova, Gulnar U.
2016-08-01
Problems of motion of a rigid body with a fixed point are one of the urgent problems in classical mechanics. A feature of this problem is that, despite the important results achieved by outstanding mathematicians in the last two centuries, there is still no complete solution. This paper obtains an analytical solution of the problem of motion of an axisymmetric rigid body with variable inertia moments in resistant environment described by the system of nonlinear differential equations of L. Euler, involving the partial discretization method for nonlinear differential equations, which was built by A. N. Tyurekhodjaev based on the theory of generalized functions. To such problems belong gyroscopic instruments, in particular, and especially gyroscopes.
An ordinary differential equation based solution path algorithm.
Wu, Yichao
2011-01-01
Efron, Hastie, Johnstone and Tibshirani (2004) proposed Least Angle Regression (LAR), a solution path algorithm for the least squares regression. They pointed out that a slight modification of the LAR gives the LASSO (Tibshirani, 1996) solution path. However it is largely unknown how to extend this solution path algorithm to models beyond the least squares regression. In this work, we propose an extension of the LAR for generalized linear models and the quasi-likelihood model by showing that the corresponding solution path is piecewise given by solutions of ordinary differential equation systems. Our contribution is twofold. First, we provide a theoretical understanding on how the corresponding solution path propagates. Second, we propose an ordinary differential equation based algorithm to obtain the whole solution path.
Numerical solution of three-dimensional magnetic differential equations
Reiman, A.H.; Greenside, H.S.
1987-02-01
A computer code is described that solves differential equations of the form B . del f = h for a single-valued solution f, given a toroidal three-dimensional divergence-free field B and a single-valued function h. The code uses a new algorithm that Fourier decomposes a given function in a set of flux coordinates in which the field lines are straight. The algorithm automatically adjusts the required integration lengths to compensate for proximity to low order rational surfaces. Applying this algorithm to the Cartesian coordinates defines a transformation to magnetic coordinates, in which the magnetic differential equation can be accurately solved. Our method is illustrated by calculating the Pfirsch-Schlueter currents for a stellarator.
Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations
NASA Astrophysics Data System (ADS)
Junaid, Ali Khan; Muhammad, Asif Zahoor Raja; Ijaz Mansoor, Qureshi
2011-02-01
We present an evolutionary computational approach for the solution of nonlinear ordinary differential equations (NLODEs). The mathematical modeling is performed by a feed-forward artificial neural network that defines an unsupervised error. The training of these networks is achieved by a hybrid intelligent algorithm, a combination of global search with genetic algorithm and local search by pattern search technique. The applicability of this approach ranges from single order NLODEs, to systems of coupled differential equations. We illustrate the method by solving a variety of model problems and present comparisons with solutions obtained by exact methods and classical numerical methods. The solution is provided on a continuous finite time interval unlike the other numerical techniques with comparable accuracy. With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed.
Multigrid methods for differential equations with highly oscillatory coefficients
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Luo, Erding
1993-01-01
New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.
A convex penalty for switching control of partial differential equations
Clason, Christian; Rund, Armin; Kunisch, Karl; ...
2016-01-19
A convex penalty for promoting switching controls for partial differential equations is introduced; such controls consist of an arbitrary number of components of which at most one should be simultaneously active. Using a Moreau–Yosida approximation, a family of approximating problems is obtained that is amenable to solution by a semismooth Newton method. In conclusion, the efficiency of this approach and the structure of the obtained controls are demonstrated by numerical examples.
Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations
2014-07-01
non- linear hybrid systems by linear algebraic methods. In Radhia Cousot and Matthieu Martel, editors, SAS, volume 6337 of LNCS, pages 373–389. Springer...Tarski. A decision method for elementary algebra and geometry. Bulletin of the American Mathematical Society, 59, 1951. [36] Wolfgang Walter. Ordinary...Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 July 2014
Advanced-Retarded Differential Equations in Quantum Photonic Systems
NASA Astrophysics Data System (ADS)
Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique
2017-02-01
We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip.
Higher order matrix differential equations with singular coefficient matrices
Fragkoulis, V. C.; Kougioumtzoglou, I. A.; Pantelous, A. A.; Pirrotta, A.
2015-03-10
In this article, the class of higher order linear matrix differential equations with constant coefficient matrices and stochastic process terms is studied. The coefficient of the highest order is considered to be singular; thus, rendering the response determination of such systems in a straightforward manner a difficult task. In this regard, the notion of the generalized inverse of a singular matrix is used for determining response statistics. Further, an application relevant to engineering dynamics problems is included.
Neural network differential equation and plasma equilibrium solver
NASA Astrophysics Data System (ADS)
van Milligen, B. Ph.; Tribaldos, V.; Jiménez, J. A.
1995-11-01
A new generally applicable method to solve differential equations, based on neural networks, is proposed. Straightforward to implement, finite differences and coordinate transformations are not used. The neural network provides a flexible and compact base for representing the solution, found through the global minimization of an error functional. As a proof of principle, a two-dimensional ideal magnetohydrodynamic plasma equilibrium is solved. Since no particular topology is assumed, the technique is especially promising for the three-dimensional plasma equilibrium problem.
On approximating hereditary dynamics by systems of ordinary differential equations
NASA Technical Reports Server (NTRS)
Cliff, E. M.; Burns, J. A.
1978-01-01
The paper deals with methods of obtaining approximate solutions to linear retarded functional differential equations (hereditary systems). The basic notion is to project the infinite dimensional space of initial functions for the hereditary system onto a finite dimensional subspace. Within this framework, two particular schemes are discussed. The first uses well-known piecewise constant approximations, while the second is a new method based on piecewise linear approximating functions. Numerical results are given.
A differential delay equation arising from the sieve of Eratosthenes
NASA Technical Reports Server (NTRS)
Cheer, A. Y.; Goldston, D. A.
1990-01-01
Consideration is given to the differential delay equation introduced by Buchstab (1937) in connection with an asymptotic formula for the uncanceled terms in the sieve of Eratosthenes. Maier (1985) used this result to show there is unexpected irreqularity in the distribution of primes in short intervals. The function omega(u) is studied in this paper using numerical and analytical techniques. The results are applied to give some numerical constants in Maier's theorem.
Advanced-Retarded Differential Equations in Quantum Photonic Systems
Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique
2017-01-01
We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip. PMID:28230090
Fast Numerical Methods for Stochastic Partial Differential Equations
2016-04-15
uncertainty quantification. In the last decade much progress has been made in the construction of numerical algorithms to efficiently solve SPDES with...applicable SPDES with efficient numerical methods. This project is intended to address the numerical analysis as well as algorithm aspects of SPDES. Three...differential equations. Our work contains algorithm constructions, rigorous error analysis, and extensive numerical experiments to demonstrate our algorithm
On qualitative properties in Volterra integro-differential equations
NASA Astrophysics Data System (ADS)
Tunç, Cemil
2017-01-01
In this research, we utilize a Lyapunov function and obtain sufficient conditions for the asymptotically stability and boundedness of solutions to the Volterra integro-differential equations of the form d/dt [ x (t)-∫0tD(t,s)x (s)ds ] =-A (t )x (t )+ ∫0tC(t,s) x (s )ds +e (t ,x ). The obtained results revise, correct and improve the results obtained in literature.
A Global Optimization Algorithm Using Stochastic Differential Equations.
1985-02-01
Bari (Italy).2Istituto di Fisica , 2 UniversitA di Roma "Tor Vergata", Via Orazio Raimondo, 00173 (La Romanina) Roma (Italy). 3Istituto di Matematica ...accompanying Algorithm. lDipartininto di Matematica , Universita di Bari, 70125 Bar (Italy). Istituto di Fisica , 2a UniversitA di Roim ’"Tor Vergata", Via...Optimization, Stochastic Differential Equations Work Unit Number 5 (Optimization and Large Scale Systems) 6Dipartimento di Matematica , Universita di Bari, 70125
A Partial Differential Equation for the Rank One Convex Envelope
NASA Astrophysics Data System (ADS)
Oberman, Adam M.; Ruan, Yuanlong
2017-02-01
A partial differential equation (PDE) for the rank one convex envelope is introduced. The existence and uniqueness of viscosity solutions to the PDE is established. Elliptic finite difference schemes are constructed and convergence of finite difference solutions to the viscosity solution of the PDE is proven. Computational results are presented and laminates are computed from the envelopes. Results include the Kohn-Strang example, the classical four gradient example, and an example with eight gradients which produces nontrivial laminates.
Oscillation of a class of fractional differential equations with damping term.
Qin, Huizeng; Zheng, Bin
2013-01-01
We investigate the oscillation of a class of fractional differential equations with damping term. Based on a certain variable transformation, the fractional differential equations are converted into another differential equations of integer order with respect to the new variable. Then, using Riccati transformation, inequality, and integration average technique, some new oscillatory criteria for the equations are established. As for applications, oscillation for two certain fractional differential equations with damping term is investigated by the use of the presented results.
Renormalization of tracer turbulence leading to fractional differential equations.
Sánchez, R; Carreras, B A; Newman, D E; Lynch, V E; van Milligen, B Ph
2006-07-01
For many years quasilinear renormalization has been applied to numerous problems in turbulent transport. This scheme relies on the localization hypothesis to derive a linear transport equation from a simplified stochastic description of the underlying microscopic dynamics. However, use of the localization hypothesis narrows the range of transport behaviors that can be captured by the renormalized equations. In this paper, we construct a renormalization procedure that manages to avoid the localization hypothesis completely and produces renormalized transport equations, expressed in terms of fractional differential operators, that exhibit much more of the transport phenomenology observed in nature. This technique provides a first step toward establishing a rigorous link between the microscopic physics of turbulence and the fractional transport models proposed phenomenologically for a wide variety of turbulent systems such as neutral fluids or plasmas.
Computing spacetime curvature via differential-algebraic equations
Ashby, S.F.; Lee, S.L.; Petzold, L.R.; Saylor, P.E.; Seidel, E.
1996-01-01
The equations that govern the behavior of physical systems can often solved numerically using a method of lines approach and differential-algebraic equation (DAE) solvers. For example, such an approach can be used to solve the Einstein field equations of general relativity, and thereby simulate significant astrophysical events. In this paper, we describe some preliminary work in which two model problems in general relativity are formulated, spatially discretized, and then numerically solved as a DAE. In particular, we seek to reproduce the solution to the spherically symmetric Schwarzschild spacetime. This is an important testbed calculation in numerical relativity since the solution is the steady-state for the collision of two (or more) non-rotating black holes. Moreover, analytic late-time properties of the Schwarzschild spacetime are well known and can be used the accuracy of the simulation.
Oscillation properties of some functional fourth order hyperbolic differential equations
NASA Astrophysics Data System (ADS)
Petrova, Z.
2012-11-01
In this paper, we apply our recent results for fourth order functional ordinary differential equations and inequalities and obtain sufficient conditions for oscillation of all sufficiently smooth solutions of the following equation ∑ i+j = 2;4ai,j∂i+ju(x,y)/∂xi∂yj+ ∑ i = 1nbi(x,y)u(x-σi,y-τi)+c(x,y,u) = f(x,y), where x>0,y>0,ai,j∈R,σi≥0 and τi ≥ 0 are constants for all the indices. Also, we suppose that n∈N,bi(x,y)∈C(R+2;R+), ∀i = 1-n;c(x,y,u)∈C(R+2,R;R) and f(x,y)∈C(R+2;R). In particular, we establish sufficient conditions for the distribution of zeros this equation.
Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach
Toutounji, Mohamad
2015-02-15
This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.
A procedure to construct exact solutions of nonlinear fractional differential equations.
Güner, Özkan; Cevikel, Adem C
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.
A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations
Güner, Özkan; Cevikel, Adem C.
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972
On invariant analysis of some time fractional nonlinear systems of partial differential equations. I
NASA Astrophysics Data System (ADS)
Singla, Komal; Gupta, R. K.
2016-10-01
An investigation of Lie point symmetries for systems of time fractional partial differential equations including Ito system, coupled Burgers equations, coupled Korteweg de Vries equations, Hirota-Satsuma coupled KdV equations, and coupled nonlinear Hirota equations has been done. Using the obtained symmetries, each one of the systems is reduced to the nonlinear system of fractional ordinary differential equations involving Erdélyi-Kober fractional differential operator depending on a parameter α.
Modelling biochemical reaction systems by stochastic differential equations with reflection.
Niu, Yuanling; Burrage, Kevin; Chen, Luonan
2016-05-07
In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach.
[Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (2)].
Murase, Kenya
2015-01-01
In this issue, symbolic methods for solving differential equations were firstly introduced. Of the symbolic methods, Laplace transform method was also introduced together with some examples, in which this method was applied to solving the differential equations derived from a two-compartment kinetic model and an equivalent circuit model for membrane potential. Second, series expansion methods for solving differential equations were introduced together with some examples, in which these methods were used to solve Bessel's and Legendre's differential equations. In the next issue, simultaneous differential equations and various methods for solving these differential equations will be introduced together with some examples in medical physics.
ASP: Automated symbolic computation of approximate symmetries of differential equations
NASA Astrophysics Data System (ADS)
Jefferson, G. F.; Carminati, J.
2013-03-01
A recent paper (Pakdemirli et al. (2004) [12]) compared three methods of determining approximate symmetries of differential equations. Two of these methods are well known and involve either a perturbation of the classical Lie symmetry generator of the differential system (Baikov, Gazizov and Ibragimov (1988) [7], Ibragimov (1996) [6]) or a perturbation of the dependent variable/s and subsequent determination of the classical Lie point symmetries of the resulting coupled system (Fushchych and Shtelen (1989) [11]), both up to a specified order in the perturbation parameter. The third method, proposed by Pakdemirli, Yürüsoy and Dolapçi (2004) [12], simplifies the calculations required by Fushchych and Shtelen's method through the assignment of arbitrary functions to the non-linear components prior to computing symmetries. All three methods have been implemented in the new MAPLE package ASP (Automated Symmetry Package) which is an add-on to the MAPLE symmetry package DESOLVII (Vu, Jefferson and Carminati (2012) [25]). To our knowledge, this is the first computer package to automate all three methods of determining approximate symmetries for differential systems. Extensions to the theory have also been suggested for the third method and which generalise the first method to systems of differential equations. Finally, a number of approximate symmetries and corresponding solutions are compared with results in the literature.
Strong solutions for differential equations in abstract spaces
NASA Astrophysics Data System (ADS)
Teixeira, Eduardo V.
Let (E,F) be a locally convex space. We denote the bounded elements of E by Eb:={x∈E:∥x∥F=supρ∈F ρ(x)<∞}. In this paper, we prove that if B is relatively compact with respect to the F topology and f:I×Eb→Eb is a measurable family of F-continuous maps then for each x0∈Eb there exists a norm-differentiable, (i.e. differentiable with respect to the ∥·∥F norm) local solution to the initial valued problem ut(t)=f(t,u(t)), u(t0)=x0. All of this machinery is developed to study the Lipschitz stability of a nonlinear differential equation involving the Hardy-Littlewood maximal operator.
Integro-differential equation for Bose-Einstein condensates
Adam, R. M.; Sofianos, S. A.
2010-11-15
We use the assumption that the potential for the A-boson system can be written as a sum of pairwise acting forces to decompose the wave function into Faddeev components that fulfill a Faddeev type equation. Expanding these components in terms of potential harmonic (PH) polynomials and projecting on the potential basis for a specific pair of particles results in a two-variable integro-differential equations suitable for A-boson bound-state studies. The solution of the equation requires the evaluation of Jacobi polynomials P{sub K}{sup {alpha},{beta}}(x) and of the weight function W(z) which give severe numerical problems for very large A. However, using appropriate limits for A{yields}{infinity} we obtain a variant equation which depends only on the input two-body interaction, and the kernel in the integral part has a simple analytic form. This equation can be readily applied to a variety of bosonic systems such as microclusters of noble gasses. We employ it to obtain results for A(set-membership sign)(10-100) {sup 87}Rb atoms interacting via interatomic interactions and confined by an externally applied trapping potential V{sub trap}(r). Our results are in excellent agreement with those previously obtained using the potential harmonic expansion method (PHEM) and the diffusion Monte Carlo (DMC) method.
Computations of Wall Distances Based on Differential Equations
NASA Technical Reports Server (NTRS)
Tucker, Paul G.; Rumsey, Chris L.; Spalart, Philippe R.; Bartels, Robert E.; Biedron, Robert T.
2004-01-01
The use of differential equations such as Eikonal, Hamilton-Jacobi and Poisson for the economical calculation of the nearest wall distance d, which is needed by some turbulence models, is explored. Modifications that could palliate some turbulence-modeling anomalies are also discussed. Economy is of especial value for deforming/adaptive grid problems. For these, ideally, d is repeatedly computed. It is shown that the Eikonal and Hamilton-Jacobi equations can be easy to implement when written in implicit (or iterated) advection and advection-diffusion equation analogous forms, respectively. These, like the Poisson Laplacian term, are commonly occurring in CFD solvers, allowing the re-use of efficient algorithms and code components. The use of the NASA CFL3D CFD program to solve the implicit Eikonal and Hamilton-Jacobi equations is explored. The re-formulated d equations are easy to implement, and are found to have robust convergence. For accurate Eikonal solutions, upwind metric differences are required. The Poisson approach is also found effective, and easiest to implement. Modified distances are not found to affect global outputs such as lift and drag significantly, at least in common situations such as airfoil flows.
Integro-differential equation for Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Adam, R. M.; Sofianos, S. A.
2010-11-01
We use the assumption that the potential for the A-boson system can be written as a sum of pairwise acting forces to decompose the wave function into Faddeev components that fulfill a Faddeev type equation. Expanding these components in terms of potential harmonic (PH) polynomials and projecting on the potential basis for a specific pair of particles results in a two-variable integro-differential equations suitable for A-boson bound-state studies. The solution of the equation requires the evaluation of Jacobi polynomials PKα,β(x) and of the weight function W(z) which give severe numerical problems for very large A. However, using appropriate limits for A→∞ we obtain a variant equation which depends only on the input two-body interaction, and the kernel in the integral part has a simple analytic form. This equation can be readily applied to a variety of bosonic systems such as microclusters of noble gasses. We employ it to obtain results for A∈(10-100) Rb87 atoms interacting via interatomic interactions and confined by an externally applied trapping potential Vtrap(r). Our results are in excellent agreement with those previously obtained using the potential harmonic expansion method (PHEM) and the diffusion Monte Carlo (DMC) method.
Xie, G.; Li, J.; Majer, E.; Zuo, D.
1998-07-01
This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.
NASA Technical Reports Server (NTRS)
Prudhomme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G.; Zang, Thomas A., Jr. (Technical Monitor)
2002-01-01
We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced basis approximations, Galerkin projection onto a space W(sub N) spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation, relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures, methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage, in which, given a new parameter value, we calculate the output of interest and associated error bound, depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control.
Fuzzy fractional functional differential equations under Caputo gH-differentiability
NASA Astrophysics Data System (ADS)
Hoa, Ngo Van
2015-05-01
In this paper the fuzzy fractional functional differential equations (FFFDEs) under the Caputo generalized Hukuhara differentiability are introduced. We study the existence and uniqueness results of solutions for FFFDEs under some suitable conditions. Also the solution to fuzzy fractional functional initial value problem under Caputo-type fuzzy fractional derivatives by a modified Adams-Bashforth-Moulton method (MABMM) is presented. The method is illustrated by solving some examples.
Minimal parameter solution of the orthogonal matrix differential equation
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Markley, F. Landis
1990-01-01
As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.
Minimal parameter solution of the orthogonal matrix differential equation
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Markley, F. Landis
1988-01-01
As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed employing the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.
Differential equation based method for accurate approximations in optimization
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1990-01-01
This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.
Axially symmetric equations for differential pulsar rotation with superfluid entrainment
NASA Astrophysics Data System (ADS)
Antonelli, M.; Pizzochero, P. M.
2017-01-01
In this article we present an analytical two-component model for pulsar rotational dynamics. Under the assumption of axial symmetry, implemented by a paraxial array of straight vortices that thread the entire neutron superfluid, we are able to project exactly the 3D hydrodynamical problem to a 1D cylindrical one. In the presence of density-dependent entrainment the superfluid rotation is non-columnar: we circumvent this by using an auxiliary dynamical variable directly related to the areal density of vortices. The main result is a system of differential equations that take consistently into account the stratified spherical structure of the star, the dynamical effects of non-uniform entrainment, the differential rotation of the superfluid component and its coupling to the normal crust. These equations represent a mathematical framework in which to test quantitatively the macroscopic consequences of the presence of a stable vortex array, a working hypothesis widely used in glitch models. Even without solving the equations explicitly, we are able to draw some general quantitative conclusions; in particular, we show that the reservoir of angular momentum (corresponding to recent values of the pinning forces) is enough to reproduce the largest glitch observed in the Vela pulsar, provided its mass is not too large.
Parabolic Herz Spaces and their Applications
NASA Astrophysics Data System (ADS)
Ragusa, Maria Alessandra
2010-09-01
The note is a natural continuations of the study started in [7]. In Herz spaces endowed with parabolic metric are proved regularity results of weak solutions to divergence form parabolic equations having discontinuous coefficients, using boundedness of integral operators and commutators generated by VMO functions and Calderón-Zygmund operators.
An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion
NASA Astrophysics Data System (ADS)
Messelmi, Farid
2016-09-01
We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.
Paraconformal structures, ordinary differential equations and totally geodesic manifolds
NASA Astrophysics Data System (ADS)
Kryński, Wojciech
2016-05-01
We construct point invariants of ordinary differential equations of arbitrary order that generalise the Tresse and Cartan invariants of equations of order two and three, respectively. The vanishing of the invariants is equivalent to the existence of a totally geodesic paraconformal structure which consists of a paraconformal structure, an adapted GL(2 , R) -connection and a two-parameter family of totally geodesic hypersurfaces on the solution space. The structures coincide with the projective structures in dimension 2 and with the Einstein-Weyl structures of Lorentzian signature in dimension 3. We show that the totally geodesic paraconformal structures in higher dimensions can be described by a natural analogue of the Hitchin twistor construction. We present a general example of Veronese webs that generalise the hyper-CR Einstein-Weyl structures in dimension 3. The Veronese webs are described by a hierarchy of integrable systems.
Modeling tree crown dynamics with 3D partial differential equations
Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry
2014-01-01
We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications. PMID:25101095
Bringing partial differential equations to life for students
NASA Astrophysics Data System (ADS)
José Cano, María; Chacón-Vera, Eliseo; Esquembre, Francisco
2015-05-01
Teaching partial differential equations (PDEs) carries inherent difficulties that an interactive visualization might help overcome in an active learning process. However, the generation of this kind of teaching material implies serious difficulties, mainly in terms of coding efforts. This work describes how to use an authoring tool, Easy Java Simulations, to build interactive simulations using FreeFem++ (Hecht F 2012 J. Numer. Math. 20 251) as a PDE solver engine. It makes possible to build simulations where students can change parameters, the geometry and the equations themselves getting an immediate feedback. But it is also possible for them to edit the simulations to set deeper changes. The process is ilustrated with some basic examples. These simulations show PDEs in a pedagogic manner and can be tuned by no experts in the field, teachers or students. Finally, we report a classroom experience and a survey from the third year students in the Degree of Mathematics at the University of Murcia.
Analytical schemes for a new class of fractional differential equations
NASA Astrophysics Data System (ADS)
Agrawal, O. P.
2007-05-01
Fractional differential equations (FDEs) considered so far contain mostly left (or forward) fractional derivatives. In this paper, we present analytical solutions for a class of FDEs which contain both the left and the right (or the forward and the backward) fractional derivatives. The methods presented use properties of fractional integral operators (which, in many cases, lead to Volterra-type integral equations), an operational approach and a successive approximation method to obtain the solutions. The methods are demonstrated using some examples. The FDEs considered may come from fractional variational calculus (FVC) or from other physical principles. In the case of fractional variational problems (FVPs), the transversality conditions are used to identify appropriate boundary conditions and to solve the problems. It is hoped that this study will lead to further investigations in the field and more elegant solutions would be found.
Algorithm Refinement for Stochastic Partial Differential Equations. I. Linear Diffusion
NASA Astrophysics Data System (ADS)
Alexander, Francis J.; Garcia, Alejandro L.; Tartakovsky, Daniel M.
2002-10-01
A hybrid particle/continuum algorithm is formulated for Fickian diffusion in the fluctuating hydrodynamic limit. The particles are taken as independent random walkers; the fluctuating diffusion equation is solved by finite differences with deterministic and white-noise fluxes. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass conservation. This methodology is an extension of Adaptive Mesh and Algorithm Refinement to stochastic partial differential equations. Results from a variety of numerical experiments are presented for both steady and time-dependent scenarios. In all cases the mean and variance of density are captured correctly by the stochastic hybrid algorithm. For a nonstochastic version (i.e., using only deterministic continuum fluxes) the mean density is correct, but the variance is reduced except in particle regions away from the interface. Extensions of the methodology to fluid mechanics applications are discussed.
Einstein-Weyl spaces and third-order differential equations
NASA Astrophysics Data System (ADS)
Tod, K. P.
2000-08-01
The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, "On the null surface formalism," Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., "Null surfaces formation in 3D," J. Math Phys. (submitted)] are extended to describe Einstein-Weyl spaces, following Cartan [E. Cartan, "Les espaces généralisées et l'integration de certaines classes d'equations différentielles," C. R. Acad. Sci. 206, 1425-1429 (1938); "La geometria de las ecuaciones diferenciales de tercer order," Rev. Mat. Hispano-Am. 4, 1-31 (1941)]. In the resulting formalism, Einstein-Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein-Weyl spaces are given.
A unique transformation from ordinary differential equations to reaction networks.
Soliman, Sylvain; Heiner, Monika
2010-12-22
Many models in Systems Biology are described as a system of Ordinary Differential Equations, which allows for transient, steady-state or bifurcation analysis when kinetic information is available. Complementary structure-related qualitative analysis techniques have become increasingly popular in recent years, like qualitative model checking or pathway analysis (elementary modes, invariants, flux balance analysis, graph-based analyses, chemical organization theory, etc.). They do not rely on kinetic information but require a well-defined structure as stochastic analysis techniques equally do. In this article, we look into the structure inference problem for a model described by a system of Ordinary Differential Equations and provide conditions for the uniqueness of its solution. We describe a method to extract a structured reaction network model, represented as a bipartite multigraph, for example, a continuous Petri net (CPN), from a system of Ordinary Differential Equations (ODEs). A CPN uniquely defines an ODE, and each ODE can be transformed into a CPN. However, it is not obvious under which conditions the transformation of an ODE into a CPN is unique, that is, when a given ODE defines exactly one CPN. We provide biochemically relevant sufficient conditions under which the derived structure is unique and counterexamples showing the necessity of each condition. Our method is implemented and available; we illustrate it on some signal transduction models from the BioModels database. A prototype implementation of the method is made available to modellers at http://contraintes.inria.fr/~soliman/ode2pn.html, and the data mentioned in the "Results" section at http://contraintes.inria.fr/~soliman/ode2pn_data/. Our results yield a new recommendation for the import/export feature of tools supporting the SBML exchange format.
Deformed cohomologies of symmetry pseudo-groups and coverings of differential equations
NASA Astrophysics Data System (ADS)
Morozov, Oleg I.
2017-03-01
The work establishes a relation between deformed cohomologies of symmetry pseudo-groups and coverings of differential equations. Examples include the potential Khokhlov-Zabolotskaya equation and the Boyer-Finley equation.
Method for Solving Physical Problems Described by Linear Differential Equations
NASA Astrophysics Data System (ADS)
Belyaev, B. A.; Tyurnev, V. V.
2017-01-01
A method for solving physical problems is suggested in which the general solution of a differential equation in partial derivatives is written in the form of decomposition in spherical harmonics with indefinite coefficients. Values of these coefficients are determined from a comparison of the decomposition with a solution obtained for any simplest particular case of the examined problem. The efficiency of the method is demonstrated on an example of calculation of electromagnetic fields generated by a current-carrying circular wire. The formulas obtained can be used to analyze paths in the near-field magnetic (magnetically inductive) communication systems working in moderately conductive media, for example, in sea water.
Partial differential equation models in the socio-economic sciences
Burger, Martin; Caffarelli, Luis; Markowich, Peter A.
2014-01-01
Mathematical models based on partial differential equations (PDEs) have become an integral part of quantitative analysis in most branches of science and engineering, recently expanding also towards biomedicine and socio-economic sciences. The application of PDEs in the latter is a promising field, but widely quite open and leading to a variety of novel mathematical challenges. In this introductory article of the Theme Issue, we will provide an overview of the field and its recent boosting topics. Moreover, we will put the contributions to the Theme Issue in an appropriate perspective. PMID:25288814
Partial differential equation models in the socio-economic sciences.
Burger, Martin; Caffarelli, Luis; Markowich, Peter A
2014-11-13
Mathematical models based on partial differential equations (PDEs) have become an integral part of quantitative analysis in most branches of science and engineering, recently expanding also towards biomedicine and socio-economic sciences. The application of PDEs in the latter is a promising field, but widely quite open and leading to a variety of novel mathematical challenges. In this introductory article of the Theme Issue, we will provide an overview of the field and its recent boosting topics. Moreover, we will put the contributions to the Theme Issue in an appropriate perspective.
Behavior near constant solutions of functional differential equations
NASA Technical Reports Server (NTRS)
Hale, J. K.
1974-01-01
Techniques have been developed to determine in a systematic way the local behavior near constant solutions. Local integral manifolds play a very important role in this development, as they have also for ordinary differential equations. An attempt is made to indicate a few more applications of these methods to some problems in bifurcation in the spirit of Sotomayor (to appear) and to a growth model of Cooke and Yorke (to appear). It is also shown how to prove a theorem on stability under constantly acting disturbances using these methods.
A Solution to the Fundamental Linear Fractional Order Differential Equation
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Lorenzo, Carl F.
1998-01-01
This paper provides a solution to the fundamental linear fractional order differential equation, namely, (sub c)d(sup q, sub t) + ax(t) = bu(t). The impulse response solution is shown to be a series, named the F-function, which generalizes the normal exponential function. The F-function provides the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple example, the inductor terminated semi- infinite lossy line, is used to demonstrate the theory.
Some existence results on nonlinear fractional differential equations.
Baleanu, Dumitru; Rezapour, Shahram; Mohammadi, Hakimeh
2013-05-13
In this paper, by using fixed-point methods, we study the existence and uniqueness of a solution for the nonlinear fractional differential equation boundary-value problem D(α)u(t)=f(t,u(t)) with a Riemann-Liouville fractional derivative via the different boundary-value problems u(0)=u(T), and the three-point boundary condition u(0)=β(1)u(η) and u(T)=β(2)u(η), where T>0, t∈I=[0,T], 0<α<1, 0<η
An Exponential Finite Difference Technique for Solving Partial Differential Equations.
1987-06-01
density , kg/N 3 (lbm/ft 3) 91.*,e separation variables (At dimensionless timelAX) 2 vi -W sNiv W- NiW.4%1 1. INTRODUCTION Partial differential equations...competing numerical analysis were run in double precision on either the IBM-3033 or the Cray X-MP mainframes. The computer codes developed for the...is increased. - R P~p~ 15 Effect of Initial and Boundary Conditions on the Exponential Finite Difference Method In this section the effect of
Neural network error correction for solving coupled ordinary differential equations
NASA Technical Reports Server (NTRS)
Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.
1992-01-01
A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.
Investigation of ODE integrators using interactive graphics. [Ordinary Differential Equations
NASA Technical Reports Server (NTRS)
Brown, R. L.
1978-01-01
Two FORTRAN programs using an interactive graphic terminal to generate accuracy and stability plots for given multistep ordinary differential equation (ODE) integrators are described. The first treats the fixed stepsize linear case with complex variable solutions, and generates plots to show accuracy and error response to step driving function of a numerical solution, as well as the linear stability region. The second generates an analog to the stability region for classes of non-linear ODE's as well as accuracy plots. Both systems can compute method coefficients from a simple specification of the method. Example plots are given.
Differential Equations, Related Problems of Pade Approximations and Computer Applications
1988-01-01
geometric sense, like the Picard-Fuchs equations satisfied by the variation of periods, possess strong arithmetic properties (global nilpotence ...result, and the (G, C)-function conditions, one needs the definition of the p-curvature. We consider a system of matrix first order linear differential...the system (1.1) in the matrix form df f /dx = Aff ; A E M (Q(x)), one can introduce the p-curvature operators Ip, associated with the system (1.1). The
Analytical solutions for systems of partial differential-algebraic equations.
Benhammouda, Brahim; Vazquez-Leal, Hector
2014-01-01
This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.
Renormalization group and perfect operators for stochastic differential equations.
Hou, Q; Goldenfeld, N; McKane, A
2001-03-01
We develop renormalization group (RG) methods for solving partial and stochastic differential equations on coarse meshes. RG transformations are used to calculate the precise effect of small-scale dynamics on the dynamics at the mesh size. The fixed point of these transformations yields a perfect operator: an exact representation of physical observables on the mesh scale with minimal lattice artifacts. We apply the formalism to simple nonlinear models of critical dynamics, and show how the method leads to an improvement in the computational performance of Monte Carlo methods.
Estimating varying coefficients for partial differential equation models.
Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J
2017-01-11
Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data.
Approximate Solvability of Forward-Backward Stochastic Differential Equations
Ma, J. Yong, J.
2002-07-01
The solvability of forward-backward stochastic differential equations (FBSDEs for short) has been studied extensively in recent years. To guarantee the existence and uniqueness of adapted solutions, many different conditions, some quite restrictive, have been imposed. In this paper we propose a new notion: the approximate solvability of FBSDEs, based on the method of optimal control introduced in our primary work [15]. The approximate solvability of a class of FBSDEs is shown under mild conditions; and a general scheme for constructing approximate adapted solutions is proposed.
State-Constrained Optimal Control Problems of Impulsive Differential Equations
Forcadel, Nicolas; Rao Zhiping Zidani, Hasnaa
2013-08-01
The present paper studies an optimal control problem governed by measure driven differential systems and in presence of state constraints. The first result shows that using the graph completion of the measure, the optimal solutions can be obtained by solving a reparametrized control problem of absolutely continuous trajectories but with time-dependent state-constraints. The second result shows that it is possible to characterize the epigraph of the reparametrized value function by a Hamilton-Jacobi equation without assuming any controllability assumption.
Some studies of the numerical solution of ordinary differential equations
NASA Astrophysics Data System (ADS)
Mehdiyeva, G.; Ibrahimov, V.; Imanova, M.
2012-08-01
With the numerical solution of ordinary differential equations(ODE), scientists engaged in the Middle Ages, beginning with the work of Clairaut. The domain of the numerical methods involved in many famous mathematicians - Euler, Runge, Kutta, Adams, Laplace, and others. They have constructed methods with different properties. In this paper we consider the construction of numerical methods with high accuracy and to this end is proposed to use multi-step multi-derivative and hybrid methods. As well as specific methods are constructed with a certain accuracy.
Application of a partial differential equation in image processing
NASA Astrophysics Data System (ADS)
Wang, Huijuan; Yin, Zengqian; Wan, Jingyu; Pang, Juan
2008-03-01
Edge detection is realized by using a FitzHugh Nagumo model which is one type of partial differential equations. This model has three types of dynamic, excitable, Turing/Hopf bifurcation, and bistable. In the excitable region the model can realize the edge detection. In the simulation only one image is processed in order to confirm the effect of control parameters on the edge detection. A satisfying effect of edge detection can be obtained by choosing appropriate control parameters. By comparing with other operators it is found that the FitzHugh Nagumo model is superior to Canny operator, Prewitt operator, Roberts operator, and Sobel operator on edge detection.
Infinite time interval backward stochastic differential equations with continuous coefficients.
Zong, Zhaojun; Hu, Feng
2016-01-01
In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem for [Formula: see text] [Formula: see text] solutions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704-718, 2013).
Informed Conjecturing of Solutions for Differential Equations in a Modeling Context
ERIC Educational Resources Information Center
Winkel, Brian
2015-01-01
We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…
Variations in the Solution of Linear First-Order Differential Equations. Classroom Notes
ERIC Educational Resources Information Center
Seaman, Brian; Osler, Thomas J.
2004-01-01
A special project which can be given to students of ordinary differential equations is described in detail. Students create new differential equations by changing the dependent variable in the familiar linear first-order equation (dv/dx)+p(x)v=q(x) by means of a substitution v=f(y). The student then creates a table of the new equations and…
Coupled latent differential equation with moderators: simulation and application.
Hu, Yueqin; Boker, Steve; Neale, Michael; Klump, Kelly L
2014-03-01
Latent differential equations (LDE) use differential equations to analyze time series data. Because of the recent development of this technique, some issues critical to running an LDE model remain. In this article, the authors provide solutions to some of these issues and recommend a step-by-step procedure demonstrated on a set of empirical data, which models the interaction between ovarian hormone cycles and emotional eating. Results indicated that emotional eating is self-regulated. For instance, when people do more emotional eating than normal, they will subsequently tend to decrease their emotional eating behavior. In addition, a sudden increase will produce a stronger tendency to decrease than will a slow increase. We also found that emotional eating is coupled with the cycle of the ovarian hormone estradiol, and the peak of emotional eating occurs after the peak of estradiol. The self-reported average level of negative affect moderates the frequency of eating regulation and the coupling strength between eating and estradiol. Thus, people with a higher average level of negative affect tend to fluctuate faster in emotional eating, and their eating behavior is more strongly coupled with the hormone estradiol. Permutation tests on these empirical data supported the reliability of using LDE models to detect self-regulation and a coupling effect between two regulatory behaviors.
A hybrid Pade-Galerkin technique for differential equations
NASA Technical Reports Server (NTRS)
Geer, James F.; Andersen, Carl M.
1993-01-01
A three-step hybrid analysis technique, which successively uses the regular perturbation expansion method, the Pade expansion method, and then a Galerkin approximation, is presented and applied to some model boundary value problems. In the first step of the method, the regular perturbation method is used to construct an approximation to the solution in the form of a finite power series in a small parameter epsilon associated with the problem. In the second step of the method, the series approximation obtained in step one is used to construct a Pade approximation in the form of a rational function in the parameter epsilon. In the third step, the various powers of epsilon which appear in the Pade approximation are replaced by new (unknown) parameters (delta(sub j)). These new parameters are determined by requiring that the residual formed by substituting the new approximation into the governing differential equation is orthogonal to each of the perturbation coordinate functions used in step one. The technique is applied to model problems involving ordinary or partial differential equations. In general, the technique appears to provide good approximations to the solution even when the perturbation and Pade approximations fail to do so. The method is discussed and topics for future investigations are indicated.
Runge-Kutta Methods for Linear Ordinary Differential Equations
NASA Technical Reports Server (NTRS)
Zingg, David W.; Chisholm, Todd T.
1997-01-01
Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.
A variational approach to parameter estimation in ordinary differential equations
2012-01-01
Background Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. Results The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. Conclusions The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields. PMID:22892133
Pseudospectral collocation methods for fourth order differential equations
NASA Technical Reports Server (NTRS)
Malek, Alaeddin; Phillips, Timothy N.
1994-01-01
Collocation schemes are presented for solving linear fourth order differential equations in one and two dimensions. The variational formulation of the model fourth order problem is discretized by approximating the integrals by a Gaussian quadrature rule generalized to include the values of the derivative of the integrand at the boundary points. Collocation schemes are derived which are equivalent to this discrete variational problem. An efficient preconditioner based on a low-order finite difference approximation to the same differential operator is presented. The corresponding multidomain problem is also considered and interface conditions are derived. Pseudospectral approximations which are C1 continuous at the interfaces are used in each subdomain to approximate the solution. The approximations are also shown to be C3 continuous at the interfaces asymptotically. A complete analysis of the collocation scheme for the multidomain problem is provided. The extension of the method to the biharmonic equation in two dimensions is discussed and results are presented for a problem defined in a nonrectangular domain.
Accelerating numerical solution of stochastic differential equations with CUDA
NASA Astrophysics Data System (ADS)
Januszewski, M.; Kostur, M.
2010-01-01
Numerical integration of stochastic differential equations is commonly used in many branches of science. In this paper we present how to accelerate this kind of numerical calculations with popular NVIDIA Graphics Processing Units using the CUDA programming environment. We address general aspects of numerical programming on stream processors and illustrate them by two examples: the noisy phase dynamics in a Josephson junction and the noisy Kuramoto model. In presented cases the measured speedup can be as high as 675× compared to a typical CPU, which corresponds to several billion integration steps per second. This means that calculations which took weeks can now be completed in less than one hour. This brings stochastic simulation to a completely new level, opening for research a whole new range of problems which can now be solved interactively. Program summaryProgram title: SDE Catalogue identifier: AEFG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Gnu GPL v3 No. of lines in distributed program, including test data, etc.: 978 No. of bytes in distributed program, including test data, etc.: 5905 Distribution format: tar.gz Programming language: CUDA C Computer: any system with a CUDA-compatible GPU Operating system: Linux RAM: 64 MB of GPU memory Classification: 4.3 External routines: The program requires the NVIDIA CUDA Toolkit Version 2.0 or newer and the GNU Scientific Library v1.0 or newer. Optionally gnuplot is recommended for quick visualization of the results. Nature of problem: Direct numerical integration of stochastic differential equations is a computationally intensive problem, due to the necessity of calculating multiple independent realizations of the system. We exploit the inherent parallelism of this problem and perform the calculations on GPUs using the CUDA programming environment. The GPU's ability to execute
Solving cochlear mechanics problems with higher-order differential equations.
de Boer, E; van Bienema, E
1982-11-01
Since most "exact" solution methods for cochlear models are rather unwieldy, they do not lend themselves to easy and multi-purpose application. In this paper a new solution method is described that is more flexible in this respect. A three-dimensional cochlear model is considered. It can be described by an integral equation in terms of the wavenumber k. The kernel Q (k) of that equation is approximated by a rational function of k and this makes it possible to reformulate the problem as a differential equation. The latter can be solved by a straightforward and well-known method. Results of computations with this technique are presented in two forms: an overview of the entire cochlear wave pattern and a detailed representation of the response peak. The method is also used to determine whether a discernible reflected wave is produced in the cochlea or not. For this purpose the wavenumber spectrum of the cochlear wave is studied: it is found to be a one-sided function of k. With surprisingly simple means it is thus shown that no appreciable reflection occurs from the inhomogeneity that is characteristic in cochlear wave propagation. This holds true for values of damping constant delta as low as 0.01, a factor of 5 smaller than is commonly used in cochlear modeling.
Optimal control of systems with discontinuous differential equations.
Stewart, D. E.; Anitescu, M.; Mathematics and Computer Science; Univ. of Iowa
2010-02-01
In this paper we discuss the problem of verifying and computing optimal controls of systems whose dynamics is governed by differential systems with a discontinuous right-hand side. In our work, we are motivated by optimal control of mechanical systems with Coulomb friction, which exhibit such a right-hand side. Notwithstanding the impressive development of nonsmooth and set-valued analysis, these systems have not been closely studied either computationally or analytically. We show that even when the solution crosses and does not stay on the discontinuity, differentiating the results of a simulation gives gradients that have errors of a size independent of the stepsize. This means that the strategy of 'optimize the discretization' will usually fail for problems of this kind. We approximate the discontinuous right-hand side for the differential equations or inclusions by a smooth right-hand side. For these smoothed approximations, we show that the resulting gradients approach the true gradients provided that the start and end points of the trajectory do not lie on the discontinuity and that Euler's method is used where the step size is 'sufficiently small' in comparison with the smoothing parameter. Numerical results are presented for a crude model of car racing that involves Coulomb friction and slip showing that this approach is practical and can handle problems of moderate complexity.
NASA Astrophysics Data System (ADS)
Yao, Ruo-Xia; Wang, Wei; Chen, Ting-Hua
2014-11-01
Motivated by the widely used ansätz method and starting from the modified Riemann—Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper.
The exotic conformal Galilei algebra and nonlinear partial differential equations
NASA Astrophysics Data System (ADS)
Cherniha, Roman; Henkel, Malte
2010-09-01
The conformal Galilei algebra (CGA) and the exotic conformal Galilei algebra (ECGA) are applied to construct partial differential equations (PDEs) and systems of PDEs, which admit these algebras. We show that there are no single second-order PDEs invariant under the CGA but systems of PDEs can admit this algebra. Moreover, a wide class of nonlinear PDEs exists, which are conditionally invariant under CGA. It is further shown that there are systems of non-linear PDEs admitting ECGA with the realisation obtained very recently in [D. Martelli and Y. Tachikawa, arXiv:0903.5184v2 [hep-th] (2009)]. Moreover, wide classes of non-linear systems, invariant under two different 10-dimensional subalgebras of ECGA are explicitly constructed and an example with possible physical interpretation is presented.
Finitely approximable random sets and their evolution via differential equations
NASA Astrophysics Data System (ADS)
Ananyev, B. I.
2016-12-01
In this paper, random closed sets (RCS) in Euclidean space are considered along with their distributions and approximation. Distributions of RCS may be used for the calculation of expectation and other characteristics. Reachable sets on initial data and some ways of their approximate evolutionary description are investigated for stochastic differential equations (SDE) with initial state in some RCS. Markov property of random reachable sets is proved in the space of closed sets. For approximate calculus, the initial RCS is replaced by a finite set on the integer multidimensional grid and the multistage Markov chain is substituted for SDE. The Markov chain is constructed by methods of SDE numerical integration. Some examples are also given.
Spreading disease: integro-differential equations old and new.
Medlock, Jan; Kot, Mark
2003-08-01
We investigate an integro-differential equation for a disease spread by the dispersal of infectious individuals and compare this to Mollison's [Adv. Appl. Probab. 4 (1972) 233; D. Mollison, The rate of spatial propagation of simple epidemics, in: Proc. 6th Berkeley Symp. on Math. Statist. and Prob., vol. 3, University of California Press, Berkeley, 1972, p. 579; J. R. Statist. Soc. B 39 (3) (1977) 283] model of a disease spread by non-local contacts. For symmetric kernels with moment generating functions, spreading infectives leads to faster traveling waves for low rates of transmission, but to slower traveling waves for high rates of transmission. We approximate the shape of the traveling waves for the two models using both piecewise linearization and a regular-perturbation scheme.
Workload Characterization of CFD Applications Using Partial Differential Equation Solvers
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.
Cause and cure of sloppiness in ordinary differential equation models.
Tönsing, Christian; Timmer, Jens; Kreutz, Clemens
2014-08-01
Data-based mathematical modeling of biochemical reaction networks, e.g., by nonlinear ordinary differential equation (ODE) models, has been successfully applied. In this context, parameter estimation and uncertainty analysis is a major task in order to assess the quality of the description of the system by the model. Recently, a broadened eigenvalue spectrum of the Hessian matrix of the objective function covering orders of magnitudes was observed and has been termed as sloppiness. In this work, we investigate the origin of sloppiness from structures in the sensitivity matrix arising from the properties of the model topology and the experimental design. Furthermore, we present strategies using optimal experimental design methods in order to circumvent the sloppiness issue and present nonsloppy designs for a benchmark model.
Linear Multistep Methods for Integrating Reversible Differential Equations
NASA Astrophysics Data System (ADS)
Evans, N. Wyn; Tremaine, Scott
1999-10-01
This paper studies multistep methods for the integration of reversible dynamical systems, with particular emphasis on the planar Kepler problem. It has previously been shown by Cano & Sanz-Serna that reversible linear multisteps for first-order differential equations are generally unstable. Here we report on a subset of these methods-the zero-growth methods-that evade these instabilities. We provide an algorithm for identifying these rare methods. We find and study all zero-growth, reversible multisteps with six or fewer steps. This select group includes two well-known second-order multisteps (the trapezoidal and explicit midpoint methods), as well as three new fourth-order multisteps-one of which is explicit. Variable time steps can be readily implemented without spoiling the reversibility. Tests on Keplerian orbits show that these new reversible multisteps work well on orbits with low or moderate eccentricity, although at least 100 steps per radian are required for stability.
Numerical solution of differential equations by artificial neural networks
NASA Technical Reports Server (NTRS)
Meade, Andrew J., Jr.
1995-01-01
Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks (ANN's) are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed by the author to mate the adaptability of the ANN with the speed and precision of the digital computer. This method has been successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.
Cause and cure of sloppiness in ordinary differential equation models
NASA Astrophysics Data System (ADS)
Tönsing, Christian; Timmer, Jens; Kreutz, Clemens
2014-08-01
Data-based mathematical modeling of biochemical reaction networks, e.g., by nonlinear ordinary differential equation (ODE) models, has been successfully applied. In this context, parameter estimation and uncertainty analysis is a major task in order to assess the quality of the description of the system by the model. Recently, a broadened eigenvalue spectrum of the Hessian matrix of the objective function covering orders of magnitudes was observed and has been termed as sloppiness. In this work, we investigate the origin of sloppiness from structures in the sensitivity matrix arising from the properties of the model topology and the experimental design. Furthermore, we present strategies using optimal experimental design methods in order to circumvent the sloppiness issue and present nonsloppy designs for a benchmark model.
Computationally efficient statistical differential equation modeling using homogenization
Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.
2013-01-01
Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.
A partial differential equation model of metastasized prostatic cancer.
Friedman, Avner; Jain, Harsh Vardhan
2013-06-01
Biochemically failing metastatic prostate cancer is typically treated with androgen ablation. However, due to the emergence of castration-resistant cells that can survive in low androgen concentrations, such therapy eventually fails. Here, we develop a partial differential equation model of the growth and response to treatment of prostate cancer that has metastasized to the bone. Existence and uniqueness results are derived for the resulting free boundary problem. In particular, existence and uniqueness of solutions for all time are proven for the radially symmetric case. Finally, numerical simulations of a tumor growing in 2-dimensions with radial symmetry are carried in order to evaluate the therapeutic potential of different treatment strategies. These simulations are able to reproduce a variety of clinically observed responses to treatment, and suggest treatment strategies that may result in tumor remission, underscoring our model's potential to make a significant contribution in the field of prostate cancer therapeutics.
A delay differential equation model of follicle waves in women.
Panza, Nicole M; Wright, Andrew A; Selgrade, James F
2016-01-01
This article presents a mathematical model for hormonal regulation of the menstrual cycle which predicts the occurrence of follicle waves in normally cycling women. Several follicles of ovulatory size that develop sequentially during one menstrual cycle are referred to as follicle waves. The model consists of 13 nonlinear, delay differential equations with 51 parameters. Model simulations exhibit a unique stable periodic cycle and this menstrual cycle accurately approximates blood levels of ovarian and pituitary hormones found in the biological literature. Numerical experiments illustrate that the number of follicle waves corresponds to the number of rises in pituitary follicle stimulating hormone. Modifications of the model equations result in simulations which predict the possibility of two ovulations at different times during the same menstrual cycle and, hence, the occurrence of dizygotic twins via a phenomenon referred to as superfecundation. Sensitive parameters are identified and bifurcations in model behaviour with respect to parameter changes are discussed. Studying follicle waves may be helpful for improving female fertility and for understanding some aspects of female reproductive ageing.
BOOK REVIEW: Partial Differential Equations in General Relativity
NASA Astrophysics Data System (ADS)
Choquet-Bruhat, Yvonne
2008-09-01
General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory.
Chaotic attractors in tumor growth and decay: a differential equation model.
Harney, Michael; Yim, Wen-sau
2015-01-01
Tumorigenesis can be modeled as a system of chaotic nonlinear differential equations. A simulation of the system is realized by converting the differential equations to difference equations. The results of the simulation show that an increase in glucose in the presence of low oxygen levels decreases tumor growth.
control theory to systems described by partial differential equations. The intent is not to advance the theory of partial differential equations per se. Thus all considerations will be restricted to the more familiar equations of the type which often occur in mathematical physics. Specifically, the distributed parameter systems under consideration are represented by a set of field
Differential equation dynamical system based assessment model in GNSS interoperability
NASA Astrophysics Data System (ADS)
Han, Tao; Lu, XiaoChun; Wang, Xue; Rao, YongNan; Zou, DeCai; Yang, JianFei; Wu, YangYang
2011-06-01
With the development of Global Navigation Satellite System (GNSS), the idea of GNSS interoperability is born and has become the focus of study in the field of satellite navigation. The popularity for GNSS to augment the interoperability with the existing ones necessitates the study of the assessment algorithm of this idea. In this paper, an assessment algorithm for interoperability comprehensive benefits based on the differential equation dynamical system is discussed. There are two important aspects in GNSS that interoperability will affect: one is the performance advancement; the other one is the cost of adopting interoperability. While researching the complex relationship between the performance and cost, we found this relationship is similar as what between prey and predator in biomathematics, so the Lotka-Volterra model used to depict the prey-predator relationship is a felicitous tool. After building a differential dynamical model, we analyze the existence and stability of the positive equilibrium in the model. Then a Cost-Effective Function of GNSS is constructed based on the positive equilibrium, which is employed to assess the interoperability, qualitatively and quantitatively. Finally, the paper demonstrates the significance of the model and its application by citing a numerical example.
Mickens, R.E.
1997-12-12
The major thrust of this proposal was to continue our investigations of so-called non-standard finite-difference schemes as formulated by other authors. These schemes do not follow the standard rules used to model continuous differential equations by discrete difference equations. The two major aspects of this procedure consist of generalizing the definition of the discrete derivative and using a nonlocal model (on the computational grid or lattice) for nonlinear terms that may occur in the differential equations. Our aim was to investigate the construction of nonstandard finite-difference schemes for several classes of ordinary and partial differential equations. These equations are simple enough to be tractable, yet, have enough complexity to be both mathematically and scientifically interesting. It should be noted that all of these equations differential equations model some physical phenomena under an appropriate set of experimental conditions. The major goal of the project was to better understand the process of constructing finite-difference models for differential equations. In particular, it demonstrates the value of using nonstandard finite-difference procedures. A secondary goal was to construct and study a variety of analytical techniques that can be used to investigate the mathematical properties of the obtained difference equations. These mathematical procedures are of interest in their own right and should be a valuable contribution to the mathematics research literature in difference equations. All of the results obtained from the research done under this project have been published in the relevant research/technical journals or submitted for publication. Our expectation is that these results will lead to improved finite difference schemes for the numerical integration of both ordinary and partial differential equations. Section G of the Appendix gives a concise summary of the major results obtained under funding by the grant.
NASA Astrophysics Data System (ADS)
Slavyanov, S. Yu.; Satco, D. A.; Ishkhanyan, A. M.; Rotinyan, T. A.
2016-12-01
We discuss several examples of generating apparent singular points as a result of differentiating particular homogeneous linear ordinary differential equations with polynomial coefficients and formulate two general conjectures on the generation and removal of apparent singularities in arbitrary Fuchsian differential equations with polynomial coefficients. We consider a model problem in polymer physics.
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1984-01-01
Work on the construction of finite difference models of differential equations having zero truncation errors is summarized. Both linear and nonlinear unidirectional wave equations are discussed. Results regarding the construction of zero truncation error schemes for the full wave equation and Burger's equation are also briefly reported.
NASA Astrophysics Data System (ADS)
Bazzaev, A. K.; Shkhanukov-Lafishev, M. Kh.
2017-01-01
Locally one-dimensional difference schemes for partial differential equations with fractional order derivatives with respect to time and space in multidimensional domains are considered. Stability and convergence of locally one-dimensional schemes for this equation are proved.
Laplace and Z Transform Solutions of Differential and Difference Equations With the HP-41C.
ERIC Educational Resources Information Center
Harden, Richard C.; Simons, Fred O., Jr.
1983-01-01
A previously developed program for the HP-41C programmable calculator is extended to handle models of differential and difference equations with multiple eigenvalues. How to obtain difference equation solutions via the Z transform is described. (MNS)
Nonlinear equations of 'variable type'
NASA Astrophysics Data System (ADS)
Larkin, N. A.; Novikov, V. A.; Ianenko, N. N.
In this monograph, new scientific results related to the theory of equations of 'variable type' are presented. Equations of 'variable type' are equations for which the original type is not preserved within the entire domain of coefficient definition. This part of the theory of differential equations with partial derivatives has been developed intensively in connection with the requirements of mechanics. The relations between equations of the considered type and the problems of mathematical physics are explored, taking into account quasi-linear equations, and models of mathematical physics which lead to equations of 'variable type'. Such models are related to transonic flows, problems involving a separation of the boundary layer, gasdynamics and the van der Waals equation, shock wave phenomena, and a combustion model with a turbulent diffusion flame. Attention is also given to nonlinear parabolic equations, and nonlinear partial differential equations of the third order.
NASA Astrophysics Data System (ADS)
Yan, Zhenya
2003-04-01
In this paper based on a system of Riccati equations with variable coefficients, we present a new Riccati equation with variable coefficients expansion method and its algorithm, which are direct and more powerful than the tanh-function method, sine-cosine method, the generalized hyperbolic-function method and the generalized Riccati equation with constant coefficient expansion method to construct more new exact solutions of nonlinear differential equations in mathematical physics. A pair of generalized Hamiltonian equations is chosen to illustrate our algorithm such that more families of new exact solutions are obtained which contain soliton-like solution and periodic solutions. This algorithm can also be applied to other nonlinear differential equations.
Vandewalle, S.
1994-12-31
Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.
Liu, Yuji; Ahmad, Bashir
2014-01-01
We discuss the existence and uniqueness of solutions for initial value problems of nonlinear singular multiterm impulsive Caputo type fractional differential equations on the half line. Our study includes the cases for a single base point fractional differential equation as well as multiple base points fractional differential equation. The asymptotic behavior of solutions for the problems is also investigated. We demonstrate the utility of our work by applying the main results to fractional-order logistic models.
Finite Difference Methods for Time-Dependent, Linear Differential Algebraic Equations
1993-10-27
Time-Dependent, Linear Differential Algebraic Equations ’ BY PATRICK J. RABIER AND WERNER C. RHEINBOLDT 2 T r e n - sa le; its tot puba"- c. 2 ed...1993 Finite Difference Methods for Time-Dependent, I Linear Differential Algebraic Equations ’ BY PATRICK J. RABIER AND WERNER C. RHEINBOLDT2...LINEAR DIFFERENTIAL ALGEBRAIC EQUATIONS 1 BY PATRICK J. RABIER AND WERNER C. RHEINBOLDT 2 ABSTRACT. Recently the authors developed a global reduction
Estimation of Delays and Other Parameters in Nonlinear Functional Differential Equations.
1981-12-01
FSTIMATION OF DELAYS AND OTHER PARAMETERS IN NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS by K. T. Banks and P. L. Daniel December 1981 LCDS Report #82...ESTIMATION OF DELAYS AND OTHER PARAMETERS IN NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS H. T. Banks and P. L. Daniel ABSTRACT We discuss a spline...based approximation scheme for nonlinear nonautonomous delay differential equations . Convergence results (using dissipative type estimates on the
Liu, Yuji; Ahmad, Bashir
2014-01-01
We discuss the existence and uniqueness of solutions for initial value problems of nonlinear singular multiterm impulsive Caputo type fractional differential equations on the half line. Our study includes the cases for a single base point fractional differential equation as well as multiple base points fractional differential equation. The asymptotic behavior of solutions for the problems is also investigated. We demonstrate the utility of our work by applying the main results to fractional-order logistic models. PMID:24578623
Kleinert, H; Zatloukal, V
2013-11-01
The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.
A discrete model of a modified Burgers' partial differential equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.; Shoosmith, J. N.
1990-01-01
A new finite-difference scheme is constructed for a modified Burger's equation. Three special cases of the equation are considered, and the 'exact' difference schemes for the space- and time-independent forms of the equation are presented, along with the diffusion-free case of Burger's equation modeled by a difference equation. The desired difference scheme is then obtained by imposing on any difference model of the initial equation the requirement that, in the appropriate limits, its difference scheme must reduce the results of the obtained equations.
NASA Astrophysics Data System (ADS)
Sahadevan, R.; Prakash, P.
2017-01-01
We show how invariant subspace method can be extended to time fractional coupled nonlinear partial differential equations and construct their exact solutions. Effectiveness of the method has been illustrated through time fractional Hunter-Saxton equation, time fractional coupled nonlinear diffusion system, time fractional coupled Boussinesq equation and time fractional Whitman-Broer-Kaup system. Also we explain how maximal dimension of the time fractional coupled nonlinear partial differential equations can be estimated.
The (G'/G)-expansion method for the nonlinear time fractional differential equations
NASA Astrophysics Data System (ADS)
Unsal, Omer; Guner, Ozkan; Bekir, Ahmet; Cevikel, Adem C.
2017-01-01
In this paper, we obtain exact solutions of two time fractional differential equations using Jumarie's modified Riemann-Liouville derivative which is encountered in mathematical physics and applied mathematics; namely (3 + 1)-dimensional time fractional KdV-ZK equation and time fractional ADR equation by using fractional complex transform and (G/'G )-expansion method. It is shown that the considered transform and method are very useful in solving nonlinear fractional differential equations.
Partial differential equation transform - Variational formulation and Fourier analysis.
Wang, Yang; Wei, Guo-Wei; Yang, Siyang
2011-12-01
Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform's controllable frequency localization obtained by adjusting the order of PDEs. The
Partial differential equation transform — Variational formulation and Fourier analysis
Wang, Yang; Wei, Guo-Wei; Yang, Siyang
2011-01-01
Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform’s controllable frequency localization obtained by adjusting the order of PDEs. The
An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms
NASA Astrophysics Data System (ADS)
Sá, Lucas
2017-03-01
Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.
A stochastic differential equation model of diurnal cortisol patterns
NASA Technical Reports Server (NTRS)
Brown, E. N.; Meehan, P. M.; Dempster, A. P.
2001-01-01
Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.
Grid generation for the solution of partial differential equations
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Erlebacher, Gordon
1989-01-01
A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.
Final Report: Symposium on Adaptive Methods for Partial Differential Equations
Pernice, M.; Johnson, C.R.; Smith, P.J.; Fogelson, A.
1998-12-10
OAK-B135 Final Report: Symposium on Adaptive Methods for Partial Differential Equations. Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.
A Differential Equation Model for the Dynamics of Youth Gambling
Do, Tae Sug; Lee, Young S.
2014-01-01
Objectives We examine the dynamics of gambling among young people aged 16–24 years, how prevalence rates of at-risk gambling and problem gambling change as adolescents enter young adulthood, and prevention and control strategies. Methods A simple epidemiological model is created using ordinary nonlinear differential equations, and a threshold condition that spreads gambling is identified through stability analysis. We estimate all the model parameters using a longitudinal prevalence study by Winters, Stinchfield, and Botzet to run numerical simulations. Parameters to which the system is most sensitive are isolated using sensitivity analysis. Results Problem gambling is endemic among young people, with a steady prevalence of approximately 4–5%. The prevalence of problem gambling is lower in young adults aged 18–24 years than in adolescents aged 16–18 years. At-risk gambling among young adults has increased. The parameters to which the system is most sensitive correspond to primary prevention. Conclusion Prevention and control strategies for gambling should involve school education. A mathematical model that includes the effect of early exposure to gambling would be helpful if a longitudinal study can provide data in the future. PMID:25379374
Grid generation for the solution of partial differential equations
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Erlebacher, Gordon
1987-01-01
A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.
Modeling ion channel dynamics through reflected stochastic differential equations
NASA Astrophysics Data System (ADS)
Dangerfield, Ciara E.; Kay, David; Burrage, Kevin
2012-05-01
Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the “gold standard,” but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks.
NASA Astrophysics Data System (ADS)
Dai, Qiuyi; Fu, Yuxia
This article studies positive solutions of Robin problem for semi-linear second order ordinary differential equations. Nondegeneracy and uniqueness results are proven for homogeneous differential equations. Necessary and sufficient conditions for the existence of one or two positive solutions for inhomogeneous differential equations or differential equations with concave-convex nonlinearities are obtained by making use of the nondegeneracy and uniqueness results for positive solutions of homogeneous differential equations.
Efficient Numerical Methods for Evolution Partial Differential Equations
1989-09-30
public lease; distribution mlim ed.-.... 13. ABSTRACT (Maxmum 200 woard Generalized Korteweg - de Vries equation (GKdV). This equation is written as...McKinney. On Optimal high-order in time approxiniations.for the Korteweg -de Vries equation ..To appear in Math. Comp.. 3. J.L. Bona, V.A. Dougalis...O.Karakashian and W. Mckinney, Conservative high-order schemes for the Generalized Korteweg -de Vries equation . In preparation. 4. G. D. Akrivis, V.A
NASA Astrophysics Data System (ADS)
Ohmori, Shousuke; Yamazaki, Yoshihiro
2016-01-01
Ultradiscrete equations are derived from a set of reaction-diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction-diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction-diffusion equations.
Slyusarchuk, V. E. E-mail: V.Ye.Slyusarchuk@NUWM.rv.ua
2014-06-01
The well-known theorems of Favard and Amerio on the existence of almost periodic solutions to linear and nonlinear almost periodic differential equations depend to a large extent on the H-classes and the requirement that the bounded solutions of these equations be separated. The present paper provides different conditions for the existence of almost periodic solutions. These conditions, which do not depend on the H-classes of the equations, are formulated in terms of a special functional on the set of bounded solutions of the equations under consideration. This functional is used, in particular, to test whether solutions are separated. Bibliography: 24 titles. (paper)
Probabilistic delay differential equation modeling of event-related potentials.
Ostwald, Dirk; Starke, Ludger
2016-08-01
"Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach.
Differential Invariants of the (2+1)-Dimensional Breaking Soliton Equation
NASA Astrophysics Data System (ADS)
Han, Zhong; Chen, Yong
2016-09-01
We construct the differential invariants of Lie symmetry pseudogroups of the (2+1)-dimensional breaking soliton equation and analyze the structure of the induced differential invariant algebra. Their syzygies and recurrence relations are classified. In addition, a moving frame and the invariantization of the breaking soliton equation are also presented. The algorithms are based on the method of equivariant moving frames.
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
NASA Technical Reports Server (NTRS)
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.; Gray, Hugh R. (Technical Monitor)
2002-01-01
We discuss an Adams-type predictor-corrector method for the numerical solution of fractional differential equations. The method may be used both for linear and for nonlinear problems, and it may be extended to multi-term equations (involving more than one differential operator) too.
A Laboratory Experience for Students of Differential Equations using RLC Circuits.
ERIC Educational Resources Information Center
Graham, Jeff; Barnes, Julia
1997-01-01
Argues that although differential equations are billed as applied mathematics, there is rarely any hands-on experience incorporated into the course. Presents a laboratory project that requires students to obtain data from a physics lab and use that data to compute the coefficients of the second order differential equation, which mathematically…
On the stability of numerical integration routines for ordinary differential equations.
NASA Technical Reports Server (NTRS)
Glover, K.; Willems, J. C.
1973-01-01
Numerical integration methods for the solution of initial value problems for ordinary vector differential equations may be modelled as discrete time feedback systems. The stability criteria discovered in modern control theory are applied to these systems and criteria involving the routine, the step size and the differential equation are derived. Linear multistep, Runge-Kutta, and predictor-corrector methods are all investigated.
A Simple Method to Find out when an Ordinary Differential Equation Is Separable
ERIC Educational Resources Information Center
Cid, Jose Angel
2009-01-01
We present an alternative method to that of Scott (D. Scott, "When is an ordinary differential equation separable?", "Amer. Math. Monthly" 92 (1985), pp. 422-423) to teach the students how to discover whether a differential equation y[prime] = f(x,y) is separable or not when the nonlinearity f(x, y) is not explicitly factorized. Our approach is…
A note on the Dirichlet problem for model complex partial differential equations
NASA Astrophysics Data System (ADS)
Ashyralyev, Allaberen; Karaca, Bahriye
2016-08-01
Complex model partial differential equations of arbitrary order are considered. The uniqueness of the Dirichlet problem is studied. It is proved that the Dirichlet problem for higher order of complex partial differential equations with one complex variable has infinitely many solutions.
Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations
ERIC Educational Resources Information Center
Robin, W.
2007-01-01
The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…
Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices
ERIC Educational Resources Information Center
Deboeck, Pascal R.; Boker, Steven M.
2010-01-01
Complex intraindividual variability observed in psychology may be well described using differential equations. It is difficult, however, to apply differential equation models in psychological contexts, as time series are frequently short, poorly sampled, and have large proportions of measurement and dynamic error. Furthermore, current methods for…
The Local Brewery: A Project for Use in Differential Equations Courses
ERIC Educational Resources Information Center
Starling, James K.; Povich, Timothy J.; Findlay, Michael
2016-01-01
We describe a modeling project designed for an ordinary differential equations (ODEs) course using first-order and systems of first-order differential equations to model the fermentation process in beer. The project aims to expose the students to the modeling process by creating and solving a mathematical model and effectively communicating their…
An Engineering-Oriented Approach to the Introductory Differential Equations Course
ERIC Educational Resources Information Center
Pennell, S.; Avitabile, P.; White, J.
2009-01-01
The introductory differential equations course can be made more relevant to engineering students by including more of the engineering viewpoint, in which differential equations are regarded as systems with inputs and outputs. This can be done without sacrificing any of the usual topical coverage. This point of view is conducive to student…
NASA Technical Reports Server (NTRS)
Lakin, W. D.
1981-01-01
The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.
NASA Astrophysics Data System (ADS)
Huang, Ding-jiang; Ivanova, Nataliya M.
2016-02-01
In this paper, we explain in more details the modern treatment of the problem of group classification of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) equations with smaller number of independent variables in order to construct invariant solutions. The group classification algorithm and reduction process are illustrated by the example of the generalized Zakharov-Kuznetsov (GZK) equations of form ut +(F (u)) xxx +(G (u)) xyy +(H (u)) x = 0. As a result, a complete group classification of the GZK equations is performed and a number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solutions for two important invariant models, i.e., the classical and modified Zakharov-Kuznetsov equations, are constructed. The algorithmic framework for group analysis of differential equations presented in this paper can also be applied to other nonlinear PDEs.
NASA Astrophysics Data System (ADS)
Agarwal, Ravi; O'Regan, D.; Hristova, S.; Cicek, M.
2017-01-01
Practical stability with initial data difference for nonlinear Caputo fractional differential equations is studied. This type of stability generalizes known concepts of stability in the literature. It enables us to compare the behavior of two solutions when both initial values and initial intervals are different. In this paper the concept of practical stability with initial time difference is generalized to Caputo fractional differential equations. A definition of the derivative of Lyapunov like function along the given nonlinear Caputo fractional differential equation is given. Comparison results using this definition and scalar fractional differential equations are proved. Sufficient conditions for several types of practical stability with initial time difference for nonlinear Caputo fractional differential equations are obtained via Lyapunov functions. Some examples are given to illustrate the results.
Convergence of step-by-step methods for non-linear integro-differential equations.
NASA Technical Reports Server (NTRS)
Mocarsky, W. L.
1971-01-01
The theory of consistent step-by-step methods for solving Volterra integral equations is extended to nonsingular Volterra integro-differential equations. It is shown that standard step-by-step algorithms for these more general equations are convergent. Several numerical examples are included.
Domoshnitsky, Alexander; Maghakyan, Abraham; Berezansky, Leonid
2017-01-01
In this paper a method for studying stability of the equation [Formula: see text] not including explicitly the first derivative is proposed. We demonstrate that although the corresponding ordinary differential equation [Formula: see text] is not exponentially stable, the delay equation can be exponentially stable.
ERIC Educational Resources Information Center
Quinn, Terry; Rai, Sanjay
2012-01-01
The method of variation of parameters can be found in most undergraduate textbooks on differential equations. The method leads to solutions of the non-homogeneous equation of the form y = u[subscript 1]y[subscript 1] + u[subscript 2]y[subscript 2], a sum of function products using solutions to the homogeneous equation y[subscript 1] and…
Numerical Solution of Ill Posed Problems in Partial Differential Equations
1988-06-30
periodic solutions of semilinear wave equations in exterior domains (breathers). Necessary and sufficient conditions for the existence of such solutions...numerically, that radial, global , positive solutions of the equation div grad u + uq u = 0 (X > 0, q > 1). ((1+1grad ul ) / exist for all X sufficiently... equation with a semilinear boundary condition , to appear in SIAM J. Math. Anal. 17] Levine, H.A. and Protter, M.H., The breakdown of solutions of
Numerical Solution of Ill Posed Problems in Partial Differential Equations.
1987-09-01
periodic solutions of semilinear wave equations in exterior domains (breathers). Necessary and sufficient conditions for the existence of such...Crandall, M.G., and Sacks, P.E., Some L1 existence and depandence results for semilinear elliptic equations under nonlinear boundary conditions , to...the former case, a convective diffusion equation with a semilinear source in the boundary condition was analyzed. A fairly complete picture of the
NASA Astrophysics Data System (ADS)
Granita, Bahar, A.
2015-03-01
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
Granita; Bahar, A.
2015-03-09
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
Advanced Methods for the Solution of Differential Equations.
ERIC Educational Resources Information Center
Goldstein, Marvin E.; Braun, Willis H.
This is a textbook, originally developed for scientists and engineers, which stresses the actual solutions of practical problems. Theorems are precisely stated, but the proofs are generally omitted. Sample contents include first-order equations, equations in the complex plane, irregular singular points, and numerical methods. A more recent idea,…
Incompressible Navier-Stokes and parabolized Navier-Stokes formulations and computational techniques
NASA Technical Reports Server (NTRS)
Rubin, S. G.
1984-01-01
The differential formulations and computational techniques currently used for the incompressible Navier-Stokes (NS) and parabolic Navier-Stokes (PNS) equations are reviewed. In particular, attention is given to problems associated with the choice of difference equations, the method of solution and the choice of algorithm, the coupling of dependent variables and discretized equations, the application of boundary conditions, and grid generation. A new composite velocity NS and PNS formulation in (u,v,p) variables is presented, and the applicability of a 'forward' difference global pressure iteration for the (u,v,p) PNS system is demonstrated.
APL and the numerical solution of high-order linear differential equations
NASA Astrophysics Data System (ADS)
Gershenfeld, Neil A.; Schadler, Edward H.; Bilaniuk, O. M.
1983-08-01
An Nth-order linear ordinary differential equation is rewritten as a first-order equation in an N×N matrix. Taking advantage of the matrix manipulation strength of the APL language this equation is then solved directly, yielding a great simplification over the standard procedure of solving N coupled first-order scalar equations. This eases programming and results in a more intuitive algorithm. Example applications of a program using the technique are given from quantum mechanics and control theory.
Differential Games of inf-sup Type and Isaacs Equations
Kaise, Hidehiro Sheu, S.-J.
2005-06-15
Motivated by the work of Fleming, we provide a general framework to associate inf-sup type values with the Isaacs equations.We show that upper and lower bounds for the generators of inf-sup type are upper and lower Hamiltonians, respectively. In particular, the lower (resp. upper) bound corresponds to the progressive (resp. strictly progressive) strategy. By the Dynamic Programming Principle and identification of the generator, we can prove that the inf-sup type game is characterized as the unique viscosity solution of the Isaacs equation. We also discuss the Isaacs equation with a Hamiltonian of a convex combination between the lower and upper Hamiltonians.
Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing
2015-12-01
The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.
Analysis of Lagrange's original derivation of the Euler-Lagrange Differential Equation
NASA Astrophysics Data System (ADS)
Laughlin, Ryan; Close, Hunter
2012-03-01
The Euler-Lagrange differential equation provides the Lagrangian equations of motion, and thus allows the exact trajectory of an object in a potential to be found. We analyze the original derivation of the Euler-Lagrange differential equation via a translation of the third edition of Lagrange's Mecanique Analytique (1811). We compare and contrast this derivation with the derivation commonly done in a junior-level classical mechanics course. Lagrange uses several founding concepts to produce a generalized equation of motion for all dynamics. These concepts are, in the order addressed by Lagrange, the Principle of Virtual Velocities, the Conservation des Forces Vives, and the Principle of Least Action. Lagrange then employs what he calls the Method of Variations to the general equation of motion for dynamics to ultimately resolve something similar to the Euler-Lagrange Differential equation we use today. We also compare modern notation with Lagrange's notation.
Numerical solution of control problems governed by nonlinear differential equations
Heinkenschloss, M.
1994-12-31
In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.
Lie algebras of conservation laws of variational ordinary differential equations
NASA Astrophysics Data System (ADS)
Fiorani, Emanuele; Spiro, Andrea
2015-02-01
We establish a new version of the first Noether Theorem, according to which the (equivalence classes of) first integrals of given Euler-Lagrange equations in one independent variable are in exact one-to-one correspondence with the (equivalence classes of) vector fields satisfying two simple geometric conditions, namely they simultaneously preserve the holonomy distribution of the jets space and the action from which the Euler-Lagrange equations are derived.
NASA Astrophysics Data System (ADS)
Camporesi, Roberto
2011-06-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.
NASA Astrophysics Data System (ADS)
Rong, Loh Jian; Chang, Phang
2016-02-01
In this paper, we first define generalized shifted Jacobi polynomial on interval and then use it to define Jacobi wavelet. Then, the operational matrix of fractional integration for Jacobi wavelet is being derived to solve fractional differential equation and fractional integro-differential equation. This method can be seen as a generalization of other orthogonal wavelet operational methods, e.g. Legendre wavelets, Chebyshev wavelets of 1st kind, Chebyshev wavelets of 2nd kind, etc. which are special cases of the Jacobi wavelets. We apply our method to a special type of fractional integro-differential equation of Fredholm type.
NASA Astrophysics Data System (ADS)
Vatsala, Aghalaya S.; Sowmya, M.
2017-01-01
Study of nonlinear sequential fractional differential equations of Riemann-Lioville type and Caputo type initial value problem are very useful in applications. In order to develop any iterative methods to solve the nonlinear problems, we need to solve the corresponding linear problem. In this work, we develop Laplace transform method to solve the linear sequential Riemann-Liouville fractional differential equations as well as linear sequential Caputo fractional differential equations of order nq which is sequential of order q. Also, nq is chosen such that (n-1) < nq < n. All our results yield the integer results as a special case when q tends to 1.
Exponential rational function method for space-time fractional differential equations
NASA Astrophysics Data System (ADS)
Aksoy, Esin; Kaplan, Melike; Bekir, Ahmet
2016-04-01
In this paper, exponential rational function method is applied to obtain analytical solutions of the space-time fractional Fokas equation, the space-time fractional Zakharov Kuznetsov Benjamin Bona Mahony, and the space-time fractional coupled Burgers' equations. As a result, some exact solutions for them are successfully established. These solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie's modified Riemann-Liouville sense. The exact solutions obtained by the proposed method indicate that the approach is easy to implement and effective.
Controllable parabolic-cylinder optical rogue wave.
Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola
2014-10-01
We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.
NASA Technical Reports Server (NTRS)
Simon, M. K.
1980-01-01
A technique is presented for generating phase plane plots on a digital computer which circumvents the difficulties associated with more traditional methods of numerical solving nonlinear differential equations. In particular, the nonlinear differential equation of operation is formulated.
NASA Technical Reports Server (NTRS)
Sloss, J. M.; Kranzler, S. K.
1972-01-01
The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.
Constructing conservation laws for fractional-order integro-differential equations
NASA Astrophysics Data System (ADS)
Lukashchuk, S. Yu.
2015-08-01
In a class of functions depending on linear integro-differential fractional-order variables, we prove an analogue of the fundamental operator identity relating the infinitesimal operator of a point transformation group, the Euler-Lagrange differential operator, and Noether operators. Using this identity, we prove fractional-differential analogues of the Noether theorem and its generalizations applicable to equations with fractional-order integrals and derivatives of various types that are Euler-Lagrange equations. In explicit form, we give fractional-differential generalizations of Noether operators that gives an efficient way to construct conservation laws, which we illustrate with three examples.
An efficient technique for higher order fractional differential equation.
Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef
2016-01-01
In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.
NASA Technical Reports Server (NTRS)
Toomarian, N.; Fijany, A.; Barhen, J.
1993-01-01
Evolutionary partial differential equations are usually solved by decretization in time and space, and by applying a marching in time procedure to data and algorithms potentially parallelized in the spatial domain.
Error estimation in the neural network solution of ordinary differential equations.
Filici, Cristian
2010-06-01
In this article a method of error estimation for the neural approximation of the solution of an Ordinary Differential Equation is presented. Some examples of the application of the method support the theory presented.