Science.gov

Sample records for parabolic trough technology

  1. Federal technology alert. Parabolic-trough solar water heating

    SciTech Connect

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  2. Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology

    SciTech Connect

    Price, H.; Kearney, D.

    1999-01-31

    Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop.

  3. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect

    Dudley, V.E.; Evans, L.R.; Matthews, C.W.

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  4. Session: Parabolic Troughs (Presentation)

    SciTech Connect

    Kutscher, C.

    2008-04-01

    The project description is R and D activities at NREL and Sandia aimed at lowering the delivered energy cost of parabolic trough collector systems and FOA awards to support industry in trought development. The primary objectives are: (1) support development of near-term parabolic trought technology for central station power generation; (2) support development of next-generation trought fields; and (3) support expansion of US trough industry. The major FY08 activities were: (1) improving reflector optics; (2) reducing receiver heat loss (including improved receiver coating and mitigating hydrogen accumulation); (3) measuring collector optical efficiency; (4) optimizing plant performance and reducing cost; (5) reducing plant water consumption; and (6) directly supporting industry needs, including FOA support.

  5. Norwich Technologies' Advanced Low-Cost Receivers for Parabolic Troughs

    SciTech Connect

    Stettenheim, Joel; McBride, Troy O.; Brambles, Oliver J.; Cashin, Emil A.

    2013-12-31

    This report summarizes the successful results of our SunShot project, Advanced Low-Cost Receivers for Parabolic Troughs. With a limited budget of $252K and in only 12 months, we have (1) developed validated optical and thermal models and completed rigorous optimization analysis to identify key performance characteristics as part of developing first-generation laboratory prototype designs, (2) built optical and thermal laboratory prototypes and test systems with associated innovative testing protocols, and (3) performed extensive statistically relevant testing. We have produced fully functioning optical and thermal prototypes and accurate, validated models shown to capture important underlying physical mechanisms. The test results from the first-generation prototype establish performance exceeding the FOA requirement of thermal efficiency >90% for a CSP receiver while delivering an exit fluid temperature of > 650 °C and a cost < $150/kWth. Our vacuum-free SunTrap receiver design provides improvements over conventional vacuum-tube collectors, allowing dramatic reductions in thermal losses at high operating temperature.

  6. Solargenix Energy Advanced Parabolic Trough Development

    SciTech Connect

    Gee, R. C.; Hale, M. J.

    2005-11-01

    The Solargenix Advanced Trough Development Project was initiated in the Year 2000 with the support of the DOE CSP Program and, more recently, with the added support of the Nevada Southwest Energy Partnership. Parabolic trough plants are the most mature solar power technology, but no large-scale plants have been built in over a decade. Given this lengthy lull in deployment, our first Project objective was development of improved trough technology for near-term deployment, closely patterned after the best of the prior-generation troughs. The second objective is to develop further improvements in next-generation trough technology that will lead to even larger reductions in the cost of the delivered energy. To date, this Project has successfully developed an advanced trough, which is being deployed on a 1-MW plant in Arizona and will soon be deployed in a 64-MW plant in Nevada. This advanced trough offers a 10% increase in performance and over an 20% decrease in cost, relative to prior-generation troughs.

  7. Parabolic Trough Organic Rankine Cycle Power Plant

    SciTech Connect

    Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

    2005-01-01

    Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

  8. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  9. Parabolic Trough VSHOT Optical Characterization in 2005-2006 (Presentation)

    SciTech Connect

    Wendelin, T.

    2006-02-01

    This presentation regarding parabolic trough VSHOT optical characterization describes trough deployment and operation phases including: development, manufacture/installation, and maintenance/operation.

  10. Adjustment and validation of a simulation tool for CSP plants based on parabolic trough technology

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Ubani, Nora

    2016-05-01

    The present work presents the validation process carried out for a simulation tool especially designed for the energy yield assessment of concentrating solar plants based on parabolic through (PT) technology. The validation has been carried out by comparing the model estimations with real data collected from a commercial CSP plant. In order to adjust the model parameters used for the simulation, 12 different days were selected among one-year of operational data measured at the real plant. The 12 days were simulated and the estimations compared with the measured data, focusing on the most important variables from the simulation point of view: temperatures, pressures and mass flow of the solar field, gross power, parasitic power, and net power delivered by the plant. Based on these 12 days, the key parameters for simulating the model were properly fixed and the simulation of a whole year performed. The results obtained for a complete year simulation showed very good agreement for the gross and net electric total production. The estimations for these magnitudes show a 1.47% and 2.02% BIAS respectively. The results proved that the simulation software describes with great accuracy the real operation of the power plant and correctly reproduces its transient behavior.

  11. Status of APS 1-Mwe Parabolic Trough Project

    SciTech Connect

    Canada, S.; Brosseau, D.; Kolb, G.; Moore, L.; Cable, R.; Price, H.

    2005-11-01

    Arizona Public Service (APS) is currently installing new power facilities to generate a portion of its electricity from solar resources that will satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). During FY04, APS began construction on a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. Site preparation and construction activities continued throughout much of FY05, and startup activities are planned for Fall 2005 (with completion early in FY06). The plant will be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory. The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than the conventional steam Rankine cycle plant and allows unattended operation of the facility.

  12. Alignment method for parabolic trough solar concentrators

    DOEpatents

    Diver, Richard B.

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  13. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  14. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  15. Determination of error tolerances for optical design of parabolic troughs

    SciTech Connect

    Guven, H.M.; Bannerot, R.B.; Mistree, F.

    1983-11-01

    A study is presented where potential optical errors in parabolic troughs are divided into two groups: random and non-random. Small-scale slope errors, mirror nonspecularity, apparent changes in sun's width, and small occasional tracking errors are classified as random errors. Reflector profile errors, misalignment of the receiver with the effective focus of the reflector, and misalignment of the trough with the sun are classified as non-random errors. Random errors are analyzed using statistics and assuming a normally distributed error. Non-random errors are analyzed by building provisions into the optical model which allow for the analysis of such errors. Universal design curves showing the effect of random and non-random errors on the optical performance (efficiency) of the trough are presented.

  16. Development effort of sheet molding compound (SMC) parabolic trough panels

    SciTech Connect

    Kirsch, P.A.; Champion, R.L.

    1982-01-01

    The objectives of the development effort are to: investigate the problems of molding parabolic trough solar reflector panels of sheet molding compound (SMC); develop molding techniques and processes by which silvered glass reflector sheets can be integrally molded into SMC trough panels; provide representative prototype panels for evaluation; and provide information regarding the technical feasibility of molding SMC panels in high volume production. The approach taken to meet the objectives was to design the parabolic panel, fabricate a prototype die, choose an SMC formulation and mold the glass and SMC together into a vertex to rim mirrored panel. The main thrust of the program was to successfully co-mold a mirrored glass sheet with the SMC. Results indicate that mirrored glass sheets, if properly strengthened to withstand the temperature and pressure of the molding process, can be successfully molded with SMC in a single press stroke using standard compression molding techniques. The finalized design of the trough panel is given. The SMC formulation chosen is a low shrink, low profile SMC using 40% by weight one inch chopped glass fibers in a uv stabilized polyester resin matrix. A program to test for the adhesion between mirrored glass sheets and the SMC is discussed briefly. (LEW)

  17. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    SciTech Connect

    Kurup, Parthiv; Turchi, Craig S.

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m2 +/- $6/m2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.

  18. LCOE reduction for parabolic trough CSP: Innovative solar receiver with improved performance at medium temperature

    NASA Astrophysics Data System (ADS)

    Stollo, A.; Chiarappa, T.; D'Angelo, A.; Maccari, A.; Matino, F.

    2016-05-01

    Concentrated Solar Power (CSP) applications represent an effective possibility to gain energy from the Sun; however, the lasting CSP market crisis compels continuous improvements in terms of cost reduction and performance increase. Focused on parabolic trough technology, this paper describes the innovation studied and realized on solar receivers to gain optimized optical performance while increasing the production versatility, hence boosting the solar plant efficiency and finally reducing the estimated LCOE.

  19. Exergetic analysis of parabolic trough solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Ruperez, B.; San Miguel, G.

    2014-12-01

    A very important component to achieve sustainable development in the energy sector is the improvement of energy efficiency of widely applied thermodynamic processes. Evaluation and optimization methods of energy processes play a crucial role in fulfilling this goal. A suitable method for the evaluation and optimization of energy conversion systems has been proven to be the exergetic analysis. In this work, two parabolic trough solar thermal power plants are simulated in detail using commercial software, and they are further analysed and compared using an exergetic analysis. The first plant uses a thermal fluid to produce the steam required in a steam generator, while the second one produces the steam directly in the solar field. The analysis involves the evaluation of the individual components of the power plants, as well as the performance evaluation of the overall structures. The main goal is to detect thermodynamic inefficiencies of the two different configurations and propose measures to minimize those. We find that the two examined plants have similar main sources of exergy destruction: the solar field (parabolic trough solar collectors), followed by the steam generator. This reveals the importance of an optimal design of these particular components, which could reduce inefficiencies present in the system. The differences in the exergy destruction and exergetic efficiencies of individual components of the two plants are analyzed in detail based on comparable operational conditions.

  20. Mechanism of Hydrogen Formation in Solar Parabolic Trough Receivers

    SciTech Connect

    Moens, L.; Blake, D. M.

    2008-03-01

    Solar parabolic trough systems for electricity production are receiving renewed attention, and new solar plants are under construction to help meet the growing demands of the power market in the Western United States. The growing solar trough industry will rely on operating experience it has gained over the last two decades. Recently, researchers found that trough plants that use organic heat transfer fluids (HTF) such as Therminol VP-1 are experiencing significant heat losses in the receiver tubes. The cause has been traced back to the accumulation of excess hydrogen gas in the vacuum annulus that surrounds the steel receiver tube, thus compromising the thermal insulation of the receiver. The hydrogen gas is formed during the thermal decomposition of the organic HTF that circulates inside the receiver loop, and the installation of hydrogen getters inside the annulus has proven to be insufficient for controlling the hydrogen build-up over the lifetime of the receivers. This paper will provide an overview of the chemical literature dealing with the thermal decomposition of diphenyl oxide and biphenyl, the two constituents of Therminol VP-1.

  1. Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market: Preprint

    SciTech Connect

    Turchi, C.; Mehos, M.; Ho, C. K.; Kolb, G. J.

    2010-10-01

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  2. Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study

    SciTech Connect

    Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

    2011-01-01

    As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

  3. CSP parabolic trough and power tower performance analysis through the Southern African universities radiometric network (SAURAN) data

    NASA Astrophysics Data System (ADS)

    Pidaparthi, A. S.; Dall, E. P.; Hoffmann, J. E.; Dinter, F.

    2016-05-01

    The objective of this paper is to analyse the performance of parabolic trough and power tower technologies by selecting two radiometric stations in different geographic locations, with approximately equal annual direct normal irradiance (DNI) values, but with different monthly DNI distributions. The two stations chosen for this study are situated at the University of Free State, Bloemfontein, Free State Province and in Vanrhynsdorp, Western Cape Province. The annual measured DNI values for both these locations in South Africa are in the range of 2500-2700 kWh/m2. The comparison between the different monthly DNI distributions of these selected sites includes an assessment of annual hourly data in order to study the performance analysis of the most mature concentrating solar power (CSP) technologies, namely parabolic trough and power tower plants. The weather data has been obtained from the Southern African Universities Radiometric Network (SAURAN). A comparison between the different monthly DNI distributions of these selected sites includes the assessment of hourly data. Selection of these radiometric stations has also been done on the basis that they have been operational for at least one year. The first year that most SAURAN stations have been online for at least one year is 2014, thus data from this year has been considered. The annual performance analysis shows that parabolic trough plants have a higher energy yield in Vanrhynsdorp while power tower plants seem to be more suitable for Bloemfontein. Power tower plants in both the locations have a higher annual energy yield when compared with parabolic trough plants. A parabolic trough power plant in Vanrhynsdorp in the Western Cape Province has very low monthly electricity generation in the winter months of May, June, July and August. This is partly due to the higher cosine losses in the parabolic trough `one-axis' tracking systems and lower DNI values in the winter months. However, a power tower plant in

  4. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    SciTech Connect

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  5. Coupling flexible solar cell with parabolic trough solar-concentrator-prototype design and performance

    NASA Astrophysics Data System (ADS)

    Panin, Alexander; Bergquist, Jonathon

    2007-10-01

    Solar cells are still too expensive (5-20/watt) to compete with traditional fossil fuel power generating methods (˜1/watt). Parabolic trough solar concentrator has the advantage of modest concentration ratio (10-100) which is well suited for coupling with solar cell. Thus using small area solar cell placed in the focal line of parabolic trough may be economically viable alternative to flat solar panels. We experiment with flexible solar cell (backed by water cooling pipe) placed in the focus of parabolic trough reflector. Another advantage of parabolic trough concentrator is very relaxed tracking requirement. For example, east-west oriented concentrator (aligned with the ecliptic plane) does not even need any tracking during core 4-6 hours around noon (when maximum illumination is available). The design and the performance of the prototype, as well as possible economical benefits of full scale projects are discussed in the presentation.

  6. Numerical simulation of a parabolic trough solar collector for hot water and steam generation

    NASA Astrophysics Data System (ADS)

    Hachicha, Ahmed Amine

    2016-05-01

    Parabolic trough solar collectors (PTCs) are currently one of the most mature and prominent solar technology for the production of electricity. In order to reduce the electricity cost and improve the overall efficiency, Direct Steam generation (DSG) technology can be used for industrial heat process as well as in the solar fields for electricity production. In the last decades, this technology is experiencing an important development last decades and it is considered as one of the most feasible process for the next generation of power plants using PTCs. A numerical model based on Finite Volume Method (FVM) balance is presented to predict the thermal behavior of a parabolic trough solar collector used for hot water and steam generation. The realistic non-uniform solar flux is calculated in a pre-processing task and inserted to the general model. A numerical-geometrical method based on ray trace and FVM techniques is used to determine the solar flux distribution around the absorber tube with high accuracy.

  7. Parabolic trough collector power plant performance simulation for an interactive solar energy Atlas of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ibarra, Mercedes; Frasquet, Miguel; Al Rished, Abdulaziz; Tuomiranta, Arttu; Gasim, Sami; Ghedira, Hosni

    2016-05-01

    The collaboration between the Research Center for Renewable Energy Mapping and Assessment (ReCREMA) at Masdar Institute of Science and Technology and the King Abdullah City for Atomic & Renewable Energy (KACARE) aims to create an interactive web tool integrated in the Renewable Resource Atlas where different solar thermal electricity (STE) utility-scale technologies will be simulated. In this paper, a methodology is presented for sizing and performance simulation of the solar field of parabolic trough collector (PTC) plants. The model is used for a case study analysis of the potential of STE in three sites located in the central, western, and eastern parts of Saudi Arabia. The plant located in the north (Tayma) has the lowest number of collectors with the best production along the year.

  8. The 3D heat flux density distribution on a novel parabolic trough wavy absorber

    NASA Astrophysics Data System (ADS)

    Demagh, Yassine; Kabar, Yassine; Bordja, Lyes; Noui, Samira

    2016-05-01

    The non-uniform concentrated solar flux distribution on the outer surface of the absorber pipe can lead to large circumferential gradient temperature and high concentrated temperature of the absorber pipe wall, which is one of the primary causes of parabolic trough solar receiver breakdown. In this study, a novel shape of the parabolic trough absorber pipe is proposed as a solution to well homogenize the solar flux distribution, as well as, the temperature in the absorber wall. The conventional straight absorber located along the focal line of the parabola is replaced by wavy one (invention patent by Y. Demagh [1]) for which the heat flux density distribution on the outer surface varies in both axial and azimuthal directions (3D) while it varies only in the azimuthal direction on the former (2D). As far as we know, there is not previous study which has used a longitudinally wavy pipe as an absorber into the parabolic trough collector unit.

  9. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  10. Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers.

    PubMed

    Ries, H; Spirkl, W

    1996-05-01

    For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary.

  11. Analytical Approach Treating Three-Dimensional Geometrical Effects of Parabolic Trough Collectors: Preprint

    SciTech Connect

    Binotti, M.; Zhu, G.; Gray, A.; Manzollini, G.

    2012-04-01

    An analytical approach, as an extension of one newly developed method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is proposed to treat the geometrical impact of three-dimensional (3-D) effects on parabolic trough optical performance. The mathematical steps of this analytical approach are presented and implemented numerically as part of the suite of FirstOPTIC code. In addition, the new code has been carefully validated against ray-tracing simulation results and available numerical solutions. This new analytical approach to treating 3-D effects will facilitate further understanding and analysis of the optical performance of trough collectors as a function of incidence angle.

  12. Low-cost small scale parabolic trough collector design for manufacturing and deployment in Africa

    NASA Astrophysics Data System (ADS)

    Orosz, Matthew; Mathaha, Paul; Tsiu, Anadola; Taele, B. M.; Mabea, Lengeta; Ntee, Marcel; Khakanyo, Makoanyane; Teker, Tamer; Stephens, Jordan; Mueller, Amy

    2016-05-01

    Concentrating Solar Power is expanding its deployment on the African subcontinent, highlighting the importance of efforts to indigenize manufacturing of this technology to increase local content and therefore local economic benefits of these projects. In this study a design for manufacturing (DFM) exercise was conducted to create a locally produced parabolic trough collector (the G4 PTC). All parts were sourced or fabricated at a production facility in Lesotho, and several examples of the design were prototyped and tested with collaborators in the Government of Lesotho's Appropriate Technology Services division and the National University of Lesotho. Optical and thermal performance was simulated and experimentally validated, and pedagogical pre-commercial versions of the PTC have been distributed to higher education partners in Lesotho and Europe. The cost to produce the PTC is 180 USD/m2 for a locally manufactured heat collection element (HCE) capable of sustaining 250C operation at ~65% efficiency. A version with an imported evacuated HCE can operate at 300°C with 70% efficiency. Economically relevant applications for this locally produced PTC include industrial process heat and distributed generation scenarios where cogeneration is required.

  13. Archimede solar energy molten salt parabolic trough demo plant: Improvements and second year of operation

    NASA Astrophysics Data System (ADS)

    Maccari, Augusto; Donnola, Sandro; Matino, Francesca; Tamano, Shiro

    2016-05-01

    Since July 2013, the first stand-alone Molten Salt Parabolic Trough (MSPT) demo plant, which was built in collaboration with Archimede Solar Energy and Chiyoda Corporation, is in operation, located adjacent to the Archimede Solar Energy (ASE) manufacturing plant in Massa Martana (Italy). During the two year's operating time frame, the management of the demo plant has shown that MSPT technology is a suitable and reliable option. Several O&M procedures and tests have been performed, as Heat Loss and Minimum Flow Test, with remarkable results confirming that this technology is ready to be extended to standard size CSP plant, if the plant design takes into account molten salt peculiarities. Additionally, the plant has been equipped on fall 2014 with a Steam Generator system by Chiyoda Corporation, in order to test even this important MSPT plant subsystem and to extend the solar field active time, overcoming the previous lack of an adequate thermal load. Here, a description of the plant improvements and the overall plant operation figures will be presented.

  14. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  15. Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields: Preprint

    SciTech Connect

    Kearney, D.; Mehos, M.

    2010-12-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the EPC contractor or owners. In lieu of the present absence of engineering code developed for this purpose, NREL has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The fundamental differences between acceptance of a solar power plant and a conventional fossil-fired plant are the transient nature of the energy source and the necessity to utilize an analytical performance model in the acceptance process. These factors bring into play the need to establish methods to measure steady state performance, potential impacts of transient processes, comparison to performance model results, and the possible requirement to test, or model, multi-day performance within the scope of the acceptance test procedure. The power block and BOP are not within the boundaries of this guideline. The current guideline is restricted to the solar thermal performance of parabolic trough systems and has been critiqued by a broad range of stakeholders in CSP development and technology.

  16. Parabolic dishes: technology and economics

    SciTech Connect

    Shine, D.J.

    1983-06-01

    The status of parabolic dish technology is described in this paper. The system consists of a dish-shaped concentrator that focuses the sun's rays on a heat transfer fluid. Receivers must be developed to withstand high temperatures. The Brayton engine is recommended by Saunders Associates because it is low cost, has the highest conversion efficiency, uses ordinary atmospheric air, and comes in appropriate sizes. Storage systems can augment periods of solar operation as specified. A true commercial market will not emerge until systems level testing over an extended period has taken place. Federal support of advanced system development is needed.

  17. An optimized model and test of the China's first high temperature parabolic trough solar receiver

    SciTech Connect

    Gong, Guangjie; Huang, Xinyan; Wang, Jun; Hao, Menglong

    2010-12-15

    The vacuum solar receiver is the key component of a parabolic trough solar plant, which plays a prominent role in the gross system efficiency. Recently, China's first high temperature vacuum receiver, Sanle-3 HCE, has been developed and produced by Southeast University and Sanle Electronic Group. Before being utilized in China's first parabolic trough solar plant, accurately estimating the thermal properties of this new receiver is important. This paper first establishes and optimizes a 1-D theoretical model at Matlab program to compute the receiver's major heat loss through glass envelope, and then systematically analyzes the major influence factors of heat loss. With the laboratorial steady state test stand, the heat losses of both good vacuum and non-vacuum Sanle-3 receivers were surveyed. Comparison shows the original 1-D model agrees with the ends covered test while remarkably deviating from end exposed test. For the purpose of identifying the influence of receiver's end to total heat loss, an additional 3-D model is built by CFD software to further investigate the different heat transfer processes of receiver's end components. The 3-D end model is verified by heating power and IR temperature distribution images in the test. Combining the optimized 1-D model with the new 3-D end model, the comparison with test data shows a good accordance. At the same time the heat loss curve and emittance curve of this new receiver are given and compared with those of several other existing receivers as references. (author)

  18. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    SciTech Connect

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  19. Measurement of Hydrogen Purge Rates in Parabolic Trough Receiver Tubes: Preprint

    SciTech Connect

    Glatzmaier, G. C.

    2010-10-01

    The purpose of this research is to investigate and develop methods to remove hydrogen centrally from commercial parabolic trough power plants. A mathematical model was developed that tracks the generation and transport of hydrogen within an operating plant. Modeling results predicted the steady-state partial pressure of hydrogen within the receiver annuli to be ~1 torr. This result agrees with measured values for the hydrogen partial pressure. The model also predicted the rate at which hydrogen must be actively removed from the expansion tank to reduce the partial pressure of hydrogen within the receiver annuli to less than 0.001 torr. Based on these results, mitigation strategies implemented at operating parabolic trough power plants can reduce hydrogen partial pressure to acceptable levels. Transient modeling predicted the time required to reduce the hydrogen partial pressures within receiver annuli to acceptable levels. The times were estimated as a function of bellows temperature, getter quantity, and getter temperature. This work also includes an experimental effort that will determine the time required to purge hydrogen from a receiver annulus with no getter.

  20. A review of Andasol 3 and perspective for parabolic trough CSP plants in South Africa

    NASA Astrophysics Data System (ADS)

    Dinter, Frank; Möller, Lucas

    2016-05-01

    Andasol 3 is a 50 MW parabolic trough concentrating solar power plant with thermal energy storage in Andalusia, southern Spain. Having started operating in 2011 as one of the first plants of its kind in Spain it has been followed by more than 50 in the country since. For the reason that CSP plants with storage have the potential to compete against fossil fuel fired plants much better than any other renewable energy source a long-term review of such a plant operating on a commercial scale is needed. With data at hand documenting Andasol 3's operation over the course of one year between July 2013 and June 2014 we intend to provide such a review. We calculated the plants overall efficiency, its capacity factor, the gross energy generation as well as auxiliary powers on a monthly basis to reflect upon its overall performance. It was also looked at the benefits caused by the thermal energy storage and especially how steadily and reliably the plant was able to operate. With basic background information about physical, geographical and meteorological aspects influencing the solar resource, its variation and a CSP plant's performance a qualitative estimation for a parabolic trough plant located in South Africa was made.

  1. The potential economic benefit of using parabolic trough collectors to supplement power cycle boilers

    NASA Astrophysics Data System (ADS)

    Schimmel, W. P., Jr.; Lukens, L. L.

    1981-11-01

    An economic analysis is presented for a combined parabolic trough solar/fossil fuel hybrid power plant. Applications are considered for investor-owned utilities and industries with stockholders and bond purchasers. Annual levelized revenues are calculated, based on the capital cost of equipment, annual operations and maintenance, and a rising cost of fossil fuel. The units of heat are considered as equal in value from each source, and project return on equity for an American Southwest user of the hybrid systems are calculated to show an annual project return on equity of 21% for a utility and 25% for an industry in 1985. Analysis of the total fuel replaced by a solar reheat system for a gas-fueled boiler system shows that a 20% reduction in fuel costs can be obtained by a 10% increase in the plant costs to include the solar reheat system furnishing low-temperature heat in 1985.

  2. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    SciTech Connect

    Turchi, C.

    2010-07-01

    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  3. Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010

    SciTech Connect

    Kearney, D.

    2011-05-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

  4. Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids

    NASA Astrophysics Data System (ADS)

    Amina, Benabderrahmane; Miloud, Aminallah; Samir, Laouedj; Abdelylah, Benazza; Solano, J. P.

    2016-10-01

    In this paper, we present a three dimensional numerical investigation of heat transfer in a parabolic trough collector receiver with longitudinal fins using different kinds of nanofluid, with an operational temperature of 573 K and nanoparticle concentration of 1% in volume. The outer surface of the absorber receives a non-uniform heat flux, which is obtained by using the Monte Carlo ray tracing technique. The numerical results are contrasted with empirical results available in the open literature. A significant improvement of heat transfer is derived when the Reynolds number varies in the range 2.57×104 ≤ Re ≤ 2.57×105, the tube-side Nusselt number increases from 1.3 to 1.8 times, also the metallic nanoparticles improve heat transfer greatly than other nanoparticles, combining both mechanisms provides better heat transfer and higher thermo-hydraulic performance.

  5. Cleaning strategies for parabolic-trough solar-collector fields; guidelines for decisions

    SciTech Connect

    Bergeron, K.D.; Freese, J.M.

    1981-06-01

    This report is intended to assist the owner or operator of a parabolic trough solar collector system to decide on a cleaning strategy (equipment, materials, procedures, and schedules). The guidelines are based on information obtained in past research studies, as well as interviews with vendors and users of cleaning and water treatment equipment. The basic procedure recommended utilizes high pressure portable washing equipment. However, since the cleaning problem is so site-specific, no single, detailed approach can be specified. A systematic procedure for evaluating the particular requirements of a site is therefore given. This will allow the solar energy system operator to develop a cleaning strategy which is cost-effective because it is suited to local conditions.

  6. Techno-economic analysis of receiver replacement scenarios in a parabolic trough field

    NASA Astrophysics Data System (ADS)

    Röger, Marc; Lüpfert, Eckhard; Caron, Simon; Dieckmann, Simon

    2016-05-01

    The heat loss of an evacuated parabolic trough receiver of solar thermal power plants ranges typically between values below 150 and 200 W/m at 350°C. Defects, such as glass breakage by wind events and coating degradation, anti-reflection coating degradation or hydrogen accumulation in the annulus, decrease the annual electricity production. This study examines the effect of different receiver performance loss scenarios on the energetic and economic output of a modern 150-MWel-parabolic trough plant with 7.5-hours molten-salt storage, located in Ma'an, Jordan over the whole lifetime by modeling it in an extended version of the software greenius. Compared to the reference scenario, a wind event in year 5 (10, 15) causing glass envelope breakage and consequential degradation of the selective coating of 5.6% of the receivers reduces the electricity output by 5.1% (3.8%, 2.5%), the net present value is reduced by 36.5% (23.1%, 13.1%). The payback time of receiver replacement is only 0.7 years and hence this measure is recommended. The highest negative impact on performance and net present value of a project has the hydrogen accumulation scenario (50% of field affected) in event year 5 (10,15) reducing net electric output by 10.7% (8.1%, 5.4%) and the net present value by 77.0% (48.7%, 27.6%). Replacement of the receivers or even better an inexpensive repair solution is an energetically and economically sensible solution. The option of investing in premium receivers with Xe-capsule during the construction phase is a viable option if the surplus cost for premium receivers is lower than 10 to 20 percent.

  7. Spectrum-splitting hybrid CSP-CPV solar energy system with standalone and parabolic trough plant retrofit applications

    NASA Astrophysics Data System (ADS)

    Orosz, Matthew; Zweibaum, Nicolas; Lance, Tamir; Ruiz, Maritza; Morad, Ratson

    2016-05-01

    Sunlight to electricity efficiencies of Parabolic Trough Collector (PTC) plants are typically on the order of 15%, while commercial solar Photovoltaic (PV) technologies routinely achieve efficiencies of greater than 20%, albeit with much higher conversion efficiencies of photons at the band gap. Hybridizing concentrating solar power and photovoltaic technologies can lead to higher aggregate efficiencies due to the matching of photons to the appropriate converter based on wavelength. This can be accomplished through spectral filtering whereby photons unusable or poorly utilitized by PV (IR and UV) are passed through to a heat collection element, while useful photons (VIS) are reflected onto a concentrating PV (CPV) receiver. The mechanical design and experimental validation of spectral splitting optics is described in conjunction with system level modeling and economic analysis. The implications of this architecture include higher efficiency, lower cost hybrid CSP-PV power systems, as well as the potential to retrofit existing PTC plants to boost their output by ~ 10% at a projected investment cost of less than 1 per additional net Watt and an IRR of 18%, while preserving the dispatchability of the CSP plant's thermal energy storage.

  8. Influence of spatiotemporally distributed irradiance data input on temperature evolution in parabolic trough solar field simulations

    NASA Astrophysics Data System (ADS)

    Bubolz, K.; Schenk, H.; Hirsch, T.

    2016-05-01

    Concentrating solar field operation is affected by shadowing through cloud movement. For line focusing systems the impact of varying irradiance has been studied before by several authors with simulations of relevant thermodynamics assuming spatially homogeneous irradiance or using artificial test signals. While today's simulation capabilities allow more and more a higher spatiotemporal resolution of plant processes there are only few studies on influence of spatially distributed irradiance due to lack of available data. Based on recent work on generating real irradiance maps with high spatial resolution this paper demonstrates their influence on solar field thermodynamics. For a case study an irradiance time series is chosen. One solar field section with several loops and collecting header is modeled for simulation purpose of parabolic trough collectors and oil as heat transfer medium. Assuming homogeneous mass flow distribution among all loops we observe spatially varying temperature characteristics. They are analysed without and with mass flow control and their impact on solar field control design is discussed. Finally, the potential of distributed irradiance data is outlined.

  9. Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.

    PubMed

    Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-11-20

    While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries. PMID:26836527

  10. Thermal performance and stress analyses of the cavity receiver tube in the parabolic trough solar collector

    NASA Astrophysics Data System (ADS)

    Cao, F.; Li, Y.; Wang, L.; Zhu, T. Y.

    2016-08-01

    A light ray tracing model and a heat transfer model were built to analyse the heat flux distribution and heat transfer in a 1m cavity receiver tube with Parabolic Trough Collectors as the concentrator. The numerical methods were used to simulate the thermal stress and deformation of the receiver tube. The temperature fields of the receiver tube and the thermal stress distribution in the steel tube at the cross section and along the fluid flowing direction were presented. It is obtained from this study that non-uniform heat flux distribution is absorbed at the receiver tube outer surface due to the structure of the cavity receiver tube. Temperature fields in the steel receiver tube at the inlet and the outlet match well with the incident solar radiation. An eccentric circle temperature gradient is observed at cross section of the outlet fluid. The equivalent stress is a complex result of solar heating flux, energy transfer inside the PTC and the fluid and steel characteristics. Highest deformation is 3.1mm at 0.82m. On increasing the fluid mass flow rate, higher fluid mass flow rate results in higher equivalent stress along the absorber tube.

  11. Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.

    PubMed

    Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-11-20

    While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.

  12. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005

    SciTech Connect

    Kelly, B.

    2006-07-01

    The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump

  13. Solar Parabolic Dish Annual Technology Evaluation Report

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1982 are summarized. Included are discussions on designs of module development including their concentrator, receiver, and power conversion subsystems. Analyses and test results, along with progress on field tests, Small Community Experiment System development, and tests at the Parabolic Dish Test Site are also included.

  14. Solar parabolic dish technology evaluation report

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.

    1984-01-01

    The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.

  15. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  16. Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives.

    PubMed

    Burkhardt, John J; Heath, Garvin A; Turchi, Craig S

    2011-03-15

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, CA, along four sustainability metrics: life cycle (LC) greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrates salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically derived nitrate salt are evaluated. During its LC, the reference CSP plant is estimated to emit 26 g of CO(2eq) per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJ(eq)/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce LC water consumption by 77% but increase LC GHG emissions and CED by 8%. Synthetic nitrate salts may increase LC GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces LC GHG emissions, most significantly for plants using synthetically derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  17. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  18. Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube

    SciTech Connect

    Tao, Y.B.; He, Y.L.

    2010-10-15

    A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

  19. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    SciTech Connect

    Gawlik, Keith

    2013-06-25

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  20. Two new methods used to simulate the circumferential solar flux density concentrated on the absorber of a parabolic trough solar collector

    NASA Astrophysics Data System (ADS)

    Guo, Minghuan; Wang, Zhifeng; Sun, Feihu

    2016-05-01

    The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed

  1. Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.

    SciTech Connect

    Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

    2004-07-01

    Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

  2. Preliminary study on optimization of pH, oxidant and catalyst dose for high COD content: solar parabolic trough collector.

    PubMed

    Singh, Chandan; Chaudhary, Rubina; Gandhi, Kavita

    2013-01-01

    In the present study, solar photocatalytic oxidation has been investigated through laboratory experiments as an alternative to conventional secondary treatment for the organic content reduction of high COD wastewater. Experiments have been performed on synthetic high COD wastewater for solar photocatalytic oxidation using a parabolic trough reactor. Parameters affecting the oxidation of organics have been investigated.The experimental design followed the sequence of dark adsorption studies of organics, followed by photolytic studies (in absence of catalyst) and finally photocatalytic studies in presence and absence of additional oxidant (H2O2). All the experimental studies have been performed at pH values of 2, 4, 6,8,10 and the initial pH value of the wastewater (normal pH). For photocatalytic studies, TiO2 has been used as a photocatalyst. Optimization of catalyst dose, pH and H2O2 concentration has been done. Maximum reduction of organic content was observed at the normal pH value of the wastewater (pH = 6.8). The reaction rate was significantly enhanced in presence of hydrogen peroxide. The optimum pH other than the Normal was in the alkaline range. Acidic pH was not found to be favourable for organic content reduction. pH was found to be a dominant factor affecting reaction rate even in presence of H2O2 as an additional oxidant. Also, the solar detoxification process was effective in treating a waste with a COD level of more than 7500 mg/L, which is a otherwise a difficult waste to treat. It can therefore be used as a treatment step in the high organic wastewater treatment during the primary stage also as it effectively reduces the COD content by 86%.

  3. Preliminary study on optimization of pH, oxidant and catalyst dose for high COD content: solar parabolic trough collector

    PubMed Central

    2013-01-01

    In the present study, solar photocatalytic oxidation has been investigated through laboratory experiments as an alternative to conventional secondary treatment for the organic content reduction of high COD wastewater. Experiments have been performed on synthetic high COD wastewater for solar photocatalytic oxidation using a parabolic trough reactor. Parameters affecting the oxidation of organics have been investigated. The experimental design followed the sequence of dark adsorption studies of organics, followed by photolytic studies (in absence of catalyst) and finally photocatalytic studies in presence and absence of additional oxidant (H2O2). All the experimental studies have been performed at pH values of 2, 4, 6,8,10 and the initial pH value of the wastewater (normal pH). For photocatalytic studies, TiO2 has been used as a photocatalyst. Optimization of catalyst dose, pH and H2O2 concentration has been done. Maximum reduction of organic content was observed at the normal pH value of the wastewater (pH = 6.8). The reaction rate was significantly enhanced in presence of hydrogen peroxide. The optimum pH other than the Normal was in the alkaline range. Acidic pH was not found to be favourable for organic content reduction. pH was found to be a dominant factor affecting reaction rate even in presence of H2O2 as an additional oxidant. Also, the solar detoxification process was effective in treating a waste with a COD level of more than 7500 mg/L, which is a otherwise a difficult waste to treat. It can therefore be used as a treatment step in the high organic wastewater treatment during the primary stage also as it effectively reduces the COD content by 86%. PMID:23369352

  4. Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss: Preprint

    SciTech Connect

    Kutscher, C.; Burkholder, F.; Stynes, K.

    2010-10-01

    The overall efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The overall efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain an overall efficiency curve. Further, it presents a new way to plot efficiency that is more robust over a range of receiver operating temperatures.

  5. A comparison of prototype compound parabolic collector-reactors (CPC) on the road to SOLARDETOX technology.

    PubMed

    Funken, K H; Sattler, C; Milow, B; De Oliveira, L; Blanco, J; Fernández, P; Malato, S; Brunott, M; Dischinge, N; Tratzky, S; Musci, M; de Oliveira, J C

    2001-01-01

    Solar photocatalytic detoxification of non-biodegradable chlorinated hydrocarbon solvents (NBCS) is carried out in different concentrating and non concentrating devices using TiO2 as a photocatalyst fixed on the inner surface of the reaction tubes or as a slurry catalyst which has to be removed from the treated water. The reaction is most effective using 200 mg/l of TiO2 as a slurry in a non concentrating CPC reactor. The concentrating parabolic trough reactor has a poor activity because of its minor irradiated reactor surface. Catalyst coated glass tubes are less efficient then the used slurry catalyst. Their advantage is that no catalyst has not to be removed from the treated water and there is no loss of activity during treatment. Yet their physical stability is not sufficient to be competitive to the slurry catalyst. Nevertheless the degradation results are very promising and will possibly lead to commercial applications of this technology.

  6. Solar parabolic dish thermal power systems - Technology and applications

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.; Marriott, A. T.

    1979-01-01

    Activities of two projects at JPL in support of DOE's Small Power Systems Program are reported. These two projects are the Point-Focusing Distributed Receiver (PFDR) Technology Project and the Point-Focusing Thermal and Electric Applications (PFTEA) Project. The PFDR Technology Project's major activity is developing the technology of solar concentrators, receivers and power conversion subsystems suitable for parabolic dish or point-focusing distributed receiver power systems. Other PFDR activities include system integration and cost estimation under mass production, as well as the testing of the hardware. The PFTEA Project's first major activity is applications analysis, that is seeking ways to introduce PFDR systems into appropriate user sectors. The second activity is systems engineering and development wherein power plant systems are analyzed for specific applications. The third activity is the installation of a series of engineering experiments in various user environments to obtain actual operating experience

  7. The JPL parabolic dish project. [solar collectors technology development

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.; Williams, A. N.

    1980-01-01

    The parabolic dish solar collector is a highly versatile concentrating collector system that can produce heat for many thermal processes and electricity by coupling the collector to a suitable heat engine. This paper discusses a project for the development of these collector systems and summarizes contracts with industry for developing the dish subsystems which include concentrator, receiver, and heat engine. An early market for dishes is the dispersed small community market which depends heavily on oil to operate diesel or steam turbine plants in order to generate electricity. The present contracts with industry for conducting engineering experiments using the developed dish hardware to demonstrate the technology in these early opportunity markets is also discussed.

  8. Optical design of two-axes parabolic trough collector and two-section Fresnel lens for line-to-spot solar concentration.

    PubMed

    Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto

    2015-06-01

    Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.

  9. Solar thermal technology evaluation, fiscal year 1982. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Three primary solar concepts the central receiver, parabolic dish, and parabolic trough are investigated. To a lesser extent, the hemispherical bowl and salt-gradient solar pond are also being studied. Each technology is described.

  10. Optimized molten salt receivers for ultimate trough solar fields

    NASA Astrophysics Data System (ADS)

    Riffelmann, Klaus-J.; Richert, Timo; Kuckelkorn, Thomas

    2016-05-01

    Today parabolic trough collectors are the most successful concentrating solar power (CSP) technology. For the next development step new systems with increased operation temperature and new heat transfer fluids (HTF) are currently developed. Although the first power tower projects have successfully been realized, up to now there is no evidence of an all-dominant economic or technical advantage of power tower or parabolic trough. The development of parabolic trough technology towards higher performance and significant cost reduction have led to significant improvements in competitiveness. The use of molten salt instead of synthetic oil as heat transfer fluid will bring down the levelized costs of electricity (LCOE) even further while providing dispatchable energy with high capacity factors. FLABEG has developed the Ultimate TroughTM (UT) collector, jointly with sbp Sonne GmbH and supported by public funds. Due to its validated high optical accuracy, the collector is very suitable to operate efficiently at elevated temperatures up to 550 °C. SCHOTT will drive the key-innovations by introducing the 4th generation solar receiver that addresses the most significant performance and cost improvement measures. The new receivers have been completely redesigned to provide a product platform that is ready for high temperature operation up to 550 °C. Moreover distinct product features have been introduced to reduce costs and risks in solar field assembly and installation. The increased material and design challenges incurred with the high temperature operation have been reflected in sophisticated qualification and validation procedures.

  11. Segmented Trough Reflector

    NASA Technical Reports Server (NTRS)

    Szmyd, W. R.

    1985-01-01

    Segmented troughlike reflector for solar cells approach concentration effectiveness of true parabolic reflector yet simpler and less expensive. Walls of segmented reflector composed of reflective aluminized membrane. Lengthwise guide wire applies tension to each wall, thereby dividing each into two separate planes. Planes tend to focus Sunlight on solar cells at center of trough between walls. Segmented walls provide higher Sunlight concentration ratios than do simple walls.

  12. Parabolic Trouogh Optical Characterization at the National Renewable Energy Laboratory

    SciTech Connect

    Wendelin, T. J.

    2005-01-01

    Solar parabolic trough power plant projects are soon to be implemented in the United States and internationally. In addition to these new projects, parabolic trough power plants totaling approximately 350 MW already exist within the United States and have operated for close to 20 years. As such, the status of the technology exists within several different phases. Theses phases include R&D, manufacturing and installation, and operations and maintenance. One aspect of successful deployment of this technology is achieving and maintaining optical performance. Different optical tools are needed to assist in improving initial designs, provide quality control during manufacture and assembly, and help maintain performance during operation. This paper discusses several such tools developed at SunLab (a joint project of the National Renewable Laboratory and Sandia National Laboratories) for these purposes. Preliminary testing results are presented. Finally, plans for further tool development are discussed.

  13. Summary assessment of solar thermal parabolic dish technology for electrical power generation

    NASA Technical Reports Server (NTRS)

    Penda, P. L.; Fujita, T.; Lucas, J. W.

    1985-01-01

    An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the U.S. Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are related to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.

  14. Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model

    SciTech Connect

    Blair, N.; Mehos, M.; Christensen, C.

    2008-03-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

  15. Solar photovoltaic reflective trough collection structure

    SciTech Connect

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  16. Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint

    SciTech Connect

    Wagner, M. J.; Blair, N.; Dobos, A.

    2010-10-01

    Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

  17. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    NASA Technical Reports Server (NTRS)

    Polzien, R. E.; Rodriguez, D.

    1981-01-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  18. OUT Success Stories: Solar Trough Power Plants

    DOE R&D Accomplishments Database

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  19. Trough Floor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    3 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows boulders on the floor of a wide trough in Memnonia Fossae.

    Location near: 18.8oS, 150.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  20. Commercialization of parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Washom, B.

    1982-01-01

    The impact of recent federal tax and regulatory legislation on the commercialization of parabolic solar reflector technology is assessed. Specific areas in need of technical or economic improvement are noted.

  1. Commercialization of parabolic dish systems

    NASA Astrophysics Data System (ADS)

    Washom, B.

    1982-07-01

    The impact of recent federal tax and regulatory legislation on the commercialization of parabolic solar reflector technology is assessed. Specific areas in need of technical or economic improvement are noted.

  2. Technical Manual for the SAM Physical Trough Model

    SciTech Connect

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  3. The planar parabolic optical antenna.

    PubMed

    Schoen, David T; Coenen, Toon; García de Abajo, F Javier; Brongersma, Mark L; Polman, Albert

    2013-01-01

    One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.

  4. Testing the figure of parabolic reflectors for solar concentrators.

    PubMed

    Bodenheimer, J S; Eisenberg, N P; Gur, J

    1982-12-15

    A novel method for testing the optical quality of large parabolic solar concentrators is presented, based on autocollimation. An optical system continuously scans the reflector along a fixed reference axis. At each position along the axis, the spread function is obtained. Analysis of the location, width, and intensity changes of this function gives quantitative information about the reflector's defects. A figure of merit describing the performance of parabolic trough reflectors is proposed.

  5. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  6. Rinse trough with improved flow

    DOEpatents

    O'Hern, Timothy J.; Grasser, Thomas W.

    1998-01-01

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects' surfaces to accomplish a more thorough rinse than prior art troughs.

  7. Rinse trough with improved flow

    DOEpatents

    O`Hern, T.J.; Grasser, T.W.

    1998-08-11

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects` surfaces to accomplish a more thorough rinse than prior art troughs. 5 figs.

  8. Parabolic scaling beams.

    PubMed

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  9. Directed flow fluid rinse trough

    DOEpatents

    Kempka, S.N.; Walters, R.N.

    1996-07-02

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

  10. Directed flow fluid rinse trough

    DOEpatents

    Kempka, Steven N.; Walters, Robert N.

    1996-01-01

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

  11. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint

    SciTech Connect

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-05-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  12. Development and Testing of a Power Trough System Using a Structurally-Efficient, High-Performance, Large-Aperture Concentrator with Thin Glass Reflector and Focal Point Rotation

    SciTech Connect

    May, E. K.; Forristall, R.

    2005-11-01

    Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. The IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.

  13. Focusing the parabolic antenna

    NASA Technical Reports Server (NTRS)

    Wu, L. K.; Moore, R. K.; Ulaby, F. T.

    1983-01-01

    The focused parabolic antenna has far field pattern characteristics in the radiating near field region. Therefore, it can provide fine resolutions in the across range dimensions. The technique of focusing the parabolic antenna is discussed and applied to a 2-1/2 foot parabolic antenna at X-band. The results of the pattern measurements at various ranges from 2.8 m to 5 m are provided.

  14. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model

    SciTech Connect

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-01-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  15. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  16. Photovoltaic concentrator technology development project. Sixth project integration meeting

    SciTech Connect

    1980-10-01

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  17. The magnetospheric trough

    SciTech Connect

    Thomsen, M.F.; McComas, D.J.; Elphic, R.C.; Borovsky, J.E.

    1997-03-04

    The authors review the history of the concepts of the magnetospheric cold-ion trough and hot-electron trough and conclude that the two regions are actually essentially the same. The magnetospheric trough may be viewed as a temporal state in the evolution of convecting flux tubes. These flux tubes are in contact with the earth`s upper atmosphere which acts both as a sink for precipitating hot plasma sheet electrons and as a source for the cold ionospheric plasma leading to progressive depletion of the plasma sheet and refilling with cold plasma. Geosynchronous plasma observations show that the rate of loss of plasma-sheet electron energy density is commensurate with the precipitating electron flux at the low-latitude edge of the diffuse aurora. The rate at which geosynchronous flux tubes fill with cold ionospheric plasma is found to be consistent with previous estimates of early-time refilling. Geosynchronous observations further indicate that both Coulomb collisions and wave-particle effects probably play a role in trapping ionospheric material in the magnetosphere.

  18. Analysis and conceptual design of a lunar radiator parabolic shade

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Clark, Craig S.

    1991-01-01

    On the moon, the available heat sink temperature for a vertical unshaded radiator at the equator is 322 K. A method of reducing this heat sink temperature using a parabolic trough shading device was investigated. A steady state heat balance was performed to predict the available heat sink temperature. The effect of optical surface properties on system performance was investigated. Various geometric configurations were also evaluated. A flexible shade conceptual design is presented which greatly reduces the weight and stowed volume of the system. The concept makes use of the natural catenary shape assumed by a flexible material when supported at two points. The catenary shape is very near parabolic. The lunar radiator parabolic shade design presented integrates the energy collection and rejection of a solar dynamic power cycle with the moderate temperature waste heat rejection of a lunar habitat.

  19. Using Technology (Instead of Calculus) To Derive the Law of Reflection for Parabolic Mirrors from Fermat's Principle of Least Time.

    ERIC Educational Resources Information Center

    Helfgott, Michel; Simonsen, Linda M.

    1998-01-01

    Presents an activity to investigate physico-mathematical concepts and provide mathematics arguments that are very close to a proof with the advent and availability of powerful technology. Demonstrates without using calculus how the law of reflection for parabolas is derived from Fermat's principle of least time. (ASK)

  20. Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720

    SciTech Connect

    Bergeron, K D; Champion, R L; Hunke, R W

    1980-04-01

    The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

  1. Antireflection Pyrex envelopes for parabolic solar collectors

    NASA Astrophysics Data System (ADS)

    McCollister, H. L.; Pettit, R. B.

    1983-11-01

    Antireflective (AR) coatings, applied to the glass envelopes used in parabolic trough solar collectors around the receiver tube in order to reduce thermal losses, can increase solar transmittance by 7 percent. An AR surface has been formed on Pyrex by first heat treating the glass to cause a compositional phase separation, removing a surface layer after heat treatment through the use of a preetching solution, and finally etching in a solution that contains hydrofluorosilic and ammonium bifluoride acids. AR-coated samples with solar transmittance values of more than 0.97, by comparison to an untreated sample value of 0.91, have been obtained for the 560-630 C range of heat treatment temperatures. Optimum values have also been determined for the other processing parameters.

  2. Gullied Trough Wall

    NASA Technical Reports Server (NTRS)

    2004-01-01

    13 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows gullies emergent from beneath erosion-resistant rock layers in a trough south of Atlantis Chaos near 38.9oS, 176.3oW. Gullies such as these are fairly common in depressions at south middle latitudes. Tens of thousands of gullies have been identified in MGS MOC and Mars Odyssey Thermal Emission Imaging System (THEMIS) images. Whether they formed by running liquid water remains a controversial issue. Banked channels, like some shown here, are one form of evidence cited to indicate that a fluid with the properties of liquid water may have been involved. This image covers an area about 3 km (1.9 mi) across. The scene is illuminated by sunlight from the upper left.

  3. FASTRACK (TM): Parabolic and Suborbital Experiment Support Facility

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, V.

    2016-01-01

    FASTRACK was developed by NASA Kennedy Space Center and Space Florida to provide capabilities to conduct frequent, affordable, and responsive flight opportunities for reduced gravity experiments, technology development, and hardware testing on suborbital vehicles and parabolic flights.

  4. Building a parabolic solar concentrator prototype

    NASA Astrophysics Data System (ADS)

    Escobar-Romero, J. F. M.; Montiel, S. Vázquez y.; Granados-Agustín, F.; Cruz-Martínez, V. M.; Rodríguez-Rivera, E.; Martínez-Yáñez, L.

    2011-01-01

    In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.

  5. Structure of the Mekong trough

    SciTech Connect

    Van Khy, L.

    1986-01-01

    The Mekong trough occupies the shelf of southern Vietnam between the sea coast and the Condao-Cu Lao Tu line of islands and the adjacent area of the onshore Mekong delta. It extends for 400 km from southwest to northeast with a width of 100 km. The Mekong trough is situated on the upper Mesozoic volcanic belt of South Vietnam, which is part of the East Asian volcanogenic belt. It is bounded on the southeast by the Con Son high, on the southwest by the Corat-Ca Mau high, and on the northwest by the Dalat massif. The Mekong trough is considered to have major potential as a new petroleum province. Since 1969, numerous common depth point (CDP) seismic profiles have been run and seven deep wells have been drilled on the shelf in the Mekong trough. This paper is devoted to an analysis of the findings. 9 references, 4 figures.

  6. Proceedings of the Fifth Parabolic Dish Solar Thermal Power Program

    NASA Technical Reports Server (NTRS)

    Lucas, J. W. (Editor)

    1984-01-01

    The proceedings of the Fifth Parabolic Dish Solar Thermal Power Program Annual Review are presented. The results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program were emphasized. Among the topics discussed were: overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development along with associated hardware and test results; distributed systems operating experience; international parabolic dish development activities; and non-DOE-sponsored domestic dish activities. Solar electric generation was also addressed.

  7. Energy and environment. A Sandia technology bulletin

    SciTech Connect

    Parrott, L.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-03-01

    This bulletin discusses the following: decontamination of polluted water by using a photocatalyst to convert ultraviolet energy into electrochemical energy capable of destroying organic waste and removing toxic metals; monitoring oil spills with SAR by collecting data in digital form, processing the data, and creating digital images that are recorded for post-mission viewing and processing; revitalization of a solar industrial process heat system which uses parabolic troughs to heat water for foil production of integrated circuits; and an electronic information system, EnviroTRADE (Environmental Technologies for Remedial Actions Data Exchange) for worldwide exchange of environmental restoration and waste management information.

  8. Weak lensing by galaxy troughs

    NASA Astrophysics Data System (ADS)

    Gruen, Daniel

    2016-06-01

    Galaxy troughs, i.e. underdensities in the projected galaxy field, are a weak lensing probe of the low density Universe with high signal-to-noise ratio. I present measurements of the radial distortion of background galaxy images and the de-magnification of the CMB by troughs constructed from Dark Energy Survey and Sloan Digital Sky Survey galaxy catalogs. With high statistical significance and a relatively robust modeling, these probe gravity in regimes of density and scale difficult to access for conventional statistics.

  9. Mechatronic Prototype of Parabolic Solar Tracker

    PubMed Central

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-01-01

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses. PMID:27314359

  10. Mechatronic Prototype of Parabolic Solar Tracker.

    PubMed

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-06-15

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  11. Mechatronic Prototype of Parabolic Solar Tracker.

    PubMed

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-01-01

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses. PMID:27314359

  12. Parabolic dish module experiment

    NASA Astrophysics Data System (ADS)

    1986-03-01

    A development test model of the 8-meter Solar Brayton Parabolic Dish Module has been designed, fabricated, and tested. The test model consists of five major subsystems: Sanders ceramic honeycomb solar receiver; LaJet LEC460 solar concentrator; AiRsearch SABC MKIIIA engine, Abacus 8 kW ac inverter; and a Sanders designed and built system controller. Goals of the tests were to integrate subsystem components into a working module, demonstrate the concept, and generate 5 kWe (hybrid) and 4.7 kWe (solar only) input. All subsystem integration goals were successfully achieved, but system performance efficiency was lower than expected. Contributing causes of the lower performance efficiencies have been identified. Modifications needed to restore performance to the required levels and improve the system life cycle cost have been addressed and are the subject of this final report.

  13. The Tricky Tear Trough

    PubMed Central

    Belden, Sarah; Miller, Richard A.

    2015-01-01

    There is a growing demand for noninvasive anti-aging products for which the periorbital region serves as a critical aspect of facial rejuvenation. This article reviews a multitude of cosmeceutical ingredients that have good scientific data, specifically for the periorbital region. Topical treatment options have exponentially grown from extensively studied retinoids, to recently developed technology, such as growth factors and peptides. With a focus on the periorbital anatomy, the authors review the mechanisms of action of topical cosmeceutical ingredients, effectiveness of ingredient penetration through the stratum corneum, and validity of clinical trials. PMID:26430490

  14. A novel portable device to measure the temperature of both the inner and the outer tubes of a parabolic receiver in the field

    NASA Astrophysics Data System (ADS)

    Hermoso, J. L. Navarro; Espinosa-Rueda, Guillermo; Martinez, Noelia; Heras, Carlos; Osta, Marta

    2016-05-01

    The performance of parabolic trough (PT) receiver tubes (RT) has a direct impact on Solar Thermal Energy (STE) plant production. As a result, one major need of operation and maintenance (O&M) in STE plants is to monitor the state of the receiver tube as a key element in the solar field. However the lack of specific devices so far has limited the proper evaluation of operating receiver tubés thermal performance. As a consequence non-accurate approximations have been accepted until now using infrared thermal images of the glass outer tube. In order to fulfill this need, Abengoa has developed a unique portable device for evaluating the thermal performance and vacuum state of parabolic trough receiver tubes placed in the field. The novel device described in this paper, simultaneously provides the temperature of both the inner steel tube and the outer glass tube enabling a check on manufacturers specifications. The on-field evaluation of any receiver tube at any operating temperature has become possible thanks to this new measuring device. The features and usability of this new measurement system as a workable portable device in operating solar fields provide a very useful tool for all companies in the sector contributing to technology progress. The originality of the device, patent pending P201431969, is not limited to the CSP sector, also having scientific significance in the general measuring instruments field. This paper presents the work carried out to develop and validate the device, also detailing its functioning properties and including the excellent results obtained in the laboratory to determine its accuracy and standard deviation. This information was validated with data collected by O&M teams using this instrument in a commercial CSP plant. The relevance of the device has been evidenced by evaluating a wide sample of RT and the results are discussed in this paper. Finally, all the on field collected data is used to demonstrate the high impact that using

  15. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  16. Parabolic metamaterials and Dirac bridges

    NASA Astrophysics Data System (ADS)

    Colquitt, D. J.; Movchan, N. V.; Movchan, A. B.

    2016-10-01

    A new class of multi-scale structures, referred to as `parabolic metamaterials' is introduced and studied in this paper. For an elastic two-dimensional triangular lattice, we identify dynamic regimes, which corresponds to so-called `Dirac Bridges' on the dispersion surfaces. Such regimes lead to a highly localised and focussed unidirectional beam when the lattice is excited. We also show that the flexural rigidities of elastic ligaments are essential in establishing the `parabolic metamaterial' regimes.

  17. Testing Parabolic-Dish Concentrators

    NASA Technical Reports Server (NTRS)

    Selcuk, M. Kudret

    1988-01-01

    Report describes test equipment and tests at Parabolic Dish Test Site at Edwards Air Force Base in California. Site established in 1978 for testing point-focusing solar concentrators operating at temperatures above 600 degree F. Used for six years to evaluate parabolic-dish concentrators, receivers, power-conversion units, and solar/fossil-fuel hybrid units. Report describes evolution of test program at site, lists experiments conducted there in chronological order, and summarizes experimental data.

  18. Gulf trough: the Atlantic connection

    USGS Publications Warehouse

    Popenoe, Peter; Henry, Vernon J.; Idris, Faisal M.

    1987-01-01

    Analyses of seismic reflection profiles and stratigraphic data indicate a continuation of the Gulf trough trend across eastern South Carolina and offshore between Cape Fear and Cape Hatteras, North Carolina. Seismic profiles show a linear northeast-trending zone of nondeposition and erosion and areas of chaotic deposition in the Eocene and Oligocene sections. The character of deposition and erosion along this trend is similar to that produced by bottom currents under the core of the present Gulf Stream. The trend separates deep-water from shallower water deposits, indicating that the erosion was produced by strong marine currents flowing through the Gulf trough in the high sea levels of middle Eocene through early Oligocene time.

  19. Parabolic aircraft solidification experiments

    NASA Technical Reports Server (NTRS)

    Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan

    1996-01-01

    A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.

  20. Renewable energy technologies for federal facilities: Solar water heating

    SciTech Connect

    1996-05-01

    This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

  1. Engineering parabolic beams with dynamic intensity profiles.

    PubMed

    Ruelas, Adrian; Lopez-Aguayo, Servando; Gutiérrez-Vega, Julio C

    2013-08-01

    We present optical fields formed by superposing nondiffracting parabolic beams with distinct longitudinal wave-vector components, generating light profiles that display intensity fluxes following parabolic paths in the transverse plane. Their propagation dynamics vary depending on the physical mechanism originating interference, where the possibilities include constructive and destructive interference between traveling parabolic beams, interference between stationary parabolic modes, and combinations of these. The dark parabolic region exhibited by parabolic beams permits a straightforward superposition of intensity fluxes, allowing formation of a variety of profiles, which can exhibit circular, elliptic, and other symmetries.

  2. Advanced photovoltaic-trough development

    SciTech Connect

    Spencer, R.; Yasuda, K.; Merson, B.

    1982-04-01

    The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

  3. Fabrication of trough-shaped solar collectors

    DOEpatents

    Schertz, William W.

    1978-01-01

    There is provided a radiant energy concentration and collection device formed of a one-piece thin-walled plastic substrate including a plurality of nonimaging troughs with certain metallized surfaces of the substrate serving as reflective side walls for each trough. The one-piece plastic substrate is provided with a seating surface at the bottom of each trough which conforms to the shape of an energy receiver to be seated therein.

  4. Shenandoah parabolic dish solar collector

    SciTech Connect

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  5. An Application of Calculus: Optimum Parabolic Path Problem

    ERIC Educational Resources Information Center

    Atasever, Merve; Pakdemirli, Mehmet; Yurtsever, Hasan Ali

    2009-01-01

    A practical and technological application of calculus problem is posed to motivate freshman students or junior high school students. A variable coefficient of friction is used in modelling air friction. The case in which the coefficient of friction is a decreasing function of altitude is considered. The optimum parabolic path for a flying object…

  6. Parabolic Dish Solar Thermal Power Annual Program Review Proceedings

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.

    1982-01-01

    The results of activities of the parabolic dish technology and applications development element of DOE's Solar Thermal Energy System Program are presented. Topics include the development and testing of concentrators, receivers, and power conversion units; system design and development for engineering experiments; economic analysis and marketing assessment; and advanced development activities. A panel discussion concerning industrial support sector requirements is also documented.

  7. Proceedings: Fourth Parabolic Dish Solar Thermal Power Program Review

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of activities within the parabolic dish technology and applications development program are presented. Stirling, organic Rankine and Brayton module technologies, associated hardware and test results to date; concentrator development and progress; economic analyses; and international dish development activities are covered. Two panel discussions, concerning industry issues affecting solar thermal dish development and dish technology from a utility/user perspective, are also included.

  8. Composite isogrid structures for parabolic surfaces

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M. (Inventor); Boyd, Jr., William E. (Inventor); Rhodes, Marvin D. (Inventor); Dyer, Jack E. (Inventor)

    2000-01-01

    The invention relates to high stiffness parabolic structures utilizing integral reinforced grids. The parabolic structures implement the use of isogrid structures which incorporate unique and efficient orthotropic patterns for efficient stiffness and structural stability.

  9. Self-similar parabolic plasmonic beams.

    PubMed

    Davoyan, Arthur R; Turitsyn, Sergei K; Kivshar, Yuri S

    2013-02-15

    We demonstrate that an interplay between diffraction and defocusing nonlinearity can support stable self-similar plasmonic waves with a parabolic profile. Simplicity of a parabolic shape combined with the corresponding parabolic spatial phase distribution creates opportunities for controllable manipulation of plasmons through a combined action of diffraction and nonlinearity.

  10. Transversal filter for parabolic phase equalization

    NASA Technical Reports Server (NTRS)

    Kelly, Larry R. (Inventor); Waugh, Geoffrey S. (Inventor)

    1993-01-01

    An equalizer (10) for removing parabolic phase distortion from an analog signal (3), utilizing a pair of series connected transversal filters. The parabolic phase distortion is cancelled by generating an inverse parabolic approximation using a sinusoidal phase control filter (18). The signal (3) is then passed through an amplitude control filter (21) to remove magnitude ripple components.

  11. Parabolic tapers for overmoded waveguides

    DOEpatents

    Doane, J.L.

    1983-11-25

    A waveguide taper with a parabolic profile, in which the distance along the taper axis varies as the square of the tapered dimension, provides less mode conversion than equal length linear tapers and is easier to fabricate than other non-linear tapers.

  12. Monitoring Emergent Absorption Troughs in Quasars

    NASA Astrophysics Data System (ADS)

    Hall, Patrick; Rodriguez Hidalgo, Paola; Brandt, W. Niel; Rogerson, Jesse; Filiz Ak, Nur; Chajet, Laura

    2014-02-01

    Outflows from luminous AGN are important ingredients in galaxy formation. These outflows manifest as broad absorption line (BAL) troughs in quasar spectra. Trough variability can be used to constrain the physical parameters of these absorbing structures through comparison to models and simulations of accretion disk winds. Monitoring appearing/disappearing BAL troughs can constrain the distribution of BAL trough lifetimes along our line of sight. By comparing spectra from the SDSS Data Release (DR) 7 and DR 9, we identified 68 quasars in whose spectra new absorption troughs have appeared over 300-1200 restframe days, including one trough outflowing at v=60,000 km/s. We propose to complete our third-epoch GMOS spectroscopy of the brightest of those quasars (48 in 2013AB and 9 proposed here) to measure the absorption strength in newly appeared troughs <=365 restframe days after their previous measurement. Preliminary 2013AB results indicate that troughs are not on average still strengthening between SDSS and Gemini epochs; we therefore propose observations of 40 targets to probe shorter rest-frame time separations. We also target 8 objects showing simultaneous absorption variations in multiple ionization states, to help develop methods to distinguish absorption variations from cloud motion vs. those from ionization changes within clouds.

  13. PROPHIS: parabolic trough-facility for organic photochemical syntheses in sunlight.

    PubMed

    Jung, Christian; Funken, Karl-Heinz; Ortner, Jürgen

    2005-05-01

    The PROPHIS facility is an efficient tool for the synthesis of chemicals with moderately concentrated sunlight on a semi-technical scale. The feasibility of selected solar photochemical reaction classes--including heterogeneous and homogeneous reactions--has been demonstrated using various set-ups of the plant. This paper outlines the potential of solar photochemistry by representative examples.

  14. Trough Receiver Heat Loss Testing (Presentation)

    SciTech Connect

    Lewandowski, A.; Feik, C.; Hansen, R.; Phillips, S.; Bingham, C.; Netter, J.; Forristal, R.; Burkholder, F.; Meglan, B.; Wolfrum, E.

    2006-02-01

    This presentation describes the design, fabrication, and qualification of an experimental capability for thermal loss testing of full-size trough receiver elements; and the testing on a variety of receivers.

  15. Preliminary definition and characterization of a solar industrial process heat technology and manufacturing plant for the year 2000

    SciTech Connect

    Prythero, T.; Meyer, R. T.

    1980-09-01

    A solar industrial process heat technology and an associated solar systems manufacturing plant for the year 2000 has been projected, defined, and qualitatively characterized. The technology has been defined for process heat applications requiring temperatures of 300/sup 0/C or lower, with emphasis on the 150/sup 0/ to 300/sup 0/C range. The selected solar collector technology is a parabolic trough collector of the line-focusing class. The design, structure, and material components are based upon existing and anticipated future technological developments in the solar industry. The solar system to be manufactured and assembled within a dedicated manufacturing plant is projected to consist of the collector and the major collector components, including reflector, absorber, parabolic trough structure, support stand, tracking drive mechanism, sun-sensing device and control system, couplings, etc. Major manufacturing processes to be introduced into the year 2000 plant operations are glassmaking, silvering, electroplating and plastic-forming. These operations will generate significant environmental residuals not encountered in present-day solar manufacturing plants. Important residuals include chemical vapors, acids, toxic elements (e.g. arsenic), metallic and chemical sludges, fumes from plastics, etc. The location, design, and operations of these sophisticated solar manufacturing plants will have to provide for the management of the environmental residuals.

  16. How do spiral troughs form on Mars?

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    2004-04-01

    A three-dimensional model for the coupled evolution of ice-surface temperature and elevation in the Martian polar ice caps is presented. The model includes (1) enhanced heat absorption on steep, dust-exposed scarps, (2) accumulation and ablation, and (3) lateral conduction of heat within the ice cap. The model equations are similar to classic equations for excitable media, including nerve fibers and chemical oscillators. In two dimensions, a small zone of initial melting in the model develops into a train of poleward-migrating troughs with widths similar to those observed on Mars. Starting from random initial conditions, the three-dimensional model reproduces spiral waves very similar to those in the north polar ice cap, including secondary features such as gull-wing shaped troughs, bifurcations, and terminations. These results suggest that eolian processes and ice flow may not control trough morphology.

  17. Parabolic curves in Lie groups

    SciTech Connect

    Pauley, Michael

    2010-05-15

    To interpolate a sequence of points in Euclidean space, parabolic splines can be used. These are curves which are piecewise quadratic. To interpolate between points in a (semi-)Riemannian manifold, we could look for curves such that the second covariant derivative of the velocity is zero. We call such curves Jupp and Kent quadratics or JK-quadratics because they are a special case of the cubic curves advocated by Jupp and Kent. When the manifold is a Lie group with bi-invariant metric, we can relate JK-quadratics to null Lie quadratics which arise from another interpolation problem. We solve JK-quadratics in the Lie groups SO(3) and SO(1,2) and in the sphere and hyperbolic plane, by relating them to the differential equation for a quantum harmonic oscillator00.

  18. Parabolic dish photovoltaic concentrator development

    NASA Astrophysics Data System (ADS)

    Beninga, K.; Davenport, R.; Featherby, M.; Sandubrae, J.; Walcott, K.

    1991-05-01

    Science Applications International Corporation (SAIC) and Tactical Fabs, Inc. (TFI) have fabricated a prototype parabolic dish photovoltaic (PV) concentrator system to demonstrate the functionality of this approach. A 1.5 m diameter parabolic dish was fabricated of a polyester/fiberglass composite, with a silvered polymer reflective surface. An innovative receiver cooling system used outward radial flow of cooling water in a narrow passage. This configuration matches the heat transfer capability of the cooling system to the flux profile on the PV receiver, minimizing temperature variations across the receiver. The photovoltaic cells used in the system were a new, TFI-proprietary design. Interleaved contacts form a bi-polar, rear-contact cell configuration. Because the electrical contacts are made on the rear of the cells, cells can be close-packed to form receiver arrays of arbitrary shape and size. Optical testing of the dish concentrator was performed by SAIC, SERI, and Sandia National Labs. The dish concentrator, designed for solar thermal applications, had a tight focal spot but exhibited flux non-uniformities away from the focal plane. Thermal testing of the receiver cooling system was performed with excellent success. Single PV cells, 4-cell blocks, and 144-cell receiver modules were built and tested. The cells successfully demonstrated the TFI design concept, but due to cell processing problems their efficiency was very low. Sources of the processing problems were identified and solutions were proposed, but funding limitations precluded further cell production. Operation of the complete PV dish system was conducted, and the functionality of the system was demonstrated. However, low cell efficiencies and receiver plane flux non-uniformities caused the system performance to be very low. These problems are not generic to the concept, and solutions to them proposed.

  19. Photovoltaic applications of Compound Parabolic Concentrator (CPC)

    NASA Technical Reports Server (NTRS)

    Winston, R.

    1975-01-01

    The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.

  20. Analysis of the Quality of Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Lambot, Thomas; Ord, Stephan F.

    2016-01-01

    Parabolic flights allow researchers to conduct several 20 second micro-gravity experiments in the course of a single day. However, the measurement can have large variations over the course of a single parabola, requiring the knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) reviewed the acceleration data of over 400 parabolic flights and investigated the quality of micro-gravity for scientific purposes. It was discovered that a parabolic flight can be segmented into multiple parts of different quality and duration, a fact to be aware of when planning an experiment.

  1. Back arc extension in the Okinawa Trough

    SciTech Connect

    Sibuet, J.; Letouzey, J.; Barbier, F.; Charvet, J.; Foucher, J.; Hilde, T.W.C.; Kimura, M.; Ling-Yun, C.; Marsset, B.; Muller, C.; and others

    1987-12-10

    The Okinawa Trough, lying to the east of China, is a back arc basin formed by extension within continental lithosphere behind the Ryukyu trench-arc system. Middle to late Miocene uplift, associated with normal faulting of the initially adjacent Ryukyu nonvolcanic arc and the Taiwan-Sinzi folded belt, corresponds to the first rifting phase. The timing of rifting is supported by the presence of marine sediments of corresponding age drilled in the northern Okinawa Trough. The rifting occurred after a major early Miocene change in the motion of the Philippine plate with respect to Eurasia and ceased during the Pliocene. A second rifting phase started about 2 m.y. ago, at the Plio-Pleistocene boundary and has continue until the present time. It has proceeded to a more advanced stage in the middle and southern Okinawa Trough than it has farther north. Detailed bathymetric (Sea Beam), seismic reflection and magnetics data collected during the POP 1 cruise of the R/V Jean Charcot reveal the principal features of the extensional processes. The back are spreading phase started very recently in the southern and middle Okinawa Trough, as exemplified by several and echelon and, in some cases, overlapping active, central graben oriented N70/sup 0/ E--N80/sup 0/ E. Some of these depressions are intruded by volcanic ridges of fresh back arc basalt with associated large magnetic anomalies. Transform faults between these en echelon active rifts are not obvious.

  2. Tectonic evolution and volcanism of Okinawa Trough

    SciTech Connect

    Sibuet, J.C.; Letouzey, J.; Marsset, B.; Davagnier, M.; Foucher, J.P.; Bougault, H.; Dosso, L.; Maury, R.; Joron, J.L.

    1986-07-01

    The Okinawa Trough is a back-arc basin formed by extension of the east China continental lithosphere behind the Ryukyu Trench system. The age of marine deposits drilled in the northern Okinawa Trough indicates a Miocene age for the splitting of the volcanic arc and the first tensional movements. The POP 1 cruise of the R/V Jean-Charcot (September-October 1984) provided new evidence concerning the two main periods of extension as recognized by Kimura (Marine and Petroleum Geology, 1985). Tilted fault blocks in the northern Okinawa Trough trend north 40/sup 0/-60/sup 0/ and belong to the early Pleistocene phase (2-0.5 Ma). The present-day phase is characterized over the entire basin by normal faults oriented 80/sup 0/N in the north and 90/sup 0/N in the south. In the southern Okinawa Trough, most of the deformation occurs along linear, subparallel, en echelon depressions intruded by volcanic ridges associated with positive magnetic anomalies. The system of volcanic ridges ends northeast of Okinawa Island in a series of parallel volcanic ridges named the VAMP (Volcanic arc-rift migration processes) area, which merges into an active volcanic chain extending north to Japan. Chemical analyses of the vesicular basalts dredged on the back-arc basin display flat to enriched rare-earth patterns. The niobium-tantalum negative anomalies reflect a subduction signature. A good positive correlation between strontium isotopic compositions and concentrations suggests a contamination effect.

  3. Revisiting trough interactions and tropical cyclone intensity change

    NASA Astrophysics Data System (ADS)

    Peirano, C. M.; Corbosiero, K. L.; Tang, B. H.

    2016-05-01

    An updated climatology of Atlantic basin tropical cyclone (TC) intensity change in the presence of upper tropospheric trough forcing is presented. To control for changes in the background thermodynamic environment, a methodology that normalizes intensity change by the potential intensity of the TC is used to more narrowly focus on the effect of troughs compared to previous studies. Relative to the full sample of Atlantic TCs, troughs are a negative influence on intensification: trough interaction cases are 4% less likely to intensify and 5% more likely to weaken. Troughs are especially detrimental compared to TCs without trough forcing: trough interaction cases are 14% less likely to intensify and 13% more likely to weaken. Additionally, eddy flux convergence of angular momentum, previously shown to positively affect TC intensity change, is shown to be a weak predictor of intensity change compared to vertical wind shear, which is enhanced during a trough interaction.

  4. Detail of pumps in troughs, detail of truss attachment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of pumps in troughs, detail of truss - attachment to the wall - as well as the troughs themselves. Interior of the main hatchery building, view to the east. - Prairie Creek Fish Hatchery, Hwy. 101, Orick, Humboldt County, CA

  5. Reflective Properties of a Parabolic Mirror.

    ERIC Educational Resources Information Center

    Ramsey, Gordon P.

    1991-01-01

    An incident light ray parallel to the optical axis of a parabolic mirror will be reflected at the focal point and vice versa. Presents a mathematical proof that uses calculus, algebra, and geometry to prove this reflective property. (MDH)

  6. Lipoxygenase activity during parabolic flights.

    PubMed

    Maccarrone, M; Tacconi, M; Battista, N; Valgattarri, F; Falciani, P; Finazzi-Agro, A

    2001-07-01

    Experiments in Space clearly show that various cellular processes, such as growth rates, signaling pathways and gene expression, are modified when cells are placed under conditions of weightlessness. As yet, there is no coherent explanation for these observations, though recent experiments, showing that microtubule self-organization is gravity-dependent suggest that investigations at the molecular level might fill the gap between observation and understanding of Space effects. Lipoxygenases are a family of dioxygenases which have been implicated in the pathogenesis of several inflammatory conditions, in atherosclerosis, in brain aging and in HIV infection. In plants, lipoxy-genases favour germination, participate in the synthesis of traumatin and jasmonic acid and in the response to abiotic stress. Here, we took advantage of a fibre optics spectrometer developed on purpose, the EMEC (Effect of Microgravity on Enzymatic Catalysis) module, to measure the dioxygenation reaction by pure soybean lipoxygenase-1 (LOX-1) during the 28th parabolic flight campaign of the European Space Agency (ESA). The aim was to ascertain whether microgravity can affect enzyme catalysis.

  7. Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis.

    PubMed

    Biler, Piotr; Corrias, Lucilla; Dolbeault, Jean

    2011-07-01

    In two space dimensions, the parabolic-parabolic Keller-Segel system shares many properties with the parabolic-elliptic Keller-Segel system. In particular, solutions globally exist in both cases as long as their mass is less than a critical threshold M(c). However, this threshold is not as clear in the parabolic-parabolic case as it is in the parabolic-elliptic case, in which solutions with mass above M(c) always blow up. Here we study forward self-similar solutions of the parabolic-parabolic Keller-Segel system and prove that, in some cases, such solutions globally exist even if their total mass is above M(c), which is forbidden in the parabolic-elliptic case.

  8. Piecewise-Planar Parabolic Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Hodges, Richard; Zawadzki, Mark

    2009-01-01

    The figure shows a dual-beam, dualpolarization Ku-band antenna, the reflector of which comprises an assembly of small reflectarrays arranged in a piecewise- planar approximation of a parabolic reflector surface. The specific antenna design is intended to satisfy requirements for a wide-swath spaceborne radar altimeter, but the general principle of piecewise-planar reflectarray approximation of a parabolic reflector also offers advantages for other applications in which there are requirements for wideswath antennas that can be stowed compactly and that perform equally in both horizontal and vertical polarizations. The main advantages of using flat (e.g., reflectarray) antenna surfaces instead of paraboloidal or parabolic surfaces is that the flat ones can be fabricated at lower cost and can be stowed and deployed more easily. Heretofore, reflectarray antennas have typically been designed to reside on single planar surfaces and to emulate the focusing properties of, variously, paraboloidal (dish) or parabolic antennas. In the present case, one approximates the nominal parabolic shape by concatenating several flat pieces, while still exploiting the principles of the planar reflectarray for each piece. Prior to the conception of the present design, the use of a single large reflectarray was considered, but then abandoned when it was found that the directional and gain properties of the antenna would be noticeably different for the horizontal and vertical polarizations.

  9. Parabolic flight as a spaceflight analog.

    PubMed

    Shelhamer, Mark

    2016-06-15

    Ground-based analog facilities have had wide use in mimicking some of the features of spaceflight in a more-controlled and less-expensive manner. One such analog is parabolic flight, in which an aircraft flies repeated parabolic trajectories that provide short-duration periods of free fall (0 g) alternating with high-g pullout or recovery phases. Parabolic flight is unique in being able to provide true 0 g in a ground-based facility. Accordingly, it lends itself well to the investigation of specific areas of human spaceflight that can benefit from this capability, which predominantly includes neurovestibular effects, but also others such as human factors, locomotion, and medical procedures. Applications to research in artificial gravity and to effects likely to occur in upcoming commercial suborbital flights are also possible.

  10. Parabolic Ejecta Features on Titan? Probably Not

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Melosh, H. J.

    1996-03-01

    Radar mapping of Venus by Magellan indicated a number of dark parabolic features, associated with impact craters. A suggested mechanism for generating such features is that ejecta from the impact event is 'winnowed' by the zonal wind field, with smaller ejecta particles falling out of the atmosphere more slowly, and hence drifting further. What discriminates such features from simple wind streaks is the 'stingray' or parabolic shape. This is due to the ejecta's spatial distribution prior to being winnowed during fallout, and this distribution is generated by the explosion plume of the impact piercing the atmosphere, allowing the ejecta to disperse pseudoballistically before re-entering the atmosphere, decelerating to terminal velocity and then being winnowed. Here we apply this model to Titan, which has a zonal wind field similar to that of Venus. We find that Cassini will probably not find parabolic features, as the winds stretch the deposition so far that ejecta will form streaks or bands instead.

  11. Controllable parabolic-cylinder optical rogue wave.

    PubMed

    Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola

    2014-10-01

    We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.

  12. Holomorphic Parabolic Geometries and Calabi-Yau Manifolds

    NASA Astrophysics Data System (ADS)

    McKay, Benjamin

    2011-09-01

    We prove that the only complex parabolic geometries on Calabi-Yau manifolds are the homogeneous geometries on complex tori. We also classify the complex parabolic geometries on homogeneous compact Kähler manifolds.

  13. The origin and evolution of the Cretaceous Benue Trough (Nigeria)

    NASA Astrophysics Data System (ADS)

    Benkhelil, J.

    The intracontinental Benue Trough was initiated during the Lower Cretaceous in relation with the Atlantic Ocean opening. The first stage of its evolution started in the Aptian, forming isolated basins with continental sedimentation. In the Albian times, a great delta developed in the Upper Benue Trough, while the first marine transgression coming from the opening Gulf of Guinea occurred in the south and reached the Middle Benue. The widespread Turonian transgression made the Atlantic and Tethys waters communicate through the Sahara, Niger basins and the Benue Trough. The tectonic evolution of the Benue Trough was closely controlled by transcurrent faulting through an axial fault system, developing local compressional and tensional regimes and resulting in basins and basement horsts along releasing and restraining bends of the faults. Two major compressional phases occurred: in the Abakaliki area (southern Benue) during the Santonian; and at the end of the Cretaceous in the Upper Benue Trough. In Abakaliki, the sedimentary infilling was severely deformed through folding and flattening, and moderate folding and fracturing occurred in the northeast. The Cretaceous magmatism was restricted to main fault zones in most of the trough but was particularly active in the Abakaliki Trough, where it has alkaline affinities. From Albian to Santonian, the magmatism was accompanied in part of the Abakaliki Trough by a low-grade metamorphism. Geophysical data indicate a crustal thinning beneath the Benue Trough and, at a superficial level, an axial basement high flanked by two elongated deep basins including isolated sub-basins. The model of the tectonic evolution of the trough is based upon a general sinistral wrenching along the trough responsible for the structural arrangement and the geometry of the sub-basins. During the early stages of the Gulf of Guinea opening the Benue Trough was probably the expression on land of the Equatorial Fracture Zones.

  14. Discontinuous mixed covolume methods for parabolic problems.

    PubMed

    Zhu, Ailing; Jiang, Ziwen

    2014-01-01

    We present the semidiscrete and the backward Euler fully discrete discontinuous mixed covolume schemes for parabolic problems on triangular meshes. We give the error analysis of the discontinuous mixed covolume schemes and obtain optimal order error estimates in discontinuous H(div) and first-order error estimate in L(2).

  15. Distributed neural signals on parabolic cylindrical shells

    NASA Astrophysics Data System (ADS)

    Hu, S. D.; Li, H.; Tzou, H. S.

    2013-06-01

    Parabolic cylindrical shells are commonly used as key components in communication antennas, space telescopes, solar collectors, etc. This study focuses on distributed modal neural sensing signals on a flexible simply-supported parabolic cylindrical shell panel. The parabolic cylindrical shell is fully laminated with a piezoelectric layer on its outer surface and the piezoelectric layer is segmented into infinitesimal elements (neurons) to investigate the microscopic distributed neural sensing signals. Since the dominant vibration component of the shell is usually the transverse oscillation, a new transverse mode shape function is defined. Two shell cases, i.e., the ratio of the meridian height to the half span distance of a parabola at 1:4 (shallow) and 1:1 (deep), are studied to reveal the curvature effect to the neural sensing signals. Studies suggest that the membrane signal component dominates for lower natural modes and the bending signal component dominates for higher natural modes. The meridional membrane and bending signal components are mostly concentrated on the high-curvature areas, while the longitudinal bending component is mostly concentrated on the relatively flat areas. The concentration behavior becomes more prominent as the parabolic cylindrical shell deepens, primarily resulting from the enhanced membrane effect due to the increased curvature.

  16. Manufacture of large, lightweight parabolic antennas

    NASA Technical Reports Server (NTRS)

    Hooper, S. W.

    1973-01-01

    Antenna was produced in segments. Parabole sections were built up as aluminum foil sandwich with core bonded by film adhesive; whole structure was oven-cured after assembly. Structure was assembled with special tool for splice-bonding segments into complete dish, and inflatable bladder to apply pressure at joints during cure.

  17. Sedimentation and tectonics of the Sylhet trough, Bangladesh

    USGS Publications Warehouse

    Johnson, S.Y.; Nur Alam, A.M.

    1991-01-01

    The Sylhet trough, a sub-basin of the Bengal Basin in northeastern Bangladesh, contains a thick fill (12 to 16 km) of late Mesozoic and Cenozoic strata that record its tectonic evolution. Stratigraphic, sedimentologic, and petrographic data collected from outcrops, cores, well logs, and seismic lines are used to reconstruct the history of this trough. -from Authors

  18. 9 CFR 91.27 - Troughs and hayracks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and pens aboard an ocean vessel shall be equipped with proper troughs for feeding and watering animals... hay from racks or nets or by placing the hay on the floor of the pens in which the animals are... animals. (b) Sheep, goats, and swine. Pens for these animals shall have feed troughs not less than...

  19. Detached auroral arcs in the trough region

    NASA Technical Reports Server (NTRS)

    Anger, C. D.; Moshupi, M. C.; Wallis, D. D.; Murphree, J. S.; Brace, L. H.; Shepherd, G. G.

    1978-01-01

    In a previous paper, Moshupi et al. (1977) have reported on the occurrence of rare auroral 'patches' equatorward of the normally well-defined boundary of diffuse aurora. Some less spectacular but more common arclike features were observed in the same 'trough' region (between the plasmapause and the auroral oval) during the period 1972-1975. These 'detached' arcs show some similarities to stable auroral red arcs in terms of their location and occurrence, but are completely different spectroscopically in that the stable auroral red arcs produce almost pure atomic oxygen red line emissions, whereas the detached arcs are deficient in red line emission - a feature implying totally different production mechanisms. The characteristics of the detached lines are described, including their unusual local time/longitude dependence.

  20. Use of water troughs by badgers and cattle.

    PubMed

    O'Mahony, D T

    2014-12-01

    The frequency of visits by badgers and cattle to five water troughs was examined using motion-activated infra-red cameras in a farming landscape in Northern Ireland between May and July 2013. Cattle visit rates varied significantly across troughs, were greatest during daylight periods, and more frequent during dry weather. Badgers were recorded visiting only one of the five water troughs. These visits were recorded on 14 different nights between midnight and 0300 h and were mainly by individual badgers. Water troughs were not used concurrently by badgers and cattle and the minimum period between badger and cattle use was 3 days. Although badgers used water troughs rarely during the study there remains the potential for indirect transmission of a bacterium such as Mycobacterium bovis that may merit further investigation.

  1. Parabolic dish collectors - A solar option

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.

  2. Nanofocusing Parabolic Refractive X-Ray Lenses

    SciTech Connect

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A. S.; Snigirev, A.; Snigireva, I.

    2004-05-12

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100nm range even at short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 330nm by 110nm at 25keV in a distance of 41.8m from the synchrotron radiation source. First microdiffraction and fluorescence microtomography experiments were carried out with these lenses. Using diamond as lens material, microbeams with lateral size down to 20nm and below are conceivable in the energy range from 10 to 100keV.

  3. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  4. Elliptic and parabolic equations for measures

    NASA Astrophysics Data System (ADS)

    Bogachev, Vladimir I.; Krylov, Nikolai V.; Röckner, Michael

    2009-12-01

    This article gives a detailed account of recent investigations of weak elliptic and parabolic equations for measures with unbounded and possibly singular coefficients. The existence and differentiability of densities are studied, and lower and upper bounds for them are discussed. Semigroups associated with second-order elliptic operators acting in L^p-spaces with respect to infinitesimally invariant measures are investigated. Bibliography: 181 titles.

  5. Simulation of parabolic reflectors for ultraviolet phototherapy

    NASA Astrophysics Data System (ADS)

    Grimes, David Robert

    2016-08-01

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity.

  6. Parabolic resection for mitral valve repair.

    PubMed

    Drake, Daniel H; Drake, Charles G; Recchia, Dino

    2010-02-01

    Parabolic resection, named for the shape of the cut edges of the excised tissue, expands on a common 'trick' used by experienced mitral surgeons to preserve tissue and increase the probability of successful repair. Our objective was to describe and clinically analyze this simple modification of conventional resection. Thirty-six patients with mitral regurgitation underwent valve repair using parabolic resection in combination with other techniques. Institution specific mitral data, Society of Thoracic Surgeons data and preoperative, post-cardiopulmonary bypass (PCPB) and postoperative echocardiography data were collected and analyzed. Preoperative echocardiography demonstrated mitral regurgitation ranging from moderate to severe. PCPB transesophageal echocardiography demonstrated no regurgitation or mild regurgitation in all patients. Thirty-day surgical mortality was 2.8%. Serial echocardiograms demonstrated excellent repair stability. One patient (2.9%) with rheumatic disease progressed to moderate regurgitation 33 months following surgery. Echocardiography on all others demonstrated no or mild regurgitation at a mean follow-up of 22.8+/-12.8 months. No patient required mitral reintervention. Longitudinal analysis demonstrated 80% freedom from cardiac death, reintervention and greater than moderate regurgitation at four years following repair. Parabolic resection is a simple technique that can be very useful during complex mitral reconstruction. Early and intermediate echocardiographic studies demonstrate excellent results.

  7. Simulation of parabolic reflectors for ultraviolet phototherapy.

    PubMed

    Robert Grimes, David

    2016-08-21

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity.

  8. Simulation of parabolic reflectors for ultraviolet phototherapy.

    PubMed

    Robert Grimes, David

    2016-08-21

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity. PMID:27445095

  9. Fifth parabolic dish solar thermal power program annual review: proceedings

    SciTech Connect

    1984-03-01

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  10. Femtosecond parabolic pulse shaping in normally dispersive optical fibers.

    PubMed

    Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; Díez, Antonio; Andrés, Miguel

    2013-07-29

    Formation of parabolic pulses at femtosecond time scale by means of passive nonlinear reshaping in normally dispersive optical fibers is analyzed. Two approaches are examined and compared: the parabolic waveform formation in transient propagation regime and parabolic waveform formation in the steady-state propagation regime. It is found that both approaches could produce parabolic pulses as short as few hundred femtoseconds applying commercially available fibers, specially designed all-normal dispersion photonic crystal fiber and modern femtosecond lasers for pumping. The ranges of parameters providing parabolic pulse formation at the femtosecond time scale are found depending on the initial pulse duration, chirp and energy. Applicability of different fibers for femtosecond pulse shaping is analyzed. Recommendation for shortest parabolic pulse formation is made based on the analysis presented.

  11. Interior trough deposits on Mars: Subice volcanoes?

    USGS Publications Warehouse

    Chapman, M.G.; Tanaka, K.L.

    2001-01-01

    Widespread, several-kilometer-thick successions of layered deposits occur as mounds that partly fill the troughs or chasmata that compose the Valles Marineris on Mars. Like terrestrial subice volcanoes, the layered deposits occur in a volcano-tectonic setting within basins that may have held ponded water or ice. On the basis of their dimensions, morphologies, and associated catastrophic floods and other geologic events as shown in Viking and new Mars Global Surveyor (MGS) data sets, we suggest that the interior deposits are volcanic in origin and possibly generated by subice eruptions. A tuya origin for the mounds can explain the lack of external sediment, mound heights that can rival the plateau, local flat-topped mesas, morphologically distinct mounds of different ages, horizontal to steep dips, fine-grained materials, indications of rare volcanic vents and lava flows, and spectral composition. The extremely diverse layering of west Candor Chasma and possible volcanic cones in Melas may have formed by related subaerial eruptions. Consistent with the suggestion that interior deposits are eroding out of the wall rock, some deposits could have been erupted from sites along the walls.

  12. Measurement of Liquid Viscosities in Tapered or Parabolic Capillaries.

    PubMed

    Ershov; Zorin; Starov

    1999-08-01

    The possibility of using tapered or parabolic capillaries for measurement of liquid viscosities is investigated both experimentally and theoretically. It is demonstrated that even small deviations in capillary radius from a constant value may substantially affect measurement results. Equations are derived which allow correct analysis of the measurement results in tapered or parabolic capillaries. The following cases are analyzed: a water imbibition into a tapered or parabolic capillary and displacement of one liquid by another immiscible liquid in tapered or parabolic capillaries. Two possibilities are considered: (a) the narrow end of the capillary as capillary inlet and (b) the wide end of the capillary as capillary inlet. Copyright 1999 Academic Press.

  13. "Cheese" room in halfcellar showing stone trough, later fireplace supports, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Cheese" room in half-cellar showing stone trough, later fireplace supports, stairs inserted in original relieving arch. - Scheetz Farm, House, 7161 Camp Hill Road, Fort Washington, Montgomery County, PA

  14. Looking north inside of casthouse no. 6 at iron trough ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking north inside of casthouse no. 6 at iron trough and iron notch of blast furnace no. 6. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  15. DETAIL VIEW OF CLASSIFIER, TAILINGS LAUNDER TROUGH, LINESHAFTS, AND CONCENTRATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF CLASSIFIER, TAILINGS LAUNDER TROUGH, LINESHAFTS, AND CONCENTRATION TABLES WITH SIX FOOT SCALE, LOOKING SOUTHWEST. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  16. GPS/acoustic Seafloor Geodetic Observations Near the Nankai Trough Axis

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Yasuda, K.; Fujii, C.; Watanabe, T.; Nagai, S.

    2013-12-01

    installed a new seafloor benchmark in the vicinity of the Nankai Trough axis, about 15 km landward from the trough axis, on July 16, 2013. In addition, we plan to install another new benchmark on the other side of the Nankai Trough in August of this year, to directly measure the motion of the subducting Philippine Sea Plate. The coupling ratio is calculated from slip deficit divided by convergence rate. We can directly 'measure' the coupling ratio from crustal deformation at the newly-installed station on the Philippine Sea Plate, without using global plate motion models. Acknowledgments: We are grateful to the captain and crews of R/V "Asama" of Mie Prefecture Fisheries Research Institute, Japan. This study has been partly promoted by Ministry of Education, Culture, Sports, Science and Technology, Japanese Government.

  17. What is the intrapatient variability of mycophenolic acid trough levels?

    PubMed

    Todorova, Ekaterina K; Huang, Shih-Han S; Kobrzynski, Marta C; Filler, Guido

    2015-11-01

    TDM of MPA, the active compound of MMF, is rarely used despite its substantial intra- and interpatient variability. Little is known about the utility of long-term MPA TDM. Data are expressed as mean (one standard deviation). All available data from 27 renal transplant recipients (mean age at transplantation: 7.7 [5.0] yr) with an average follow-up of 9.3 (4.6) yr were analyzed. MPA levels were measured using the EMIT. GFR was measured using cystatin C and eGFR was calculated using the Filler formula. Intrapatient CV of the trough level was calculated as the ratio of the mean divided by one standard deviation. Mean cystatin C eGFR was 56.9 (24.4) mL/min/1.73 m(2) . There was a weak but significant correlation between the MPA trough level and the AUC (Spearman r = 0.6592, p < 0.0001). A total of 1964 MPA trough levels (73 [45]/patient) were measured, as compared to 3462 Tac trough levels (144 [71]/patient). The average MPA trough level was 3.01 (1.26) mg/L and the average trough Tac level was 7.3 (1.8) ng/mL. Intrapatient CV was statistically higher (p = 0.00093) for MPA at 0.68 (0.29) when compared to Tac with a CV of 0.46 (0.12). CV did not correlate with eGFR. Intrapatient MPA trough level CV is significantly higher than for Tac, while CV for both MPA and Tac was high. MPA trough level monitoring may be a feasible monitoring option to improve patient exposure and possibly outcomes. PMID:26201386

  18. What is the intrapatient variability of mycophenolic acid trough levels?

    PubMed

    Todorova, Ekaterina K; Huang, Shih-Han S; Kobrzynski, Marta C; Filler, Guido

    2015-11-01

    TDM of MPA, the active compound of MMF, is rarely used despite its substantial intra- and interpatient variability. Little is known about the utility of long-term MPA TDM. Data are expressed as mean (one standard deviation). All available data from 27 renal transplant recipients (mean age at transplantation: 7.7 [5.0] yr) with an average follow-up of 9.3 (4.6) yr were analyzed. MPA levels were measured using the EMIT. GFR was measured using cystatin C and eGFR was calculated using the Filler formula. Intrapatient CV of the trough level was calculated as the ratio of the mean divided by one standard deviation. Mean cystatin C eGFR was 56.9 (24.4) mL/min/1.73 m(2) . There was a weak but significant correlation between the MPA trough level and the AUC (Spearman r = 0.6592, p < 0.0001). A total of 1964 MPA trough levels (73 [45]/patient) were measured, as compared to 3462 Tac trough levels (144 [71]/patient). The average MPA trough level was 3.01 (1.26) mg/L and the average trough Tac level was 7.3 (1.8) ng/mL. Intrapatient CV was statistically higher (p = 0.00093) for MPA at 0.68 (0.29) when compared to Tac with a CV of 0.46 (0.12). CV did not correlate with eGFR. Intrapatient MPA trough level CV is significantly higher than for Tac, while CV for both MPA and Tac was high. MPA trough level monitoring may be a feasible monitoring option to improve patient exposure and possibly outcomes.

  19. Parasympathetic heart rate modulation during parabolic flights.

    PubMed

    Beckers, F; Seps, B; Ramaekers, D; Verheyden, B; Aubert, A E

    2003-09-01

    During parabolic flight short periods of microgravity and hypergravity are created. These changes influence cardiovascular function differently according to posture. During the 29th parabolic flight campaign of the European Space Agency (ESA), the electrocardiogram (ECG) was recorded continuously in seven healthy volunteers in two positions (standing and supine). Five different phases were differentiated: 1 g (1 g=9.81 m/s(2)) before and after each parabola, 1.8 g at the ascending leg of the parabola (hypergravity), 0 g at the apex, 1.6 g at the descending leg (hypergravity). We assessed heart rate variability (HRV) by indices of temporal analysis [mean RR interval (meanRR), the standard deviation of the intervals (SDRR), and the square root of the mean squared differences of successive intervals (rMSSD) and coefficient of variation (CV)]. In the supine position no significant differences were shown between different gravity phases for all HRV indices. In the standing position the 0 g phase showed a tendency towards higher values of meanRR compared to the control and to the other phases ( p=NS). SDRR, rMSSD and CV were significantly higher compared to control ( p<0.05). Significantly higher values for meanRR in the supine position at 1 g and hypergravity ( p<0.05) were found when compared to standing. SDRR was significantly higher at 0 g in the standing position compared to supine [95 (44) ms vs. 50 (15) ms; p<0.05] and lower in other phases. rMSSD and CV showed the same trend ( p=NS). We confirm that, during parabolic flights, position matters for cardiovascular measurements. Time domain indices of HRV during different gravity phases showed: (1) higher vagal modulation of the autonomic nervous system in microgravity, when compared with normo- or hypergravity in standing subjects; and (2) no differences in supine subjects between different g phases.

  20. Numerical Schemes for Rough Parabolic Equations

    SciTech Connect

    Deya, Aurelien

    2012-04-15

    This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H>1/3.

  1. On the parallel solution of parabolic equations

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Youcef

    1989-01-01

    Parallel algorithms for the solution of linear parabolic problems are proposed. The first of these methods is based on using polynomial approximation to the exponential. It does not require solving any linear systems and is highly parallelizable. The two other methods proposed are based on Pade and Chebyshev approximations to the matrix exponential. The parallelization of these methods is achieved by using partial fraction decomposition techniques to solve the resulting systems and thus offers the potential for increased time parallelism in time dependent problems. Experimental results from the Alliant FX/8 and the Cray Y-MP/832 vector multiprocessors are also presented.

  2. Weak Lensing by Galaxy Troughs in DES Science Verification Data

    SciTech Connect

    Gruen, D.

    2015-09-29

    We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. Furthermore, the prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. Finally, the lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

  3. Weak lensing by galaxy troughs in DES Science Verification data

    DOE PAGES

    Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; M. Jarvis; Kavprzak, T.; Krause, E.; et al

    2015-11-29

    In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers ofmore » the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.« less

  4. Weak lensing by galaxy troughs in DES Science Verification data

    SciTech Connect

    Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; M. Jarvis; Kavprzak, T.; Krause, E.; Mana, A.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Becker, M. R.; Benoit-Levy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Neto, A. Fausti; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miguel, R.; Mohr, J. J.; Nord, B.; Orgando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Zhang, Y.; Zuntz, J.

    2015-11-29

    In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

  5. Tectonic development of Baltimore Canyon trough

    SciTech Connect

    Swift, B.A.; Poag, C.W.; Sawyer, D.S.; Grow, J.A.

    1984-04-01

    New well data and a new gravity model across the southern end of Baltimore Canyon Trough provide a more complete history of the basin's tectonic evolution and deep crustal structure than was previously known. The basin, which formed during the separation of North America from Africa, narrows and shallows along strike, as basement depth decreases from about 18 km (59,000 ft) in the north near New York to about 4-6 km (13,123-19,685 ft) in the south near Cape Hatteras. Previous analysis of the Continental Offshore Stratigraphic Test (COST) B2 and B3 wells using backstripping techniques showed a seaward increase in the amount of stretching during the basin's formation. The new biostratigraphic and paleoenvironmental interpretations are from the USGS Island Beach well 1 just landward of the hinge zone in the basin. This well, along with the COST B2 and B3 data, provides a sampling of the sedimentary sections overlying continental, transitional (rift-stage), and oceanic crust. The subsidence histories derived from these data give a cross-sectional view of the basin's evolution. A gravity model of the southern end of the basin, along USGS multichannel seismic line 28, primarily analyzes a 60-mgal shelfedge anomaly. This anomaly reflects the change in bathymetry and more important a change toward the continent in underlying crustal thickness from typical oceanic to thinned continental crust. The crustal thinning is compared to the broad thinning zone to the north. Well-defined rift structures on the landward edge of the basin are modeled as rift grabens near the hinge zone.

  6. Microgravity Active Vibration Isolation System on Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

  7. Heat and electricity from the sun using parabolic dish collector systems

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.; Williams, A. N.

    1979-01-01

    The paper investigates point focus distributed receiver (PFDR) solar thermal technology for the production of electric power and of industrial process heat. Attention is given to a thermal systems project conducted by JPL under DOE sponsorship. It is reported that project emphasis is on the development of cost-effective systems which will accelerate the commercialization and industrialization of plants up to 10 MWe, using parabolic dish collectors. Also discussed are the characteristics of PFDR systems, the cost targets for major systems hardware, and markets for this technology. Finally, the present system status of the technology development effort is discussed.

  8. Manipulation of dielectric particles with nondiffracting parabolic beams.

    PubMed

    Ortiz-Ambriz, Antonio; Gutiérrez-Vega, Julio C; Petrov, Dmitri

    2014-12-01

    The trapping and manipulation of microscopic particles embedded in the structure of nondiffracting parabolic beams is reported. The particles acquire orbital angular momentum and exhibit an open trajectory following the parabolic fringes of the beam. We observe an asymmetry in the terminal velocity of the particles caused by the counteracting gradient and scattering forces.

  9. Tear trough deformity: different types of anatomy and treatment options

    PubMed Central

    Jiang, Jindou; Wang, Xuekun; Chen, Rongrong; Xia, Xueying; Sun, Sai

    2016-01-01

    Aim To explore the efficacy of tear trough deformity treatment with the use of hyaluronic acid gel or autologous fat for soft tissue augmentation and fat repositioning via arcus marginalis release. Material and methods Seventy-eight patients with the tear trough were divided into three groups. Class I has tear trough without bulging orbital fat or excess of the lower eyelid skin. Class II is associated with mild to moderate orbital fat bulging, without excess of the lower eyelid skin. Class III is associated with severe orbital fat bulging and excess of the lower eyelid skin. Class I or II was treated using hyaluronic acid gel or autologous fat injections. Class III was treated with fat repositioning via arcus marginalis release. The patients with a deep nasojugal groove of class III were treated with injecting autologous fat into the tear trough during fat repositioning lower blepharoplasty as a way of supplementing the volume added by the repositioned fat. Results Seventy-eight patients with tear trough deformity were confirmed from photographs taken before and after surgery. There were some complications, but all had complete resolution. Conclusions Patients with mild to moderate peri-orbital volume loss without severe orbital fat bulging may be good candidates for hyaluronic acid filler or fat grafting alone. However, patients with more pronounced deformities, severe orbital fat bulging and excess of the lower eyelid skin are often better served by fat repositioning via arcus marginalis release and fat grafting.

  10. Tear trough deformity: different types of anatomy and treatment options

    PubMed Central

    Jiang, Jindou; Wang, Xuekun; Chen, Rongrong; Xia, Xueying; Sun, Sai

    2016-01-01

    Aim To explore the efficacy of tear trough deformity treatment with the use of hyaluronic acid gel or autologous fat for soft tissue augmentation and fat repositioning via arcus marginalis release. Material and methods Seventy-eight patients with the tear trough were divided into three groups. Class I has tear trough without bulging orbital fat or excess of the lower eyelid skin. Class II is associated with mild to moderate orbital fat bulging, without excess of the lower eyelid skin. Class III is associated with severe orbital fat bulging and excess of the lower eyelid skin. Class I or II was treated using hyaluronic acid gel or autologous fat injections. Class III was treated with fat repositioning via arcus marginalis release. The patients with a deep nasojugal groove of class III were treated with injecting autologous fat into the tear trough during fat repositioning lower blepharoplasty as a way of supplementing the volume added by the repositioned fat. Results Seventy-eight patients with tear trough deformity were confirmed from photographs taken before and after surgery. There were some complications, but all had complete resolution. Conclusions Patients with mild to moderate peri-orbital volume loss without severe orbital fat bulging may be good candidates for hyaluronic acid filler or fat grafting alone. However, patients with more pronounced deformities, severe orbital fat bulging and excess of the lower eyelid skin are often better served by fat repositioning via arcus marginalis release and fat grafting. PMID:27605904

  11. Parabolic dish module experiment. Final test report

    SciTech Connect

    Not Available

    1986-03-01

    A development test model of the 8-meter Solar Brayton Parabolic Dish Module has been designed, fabricated, and tested. The test model consists of five major subsystems: Sanders ceramic honeycomb solar receiver; LaJet LEC460 solar concentrator; AiRsearch SABC MKIIIA engine, Abacus 8 kW ac inverter; and a Sanders designed and built system controller. Goals of the tests were to integrate subsystem components into a working module, demonstrate the concept, and generate 5 kWe (hybrid) and 4.7 kWe (solar only) input. All subsystem integration goals were successfully achieved, but system performance efficiency was lower than expected. Contributing causes of the lower performance efficiencies have been identified. Modifications needed to restore performance to the required levels and improve the system life cycle cost have been addressed and are the subject of this final report.

  12. Analysis of the Quality of Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Lambot, Thomas; Ord, Stephan F.

    2016-01-01

    Parabolic flight allows researchers to conduct several micro-gravity experiments, each with up to 20 seconds of micro-gravity, in the course of a single day. However, the quality of the flight environment can vary greatly over the course of a single parabola, thus affecting the experimental results. Researchers therefore require knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) has reviewed the acceleration data for over 400 parabolas and investigated the level of micro-gravity quality. It was discovered that a typical parabola can be segmented into multiple phases with different qualities and durations. The knowledge of the microgravity characteristics within the parabola will prove useful when planning an experiment.

  13. Steam engine research for solar parabolic dish

    NASA Technical Reports Server (NTRS)

    Demler, R. L.

    1981-01-01

    The parabolic dish solar concentrator provides an opportunity to generate high grade energy in a modular system. Most of the capital is projected to be in the dish and its installation. Assurance of a high production demand of a standard dish could lead to dramatic cost reductions. High production volume in turn depends upon maximum application flexibility by providing energy output options, e.g., heat, electricity, chemicals and combinations thereof. Subsets of these options include energy storage and combustion assist. A steam engine design and experimental program is described which investigate the efficiency potential of a small 25 kW compound reheat cycle piston engine. An engine efficiency of 35 percent is estimated for a 700 C steam temperature from the solar receiver.

  14. Parabolic flight: loss of sense of orientation.

    PubMed

    Lackner, J R; Graybiel, A

    1979-11-30

    On the earth, or in level flight, a blindfolded subject being rotated at constant velocity about his recumbent long body axis experiences illusory orbital motion of his body in the opposite direction. By contrast, during comparable rotation in the free-fall phase of parabolic flight, no body motion is perceived and all sense of external orientation may be lost; when touch and pressure stimulation is applied to the body surface, a sense of orientation is reestablished immediately. The increased gravitoinertial force period of a parabola produces an exaggeration of the orbital motion experienced in level flight. These observations reveal an important influence of touch, pressure, and kinesthetic information on spatial orientation and provide a basis for understanding many of the postural illusions reported by astronauts in space flight.

  15. Graviresponses of Paramecium biaurelia during parabolic flights.

    PubMed

    Krause, Martin; Bräucker, Richard; Hemmersbach, Ruth

    2006-12-01

    The thresholds of graviorientation and gravikinesis in Paramecium biaurelia were investigated during the 5th DLR (German Aerospace Center) parabolic-flight campaign at Bordeaux in June 2003. Parabolic flights are a useful tool for the investigation of swimming behaviour in protists at different accelerations. At normal gravity (1 g) and hypergravity (1 g to 1.8 g), precision of orientation and locomotion rates depend linearly on the applied acceleration as seen in earlier centrifuge experiments. After transition from hypergravity to decreased gravity (minimal residual acceleration of <10(-2) g), graviorientation as well as gravikinesis show a full relaxation with different kinetics. The use of twelve independent cell samples per flight guarantees high data numbers and secures the statistical significance of the obtained data. The relatively slow change of acceleration between periods of microgravity and hypergravity (0.4 g/s) enabled us to determine the thresholds of graviorientation at 0.6 g and of gravikinesis at 0.4 g. The gravity-unrelated propulsion rate of the sample was found to be 874 microm/s, exceeding the locomotion rate of horizontally swimming cells (855 microm/s). The measured thresholds of graviresponses were compared with data obtained from earlier centrifuge experiments on the sounding rocket Maxus-2. Measured thresholds of gravireactions indicate that small energies, close to the thermal noise level, are sufficient for the gravitransduction process. Data from earlier hypergravity experiments demonstrate that mechanosensitive ion channels are functioning over a relative wide range of acceleration. From this, we may speculate that gravireceptor channels derive from mechanoreceptor channels.

  16. Comparison of Non-Parabolic Hydrodynamic Simulations for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Parabolic drift-diffusion simulators are common engineering level design tools for semiconductor devices. Hydrodynamic simulators, based on the parabolic band approximation, are becoming more prevalent as device dimensions shrink and energy transport effects begin to dominate device characteristic. However, band structure effects present in state-of-the-art devices necessitate relaxing the parabolic band approximation. This paper presents simulations of ballistic diodes, a benchmark device, of Si and GaAs using two different non-parabolic hydrodynamic formulations. The first formulation uses the Kane dispersion relationship in the derivation of the conservation equations. The second model uses a power law dispersion relation {(hk)(exp 2)/2m = xW(exp Y)}. Current-voltage relations show that for the ballistic diodes considered. the non-parabolic formulations predict less current than the parabolic case. Explanations of this will be provided by examination of velocity and energy profiles. At low bias, the simulations based on the Kane formulation predict greater current flow than the power law formulation. As the bias is increased this trend changes and the power law predicts greater current than the Kane formulation. It will be shown that the non-parabolicity and energy range of the hydrodynamic model based on the Kane dispersion relation are limited due to the binomial approximation which was utilized in the derivation.

  17. Parabolic features and the erosion rate on Venus

    NASA Technical Reports Server (NTRS)

    Strom, Robert G.

    1993-01-01

    The impact cratering record on Venus consists of 919 craters covering 98 percent of the surface. These craters are remarkably well preserved, and most show pristine structures including fresh ejecta blankets. Only 35 craters (3.8 percent) have had their ejecta blankets embayed by lava and most of these occur in the Atla-Beta Regio region; an area thought to be recently active. parabolic features are associated with 66 of the 919 craters. These craters range in size from 6 to 105 km diameter. The parabolic features are thought to be the result of the deposition of fine-grained ejecta by winds in the dense venusian atmosphere. The deposits cover about 9 percent of the surface and none appear to be embayed by younger volcanic materials. However, there appears to be a paucity of these deposits in the Atla-Beta Regio region, and this may be due to the more recent volcanism in this area of Venus. Since parabolic features are probably fine-grain, wind-deposited ejecta, then all impact craters on Venus probably had these deposits at some time in the past. The older deposits have probably been either eroded or buried by eolian processes. Therefore, the present population of these features is probably associated with the most recent impact craters on the planet. Furthermore, the size/frequency distribution of craters with parabolic features is virtually identical to that of the total crater population. This suggests that there has been little loss of small parabolic features compared to large ones, otherwise there should be a significant and systematic paucity of craters with parabolic features with decreasing size compared to the total crater population. Whatever is erasing the parabolic features apparently does so uniformly regardless of the areal extent of the deposit. The lifetime of parabolic features and the eolian erosion rate on Venus can be estimated from the average age of the surface and the present population of parabolic features.

  18. Offset semi-parabolic nanoantenna made of a photonic crystal parabolic mirror and a plasmonic bow-tie antenna.

    PubMed

    Hattori, Haroldo T

    2014-10-10

    In a parabolic mirror, light coming parallel to the antenna passes through its focal point. In this work, a waveguide feeds a semi-parabolic photonic crystal mirror and the emerging beam feeds a bow-tie antenna placed at the mirror's focal point-it is shown that the antenna system can not only feed a bow-tie antenna (producing a localized moderately high electric field) but also produces a directional radiation beam. The semi-parabolic mirror is also modified to reduce reflection back to the feeding waveguide.

  19. The French thermo-helio-electricity-KW parabolic dish program

    NASA Technical Reports Server (NTRS)

    Audibert, M.; Peri, G.

    1982-01-01

    The testing and development of parabolic dish solar thermal power plants to produce, thermal mechanical, or electrical energy are discussed. The design, construction, and experiments of prototype collectors to prove the feasibility of such collectors is described.

  20. Antenna cab interior showing waveguide from external parabolic antenna (later ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing waveguide from external parabolic antenna (later addition), looking north. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  1. Detail, external parabolic antenna (later addition). Note how waveguide was ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, external parabolic antenna (later addition). Note how waveguide was cut to remove active portion of antenna. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  2. An X-band parabolic antenna based on gradient metasurface

    NASA Astrophysics Data System (ADS)

    Yao, Wang; Yang, Helin; Huang, Xiaojun; Tian, Ying; Guo, Linyan

    2016-07-01

    We present a novel parabolic antenna by employing reflection gradient metasurface which is composed of a series of circle patches on a grounded dielectric substrate. Similar to the traditional parabolic antenna, the proposed antenna take the metasurface as a "parabolic reflector" and a patch antenna was placed at the focal point of the metasurface as a feed source, then the quasi-spherical wave emitted by the source is reflected and transformed to plane wave with high efficiency. Due to the focus effect of reflection, the beam width of the antenna has been decreased from 85.9° to 13° and the gain has been increased from 6.5 dB to 20.8 dB. Simulation and measurement results of both near and far-field plots demonstrate good focusing properties of the proposed parabolic antenna.

  3. 33. July 1958 PARABOLIC BRICK VAULT IN SERVICE MAGAZINE UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. July 1958 PARABOLIC BRICK VAULT IN SERVICE MAGAZINE UNDER RAVELIN (CIVIL WAR PERIOD) - Fort McHenry National Monument & Historic Shrine, East Fort Avenue at Whetstone Point, Baltimore, Independent City, MD

  4. Wind loads and local pressure distributions on parabolic dish solar collectors

    NASA Astrophysics Data System (ADS)

    Peterka, J. A.; Derickson, R. G.; Cermak, J. E.

    1990-05-01

    The research and development described in this document was conducted within the U.S. Department of Energy's Solar Thermal Technology Program. The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and the establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the U.S. Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and collector drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on parabolic dish collectors. The tests investigated the mean and peak forces, moments and local pressure distributions. A significant increase in the understanding and prediction of peak parabolic dish wind loads and their reduction within a field was achieved.

  5. 9 CFR 91.27 - Troughs and hayracks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Troughs and hayracks. 91.27 Section 91.27 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS INSPECTION AND HANDLING...

  6. 9 CFR 91.27 - Troughs and hayracks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Troughs and hayracks. 91.27 Section 91.27 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS INSPECTION AND HANDLING...

  7. 9 CFR 91.27 - Troughs and hayracks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Troughs and hayracks. 91.27 Section 91.27 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS INSPECTION AND HANDLING...

  8. 3. WOODLINED TROUGH WITH AQUEDUCT WASTE GATES IN THE OPEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. WOOD-LINED TROUGH WITH AQUEDUCT WASTE GATES IN THE OPEN POSITION, LOOKING NORTH. TRANSVERSE GIRDERS HAVE BEEN ADDED TO HELP STABILIZE THE AQUEDUCT. - Ohio & Erie Canal, Tinker's Creek Aqueduct, Canal Road, South Tinkers Creek Road, Valley View, Cuyahoga County, OH

  9. Deep-water hydrocarbon potential of Georges Bank Trough

    SciTech Connect

    Levie, D.S. Jr.

    1985-02-01

    Characterization of the petroleum potential for Georges Bank Trough has been based primarily on limited organic geochemical data that indicate the area of recent drilling activity behind the paleoshelf edge to be poor in organic carbon and C/sub 15/ + extract values, with predominantly terrestrial kerogen types. Maturation data also suggest an inadequate thermal history for hydrocarbon generation in the area. It is possible that the effects of heat flow from the New England Seamount Chain may contribute to hydrocarbon generation in the Georges Bank Trough - a relationship that may also exist between the Newfoundland Seamount Chain and the Hibernia area of the Grand Banks. Also, comparisons can be drawn between the Atlantic Fracture Zone bordering the Georges Bank Trough and the Romanche-St. Paul Fracture Zone off the Ivory Coast. In the latter region, restricted anoxic environments with sediments rich in marine kerogen types have been identified, as have both structural and stratigraphic trapping mechanisms. Within this rhombochasm configuration, reservoir lithologies of sandstone and carbonate turbidites, fractured deep-water chalks, and reefal limestones should occur. The relationships of seamount to fracture zone, as applied to the rhombochasm model for the Georges Bank Trough, should enhance the hydrocarbon potential of the lower Mesozoic sediments seaward of the paleoshelf edge and thus classify this area as a future major hydrocarbon province.

  10. Electrodynamic structure of the morning high-latitude trough region

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.; Aikio, A.; Voiculescu, M.; Juusola, L.; Nygrén, T.; Kuula, R.

    2016-03-01

    We describe the electrodynamics of a postmidnight, high-latitude ionospheric trough, observed with the European Incoherent Scatter radar in northern Scandinavia on 24-25 June 2003 around 22:00-02:30 UT during quiet conditions. The UHF radar made meridian scans with a 30 min cadence resulting in nine cross sections of ionospheric parameters. The F region electric field was also determined with the tristatic system. Ionospheric equivalent currents, calculated from ground magnetometer data, mostly show an electrojet-like current that is reasonably uniform in the longitudinal direction. Combined analysis of the conductances and equivalent current with a local Kamide-Richmond-Matsushita (KRM) method yields the ionospheric electric field and field-aligned current (FAC) in a 2-D (latitude-longitude) area around the radar. We conclude that the most likely scenario is one where the trough is initially created poleward of the auroral oval by downward FAC that evacuates the F region, but as the trough moves to lower latitudes during the early morning hours, it becomes colocated with the westward electrojet. There the electron density further decreases due to increased recombination caused by enhanced ion temperature, which in turn is brought about by a larger convection speed. Later in the morning the convection speed decreases and the trough is filled by increasing photoionization.

  11. Strawberry Production in Soilless Substrate Troughs – Plant Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soilless substrates made of peat moss, coconut coir, perlite, rockwool or bark are pathogen free and they have been used in strawberry production in Europe in troughs or containers. Open field strawberry production in soilless substrate is new to California growers. The objective of this study was t...

  12. 9 CFR 91.27 - Troughs and hayracks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Troughs and hayracks. 91.27 Section 91.27 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS INSPECTION AND HANDLING...

  13. Trough: peak ratios for antihypertensive agents: methodological considerations.

    PubMed

    Meredith; Elliott

    1996-06-01

    The trough: peak ratio for the response to an antihypertensive drug is a clinically meaningful parameter only when the index has been derived and calculated from an appropriately designed and conducted study. The original draft guidelines made no recommendations concerning the most appropriate methodology, hence trough: peak values have been calculated from studies in research units, in the clinic and using ambulatory blood pressure monitoring. Furthermore, some studies quoted single values based upon mean data, whereas others presented trough: peak ratios in individual subjects. To date only the use of the 'research unit' approach and ambulatory monitoring have been subject to any form of validation. Both approaches have advantages and disadvantages but in each instance common factors emerge. These indicate that any study defining trough: peak ratios should incorporate a placebo assessment, steady state treatment, randomized cross-over design (ideally), estimates in individual patients, two or more dose levels (ideally), and, in the case of ambulatory blood pressure monitoring, the study of patients who achieve a given blood pressure reduction at the time of peak response. PMID:10226247

  14. Three-dimensional nonparaxial beams in parabolic rotational coordinates.

    PubMed

    Deng, Dongmei; Gao, Yuanmei; Zhao, Juanying; Zhang, Peng; Chen, Zhigang

    2013-10-01

    We introduce a class of three-dimensional nonparaxial optical beams found in a parabolic rotational coordinate system. These beams, representing exact solutions of the nonparaxial Helmholtz equation, have inherent parabolic symmetries. Assisted with a computer-generated holography, we experimentally demonstrate the generation of different modes of these beams. The observed transverse beam patterns along the propagation direction agree well with those from our theoretical predication.

  15. Parabolic dish test site: History and operating experience

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Compiler)

    1985-01-01

    The parabolic dish test site (PDTS) was established for testing point-focusing solar concentrator systems operating at temperatures approaching 1650 C. Among tests run were evaluation and performance characterization of parabolic dish concentrators, receivers, power conversion units, and solar/fossil-fuel hybrid systems. The PDTS was fully operational until its closure in June, 1984. The evolution of the test program, a chronological listing of the experiments run, and data summaries for most of the tests conducted are presented.

  16. Modern and ancient mineralization in the Salton Trough Rift

    SciTech Connect

    McKibben, M.A. . Dept. Earth Sciences)

    1992-01-01

    The Salton Trough of SW North America is an active continental rift, the landward extension of the divergent tectonics of the Gulf of California. Shallow magmatic heat sources, thick porous sediments, tectonic activity and saline lakes interact to yield a variety of Pleistocene to modern hydrothermal systems. The oldest mineralization, the fish Creek evaporite, is a CASO[sub 4] deposit formed by a pre-rift Tertiary marine incursion. 4--5 million years ago the prograding Colorado River delta bisected the Trough, influencing the character of Pliocene and younger hydrothermal activity. The northern part of the Trough became a closed basin filled intermittently by large freshwater lakes. Along the W margin of the rift lies the Modoc hot spring gold deposit. This deposit occurs at the intersection of a range-front growth fault with fossil lake levels, suggesting paleohydrologic control by ancient lakes. Active geothermal systems within the Trough include low-T systems such as Heber and East Mesa, localized along high-angle faults where shallow groundwaters are conductively heated above basement highs. These blind systems have no surface expression and only moderate geophysical anomalies. High-T (> 250 C) active systems occur in sediment filled pull-apart basins developed over spreading center fragments (e.g., Salton Sea, Brawley, Cerro Prieto). These systems exhibit high heat flow, strong gravity and magnetic anomalies, and often have surface manifestations such as Quaternary volcanoes and thermal features. Many contain hot metalliferous brines that have evolved in the saline lake environment of the northern Trough.

  17. Changes in cerebral oxygenation during parabolic flight.

    PubMed

    Schneider, Stefan; Abeln, Vera; Askew, Christopher D; Vogt, Tobias; Hoffmann, Uwe; Denise, Pierre; Strüder, Heiko K

    2013-06-01

    Assessing changes in brain activity under extreme conditions like weightlessness is a desirable, but difficult undertaking. Results from previous studies report specific changes in brain activity connected to an increase or decrease in gravity forces. Nevertheless, so far it remains unclear (1) whether this is connected to a redistribution of blood volume during micro- or hypergravity and (2) whether this redistribution might account for neurocognitive alterations. This study aimed to display changes in brain oxygenation caused by altered gravity conditions during parabolic flight. It was hypothesized that an increase in gravity would be accompanied by a decrease in brain oxygenation, whereas microgravity would lead to an increase in brain oxygenation. Oxygenized and deoxygenized haemoglobin were measured using two near infrared spectroscopy (NIRS) probes on the left and right prefrontal cortex throughout ten parabolas in nine subjects. Results show a decrease of 1.44 μmol/l in oxygenized haemoglobin with the onset of hypergravity, followed by a considerable increase during microgravity (up to 5.34 μmol/l). In contrast, deoxygenized haemoglobin was not altered during the first but only during the second hypergravity phase and showed only minor changes during microgravity. Changes in oxygenized and deoxygenized haemoglobin indicate an increase in arterial flow to the brain and a decrease in venous outflow during microgravity.

  18. The 1D parabolic-parabolic Patlak-Keller-Segel model of chemotaxis: The particular integrable case and soliton solution

    NASA Astrophysics Data System (ADS)

    Shubina, Maria

    2016-09-01

    In this paper, we investigate the one-dimensional parabolic-parabolic Patlak-Keller-Segel model of chemotaxis. For the case when the diffusion coefficient of chemical substance is equal to two, in terms of travelling wave variables the reduced system appears integrable and allows the analytical solution. We obtain the exact soliton solutions, one of which is exactly the one-soliton solution of the Korteweg-de Vries equation.

  19. Arctic Lena Trough -- NOT a Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Snow, J. E.; Hellebrand, E.; Handt, A. V.; Nauret, F.; Gao, Y.; Feig, S.; Jovanovic, Z.

    2005-12-01

    The North American-Eurasian plate boundary traverses the Atlantic and Arctic oceans. Over most of that length, it is a Mid-Ocean Ridge that spreads between about 23 mm/yr (MAR) and 10 mm/yr (Gakkel Ridge) full rate. The northern MAR and the Gakkel ridge are connected by a deep linear feature called Lena Trough. Until about 10 million years ago, Lena Trough was not an oceanic domain at all, but a continental shear zone through a narrow isthmus of continental crust that connected the American and Eurasian plates. Its opening was, significantly, the most recent and final event in the separation of the North American from the Eurasian continent, and opened the gateway for deep water circulation between the Arctic and North Atlantic oceans. Models for the tectonic configuration of Lena Trough have until now differed only in the number and length of fracture zones and spreading segments thought to be present. Lena Trough is a deep fault-bounded basin with depths of 3800-4200m, and irregular, steep valley sides that are oblique to the spreading direction. Basement horst structures outcrop as sigmoidal ridges with steeply dipping sides project out of the valley floor, but these are not traceable to any parallel structures on either side. Ridge-orthogonal topography is simply absent (ie no segments trending parallel nor fracture zones perpendicular to Gakkel Ridge). Most faults trend approximately SSE-NNW, an obliquity with respect to Gakkel Ridge (SW-NE) of about 55 degrees. The basement ridges are composed nearly entirely of mantle peridotite, as are the valley walls. Only at the northern and southern extremities of Lena Trough do basalts appear at all. The Northern basalts show strong chemical affinities to those of Gakkel Ridge, and can be considered a part of the Gakkel volcanic system. The rare southernmost basalts, however, are quite unique. They are alkali basalts with K2O up to 2 weight percent, highly incompaitble element enriched and occupy a corner of isotope

  20. Parabolic Mirror: Focusing on Science, Technology, Engineering, and Math

    ERIC Educational Resources Information Center

    Smith, Karianne; Hughes, William

    2013-01-01

    In the fall of 2011, Park Forest Middle School (PFMS) students approached the STEM faculty with numerous questions regarding the popular television show Myth Busters, which detailed Greek mathematician, physicist, engineer, and inventor, Archimedes. Two episodes featured attempts to test historical accounts that Archimedes developed a death ray…

  1. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect

    Williams, T.A.; Burch, G.D.; Chavez, J.M.; Mancini, T.R.; Tyner, C.E.

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US Department of Energy (DOE) to develop a long-term strategy for the development of STE technologies (DOE, 1996). The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun-Lab (the cooperative Sandia National Laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capacity by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  2. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect

    Williams, T.A.; Burch, G.; Chavez, J.M.; Mancini, T.R.; Tyner, C.E.

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  3. En Echelon Ridge and Trough Structures on Europa

    NASA Technical Reports Server (NTRS)

    Michalski, Joseph R.; Greeley, Ronald

    2002-01-01

    Europa#s surface is tectonically and morphologically complex. Europan ridges, bands, ridged bands, double ridges, complex ridges, and troughs are collectively referred to as lineaments. Some lineaments are fault zones and exhibit sets of en echelon ridge and trough structures (EERTS). EERTS can be used to interpret the stress field in which the lineaments formed. These observations suggest that some lineaments at low latitudes initially formed as shear zones. rather than as purely tensional fractures as is commonly assumed. From stepping directions of EERTS and the offset directions of the lineaments in which they occur, we infer that some EERTS form as a result of compressional stress and others form as a result of tensional stress. EERTS that are inferred to form in compression are morphologically indistinguishable from EERTS that form in tension. The presence of tensional EERTS may support a diapiric origin for some ridges.

  4. Crustal Structure of Salton Trough using Deformable Layer Tomography

    NASA Astrophysics Data System (ADS)

    Yuan, F.

    2012-12-01

    Salton Trough is an important geologic structure to understand the active rift between Imperial Fault and San Andreas Fault. To determine the underground geometry of Salton Trough and its nearby faults, we analyzed seismic phase data recorded by Southern California Earthquake Data Center (SCEDC). Both 2-D and 3-D models have been made to refine the velocity model so as to determine the basin and moho geometry beneath Salton Trough region. Here three inline and five cross-line velocity profiles were built by using 2D Deformable Layer Tomography (DLT) method. From these 2D profiles, we can see that the velocity gradient is very small in the low velocity zone. The low velocity anomaly can be detected beneath the axis of the Salton Trough around the depth of 19-21 km, and the relatively high velocity can be seen beneath the San Andreas faults. Within 100*150*40 km3 model volume, 90,180 P-wave and S-wave first arrival picks from 27,663 local events (from 2001 to 2012), which were obtained from 44 stations, were used to build 3D seismic velocity model of the crust. During the iterations of velocity updating, full 3-D ray tracing is implemented. From these 3-D velocity models with different sizes of grids, low velocity anomalies are present under the southwest of Salton Sea, while high velocity zone is present across Southern San Andreas Fault throughout all the depths. Profiles from 2-D velocity models compared to 3-D velocity models show similar geometry. 3-D crustal structure, which is determined from 3-D DLT, helps to better understand the divergent boundary between the North American and the Pacific tectonic plates

  5. Grounding zone wedges, Kveithola Trough (NW Barents Sea)

    NASA Astrophysics Data System (ADS)

    Rebesco, Michele; Urgeles, Roger; Özmaral, Asli; Hanebuth, Till; Caburlotto, Andrea; Hörner, Tanja; Lantzsch, Hendrik; LLopart, Juame; Lucchi, Renata; Skøtt Nicolaisen, Line; Giacomo, Osti; Sabbatini, Anna; Camerlenghi, Angelo

    2014-05-01

    Swath bathymetry within Kveithola Trough (NW Barents Sea) shows a seafloor characterized by E-W trending megascale glacial lineations (MSGLs) overprinted by transverse Grounding Zone Wedges (GZWs), which give the trough a stair profile (Rebesco et al., 2011). GZWs are formed by deposition of subglacial till at temporarily stable ice-stream fronts in between successive episodic retreats (Rüther et al., 2012; Bjarnadóttir et al., 2012). Sub-bottom data show that present-day morphology is largely inherited from palaeo-seafloor topography of GZWs, which is draped by a deglacial to early Holocene glaciomarine sediments (about 15 m thick). The ice stream that produced such subglacial morphology was flowing from East to West inside Kveithola Trough during Last Glacial Maximum. Its rapid retreat was likely associated with progressive lift-offs, and successive rapid melting of the grounded ice, induced by the eustatic sea-level rise (Lucchi et al., 2013). References: Bjarnadóttir, L.R., Rüther, D.C., Winsborrow, M.C.M., Andreassen, K., 2012. Grounding-line dynamics during the last deglaciation of Kveithola, W Barents Sea, as revealed by seabed geomorphology and shallow seismic stratigraphy. Boreas, 42, 84-107. Lucchi R.G., et al. 2013. Postglacial sedimentary processes on the Storfjorden and Kveithola TMFs: impact of extreme glacimarine sedimentation. Global and Planetary Change, 111, 309-326. Rebesco, M., et al. 2011. Deglaciation of the Barents Sea Ice Sheet - a swath bathymetric and subbottom seismic study from the Kveitehola Trough. Marine Geology, 279, 141-14. Rüther, D.C., Bjarnadóttir, L.R., Junttila, J., Husum, K., Rasmussen, T.L., Lucchi, R.G., Andreassen, K., 2012. Pattern and timing of the north-western Barents Sea Ice Sheet deglaciation and indications of episodic Holocene deposition. Boreas 41, 494-512.

  6. DETAIL VIEW OF CLASSIFIER, TAILINGS LAUNDER TROUGH, LINE SHAFTS, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF CLASSIFIER, TAILINGS LAUNDER TROUGH, LINE SHAFTS, AND CONCENTRATION TABLES, LOOKING SOUTHWEST. SLURRY EXITING THE BALL MILL WAS COLLECTED IN AN AMALGAMATION BOX (MISSING) FROM THE END OF THE MILL, AND INTRODUCED INTO THE CLASSIFIER. THE TAILINGS LAUDER IS ON THE GROUND AT LOWER RIGHT. THE LINE SHAFTING ABOVE PROVIDED POWER TO THE CONCENTRATION TABLES BELOW AT CENTER RIGHT. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  7. The nature of the crust under Cayman Trough from gravity

    USGS Publications Warehouse

    ten Brink, U.S.; Coleman, D.F.; Dillon, William P.

    2002-01-01

    Considerable crustal thickness variations are inferred along Cayman Trough, a slow-spreading ocean basin in the Caribbean Sea, from modeling of the gravity field. The crust to a distance of 50 km from the spreading center is only 2-3 km thick in agreement with dredge and dive results. Crustal thickness increases to ???5.5 km at distances between 100 and 430 km west of the spreading center and to 3.5-6 km at distances between 60 and 370 km east of the spreading center. The increase in thickness is interpreted to represent serpentinization of the uppermost mantle lithosphere, rather than a true increase in the volume of accreted ocean crust. Serpentinized peridotite rocks have indeed been dredged from the base of escarpments of oceanic crust rocks in Cayman Trough. Laboratory-measured density and P-wave speed of peridotite with 40-50% serpentine are similar to the observed speed in published refraction results and to the inferred density from the model. Crustal thickness gradually increases to 7-8 at the far ends of the trough partially in areas where sea floor magnetic anomalies were identified. Basement depth becomes gradually shallower starting 250 km west of the rise and 340 km east of the rise, in contrast to the predicted trend of increasing depth to basement from cooling models of the oceanic lithosphere. The gradual increase in apparent crustal thickness and the shallowing trend of basement depth are interpreted to indicate that the deep distal parts of Cayman Trough are underlain by highly attenuated crust, not by a continuously accreted oceanic crust. Published by Elsevier Science Ltd.

  8. Microbial Community in the Hydrothermal System at Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Kato, S.; Itahashi, S.; Kakegawa, T.; Utsumi, M.; Maruyama, A.; Ishibashi, J.; Marumo, K.; Urabe, T.; Yamagishi, A.

    2004-12-01

    There is unique ecosystem around deep-sea hydrothermal area. Living organisms are supported by chemical free energy provided by the hydrothermal water. The ecosystem is expected to be similar to those in early stage of life history on the earth, when photosynthetic organisms have not emerged. In this study, we have analyzed the microbial diversity in the hydrothermal area at southern Mariana trough. In the "Archaean Park Project" supported by special Coordination Fund, four holes were bored and cased by titanium pipes near hydrothermal vents in the southern Mariana trough in 2004. Hydrothermal fluids were collected from these cased holes and natural vents in this area. Microbial cells were collected by filtering the hydrothermal fluid in situ or in the mother sip. Filters were stored at -80C and used for DNA extraction. Chimneys at this area was also collected and stored at -80C. The filters and chimney samples were crushed and DNA was extracted. DNA samples were used for amplification of 16S rDNA fragments by PCR using archaea specific primers and universal primers. The PCR fragments were cloned and sequenced. These PCR clones of different samples will be compared. We will extend our knowledge about microbiological diversity at Southern Mariana trough to compare the results obtained at other area.

  9. Laser welding on trough panel: 3D body part

    NASA Astrophysics Data System (ADS)

    Shirai, Masato; Hisano, Hirohiko

    2003-03-01

    Laser welding for automotive bodies has been introduced mainly by European car manufacturers since more than 10 years ago. Their purposes of laser welding introduction were mainly vehicle performance improvement and lightweight. And laser welding was applied to limited portion where shapes of panels are simple and easy to fit welded flanges. Toyota also has introduced laser welding onto 3 dimensional parts named trough panel since 1999. Our purpose of the introduction was common use of equipment. Trough panel has a complex shape and different shapes in each car type. In order to realize common use of welding equipment, we introduced parts locating equipment which had unique, small & simple jigs fo each car type and NC (Numerical Controlled) locators and air-cooled small laser head developed by ourselves to the trough welding process. Laser welding replaced spot welding and was applied linearly like stitches. Length of laser welding was determined according to comparison with statistic tensile strength and fatigue strength of spot welding.

  10. European parabolic flight campaigns with Airbus ZERO-G: Looking back at the A300 and looking forward to the A310

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe

    2015-09-01

    Aircraft parabolic flights repetitively provide up to 23 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the Chinese Space Station CSS. The European Space Agency (ESA), the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency) and the 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Centre) have used the Airbus A300 ZERO-G for research experiments in microgravity, and at Moon and Mars gravity levels, from 1997 until October 2014. The French company Novespace, a subsidiary of CNES, based in Bordeaux, France, is in charge of the organisation of Airbus A300 ZERO-G flights. A total of 104 parabolic flight campaigns have been organised by ESA, CNES and DLR since 1997, including 38 ESA, 34 CNES and 23 DLR microgravity campaigns, two Joint European ESA-CNES-DLR Partial-g Parabolic Flight Campaigns, and seven ESA Student campaigns. After 17 years of good and loyal services, this European workhorse for microgravity research in parabolic flights has been retired. The successor aircraft, the Airbus A310 ZERO-G, is being prepared for a first ESA-CNES-DLR cooperative campaign in Spring 2015. This paper looks back over 17 years of microgravity research in parabolic flights with the A300 ZERO-G, and introduces the new A310 ZERO-G that will be used from 2015 onwards.

  11. Deep drivers of mesoscale circulation in the central Rockall Trough

    NASA Astrophysics Data System (ADS)

    Sherwin, T. J.; Alyenik, D.; Dumont, E.; Inall, M.

    2014-11-01

    Mesoscale variability in the central Rockall Trough between about 56 and 58° N has been investigated using a combination of ship-borne, underwater glider and gridded satellite altimeter measurements. Altimeter observations show that mesoscale features such as eddies and large scale circulation cells are ubiquitous phenomena. They have horizontal length scales of order 100 km with vertical scales of over 1000 m and are associated with mean current speeds (over the upper 1000 m) of 15 ± 7 cm s-1. Monthly area averaged surface Eddy Kinetic Energy (EKE) has substantial inter-annual variability, which at times can dominate a mean seasonal signal that varies from a maximum in May (74 cm2 s-2) to a minimum in October (52 cm2 s-2) and has increased gradually since 1992 at about 1.1 cm2 s-2 per year. A five month glider mission in the Trough showed that much of this energy comes from features that are located over 1000 m below the surface in the deep cold waters of the Trough (possibly from eddies associated the North Atlantic Current). The surface currents from altimeters had similar magnitude to the drift currents averaged over 1000 m from the glider in the stratified autumn, but were half the deep water speed during late winter. Although the mesoscale features move in an apparent random manner they may also be quasi-trapped by submarine topography such as seamounts. Occasionally anti-cyclonic and cyclonic cells combine to cause a coherent westward deflection of the European slope current that warms the Rockall side of the Trough. Such deflections contribute to the inter-annual variability in the observed temperature and salinity that are monitored in the upper 800 m of the Trough. By combining glider and altimeter measurements it is shown that altimeter measurements fail to observe a 15 cm s-1 northward flowing slope current on the eastern side and a small persistent southward current on the western side. There is much to be gained from the synergy between satellite

  12. Tectonic Significance of Intraoceanic Thrusts in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Tsuji, T.; Kodaira, S.; Park, J.; Ashi, J.; Fukao, Y.; Moore, G. F.; Matsuoka, T.

    2009-12-01

    The Nankai Trough is a convergent margin where the Philippine Sea plate is subducting beneath southwest Japan. Because this subduction zone has repeatedly generated great earthquakes with Mw>8, seismic reflection studies have been intensively carried out in the whole Nankai Trough region. However, the role of oceanic crust in plate convergent margins was not well understood. Recently, Tsuji et al. [2009] identified intraoceanic thrusts developed as imbricate structures within the subducting Philippine Sea plate off the Kii Peninsula in central Japan manifesting as strong-amplitude reflections observed in an industry-standard 3D seismic reflection data set. In this study, we use other 2D and 3D seismic reflection data acquired in the whole Nankai Trough region and extract geometries of (1) intraoceanic thrusts, (2) surface of oceanic crust and (3) Moho in order to discuss characteristics of intraoceanic thrusts distributed in the whole Nankai Trough region. We mainly use seismic reflection data acquired by JAMSTEC. Seismic profiles demonstrate that intraoceanic faults are densely distributed eastern side of the Cape Shionomisaki (southern edge of the Kii Peninsula). Large displacements of a few major intraoceanic thrusts elevate the crust surface, and the offset due to cumulative displacements reaches >1 km at the sediment-igneous crust interface. A part of Kashinozaki-Knoll is also uplifted by the thrust displacement. These imbricate intraoceanic thrusts cut through the oceanic crust as a discontinuous thrust plane. The intraoceanic thrusts strike nearly parallel to the trend of the trough axis. However the fault traces are bending at the western termination; the fault planes extend upward from side edges of the underlying intraoceanic thrusts and work as lateral faults. The deformation within oceanic crust may have continued until recently with subduction, because the shallow sediment as well as the seafloor is deformed due to the thrust displacement [Kodaira et

  13. Stable parabolic Higgs bundles as asymptotically stable decorated swamps

    NASA Astrophysics Data System (ADS)

    Beck, Nikolai

    2016-06-01

    Parabolic Higgs bundles can be described in terms of decorated swamps, which we studied in a recent paper. This description induces a notion of stability of parabolic Higgs bundles depending on a parameter, and we construct their moduli space inside the moduli space of decorated swamps. We then introduce asymptotic stability of decorated swamps in order to study the behaviour of the stability condition as one parameter approaches infinity. The main result is the existence of a constant, such that stability with respect to parameters greater than this constant is equivalent to asymptotic stability. This implies boundedness of all decorated swamps which are semistable with respect to some parameter. Finally, we recover the usual stability condition of parabolic Higgs bundles as asymptotic stability.

  14. Existence and dynamics of quasilinear parabolic systems with time delays

    NASA Astrophysics Data System (ADS)

    Pao, C. V.; Ruan, W. H.

    2015-05-01

    This paper is concerned with a coupled system of quasilinear parabolic equations where the effect of time delays is taken into consideration in the reaction functions of the system. The partial differential operators in the system may be degenerate and the reaction functions possess some mixed quasimonotone property, including quasimonotone nondecreasing functions. The aim of the paper is to show the existence and uniqueness of a global solution to the parabolic system, the existence of positive quasisolutions or maximal-minimal solutions of the corresponding elliptic system, and the asymptotic behavior of the solution of the parabolic system in relation to the quasisolutions or maximal-minimal solutions of the elliptic system. Applications are given to three reaction-diffusion models arising from mathematical biology and ecology where the diffusion coefficients are density dependent and are degenerate. This degenerate density-dependent diffusion leads to some interesting distinct asymptotic behavior of the time-dependent solution when compared with density-independent diffusion.

  15. Crustal structure across the Xisha Trough, northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Qiu, Xuelin; Ye, Sanyu; Wu, Shimin; Shi, Xiaobin; Zhou, Di; Xia, Kanyuan; Flueh, Ernst R.

    2001-11-01

    Located at the northwestern part of the South China Sea (SCS) between the Hainan and Xisha (Paracel) Islands, the Xisha Trough represents a failed rift in conjunction with the opening of the SCS between 32 and 17 Ma. From west towards east within a scale of several hundred kilometers, it presents all major stages of the rifting process, and thus, provides an ideal place to study the rifting process in great details. In the autumn of 1996, a joint team of Sino-German scientists carried out a wide-angle seismic experiment across the Xisha Trough with 10 ocean bottom hydrophones (OBH) along a 237-km NNW-SSE-oriented profile, which was surveyed in 1987 with multi-channel seismic (MCS) method by BGR of Germany and SOA of China. Favorable weather conditions and the powerful 4×12-l air gun array rendered very good quality data with seismic signals observed at the offset of up to 110 km. A detailed velocity-depth model was obtained by using an interactive trial-and-error 2D ray-tracing method. Interpretation of the MCS data published by BGR provides very good geometrical constraints of the complex upper crustal structure, which is characterized by fault blocks, half-horsts and half-grabens filled with syn- and post-rift Cenozoic sediments. The velocity model in turn confirms the major structure outlined by the interpretation of the MCS data, showing a varying sedimentary layer between 1 and 4 km of thickness and velocities between 1.7 and 4.5 km/s. The P-wave velocity of 5.5 km/s on the top of the crystalline basement is relatively low, suggesting strong weathering. Within the crystalline crust, the velocity increases downward continuously to 6.8 km/s at the bottom of the crust without a clear differentiation in the middle crust, showing clearly its continental nature even beneath the Xisha Trough. The Moho is marked by a sharp first-order interface with a velocity of 8.0-8.1 km/s at the uppermost mantle. The Moho depth is 15 km beneath the center of the trough and

  16. One-dimensional parabolic-beam photonic crystal laser.

    PubMed

    Ahn, Byeong-Hyeon; Kang, Ju-Hyung; Kim, Myung-Ki; Song, Jung-Hwan; Min, Bumki; Kim, Ki-Soo; Lee, Yong-Hee

    2010-03-15

    We report one-dimensional (1-D) parabolic-beam photonic crystal (PhC) lasers in which the width of the PhC slab waveguide is parabolically tapered. A few high-Q resonant modes are confirmed in the vicinity of the tapered region where Gaussian-shaped photonic well is formed. These resonant modes originate from the dielectric PhC guided mode and overlap with the gain medium efficiently. It is also shown that the far-field radiation profile is closely associated with the symmetry of the structural perturbation.

  17. Focusing of Intense Laser via Parabolic Plasma Concave Surface

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Gu, Yuqiu; Wu, Fengjuan; Zhang, Zhimeng; Shan, Lianqiang; Cao, Leifeng; Zhang, Baohan

    2015-12-01

    Since laser intensity plays an important role in laser plasma interactions, a method of increasing laser intensity - focusing of an intense laser via a parabolic plasma concave surface - is proposed and investigated by three-dimensional particle-in-cell simulations. The geometric focusing via a parabolic concave surface and the temporal compression of high harmonics increased the peak intensity of the laser pulse by about two orders of magnitude. Compared with the improvement via laser optics approaches, this scheme is much more economic and appropriate for most femtosecond laser facilities. supported by National Natural Science Foundation of China (Nos. 11174259, 11175165), and the Dual Hundred Foundation of China Academy of Engineering Physics

  18. Magnetosphere-Ionosphere Coupling Processes in the Ionospheric Trough Region During Substorms

    NASA Astrophysics Data System (ADS)

    Zou, S.; Moldwin, M.; Nicolls, M. J.; Ridley, A. J.; Coster, A. J.; Yizengaw, E.; Lyons, L. R.; Donovan, E.

    2013-12-01

    The ionospheric troughs are regions of remarkable electron density depression at the subauroral and auroral latitudes, and are categorized into the mid-latitude trough or high-latitude trough, depending on their relative location to the auroral oval. Substorms are one fundamental element of geomagnetic activity, during which structured field-aligned currents (FACs) and convection flows develop in the subauroral and auroral ionosphere. The auroral/trough region is expected to experience severe electron density variations during substorms. Accurate specification of the trough dynamics during substorms and understanding its relationship with the structured FACs and convection flows are of important practical purpose, including providing observational foundations for assessing the attendant impact on navigation and communication. In addition, troughs are important since they map to magnetospheric boundaries allowing the remote sensing of magnetosphere-ionosphere coupling processes. In this talk, we discuss the dynamics of the mid-latitude and high-latitude troughs during substorms based on multi-instrument observations. Using GPS total electron content (TEC) data, we characterize the location and width of the mid-latitude trough through the substorm lifecycle and compare them with existing trough empirical models. Using a combination of incoherent scattering radar (ISR), GPS TEC, auroral imager and a data assimilative model, we investigate the relationship between the high-latitude trough and FACs as well as convection flows. The high-latitude trough is found to be collocated with a counter-clockwise convection flow vortex east of the Harang reversal region, and downward FACs as part of the substorm current system are suggested to be responsible for the high-latitude trough formation. In addition, complex ionospheric electron temperature within the high-latitude trough is found, i.e., increase in the E region while decrease in the F region. We discuss possible

  19. Three-dimensional distribution of random velocity inhomogeneities at the Nankai trough seismogenic zone

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Obana, K.; Yamamoto, Y.; Nakanishi, A.; Kaiho, Y.; Kodaira, S.; Kaneda, Y.

    2012-12-01

    The Nankai trough in southwestern Japan is a convergent margin where the Philippine sea plate is subducted beneath the Eurasian plate. There are major faults segments of huge earthquakes that are called Tokai, Tonankai and Nankai earthquakes. According to the earthquake occurrence history over the past hundreds years, we must expect various rupture patters such as simultaneous or nearly continuous ruptures of plural fault segments. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) conducted seismic surveys at Nankai trough in order to clarify mutual relations between seismic structures and fault segments, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. This study evaluated the spatial distribution of random velocity inhomogeneities from Hyuga-nada to Kii-channel by using velocity seismograms of small and moderate sized earthquakes. Random velocity inhomogeneities are estimated by the peak delay time analysis of S-wave envelopes (e.g., Takahashi et al. 2009). Peak delay time is defined as the time lag from the S-wave onset to its maximal amplitude arrival. This quantity mainly reflects the accumulated multiple forward scattering effect due to random inhomogeneities, and is quite insensitive to the inelastic attenuation. Peak delay times are measured from the rms envelopes of horizontal components at 4-8Hz, 8-16Hz and 16-32Hz. This study used the velocity seismograms that are recorded by 495 ocean bottom seismographs and 378 onshore seismic stations. Onshore stations are composed of the F-net and Hi-net stations that are maintained by National Research Institute for Earth Science and Disaster Prevention (NIED) of Japan. It is assumed that the random inhomogeneities are represented by the von Karman type PSDF. Preliminary result of inversion analysis shows that spectral gradient of PSDF (i.e., scale dependence of

  20. Lupus-anticoagulant testing at NOAC trough levels.

    PubMed

    Ratzinger, Franz; Lang, Mona; Belik, Sabine; Jilma-Stohlawetz, Petra; Schmetterer, Klaus G; Haslacher, Helmuth; Perkmann, Thomas; Quehenberger, Peter

    2016-08-01

    Non-vitamin K antagonist oral anticoagulants (NOAC), including rivaroxaban, apixaban or dabigatran, regularly show relevant effects on coagulation tests, making the interpretation of results difficult. The aim of this study was to evaluate possible interferences of NOACs in trough level concentrations in lupus anticoagulant (LA) testing. Citrate plasma specimens of 30 healthy volunteers were spiked with rivaroxaban, apixaban or dabigatran in four plasma concentration levels at or below trough NOAC levels. The NOAC concentration was measured using dedicated surrogate concentration tests and a stepwise diagnostic procedure for LA-testing was applied using screening, mixing and confirmatory testing. Results were compared to NOAC-free specimens. Starting with a plasma concentration of 12.5 ng/ml, dabigatran-spiked specimens showed significant prolongations in the lupus anticoagulant-sensitive activated partial thromboplastin time (aPTT-LA) as well as in the Dilute Russell viper venom time (dRVVT), leading to 43.3 % false positives in confirmatory testing in the dRVVT. In contrast, rivaroxaban, beginning with 7.5 ng/ml, exclusively affected dRVVT-based tests. In confirmatory tests, 30.0 % of rivaroxaban-spiked specimens showed false positive results. Starting with 18.75 ng/ml apixaban, a significant prolongation of the dRVVT and up to 20.7 % false positives in confirmatory tests were found. In contrast to other NOACs tested, apixaban did not present with a dose-dependent increase of the dRVVT ratio. In conclusion, the rate of false positive results in LA-testing is unacceptably high at expected trough levels of NOACs. Even at plasma concentrations below the LLOQ of commercially available surrogate tests, LA testing is best avoided in patients with NOAC therapy.

  1. Tufts submarine fan: turbidity-current gateway to Escanaba Trough

    USGS Publications Warehouse

    Reid, Jane A.; Normark, William R.

    2003-01-01

    Turbidity-current overflow from Cascadia Channel near its western exit from the Blanco Fracture Zone has formed the Tufts submarine fan, which extends more than 350 km south on the Pacific Plate to the Mendocino Fracture Zone. For this study, available 3.5-kHz high-resolution and airgun seismic-reflection data, long-range side-scan sonar images, and sediment core data are used to define the growth pattern of the fan. Tufts fan deposits have smoothed and filled in the linear ridge-and-valley relief over an area exceeding 23,000 km2 on the west flank of the Gorda Ridge. The southernmost part of the fan is represented by a thick (as much as 500 m) sequence of turbidite deposits ponded along more than 100 km of the northern flank of the Mendocino Fracture Zone. Growth of the Tufts fan now permits turbidity-current overflow from Cascadia Channel to reach the Escanaba Trough, a deep rift valley along the southern axis of the Gorda Ridge. Scientific drilling during both the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP) provided evidence that the 500-m-thick sediment fill of Escanaba Trough is dominantly sandy turbidites. Radiocarbon dating of the sediment at ODP Site 1037 showed that deposition of most of the upper 120 m of fill was coincident with Lake Missoula floods and that the provenance of the fill is from the eastern Columbia River drainage basin. The Lake Missoula flood discharge with its entrained sediment continued flowing downslope upon reaching the ocean as hyperpycnally generated turbidity currents. These huge turbidity currents followed the Cascadia Channel to reach the Pacific Plate, where overbank flow provided a significant volume of sediment on Tufts fan and in Escanaba Trough. Tufts fan and Tufts Abyssal Plain to the west probably received turbidite sediment from the Cascadia margin during much of the Pleistocene.

  2. The dynamics of parabolic flight: Flight characteristics and passenger percepts

    NASA Astrophysics Data System (ADS)

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 s of freefall (0 g) followed by 40 s of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity." Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  3. Anisotropic uniqueness classes for a degenerate parabolic equation

    SciTech Connect

    Vil'danova, V F; Mukminov, F Kh

    2013-11-30

    Anisotropic uniqueness classes of Tacklind type are identified for a degenerate linear parabolic equation of the second order in an unbounded domain. The Cauchy problem and mixed problems with boundary conditions of the first and third type are considered. Bibliography: 18 titles.

  4. The dynamics of parabolic flight: flight characteristics and passenger percepts.

    PubMed

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  5. Low-crosstalk Si arrayed waveguide grating with parabolic tapers.

    PubMed

    Ye, Tong; Fu, Yunfei; Qiao, Lei; Chu, Tao

    2014-12-29

    A silicon arrayed waveguide grating (AWG) with low channel crosstalk was demonstrated by using ultra-short parabolic tapers to connect the AWG's free propagation regions and single-mode waveguides. The tapers satisfied the requirements of low-loss mode conversion and lower channel crosstalk from the coupling of neighboring waveguides in the AWGs. In this work, three different tapers, including parabolic tapers, linear tapers, and exponential tapers, were theoretically analyzed and experimentally investigated for a comparison of their effects when implemented in AWGs. The experimental results showed that the AWG with parabolic tapers had a crosstalk improvement up to 7.1 dB compared with the others. Based on the advantages of parabolic tapers, a 400-GHz 8 × 8 cyclic AWG with 2.4 dB on-chip loss and -17.6~-25.1 dB crosstalk was fabricated using a simple one-step etching process. Its performance was comparable with that of existing AWGs with bi-level tapers, which require complicated two-step etching fabrication processes.

  6. Compound parabolic concentrator with cavity for tubular absorbers

    DOEpatents

    Winston, Roland

    1983-01-01

    A compond parabolic concentrator with a V-shaped cavity is provided in which an optical receiver is emplaced. The cavity redirects all energy entering between the receiver and the cavity structure onto the receiver, if the optical receiver is emplaced a distance from the cavity not greater than 0.27 r (where r is the radius of the receiver).

  7. Polarization properties of linearly polarized parabolic scaling Bessel beams

    NASA Astrophysics Data System (ADS)

    Guo, Mengwen; Zhao, Daomu

    2016-10-01

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge.

  8. Orthostatic intolerance and motion sickness after parabolic flight

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Brown, T. E.; Wood, S. J.; Benavides, E. W.; Bondar, R. L.; Stein, F.; Moradshahi, P.; Harm, D. L.; Fritsch-Yelle, J. M.; Low, P. A.

    2001-01-01

    Because it is not clear that the induction of orthostatic intolerance in returning astronauts always requires prolonged exposure to microgravity, we investigated orthostatic tolerance and autonomic cardiovascular function in 16 healthy subjects before and after the brief micro- and hypergravity of parabolic flight. Concomitantly, we investigated the effect of parabolic flight-induced vomiting on orthostatic tolerance, R-wave-R-wave interval and arterial pressure power spectra, and carotid-cardiac baroreflex and Valsalva responses. After parabolic flight 1) 8 of 16 subjects could not tolerate 30 min of upright tilt (compared to 2 of 16 before flight); 2) 6 of 16 subjects vomited; 3) new intolerance to upright tilt was associated with exaggerated falls in total peripheral resistance, whereas vomiting was associated with increased R-wave-R-wave interval variability and carotid-cardiac baroreflex responsiveness; and 4) the proximate mode of new orthostatic failure differed in subjects who did and did not vomit, with vomiters experiencing comparatively isolated upright hypocapnia and cerebral vasoconstriction and nonvomiters experiencing signs and symptoms reminiscent of the clinical postural tachycardia syndrome. Results suggest, first, that syndromes of orthostatic intolerance resembling those developing after space flight can develop after a brief (i.e., 2-h) parabolic flight and, second, that recent vomiting can influence the results of tests of autonomic cardiovascular function commonly utilized in returning astronauts.

  9. Lateral migration of a capsule in a parabolic flow.

    PubMed

    Nix, S; Imai, Y; Ishikawa, T

    2016-07-26

    Red blood cells migrate to the center of the blood vessel in a process called axial migration, while other blood cells, such as white blood cells and platelets, are disproportionately found near the blood vessel wall. However, much is still unknown concerning the lateral migration of cells in the blood; the specific effect of hydrodynamic factors such as a wall or a shear gradient is still unclear. In this study, we investigate the lateral migration of a capsule using the boundary integral method, in order to compute exactly an infinite computational domain for an unbounded parabolic flow and a semi-infinite computational domain for a near-wall parabolic flow in the limit of Stokes flow. We show that the capsule lift velocity in an unbounded parabolic flow is linear with respect to the shear gradient, while the lift velocity in a near-wall parabolic flow is dependent on the distance to the wall. Then, using these relations, we give an estimation of the relative effect of the shear gradient as a function of channel width and distance between the capsule and the wall. This estimation can be used to determine cases in which the effect of the shear gradient or wall can be neglected; for example, the formation of the cell-free layer in blood vessels is determined to be unaffected by the magnitude of the shear gradient.

  10. Orthostatic Intolerance and Motion Sickness After Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Brown, Troy E.; Wood, Scott J.; Benavides, Edgar W.; Bondar, Roberta L.; Stein, Flo; Moradshahi, Peyman; Harm, Deborah L.; Low, Phillip A.

    1999-01-01

    Orthostatic intolerance is common in astronauts after prolonged space flight. However, the "push-pull effect" in military aviators suggests that brief exposures to transitions between hypo- and hypergravity are sufficient to induce untoward autonomic cardiovascular physiology in susceptible individuals. We therefore investigated orthostatic tolerance and autonomic cardiovascular function in 16 healthy test subjects before and after a seated 2-hr parabolic flight. At the same time, we also investigated relationships between parabolic flight-induced vomiting and changes in orthostatic and autonomic cardiovascular function. After parabolic flight, 8 of 16 subjects could not tolerate a 30-min upright tilt test, compared to 2 of 16 before flight. Whereas new intolerance in non-Vomiters resembled the clinical postural tachycardia syndrome (POTS), new intolerance in Vomiters was characterized by comparatively isolated upright hypocapnia and cerebral vasoconstriction. As a group, Vomiters also had evidence for increased postflight fluctuations in efferent vagal-cardiac nerve traffic occurring independently of any superimposed change in respiration. Results suggest that syndromes of orthostatic intolerance resembling those occurring after space flight can occur after a brief (i.e., 2-hr) parabolic flight.

  11. Boundary control of parabolic systems - Finite-element approximation

    NASA Technical Reports Server (NTRS)

    Lasiecka, I.

    1980-01-01

    The finite element approximation of a Dirichlet type boundary control problem for parabolic systems is considered. An approach based on the direct approximation of an input-output semigroup formula is applied. Error estimates are derived for optimal state and optimal control, and it is noted that these estimates are actually optimal with respect to the approximation theoretic properties.

  12. The dynamics of parabolic flight: flight characteristics and passenger percepts

    PubMed Central

    Karmali, Faisal; Shelhamer, Mark

    2008-01-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30–60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328

  13. Deep drivers of mesoscale circulation in the central Rockall Trough

    NASA Astrophysics Data System (ADS)

    Sherwin, T. J.; Aleynik, D.; Dumont, E.; Inall, M. E.

    2015-05-01

    Mesoscale variability in the central Rockall Trough, immediately west of the British Isles, has been investigated using a combination of ship-borne, underwater glider and gridded satellite altimeter measurements. Altimeter observations show that eddies and large-scale circulation cells are ubiquitous phenomena. They have horizontal length scales of order 100 km with vertical scales of over 1000 m and are associated with mean current speeds (over the upper 1000 m) of 15 ± 7 cm s-1. Monthly area averaged surface eddy kinetic energy (EKE) has substantial inter-annual variability, which at times can dominate a mean seasonal signal that varies from a maximum in May (74 cm2 s-2) to a minimum in October (52 cm2 s-2) and has increased gradually since 1992 at about 1.1 cm2 s-2 per year. This increase may be related to the retreat of the sub-polar gyre (SPG). A 5 month glider mission in the trough showed that the cyclonic component of EKE came from cold water features that are located over 1000 m below the surface. The surface currents from altimeters had similar magnitude to the drift currents averaged over 1000 m from the glider in the stratified autumn, but were half the deep water speed during late winter. Although the mesoscale features move in an apparent random manner, they seem to be constrained by submarine topography such as seamounts. Occasionally anti-cyclonic and cyclonic cells combine to cause a coherent westward deflection of the European slope current that warms the Rockall side of the trough. Such deflections contribute to the inter-annual variability in the observed temperature and salinity that are monitored in the upper 800 m of the trough. By combining glider and altimeter measurements it is shown that altimeter measurements fail to observe a 15 cm s-1 northward flowing slope current on the eastern side as well as a small persistent southward current on the western side. There is much to be gained from the synergy between satellite altimetry and in situ

  14. Scintillation near the F-layer trough over Northern Europe

    SciTech Connect

    Kersley, L.; Pryse, S.E.; Russell, C.D.

    1990-05-03

    Results are presented of scintillation observations made during a two and a half year period at Lerwick in the Shetland Islands using more than 19000 passes of NNSS satellites. Examples of scintillation morphology, in the region near the scintillation boundary and the F-layer trough, for both amplitude and phase are discussed using exceedence levels for the S sub 4 and sigma sub psi indices respectively. The equatorwards advancement of the scintillation boundary in response to enhanced solar activity during the increasing phase of the solar cycle is shown to be a dominant feature in the observations.

  15. Organic geothermometry of petroleum from Escanaba Trough, offshore northern California

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Hostettler, F.D.; David, King J.; Claypool, G.E.

    1988-01-01

    We have measured the extent of hopane and sterane isomerization and of monoaromatic-steroid-hydrocarbon aromatization in a sample of hydrothermally derived petroleum from the Escanaba Trough, a sediment-covered, volcanically active ridge axis. The results, along with kinetic parameters, predict the possible time-temperature history of the petrolum-forming process for this sample. The extent of these reactions is consistent with petroleum formation by intense heating (about 300-350??C) if the time period of this heating was as short as about 100 yr. Such a time scale is reasonable for hydrothermal-discharge events associated with ridge-crest volcanism. ?? 1987.

  16. IR Spectrometer Using 90-Degree Off-Axis Parabolic Mirrors

    SciTech Connect

    Robert M. Malone, Ian J. McKenna

    2008-03-01

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light Source at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement single-point pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  17. IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors

    SciTech Connect

    Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

    2008-09-02

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  18. Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology

    SciTech Connect

    Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M.

    2010-09-15

    Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

  19. Geodetic investigation into the deformation of the Salton Trough

    NASA Astrophysics Data System (ADS)

    Crowell, Brendan W.; Bock, Yehuda; Sandwell, David T.; Fialko, Yuri

    2013-09-01

    Salton Trough represents a complex transition between the spreading center in Baja California and the strike-slip San Andreas fault system and is one of the most active zones of deformation and seismicity in California. We present a high-resolution interseismic velocity field for the Salton Trough derived from 74 continuous GPS sites and 109 benchmarks surveyed in three GPS campaigns during 2008-2009 and previous surveys between 2000 and 2005. We also investigate small-scale deformation by removing the regional velocity field predicted by an elastic block model for Southern California from the observed velocities. We find a total extension rate of 11 mm/yr from the Mesquite Basin to the southern edge of the San Andreas Fault, coupled with 15 mm/yr of left-lateral shear, the majority of which is concentrated in the southern Salton Sea and Obsidian Buttes and is equivalent to 17 mm/yr oriented in the direction of the San Andreas Fault. Differential shear strain is exclusively localized in the Brawley Seismic Zone, and dilatation rate indicates widespread extension throughout the zone. In addition, we infer clockwise rotation of 10°/Ma, consistent with northwestward propagation of the Brawley Seismic Zone over geologic time.

  20. Scroll wave drift along steps, troughs, and corners.

    PubMed

    Ke, Hua; Zhang, Zhihui; Steinbock, Oliver

    2015-06-01

    Three-dimensional excitable systems can create nonlinear scroll waves that rotate around one-dimensional phase singularities. Recent theoretical work predicts that these filaments drift along step-like height variations. Here, we test this prediction using experiments with thin layers of the Belousov-Zhabotinsky reaction. We observe that over short distances scroll waves are attracted towards the step and then rapidly commence a steady drift along the step line. The translating filaments always reside on the shallow side of the step near the edge. Accordingly, filaments in the deep domain initially collide with and shorten at the step wall. The drift speeds obey the predicted proportional dependence on the logarithm of the height ratio and the direction depends on the vortex chirality. We also observe drift along the perimeter of rectangular plateaus and find that the filaments perform sharp turns at the corners. In addition, we investigate rectangular troughs for which vortices of equal chirality can drift in different directions. The latter two effects are reproduced in numerical simulations with the Barkley model. The simulations show that narrow troughs instigate scroll wave encounters that induce repulsive interaction and symmetry breaking. Similar phenomena could exist in the geometrically complicated ventricles of the human heart where reentrant vortex waves cause tachycardia and fibrillation. PMID:26117114

  1. Parabolic Flight Evaluation of Bacterial Adhesion on Multiple Antimicrobial Surface Treatments

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2011-01-01

    This report describes the development of a test method and the evaluation of the effectiveness of antimicrobial technologies in reduced gravity based on parabolic flight experiments. Microbial growth is a common occurrence on fully immersed wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and/or physical \\disinfection. Many materials and surface treatments with antimicrobial properties are commercially available but none have been vetted for spaceflight applications. Herein a test method is explained that included ground and reduced gravity parabolic flight experiments with a standard microorganism recovered from spacecraft, Pseudomonas aeruginosa, added at a concentration of 1 x 10(exp 5) cells per milliliter (mL) onto challenge material coupon surfaces. Several experimental materials were observed to slightly reduce microbial attachment in reduced gravity flight experiments, but none were capable of eliminating all challenge bacteria. Lunar gravity had an increased antimicrobial effect in 28 out of 36 test coupons compared to microgravity when provided otherwise identical conditions for growth, suggesting trace .amounts of gravity may be required for maximum antimicrobial performance. Bacterial cells exposed to variable gravity had more than twice as ,much intracellular adenosine triphosphate (ATP) when compared to control cells exposed only to Earth gravity due to a short duration response to environmental stress. An ATP luminescence assay was the method most amenable to development of an in-flight microbial monitoring assay

  2. Electromagnetic Casimir forces of parabolic cylinder and knife-edge geometries

    SciTech Connect

    Graham, Noah; Shpunt, Alexander; Kardar, Mehran; Emig, Thorsten; Rahi, Sahand Jamal; Jaffe, Robert L.

    2011-06-15

    An exact calculation of electromagnetic scattering from a perfectly conducting parabolic cylinder is employed to compute Casimir forces in several configurations. These include interactions between a parabolic cylinder and a plane, two parabolic cylinders, and a parabolic cylinder and an ordinary cylinder. To elucidate the effect of boundaries, special attention is focused on the 'knife-edge' limit in which the parabolic cylinder becomes a half-plane. Geometrical effects are illustrated by considering arbitrary rotations of a parabolic cylinder around its focal axis, and arbitrary translations perpendicular to this axis. A quite different geometrical arrangement is explored for the case of an ordinary cylinder placed in the interior of a parabolic cylinder. All of these results extend simply to nonzero temperatures.

  3. Seafloor glacial geomorphology in a cross shelf trough: insights into the deglaciation of the Melville Bay Ice Stream

    NASA Astrophysics Data System (ADS)

    Newton, Andrew; Huuse, Mads

    2016-04-01

    Compared to other glaciated margins such as offshore mid-Norway and Svalbard, the Greenland continental shelf has, until recently, been the subject of only a limited amount of academic and industry research. This has been mainly due to the difficulty and expense of obtaining data in such harsh and operationally complex settings. Climate amelioration and technological advance has, particularly in recent years, allowed both academics and industry to substantially increase data collection across the many glaciated continental shelves in the Northern Hemisphere. Baffin Bay has been one of the primary regions of interest for the hydrocarbon industry which has sought to operate in the frontier basins offshore Greenland. As a result of these industry operations, a large database of geophysical and geological data has been collected. Some of this data has been made available to glacial scientists and provides a unique opportunity to investigate the seafloor geomorphology for regions where the majority of previous work has been hypothetical rather than grounded in geological evidence. In the work presented here we present a landform record offshore NW Greenland in the Melville Bay cross-shelf trough. This is one of the largest troughs on the entire Greenland shelf and measures up to 140 km in width. Shallow-marine cores collected in the coastal part of the trough show bedrock of Miocene age and indicate that a significant cover has likely been removed from the shelf by ice streams operating through the Late Cenozoic. This material has then been deposited at the shelf edge as a trough mouth fan. Using multibeam and seismic reflection data a large number of glacial landforms are observed and mapped in the trough. These include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and iceberg grounding pits. These landforms are used to reconstruct the ice dynamics of the Melville Bugt Ice Stream at the last glacial maximum and during its deglaciation. The

  4. Carbonate system at Iheya North in Okinawa Trough~IODP drilling and post drilling environment~

    NASA Astrophysics Data System (ADS)

    Noguchi, T.; Hatta, M.; Sunamura, M.; Fukuba, T.; Suzue, T.; Kimoto, H.; Okamura, K.

    2012-12-01

    The Iheya North hydrothermal field in middle Okinawa Trough is covered with thick hemipelagic and volcanic sediment. Geochemical characteristics of Okinawa Trough is to provide abundant of CO2, CH4, NH4, H2, and H2S which originated from magmatic gases, sedimentary organic matters. On this hydrothermal field, a scientific drilling by Integrated Ocean Drilling Program (IODP) Expedition 331 was conducted to investigate metabolically diverse subseafloor microbial ecosystem and their physical and chemical settings. To clarify the spatial distribution of physical condition beneath seafloor around the hydrothermal filed, we focus on the carbonate species analysis to reconstruct in-situ pH, which regulate the diversities of microbial community and mineral composition. We developed the small sample volume dissolved total inorganic carbon (DIC) analyzer and conducted the onboard analysis for the interstitial water during IODP Exp.331. Total alkalinity, boron, phosphate, and ammonium also analyzed for thermodynamic calculation. In this presentation, we represent the spatial distribution of pH beneath the Iheya North hydrothermal field. In addition, we developed a 128 bottles multiple water sampler (ANEMONE) for post drilling environmental monitoring. ANEMONE sampler was deployed on the manned submersible Shinkai 6500 with other chemical sensors (CTD, turbidity, pH, ORP, and H2S), and collected the hydrothermal plume samples every 5 minutes during YK12-05 cruise by R/V Yokosuka (Japan Agency for Marine-Earth Science and Technology, JAMSTEC). DIC concentration of plume samples collected by ANEMONE sampler were analyzed just after submersible retrieve, and nutrients, manganese, density, and total cell counts determination were conducted onshore analysis. Based on these results, we describe the spatial distribution of DIC and carbonate system on Iheya North hydrothermal field (interstitial water, hydrothermal fluid, and hydrothermal plume).

  5. Trough Concentrations of Vancomycin in Patients Undergoing Extracorporeal Membrane Oxygenation.

    PubMed

    Park, So Jin; Yang, Jeong Hoon; Park, Hyo Jung; In, Yong Won; Lee, Young Mi; Cho, Yang Hyun; Chung, Chi Ryang; Park, Chi-Min; Jeon, Kyeongman; Suh, Gee Young

    2015-01-01

    To investigate the appropriateness of the current vancomycin dosing strategy in adult patients with extracorporeal membrane oxygenation (ECMO), between March 2013 and November 2013, patients who were treated with vancomycin while on ECMO were enrolled. Control group consisted of 60 patients on vancomycin without ECMO, stayed in medical intensive care unit during the same study period and with the same exclusion criteria. Early trough levels were obtained within the fourth dosing, and maintenance levels were measured at steady state. A total of 20 patients were included in the analysis in ECMO group. Sixteen patients received an initial intravenous dose of 1.0 g vancomycin followed by 1.0 g every 12 hours. The non-steady state trough level of vancomycin after starting administration was subtherapeutic in 19 patients (95.00%) in ECMO group as compared with 40 patients (66.67%) in the control group (p = 0.013). Vancomycin clearance was 1.27±0.51 mL/min/kg, vancomycin clearance/creatinine clearance ratio was 0.90 ± 0.37, and elimination rate constant was 0.12 ± 0.04 h-1. Vancomycin dosingfrequency and total daily dose were significantly increased after clinical pharmacokinetic services of the pharmacist based on calculated pharmacokinetic parameters (from 2.10 ± 0.72 to 2.90 ± 0.97 times/day, p = 0.002 and from 32.54 ± 8.43 to 42.24 ± 14.62mg/kg, p = 0.014) in ECMO group in contrast with those (from 2.11 ± 0.69 to 2.37 ± 0.86 times/day, p = 0.071 and from 33.91 ± 11.85 to 31.61 ± 17.50 mg/kg, p = 0.350) in the control group.Although the elimination rate for vancomycin was similar with population parameter of non ECMO patients, the current dosing strategy of our institution for vancomycinin our ICU was not sufficient to achieve the target trough in the initial period in most patients receiving ECMO.

  6. Dense-array concentrator photovoltaic system using non-imaging dish concentrator and crossed compound parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Chong, Kok-Keong; Yew, Tiong-Keat; Wong, Chee-Woon; Tan, Ming-Hui; Tan, Woei-Chong; Lai, An-Chow; Lim, Boon-Han; Lau, Sing-Liong; Rahman, Faidz Abdul

    2015-04-01

    Solar concentrating device plays an important role by making use of optical technology in the design, which can be either reflector or lens to deliver high flux of sunlight onto the Concentrator Photovoltaic (CPV) module receiver ranging from hundreds to thousand suns. To be more competitive compared with fossil fuel, the current CPV systems using Fresnel lens and Parabolic dish as solar concentrator that are widely deployed in United States, Australia and Europe are facing great challenge to produce uniformly focused sunlight on the solar cells as to reduce the cost of electrical power generation. The concept of non-imaging optics is not new, but it has not fully explored by the researchers over the world especially in solving the problem of high concentration solar energy, which application is only limited to be a secondary focusing device or low concentration device using Compound Parabolic Concentrator. With the current advancement in the computer processing power, we has successfully invented the non-imaging dish concentrator (NIDC) using numerical simulation method to replace the current parabolic dish as primary focusing device with high solar concentration ratio (more than 400 suns) and large collective area (from 25 to 125 m2). In this paper, we disclose our research and development on dense array CPV system based on non-imaging optics. The geometry of the NIDC is determined using a special computational method. In addition, an array of secondary concentrators, namely crossed compound parabolic concentrators, is also proposed to further focus the concentrated sunlight by the NIDC onto active area of solar cells of the concentrator photovoltaic receiver. The invention maximizes the absorption of concentrated sunlight for the electric power generation system.

  7. Parabolic dish systems at work - Applying the concepts

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1981-01-01

    An overview is given of parabolic dish solar concentrator application experiments being conducted by the U.S. Department of Energy. The 'engineering experiments' comprise the testing of (1) a small-community powerplant system, in conjunction with a grid-connected utility; (2) stand-alone applications at remote sites such as military installations, radar stations and villages; and (3) dish modules that can deliver heat for direct use in industrial processes. Applicability projections are based on a dish and receiver that use a Brayton engine with an engine/generator efficiency of 25% and a production level of up to 25,000 units per year. Analyses indicate that parabolic-dish power systems can potentially replace small, oil-fired power plants in all regions of the U.S. between 1985 and 1991.

  8. Water Cooled TJ Dense Array Modules for Parabolic Dishes

    SciTech Connect

    Loeckenhoff, Ruediger; Kubera, Tim; Rasch, Klaus Dieter

    2010-10-14

    AZUR SPACE Solar Power GmbH has developed a novel type of dense array module for use in parabolic dishes. Such dishes never produce a perfectly homogeneous, rectangular light spot but an inhomogeneous light distribution. A regular module would use this light distribution very inefficiently. Therefore AZUR SPACE developed a dense array module concept which can be adapted to inhomogeneous light spots. It is populated with state of the art triple junction solar cells.The modules are designed for light intensities in the range of 50-100 W/cm{sup 2} and are actively water cooled. Prototypes are installed in 11 m{sup 2} parabolic dishes produced by Zenith Solar. A peak output of 2.3 kW electrical and 5.5 kW thermal power could be demonstrated. The thermal power may be used for solar heating, solar cooling or warm water.

  9. Physiologic Pressure and Flow Changes During Parabolic Flight (Pilot Study)

    NASA Technical Reports Server (NTRS)

    Pantalos, George; Sharp, M. Keith; Mathias, John R.; Hargens, Alan R.; Watenpaugh, Donald E.; Buckey, Jay C.

    1999-01-01

    The objective of this study was to obtain measurement of cutaneous tissue perfusion central and peripheral venous pressure, and esophageal and abdominal pressure in human test subjects during parabolic flight. Hemodynamic data recorded during SLS-I and SLS-2 missions have resulted in the paradoxical finding of increased cardiac stroke volume in the presence of a decreased central venous pressure (CVP) following entry in weightlessness. The investigators have proposed that in the absence of gravity, acceleration-induced peripheral vascular compression is relieved, increasing peripheral vascular capacity and flow while reducing central and peripheral venous pressure, This pilot study seeks to measure blood pressure and flow in human test subjects during parabolic flight for different postures.

  10. Parabolic discounting of monetary rewards by physical effort.

    PubMed

    Hartmann, Matthias N; Hager, Oliver M; Tobler, Philippe N; Kaiser, Stefan

    2013-11-01

    When humans and other animals make decisions in their natural environments prospective rewards have to be weighed against costs. It is well established that increasing costs lead to devaluation or discounting of reward. While our knowledge about discount functions for time and probability costs is quite advanced, little is known about how physical effort discounts reward. In the present study we compared three different models in a binary choice task in which human participants had to squeeze a handgrip to earn monetary rewards: a linear, a hyperbolic, and a parabolic model. On the group as well as the individual level, the concave parabolic model explained most variance of the choice data, thus contrasting with the typical hyperbolic discounting of reward value by delay. Research on effort discounting is not only important to basic science but also holds the potential to quantify aberrant motivational states in neuropsychiatric disorders.

  11. Propagation equation for tight-focusing by a parabolic mirror.

    PubMed

    Couairon, A; Kosareva, O G; Panov, N A; Shipilo, D E; Andreeva, V A; Jukna, V; Nesa, F

    2015-11-30

    Part of the chain in petawatt laser systems may involve extreme focusing conditions for which nonparaxial and vectorial effects have high impact on the propagation of radiation. We investigate the possibility of using propagation equations to simulate numerically the focal spot under these conditions. We derive a unidirectional propagation equation for the Hertz vector, describing linear and nonlinear propagation under situations where nonparaxial diffraction and vectorial effects become significant. By comparing our simulations to the results of vector diffraction integrals in the case of linear tight-focusing by a parabolic mirror, we establish a practical criterion for the critical f -number below which initializing a propagation equation with a parabolic input phase becomes inaccurate. We propose a method to find suitable input conditions for propagation equations beyond this limit. Extreme focusing conditions are shown to be modeled accurately by means of numerical simulations of the unidirectional Hertz-vector propagation equation initialized with suitable input conditions.

  12. Treatment of motion sickness in parabolic flight with buccal scopolamine

    NASA Technical Reports Server (NTRS)

    Norfleet, William T.; Degioanni, Joseph J.; Reschke, Millard F.; Bungo, Michael W.; Kutyna, Frank A.; Homick, Jerry L.; Calkins, D. S.

    1992-01-01

    Treatment of acute motion sickness induced by parabolic flight with a preparation of scopolamine placed in the buccal pouch was investigated. Twenty-one subjects flew aboard a KC-135 aircraft operated by NASA which performed parabolic maneuvers resulting in periods of 0-g, 1-g, and 1.8-g. Each subject flew once with a tablet containing scopolamine and once with a placebo in a random order, crossover design. Signs and symptoms of motion sickness were systematically recorded during each parabola by an investigator who was blind to the content of the tablet. Compared with flights using placebo, flights with buccal scopolamine resulted in significantly lower scores for nausea (31-35 percent reduction) and vomiting (50 percent reduction in number of parabolas with vomiting). Side effects of the drug during flight were negligible. It is concluded that buccal scopolamine is more effective than a placebo in treating ongoing motion sickness.

  13. Propagation equation for tight-focusing by a parabolic mirror.

    PubMed

    Couairon, A; Kosareva, O G; Panov, N A; Shipilo, D E; Andreeva, V A; Jukna, V; Nesa, F

    2015-11-30

    Part of the chain in petawatt laser systems may involve extreme focusing conditions for which nonparaxial and vectorial effects have high impact on the propagation of radiation. We investigate the possibility of using propagation equations to simulate numerically the focal spot under these conditions. We derive a unidirectional propagation equation for the Hertz vector, describing linear and nonlinear propagation under situations where nonparaxial diffraction and vectorial effects become significant. By comparing our simulations to the results of vector diffraction integrals in the case of linear tight-focusing by a parabolic mirror, we establish a practical criterion for the critical f -number below which initializing a propagation equation with a parabolic input phase becomes inaccurate. We propose a method to find suitable input conditions for propagation equations beyond this limit. Extreme focusing conditions are shown to be modeled accurately by means of numerical simulations of the unidirectional Hertz-vector propagation equation initialized with suitable input conditions. PMID:26698752

  14. Development and testing of Parabolic Dish Concentrator No. 1

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; Thostesen, T. O.

    1984-01-01

    Parabolic Dish Concentrator No. 1 (PDC-1) is a 12-m-diameter prototype concentrator with low life-cycle costs for use with thermal-to-electric energy conversion devices. The concentrator assembly features panels made of a resin transfer molded balsa core/fiberglass sandwich with plastic reflective film as the reflective surface and a ribbed framework to hold the panels in place. The concentrator assembly tracks in azimuth and elevation on a base frame riding on a circular track. It is shown that the panels do not exhibit the proper parabolic contour. However, thermal gradients were discovered in the panels with daily temperature changes. The PDC-1 has sufficient optical quality to operate satisfactorily in a dish-electric system. The PDC-1 development provides the impetus for creating innovative optical testing methods and valuable information for use in designing and fabricating concentrators of future dish-electric systems.

  15. All-fiber ring Raman laser generating parabolic pulses

    SciTech Connect

    Kruglov, V. I.; Mechin, D.; Harvey, J. D.

    2010-02-15

    We present theoretical and numerical results for an all-fiber laser using self-similar parabolic pulses ('similaritons') designed to operate using self-similar propagation regimes. The similariton laser features a frequency filter and a Sagnac loop which operate together to generate an integrated all-fiber mode-locked laser. Numerical studies show that this laser generates parabolic pulses with linear chirp in good agreement with analytical predictions. The period for propagating similariton pulses in stable regimes can vary from one to two round trips for different laser parameters. Two-round-trip-period operation in the mode-locked laser appears at bifurcation points for certain cavity parameters. The stability of the similariton regimes has been confirmed by numerical simulations for large numbers of round trips.

  16. Shock wave convergence in water with parabolic wall boundaries

    SciTech Connect

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-04-28

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ∼45 kA and rise time of ∼80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger.

  17. Irrigation market for solar thermal parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, H.; Jones, S. C.

    1981-01-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  18. A Review of Psycho-Physiological Responses to Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Brummer, Vera; Schneider, Stefan; Guardiera, Simon; Struder, Heiko K.

    2008-06-01

    This review combines and correlates data of several studies conducted in the recent years where we were able to show an increase in stress hormone concentrations, EEG activity and a decrease in mood during parabolic flights. The aim of these studies was to consider whether previous results showing a decrease in mental and perceptual motor performance during weightlessness were solely due to the changes in gravity itself or were also, at least partly, explainable by an increase of stress and/or arousal during parabolic flights. A correlation between stress hormones and mood but not between EEG activity and mood nor between stress hormones and EEG activity could be found. We propose two different stressors: First an activation of the adrenomedullary system, secondly a general increase of cortical arousal. Whereas the first one is perceived by subjects, this is not the case for the second one.

  19. Sea urchin fertilization during a KC-135 parabolic flight.

    PubMed

    Schatten, H; Zoran, S; Levine, H G; Anderson, K; Chakrabarti, A

    1999-07-01

    For long-term exposure to space it is crucial to understand the underlying mechanisms for altered physiological functions. We have chosen the sea urchin system to study the effects of microgravity on various cellular processes visible during fertilization and subsequent development. We report here on experiments performed on NASA's KC-135 during parabolic flight trajectories to validate procedures to be implemented as part of the first Aquatic Research Facility Space Shuttle experiment on STS-77. PMID:11543042

  20. Quenching phenomena for fourth-order nonlinear parabolic equations

    NASA Astrophysics Data System (ADS)

    Yi, Niu; Xiaotong, Qiu; Runzhang, Xu

    2012-09-01

    In this paper, we investigate the quenching phenomena of the initial boundary value problem for the fourth-order nonlinear parabolic equation in bounded domain. By some assumptions on the exponents and initial data for a class of equations with the general source term, we not only obtain the quenching phenomena in finite time but also estimate the quenching time. Our main tools are maximum principle, comparison principle and eigenfunction method.

  1. Thermal distortion analysis of a deployable parabolic reflector

    NASA Technical Reports Server (NTRS)

    Bruck, L. R.; Honeycutt, G. H.

    1973-01-01

    A thermal distortion analysis of the ATS-6 Satellite parabolic reflector was performed using NASTRAN level 15.1. The same NASTRAN finite element method was used to conduct a one g static load analysis and a dynamic analysis of the reflector. In addition, a parametric study was made to determine which parameters had the greatest effect on the thermal distortions. The method used to model the construction of the reflector is described and the results of the analyses are presented.

  2. A stability analysis for a semilinear parabolic partial differential equation

    NASA Technical Reports Server (NTRS)

    Chafee, N.

    1973-01-01

    The parabolic partial differential equation considered is u sub t = u sub xx + f(u), where minus infinity x plus infinity and o t plus infinity. Under suitable hypotheses pertaining to f, a class of initial data is exhibited: phi(x), minus infinity x plus infinity, for which the corresponding solutions u(x,t) appraoch zero as t approaches the limit of plus infinity. This convergence is uniform with respect to x on any compact subinterval of the real axis.

  3. Performance of a blood chemistry analyzer during parabolic flight

    NASA Technical Reports Server (NTRS)

    Spooner, Brian S.; Claassen, Dale E.; Guikema, James A.

    1990-01-01

    The performance of the Vision System Blood Analyzer during parabolic flight on a KC-135 aircraft (NASA 930) has been tested. This fully automated instrument performed flawlessly in these trials, demonstrating its potential for efficient, reliable use in a microgravity environment. In addition to instrument capability, it is demonstrated that investigators could readily fill specially modified test packs with fluid during zero gravity, and that filled test packs could be easily loaded into VISION during an episode of microgravity.

  4. Synergies between optical and physical variables in intercepting parabolic targets.

    PubMed

    Gómez, José; López-Moliner, Joan

    2013-01-01

    Interception requires precise estimation of time-to-contact (TTC) information. A long-standing view posits that all relevant information for extracting TTC is available in the angular variables, which result from the projection of distal objects onto the retina. The different timing models rooted in this tradition have consequently relied on combining visual angle and its rate of expansion in different ways with tau being the most well-known solution for TTC. The generalization of these models to timing parabolic trajectories is not straightforward. For example, these different combinations rely on isotropic expansion and usually assume first-order information only, neglecting acceleration. As a consequence no optical formulations have been put forward so far to specify TTC of parabolic targets with enough accuracy. It is only recently that context-dependent physical variables have been shown to play an important role in TTC estimation. Known physical size and gravity can adequately explain observed data of linear and free-falling trajectories, respectively. Yet, a full timing model for specifying parabolic TTC has remained elusive. We here derive two formulations that specify TTC for parabolic ball trajectories. The first specification extends previous models in which known size is combined with thresholding visual angle or its rate of expansion to the case of fly balls. To efficiently use this model, observers need to recover the 3D radial velocity component of the trajectory which conveys the isotropic expansion. The second one uses knowledge of size and gravity combined with ball visual angle and elevation angle. Taking into account the noise due to sensory measurements, we simulate the expected performance of these models in terms of accuracy and precision. While the model that combines expansion information and size knowledge is more efficient during the late trajectory, the second one is shown to be efficient along all the flight.

  5. Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Wang, C.

    1989-01-01

    A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.

  6. Discontinuous Galerkin Finite Element Method for Parabolic Problems

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.

    2004-01-01

    In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of parallel ut(t) parallel Lz(omega) = parallel ut parallel2, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also included.

  7. Real-time optical laboratory solution of parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  8. Performance of a blood chemistry analyzer during parabolic flight.

    PubMed

    Spooner, B S; Claassen, D E; Guikema, J A

    1990-01-01

    We have tested the performance of the VISION System Blood Analyzer, produced by Abbott Laboratories, during parabolic flight on a KC-135 aircraft (NASA 930). This fully automated instrument performed flawlessly in these trials, demonstrating its potential for efficient, reliable use in a microgravity environment. In addition to instrument capability, we demonstrated that investigators could readily fill specially modified test packs with fluid during zero gravity, and that filled test packs could be easily loaded into VISION during an episode of microgravity.

  9. Galerkin/Runge-Kutta discretizations for semilinear parabolic equations

    NASA Technical Reports Server (NTRS)

    Keeling, Stephen L.

    1987-01-01

    A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for semilinear parabolic initial boundary value problems. Unlike any classical counterpart, this class offers arbitrarily high, optimal order convergence. In support of this claim, error estimates are proved, and computational results are presented. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low order method.

  10. Synergies between optical and physical variables in intercepting parabolic targets

    PubMed Central

    Gómez, José; López-Moliner, Joan

    2013-01-01

    Interception requires precise estimation of time-to-contact (TTC) information. A long-standing view posits that all relevant information for extracting TTC is available in the angular variables, which result from the projection of distal objects onto the retina. The different timing models rooted in this tradition have consequently relied on combining visual angle and its rate of expansion in different ways with tau being the most well-known solution for TTC. The generalization of these models to timing parabolic trajectories is not straightforward. For example, these different combinations rely on isotropic expansion and usually assume first-order information only, neglecting acceleration. As a consequence no optical formulations have been put forward so far to specify TTC of parabolic targets with enough accuracy. It is only recently that context-dependent physical variables have been shown to play an important role in TTC estimation. Known physical size and gravity can adequately explain observed data of linear and free-falling trajectories, respectively. Yet, a full timing model for specifying parabolic TTC has remained elusive. We here derive two formulations that specify TTC for parabolic ball trajectories. The first specification extends previous models in which known size is combined with thresholding visual angle or its rate of expansion to the case of fly balls. To efficiently use this model, observers need to recover the 3D radial velocity component of the trajectory which conveys the isotropic expansion. The second one uses knowledge of size and gravity combined with ball visual angle and elevation angle. Taking into account the noise due to sensory measurements, we simulate the expected performance of these models in terms of accuracy and precision. While the model that combines expansion information and size knowledge is more efficient during the late trajectory, the second one is shown to be efficient along all the flight. PMID:23720614

  11. Criteria for evaluation of reflective surface for parabolic dish concentrators

    NASA Technical Reports Server (NTRS)

    Bouquet, F.

    1980-01-01

    Commercial, second surface glass mirror are emphasized, but aluminum and metallized polymeric films are also included. Criteria for sealing solar mirrors in order to prevent environmental degradation and criteria for bonding sagged or bent mirrors to substrate materials are described. An overview of the technical areas involved in evaluating small mirror samples, sections, and entire large gores is presented. A basis for mirror criteria was established that eventually may become part of inspection and evaluation techniques for three dimensional parabolic reflective surfaces.

  12. The magnetisation of Rosemary Bank Seamount, Rockall Trough, northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Miles, P. R.; Roberts, D. G.

    1981-08-01

    Rosemary Bank is a non-uniformly magnetised seamount in the northern Rockall Trough. The reversely magnetised major component of the anomaly field was simulated by a numerical method and modelled using the Talwani three-dimensional magnetics program. The results suggest a higher Koenigsberger ratio than earlier reported for Rosemary Bank and a remanent magnetisation vector compatible with post-Jurassic formation and probably of a Late Cretaceous to Tertiary age. The limited depth to the base of the model implies that Rosemary Bank post-dates the underlying basement in agreement with a volcanic origin. The residual of the observed anomaly field is interpreted as being caused by normally magnetised bodies within and on top of the bank. This suggests subsequent volcanic activity during an interval of normal polarity.

  13. A Tilted-Trough Mechanism for AO/NAO

    NASA Astrophysics Data System (ADS)

    Jin, F.; Kimoto, M.; Watanabe, M.; Pan, L.; Yasutomi, N.

    2001-12-01

    The least damped mode of the linear atmospheric dynamic system with the zonal mean flow interacting with stationary waves is shown to bear much resemblance to the observed Arctic Oscillation (AO)in terms of both zonal and associated stationary wave components. This AO-like mode results from the dynamic self-organization among the components of zonal mean flow and the associated stationary waves through a so-called tilted-trough positive feedback. Namely, the anomalous AO-like sheared zonal flow generates the associated anomaly in stationary waves in such a way that the tilts of the total stationary waves are altered to reinforce the sheared zonal-flow anomaly through the anomalous momentum flux convergence. Thus the AO-like least damped mode, which can be excited by surface or other forcing, is expected to be dominant over monthly and longer time scales.

  14. Oil and gas potential of the west Kamchatka trough

    SciTech Connect

    Savostin, L.; Kusnetsov, N. )

    1993-09-01

    The west Kamchatka trough (WKT) is a region with a two-stage structural pattern (i.e., Cenozoic cover and pre-Cenozoic basement). The composition of hydrocarbons in local accumulations in the trough, and the present-day and paleotemperature distributions suggest that the hydrocarbons have a complex history. The WKT basement complexes, which have been penetrated by wells, are exposed in uplifts in the southern Median-Kamchatka ridge (MKR), where it is possible to study their composition and structure. The nappe structure of the MKR comprises various sedimentary and volcanoclastic complexes, including some highly carbonaceous Mesozoic clastics. Geodynamic analysis of the MKR rocks shows that during the Mesozoic, two separate island-arc terrances evolved in this part of the northwest Pacific, behind which a back-arc basin developed. In the Paleogene, rocks of this basin were overridden by nappes and metamorphosed. New understanding of the structure and evolution of the older complexes suggest that hydrocarbon accumulations may exist in underthrust zones in the WKT basement, which contains both reservoirs and source rocks. Subsequent evolution of the region was accompanied by the formation of zones of anomalously high formation pressure. Hydrocarbons drained upwards along faults and accumulated in structures in the cover, in places reaching the surface. Existing drilling and seismic data do not help with the interpretation of the basement structure because these operations were aimed at discovering local structural traps in the Cenozoic cover. Future oil exploration surveys in the region will require remote sensing methods that have much deeper penetration.

  15. Circulatory filling pressures during transient microgravity induced by parabolic flight

    NASA Technical Reports Server (NTRS)

    Latham, Ricky D.; Fanton, John W.; White, C. D.; Vernalis, Mariana N.; Crisman, R. P.; Koenig, S. C.

    1993-01-01

    Theoretical concepts hold that blood in the gravity dependent portion of the body would relocate to more cephalad compartments under microgravity. The result is an increase in blood volume in the thoraic and cardiac chambers. However, experimental data has been somewhat contradictory and nonconclusive. Early studies of peripheral venous pressure and estimates of central venous pressure (CVP) from these data did not show an increase in CVP under microgravity. However, CVP recorded in human volunteers during a parabolic flight revealed an increase in CVP during the microgravity state. On the STS 40 shuttle mission, a payload specialist wore a fluid line that recorded CVP during the first few hours of orbital insertion. These data revealed decreased CVP. When this CVP catheter was tested during parabolic flight in four subjects, two had increased CVP recordings and two had decreased CVP measurements. In 1991, our laboratory performed parabolic flight studies in several chronic-instrumented baboons. It was again noted that centrally recorded right atrial pressure varied with exposure to microgravity, some animals having an increase, and others a decrease.

  16. Application of parabolic reflector on Raman analysis of gas samples

    NASA Astrophysics Data System (ADS)

    Yu, Anlan; Zuo, Duluo; Gao, Jun; Li, Bin; Wang, Xingbing

    2016-05-01

    Studies on the application of a parabolic reflector in spontaneous Raman scattering for low background Raman analysis of gas samples are reported. As an effective signal enhancing sample cell, photonic bandgap fiber (HC-PBF) or metallined capillary normally result in a strong continuous background in spectra caused by the strong Raman/fluorescence signal from the silica wall and the polymer protective film. In order to obtain enhanced signal with low background, a specially designed sample cell with double-pass and large collecting solid angle constructed by a parabolic reflector and a planar reflector was applied, of which the optical surfaces had been processed by diamond turning and coated by silver film and protective film of high-purity alumina. The influences of optical structure, polarization characteristic, collecting solid-angle and collecting efficiency of the sample cell on light propagation and signal enhancement were studied. A Raman spectrum of ambient air with signal to background ratio of 94 was acquired with an exposure time of 1 sec by an imaging spectrograph. Besides, the 3σ limits of detection (LOD) of 7 ppm for H2, 8 ppm for CO2 and 12 ppm for CO were also obtained. The sample cell mainly based on parabolic reflector will be helpful for compact and high-sensitive Raman system.

  17. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  18. Convergence of shock waves between conical and parabolic boundaries

    NASA Astrophysics Data System (ADS)

    Yanuka, D.; Zinowits, H. E.; Antonov, O.; Efimov, S.; Virozub, A.; Krasik, Ya. E.

    2016-07-01

    Convergence of shock waves, generated by underwater electrical explosions of cylindrical wire arrays, between either parabolic or conical bounding walls is investigated. A high-current pulse with a peak of ˜550 kA and rise time of ˜300 ns was applied for the wire array explosion. Strong self-emission from an optical fiber placed at the origin of the implosion was used for estimating the time of flight of the shock wave. 2D hydrodynamic simulations coupled with the equations of state of water and copper showed that the pressure obtained in the vicinity of the implosion is ˜7 times higher in the case of parabolic walls. However, comparison with a spherical wire array explosion showed that the pressure in the implosion vicinity in that case is higher than the pressure in the current experiment with parabolic bounding walls because of strong shock wave reflections from the walls. It is shown that this drawback of the bounding walls can be significantly minimized by optimization of the wire array geometry.

  19. Parabolic solar cooker: Cooking with heat pipe vs direct spiral copper tubes

    NASA Astrophysics Data System (ADS)

    Craig, Omotoyosi O.; Dobson, Robert T.

    2016-05-01

    Cooking with solar energy has been seen by many researchers as a solution to the challenges of poverty and hunger in the world. This is no exception in Africa, as solar coking is viewed as an avenue to eliminate the problem of food insecurity, insufficient energy supply for household and industrial cooking. There are several types of solar cookers that have been manufactured and highlighted in literature. The parabolic types of solar cookers are known to reach higher temperatures and therefore cook faster. These cookers are currently being developed for indoor cooking. This technology has however suffered low cooking efficiency and thus leads to underutilization of the high heat energy captured from the sun in the cooking. This has made parabolic solar cookers unable to compete with other conventional types of cookers. Several methods to maximize heat from the sun for indirect cooking has been developed, and the need to improve on them of utmost urgency. This paper investigates how to optimize the heat collected from the concentrating types of cookers by proposing and comparing two types of cooking sections: the spiral hot plate copper tube and the heat pipe plate. The system uses the concentrating solar parabolic dish technology to focus the sun on a conical cavity of copper tubes and the heat is stored inside an insulated tank which acts both as storage and cooking plate. The use of heat pipes to transfer heat between the oil storage and the cooking pot was compared to the use of a direct natural syphon principle which is achieved using copper tubes in spiral form like electric stove. An accurate theoretical analysis for the heat pipe cooker was achieved by solving the boiling and vaporization in the evaporator side and then balancing it with the condensation and liquid-vapour interaction in the condenser part while correct heat transfer, pressure and height balancing was calculated in the second experiment. The results show and compare the cooking time, boiling

  20. Application and Operations Concepts of Large Transmit Phased Array of Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    The primary motive for large transmit array of parabolic reflectors, also known as Uplink Array, was to explore alternate methods in order to replace the large 70m antennas of Deep Space Network (DSN) such that the core capability for emergency support to a troubled spacecraft in deep space is preserved. Given that the Uplink Array is a new technology, the focus has always been on its feasibility and phase calibration techniques, which by itself is quite a challenge. It would be interesting to examine, however, what else could be accomplished by the Uplink Array capability other than the emergency support to a troubled spacecraft in deep space. ... The objective of this paper is to discuss a few application scenarios and the corresponding operation concepts, such as lunar positioning system, high EIRP uplink and the synergies with solar radar, and high power RF beams.

  1. Nested parabolic reflective optics for laser plasmas

    SciTech Connect

    O`Hara, D.

    1995-12-31

    Applications for laboratory soft-x-ray/VuV sources would benefit from the ability to collect a large energy bandwidth of radiation emanating from the very small source and redirect it into a well collimated beam without losing most of the incident radiation. Such optics would be beneficial to x-ray spectroscopy, x-ray lithography, diffractometry and other applications. The author has been working to apply technology originally developed for astronomical x-ray telescopes to production of low cost replicated collimation optics for such x-ray/VuV instruments. Most of the steps in the production of these optics have previously been accomplished with the larger astronomical optics but the author wants to reduce the size of these optics by at least an order of magnitude which introduces problems. In addition, very few copies of an x-ray telescope are made while he wants to make hundreds of copies of the optics. This paper briefly discusses the design and fabrication of these small collimation optics and is a report on work in progress.

  2. Periodic-parabolic eigenvalue problems with a large parameter and degeneration

    NASA Astrophysics Data System (ADS)

    Daners, Daniel; Thornett, Christopher

    2016-07-01

    We consider a periodic-parabolic eigenvalue problem with a non-negative potential λm vanishing on a non-cylindrical domain Dm satisfying conditions similar to those for the parabolic maximum principle. We show that the limit as λ → ∞ leads to a periodic-parabolic problem on Dm having a periodic-parabolic principal eigenvalue and eigenfunction which are unique in some sense. We substantially improve a result from [Du and Peng, Trans. Amer. Math. Soc. 364 (2012), p. 6039-6070]. At the same time we offer a different approach based on a periodic-parabolic initial boundary value problem. The results are motivated by an analysis of the asymptotic behaviour of positive solutions to semilinear logistic periodic-parabolic problems with temporal and spacial degeneracies.

  3. Numerical simulations for parabolic pulse shaping in non-linear media

    NASA Astrophysics Data System (ADS)

    Nora, R. C.; Durfee, C. G.; Carr, L. D.

    2007-03-01

    Pulses with parabolic temporal profiles have the property that they can propagate through non-linear media in a self similar manner. Parabolic pulses have been generated experimentally in fiber amplifiers. Input pulses develop into parabolic pulses by the combined action of group velocity dispersion, non-linear refractive index, and gain. In this work, we are exploring the feasibility of generating ultrafast parabolic pulses in laser resonators. We have successfully numerically simulated the generation of parabolic pulses in fiber amplifiers using two different algorithms, the Cayley method, and fourth order Runge-Kutta, to solve the Nonlinear Schrodinger equation with gain and periodic boundary conditions. In contrast to fiber amplifiers, pulses in laser resonators must maintain a stable pulse shape on each round trip through the optical cavity. We are exploring the prediction that a time dependent saturable gain will stabilize the pulse in the oscillator and yield parabolic pulses.

  4. Moon and Mars gravity environment during parabolic flights: a new European approach to prepare for planetary exploration

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Clervoy, Jean-Fran; Gharib, Thierry; Gai, Frederic; Mora, Christophe; Rosier, Patrice

    Aircraft parabolic flights provide repetitively up to 20 seconds of reduced gravity during ballis-tic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The European Space Agency (ESA) has organized since 1984 more than fifty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 600 experiments were conducted spanning several fields in Physical Sciences and Life Sciences, namely Fluid Physics, Combustion Physics, Ma-terial Sciences, fundamental Physics and Technology tests, Human Physiology, cell and animal Biology, and technical tests of Life Sciences instrumentation. Since 1997, ESA uses the Airbus A300 'Zero G', the largest airplane in the world used for this type of experimental research flight and managed by the French company Novespace, a subsidiary of the French space agency CNES. From 2010 onwards, ESA and Novespace will offer the possibility of flying Martian and Moon parabolas during which reduced gravity levels equivalent to those on the Moon and Mars will be achieved repetitively for periods of more than 20 seconds. Scientists are invited to submit experiment proposals to be conducted at these partial gravity levels. This paper presents the technical capabilities of the Airbus A300 Zero-G aircraft used by ESA to support and conduct investigations at Moon-, Mars-and micro-gravity levels to prepare research and exploration during space flights and future planetary exploration missions. Some Physiology and Technology experiments performed during past ESA campaigns at 0, 1/6 an 1/3 g are presented to show the interest of this unique research tool for microgravity and partial gravity investigations.

  5. 2008 Solar Technologies Market Report

    SciTech Connect

    Price, S.; Margolis, R.; Barbose, G.; Bartlett, J.; Cory, K.; Couture, T.; DeCesaro, J.; Denholm, P.; Drury, E.; Frickel, M.; Hemmeline, C.; Mendelsohn, T.; Ong, S.; Pak, A.; Poole, L.; Peterman, C.; Schwabe, P.; Soni, A.; Speer, B.; Wiser, R.; Zuboy, J.; James, T.

    2010-01-01

    ) Globally, about 13 GW of CSP was announced or proposed through 2015, based on forecasts made in mid-2009. Regional market shares for the 13 GW are about 51% in the United States, 33% in Spain, 8% in the Middle East and North Africa, and 8% in Australasia, Europe, and South Africa. Of the 6.5-GW project pipeline in the United States, 4.3 GW have power purchase agreements (PPAs). The PPAs comprise 41% parabolic trough, 40% power tower, and 19% dish-engine systems.

  6. Plasmaspheric Density Troughs: Global IMAGE EUV Observations and Analysis via Global Core Plasma Modeling

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Gallagher, D. L.; Green, J. L.; Sandel, B. R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    To date, the IMAGE EUV camera has observed several plasmaspheric density trough features inside the plasmapause under a wide range of geomagnetic activity. From the perspective of EUV, a density trough feature appears as a channel of diminished pixel counts which spans a width of L-shell (DELTA L) and magnetic local time (MLT) inside the plasmapause. Plasmaspheric density troughs are found to be morphologically complex possessing considerable spatial and temporal variability. We present an analysis of the evolution of trough DELTA L and MLT extent as functions of associated D (sub ST) and K (sub p) history. Trough features range in size from 0.16 less than or equal to DELTA L less than or equal to 1.2 with azimuthal extent from 1500 less than or equal to MLT less than or equal to 1200. All cases of plasmaspheric density troughs studied to date appear to have evolved as a result of the inner edge of the afternoon/evening plasma drainage plume being wrapped around through the nightside plasmasphere. The structure of plasmaspheric density trough features is further probed by analyzing simulated EUV images produced by forward modeling artificially introduced regions of depleted density into both static and dynamic global core plasmaspheric models. Forward modeling suggests that (1) L-shell refilling of density troughs during storm recovery can be modeled as filling from the ionosphere toward the equator (i.e., bottom-up refilling), and (2) that an erosion process is operating within flux tubes beyond the outer L-shell wall of the observed density troughs.

  7. Desired vancomycin trough serum concentration for treating invasive methicillin-resistant Staphylococcal infections.

    PubMed

    Frymoyer, Adam; Guglielmo, B Joseph; Hersh, Adam L

    2013-10-01

    Vancomycin area under the curve/minimal inhibitory concentration (AUC/MIC) >400 best predicts the outcome when treating invasive methicillin-resistant Staphylococcus aureus infection; however, trough serum concentrations are used clinically to assess the appropriateness of dosing. We used pharmacokinetic modeling and simulation to examine the relationship between vancomycin trough values and AUC/MIC in children receiving vancomycin 15 mg/kg every 6 hours and methicillin-resistant Staphylococcus aureus MIC of 1 μg/mL. A trough of 7-10 μg/mL predicted achievement of AUC/MIC >400 in >90% of children.

  8. Venus trough-and-ridge tessera - Analog to earth oceanic crust formed at spreading centers?

    NASA Technical Reports Server (NTRS)

    Head, James W.

    1990-01-01

    The similarity between the morphologies of Venus trough-and-ridge tessera and the earth's ocean floor is discussed. The hypothesis that tessera texture might be related to a crustal fabric produced at spreading centers is examined. It is suggested that the proccesses that produce the ocean floor fabric on earth are good candidates for the origin and production of the trough-and-ridge tessera. To support this hypothesis, the characteristics of the trough-and-ridge terrain in Laima Tessera are described and compared to the seafloor at spreading centers.

  9. Venus trough-and-ridge tessera - Analog to earth oceanic crust formed at spreading centers?

    NASA Astrophysics Data System (ADS)

    Head, J. W.

    1990-05-01

    The similarity between the morphologies of Venus trough-and-ridge tessera and the earth's ocean floor is discussed. The hypothesis that tessera texture might be related to a crustal fabric produced at spreading centers is examined. It is suggested that the proccesses that produce the ocean floor fabric on earth are good candidates for the origin and production of the trough-and-ridge tessera. To support this hypothesis, the characteristics of the trough-and-ridge terrain in Laima Tessera are described and compared to the seafloor at spreading centers.

  10. Processing of data from innovative parabolic strip telescope.

    NASA Astrophysics Data System (ADS)

    Kosejk, Vladislav; Novy, J.; Chadzitaskos, Goce

    2015-12-01

    This paper presents an innovative telescope design based on the usage of a parabolic strip fulfilling the function of an objective. Isaac Newton was the first to solve the problem of chromatic aberration, which is caused by a difference in the refractive index of lenses. This problem was solved by a new kind of telescope with a mirror used as an objective. There are many different kinds of telescopes. The most basic one is the lens telescope. This type of a telescope uses a set of lenses. Another type is the mirror telescope, which employs the concave mirror, spherical parabolic mirror or hyperbolically shaped mirror as its objective. The lens speed depends directly on the surface of a mirror. Both types can be combined to form a telescope composed of at least two mirrors and a set of lenses. The light is reflected from the primary mirror to the secondary one and then to the lens system. This type is smaller-sized, with a respectively reduced lens speed. The telescope design presented in this paper uses a parabolic strip fulfilling the function of an objective. Observed objects are projected as lines in a picture plane. Each of the lines of a size equal to the size of the strip corresponds to the sum of intensities of the light coming perpendicular to the objective from an observed object. A series of pictures taken with a different rotation and processed by a special reconstruction algorithm is needed to get 2D pictures. The telescope can also be used for fast detection of objects. In this mode, the rotation and multiple pictures are not needed, just one picture in the focus of a mirror is required to be taken.

  11. Error Analysis for Discontinuous Galerkin Method for Parabolic Problems

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki

    2004-01-01

    In the proposal, the following three objectives are stated: (1) A p-version of the discontinuous Galerkin method for a one dimensional parabolic problem will be established. It should be recalled that the h-version in space was used for the discontinuous Galerkin method. An a priori error estimate as well as a posteriori estimate of this p-finite element discontinuous Galerkin method will be given. (2) The parameter alpha that describes the behavior double vertical line u(sub t)(t) double vertical line 2 was computed exactly. This was made feasible because of the explicitly specified initial condition. For practical heat transfer problems, the initial condition may have to be approximated. Also, if the parabolic problem is proposed on a multi-dimensional region, the parameter alpha, for most cases, would be difficult to compute exactly even in the case that the initial condition is known exactly. The second objective of this proposed research is to establish a method to estimate this parameter. This will be done by computing two discontinuous Galerkin approximate solutions at two different time steps starting from the initial time and use them to derive alpha. (3) The third objective is to consider the heat transfer problem over a two dimensional thin plate. The technique developed by Vogelius and Babuska will be used to establish a discontinuous Galerkin method in which the p-element will be used for through thickness approximation. This h-p finite element approach, that results in a dimensional reduction method, was used for elliptic problems, but the application appears new for the parabolic problem. The dimension reduction method will be discussed together with the time discretization method.

  12. Wouthuysen-Field absorption trough in cosmic string wakes

    NASA Astrophysics Data System (ADS)

    Hernández, Oscar F.

    2014-12-01

    The baryon density enhancement in cosmic string wakes leads to a stronger coupling of the spin temperature to the gas kinetic temperate inside these string wakes than in the intergalactic medium (IGM). The Wouthuysen-Field (WF) effect has the potential to enhance this coupling to such an extent that it may result in the strongest and cleanest cosmic string signature in the currently planned radio telescope projects. Here we consider this enhancement under the assumption that x-ray heating is not significant. We show that the size of this effect in a cosmic string wake leads to a brightness temperature at least two times more negative than in the surrounding IGM. If the SCI-HI [T. C. Voytek et al., Astrophys. J. 782, L9 (2014), J. B. Peterson et al., arXiv:1409.2774] or EDGES [J. D. Bowman and A. E. E. Rogers Nature (London) 468, 796 (2010), J. D. Bowman et al., Astrophys. J. 676, 1 (2008)] experiments confirm a WF absorption trough in the cosmic gas, then cosmic string wakes should appear clearly in 21 cm redshift surveys of z =10 to 30.

  13. Lower Permian Dry Mountain trough, eastern Nevada: preliminary basin analysis

    SciTech Connect

    Schwarz, D.L.; Snyder, W.S.; Spinosa, C.

    1987-08-01

    The Lower Permian Dry Mountain trough (DMT) is one of several basins that developed during the Late Pennsylvanian to Permian along the western edge of the North American continent. A tectonic mechanism has been suggested for the subsidence of the DMT, possibly due to reactivation of the Antler orogenic belt during the waning stages of Ancestral Rocky Mountain deformation. The DMT records marked subsidence with the appearance during the Artinskian (latest Wolfcampian) of a deeper water facies that consists of thin-bedded silty micrites and micritic mudstones rich in radiolarians and sponge spicules, characterized by a relative abundance of ammonoids, and rarer conodonts and Nereites ichnofacies trace fossils. Taxa recovered from a distinctive concretionary horizon at various locations provide an Artinskian datum on which to palinspastically reconstruct the DMT paleogeography. These taxa include ammonoids: Uraloceras, Medlicottia, Marathonites, Crimites, Metalegoceras, properrinitids; and conodonts: Neogondolella bisselli, Sweetognathus whitei, S. behnkeni, and Diplognathodus stevensi. The western margin facies of the DMT consists of Permian Carbon Ridge/Garden Valley Formations. Here, lowermost black Artinskianage euxinic micrites, considered a potential source rock for petroleum generation, are overlain by base-of-slope carbonate apron deposits, which, in turn, are overlain by base-of-slope carbonate apron deposits, which, in turn, are overlain by a thick, eastwardly prograding conglomerate wedge. Seismic profiles across Diamond Valley indicate a 3.0-4.6-km thick Tertiary sequence above the Paleozoic strata.

  14. Load on Trough Bellows Following an Argon Spill

    SciTech Connect

    Chess, K.; /Fermilab

    1988-07-12

    In the case of a gross argon spill from the DO detector, the liquid argon is caught in three plenums. These plenums are to be connected by bellows to make a horizontal trough open at one end for removing the argon. The design of these bellows is dependent on the maximum argon load they must carry. Bellows to connect the three argon-catching plenums in the DO detector must be able to carry at least 92 lbs of argon when closed and 231 lbs when open, plus the load due to argon in the convolutions. Examples of such loads and the method for their calculations are contained in the Discussion. It should be noted that a set of assumptions was used in these calculations. First, we considered a uniform channel and uniform flow. Second, we used a value for Manning's n meant for a similar, but not exactly the same, case. Finally, we were forced to define an average depth, d, to be used to state the hydraulic radius, R, and area of flow, A. These facts may warrant consideration in future calculations.

  15. Technology.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2002-01-01

    Discussion of technology focuses on instructional technology. Topics include inquiry and technology; curriculum development; reflection and curriculum evaluation; criteria for technological innovations that will increase student motivation; standards; impact of new technologies on library media centers; software; and future trends. (LRW)

  16. Overview of software development at the parabolic dish test site

    NASA Technical Reports Server (NTRS)

    Miyazono, C. K.

    1985-01-01

    The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.

  17. Analytical model and performance data for a cylindrical parabolic collector

    SciTech Connect

    Ford, F.M.; Stewart, W.E. Jr.

    1980-01-01

    Concentrating solar collectors provide higher fluid temperatures than flat-plate, an important advantage in many applications. The parabolic cylinder is one of the most popular types of concentrating collectors because of its relatively simple construction and tracking configuration. A mathematical model was developed for one such collector in order to predict thermal efficiency as a function of solar insolation. An experiment was then devised in an attempt to verify this model. Discrepancies between predicted and observed values are discussed, and suggestions are made for improving the model and the experimental procedure.

  18. Space-time isogeometric analysis of parabolic evolution problems

    NASA Astrophysics Data System (ADS)

    Langer, Ulrich; Moore, Stephen E.; Neumüller, Martin

    2016-07-01

    We present and analyze a new stable space-time Isogeometric Analysis (IgA) method for the numerical solution of parabolic evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The theoretical results are confirmed by several numerical experiments with low- and high-order IgA spaces.

  19. Dynamics of parabolic problems with memory. Subcritical and critical nonlinearities

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun

    2016-08-01

    In this paper, we study the long-time behavior of the solutions of non-autonomous parabolic equations with memory in cases when the nonlinear term satisfies subcritical and critical growth conditions. In order to do this, we show that the family of processes associated to original systems with heat source f(x, t) being translation bounded in Lloc 2 ( R ; L 2 ( Ω ) ) is dissipative in higher energy space M α , 0 < α ≤ 1, and possesses a compact uniform attractor in M 0 .

  20. Piecewise-parabolic methods for astrophysical fluid dynamics

    SciTech Connect

    Woodward, P.R.

    1983-11-01

    A general description of some modern numerical techniques for the simulation of astrophysical fluid flow is presented. The methods are introduced with a thorough discussion of the especially simple case of advection. Attention is focused on the piecewise-parabolic method (PPM). A description of the SLIC method for treating multifluid problems is also given. The discussion is illustrated by a number of advection and hydrodynamics test problems. Finally, a study of Kelvin-Helmholtz instability of supersonic jets using PPM with SLIC fluid interfaces is presented.

  1. Correction of tear trough deformity with novel porcine collagen dermal filler (Dermicol-P35).

    PubMed

    Goldberg, David J

    2009-01-01

    Deformity of the tear trough region, which can occur during the aging process, can result in dark shadows under the eyes and a fatigued appearance. Augmentation of the tear trough is challenging because of the thin skin and lack of fat in the region. Adding volume to the tear trough region with a dermal filler is a nonsurgical procedure with minimal discomfort to the patient. Dermicol-P35 (Evolence; Ortho Dermatologics, Skillman, NJ) is a new, ribose crosslinked, highly purified, porcine-based collagen filler that does not require prior skin testing and has shown improved persistence compared with bovine collagen-based dermal fillers. In this article, we present the clinical outcomes of patients who have received treatment with a novel ribose crosslinked porcine collagen dermal filler for the correction of tear trough deformity.

  2. The temperature field around a spherical ridge or trough in a plane

    SciTech Connect

    Fransaer, J.; Roos, J.R. )

    1992-05-01

    An analytical solution, which describes the temperature field around a single spherical particle partly embedded in a plane or around a trough making an arbitrary contact angle with a plane, is presented here. The temperature distributions for three cases are studied: the temperature distribution around a conducting bowl or trough, the temperature distribution around a non-conducting bowl or trough present in a conducting plane, and the temperature profile around a conducting bowl or trough conducting heat toward a sink at infinity. The normalized heat flux distribution on the plane and particle is presented. The various incremental resistances caused by a single and a dilute planar random array of truncated spherical particles are also derived.

  3. Optical properties of Dirac electrons in a parabolic well.

    PubMed

    Kim, S C; Lee, J W; Yang, S-R Eric

    2013-09-01

    A single electron transitor may be fabricated using qunatum dots. A good model for the confinement potential of a quantum dot is a parabolic well. Here we consider such a parabolic dot made of graphene. Recently, we found counter intuitively that resonant quasi-boundstates of both positive and negative energies exist in the energy spectrum. The presence of resonant quasi-boundstates of negative energies is a unique property of massless Dirac fermions. As magnetic field B gets smaller the energy width of these states become broader and for sufficiently weak value of B resonant quasi-bound states disappear into a quasi-continuum. In the limit of small B resonant and nonresonant states transform into discrete anomalous states with a narrow probability density peak inside the well and another broad peak under the potential barrier. In this paper we compute the optical strength between resonant quasi-bound states as a function of B, and investigate how the signature of resonant quasi-bound states of Dirac electrons may appear in optical measurements.

  4. Parabolic growth patterns in 96-well plate cell growth experiments.

    PubMed

    Faessel, H M; Levasseur, L M; Slocum, H K; Greco, W R

    1999-05-01

    In preparing for the routine use of the ubiquitous in vitro cell growth inhibition assay for the study of anticancer agents, we characterized the statistical properties of the assay and found some surprising results. Parabolic well-to-well cell growth patterns were discovered, which could profoundly affect the results of routine growth inhibition studies of anticancer and other agents. Four human ovarian cell lines, A2780/WT, A2780/DX5, A2780/DX5B, and A121, and one human ileocecal adenocarcinoma cell line, HCT-8, were seeded into plastic 96-well plates with a 12-channel pipette, without drugs, and grown from 1-5 d. The wells were washed with a plate washer, cells stained with sulforhodamine B (SRB), and dye absorbance measured with a plate reader. Variance models were fit to the data from replicates to determine the nature of the heteroscedastic error structure. Exponential growth models were fit to data to estimate doubling times for each cell line. Polynomial models were fit to data from 10-plate stacks of 96-well plates to explore nonuniformity of cell growth in wells in different regions of the stacks. Each separate step in the assay was examined for precision, patterns, and underlying causes of variation. Differential evaporation of water from wells is likely a major, but not exclusive, contributor to the systematic well-to-well cell growth patterns. Because the fundamental underlying causes of the parabolic growth patterns were not conclusively found, a randomization step for the growth assay was developed.

  5. Asymptotic behavior on a kind of parabolic Monge-Ampère equation

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Bao, Jiguang

    2015-07-01

    In this paper, we apply level set and nonlinear perturbation methods to obtain the asymptotic behavior of the solution to a kind of parabolic Monge-Ampère equation at infinity. The Jörgens-Calabi-Pogorelov theorem for parabolic and elliptic Monge-Ampère equation can be regarded as special cases of our result.

  6. Classification of Invariant Differential Operators for Non-Compact Lie Algebras via Parabolic Relations

    NASA Astrophysics Data System (ADS)

    Dobrev, V. K.

    2014-05-01

    In the present paper we review the progress of the project of classification and construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we called earlier 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduced recently the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E7(7) which is parabolically related to the CLA E7(-25). Other interesting examples are the orthogonal algebras so(p, q) all of which are parabolically related to the conformal algebra so(n, 2) with p + q = n + 2, the parabolic subalgebras including the Lorentz subalgebra so(n - 1,1) and its analogs so(p - 1, q - 1). Further we consider the algebras sl(2n, Bbb R) and for n = 2k the algebras su* (4k) which are parabolically related to the CLA su(n,n). Further we consider the algebras sp(r,r) which are parabolically related to the CLA sp(2r, Bbb R). We consider also E6(6) and E6(2) which are parabolically related to the hermitian symmetric case E6(-14),

  7. Variation of the orbital elements for parabolic trajectories due to a small impulse using Gauss equations

    NASA Astrophysics Data System (ADS)

    Kamel, Osman M.; Ammar, M. K.

    2006-12-01

    Firstly we derive Gauss' perturbation equation for parabolic motion using Murray-Dermott and Kovalevsky procedures. Secondly, we easily deduce the variations of the orbital elements for the parabolic trajectories due to a small impulse at any point along the path and at the vertex of the parabola.

  8. Lateral boundary differentiability of solutions of parabolic equations in nondivergence form

    NASA Astrophysics Data System (ADS)

    Huang, Yongpan; Li, Dongsheng; Wang, Lihe

    The lateral boundary differentiability is shown for solutions of parabolic differential equations in nondivergence form under the assumptions that the parabolic boundary satisfies the exterior Dini condition and is punctually C1 differentiable one-sided in t-direction. The classical barrier technique, the maximum principle, the interior Harnack inequality and an iteration procedure are the main analytical tools.

  9. Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices

    NASA Technical Reports Server (NTRS)

    Smith, Arlynn W.; Brennan, Kevin F.

    1995-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion.

  10. Symmetries and pattern formation in hyperbolic versus parabolic models of self-organised aggregation.

    PubMed

    Buono, Pietro-Luciano; Eftimie, Raluca

    2015-10-01

    The study of self-organised collective animal behaviour, such as swarms of insects or schools of fish, has become over the last decade a very active research area in mathematical biology. Parabolic and hyperbolic models have been used intensively to describe the formation and movement of various aggregative behaviours. While both types of models can exhibit aggregation-type patterns, studies on hyperbolic models suggest that these models can display a larger variety of spatial and spatio-temporal patterns compared to their parabolic counterparts. Here we use stability, symmetry and bifurcation theory to investigate this observation more rigorously, an approach not attempted before to compare and contrast aggregation patterns in models for collective animal behaviors. To this end, we consider a class of nonlocal hyperbolic models for self-organised aggregations that incorporate various inter-individual communication mechanisms, and take the formal parabolic limit to transform them into nonlocal parabolic models. We then discuss the symmetry of these nonlocal hyperbolic and parabolic models, and the types of bifurcations present or lost when taking the parabolic limit. We show that the parabolic limit leads to a homogenisation of the inter-individual communication, and to a loss of bifurcation dynamics (in particular loss of Hopf bifurcations). This explains the less rich patterns exhibited by the nonlocal parabolic models. However, for multiple interacting populations, by breaking the population interchange symmetry of the model, one can preserve the Hopf bifurcations that lead to the formation of complex spatio-temporal patterns that describe moving aggregations.

  11. For Which X-Values Does a Least-Squares Parabolic Fit Exist?

    ERIC Educational Resources Information Center

    Farnsworth, David L.

    2005-01-01

    The normal equations discussed in this paper for a least-squares parabolic fit have a unique solution if and only if there are at least three different x-values in the observations. This requirement is satisfied by most real sets of quantitative observations. For particular data sets, the appropriateness of parabolic fits should be assessed with…

  12. Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.

  13. Pennsylvanian-Permian tectonism in the Great Basin: The Dry Mountain trough and related basins

    SciTech Connect

    Snyder, W.S.; Spinosa, C.; Gallegos, D.M. )

    1991-02-01

    Pennsylvanian-Permian tectonism affected the continental margin of western North America from the Yukon to the Mojave Desert. Specific signatures of this tectonism include local angular unconformities, regional disconformities, renewed outpouring of clastic debris from a reactivated Antler and related highlands, and development of deeper water basins with anoxic sediments deposited below wave base. The basins formed include Ishbel trough (Canada), the Wood River basin (Idaho), Cassia basin, Ferguson trough, Dry Mountain trough (all Nevada), and unnamed basins in Death Valley-Mojave Desert region. The Dry Mountain trough (DMT) was initiated during early Wolfcampian and received up to 1,200 m of sediment by the late Leonardian. The lower contact is a regional unconformity with the Ely Limestone, or locally with the Diamond Peak or Vinini formations. Thus, following a period of localized regional uplift that destroyed the Ely basin, portions of the uplifted and exposed shelf subsided creating the Dry Mountain trough. Evidence suggesting a tectonic origin for the DMT includes (1) high subsidence rates (60-140 m/m.y.); (2) renewed influx of coarse clastic debris from the Antler highlands: (3) possible pre-Early Permian folding, thrusting, and tilting within the highlands; and (4) differential subsidence within the Dry Mountain trough, suggesting the existence of independent fault blocks.

  14. Temporal variations in the dawn and dusk midlatitude trough position-modeled and measured (Ariel 3)

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Tulunay, Y. K.; Chen, A. J.

    1973-01-01

    The temporal development of the latitudinal position of the 600 km midlatitude electron density trough at dawn and dusk during the period 25-27 May 1967, which encompassed a large magnetic storm, was measured by the RF capacitive probe on the polar orbiting Ariel 3 satellite. The substorm-related changes in the L coordinate of the trough minimum and the point of most rapid change of density gradient on the low latitude side of the trough are similar. Oscillations of the trough position at dusk are in phase with substorm activity whereas movement of the trough at dawn is only apparent with the onset of the large storm. Near dusk there is evidence of structure in the form of a tail-like extension of the plasmasphere at the peak of the storm. Detailed model calculations assuming a spatially invariant equatorial convection E field which varies in step with K sub p index reproduces much of the observed behavior, particularly at dusk, and shows that more than one plasmapause-type transition may be identifiable in the trough region.

  15. Decadal variation of the Northern Hemisphere Annular Mode and its influence on the East Asian trough

    NASA Astrophysics Data System (ADS)

    Lu, Chunhui; Zhou, Botao; Ding, Yihui

    2016-06-01

    We analyze the decadal variation of the stratosphere-troposphere coupled system around the year 2000 by using the NCEP reanalysis-2 data. Specifically, the relationship between the Northern Hemisphere Annular Mode (NAM) and the tropospheric East Asian trough is investigated in order to find the effective stratospheric signals during cold air outbreaks in China. Statistical analyses and dynamic diagnoses both indicate that after 2000, increased stratospheric polar vortex disturbances occur and the NAM is mainly in negative phase. The tropospheric polar areas are directly affected by the polar vortex, and in the midlatitudes, the Ural blocking high and East Asian trough are more active, which lead to enhanced cold air activities in eastern and northern China. Further investigation reveals that under this circulation pattern, downward propagations of negative NAM index are closely related to the intensity variation of the East Asian trough. When negative NAM anomalies propagate down to the upper troposphere and reach a certain intensity (standardized NAM index less than-1), they result in apparent reinforcement of the East Asian trough, which reaches its maximum intensity about one week later. The northerly wind behind the trough transports cold air southward and eastward, and the range of influence and the intensity are closely associated with the trough location. Therefore, the NAM index can be used as a measure of the signals from the disturbed stratosphere to give some indication of cold air activities in China.

  16. Structure and mineralization in the Salton Trough, California

    SciTech Connect

    Ririe, G.T. . Science and Technology Div.)

    1992-01-01

    The Salton Trough (ST) is located in southeastern California and extends into northern Baja, Mexico. Structurally the ST consists of predominantly northwest-trending, right-lateral, strike-slip faults separated by a series of down-dropped basinal areas. A variety of processing techniques were used to enhance gravity and magnetic data which were used to help define the structural styles present in the sediment-filled ST, and to define the boundaries of the basinal areas. The system of strike-slip faults and related basinal areas in interpreted to be a late Neogene style of deformation that overprints an earlier-formed extensional basin. The intrusion of Neogene intrusive rocks into the sediment-filled ST has resulted in the development of a number of geothermal systems including the Salton Sea (SS) system. A characteristic feature of the commercially productive geothermal systems in the ST is the presence of high-temperature (> 250 C) saline brines. The chemistry of these brines varies widely within the ST. Data from a large number of analyses of the SS geothermal system brines and scales document the presence of a variety of metallic elements including: Pb, ZN, Cu, Mn, Ag, and Au. A variety of mineral deposits occur within and adjacent to the ST including the large open pit Mesquite gold mine. However, none of the gold deposits along the margin of the ST formed from a fossil geothermal system analogous to the SS system. Fossil analogs to SS type systems are suggested to be present in the Proterozoic Mt. Isa block in northern Australia. Deposits in this part of Australia consist of several world-class base metal deposits including the Mt. Isa mine. Structural controls on the localization of geothermal systems in the ST may be similar to those controlling the distribution of mineralization in ancient continental rift systems such as those in northern Australia.

  17. Seismic Reflectivity of the Crust in the Northern Salton Trough

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Fuis, G. S.; Goldman, M.; Persaud, P.; Ryberg, T.; Langenheim, V. E.; Scheirer, D. S.; Rymer, M. J.; Hole, J. A.; Stock, J. M.; Catchings, R.

    2015-12-01

    The Salton Trough in southern California is a tectonically active pull-apart basin that was formed by migrating step-overs between strike-slip faults, of which the San Andreas Fault (SAF) and the Imperial Fault are the current, northernmost examples. The Salton Seismic Imaging Project (SSIP) was undertaken to improve our knowledge of fault geometry and seismic velocities within the sedimentary basins and underlying crystalline crust around the SAF. Such data are useful as input for modeling scenarios of strong ground shaking in the surrounding high-population areas. We used pre-stack depth migration of line segments from shot gathers in several seismic profiles that were acquired in the northern part of the SSIP study area (Lines 4 - 7). Our migration approach can be considered as an infinite-frequency approximation of the Fresnel volume pre-stack depth migration method. We use line segments instead of the original waveform data. We demonstrate the method using synthetic data and analyze real data from Lines 4 - 7 to illustrate the relationship between distinct phases in the time domain and their resulting image at depth. We show both normal-moveout reflections from sub-horizontal interfaces and reverse-moveout reflections from steep interfaces, such as faults. Migrated images of dipping faults, such as the SAF and the Pinto Mountain Fault, are presented in this way. The SAF is imaged along Line 4, through the Mecca Hills, as a number of steeply dipping fault segments that collectively form a flower structure, above 5 km depth, that sole into a moderately NE-dipping fault below that depth. The individual migrated reflection packages correlate with mapped surface fault traces in the Mecca Hills. A similar geometry is seen on Line 6, from Palm Springs through Yucca Valley, where fault splays sole or project into a moderately dipping SAF below 10-km depth. We also show and discuss the reflectivity pattern of the middle and lower crust for Lines 4 - 7.

  18. The Ordovician Sebree Trough: An oceanic passage to the Midcontinent United States

    USGS Publications Warehouse

    Kolata, Dennis R.; Huff, W.D.; Bergstrom, Stig M.

    2001-01-01

    The Sebree Trough is a relatively narrow, shale-filled sedimentary feature extending for several hundred kilometers across the Middle and Late Ordovician carbonate platform of the Midcontinent United States. The dark graptolitic shales within the trough stand in contrast to the coeval bryozoan-brachiopod-echinodermrich limestones on the flanking platforms. We infer from regional stratal patterns, thickness and facies trends, and temporal relations established by biostratigraphy and K-bentonite stratigraphy that the Sebree Trough initially began to develop during late Turinian to early Chatfieldian time (Mohawkian Series) as a linear bathymetric depression situated over the failed late Precambrian-Early Cambrian Reelfoot Rift. Rising sea level and positioning of a subtropical convergence zone along the southern margin of Laurentia caused the rift depression to descend into cool, oxygen-poor, phosphate-rich oceanic waters that entered the southern reaches of the rift from the Iapetus Ocean. The trough apparently formed in a system of epicontinental estuarine circulation marked by a density-stratified water column. Trough formation was accompanied by cessation of carbonate sedimentation, deposition of graptolitic shales, development of hardground omission surfaces, substrate erosion, and local phosphogenesis. The carbonate platforms on either side of the trough are dominated by bryozoan-brachiopod-echinoderm grainstones and packstones that were deposited in zones of mixing where cool, nutrient-rich waters encountered warmer shelf waters. Concurrently, lime mudstone and wackestone were deposited shoreward (northern Illinois, Wisconsin, Iowa, Minnesota, Michigan) in warmer, more tropical shallow seas. Coeval upward growth of the flanking carbonate platforms sustained and enhanced development of the trough shale facies. Five widespread diachronous late Mohawkian and Cincinnatian omission surfaces are present in the carbonate facies of the Midcontinent. These surfaces

  19. Banana technology

    NASA Astrophysics Data System (ADS)

    van Amstel, Willem D.; Schellekens, E. P. A.; Walravens, C.; Wijlaars, A. P. F.

    1999-09-01

    With 'Banana Technology' an unconventional hybrid fabrication technology is indicated for the production of very large parabolic and hyperbolic cylindrical mirror systems. The banana technology uses elastic bending of very large and thin glass substrates and fixation onto NC milled metal moulds. This technology has matured during the last twenty years for the manufacturing of large telecentric flat-bed scanners. Two construction types, called 'internal banana' and 'external banana; are presented. Optical figure quality requirements in terms of slope and curvature deviations are discussed. Measurements of these optical specifications by means of a 'finishing rod' type of scanning deflectometer or slope tester are presented. Design constraints for bending glass and the advantages of a new process will be discussed.

  20. Structural and tectonic evolution of the eastern Cayman Trough (Caribbean Sea) from seismic reflection data

    SciTech Connect

    Leroy, S.; Mauffret, A.; Pubellier, M.

    1996-02-01

    The eastern Cayman Trough preserves a record of the Late Cretaceous to Paleogene Caribbean history that is largely affected by Neogene strike-slip tectonics of the current plate boundary. We conducted an analysis of seismic data within the eastern Cayman Trough, based upon single and multi-channel seismic reflection profiles collected during the Seacarib II cruise in 1987 and the Casis cruise in 1992. These data show that the basement of the eastern Cayman Trough can be divided into four domains from east to west, with distinct morphologic and sedimentary character and inferred older to younger ages: (1) a province of rifted Mesozoic continental crust exhibiting seven parallel horst blocks striking northeast-southwest; (2) a continent-ocean transition between provinces 1 and 3 that exhibits seamounts, small hills, and sedimentary basins; (3) an Eocene oceanic crust with rough basement but smoother relief than the rifted crust; basement trends are roughly north-south and oblique to the northwest trend in domain 1, and (4) the northern Jamaica slope, which forms an east-west-trending slope, with northward-dipping strata that flank the three deeper water domains of the Cayman Trough. The domains are interpreted to be the product of the Eocene east-west opening of the Cayman Trough as a pull-apart basin in a left-lateral strike-slip setting. Closure of the 1100 km of Eocene and younger oceanic crust of the Cayman Trough places the fault-block province adjacent to the Belize margin of Central America. A Neogene phase of transpression has reactivated structures in the four domains, along with on-land structures described by previous authors in Jamaica. The proximity of the eastern margin of the Cayman Trough to petroliferous, continental rocks in Central America suggests an improved possibility of hydrocarbon potential. Unfortunately, sediment thicknesses of less than 1 km probably are not conducive to hydrocarbon formation.

  1. An attempt to model the influence of the trough on HF communication by using neural networks

    NASA Astrophysics Data System (ADS)

    Tulunay, Yurdanur; Tulunay, Ersin; Senalp, Erdem Turker

    2001-09-01

    Trough is an interesting phenomenon in characterizing the behavior of the ionosphere, especially during disturbed conditions. The subject, which was introduced around the 1970s, is still attracting attention, especially during recent years. In HF communication, in particular, over the midlatitude ionospheric regions the electron density trough exhibits a phenomenon of abrupt gradients of electron densities in space and time which are directly reflected to foF2. Thus the performances of HF communications are directly affected. In this work an attempt has been made for the modeling to quantify the influence of the ionospheric midlatitude electron density trough on the ionospheric critical frequency foF2 by using neural networks. Data sets are used from the ground stations that include observations in the trough region. It has been demonstrated that the neural-net based approaches are promising in modeling of the ionospheric processes. Data generated by using statistical relationships are used to train the neural network. Then the trained neural network is used to forecast the ionospheric critical frequency, foF2, values 1 hour in advance for the cases when the probability of influence of the trough is high. Preliminary results will be presented to discuss the suitability of the neural-network-based approach in the modeling of complex processes such as the influence of the trough on foF2. The basic contributions of this work are 1) generation and organization of significant data for teaching complex processes, 2) neural-network-based modeling of a highly complex nonlinear process such as the influence of the trough on foF2 forecasting, and 3) general demonstration of learning capability by calculating cross correlations and general demonstration of reaching a proper operating point by calculating errors (that is, during the optimization process the neural network reaches the global minimum by using the gradient descent method).

  2. Heat and electricity from the Sun using parabolic dish collector systems

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.; Williams, A. N.

    1980-01-01

    Point focus distributed receiver solar thermal technology for the production of electric power and of industrial process heat is addressed. The thermal power systems project which emphasizes the development of cost effective systems which will accelerate the commercialization and industrialization of plants up to 10 MWe, using parabolic dish collectors is described. The projected size of the isolated load market in the 1990-2000 time period is 300 to 1000 MW/year. Although this market is small in comparison to the grid connected utility market, it is indicated that by assuming only a 20 percent market penetration, up to 10,000 power modules per year would be required to meet this need. At a production rate of 25,000 units/year and assuming no energy storage, levelized bus bar energy costs of 75 mills/kWeh are projected. These numbers are based on what is believed to be a conservative estimate regarding engine-generator conversion efficiency (40 percent) for the 1990 time period. With a more optimistic estimate of efficiency (i.e., 45 percent), the bus bar cost decreases to about 67 mills/kWeh. At very large production rates (400,000 modules/years), the costs decrease to 58 mills/kWeh. Finally, the present status of the technology development effort is discussed.

  3. Parabolic dish Stirling module development and test results

    SciTech Connect

    Washom, B.

    1984-08-01

    Private industry and the U.S. Department of Energy are presently cost sharing the design, manufacture and test of a 25 Kwe parabolic dish Stirling module, known as Vanguard. The Vanguard module achieved a world's record sunlight to electric conversion efficiency of 31.6% in February 1984 at the Rancho Mirage, California test site. The module is presently operating daily in sunrise to sunset tests to determine the long term performance and O and M requirements of this distributed receiver system. Each module can be easily integrated into a larger field of modules to provide power generation opportunities from a single 25 Kwe unit for isolated loads to 30 Mwe systems for integrated utility power generation.

  4. Parabolic approximation method for the mode conversion-tunneling equation

    SciTech Connect

    Phillips, C.K.; Colestock, P.L.; Hwang, D.Q.; Swanson, D.G.

    1987-07-01

    The derivation of the wave equation which governs ICRF wave propagation, absorption, and mode conversion within the kinetic layer in tokamaks has been extended to include diffraction and focussing effects associated with the finite transverse dimensions of the incident wavefronts. The kinetic layer considered consists of a uniform density, uniform temperature slab model in which the equilibrium magnetic field is oriented in the z-direction and varies linearly in the x-direction. An equivalent dielectric tensor as well as a two-dimensional energy conservation equation are derived from the linearized Vlasov-Maxwell system of equations. The generalized form of the mode conversion-tunneling equation is then extracted from the Maxwell equations, using the parabolic approximation method in which transverse variations of the wave fields are assumed to be weak in comparison to the variations in the primary direction of propagation. Methods of solving the generalized wave equation are discussed. 16 refs.

  5. Three-dimensional rogue waves in nonstationary parabolic potentials.

    PubMed

    Yan, Zhenya; Konotop, V V; Akhmediev, N

    2010-09-01

    Using symmetry analysis we systematically present a higher-dimensional similarity transformation reducing the (3+1) -dimensional inhomogeneous nonlinear Schrödinger (NLS) equation with variable coefficients and parabolic potential to the (1+1) -dimensional NLS equation with constant coefficients. This transformation allows us to relate certain class of localized exact solutions of the (3+1) -dimensional case to the variety of solutions of integrable NLS equation of the (1+1) -dimensional case. As an example, we illustrated our technique using two lowest-order rational solutions of the NLS equation as seeding functions to obtain rogue wavelike solutions localized in three dimensions that have complicated evolution in time including interactions between two time-dependent rogue wave solutions. The obtained three-dimensional rogue wavelike solutions may raise the possibility of relative experiments and potential applications in nonlinear optics and Bose-Einstein condensates.

  6. Generic parabolic points are isolated in positive characteristic

    NASA Astrophysics Data System (ADS)

    Lindahl, Karl-Olof; Rivera-Letelier, Juan

    2016-05-01

    We study analytic germs in one variable with a parabolic fixed point at the origin, over an ultrametric ground field of positive characteristic. It is conjectured that for such a germ the origin is isolated as a periodic point. Our main result is an affirmative solution of this conjecture in the case of a generic germ with a prescribed multiplier. The genericity condition is explicit: the power series is minimally ramified, i.e. the degree of the first nonlinear term of each of its iterates is as small as possible. Our main technical result is a computation of the first significant terms of a minimally ramified power series. From this we obtain a lower bound for the norm of nonzero periodic points, from which we deduce our main result. As a by-product we give a new and self-contained proof of a characterization of minimally ramified power series in terms of the iterative residue.

  7. Ray analysis of parabolic-index segmented planar waveguides.

    PubMed

    Rastogi, V; Ghatak, A K; Ostrowsky, D B; Thyagarajan, K; Shenoy, M R

    1998-07-20

    A ray analysis of periodically segmented waveguides with parabolic-index variation in the high-index region is presented. We carried out the analysis using ray transfer matrices, which is convenient to implement and which can be extended to study different types of graded-index segmented waveguide. Results of this ray tracing approach clearly illustrate the waveguiding properties and the existence of stable and unstable regions of operation in segmented waveguides. We also illustrate the tapering action exhibited by segmented waveguides in which the duty cycle varies along the length of the waveguide. This analysis, although restricted to multimode structures, provides a clear visualization of the waveguiding properties in terms of ray propagation in segmented waveguides.

  8. Large Phased Array Radar Using Networked Small Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.

  9. Context-specific adaptation of saccade gain in parabolic flight

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Clendaniel, Richard A.; Roberts, Dale C.

    2002-01-01

    Previous studies established that vestibular reflexes can have two adapted states (e.g., gains) simultaneously, and that a context cue (e.g., vertical eye position) can switch between the two states. Our earlier work demonstrated this phenomenon of context-specific adaptation for saccadic eye movements: we asked for gain decrease in one context state and gain increase in another context state, and then determined if a change in the context state would invoke switching between the adapted states. Horizontal and vertical eye position and head orientation could serve, to varying degrees, as cues for switching between two different saccade gains. In the present study, we asked whether gravity magnitude could serve as a context cue: saccade adaptation was performed during parabolic flight, which provides alternating levels of gravitoinertial force (0 g and 1.8 g). Results were less robust than those from ground experiments, but established that different saccade magnitudes could be associated with different gravity levels.

  10. The third ESA Student Parabolic-Flight Campaign.

    PubMed

    Ockels, W J; Jagger-Meziere, L

    2001-02-01

    Today's students will become tomorrow's workforce and hence they should be involved in the global space programme as early as possible so that they will be motivated to follow space careers and create a space-educated next generation for working within the space domain. Getting students involved in today's space programmes is important not only for the space industry in terms of providing a talented workforce for the future, but also for the general public who will be the future voters and potential political supporters of future European space activities. With this in mind, ESA's Office for Education and Outreach organises and runs many space-related activities for young people in order to stimulate their interest in space in particular and in science in general. One of these activities is the 'Student Parabolic-Flight Campaign'.

  11. Active matter in lateral parabolic confinement: From subdiffusion to superdiffusion

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. E.; Potiguar, F. Q.

    2016-11-01

    In this work we studied the diffusive behavior of active brownian particles under lateral parabolic confinement. The results showed that we go from subdiffusion to ballistic motion as we vary the angular noise strength and confinement intensity. We argued that the subdiffusion regimes appear as consequence of the restricted space available for diffusion (achieved either through large confinement and/or large noise); we saw that when there are large confinement and noise intensity, a similar configuration to single file diffusion appears; on the other hand, normal and superdiffusive regimes may occur due to low noise (longer persistent motion), either through exploring a wider region around the potential minimum in the transverse direction (low confinement), or by forming independent clusters (high confinement).

  12. A cosmological hydrodynamic code based on the piecewise parabolic method

    NASA Astrophysics Data System (ADS)

    Gheller, Claudio; Pantano, Ornella; Moscardini, Lauro

    1998-04-01

    We present a hydrodynamical code for cosmological simulations which uses the piecewise parabolic method (PPM) to follow the dynamics of the gas component and an N-body particle-mesh algorithm for the evolution of the collisionless component. The gravitational interaction between the two components is regulated by the Poisson equation, which is solved by a standard fast Fourier transform (FFT) procedure. In order to simulate cosmological flows, we have introduced several modifications to the original PPM scheme, which we describe in detail. Various tests of the code are presented, including adiabatic expansion, single and multiple pancake formation, and three-dimensional cosmological simulations with initial conditions based on the cold dark matter scenario.

  13. Complex ray and evanescent wave analysis of parabolic reflector antennas

    NASA Astrophysics Data System (ADS)

    Hasselmann, F. J. V.; Felsen, L. B.

    The Complex-Source-Point (CSP) method is applied to the analysis of the vector field reflected from a parabolic reflector antenna offset-fed by a Gaussian beam centered at the reflector focus. The asymptotic CSP solutions from both the general and paraxially approximated analysis have been implemented on a computer using numerical data from the literature. The results from the general procedure are compared at 28.5 GHz with those deduced by semi-heuristic superposition of ideal beam mode fields with even and odd vector symmetry, and with corresponding experimental data. The total field results show coincidence between the two analytical procedures for points down to -50 dB, and the agreement holds for cross-polarization patterns as well. The validity of a simplified paraxial analysis for the total field and the cross-polarization peaks is important for tractable applications to satellite communication systems since the relevant phenomena occur in the paraxial region.

  14. Hypersonic flows generated by parabolic and paraboloidal shock waves

    NASA Technical Reports Server (NTRS)

    Schwartz, L. W.

    1974-01-01

    A computer algorithm has been developed to determine the blunt-body flowfields supporting symmetric parabolic and paraboloidal shock waves at infinite free-stream Mach number. Solutions are expressed in an analytic form as high-order power series, in the coordinate normal to the shock, whose coefficients can be determined exactly. Analytic continuation is provided by the use of Pade approximations. Test cases provide solutions of very high accuracy. In the axisymmetric case for gamma equals 715 the solution has been found far downstream, where it agrees with the modified blast-wave results. For plane flow, on the other hand, a limit line appears within the shock layer, a short distance past the sonic line, suggesting the presence of an imbedded shock. Local solutions in the downstream limit are discussed.

  15. Motor skills under varied gravitoinertial force in parabolic flight

    NASA Astrophysics Data System (ADS)

    Ross, Helen E.

    Parabolic flight produces brief alternating periods of high and low gravitoinertial force. Subjects were tested on various paper-and-pencil aiming and tapping tasks during both normal and varied gravity in flight. It was found that changes in g level caused directional errors in the z body axis (the gravity axis), the arm aiming too high under 0g and too low under 2g. The standard deviation also increased for both vertical and lateral movements in the mid-frontal plane. Both variable and directional errors were greater under 0g than 2g. In an unpaced reciprocal tapping task subjects tended to increase their error rate rather than their movement time, but showed a non-significant trend towards slower speeds under 0g for all movement orientations. Larger variable errors or slower speeds were probably due to the difficulty of re-organising a motor skill in an unfamiliar force environment, combined with anchorage difficulties under 0g.

  16. Optimal Control of a Parabolic Equation with Dynamic Boundary Condition

    SciTech Connect

    Hoemberg, D. Krumbiegel, K.; Rehberg, J.

    2013-02-15

    We investigate a control problem for the heat equation. The goal is to find an optimal heat transfer coefficient in the dynamic boundary condition such that a desired temperature distribution at the boundary is adhered. To this end we consider a function space setting in which the heat flux across the boundary is forced to be an L{sup p} function with respect to the surface measure, which in turn implies higher regularity for the time derivative of temperature. We show that the corresponding elliptic operator generates a strongly continuous semigroup of contractions and apply the concept of maximal parabolic regularity. This allows to show the existence of an optimal control and the derivation of necessary and sufficient optimality conditions.

  17. Close encounters of nearly parabolic comets and planets

    NASA Astrophysics Data System (ADS)

    Tomanov, V. P.

    2016-03-01

    An overview is given of close encounters of nearly parabolic comets (NPCs; with periods of P > 200 years and perihelion distances of q > 0.1 AU; the number of the comets is N = 1041) with planets. The minimum distances Δmin between the cometary and planetary orbits are calculated to select comets whose Δmin are less than the radius of the planet's sphere of influence. Close encounters of these comets with planets are identified by numerical integration of the comets' equations of motion over an interval of ±50 years from the time of passing the perihelion. Close encounters of NPCs with Jupiter in 1663-2011 are reported for seven comets. An encounter with Saturn is reported for comet 2004 F2 (in 2001).

  18. Cerebral vasoconstriction precedes orthostatic intolerance after parabolic flight

    NASA Technical Reports Server (NTRS)

    Serrador, J. M.; Shoemaker, J. K.; Brown, T. E.; Kassam, M. S.; Bondar, R. L.; Schlegel, T. T.

    2000-01-01

    The effects of brief but repeated bouts of micro- and hypergravity on cerebrovascular responses to head-up tilt (HUT) were examined in 13 individuals after (compared to before) parabolic flight. Middle cerebral artery mean flow velocity (MCA MFV; transcranial Doppler ultrasound), eye level blood pressure (BP) and end tidal CO(2) (P(ET)CO(2)) were measured while supine and during 80 degrees HUT for 30 min or until presyncope. In the postflight tests subjects were classified as being orthostatically tolerant (OT) (n = 7) or intolerant (OI) (n = 6). BP was diminished with HUT in the OT group in both tests (p < 0.05) whereas postflight BP was not different from supine in the OI group. Postflight compared to preflight, the reduction in P(ET)CO(2) with HUT (p < 0.05) increased in both groups, although significantly so only in the OI group (p < 0.05). The OI group also had a significant decrease in supine MCA MFV postflight (p < 0.05) that was unaccompanied by a change in supine P(ET)CO(2). The decrease in MCA MFV that occurred during HUT in both groups preflight (p < 0.05) was accentuated only in the OI group postflight, particularly during the final 30 s of HUT (p < 0.05). However, this accentuated decrease in MCA MFV was not correlated to the greater decrease in P(ET)CO(2) during the same period (R = 0.20, p = 0.42). Although cerebral vascular resistance (CVR) also increased in the OI group during the last 30 s of HUT postflight (p < 0.05), the dynamic autoregulatory gain was not simultaneously changed. Therefore, we conclude that in the OI individuals, parabolic flight was associated with cerebral hypoperfusion following a paradoxical augmentation of CVR by a mechanism that was not related to changes in autoregulation nor strictly to changes in P(ET)CO(2).

  19. Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana.

    PubMed

    Paul, Anna-Lisa; Manak, Michael S; Mayfield, John D; Reyes, Matthew F; Gurley, William B; Ferl, Robert J

    2011-10-01

    Our primary objective was to evaluate gene expression changes in Arabidopsis thaliana in response to parabolic flight as part of a comprehensive approach to the molecular biology of spaceflight-related adaptations. In addition, we wished to establish parabolic flight as a tractable operations platform for molecular biology studies. In a succession of experiments on NASA's KC-135 and C-9 parabolic aircraft, Arabidopsis plants were presented with replicated exposure to parabolic flight. Transcriptome profiling revealed that parabolic flight caused changes in gene expression patterns that stood the statistical tests of replication on three different flight days. The earliest response, after 20 parabolas, was characterized by a prominence of genes associated with signal transduction. After 40 parabolas, this prominence was largely replaced by genes associated with biotic and abiotic stimuli and stress. Among these responses, three metabolic processes stand out in particular: the induction of auxin metabolism and signaling, the differential expression of genes associated with calcium-mediated signaling, and the repression of genes associated with disease resistance and cell wall biochemistry. Many, but not all, of these responses are known to be involved in gravity sensing in plants. Changes in auxin-related gene expression were also recorded by reporter genes tuned to auxin signal pathways. These data demonstrate that the parabolic flight environment is appropriate for molecular biology research involving the transition to microgravity, in that with replication, proper controls, and analyses, gene expression changes can be observed in the time frames of typical parabolic flight experiments.

  20. Propagation of hypergeometric laser beams in a medium with a parabolic refractive index

    NASA Astrophysics Data System (ADS)

    Kotlyar, V. V.; Kovalev, A. A.; Nalimov, A. G.

    2013-12-01

    An expression to describe the complex amplitude of a family of paraxial hypergeometric laser beams propagating in a parabolic-index fiber is proposed. A particular case of a Gaussian optical vortex propagating in a parabolic-index fiber is studied. Under definite parameters, the Gaussian optical vortices become the modes of the medium. This is a new family of paraxial modes derived for the parabolic-index medium. A wide class of solutions of nonparaxial Helmholtz equations that describe modes in a parabolic refractive index medium is derived in the cylindrical coordinate system. As the solutions derived are proportional to Kummer’s functions, only those of them which are coincident with the nonparaxial Laguerre-Gaussian modes possess a finite energy, meaning that they are physically implementable. A definite length of the graded-index fiber is treated as a parabolic lens, and expressions for the numerical aperture and the focal spot size are deduced. An explicit expression for the radii of the rings of a binary lens approximating a parabolic-index lens is derived. Finite-difference time-domain simulation has shown that using a binary parabolic-index microlens with a refractive index of 1.5, a linearly polarized Gaussian beam can be focused into an elliptic focal spot which is almost devoid of side-lobes and has a smaller full width at half maximum diameter of 0.45 of the incident wavelength.

  1. A compact representation of drawing movements with sequences of parabolic primitives.

    PubMed

    Polyakov, Felix; Drori, Rotem; Ben-Shaul, Yoram; Abeles, Moshe; Flash, Tamar

    2009-07-01

    Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions, while others claim that arm movements satisfy geometric constraints and are composed of elementary components. However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth (minimizing jerk) motion is satisfied for parabolic trajectories having constant equi-affine speed, which thus comply with the geometric constraint known as the two-thirds power law. Here we empirically test the hypothesis that parabolic segments provide a compact representation of spontaneous drawing movements. Monkey scribblings performed during a period of practice were recorded. Practiced hand paths could be approximated well by relatively long parabolic segments. Following practice, the orientations and spatial locations of the fitted parabolic segments could be drawn from only 2-4 clusters, and there was less discrepancy between the fitted parabolic segments and the executed paths. This enabled us to show that well-practiced spontaneous scribbling movements can be represented as sequences ("words") of a small number of elementary parabolic primitives ("letters"). A movement primitive can be defined as a movement entity that cannot be intentionally stopped before its completion. We found that in a well-trained monkey a movement was usually decelerated after receiving a reward, but it stopped only after the completion of a sequence composed of several parabolic segments. Piece-wise parabolic segments can be generated by applying affine geometric transformations to a single parabolic template. Thus, complex movements might be constructed by applying sequences of suitable geometric transformations to a few templates. Our findings therefore suggest that the motor system aims at achieving more parsimonious internal representations through practice, that parabolas serve as geometric primitives and that non-Euclidean variables are

  2. Crustal and upper mantle velocity structure of the Salton Trough, southeast California

    USGS Publications Warehouse

    Parsons, T.; McCarthy, J.

    1996-01-01

    This paper presents data and modelling results from a crustal and upper mantle wide-angle seismic transect across the Salton Trough region in southeast California. The Salton Trough is a unique part of the Basin and Range province where mid-ocean ridge/transform spreading in the Gulf of California has evolved northward into the continent. In 1992, the U.S. Geological Survey (USGS) conducted the final leg of the Pacific to Arizona Crustal Experiment (PACE). Two perpendicular models of the crust and upper mantle were fit to wide-angle reflection and refraction travel times, seismic amplitudes, and Bouguer gravity anomalies. The first profile crossed the Salton Trough from the southwest to the northeast, and the second was a strike line that paralleled the Salton Sea along its western edge. We found thin crust (???21-22 km thick) beneath the axis of the Salton Trough (Imperial Valley) and locally thicker crust (???27 km) beneath the Chocolate Mountains to the northeast. We modelled a slight thinning of the crust further to the northeast beneath the Colorado River (???24 km) and subsequent thickening beneath the metamorphic core complex belt northeast of the Colorado River. There is a deep, apparently young basin (???5-6 km unmetamorphosed sediments) beneath the Imperial Valley and a shallower (???2-3 km) basin beneath the Colorado River. A regional 6.9-km/s layer (between ???15-km depth and the Moho) underlies the Salton Trough as well as the Chocolate Mountains where it pinches out at the Moho. This lower crustal layer is spatially associated with a low-velocity (7.6-7.7 km/s) upper mantle. We found that our crustal model is locally compatible with the previously suggested notion that the crust of the Salton Trough has formed almost entirely from magmatism in the lower crust and sedimentation in the upper crust. However, we observe an apparently magmatically emplaced lower crust to the northeast, outside of the Salton Trough, and propose that this layer in part

  3. The structure and subsidence of Rockall Trough from two-ship seismic experiments

    SciTech Connect

    Joppen, M.; White, R.S. )

    1990-11-10

    Coincident multichannel seismic reflection and refraction profiles acquired northwest of Britain during a two-ship seismic experiment in the southern Rockall Trough provide evidence for a thin (6 km) syn-rift crust below Rockall Trough. The variation of seismic velocity with depth is consistent with either oceanic crust similar to that found in other parts of the North Atlantic or with thinned continental crust heavily intruded by syn-rift igneous rocks. The syn-rift crust beneath Rockall Trough is now buried by nearly 5 km of sediments that are intruded by Tertiary volcanics varying in extent from isolated sills to a large sill complex extending 100 km laterally. The basement imaged on seismic profiles exhibits a band of subhorizontal reflectors that extend laterally over distances of up to 40 km which they interpret as sediments intercalated with submarine lava flow generated during the opening of the Trough. Estimates of stretching from crustal thinning and from subsidence indicate that Rockall Trough has undergone extensive rifting ({beta} > 6). Upwelling asthenosphere beneath the thinned lithosphere generated at least 1-3 km thickness of melt as it decompressed. The molten rock rose upward from the mantle until it was in part extruded as lava flows and in part intruded into the crust.

  4. Macrobenthos of the southern part of St. Anna trough and the adjacent Kara Sea shelf

    NASA Astrophysics Data System (ADS)

    Galkin, S. V.; Vedenin, A. A.; Minin, K. V.; Rogacheva, A. V.; Molodtsova, T. N.; Rajskiy, A. K.; Kucheruk, N. V.

    2015-07-01

    Taxonomic composition and ecological structure of benthic communities of the southern part of St. Anna Trough were investigated during the 54th and 59th cruises of RV Akademik Mstislav Keldysh. Material was collected using Sigsbee trawl at 10 stations arranged in two transects (depth range 57-554 m). It was shown that benthic communities of the western arm of the St. Anna Trough differ considerably from the communities of the eastern arm. The western arm communities develop under the influence of active near-bottom hydrodynamics in conditions of rugged topography and a coarse-grained sediment or hard substrate. The wastern arm of the trough is characterized by the predomination of the soft sediment, smooth topography, and weak currents. In the western arm of the trough the influence of the Barents Sea fauna is traced down to the edge of the internal shelf (about 150 m depth). The community of the eastern arm of the trough situated out from the direct influence of the Barents Sea waters represents a continuation of the Ophiocten sericeum community, typical for external Kara Sea shelf. With increasing depth, Ophiopleura borealis becomes the dominant species of the community. In the greatest explored depths some deep-water High-Arctic species, such as echinoids Pourtalesia jeffreysi, were observed. The major factors determining the distribution of benthic communities in the investigated area are the microrelief pattern, the sediment structure, and near-bottom hydrodynamics.

  5. Altitude Variation of the Plasmapause Signature in the Main Ionospheric Trough

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Benson, Robert F.; Webb, Phillip A.; Truhlik, Vladimir; Bilitza, Dieter

    2009-01-01

    The projection of the plasmapause magnetic-field lines to low altitudes, where the light-ion chemistry is dominated by O(+), tends to occur near the minimum electron density in the main (midlatitude) electron density trough at night. With increasing attitude in the trough, where H(+) emerges as the dominant iota on the low-latitude boundary, we have found cases where the plasmapause field lines are located on the sharp low-Latitude side of the trough as expected if this topside ionosphere H(+) distribution varies in step with the plasmapause gradient in the distant plasmasphere. These conclusions are based on near-equatorial crossings of the plasmapause (corresponding to the steep gradient in the dominant species H(+) by the Explorer-45 satellite as determined from electric-field measurements by Maynard and Cauffman in the early 1970s and ISIS-2 ionospheric topside-sounder measurements. The former data have now been converted to digital form and made available at http://nssdcftp.gsfc.nasa.gov. The latter provide samples of nearly coincident observations of ionospheric main trough crossings near the same magnetic-field lines of the Explorer 45-determined equatorial plasmapause. The ISIS-2 vertical electron density profiles are used to infer where the F-region transitions from an O(+) to a H(+) dominated plasma through the main trough boundaries.

  6. The noon and midnight mid-latitude trough as seen by Ariel 4

    NASA Technical Reports Server (NTRS)

    Tulunay, Y. K.; Grebowsky, J. M.

    1978-01-01

    The electron density data returned by the polar orbiting satellites Ariel 3 and Ariel 4 revealed that the midlatitude trough is one of the distinct large-scale features of the ionosphere at about 550 km. Recent work (e.g., Tulunay and Grebowsky, 1975) on the data included the investigation of the temporal development of the latitudinal position of the midlatitude electron density trough at dawn and dusk during the large magnetic storms of May 1967 and May 1972. Model calculations which assumed that the equatorial convection E-field varies in step with the Kp index reproduced on the average the observed behavior. In the present paper, trough observations made at noon and midnight during the period, 12-21 December 1971 which encompassed a relatively large magnetic storm are discussed. In this context, model calculations have been employed as a guide of average approximations of the actual situation in predicting the plasmapause location. It is also shown that the trough observed on the noon passes is not generally plasmapause-related as the nightside troughs are expected to be.

  7. A Simple Algorithm to Identify and Track Trough and Ridge in Reanalysis Data

    NASA Astrophysics Data System (ADS)

    Iwabe, C. M. N.; Fusco, D.

    2015-12-01

    Currently, researchers work with large volumes of data, and this can spend more time to climatology and meteorology analysis. The use of objective methods are essential to reduce the time of data analysis. An indication of synoptic systems development in surface is the presence of trough in the middle level (500 hPa). That atmospheric pattern denotes strong indication of instability and changes in the weather. Many of algorithms tracking of meteorological systems are two-dimensional. For example, the tracking of cyclones are based on identification of minimum center of sea level pressure or center of cyclonic vorticity close to the surface. The goal of this work is the creation of the algorithm that identifies and tracks the trough and ridge at middle levels (500 hPa), which can be used for three-dimensional identification/tracking of the cyclone on surface. The algorithm consists in identifying the area where the trough/ridge is contained, besides to provide information of the location of the axis of the trough/ridge and its slope, amplitude and intensity. So, allowing associate the features of the trough/ridge with the features of the systems at the surface.

  8. A Parabolic Equation Approach to Modeling Acousto-Gravity Waves for Local Helioseismology

    NASA Astrophysics Data System (ADS)

    Del Bene, Kevin; Lingevitch, Joseph; Doschek, George

    2016-08-01

    A wide-angle parabolic-wave-equation algorithm is developed and validated for local-helioseismic wave propagation. The parabolic equation is derived from a factorization of the linearized acousto-gravity wave equation. We apply the parabolic-wave equation to modeling acoustic propagation in a plane-parallel waveguide with physical properties derived from helioseismic data. The wavenumber power spectrum and wave-packet arrival-time structure for receivers in the photosphere with separation up to 30° is computed, and good agreement is demonstrated with measured values and a reference spectral model.

  9. Observation of spectral self-imaging by nonlinear parabolic cross-phase modulation.

    PubMed

    Lei, Lei; Huh, Jeonghyun; Cortés, Luis Romero; Maram, Reza; Wetzel, Benjamin; Duchesne, David; Morandotti, Roberto; Azaña, José

    2015-11-15

    We report an experimental demonstration of spectral self-imaging on a periodic frequency comb induced by a nonlinear all-optical process, i.e., parabolic cross-phase modulation in a highly nonlinear fiber. The comb free spectral range is reconfigured by simply tuning the temporal period of the pump parabolic pulse train. In particular, undistorted FSR divisions by factors of 2 and 3 are successfully performed on a 10 GHz frequency comb, realizing new frequency combs with an FSR of 5 and 3.3 GHz, respectively. The pump power requirement associated to the SSI phenomena is also shown to be significantly relaxed by the use of dark parabolic pulses.

  10. Fault and fluid interaction in the Bradano Trough, southern Italy

    NASA Astrophysics Data System (ADS)

    Sinisi, Rosa; Vita Petrullo, Angela; Agosta, Fabrizio; Paternoster, Michele; Belviso, Claudia; Grassa, Fausto

    2015-04-01

    We report the preliminary results of a multidisciplinary study directed toward a better understanding of the fault and fluid interaction in the Bradano Trough, the foredeep basin of the southern Apennines fold-and-thrust belt, Italy. The work focuses on fresh tuff deposits located along high-angle faults, which crosscut the foredeep basin infill and the Middle Pleistocene Vulture pyroclastic rocks. Two sites have been studied in detail by mean of integrated field and laboratory analyses. The field survey aimed at deciphering both fault architecture (nature, distribution, and relative timing of formation of the various structural elements) and stratigraphy of the fresh tuff deposits. Laboratory investigation of representative samples of both fresh tuff deposits and mineralized fault-related structural elements (e.g, veins and fluid pipe conduits) targeted their textural, mineralogical and stable isotope compositions. The fresh tuff deposits consist of a few m-thick, either well-layered or massive, carbonates that include fossils and syn-depositional calcite veins. These deposits grew primarily by lateral progradation. Optical microscopy analysis is consistent with seven main fresh tuff lithofacies, which all show the following similarities: (i) cement-supported textures; (ii) presence of peloids, phyto- and bio-clasts, imprints of gastropods, bivalves, and plants; (iii) occurrence of shrinkage pores, micropores, and fenestrae that are either partially or totally filled by secondary calcite. XRPD analysis of representative powders showed that calcite is the sole mineral phase except for quartz and feldspar, which are detected in trace in a few samples. Similarly, the mineralogical composition of the fault-related structural elements also shows minor amounts of quartz. Both nature and origin of the quartz mineral will be investigated in a future work. 13C and 18O signatures of representative fresh tuff powders are consistent with a pronounced different isotope

  11. New constraints on the tectonic evolution of the Salton Trough

    NASA Astrophysics Data System (ADS)

    Brothers, D.; Driscoll, N.; Kent, G.

    2008-12-01

    The Salton Trough is a critical structure where two very different styles of deformation meet; spreading-center dominated deformation to the south in the Gulf of California and dextral strike-slip deformation along the San Andreas fault system(SAF) to the north. Seismic CHIRP data acquired in the Salton Sea provide new constraints on the interaction between the San Andreas, San Jacinto and Imperial fault systems and reveal distinct changes in deformational style from north to south. Based on the stratal geometry observed in CHIRP profiles, we propose three distinct phases of tectonic deformation: (1) Late- Pleistocene transpression north of the Extra Fault Zone (EFZ) replaced by (2) late-Holocene differential subsidence south of the EFZ and (3) recent formation of the Brawley Seismic Zone (BSZ), a through-going crustal shear zone. An angular unconformity is observed to separate the folded and faulted (late?) Pleistocene strata of the Brawley Formation from the overlying Holocene Cahuilla Formation (CF). North of the EFZ reflectors in the CF suggest little to no active deformation. Conversely, south of the EFZ reflectors exhibit marked divergence with their dip systematically increasing with depth. Such a pattern of divergence indicates that the rate of sedimentation has kept pace with the rate of tectonically-induced accommodation. As such, it appears that the EFZ is a tectonic hinge zone delineating the northern limit of active subsidence, high heat flow, and volcanism. Furthermore, given the observed subsidence pattern, we predict the existence of a NE trending basin-bounding normal fault, or series of normal faults, near the southern shoreline of the Salton Sea. In our conceptual model, the early distributed faulting and transrotation between the San Andreas and San Jacinto faults accounts for the compressional folding observed in the Brawley Formation, but later gave way to extension-dominated deformation as significant slip became focused along the Imperial

  12. Technology.

    ERIC Educational Resources Information Center

    Giorgis, Cyndi; Johnson, Nancy J.

    2002-01-01

    Presents annotations of 30 works of children's literature that support the topic of technology and its influences on readers' daily lives. Notes some stories tell about a time when simple tools enabled individuals to accomplish tasks, and others feature visionaries who used technology to create buildings, bridges, roads, and inventions. Considers…

  13. Three-dimensional model of plate geometry and velocity model for Nankai Trough seismogenic zone based on results from structural studies

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Shimomura, N.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Yamashita, M.; Takahashi, N.; Kaneda, Y.

    2012-12-01

    In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In order to reduce a great deal of damage to coastal area from both strong ground motion and tsunami generation, it is necessary to understand rupture synchronization and segmentation of the Nankai megathrust earthquake. For a precise estimate of the rupture zone of the Nankai megathrust event based on the knowledge of realistic earthquake cycle and variation of magnitude, it is important to know the geometry and property of the plate boundary of the subduction seismogenic zone. To improve a physical model of the Nankai Trough seismogenic zone, the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation has been conducted since 2008. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km every year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found that several strong lateral variations of the subducting Philippine Sea plate and overriding plate corresponding to margins of coseismic rupture zone of historical large event occurred along the Nankai Trough. Particularly a possible prominent reflector for the forearc Moho is recently imaged in the offshore side in the Kii channel at the depth of ~18km which is shallower than those of other area along the Nankai Trough. Such a drastic variation of the overriding plate might be related to the existence of the segmentation of the Nankai megathrust earthquake. Based on our results derived from seismic studies, we have tried to make a geometrical model of the Philippine Sea plate and a three-dimensional velocity structure model of the Nankai Trough seismogenic zone. In this presentation, we will summarize major results of out seismic studies, and

  14. Tectonic Setting of the Danger Islands Troughs in the Manihiki Plateau

    NASA Astrophysics Data System (ADS)

    Nakanishi, M.; Coffin, M. F.; Mahoney, J. J.; Koizumi, K.; Tikku, A.; Sato, H.; Ingle, S.; Miura, R.; Kato, H.; Kaida, M.; Shamberger, P.

    2004-12-01

    The Manihiki Plateau, which lies in the western equatorial Pacific Ocean, is considered to be one of the Cretaceous Large Igneous Provinces, which formed at or near a triple junction (Winterer et al., 1974). Three major geomorphic plateaus, High, North, and Western plateaus, are discernible within the plateau itself. The depth of the Western Plateau, about 4000 m, is deeper than those of the other plateaus, about 3000 m. The High Plateau is separated by linear deep narrow depressions named the Danger Islands Troughs (Mammerickx et al., 1974). The Danger Islands Troughs is thought to be a trace of the plate boundaries (Winterer et al., 1974). Geophysical and geological investigations were conducted by R/V Hakuho-maru, Ocean Research Institute, the University of Tokyo, in August 2003. The bathymetric survey by the SEA BEAM 2120 multi-narrow beam echo sounders was carried out along the Danger Islands Troughs (DIT) between 9__deg40'S and 6_deg30'S. The interval of the track lines is about 5 km. Geomagnetic and gravity fields were measured during the bathymetric survey. Volcanic rocks were dredged at the four sites of the slopes of the troughs. Our bathymetric survey exposes the detailed topographic expression of the DIT. The topographic expression of the DIT is a trough bordered by ridges with a height of 2500 m above the floor of the troughs. The depth of the northern part, north of 7__deg$30_fS, of the DIT is 5900 m. That of the southern part of the DIT is 4800 m. There is a seamount which high is 2500 m between the northern and southern parts of the DIT. O investigations indicates that the DIT is not an extinct normal spreading system, but a fracture zone which is a trace of an oblique spreading system or a leaky transform fault.

  15. Crustal deformation at the Nankai Trough estimated from seafloor geodetic observations

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Tadokoro, K.; Ikuta, R.; Okuda, T.; Nagai, S.; Kuno, M.

    2012-12-01

    The Philippine Sea plate subducts beneath the southwest Japan along the Nankai Trough with a rate of about 4-6 cm/yr, where megathrust earthquakes have repeatedly occurred every 100-150 years. Because the region expected to be the hypocentral area of next Nankai and Tonankai earthquakes is almost located in offshore area, it is important to know the spatio-temporal variation of crustal deformation accompanied with plate interaction in high precision. For this issue, we have conducted seafloor geodetic observation at the Nankai Trough using a GPS/Acoustic technique since 2004. In this system, we estimate the position of a surveying vessel by Kinematic GPS analysis and measure the distance between the vessel and the benchmark on the seafloor by Acoustic measurements. Next we determine the location of the benchmark. For the repeatability of this observation, the location of benchmark is determined within a precision of 2-3 cm at horizontal components. Several seafloor benchmarks are located at the Nankai Trough, which are individually operated by Japan Coast Guard, Tohoku University, and Nagoya University. In the Kumano Basin, we have three seafloor benchmarks located about 60-80 km away from the deformation front of the Nankai Trough. The observations from 2005 to 2011 have illustrated that those benchmarks are moving at rates of about 4 cm/yr toward west-northwest with velocity uncertainties of about 2 cm/yr relative to the Amurian plate. In this study, to explain the crustal deformation derived from seafloor geodetic observations especially at the shallower part of the Nankai Trough, we conduct numerical simulations using finite element method and then discuss the interplate coupling at the Nankai Trough.

  16. Geologic settings for hydrocarbons in the Gafsa trough of central Tunisia

    SciTech Connect

    Traut, M. ); Reed, J.K.; Schamel, S. ); Hassine, K.B. )

    1991-03-01

    The Gafsa trough of onshore central Tunisia is one of the more interesting and underexplored features of North Africa. It is a 5-12-km deep, east-west-trenching depression bounded by the Saharan flexure on the south and the Kasserine platform on the north. The geology of the Gafsa trough has been characterized with a series of regional stratigraphic and structure cross sections prepared from well data, and a set of depth and time structure maps prepared from an array of regional seismic lines. The southern margin of the basin is a simple north- and northwest-dipping homocline broken by small down-to-basin normal faults. The northern margin against the Kasserine platform has considerably lower structural relief but is marked by a complex system of normal and reverse faults. The axis of the trough deepens to the east and west away from a broad saddle between Tozeur and Kebili. The Gafsa trough is developed on the erosionally beveled and rifted northern flank of the late Paleozoic Talamzane arch. Middle Paleozoic sediments, including organic-rich Lower Silurian shales, appear to underlie the basin. The trough is filled with several distinct successions of sediments: Permo-Carboniferous carbonates and clastics locally exceeding 3000 m in thickness; 100-2000 m of Triassic-Liassic basal sands and evaporites; and a 6000-8000-m-thick succession of Middle Jurassic-lower Tertiary marine to paralic carbonates and clastics. Basal Triassic and underlying Paleozoic strata are considered too deeply buried in the Gafsa trough to be reasonable exploration targets. The most prospective target is sand lenses within the Middle-Upper Jurassic clastic/carbonate basin fill. In the extreme eastern part of the basin, commercial quantities of hydrocarbons have recently been discovered in these sands.

  17. Controls of bioclastic turbidite deposition in eastern Muertos Trough northeast Caribbean Sea

    SciTech Connect

    Forsthoff, G.M.; Holcombe, T.L.

    1985-02-01

    A study of seismic-reflection profiles and sediment cores establishes regional bathymetric and source area control over the composition, transport, and distribution of turbidites in the eastern Muertos Trough, Bioclastic (carbonate) turbidites dominate the eastern portion of the trough. Analyses of carbon content and sand-sized components suggest that the bioclastic turbidites (characterized by planktonic foraminifera, pteropods, and sponge spicules) are reworked pelagic oozes originally deposited on the outer-shelf and upper-slope areas south of St. Croix and eastern Puerto Rico. The presence of several intrashelf and upper-slope basins prohibits shallow-water carbonate sediments from entering the Muertos Trough. Volcanic rock fragments derived from Puerto Rico are transported to the trough via the Guayanilla Canyon system. Mixing of the volcanic fragments with outer-shelf and upper-slope lutites results in mixed bioclastic-terrigenous turbidites south of central and western Puerto Rico. The paucity of shallow-water carbonate sediments in the trough suggests that the submarine canyons are effective conduits for the rapid transport of volcaniclastic sands across the shelf and thereby prevent extensive mixing with inner- and middle-shelf carbonate sediments. Sediment transport within the trough is primarily axial in an east-west direction. Outer trench-wall fault scarps, south of Guayanilla Canyon, limit the southerly progradation of the trench-wedge facies and deflect incoming gravity flows in a down-axis (westward) direction. Where no faults exist, the trench wedge progrades southward and interfingers with the pelagic sediments of the northern Venezuelan basin.

  18. Biosignal alterations generated by parabolic flights of small aerobatic aircrafts

    NASA Astrophysics Data System (ADS)

    Simon, M. Jose; Perez-Poch, Antoni; Ruiz, Xavier; Gavalda, Fina; Saez, Nuria

    Since the pioneering works of Prof. Strughold in 1948, the aerospace medicine aimed to characterize the modifications induced in the human body by changes in the gravity level. In this respect, it is nowadays well known that one of the most serious problems of these kind of environments is the fluid shift. If this effect is enough severe and persistent, serious changes in the hemodynamic of the brain (cerebral blood flow and blood oxigenation level) appear which could be detected as alterations in the electroencephalogram, EEG [1]. Also, this fluid redistribution, together with the relocation of the heart in the thorax, induces detectable changes in the electrocardiogram, ECG [2]. Other kind of important problems are related with vestibular instability, kinetosis and illusory sensations. In particular since the seventies [3,4] it is known that in parabolic flights and due to eye movements triggered by the changing input from the otholith system, fixed real targets appeared to have moved downward while visual afterimages appeared to have moved upward (oculogravic illusions). In order to cover all the above-mentioned potential alterations, the present work, together with the gravity level, continuously monitors the electroencephalogram, EEG, the electrocardiogram, ECG and the electrooculogram, EOG of a normal subject trying to detect correlations between the different alterations observed in these signals and the changes of gravity during parabolic flights. The small aerobatic aircraft used is a CAP10B and during the flight the subject is located near the pilot. To properly cover all the range of accelerations we have used two sensitive triaxial accelerometers covering the high and low ranges of acceleration. Biosignals have been gathered using a Biopac data unit together with the Acknowledge software package (from BionicÔ). It is important to finally remark that, due to the obvious difference between the power of the different engines, the accelerometric

  19. American lookback option with fixed strike price—2-D parabolic variational inequality

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoshan; Yi, Fahuai; Wang, Lihe

    In this paper we study a 2-dimensional parabolic variational inequality with financial background. We define a suitable weak formula and obtain existence and uniqueness of the problem. Moreover we analyze the behaviors of the free boundary surface.

  20. On a regular problem for an elliptic-parabolic equation with a potential boundary condition

    NASA Astrophysics Data System (ADS)

    Arepova, Gauhar

    2016-08-01

    In this paper, we construct a lateral boundary condition for an elliptic-parabolic equation in a finite domain. Theorem on existence and uniqueness of a solution of the considered problem is proved by method of theory potential.

  1. Shaping of parabolic cylindrical membrane reflectors for the DART precision test bed

    NASA Technical Reports Server (NTRS)

    White, C.; Salama, M.; Dragovan, M.; Schroeder, J.; Barber, D.; Dooley, J.

    2003-01-01

    The DART is a new telescope architecture consisting of two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola.

  2. Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity

    NASA Astrophysics Data System (ADS)

    Ji, Shanming; Yin, Jingxue; Cao, Yang

    2016-11-01

    In this paper, we consider the periodic problem for semilinear heat equation and pseudo-parabolic equation with logarithmic source. After establishing the existence of positive periodic solutions, we discuss the instability of such solutions.

  3. Generalized Directional Gradients, Backward Stochastic Differential Equations and Mild Solutions of Semilinear Parabolic Equations

    SciTech Connect

    Fuhrman, Marco Tessitore, Gianmario

    2005-05-15

    We study a forward-backward system of stochastic differential equations in an infinite-dimensional framework and its relationships with a semilinear parabolic differential equation on a Hilbert space, in the spirit of the approach of Pardoux-Peng. We prove that the stochastic system allows us to construct a unique solution of the parabolic equation in a suitable class of locally Lipschitz real functions. The parabolic equation is understood in a mild sense which requires the notion of a generalized directional gradient, that we introduce by a probabilistic approach and prove to exist for locally Lipschitz functions.The use of the generalized directional gradient allows us to cover various applications to option pricing problems and to optimal stochastic control problems (including control of delay equations and reaction-diffusion equations),where the lack of differentiability of the coefficients precludes differentiability of solutions to the associated parabolic equations of Black-Scholes or Hamilton-Jacobi-Bellman type.

  4. A position transducer for studying parabolic motion and rolling down a grooved track

    NASA Astrophysics Data System (ADS)

    Basta, M.; Di Gennaro, M.; Picciarelli, V.

    1994-09-01

    We describe a computerized system based on a position transducer on-line and discuss its applications in two experiments (parabolic motion and rolling down a grooved track) performed in an introductory physics laboratory course.

  5. Hormonal responses of metoclopramide-treated subjects experiencing nausea or emesis during parabolic flight

    NASA Technical Reports Server (NTRS)

    Kohl, Randall L.

    1987-01-01

    The concentrations of adrenocorticotropic hormone (ACTH), vasopressin (AVP), epinephrine (EPI), and norepinephrine (NE) in 22 subjects administered 10 to 20 mg of metoclopramide prior to parabolic flight are measured. The effect of metoclopramide on motion sickness is examined. It is observed that metoclopramide is ineffective in the modulation of motion sickness due to stressful linear and angular acceleration and orbital flight, and it does not affect serum hormones prior to parabolic flight. It is detected that the serum level of AVP declines following emesis induced by parabolic flight and stressful angular acceleration; the serum levels of ACTH and EPI are elevated by parabolic flight and stressful angular acceleration; and serum NE is significantly elevated immediately following emesis. The possible roles of these hormones in the etiology of space motion sickness are discussed.

  6. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Escanaba Trough, Northeastern Pacific Ocean

    USGS Publications Warehouse

    Simoneit, B.R.T.; Schoell, M.; Kvenvolden, K.A.

    1997-01-01

    We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7%, respectively) reflect a primarily terrestrial organic matter source.We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7 per mill, respectively) reflect a primarily terrestrial organic matter source.

  7. Stratigraphic framework of Cambrian and Ordovician rocks across Rome Trough, central Appalachian basin

    SciTech Connect

    Ryder, R.T.

    1987-09-01

    Restored stratigraphic cross sections drawn primarily through the subsurface of parts of Pennsylvania, Ohio, West Virginia, Kentucky, and Tennessee provide new detailed information to further the understanding of Cambrian and Ordovician sedimentation and tectonics associated with the Rome trough sector of the Appalachian basin. Drilled thickness of the Cambrian and Ordovician sequence ranges from a maximum of about 14,500 ft (4.5 km) along the axis of the trough to a minimum of about 3500 ft (1 km) on the western flank.

  8. Nonlocal operators, parabolic-type equations, and ultrametric random walks

    SciTech Connect

    Chacón-Cortes, L. F. Zúñiga-Galindo, W. A.

    2013-11-15

    In this article, we introduce a new type of nonlocal operators and study the Cauchy problem for certain parabolic-type pseudodifferential equations naturally associated to these operators. Some of these equations are the p-adic master equations of certain models of complex systems introduced by Avetisov, V. A. and Bikulov, A. Kh., “On the ultrametricity of the fluctuation dynamicmobility of protein molecules,” Proc. Steklov Inst. Math. 265(1), 75–81 (2009) [Tr. Mat. Inst. Steklova 265, 82–89 (2009) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Zubarev, A. P., “First passage time distribution and the number of returns for ultrametric random walks,” J. Phys. A 42(8), 085003 (2009); Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., “p-adic models of ultrametric diffusion in the conformational dynamics of macromolecules,” Proc. Steklov Inst. Math. 245(2), 48–57 (2004) [Tr. Mat. Inst. Steklova 245, 55–64 (2004) (Izbrannye Voprosy Matematicheskoy Fiziki i p-adicheskogo Analiza) (in Russian)]; Avetisov, V. A., Bikulov, A. Kh., and Osipov, V. A., “p-adic description of characteristic relaxation in complex systems,” J. Phys. A 36(15), 4239–4246 (2003); Avetisov, V. A., Bikulov, A. H., Kozyrev, S. V., and Osipov, V. A., “p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A 35(2), 177–189 (2002); Avetisov, V. A., Bikulov, A. Kh., and Kozyrev, S. V., “Description of logarithmic relaxation by a model of a hierarchical random walk,” Dokl. Akad. Nauk 368(2), 164–167 (1999) (in Russian). The fundamental solutions of these parabolic-type equations are transition functions of random walks on the n-dimensional vector space over the field of p-adic numbers. We study some properties of these random walks, including the first passage time.

  9. Numerical Modeling of Year-Round Performance of a Solar Parabolic Dish Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Muthu, G.; Shanmugam, S.; Veerappan, AR.

    2015-08-01

    This paper presents the year-round performance of a solar parabolic dish thermoelectric generator under different values of operating parameters such as ambient temperature, wind velocity, direct normal irradiation, and water inlet temperature to the heat sink. The solar thermoelectric generator (TEG) is examined for an Indian location of Tiruchirappalli. The electrical power output and TEG efficiency are maximum during the months of April and August, while they are minimum during the month of December. It is found that the monthly average hot-side temperature of the TEG varies from 556.53 K to 592.68 K and the cold-side temperature of the TEG varies from 413.21 K to 438.91 K. When the hot-side temperature reaches the optimum value, the conversion efficiency is reduced, although the power increases. A TEG model is useful to find the temperature of the junctions for different operating parameter values and predict the performance of the TEG at any time. A small standalone power-generating system using this technology is a promising option.

  10. Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators.

    PubMed

    Lorenzo, E; Luque, A

    1982-05-15

    This paper compares the gain that can be achieved with a one- or two-stage concentrator, when the first stage is a Fresnel lens or a parabolic mirror, as a function of the luminosity of the concentrator. The results show that the achievable gain using a parabolic mirror is greater than that obtained using a flat or roof lens but is lower than that obtained using a curved lens. PMID:20389950

  11. Stability in terms of two measures for a class of semilinear impulsive parabolic equations

    SciTech Connect

    Dvirnyj, Aleksandr I; Slyn'ko, Vitalij I

    2013-04-30

    The problem of stability in terms of two measures is considered for semilinear impulsive parabolic equations. A new version of the comparison method is proposed, and sufficient conditions for stability in terms of two measures are obtained on this basis. An example of a hybrid impulsive system formed by a system of ordinary differential equations coupled with a partial differential equation of parabolic type is given. The efficiency of the described approaches is demonstrated. Bibliography: 24 titles.

  12. Simulation of vortex laser beams propagation in parabolic index media based on fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Mossoulina, O. A.; Kirilenko, M. S.; Khonina, S. N.

    2016-08-01

    We use radial Fractional Fourier transform to model vortex laser beams propagation in optical waveguides with parabolic dependence of the refractive index. To overcome calculation difficulties at distances proportional to a quarter of the period we use varied calculation step. Numerical results for vortex modes superposition propagation in a parabolic optical fiber show that the transverse beam structure can be changed significantly during the propagation. To provide stable transverse distribution input scale modes should be in accordance with fiber parameters.

  13. Parabolic movement primitives and cortical states: merging optimality with geometric invariance.

    PubMed

    Polyakov, Felix; Stark, Eran; Drori, Rotem; Abeles, Moshe; Flash, Tamar

    2009-02-01

    Previous studies have suggested that several types of rules govern the generation of complex arm movements. One class of rules consists of optimizing an objective function (e.g., maximizing motion smoothness). Another class consists of geometric and kinematic constraints, for instance the coupling between speed and curvature during drawing movements as expressed by the two-thirds power law. It has also been suggested that complex movements are composed of simpler elements or primitives. However, the ability to unify the different rules has remained an open problem. We address this issue by identifying movement paths whose generation according to the two-thirds power law yields maximally smooth trajectories. Using equi-affine differential geometry we derive a mathematical condition which these paths must obey. Among all possible solutions only parabolic paths minimize hand jerk, obey the two-thirds power law and are invariant under equi-affine transformations (which preserve the fit to the two-thirds power law). Affine transformations can be used to generate any parabolic stroke from an arbitrary parabolic template, and a few parabolic strokes may be concatenated to compactly form a complex path. To test the possibility that parabolic elements are used to generate planar movements, we analyze monkeys' scribbling trajectories. Practiced scribbles are well approximated by long parabolic strokes. Of the motor cortical neurons recorded during scribbling more were related to equi-affine than to Euclidean speed. Unsupervised segmentation of simulta- neously recorded multiple neuron activity yields states related to distinct parabolic elements. We thus suggest that the cortical representation of movements is state-dependent and that parabolic elements are building blocks used by the motor system to generate complex movements.

  14. Combined optical solitons with parabolic law nonlinearity and spatio-temporal dispersion

    NASA Astrophysics Data System (ADS)

    Zhou, Qin; Zhu, Qiuping

    2015-03-01

    In this work, combined optical solitons are constructed in a weakly nonlocal nonlinear medium. The spatio-temporal dispersion (STD), parabolic law nonlinearity, detuning, nonlinear dispersion as well as inter-modal dispersion are taken into account. The integration tool that is applied is the complex envelope function ansatz. The influences of different parameters on dynamical behavior of combined optical solitons are discussed. The results are useful in describing the propagation of combined optical solitons with STD and parabolic law nonlinearity.

  15. A parabolic function to modify Thornthwaite estimates of potential evapotranspiration for the eastern United States

    USGS Publications Warehouse

    McCabe, G.J., Jr.

    1989-01-01

    Errors of the Thornthwaite model can be analyzed using adjusted pan evaporation as an index of potential evapotranspiration. An examination of ratios of adjusted pan evaporation to Thornthwaite potential evapotranspiration indicates that the ratios are highest in the winter and lowest during summer months. This trend suggests a parabolic pattern. In this study a parabolic function is used to adjust Thornthwaite estimates of potential evapotranspiration. Forty locations east of the Rocky Mountains are analyzed. -from Author

  16. Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads

    PubMed Central

    Kong, Y. S.; Omar, M. Z.; Chua, L. B.; Abdullah, S.

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability. PMID:24298209

  17. Comparison of parabolic filtration methods for 3D filtered back projection in pulsed EPR imaging.

    PubMed

    Qiao, Zhiwei; Redler, Gage; Epel, Boris; Halpern, Howard J

    2014-11-01

    Pulse electron paramagnetic resonance imaging (Pulse EPRI) is a robust method for noninvasively measuring local oxygen concentrations in vivo. For 3D tomographic EPRI, the most commonly used reconstruction algorithm is filtered back projection (FBP), in which the parabolic filtration process strongly influences image quality. In this work, we designed and compared 7 parabolic filtration methods to reconstruct both simulated and real phantoms. To evaluate these methods, we designed 3 error criteria and 1 spatial resolution criterion. It was determined that the 2 point derivative filtration method and the two-ramp-filter method have unavoidable negative effects resulting in diminished spatial resolution and increased artifacts respectively. For the noiseless phantom the rectangular-window parabolic filtration method and sinc-window parabolic filtration method were found to be optimal, providing high spatial resolution and small errors. In the presence of noise, the 3 point derivative method and Hamming-window parabolic filtration method resulted in the best compromise between low image noise and high spatial resolution. The 3 point derivative method is faster than Hamming-window parabolic filtration method, so we conclude that the 3 point derivative method is optimal for 3D FBP.

  18. Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.

    PubMed

    Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.

  19. On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach

    NASA Technical Reports Server (NTRS)

    Gastaldi, Fabio; Quarteroni, Alfio

    1988-01-01

    The coupling of hyperbolic and parabolic systems is discussed in a domain Omega divided into two distinct subdomains omega(+) and omega(-). The main concern is to find the proper interface conditions to be fulfilled at the surface separating the two domains. Next, they are used in the numerical approximation of the problem. The justification of the interface conditions is based on a singular perturbation analysis, i.e., the hyperbolic system is rendered parabolic by adding a small artifical viscosity. As this goes to zero, the coupled parabolic-parabolic problem degenerates into the original one, yielding some conditions at the interface. These are taken as interface conditions for the hyperbolic-parabolic problem. Actually, two alternative sets of interface conditions are discussed according to whether the regularization procedure is variational or nonvariational. It is shown how these conditions can be used in the frame of a numerical approximation to the given problem. Furthermore, a method of resolution is discussed which alternates the resolution of the hyperbolic problem within omega(-) and of the parabolic one within omega(+). The spectral collocation method is proposed, as an example of space discretization (different methods could be used as well); both explicit and implicit time-advancing schemes are considered. The present study is a preliminary step toward the analysis of the coupling between Euler and Navier-Stokes equations for compressible flows.

  20. Piracetam and fish orientation during parabolic aircraft flight

    NASA Technical Reports Server (NTRS)

    Hoffman, R. B.; Salinas, G. A.; Homick, J. L.

    1980-01-01

    Goldfish were flown in parabolic Keplerian trajectories in a KC-135 aircraft to assay both the effectiveness of piracetam as an antimotion sickness drug and the effectiveness of state-dependent training during periods of oscillating gravity levels. Single-frame analyses of infrared films were performed for two classes of responses - role rates in hypogravity or hypogravity orienting responses (LGR) and climbing responses in hypergravity or hypergravity orienting responses (HGR). In Experiment I, preflight training with the vestibular stressor facilitated suppression of LGR by the 10th parabola. An inverse correlation was found between the magnitudes of LGR and HGR. Piracetam was not effective in a state-dependent design, but the drug did significantly increase HGR when injected into trained fish shortly before flight. In Experiment II, injections of saline, piracetam, and modifiers of gamma-aminobutyric acid - aminooxyacetic acid (AOAA) and isonicotinic acid did not modify LGR. AOAA did significantly increase HGR. Thus, the preflight training has a beneficial effect in reducing disorientation in the fish in weightlessness, but the drugs employed were ineffective.

  1. Improved algorithm for solving nonlinear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  2. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight.

    PubMed

    Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre

    2016-01-01

    We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5-6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance. PMID:27463106

  3. Motion sickness susceptibility in parabolic flight and velocity storage activity

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.

    1991-01-01

    In parabolic flight experiments, postrotary nystagmus is as found to be differentially suppressed in free fall (G) and in a high gravitoinertial force (1.8 G) background relative to 1 G. In addition, the influence of postrotary head movements on nystagmus suppression was found to be contingent on G-dependency of the velocity storage and dumping mechanisms. Here, susceptibility to motion sickness during head movements in 0 G and 1.8 G was rank-correlated with the following: (1) the decay time constant of the slow phase velocity of postrotary nystagmus under 1 G, no head movement, baseline conditions, (2) the extent of time constant reduction elicited in 0 G and 1.8 G; (3) the extent of time constant reduction elicited by head tilts in 1 G; and (4) changes in the extent of time constants reduction in 0 G and 1.8 G over repeated tests. Susceptibility was significantly correlated with the extent to which a head movement reduced the time constant in 1 G, was weakly correlated with the baseline time constant, but was not correlated with the extent of reduction in 0 G or 1.8 G. This pattern suggests a link between mechanisms evoking symptoms of space motion sickness and the mechanisms of velocity storage and dumping. Experimental means of evaluating this link are described.

  4. Evaluation of aerosolized medications during parabolic flight maneuvers

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.; Martin, William J.; Gosbee, John

    1991-01-01

    The goal was to visually evaluate the effect gravity has on delivery of medications by the use of various aerosol devices. During parabolic flight the same four aerosols were retested as performed in studio ground tests. It appears that the Cetacaine spray and the Ventolin inhaler function without failure during all test. The pump spray (Nostril) appeared to function normally when the container was full, however it appeared to begin to fail to deliver a full mist with larger droplet size when the container was nearly empty. The simple hand spray bottle appeared to work when the container was full and performed progressively worse as the container was emptied. During Apollo flights, it was reported that standard spray bottles did not work well, however, they did not indicate why. It appears that we would also conclude that standard spray bottles do not function as well in zero gravity by failing to produce a normal mist spray. The standard spray bottle allowed the fluid to come out in a narrow fluid stream when held with the nozzle either level or slightly tilted upward.

  5. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight.

    PubMed

    Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre

    2016-01-01

    We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5-6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance.

  6. Three-dimensional parabolic equation modeling of mesoscale eddy deflection.

    PubMed

    Heaney, Kevin D; Campbell, Richard L

    2016-02-01

    The impact of mesoscale oceanography, including ocean fronts and eddies, on global scale low-frequency acoustics is examined using a fully three-dimensional parabolic equation model. The narrowband acoustic signal, for frequencies from 2 to 16 Hz, is simulated from a seismic event on the Kerguellen Plateau in the South Indian Ocean to an array of receivers south of Ascension Island in the South Atlantic, a distance of 9100 km. The path was chosen for its relevance to seismic detections from the HA10 Ascension Island station of the International Monitoring System, for its lack of bathymetric interaction, and for the dynamic oceanography encountered as the sound passes the Cape of Good Hope. The acoustic field was propagated through two years (1992 and 1993) of the eddy-permitting ocean state estimation ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) system. The range of deflection of the back-azimuth was 1.8° with a root-mean-square of 0.34°. The refraction due to mesoscale oceanography could therefore have significant impacts upon localization of distant low-frequency sources, such as seismic or nuclear test events.

  7. Efficient solution of parabolic equations by Krylov approximation methods

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  8. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight

    PubMed Central

    Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre

    2016-01-01

    We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5–6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance. PMID:27463106

  9. High-order parabolic beam approximation for aero-optics

    SciTech Connect

    White, Michael D.

    2010-08-01

    The parabolic beam equations are solved using high-order compact differences for the Laplacians and Runge-Kutta integration along the beam path. The solution method is verified by comparison to analytical solutions for apertured beams and both constant and complex index of refraction. An adaptive 4th-order Runge-Kutta using an embedded 2nd-order method is presented that has demonstrated itself to be very robust. For apertured beams, the results show that the method fails to capture near aperture effects due to a violation of the paraxial approximation in that region. Initial results indicate that the problem appears to be correctable by successive approximations. A preliminary assessment of the effect of turbulent scales is undertaken using high-order Lagrangian interpolation. The results show that while high fidelity methods are necessary to accurately capture the large scale flow structure, the method may not require the same level of fidelity in sampling the density for the index of refraction. The solution is used to calculate a phase difference that is directly compared with that commonly calculated via the optical path difference. Propagation through a supersonic boundary layer shows that for longer wavelengths, the traditional method to calculate the optical path is less accurate than for shorter wavelengths. While unlikely to supplant more traditional methods for most aero-optics applications, the current method can be used to give a quantitative assessment of the other methods as well as being amenable to the addition of more physics.

  10. Geometric visual illusions in microgravity during parabolic flight.

    PubMed

    Villard, Eric; Garcia-Moreno, Francesc Tintó; Peter, Nicolas; Clément, Gilles

    2005-08-22

    This investigation explores whether the absence of gravitational information in a microgravity environment affects the perception of several classical visual illusions based on the arrangement of horizontal and vertical lines. Because the perception of horizontal and vertical orientation changes in microgravity, our prediction was that the strength of visual illusions based on the arrangement of horizontal and vertical lines would be altered when study participants were free-floating during parabolic flight. The frequency of appearance of reversed-T, Müller-Lyer, Ponzo, and Hering illusions substantially decreased when observers were free-floating, whereas the Zöllner and the Poggendorff illusions were not affected. Because the former illusions rely more heavily on perspective cues for generating inaccurate judgments of depth and size, these results suggest an alteration in the role of linear perspective for three-dimensional vision in microgravity. They also confirm that the visual system normally relies on otolith and somatosensory information for providing accurate judgments about the size and distance of objects when presented with planar presentations of geometric figures.

  11. Improved algorithm for solving nonlinear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  12. Recent Solar Measurements Results at the Parabolic Dish Test Site

    NASA Technical Reports Server (NTRS)

    Ross, D. L.

    1984-01-01

    After the Mexican volcanic eruptions of March 28, April 3 and 4, 1982, the question of its effect on insolation levels at the Parabolic Dish Test Site (PDTS) naturally arose. Clearly, the answer to the original question is that the Mexican volcanic explosion had a significant impact on energy and insolation levels at the PDTS and, furthermore, it has been quite long lasting. The first really significant decrease in energy and insolation levels occurred in June 1982 when the energy level decreased by 19.7% while the peak insolation levels went down by 4.0%. June of 1982 was also the first month (of 13 consecutive months) when peak insolation levels did not equal or exceed 1,000 W/sq m. Signs of a recovery from the effects of the volcanic explosion began to appear in May of 1983, when the energy level exceeded that of May 1981 as well as May 1982. It would appear that energy and insolation levels are improving at the PDTS, but have not quite reached normal or pre-volcanic levels. At this time the data would seem to suggest a return to normal energy and insolation levels will occur in the very near future.

  13. Analysis and two years of testing of the vee-trough concentrator/evacuated tube solar collector

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Aghan, A.

    1979-01-01

    The paper summarizes the mathematical analysis and presents the experimental results for a vee-trough/evacuated tube collector (VTETC). Test results reported represent the performance of the VTETC based on an aperture area. The effectiveness of vee-trough reflectors is demonstrated by comparing the useful heat collected by a receiver tube with and without concentrators.

  14. 9 CFR 82.10 - Interstate movement of vehicles, cages, coops, containers, troughs, and other equipment from a...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., coops, containers, troughs, and other equipment from a quarantined area. 82.10 Section 82.10 Animals and... Disease § 82.10 Interstate movement of vehicles, cages, coops, containers, troughs, and other equipment from a quarantined area. (a) This section does not apply to cages, coops, or other containers...

  15. 9 CFR 82.10 - Interstate movement of vehicles, cages, coops, containers, troughs, and other equipment from a...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., coops, containers, troughs, and other equipment from a quarantined area. 82.10 Section 82.10 Animals and... CHLAMYDIOSIS Exotic Newcastle Disease (END) § 82.10 Interstate movement of vehicles, cages, coops, containers, troughs, and other equipment from a quarantined area. (a) This section does not apply to cages, coops,...

  16. 9 CFR 82.21 - Vehicles, cages, coops, containers, troughs, and other equipment used for infected poultry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., troughs, and other equipment used for infected poultry. 82.21 Section 82.21 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS NEWCASTLE DISEASE AND CHLAMYDIOSIS Chlamydiosis in Poultry § 82.21 Vehicles, cages, coops, containers, troughs, and other equipment used for infected poultry....

  17. 9 CFR 82.21 - Vehicles, cages, coops, containers, troughs, and other equipment used for infected poultry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., troughs, and other equipment used for infected poultry. 82.21 Section 82.21 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS EXOTIC NEWCASTLE DISEASE (END) AND CHLAMYDI-OSIS Chlamydiosis in Poultry § 82.21 Vehicles, cages, coops, containers, troughs, and other equipment used...

  18. 9 CFR 82.21 - Vehicles, cages, coops, containers, troughs, and other equipment used for infected poultry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., troughs, and other equipment used for infected poultry. 82.21 Section 82.21 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS EXOTIC NEWCASTLE DIS- EASE (END) AND CHLAMYDIOSIS Chlamydiosis in Poultry § 82.21 Vehicles, cages, coops, containers, troughs, and other equipment used...

  19. 9 CFR 82.21 - Vehicles, cages, coops, containers, troughs, and other equipment used for infected poultry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., troughs, and other equipment used for infected poultry. 82.21 Section 82.21 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS EXOTIC NEWCASTLE DIS- EASE (END) AND CHLAMYDIOSIS Chlamydiosis in Poultry § 82.21 Vehicles, cages, coops, containers, troughs, and other equipment used...

  20. 9 CFR 82.21 - Vehicles, cages, coops, containers, troughs, and other equipment used for infected poultry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., troughs, and other equipment used for infected poultry. 82.21 Section 82.21 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS EXOTIC NEWCASTLE DISEASE (END) AND CHLAMYDI-OSIS Chlamydiosis in Poultry § 82.21 Vehicles, cages, coops, containers, troughs, and other equipment used...

  1. Drilling investigations of crustal rifting processes in the Salton Trough, California. Revision 1

    SciTech Connect

    Kasameyer, P.W.; Younker, L.W.; Newmark, R.L.; Duba, A.G.

    1986-01-01

    The results of CSDP activities in the Salton Sea Geothermal Field (SSGF) are briefly described, concentrating on a shallow heat flow survey, but also discussing preliminary results from the Salton Sea Scientific Drilling Program (SSSDP). The hypothesis that localized thermal zones are the source of all the heat in the Salton Trough is examined. (ACR)

  2. The measurement of cold ion densities in the plasma trough. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Harris, K. K.

    1974-01-01

    The cold ion density in the plasma trough region is an important fundamental parameter in the currently proposed mechanisms to describe magnetospheric dynamics. Direct in situ measurements of the cold ion density are generally difficult owing to uncertainties in vehicle potentials and ion temperatures. It is shown that the light ion mass spectrometer from Ogo 5 was very successful in acquiring these data and that vehicle potentials appear not to have been a prohibitive factor. The cold ion plasma trough data show a great deal of variability, indicating a strong dependence on the state of the convection electric field; consequently, average values of cold ion densities in the plasma trough may be significantly different from the actual time-dependent values. The local time plot of plasma trough densities at L = 7 for data acquired over a 1-year period shows the anticipated increase in cold ion density during the daytime and the expected decrease in cold ion density during dusk and early nighttime.

  3. Molecular Cytogenetics in Trough Shells (Mactridae, Bivalvia): Divergent GC-Rich Heterochromatin Content.

    PubMed

    García-Souto, Daniel; Pérez-García, Concepción; Kendall, Jack; Pasantes, Juan J

    2016-01-01

    The family Mactridae is composed of a diverse group of marine organisms, commonly known as trough shells or surf clams, which illustrate a global distribution. Although this family includes some of the most fished and cultured bivalve species, their chromosomes are poorly studied. In this work, we analyzed the chromosomes of Spisula solida, Spisula subtruncata and Mactra stultorum by means of fluorochrome staining, C-banding and fluorescent in situ hybridization using 28S ribosomal DNA (rDNA), 5S rDNA, H3 histone gene and telomeric probes. All three trough shells presented 2n = 38 chromosomes but different karyotype compositions. As happens in most bivalves, GC-rich regions were limited to the nucleolus organizing regions in Spisula solida. In contrast, many GC-rich heterochromatic bands were detected in both Spisula subtruncata and Mactra stultorum. Although the three trough shells presented single 5S rDNA and H3 histone gene clusters, their chromosomal locations differed. Regarding major rDNA clusters, while Spisula subtruncata presented a single cluster, both Spisula solida and Mactra stultorum showed two. No evidence of intercalary telomeric signals was detected in these species. The molecular cytogenetic characterization of these taxa will contribute to understanding the role played by chromosome changes in the evolution of trough shells. PMID:27537915

  4. Molecular Cytogenetics in Trough Shells (Mactridae, Bivalvia): Divergent GC-Rich Heterochromatin Content

    PubMed Central

    García-Souto, Daniel; Pérez-García, Concepción; Kendall, Jack; Pasantes, Juan J.

    2016-01-01

    The family Mactridae is composed of a diverse group of marine organisms, commonly known as trough shells or surf clams, which illustrate a global distribution. Although this family includes some of the most fished and cultured bivalve species, their chromosomes are poorly studied. In this work, we analyzed the chromosomes of Spisula solida, Spisula subtruncata and Mactra stultorum by means of fluorochrome staining, C-banding and fluorescent in situ hybridization using 28S ribosomal DNA (rDNA), 5S rDNA, H3 histone gene and telomeric probes. All three trough shells presented 2n = 38 chromosomes but different karyotype compositions. As happens in most bivalves, GC-rich regions were limited to the nucleolus organizing regions in Spisula solida. In contrast, many GC-rich heterochromatic bands were detected in both Spisula subtruncata and Mactra stultorum. Although the three trough shells presented single 5S rDNA and H3 histone gene clusters, their chromosomal locations differed. Regarding major rDNA clusters, while Spisula subtruncata presented a single cluster, both Spisula solida and Mactra stultorum showed two. No evidence of intercalary telomeric signals was detected in these species. The molecular cytogenetic characterization of these taxa will contribute to understanding the role played by chromosome changes in the evolution of trough shells. PMID:27537915

  5. Drilling investigations of crustal rifting processes in the Salton Trough, California

    SciTech Connect

    Kasameyer, P.W.; Younker, L.W.; Newmark, R.L.; Duba, A.G.

    1986-01-01

    The paper describes the results of CSDP activities in the Salton Sea Geothermal Field (SSGF), concentrating on a shallow heat-flow survey, but also considering preliminary results from the Salton Sea Scientific Drilling Program (SSSDP). Whether the heat input rate to localized systems is high enough to account for the overall thermal budget of the Salton Trough is examined. (ACR)

  6. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  7. Novel solar cogeneration trough system based on stretched microstructured mylar film

    NASA Astrophysics Data System (ADS)

    Hejmadi, Vic; Shin, Meimei; Kress, Bernard; Giliberto, Alfredo

    2011-05-01

    Hybrid CSP / CPV (Concentrating Solar Power / Concentration Photovoltaic) systems provide a good alternative to traditional CPV systems or CSP trough architectures. Such systems are often described as solar cogeneration systems. Trough systems use mainly the IR portion of the spectrum in order to heat up a pipe in which water is circulating. CPV systems use only the visible portion of the spectrum to produce the photo-voltaic conversion. Due to the achromatic nature of traditional thermal trough CSP systems, it is very unlikely that a CPV system can be integrated with a CSP system, even a low concentration CPV system (LCPV). We propose a novel technique to implement a low concentration CSP/LCPV system which relies on commercially available solar trough concentrators / trackers that use reflective stretched Mylar membranes. However, here the Mylar is embossed with microstructures that act only on the visible portion of the spectrum, leaving the infrared part of the solar spectrum unperturbed. This architecture has many advantages, such as: the existing Mylar-based thermal trough architecture is left unperturbed for optimal thermal conversion, with linear strips of PV cells located a few inches away from the central water pipe; the infrared radiation is focused on the central pipe, away from the PV cells, which remain relatively cool compared to conventional LCPV designs (only visible light (the PV convertible part of the solar spectrum) is diffracted onto the PV cell strips); and the Mylar sheets can be embossed by conventional roll-to-roll processes, with a one-dimensional symmetric micro-structured pattern. We show how the positive master elements are designed and fabricated over a small area (using traditional IC wafer fabrication techniques), and how the Mylar sheets are embossed by a recombined negative nickel shim. We also show that such a system can efficiently filter the visible spectrum and divert it onto the linear strips of PV cells, while leaving the

  8. Optical analysis of a photovoltaic V-trough system installed in western India.

    PubMed

    Maiti, Subarna; Sarmah, Nabin; Bapat, Pratap; Mallick, Tapas K

    2012-12-20

    The low concentrating photovoltaic (PV) system such as a 2× V-trough system can be a promising choice for enhancing the power output from conventional PV panels with the inclusion of thermal management. This system is more attractive when the reflectors are retrofitted to the stationary PV panels installed in a high aspect ratio in the north-south direction and are tracked 12 times a year manually according to preset angles, thus eliminating the need of diurnal expensive tracking. In the present analysis, a V-trough system facing exactly the south direction is considered, where the tilt angle of the PV panels' row is kept constant at 18.34°. The system is installed on the terrace of CSIR-Central Salt and Marine Chemicals Research Institute in Bhavnagar, Gujarat, India (21.47 N, 71.15 E). The dimension of the entire PV system is 9.64 m×0.55 m. The V-troughs made of anodized aluminum reflectors (70% specular reflectivity) had the same dimensions. An in-house developed; experimentally validated Monte Carlo ray-trace model was used to study the effect of the angular variation of the reflectors throughout a year for the present assembly. Results of the ray trace for the optimized angles showed the maximum simulated optical efficiency to be 85.9%. The spatial distribution of solar intensity over the 0.55 m dimension of the PV panel due to the V-trough reflectors was also studied for the optimized days in periods that included solstices and equinoxes. The measured solar intensity profiles with and without the V-trough system were used to calculate the actual optical efficiencies for several sunny days in the year, and results were validated with the simulated efficiencies within an average error limit of 10%.

  9. Is the Bounty Trough off eastern New Zealand an aborted rift?

    NASA Astrophysics Data System (ADS)

    Grobys, J. W. G.; Gohl, K.; Davy, B.; Uenzelmann-Neben, G.; Deen, T.; Barker, D.

    2007-03-01

    Remarkably little is known about the Cretaceous rifting process between New Zealand and Antarctica that affected the submarine regions within the New Zealand microcontinent. Bounty Trough provides insights into these breakup processes. Here we present results from a combined gravity, multichannel seismic, and wide-angle reflection/refraction seismic transect across the Middle Bounty Trough and interpret these results on the basis of velocity distribution and crustal composition derived from Poisson's ratio and P-wave velocity. The lower crust exhibits a high-velocity (vp ≅ 7 - 7.7 km/s, vs ≅ 3.9 - 4.5 km/s), high-density (ρ = 3.02 kg/cm3) body at the location of the thinnest crust on the profile. Here the crustal thickness is reduced to about 9 km from 22-24 km beneath Chatham Rise and Campbell Plateau. We interpret the high-velocity/density body as a magmatic intrusion into thinned continental crust. Our results show that the Cretaceous opening of Bounty Trough was very likely not the result of back-arc extension caused by collision of the Hikurangi Plateau with the Gondwana margin, but of continental breakup processes related to the separation of New Zealand from Antarctica. Rifting ceased in the Middle Bounty Trough at the onset of seafloor spreading. Comparisons with the Oslo Rift and the Ethiopian/Kenya Rift indicate that all three rift systems show analogous extensional features. From this we derive a stretching model for the Bounty Trough that combines elements of pure shear and simple shear extension.

  10. Gas potential of the Rome Trough in Kentucky: Results of recent Cambrian exploration

    SciTech Connect

    Harris, D.C.; Drahovzal, J.A.

    1996-09-01

    A recent gas discovery in the Rome Trough suggests the need to re-evaluate the deep Cambrian potential of eastern Kentucky. A new phase of Cambrian exploration began in mid-1994 with a new pool discovery by the Carson Associates No. 1 Kazee well in Elliott County, Ky. This well blew out and initially flowed 11 MMcfd of gas from the upper Conasauga Group/Rome Formation at 6,258 to 6,270 feet. After this discovery, a second exploratory well (the Blue Ridge No. 1Greene) was drilled on a separate structure in Elliott County in late 1995. The Blue Ridge well was temporarily abandoned, but had shows of gas and condensate. In early 1996, Carson Associates offset their initial discovery well with the No. 33 Lawson Heirs well. This activity follows a frustrating exploration history in the Rome Trough that is marked by numerous gas and oil shows, but rare commercial production. Only three single-well pools have produced commercial gas from the trough, including the recent Kazee well. Stratigraphic units below the Cambrian-Ordovician Knox Group in the Rome Trough are dramatically thicker than their equivalents on the shelf to the north. The interval in the trough is thought to include rocks as old as Early Cambrian, consisting of a basal sandstone, equivalents of the Shady/Tomstown Dolomite, the Rome Formation, and the Conasauga Formation. Sandstones and fractured shales have been responsible for most of the production to date, but dolostone intervals may also have potential. Limited seismic data indicate possible fan-delta and basin-floor fan deposits that may have reservoir potential.

  11. Optical analysis of a photovoltaic V-trough system installed in western India.

    PubMed

    Maiti, Subarna; Sarmah, Nabin; Bapat, Pratap; Mallick, Tapas K

    2012-12-20

    The low concentrating photovoltaic (PV) system such as a 2× V-trough system can be a promising choice for enhancing the power output from conventional PV panels with the inclusion of thermal management. This system is more attractive when the reflectors are retrofitted to the stationary PV panels installed in a high aspect ratio in the north-south direction and are tracked 12 times a year manually according to preset angles, thus eliminating the need of diurnal expensive tracking. In the present analysis, a V-trough system facing exactly the south direction is considered, where the tilt angle of the PV panels' row is kept constant at 18.34°. The system is installed on the terrace of CSIR-Central Salt and Marine Chemicals Research Institute in Bhavnagar, Gujarat, India (21.47 N, 71.15 E). The dimension of the entire PV system is 9.64 m×0.55 m. The V-troughs made of anodized aluminum reflectors (70% specular reflectivity) had the same dimensions. An in-house developed; experimentally validated Monte Carlo ray-trace model was used to study the effect of the angular variation of the reflectors throughout a year for the present assembly. Results of the ray trace for the optimized angles showed the maximum simulated optical efficiency to be 85.9%. The spatial distribution of solar intensity over the 0.55 m dimension of the PV panel due to the V-trough reflectors was also studied for the optimized days in periods that included solstices and equinoxes. The measured solar intensity profiles with and without the V-trough system were used to calculate the actual optical efficiencies for several sunny days in the year, and results were validated with the simulated efficiencies within an average error limit of 10%. PMID:23262601

  12. Rare gases in lavas from the ultraslow spreading Lena Trough, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Nauret, F.; Moreira, M.; Snow, J. E.

    2010-06-01

    Mid-ocean ridge basalts (MORB) from the Arctic Ocean have been much less studied than those from the Indian, Atlantic, and Pacific due to the difficulty of access related to ice cover. In 2001 and 2004 the Arctic ridges (Gakkel Ridge and Lena Trough) were intensively sampled. In this study we present the first helium, neon, and argon concentrations and isotopic ratios in a suite of samples from the ultraslow spreading Lena Trough (˜0.75 cm/yr effective full rate). Central Lena Trough (CLT) lavas display 4He/3He between 89,710 and 97,530 (R/Ra between 7.4 and 8.1), similar to the mean MORB ratio of 90,000 ± 10,000 (R/Ra = 8 ± 1). In a three neon isotope diagram, the samples fall on the MORB line, without showing any excess of nucleogenic 21Ne. The 40Ar/36Ar ratios vary from 349 to 6964. CLT samples have a typical MORB He and Ne isotopic composition. Rare gases do not indicate any mantle heterogeneities or contribution of subcontinental lithospheric mantle, although this has been suggested previously on the basis of the Sr-Nd and Pb isotopic systems. Based on noble gas systematics, a DUPAL-like anomaly is not observed in the Arctic Ocean. We propose two possible models which reconcile the rare gases with these previous studies. The first is that the Lena Trough mantle has a marble cake structure with small-scale heterogeneities (<1 km), allowing rapid diffusion and homogenization of rare gases compared to elements such as Sr, Nd, and Pb. The second model proposes that the recycled component identified by other isotopic systems was fully degassed at a recent date. It would therefore have a negligible mass budget of rare gases compared to other isotopic systems. This would suggest that the mantle enrichment beneath Lena Trough was generated by rift-forming processes and not by recycling.

  13. Dense Ocean Floor Network for Earthquakes and Tsunamis; DONET/ DONET2, Part2 -Development and data application for the mega thrust earthquakes around the Nankai trough-

    NASA Astrophysics Data System (ADS)

    Kaneda, Y.; Kawaguchi, K.; Araki, E.; Matsumoto, H.; Nakamura, T.; Nakano, M.; Kamiya, S.; Ariyoshi, K.; Baba, T.; Ohori, M.; Hori, T.; Takahashi, N.; Kaneko, S.; Donet Research; Development Group

    2010-12-01

    Yoshiyuki Kaneda Katsuyoshi Kawaguchi*, Eiichiro Araki*, Shou Kaneko*, Hiroyuki Matsumoto*, Takeshi Nakamura*, Masaru Nakano*, Shinichirou Kamiya*, Keisuke Ariyoshi*, Toshitaka Baba*, Michihiro Ohori*, Narumi Takakahashi*, and Takane Hori** * Earthquake and Tsunami Research Project for Disaster Prevention, Leading Project , Japan Agency for Marine-Earth Science and Technology (JAMSTEC) **Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) DONET (Dense Ocean Floor Network for Earthquakes and Tsunamis) is the real time monitoring system of the Tonankai seismogenic zones around the Nankai trough southwestern Japan. We were starting to develop DONET to perform real time monitoring of crustal activities over there and the advanced early warning system. DONET will provide important and useful data to understand the Nankai trough maga thrust earthquake seismogenic zones and to improve the accuracy of the earthquake recurrence cycle simulation. Details of DONET concept are as follows. 1) Redundancy, Extendable function and advanced maintenance system using the looped cable system, junction boxes and the ROV/AUV. DONET has 20 observatories and incorporated in a double land stations concept. Also, we are developed ROV for the 10km cable extensions and heavy weight operations. 2) Multi kinds of sensors to observe broad band phenomena such as long period tremors, very low frequency earthquakes and strong motions of mega thrust earthquakes over M8: Therefore, sensors such as a broadband seismometer, an accelerometer, a hydrophone, a precise pressure gauge, a differential pressure gauge and a thermometer are equipped with each observatory in DONET. 3) For speedy detections, evaluations and notifications of earthquakes and tsunamis: DONET system will be deployed around the Tonankai seismogenic zone. 4) Provide data of ocean floor crustal deformations derived from pressure sensors: Simultaneously, the development of data

  14. Parabolic Anderson Model in a Dynamic Random Environment: Random Conductances

    NASA Astrophysics Data System (ADS)

    Erhard, D.; den Hollander, F.; Maillard, G.

    2016-06-01

    The parabolic Anderson model is defined as the partial differential equation ∂ u( x, t)/ ∂ t = κ Δ u( x, t) + ξ( x, t) u( x, t), x ∈ ℤ d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u( x, 0) = u 0( x), x ∈ ℤ d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2 d κ, split into two at rate ξ ∨ 0, and die at rate (- ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents λ p(κ ) = limlimits _{tto ∞} 1/t log {E} ([u(0,t)]p)^{1/p}, quad p in {N} , qquad λ 0(κ ) = limlimits _{tto ∞} 1/2 log u(0,t). For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ𝓚, where 𝓚 = {𝓚( x, y) : x, y ∈ ℤ d , x ˜ y} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (𝓚), p ∈ ℕ, are given by the formula λ p({K} ) = {sup} {λ p(κ ) : κ in {Supp} ({K} )}, where, for a fixed realisation of 𝓚, Supp(𝓚) is the set of values taken by the 𝓚-field. We also show that for the associated quenched Lyapunov exponent λ 0(𝓚) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(𝓚) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all 𝓚

  15. Hypervelocity Stars and the Restricted Parabolic Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Sari, Re'em; Kobayashi, Shiho; Rossi, Elena M.

    2010-01-01

    Motivated by detections of hypervelocity stars that may originate from the Galactic center, we revisit the problem of a binary disruption by a passage near a much more massive point mass. The six orders of magnitude mass ratio between the Galactic center black hole (BH) and the binary stars allows us to formulate the problem in the restricted parabolic three-body approximation. In this framework, results can be simply rescaled in terms of binary masses, their initial separation, and the binary-to-black hole mass ratio. Consequently, an advantage over the full three-body calculation is that a much smaller set of simulations is needed to explore the relevant parameter space. Contrary to previous claims, we show that, upon binary disruption, the lighter star does not remain preferentially bound to the black hole. In fact, it is ejected in exactly 50% of the cases. Nonetheless, lighter objects have higher ejection velocities, since the energy distribution is independent of mass. Focusing on the planar case, we provide the probability distributions for disruption of circular binaries and for the ejection energy. We show that even binaries that penetrate deeply into the tidal sphere of the BH are not doomed to disruption, but survive in 20% of the cases. Nor do these deep encounters produce the highest ejection energies, which are instead obtained for binaries arriving to 0.1-0.5 of the tidal radius in a prograde orbit. Interestingly, such deep-reaching binaries separate widely after penetrating the tidal radius, but always approach each other again on their way out from the BH. Finally, our analytic method allows us to account for a finite size of the stars and recast the ejection energy in terms of a minimal possible separation. We find that, for a given minimal separation, the ejection energy is relatively insensitive to the initial binary separation.

  16. Cluster eye camera using microlenses on parabolic surface

    NASA Astrophysics Data System (ADS)

    Shen, Hui-Kai; Su, Guo-Dung J.

    2013-10-01

    There are two main types of imaging systems that exist in nature: the single aperture eye and the compound eye. Usually, cameras and most of artificial imaging systems are similar to the single aperture eye. But compound lenses can be more compact than single lenses. Our design is based on insect compound eyes, which also have a wide field of view (FOV). With the rise of micro-optical techniques, fabricating compound lenses has become easier. The simplest form of a curved microlens array is a parabolic surface. In this paper, we proposed a multi-channel imaging system, which combines the principles of the insect compound eye and the human eye. The optical system enables the reduction of track length of the imaging optics to achieve miniaturization. With the aid of optical engineering software ZEMAX, the multi-channel structure is simulated by a curved microlens array, and we use a Hypergon lens as the main lens to simulate the human eye, which can achieve the purpose of the wide FOV. With this architecture, each microlens of a microlens array transmits a segment of the overall FOV. The partial images that are separately recorded in different channels are stitched together to form the final image of the whole FOV by software processing. A 2.74 mm thin imaging system with 59 channels and 90° FOV is optimized using ZEMAX sequential ray tracing software on a 6.16 mm × 4.62 mm image plane. Finally, we will discuss the simulation results of this system and compare it with the optical cluster eye system and a mobile phone patent.

  17. ESA Parabolic Flight, Drop Tower and Centrifuge Opportunities for University Students

    NASA Astrophysics Data System (ADS)

    Callens, Natacha; Ventura-Traveset, Javier; Zornoza Garcia-Andrade, Eduardo; Gomez-Calero, Carlos; van Loon, Jack J. W. A.; Pletser, Vladimir; Kufner, Ewald; Krause, Jutta; Lindner, Robert; Gai, Frederic; Eigenbrod, Christian

    The European Space Agency (ESA) Education Office was established in 1998 with the purpose of motivating young people to study science, engineering and technology subjects and to ensure a qualified workforce for ESA and the European space sector in the future. To this end the ESA Education Office is supporting several hands-on activities including small student satellites and student experiments on sounding rockets, high altitude balloons as well as microgravity and hypergravity platforms. This paper is intended to introduce three new ESA Education Office hands-on activities called "Fly Your Thesis!", "Drop Your Thesis!" and "Spin Your Thesis!". These activities give re-spectively access to aircraft parabolic flight, drop tower and centrifuge campaigns to European students. These educational programmes offer university students the unique opportunity to design, build, and eventually perform, in microgravity or hypergravity, a scientific or techno-logical experiment which is linked to their syllabus. During the "Fly Your Thesis!" campaigns, the students accompany their experiments onboard the A300 Zero-G aircraft, operated by the company Novespace, based in Bordeaux, France, for a series of three flights of 30 parabolas each, with each parabola providing about 20s of microgravity [1]. "Drop Your Thesis!" campaigns are held in the ZARM Drop Tower, in Bremen, Germany. The installation delivers 4.74s of microgravity in dropping mode and 9.3s in the catapulting mode [2]. Research topics such as fluid physics, fundamental physics, combustion, biology, material sciences, heat transfer, astrophysics, chemistry or biochemistry can greatly benefit from using microgravity platforms. "Spin Your Thesis!" campaigns take place in the Large Diameter Centrifuge (LDC) facility, at ESTEC, Noordwijk, in the Netherlands. This facility offers an acceleration from 1 to 20 times Earth's gravity [3]. The use of hypergravity allows completing the scientific picture of how gravity has an

  18. Oceanic Sub-Moho Reflectors in and Around the Segmentation Boundary Between the Tonankai-Nankai Earthquake Area, the Central Nankai Trough

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Kodaira, S.; Miura, S.; Ito, A.; Sato, T.; Park, J.; Obana, K.; Kaneda, Y.

    2006-12-01

    The Nankai Trough is a unique subduction zone because the recurrence intervals of M8 class earthquakes and the segmentation of rupture zones are well documented on the basis of geophysical, geological and historic data. In 2004, large intraslab earthquake (Mw7.5) occurred southeast off the Kii Peninsula, the central Nankai Trough. Recent ocean bottom seismograph observation off the Kii Peninsula shows seismicity concentrated in the oceanic crust and the uppermost mantle. To understand the genesis of such intraslab earthquakes and its relation to large interplate earthquakes as well as to obtain an entire structural image of Nankai Trough subduction seismogenic zone, a wide-angle reflection/refraction survey across the coseismic rupture zone of the Tonankai earthquake was conducted in 2004. This research is part of "Structure research on plate dynamics of the presumed rupture zone of the Tonankai-Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology. The result of structural image shows a bit thicker oceanic crust (>8km) subducting landward, and the existence of oceanic sub-Moho reflectors in the uppermost mantle. The aftershocks of the 2004 off Kii Peninsula earthquake are distributed within the oceanic crust and the uppermantle, which is not consistent with the estimated fault plane of main shock. Comparing the structural image with this aftershock distribution and usual seismicity in the uppermost mantle, the depth of the oceanic sub-Moho reflectors and the intraslab events within the uppermantle are both distributed around 20km. We consider that such sub-Moho reflectors may become a seismic fault of intraslab earthquakes.

  19. How much do we understand the structure and evolution of the Salton Trough?

    NASA Astrophysics Data System (ADS)

    Janecke, S. U.; Dorsey, R. J.; Langenheim, V. E.

    2008-12-01

    The Salton Trough, at the northern end of the Gulf of California, likely formed by different processes than the central and southern Gulf due to the weak rheology of its thick quartz-rich sedimentary fill and its proximity to the transpressional Big Bend and the Eastern California shear zone. Many of its key early structures are buried or poorly exposed, so it is unclear whether deep patches of mafic crust were produced by NE-trending mid-ocean-ridge segments, by E-W extension akin to that seen in the Wagner basin, or by some other process. Three distinct tectonic regimes produced the Salton Trough. (1) Late Miocene extension is poorly understood because much of the record is in the subsurface, and existing evidence from thermochronology in the Sierra el Major and Anza Borrego Park suggests extensional exhumation as old as 10-15 Ma, whereas the oldest stratigraphic evidence for extension is ca. 8-6 Ma. (2) Regional-scale, large-magnitude transtensional deformation began in late Miocene or early Pliocene time (ca. 8-6 Ma). The paleo-San Andreas fault took up most of the strain, with additional dextral shear and extension on detachment faults with breakaways in the W, central? and SE Salton Trough. (3) Pleistocene to modern wrench tectonics followed a massive reorganization at about 1.1-1.3 Ma. Detachment faults were cut, folded and largely abandoned, new dextral faults formed SW of the San Andreas fault, and the SE 2/3 of the paleo-San Andreas fault became inactive. The Imperial, Cerro Prieto, San Jacinto, Elsinore, and San Felipe faults and the Brawley seismic zone all date to this latest period of deformation. The Salton Trough has been interpreted to contain a smothered pair of oceanic spreading centers beneath the Salton Sea and Cerro Prieto geothermal field, two regions of high heat flow and latest Pleistocene volcanism. Patches of dense mafic crust at depth beneath 5-10? km of Pliocene to Holocene sediment and metasedimentary rocks produce two principal

  20. Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough.

    PubMed

    Zhang, Jian; Sun, Qing-lei; Zeng, Zhi-gang; Chen, Shuai; Sun, Li

    2015-08-01

    In this study, we analyzed the bacterial and archaeal diversities of the deep-sea sediments in Iheya North and Iheya Ridge, Okinawa Trough, using the high-throughput sequencing technology of Illumina MiSeq 2500 platform. Four samples (IN1, IN2, IR1 and IR2) were used in this study, of which IN1 and IN2 were located at regions close to and distant, respectively, from the active hydrothermal vents in Iheya North, while IR1 and IR2 were located at regions close to and distant, respectively, from the active hydrothermal vents in Iheya Ridge. The four samples were rich in different metal elements. Sequence analysis based on the V3-V4 regions of 16S rDNA gene obtained 170,363 taxon tags, including 122,920 bacterial tags and 47,433 archaeal tags, which cover 31 phyla, 50 classes, 59 orders, 87 families, and 138 genera. Overall, the microbial communities in all samples were dominated by bacteria, in which Proteobacteria was the largest phylum, followed by Chloroflexi, Firmicutes, Acidobacteria, Actinobacteria, Gemmatimonadetes, and Nitrospirae, which together accounted for 64.6% of the total taxon tags. In contrast to the high bacterial diversities, the archaeal diversity was low and dominated by Thaumarchaeota, which accounted for 22.9% of the total taxon tags. Comparative analysis showed that (i) IN2 and IR2 exhibited more microbial richness than IN1 and IR1, (ii) IR1 and IR2 exhibited higher microbial diversities than IN1 and IN2, (iii) samples from Iheya Ridge and Iheya North fell into two groups based on principle component analysis. Furthermore, microbes potentially involved in sulfur, nitrogen, and metal metabolism and cycling were detected in all samples. These results provide for the first time a comparative picture of the microbial diversities in the sediments of Iheya North and Iheya Ridge and indicate that geological features and distance from active hydrothermal vents likely play important roles in the shaping of microbial community structure.

  1. Electrodynamics of the high-latitude trough: Its relationship with convection flows and field-aligned currents

    NASA Astrophysics Data System (ADS)

    Zou, Shasha; Moldwin, Mark B.; Nicolls, Michael J.; Ridley, Aaron J.; Coster, Anthea J.; Yizengaw, Endawoke; Lyons, Larry R.; Donovan, Eric F.

    2013-05-01

    We present a detailed case study of the electrodynamics of a high-latitude trough observed at ~ 12 UT (~1 MLT) on 8 March 2008 using multiple instruments, including incoherent scattering radar (ISR), GPS total electron content (TEC), magnetometers, and auroral imager. The electron density within the trough dropped as much as 80% within 6 minutes. This trough was collocated with a counterclockwise convection flow vortex, indicating divergent horizontal electric fields and currents. Together with a collocated dark area shown in auroral images, the observations provide strong evidence for an existence of downward field-aligned currents (FACs) collocated with the high-latitude trough. This is further supported by assimilative mapping of ionospheric electrodynamics results. In addition, the downward FACs formed at about the same time as a substorm onset and east of the Harang reversal, suggesting it is part of the substorm current wedge. It has long been a puzzle why this type of high-latitude trough predominantly occurs just east of the Harang reversal in the postmidnight sector. We suggest that the high-latitude trough is associated with the formation of downward FACs of the substorm current system, which usually occur just east of the Harang reversal. In addition, we find that the ionospheric electron temperature within the high latitude trough decreases in the F region while increasing in the E region. We discuss possible mechanisms responsible for the complex change in electron temperature, such as ion composition change and/or presence of downward FACs.

  2. Interband magneto-spectroscopy in InSb square and parabolic quantum wells

    SciTech Connect

    Kasturiarachchi, T.; Edirisooriya, M.; Mishima, T. D.; Doezema, R. E.; Santos, M. B.; Saha, D.; Pan, X.; Sanders, G. D.; Stanton, C. J.

    2015-06-07

    We measure the magneto-optical absorption due to intersubband optical transitions between conduction and valence subband Landau levels in InSb square and parabolic quantum wells. InSb has the narrowest band gap (0.24 eV at low temperature) of the III–V semiconductors leading to a small effective mass (0.014 m{sub 0}) and a large g–factor (−51). As a result, the Landau level spacing is large at relatively small magnetic fields (<8 T), and one can observe spin-splitting of the Landau levels. We examine two structures: (i) a multiple-square-well structure and (ii) a structure containing multiple parabolic wells. The energies and intensities of the strongest features are well explained by a modified Pidgeon-Brown model based on an 8-band k•p model that explicitly incorporates pseudomorphic strain. The strain is essential for obtaining agreement between theory and experiment. While modeling the square well is relatively straight-forward, the parabolic well consists of 43 different layers of various thickness to approximate a parabolic potential. Agreement between theory and experiment for the parabolic well validates the applicability of the model to complicated structures, which demonstrates the robustness of our model and confirms its relevance for developing electronic and spintronic devices that seek to exploit the properties of the InSb band structure.

  3. Curvilinear parabolic approximation for surface wave transformation with wave current interaction

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.

    2005-04-01

    The direct coordinate transformation method, which only transforms independent variables and retains Cartesian dependent variables, may not be an appropriate method for the purpose of simplifying the curvilinear parabolic approximation of the vector form of the wave-current equation given by Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. In this paper, the covariant-contravariant tensor method is used for the curvilinear parabolic approximation. We use the covariant components of the wave number vector and contravariant components of the current velocity vector so that the derivation of the curvilinear equation closely follows the higher-order approximation in rectangular Cartesian coordinates in Kirby [Higher-order approximations in the parabolic equation method for water waves, J. Geophys. Res. 91 (1986) 933-952]. The resulting curvilinear equation can be easily implemented using the existing model structure and numerical schemes adopted in the Cartesian parabolic wave model [J.T. Kirby, R.A. Dalrymple, F. Shi, Combined Refraction/Diffraction Model REF/DIF 1, Version 2.6. Documentation and User's Manual, Research Report, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware, Newark, 2004]. Several examples of wave simulations in curvilinear coordinate systems, including a case with wave-current interaction, are shown with comparisons to theoretical solutions or measurement data.

  4. Electrodynamics of the high-latitude trough: Its relationship with convection flows and field-aligned currents

    NASA Astrophysics Data System (ADS)

    Zou, S.; Moldwin, M.; Nicolls, M. J.; Ridley, A. J.; Coster, A. J.; Yizengaw, E.; Lyons, L. R.; Donovan, E.

    2012-12-01

    The ionospheric troughs are regions of remarkable electron density depression at subauroral and auroral latitudes, and significant electron density gradients exist at their boundaries. The high-latitude trough is defined as the low-density region present within the auroral oval or the polar cap. We present a detailed case study of the electrodynamics of a high-latitude trough observed at ~ 12 UT (~1 MLT) on March 8, 2008 using multiple instruments, including incoherent scattering radar (ISR), GPS total electron content (TEC), magnetometers and auroral imager. The electron density within the trough dropped as much as 80% within 6 minutes. This trough was collocated with a counter-clockwise convection flow vortex, indicating divergent horizontal electric fields and currents. Together with a collocated dark area shown in auroral images, the observations provide strong evidence for an existence of downward field-aligned currents (FACs) collocated with the high-latitude trough. This is further supported by Assimilative Mapping of Ionospheric Electrodynamics (AMIE) results. In addition, the downward FACs formed at about the same time as a substorm onset and east of the Harang reversal, suggesting it is part of the substorm current wedge. It has long been a puzzle why this type of high-latitude trough predominantly occurs just east of the Harang reversal in the post-midnight sector. We suggest that the high-latitude trough is associated with the formation of downward FACs of the substorm current system, which usually occur just east of the Harang reversal. In addition, we find that the ionospheric electron temperature within the high latitude trough decreases in the F region while increasing in the E region. We discuss possible processes responsible for the complex change in electron temperature, such as ion composition change and/or presence of downward FACs.

  5. 3D Porosity Estimation of the Nankai Trough Sediments from Core-log-seismic Integration

    NASA Astrophysics Data System (ADS)

    Park, J. O.

    2015-12-01

    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake fault. Historic, great megathrust earthquakes with a recurrence interval of 100-200 yr have generated strong motion and large tsunamis along the Nankai Trough subduction zone. At the Nankai Trough margin, the Philippine Sea Plate (PSP) is being subducted beneath the Eurasian Plate to the northwest at a convergence rate ~4 cm/yr. The Shikoku Basin, the northern part of the PSP, is estimated to have opened between 25 and 15 Ma by backarc spreading of the Izu-Bonin arc. The >100-km-wide Nankai accretionary wedge, which has developed landward of the trench since the Miocene, mainly consists of offscraped and underplated materials from the trough-fill turbidites and the Shikoku Basin hemipelagic sediments. Particularly, physical properties of the incoming hemipelagic sediments may be critical for seismogenic behavior of the megathrust fault. We have carried out core-log-seismic integration (CLSI) to estimate 3D acoustic impedance and porosity for the incoming sediments in the Nankai Trough. For the CLSI, we used 3D seismic reflection data, P-wave velocity and density data obtained during IODP (Integrated Ocean Drilling Program) Expeditions 322 and 333. We computed acoustic impedance depth profiles for the IODP drilling sites from P-wave velocity and density data. We constructed seismic convolution models with the acoustic impedance profiles and a source wavelet which is extracted from the seismic data, adjusting the seismic models to observed seismic traces with inversion method. As a result, we obtained 3D acoustic impedance volume and then converted it to 3D porosity volume. In general, the 3D porosities show decrease with depth. We found a porosity anomaly zone with alteration of high and low porosities seaward of the trough axis. In this talk, we will show detailed 3D porosity of the incoming sediments, and present implications of the porosity anomaly zone for the

  6. Observations of the Fawn Trough Current over the Kerguelen Plateau from instrumented elephant seals

    NASA Astrophysics Data System (ADS)

    Roquet, Fabien; Park, Young-Hyang; Guinet, Christophe; Bailleul, Frédéric; Charrassin, Jean-Benoît

    2009-10-01

    Due to its great meridional extent and relatively shallow depths, the Kerguelen Plateau constitutes a major barrier to the eastward flowing Antarctic Circumpolar Current in the Indian sector of the Southern Ocean. While most of the Antarctic Circumpolar Current transport is deflected north of the Kerguelen Islands, the remainder (˜ 50 Sv, 1 Sv = 10 6 m 3 s - 1 ) must pass south of the islands, most probably through the Fawn and Princess Elizabeth Troughs. However, the paucity of finely resolved quasi-synoptic hydrographic data in this remote and infrequently sampled area has limited the progress in our knowledge of the regional circulation. Since 2004, a new approach using elephant seals from the Kerguelen Islands as autonomous oceanographic profilers has provided new information on the hydrography over the Kerguelen Plateau, covering the entire Antarctic Zone between the Polar Front and Antarctica, with a mean along-track resolution of about 25 km. These finely resolved bio-logged data revealed details of a strong northeastward current found across the Fawn Trough (sill depth: 2600 m; 56°S, 78°E). This so-called Fawn Trough Current transports cold Antarctic waters found mostly south of the Elan Bank, between the Ice Limit (58°S) and the Antarctic Divergence (64°S) in the eastern Enderby Basin, toward the Australian-Antarctic Basin. Our analysis also demonstrates that the Deep Western Boundary Current, which carries cold Antarctic water along the eastern flank of the southern Kerguelen Plateau collides with Fawn Trough Current at the outlet of the Fawn Trough sill. In other words, the Fawn Trough constitutes a veritable bottleneck, channelling the quasi-totality of the Antarctic Circumpolar flow found south of the Polar Front. Thanks to the unprecedented fine resolution of seal-borne data, a branch of flow centered at the Winter Water isotherm of 1 °C is also revealed along the northern escarpment of the Elan Bank, and then along the southern edge of Heard

  7. Environmental Controls and Eco-geomorphic Interactions of the Barchan-to-parabolic Dune Stabilisation and the Parabolic-to-barchan Dune Reactivation

    NASA Astrophysics Data System (ADS)

    Yan, Na; Baas, Andreas

    2015-04-01

    Parabolic dunes are one of a few common aeolian landforms which are highly controlled by eco-geomorphic interactions. Parabolic dunes, on the one hand, can be developed from highly mobile dune landforms, barchans for instance, in an ameliorated vegetation condition; or on the other hand, they can be reactivated and transformed back into mobile dunes due to vegetation deterioration. The fundamental mechanisms and eco-geomorphic interactions controlling both dune transformations remain poorly understood. To bridge the gap between complex processes involved in dune transformations on a relatively long temporal scale and real world monitoring records on a very limited temporal scale, this research has extended the DECAL model to incorporate 'dynamic' growth functions and the different 'growth' of perennial shrubs between growing and non-growing seasons, informed by field measurements and remote sensing analysis, to explore environmental controls and eco-geomorphic interactions of both types of dune transformation. A non-dimensional 'dune stabilising index' is proposed to capture the interactions between environmental controls (i.e. the capabilities of vegetation to withstand wind erosion and sand burial, the sandy substratum thickness, the height of the initial dune, and the sand transport potential), and establish the linkage between these controls and the geometry of a stabilising dune. An example demonstrates how to use the power-law relationship between the dune stabilising index and the normalised migration distance to assist in extrapolating the historical trajectories of transforming dunes. The modelling results also show that a slight increase in vegetation cover of an initial parabolic dune can significantly increase the reactivation threshold of climatic impact (both drought stress and wind strength) required to reactivate a stabilising parabolic dune into a barchan. Four eco-geomorphic interaction zones that govern a barchan-to-parabolic dune transformation

  8. Porous media matric potential and water content measurements during parabolic flight.

    PubMed

    Norikane, Joey H; Jones, Scott B; Steinberg, Susan L; Levine, Howard G; Or, Dani

    2005-01-01

    Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.

  9. Porous media matric potential and water content measurements during parabolic flight

    NASA Technical Reports Server (NTRS)

    Norikane, Joey H.; Jones, Scott B.; Steinberg, Susan L.; Levine, Howard G.; Or, Dani

    2005-01-01

    Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.

  10. Existence of eigenvalues of problem with shift for an equation of parabolic-hyperbolic type

    NASA Astrophysics Data System (ADS)

    Tengayeva, Aizhan; Dildabek, Gulnar

    2016-08-01

    In the present paper, a spectral problem for an operator of parabolic-hyperbolic type of I kind with non-classical boundary conditions is considered. The problem is considered in a standard domain. The parabolic part of the space is a rectangle. And the hyperbolic part of the space coincides with a characteristic triangle. We consider a problem with the local boundary condition in the domain of parabolicity and with the boundary condition with displacement in the domain of hyperbolicity. We prove the strong solvability of the considered problem. The main aim of the paper is the research of spectral properties of the problem. The existence of eigenvalues of the problem is proved.

  11. A method for the spatial discretization of parabolic equations in one space variable

    SciTech Connect

    Skeel, R.D.; Berzins, M.

    1987-02-01

    The aim of this paper is to describe and analyze a new spatial discretization method for parabolic equations in one space variable: Ordinary and parabolic partial differential equations in one space variable x often have a singularity due to the use of polar cylindrical or spherical coordinates. The method we propose is a simple piecewise nonlinear Galerkin/Petrov-Galerkin method which is second order accurate in space. (It supersedes the method proposed by Skeel). The case m = 1 involves the use of the logarithm function, which is probably the only accurate way to model the logarithmic singularity present in the solution. A code based on a variant of the proposed method has already been included as part of the SPRINT package of Berzins, Dew, and Furzeland. The method that we propose here will be distributed in the next release of the D03P (parabolic equations) section of the NAG Library. 18 refs.

  12. A parabolic analogue of the higher-order comparison theorem of De Silva and Savin

    NASA Astrophysics Data System (ADS)

    Banerjee, Agnid; Garofalo, Nicola

    2016-01-01

    We show that the quotient of two caloric functions which vanish on a portion of the lateral boundary of a H k + α domain is H k + α up to the boundary for k ≥ 2. In the case k = 1, we show that the quotient is in H 1 + α if the domain is assumed to be space-time C 1, α regular. This can be thought of as a parabolic analogue of a recent important result in [8], and we closely follow the ideas in that paper. We also give counterexamples to the fact that analogous results are not true at points on the parabolic boundary which are not on the lateral boundary, i.e., points which are at the corner and base of the parabolic boundary.

  13. Fan beam generated by a linear-array fed parabolic reflector

    NASA Technical Reports Server (NTRS)

    Huang, John; Rahmat-Samii, Yahya

    1990-01-01

    The theoretical background and the results of computer simulations and experimental studies for a parabolic reflector fed by a linear array are detailed. The concept of using a parabolic reflector antenna fed by a small linear array to generate fan-beam patterns is validated. Large angle scan along the broad-beam direction of the fan beam can be achieved by offsetting the linear array laterally. It is both empirically and numerically demonstrated that the array feed must be displaced in the reflector's axial direction to an optimum location from the focal plane in order to achieve the best antenna gain performance. As a result, the linear-array-fed parabolic reflector can be used in place of a long planar array in a multifunctional reflector antenna system.

  14. Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses.

    PubMed

    Nguyen, Dat; Piracha, Mohammad Umar; Mandridis, Dimitrios; Delfyett, Peter J

    2011-06-20

    Self-phase modulation in fiber amplifiers can significantly degrade the quality of compressed pulses in chirped pulse amplification systems. Parabolic pulses with linear frequency chirp are suitable for suppressing nonlinearities, and to achieve high peak power pulses after compression. In this paper, we present an active time domain technique to generate parabolic pulses for chirped pulse amplification applications. Pulses from a mode-locked laser are temporally stretched and launched into an amplitude modulator, where the drive voltage is designed using the spectral shape of the input pulse and the transfer function of the modulator, resulting in the generation of parabolic pulses. Experimental results of pulse shaping with a pulse train from a mode-locked laser are presented, with a residual error of less than 5%. Moreover, an extinction ratio of 27 dB is achieved, which is ideal for chirped pulse amplification applications.

  15. Wind interaction with falling ejecta - Origin of the parabolic features on Venus

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; Melosh, H. J.

    1992-01-01

    A quantitative model in which the parabolic features are produced by the interaction of the zonal winds with material ejected ballistically from the impact crater is proposed. As the ejecta particles fall through the atmosphere, the winds transport them downwind from their entry point, smaller particles being transported a greater distance. Since the ejecta distribution is initially axially symmetric and smaller particles are thrown farther from the crater, the winds blow the particles on the upwind side back upon one another, leading to a pile-up of material. On the downwind side, the winds disperse the ejecta particles and no pile-up occurs. The resulting thickness distribution on the Venusian surface matches the observed parabolic features closely. The dual parabolic features associated with the crater Carson is also explained by this model.

  16. Two parabolic equations for propagation in layered poro-elastic media.

    PubMed

    Metzler, Adam M; Siegmann, William L; Collins, Michael D; Collis, Jon M

    2013-07-01

    Parabolic equation methods for fluid and elastic media are extended to layered poro-elastic media, including some shallow-water sediments. A previous parabolic equation solution for one model of range-independent poro-elastic media [Collins et al., J. Acoust. Soc. Am. 98, 1645-1656 (1995)] does not produce accurate solutions for environments with multiple poro-elastic layers. First, a dependent-variable formulation for parabolic equations used with elastic media is generalized to layered poro-elastic media. An improvement in accuracy is obtained using a second dependent-variable formulation that conserves dependent variables across interfaces between horizontally stratified layers. Furthermore, this formulation expresses conditions at interfaces using no depth derivatives higher than first order. This feature should aid in treating range dependence because convenient matching across interfaces is possible with discretized derivatives of first order in contrast to second order.

  17. Seismic imaging in laboratory trough laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Brito, Daniel; Poydenot, Valier; Garambois, Stéphane; Diaz, Julien; Bordes, Clarisse; Rolando, Jean-Paul

    2016-04-01

    Mimic near-surface seismic field measurements at a small scale, in the laboratory, under a well-controlled environment, may lead to a better understanding of wave propagation in complex media such as in geological materials. Laboratory experiments can help in particular to constrain and refine theoretical and numerical modelling of physical phenomena occurring during seismic propagation, in order to make a better use of the complete set of measurements recorded in the field. We have developed a laser Doppler vibrometer (laser interferometry) platform designed to measure non-contact seismic displacements (or velocities) of a surface. This technology enables to measure displacements as small as a tenth of a nanometer on a wide range of frequencies, from a few tenths to a few megahertz. Our experimental set-up is particularly suited to provide high-density spatial and temporal records of displacements on the edge of any vibrating material. We will show in particular a study of MHz wave propagation (excited by piezoelectric transducers) in cylindrical cores of typical diameter size around 10 cm. The laser vibrometer measurements will be first validated in homogeneous materials cylinders by comparing the measurements to a direct numerical simulation. Special attention will be given to the comparison of experimental versus numerical amplitudes of displacements. In a second step, we will conduct the same type of study through heterogeneous carbonate cores, possibly fractured. Tomographic images of velocity in 2D slices of the carbonate core will be derived based upon on the time of first arrival. Preliminary attempts of tomographic attenuation maps will also be presented based on the amplitudes of first arrivals. Experimental records will be confronted to direct numerical simulations and tomographic images will be compared to x-ray scanner imaging of the cylindrical cores.

  18. Seismic stratigraphic architecture of the Disko Bay trough-mouth fan system, West Greenland

    NASA Astrophysics Data System (ADS)

    Hofmann, Julia C.; Knutz, Paul C.

    2015-04-01

    Spatial and temporal changes of the Greenland Ice Sheet on the continental shelf bordering Baffin Bay remain poorly constrained. Then as now, fast-flowing ice streams and outlet glaciers have played a key role for the mass balance and stability of polar ice sheets. Despite their significance for Greenland Ice Sheet dynamics and evolution, our understanding of their long-term behaviour is limited. The central West Greenland margin is characterized by a broad continental shelf where a series of troughs extend from fjords to the shelf margin, acting as focal points for trough-mouth fan (TMF) accummulations. The sea-ward bulging morphology and abrupt shelf-break of these major depositional systems is generated by prograding depocentres that formed during glacial maxima when ice streams reached the shelf edge, delivering large amounts of subglacial sediment onto the continental slope (Ó Cofaigh et al., 2013). The aim of this study is to unravel the seismic stratigraphic architecture and depositional processes of the Disko Bay TMF, aerially the largest single sedimentary system in West Greenland, using 2D and 3D seismic reflection data, seabed bathymetry and stratigraphic information from exploration well Hellefisk-1. The south-west Disko Bay is intersected by a deep, narrow trough, Egedesminde Dyb, which extends towards the southwest and links to the shallower and broader cross-shelf Disko Trough (maximum water depths of > 1000 m and a trough length of c. 370 km). Another trough-like depression (trough length of c. 120 km) in the northern part of the TMF, indicating a previous position of the ice stream, can be distinguished on the seabed topographic map and the seismic images. The Disko Bay TMF itself extends from the shelf edge down to the abyssal plain (abyssal floor depths of 2000 m) of the southern Baffin Bay. Based on seismic stratigraphic configurations relating to reflection terminations, erosive patterns and seismic facies (Mitchum et al., 1977), the TMF

  19. Hydrocarbon geochemistry of hydrothermally generated petroleum from Escanaba trough, offshore Californi U.S.A.

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Hostettler, F.D.

    1990-01-01

    In 1986, three samples of sulfide-rich sediments, impregnated with hydrothermally derived, asphaltic petroleum, were recovered in a dredge and by submersible from Escanaba Trough, the sediment-covered, southern end of the Gorda Ridge spreading axis, offshore northern California. The molecular distributions of hydrocarbons in the two pyrrhotite-rich samples recovered by submersible are similar and compare well the hydrocarbon composition of the first pyrrhotite-rich samples containing petroleum discovered at a 1985 dredge site about 30 km to the south of the site of the submersible dive. In contrast, the 1986 dredge sample, composed of a polymetallic assemblage of sulfides, containes petroleum in which the distribution of hydrocarbons indicates a slightly higher of maturity relative to the other samples. The observation that petroleum of variable composition occurs with metallic sulfides at two and probably more distinct site indicates that petroleum generation may be a common process in the hydrothermally active Escanaba Trough. ?? 1990.

  20. Weak Gravitational Lensing by Galaxy Troughs in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Gruen, Daniel; Dark Energy Survey Collaboration

    2016-06-01

    The Dark Energy Survey (DES) is in the process of imaging 5000 sq. deg. of the southern sky in five broad-band filters. Its primary purpose is to constrain cosmology and the physics of dark energy using weak gravitational lensing, galaxy clusters, baryonic acoustic oscillations, and supernova distance measurements.I will give an overview of weak gravitational lensing results from early DES data, with a focus on the newly developed galaxy trough statistics. Using the latter, we have made the highest signal-to-noise lensing measurements of the low density Universe to date, probing gravity and structure formation in the underdense regime. Besides these recent results, I will give an outlook on cosmological and astrophysical applications of the trough lensing signal.

  1. Contrasting modes of rifting: The Benue Trough and Cameroon Volcanic Line, West Africa

    NASA Astrophysics Data System (ADS)

    Okereke, C. S.

    1988-08-01

    The Benue trough of west Africa is commonly believed to be a rift feature that originated in the Cretaceous at about the time that Africa and South America began to separate. Bouguer gravity and available geological data in the trough indicate that its formation was probably the result of regional horizontal stresses in the lithosphere, causing crustal extension and surface subsidence. By contrast, the data for the adjoining Cameroon volcanic line suggests that the associated tensional stresses relate to mantle upwarp causing thinning of the lithosphere and regional crustal uplift similar to that associated with the Kenya rift. Thus the association of passive and active rifts seen in the Afro-Arabia rift system is also a feature of the Cretaceous rift system in west Africa.

  2. The longitude dependence of the dayside F region trough - A detailed model-observation comparison

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Schunk, R. W.; Whalen, J. A.

    1990-01-01

    The nighttime main F-region trough extends into the sunlit afternoon sector. This trough feature exhibits both a strong magnetic-activity dependence and a longitude (UT) dependence. Whalen (1987), using IGY ionosonde data, showed that both of these effects are readly extracted from f0F2 observations. This study shows that the longitude effect is the same as that contained in the Utah State University time-dependent ionospheric model. It arises from the offset of the geomagnetic axis from the geographic axis. The magnetic-activity dependency is associated with the westward convection in the afternoon sector. It is also contained in the ionospheric model via the empirical magnetospheric convection model.

  3. Gafsa trough of central Tunisia: Basin evolution and maturation of hydrocarbons

    SciTech Connect

    Schamel, S.; Reed, J.K. ); Traut, M. ); Hassine, B.K. )

    1991-03-01

    The Gafsa trough of onshore central Tunisia is one of the more interesting and underexplored features of North Africa. It is a 5-12 km deep, east-west-trending depression along the inner edge of the Tunisian-Libyan shelf margin. The basin has had a long and virtually uninterrupted history of subsidence from the late Paleozoic into the early Cenozoic. Subsidence began in the late Carboniferous, soon after the close of the Hercynian orogeny, and resulted in deposition of a 3000+ m succession of Permo-Carboniferous carbonates and shale that pinches out southward onto the Saharan Flexure. The tectonic setting for this earliest phase of subsidence is not clear. The main episode of subsidence, which began in the Middle Triassic, continued through the Jurassic as left-lateral, transtensional rifting along the South Saharan and Maghrebian Shear zones. A set of organic maturation maps for onshore central Tunisia depicts the minimum time of entry into the oil and gas generative windows of the two potential source rocks in the region, the Lower Silurian Tannezufft Formation and Middle-Upper Jurassic basinal shales. Maturation modeling suggests that the Lower Silurian source rocks beneath the deeper portions of the Gafsa trough are overmature, even for generation of dry gas. Everywhere north of the Saharan Flexure potential Paleozoic source rocks are highly mature to overmature. The Middle-Upper Jurassic basinal shales in the deeper, central portions of the Gafsa trough entered the oil generative window as early as mid-cretaceous time and into the gas generative window in the Late Cretaceous - early Tertiary. These possible source rocks are mature to highly mature beneath nearly all of the basin. The Gafsa trough is a probable gas province, with occurrences of condensate possible.

  4. Deepwater redox changes in the southern Okinawa Trough since the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Dou, Yanguang; Yang, Shouye; Li, Chao; Shi, Xuefa; Liu, Jihua; Bi, Lei

    2015-06-01

    In this study, rare earth element (REE) was treated as a paleo-redox proxy to investigate the changes of depositional environment in the southern Okinawa Trough since the last glacial maximum. The acid-leachable fraction (leachate) of the sediments recovered from the ODP Site 1202B is dominated by biogenic and authigenic components while detrital contamination is minor. The significant enrichment of middle REE suggests a large contribution from authigenic Mn oxyhydroxides and cerium (Ce) anomaly can indicate deepwater redox change. The REE parameters including Ce anomaly in the leachate exhibit remarkable and abrupt changes in the early Holocene (∼9.5 ka) and during LGM (∼20 ka). An increase of Ce anomaly at 28-22 ka implies the suboxic deepwater condition probably caused by increased primary productivity. Weak positive Ce anomalies during the last glacial maximum and deglaciation suggest an oxic depositional environment responding to the enhanced deepwater ventilation with the advection of the North Pacific Intermediate Water and/or South China Sea Intermediate Water into the trough. A decrease of Ce anomaly in the early Holocene might be caused by the intrusion and strengthening of the Kuroshio Current in the trough that enhanced the water stratification and induced a gradual development of suboxic depositional condition. Furthermore, an abrupt change of chemical composition at ca. 4 ka probably indicates a decrease of dissolved oxygen in deepwater and a weakening of ventilation in the Okinawa Trough. This study suggests that REE proxy can provide new insights into the linkage among surface current, deepwater circulation and sediment record in the continental margin where terrigenous input dominates.

  5. Evidence for Recent Liquid Water on Mars: Gullies in Sirenum Fossae Trough

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This mosaic of two Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images shows about 20 different gullies coming down the south-facing wall of a trough in the Sirenum Fossae/Gorgonum Chaos region of the martian southern hemisphere. Each channel and its associated fan--or apron--of debris appears to have started just below the same hard, resistant layer of bedrock located approximately 100 meters (about 325 feet) below the top of the trough wall. The layer beneath this hard, resistant bedrock is interpreted to be permeable, which allows ground water to percolate through it and--at the location of this trough--seep out onto the martian surface. The channels and aprons only occur on the south-facing slope of this valley created by faults on each side of the trough. The depression is approximately 1.4 km (0.9 mi) across.

    The mosaic was constructed from two pictures taken on September 16, 1999, and May 1, 2000. The black line is a gap between the two images that was not covered by MOC. The scene covers an area approximately 5.5 kilometers (3.4 miles) wide by 4.9 km (3.0 mi) high. Sunlight illuminates the area from the upper left. The image is located near 38.5oS, 171.3oW. MOC high resolution images are taken black-and-white (grayscale); the color seen here has been synthesized from the colors of Mars observed by the MOC wide angle cameras and by the Viking Orbiters in the late 1970s.

  6. Mesozoic evolution of the Valencia trough: Implications for the understanding of the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Etheve, Nathalie; Frizon de Lamotte, Dominique; Mohn, Geoffroy; Roca, Eduard; Gorini, Christian; Blanpied, Christian

    2014-05-01

    The Western Mediterranean records a multi-stage tectonic evolution characterized by a complex succession of rifting to compressive episodes during the Cenozoic. The Valencia through was formed in this geodynamic framework and is classically interpreted as an aborted Tertiary rift related to back-arc extension. Notably, the Tertiary rifting is superimposed to the Jurassic opening of the Tethys basin, the early Cretaceous opening of the Bay of Biscay-Pyrenees basins and the late Cretaceous-early Tertiary inversion of these basins (e.g. Iberian range, Catalan Coastal range). Since the last twenty years, many studies contributed to the understanding of the Tertiary history of this area, whereas the pre-Tertiary evolution of the Valencia trough remains poorly investigated. Therefore, we initiated a research project in the Valencia trough benefiting from the acquisition of high quality seismic surveys allowing a better imaging of the Mesozoic sequences. This PhD project aims to understand the mechanisms and the role of structural inheritance that controlled the evolution of the Valencia trough and its impact on the sedimentary infilling since the Mesozoic. The relation between the sedimentary infilling, subsidence and crustal thinning mechanisms during the Cenozoic are investigated aiming to unravel critical information on rifting processes. This study will be based on correlations between onshore and offshore observations. Structural and stratigraphic evolution will be defined on land and compared with seismic sections and well data at sea. Eventually, these data will enable us to propose coherent land-sea interpretations of the area, providing a better understanding of the tectono-stratigraphic context. Our poster show preliminary results obtained from fieldwork on the western margin of the Valencia trough coupled with seismic interpretations. Eventually, results of this study may lead to better constrain the kinematic reconstruction of the western Mediterranean

  7. Geothermal resources of rifts: A comparison of the rio grande rift and the salton trough

    NASA Astrophysics Data System (ADS)

    Swanberg, Chandler A.

    1983-05-01

    The Rio Grande Rift and the Salton Trough are the best developed rift systems in the United States and both share many features common to rifts in general, including geothermal resources. These two rifts have different tectonic and magmatic histories, however, and these differences are reflected in the nature of their geothermal resources. The Salton Trough is a well developed and successful rift. It is the landward extension of the Gulf of California spreading center, which has separated Baja, California, from the remainder of Mexico. Quaternary silicic magmatization has occurred and several of the geothermal resources are associated with recent rhyolitic intrusions. Such resources tend to be high temperature (> 200°C). Greenschist facies metamorphism has been observed in several of the geothermal wells. Localized upper crustal melting is a distinct possibility and there is increasing speculation that very high temperature (> 300°C) geothermal fluids may underlie a large portion of the central trough at depths in excess of 4 km. Low temperature geothermal resources associated with shallow hydrothermal convection are less common and tend to be located on the flanks of the trough or in the Coachella Valley to the north of the zone of active rifting. In contrast, the Rio Grande Rift is less well developed. Recent volcanism consists primarily of mantle-derived basalts, which have not had sufficient residence time within the crust to generate significant crustal melting. The geothermal resources within the Rio Grande Rift do not correlate well with these young basalts. Rather, the quantity of geothermal resources are low temperature (< 100°C) and result from forced hydrothermal convection which discharges at constrictions within or at the end of the major sedimentary basins. High temperature resources are less common and the only discovered example is the Valles Caldera of northern New Mexico ( T = 250-300°C). The deep interiors of the sedimentary basins of the Rio

  8. Parabolic replicator dynamics and the principle of minimum Tsallis information gain

    PubMed Central

    2013-01-01

    Background Non-linear, parabolic (sub-exponential) and hyperbolic (super-exponential) models of prebiological evolution of molecular replicators have been proposed and extensively studied. The parabolic models appear to be the most realistic approximations of real-life replicator systems due primarily to product inhibition. Unlike the more traditional exponential models, the distribution of individual frequencies in an evolving parabolic population is not described by the Maximum Entropy (MaxEnt) Principle in its traditional form, whereby the distribution with the maximum Shannon entropy is chosen among all the distributions that are possible under the given constraints. We sought to identify a more general form of the MaxEnt principle that would be applicable to parabolic growth. Results We consider a model of a population that reproduces according to the parabolic growth law and show that the frequencies of individuals in the population minimize the Tsallis relative entropy (non-additive information gain) at each time moment. Next, we consider a model of a parabolically growing population that maintains a constant total size and provide an “implicit” solution for this system. We show that in this case, the frequencies of the individuals in the population also minimize the Tsallis information gain at each moment of the ‘internal time” of the population. Conclusions The results of this analysis show that the general MaxEnt principle is the underlying law for the evolution of a broad class of replicator systems including not only exponential but also parabolic and hyperbolic systems. The choice of the appropriate entropy (information) function depends on the growth dynamics of a particular class of systems. The Tsallis entropy is non-additive for independent subsystems, i.e. the information on the subsystems is insufficient to describe the system as a whole. In the context of prebiotic evolution, this “non-reductionist” nature of parabolic replicator

  9. Generation and tooth contact analysis of spiral bevel gears with predesigned parabolic functions of transmission errors

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Lee, Hong-Tao

    1989-01-01

    A new approach for determination of machine-tool settings for spiral bevel gears is proposed. The proposed settings provide a predesigned parabolic function of transmission errors and the desired location and orientation of the bearing contact. The predesigned parabolic function of transmission errors is able to absorb piece-wise linear functions of transmission errors that are caused by the gear misalignment and reduce gear noise. The gears are face-milled by head cutters with conical surfaces or surfaces of revolution. A computer program for simulation of meshing, bearing contact and determination of transmission errors for misaligned gear has been developed.

  10. Self-similar propagation and amplification of parabolic pulses in optical fibers.

    PubMed

    Fermann, M E; Kruglov, V I; Thomsen, B C; Dudley, J M; Harvey, J D

    2000-06-26

    Ultrashort pulse propagation in high gain optical fiber amplifiers with normal dispersion is studied by self-similarity analysis of the nonlinear Schrödinger equation with gain. An exact asymptotic solution is found, corresponding to a linearly chirped parabolic pulse which propagates self-similarly subject to simple scaling rules. The solution has been confirmed by numerical simulations and experiments studying propagation in a Yb-doped fiber amplifier. Additional experiments show that the pulses remain parabolic after propagation through standard single mode fiber with normal dispersion.

  11. Dynamic selective etching: a facile route to parabolic optical fiber nano-probe.

    PubMed

    Zhu, Wei; Shi, Tielin; Tang, Zirong; Gong, Bo; Liao, Guanglan; Tully, John

    2013-03-25

    A dynamic etching approach is proposed through the appropriate variation of etchant composition ratio during the etching process, resulting in the parabolic shape of optical fiber nano-probe with a favorable changing of cone angle. The probe formation mechanism is thoroughly analyzed to illustrate the controllability and simplicity of this method. Optical properties of as-made probes are simulated and experimentally characterized and compared with the linear shape probes of different cone angles. It shows that the parabolic shape probes are superior to the linear shape ones with respect to the transmission efficiency and light focusing capability.

  12. Transesophageal echocardiographic evaluation of baboons during microgravity induced by parabolic flight

    NASA Technical Reports Server (NTRS)

    Vernalis, Marina N.; Latham, Ricky D.; Fanton, John W.; Geffney, F. Andrew

    1993-01-01

    Transthoracic echocardiography (TTE) is a feasible method to noninvasively examine cardiac anatomy during parabolic flight. However, transducer placement on the chest wall is very difficult to maintain during transition to microgravity. In addition, TTE requires the use of low frequency transponders which limit resolution. Transesophical echocardiography (TEE) is an established imaging technique which obtains echocardiographic information from the esophagus. It is a safe procedure and provides higher quality images of cardiac structure than obtained with TTE. This study is designed to determine whether TEE was feasible to perform during parabolic flight and to determine whether acute central volume responses occur in acute transition to zero gravity by direct visualization of the cardiac chambers.

  13. Numerical solution of the stochastic parabolic equation with the dependent operator coefficient

    SciTech Connect

    Ashyralyev, Allaberen; Okur, Ulker

    2015-09-18

    In the present paper, a single step implicit difference scheme for the numerical solution of the stochastic parabolic equation with the dependent operator coefficient is presented. Theorem on convergence estimates for the solution of this difference scheme is established. In applications, this abstract result permits us to obtain the convergence estimates for the solution of difference schemes for the numerical solution of initial boundary value problems for parabolic equations. The theoretical statements for the solution of this difference scheme are supported by the results of numerical experiments.

  14. Dynamics of midlatitude light ion trough and plasmatails. [from data obtained on OGO-4

    NASA Technical Reports Server (NTRS)

    Chen, A. J.; Grebowsky, J. M.; Taylor, H. A., Jr.

    1973-01-01

    Light ion trough measurements near midnight made by the RF ion mass spectrometer on OGO-4 operating in the high resolution mode in Feb. 1968 reveal the existence of irregular structure on the low latitude side of the midlatitude trough. Using two different relations between the equatorial convection electric field, assumed spatially invariant and directed from dawn to dusk, and Kp (one based on plasmapause measurements, the other on polar cap E field measurements) a model development was made of the outer plasmasphere. The model calculations produced multiple plasmatail extensions of the plasmasphere which compare favorably with the observed irregularities. Due to magnetic local time differences between the Northern and Southern Hemisphere along OGO's orbit, the time dependent irregularity structure observed is not symmetrical about the equator. The model development produces an outer plasmasphere boundary location which varies similarly to the observed minimum density point of the light ion trough. However the measurements are not extensive enough to yield conclusive proof that one of the electric field models is better than the other.

  15. Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow

    NASA Astrophysics Data System (ADS)

    Nishina, Ayako; Nakamura, Hirohiko; Park, Jae-Hun; Hasegawa, Daisuke; Tanaka, Yuki; Seo, Seongbong; Hibiya, Toshiyuki

    2016-08-01

    Near-bottom water flowing over the Kerama Gap's sills is thought to ventilate the deep water below ˜1100 m depth in the Okinawa Trough and then upwell with 5-10 years residence time. The present study follows up on this phenomenon, using comprehensive profile data of temperature, salinity, dissolved oxygen, currents and turbulence obtained by intensive shipboard observations performed in June 2013 and June 2014 in the region. Strong near-bottom subtidal flow with speeds exceeding 0.5 m s-1 was observed within a layer of about 100 m thickness over the western side of the peak of the main sill. Temperature and salinity sections along the Kerama Gap indicated some depressions and overturns of the deep water downstream of the strong overflow, suggesting the existence of breaking internal gravity waves and hydraulic jumps. Associated vertical diffusivities, estimated using the Thorpe scale and the buoyancy frequency, were three to four orders of magnitude larger than typical values observed in the thermocline of the open ocean (˜10-5 m2 s-1). The dissolved oxygen section also indicated strong vertical mixing and associated upwelling with the entrainment of the near-bottom overflow water into the lower thermocline beneath the Kuroshio in the Okinawa Trough. The present study not only supports the previous conceptual model but also provides new evidence that the Okinawa Trough is an upwelling location where nutrient rich Philippine Sea intermediate water is sucked up into the lower thermocline below the Kuroshio.

  16. Architectural elements of fan-delta complex in Pennsylvanian Taos Trough, New Mexico

    SciTech Connect

    Soegaard, K.

    1989-03-01

    Identification of architectural elements within alluvial-fan and subaqueous fan-delta gravel units is fundamental to resolving depositional processes within fan-delta complexes of the Pennsylvanian Taos trough, New Mexico. Subaqueous fan-delta deposits consist of lenticular gravel-body complexes encased by black, basinal shales. Gravel-body complexes are composed of a series of stacked gravel lenses, each of which is enveloped by fifth-order bounding surfaces. The central portion of individual gravel lenses contains a channel complex. Channels are outlined by third- and fourth-order bounding surfaces and are infilled by high-density gravity flow deposits. The fringe of submarine gravel lenses consists of stacked, laterally continuous Bouma sequences separated by second-order bounding surfaces. Bouma sequences were deposited by dilute turbidity flows during evacuation of submarine channels. Subaqueous channel complexes within gravel lenses represent midfan channels, whereas the fringe of lenticular gravel lenses represent outer-fan lobes. Recognition of depositional processes and architectural elements of fan deltas in the Sandia Formation enables distinction between these and other types of coarse-grained deltas in the Taos trough. This, in turn, has implications for resolving evolution of the trough.

  17. Laboratory simulation of hydrothermal petroleum formation from sediment in Escanaba Trough, offshore from northern California

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Hostettler, F.D.; Rosenbauer, R.J.

    1994-01-01

    Petroleum associated with sulfide-rich sediment is present in Escanaba Trough at the southern end of the Gorda Ridge spreading axis offshore from northern California within the Exclusive Economic Zone (EEZ) of the U.S. This location and occurrence are important for evaluation of the mineral and energy resource potential of the seafloor under U.S. jurisdiction. In Escanaba Trough, petroleum is believed to be formed by hydrothermal processes acting on mainly terrigenous organic material in Quaternary, river-derived sediment. To attempt to simulate these processes in the laboratory, portions of a Pleistocene gray-green mud, obtained from ??? 1.5 m below the seafloor at a water depth of ??? 3250 m in Escanaba Trough, were heated in the presence of water in four hydrous-pyrolysis experiments conducted at temperatures ranging from 250 to 350??C and at a pressure of 350 bar for 1.0-4.5 days. Distributions of n-alkanes, isoprenoid hydrocarbons, triterpanes, and steranes in the heated samples were compared with those in a sample of hydrothermal petroleum from the same area. Mud samples heated for less than 4.5 days at less than 350??C show changes in some, but not all, molecular marker ratios of organic compounds that are consistent with those expected during hydrothermal petroleum formation. Our results suggest that the organic matter in this type of sediment serves as one possible source for some of the compounds found in the hydrothermal petroleum. ?? 1994.

  18. Fish remains (Elasmobranchii, Actinopterygii) from the Late Cretaceous of the Benue Trough, Nigeria

    NASA Astrophysics Data System (ADS)

    Vullo, Romain; Courville, Philippe

    2014-09-01

    Selachian and ray-finned fish remains from various Late Cretaceous localities of Nigeria are described. Each locality has yielded only a very few specimens and the diversity is therefore very low. However, some taxa are recorded for the first time in Africa. The Ashaka locality in the Upper Benue Trough (northeastern Nigeria) has yielded a small but interesting late Cenomanian assemblage of microremains, including teeth of “Carcharias” amonensis, Rhombopterygia zaborskii sp. nov., Hamrabatis sp., “Stephanodus” sp., and a possible ionoscopiform. A large prearticular dentition coming from the early Turonian beds of this locality is assigned to the large pycnodontiform Acrotemnus, a poorly known genus here regarded as a senior synonym of Macropycnodon. In the Lower Benue Trough (southeastern Nigeria), several localities ranging in age from the late Cenomanian to the early Maastrichtian have yielded various widespread taxa such as Ptychodus, Scapanorhynchus, Squalicorax, Vidalamiinae indet., cf. Protosphyraena, and Eodiaphyodus. The seaway that occupied the Benue Trough during transgressive episodes (late Cenomanian-early Turonian and Maastrichtian) created opportunities for the dispersal of many marine fish taxa into new areas, such as the proto-South Atlantic.

  19. Marine heat flow measurements across subsea permafrost limit in the eastern Mackenzie Trough, Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Kim, Y. G.; Hong, J. K.; Jin, Y. K.; Riedel, M.; Melling, H.; Kang, S. G.; Dallimore, S.

    2015-12-01

    Marine heat flow measurements using a 5 m-long Ewing-type heat probe were made during Korean icebreaker R/V Araon's Arctic expeditions (ARA04C in 2013 and ARA05B in 2014) to better know the shallow subsurface thermal structure in the eastern slope of Mackenzie Trough, the Canadian Beaufort Sea, in which associative geological processes of permafrost degradation and gas hydrate dissociation occur because of long-term warming since the Last Glacial Maximum. Heat flow in the continental slope was collected for the first time and is rather higher than those from deep boreholes (up to a few km below the seafloor) in the continental shelf. However, the smaller geothermal gradient and thermal conductivity were observed from sites along a transect line across permafrost limit on the eastern slope of the trough. It is noted that geothermal gradients are relatively constant in the vicinity of permafrost limit but are much smaller (even minus) only at deeper depths with positive bottom water temperature. Reason for such distribution is unclear yet. Based on observed geothermal gradient and bottom water temperature, permafrost table shown in subbottom profile seems to be controlled not by temperature. On the other hand, our finding of permafrost evidence on the other subbottom profile located landward may support that permafrost limit in the trough is along with ~100 m isobath.

  20. Energetics and dynamics associated with two typical mobile trough pathways over East Asia in boreal winter

    NASA Astrophysics Data System (ADS)

    Leung, Marco Yu-Ting; Cheung, Hoffman Ho-Nam; Zhou, Wen

    2015-03-01

    Two dominant types of East Asian mobile trough (EAMT) are identified by a novel mobile trough detection algorithm. The two major EAMTs likely pass through to the north and the south of Lake Baikal. In this study, both of synoptic and planetary time scales influences on East Asia are studied. For synoptic scale, southern path of mobile trough shows a higher rate of intensification that of northern path. Southern path has stronger impact on Southeast Asia temperature fluctuation because of more southern pathway and stronger magnitude of wave train. But duration of fluctuation is shorter in southern due to the downstream development. For planetary scale, the northern path shows a large warm anomaly over Southeast Asia and a cold anomaly over Northeast Asia, which is associated with the northward shift of the jet stream. The southern path shows a cold anomaly over East Asia due to a northwesterly anomaly. The forcing of high frequency eddy on low frequency eddy is estimated in terms of momentum and energy. The reinforcement of high frequency eddy flux on low frequency variation can be observed in northern path, but not in southern path. The energy difference for two paths is also caused by the variations of barotropic and baroclinic conversion. The energy tendency of interaction between two frequency eddies is only responsible for sustention of energy anomaly over southwestern Japan.

  1. SeaMARC II mapping of transform faults in the Cayman Trough, Caribbean Sea

    USGS Publications Warehouse

    Rosencrantz, Eric; Mann, Paul

    1992-01-01

    SeaMARC II maps of the southern wall of the Cayman Trough between Honduras and Jamaica show zones of continuous, well-defined fault lineaments adjacent and parallel to the wall, both to the east and west of the Cayman spreading axis. These lineaments mark the present, active traces of transform faults which intersect the southern end of the spreading axis at a triple junction. The Swan Islands transform fault to the west is dominated by two major lineaments that overlap with right-stepping sense across a large push-up ridge beneath the Swan Islands. The fault zone to the east of the axis, named the Walton fault, is more complex, containing multiple fault strands and a large pull-apart structure. The Walton fault links the spreading axis to Jamaican and Hispaniolan strike-slip faults, and it defines the southern boundary of a microplate composed of the eastern Cayman Trough and western Hispaniola. The presence of this microplate raises questions about the veracity of Caribbean plate velocities based primarily on Cayman Trough opening rates.

  2. Hydrogeology of the Valley-Fill Aquifer in the Onondaga Trough, Onondaga County, New York

    USGS Publications Warehouse

    Kappel, William M.; Miller, Todd S.

    2005-01-01

    Continuing efforts to improve water quality in Onondaga Lake, New York and its tributaries require an understanding of how the natural, brine-filled aquifer in the Onondaga Trough (valley) affects the freshwater in Onondaga Lake. The city of Syracuse, locally known as 'The Salt City,' was built around the salt springs, which issued from a valley-fill aquifer that contains a highly concentrated brine (up to six times as salty as sea water), but little is known about the source of the brine, its movement within the glacial sediments that partly fill the Onondaga Trough, and the interaction of the aquifer and the lake. This report summarizes initial data-collection and analysis efforts in the 25-mile long Onondaga Trough that extends from near Tully, N.Y., to the outlet of Onondaga Lake and presents results of some initial chemical and geographic analyses that will lead to the development of a mathematical ground-water-flow model of the valley-fill aquifer.

  3. Economic potential and optimum steamflood strategies for trough reservoirs of San Joaquin Valley, California

    SciTech Connect

    Hong, K.C.; Use, D.J.

    1995-12-31

    Many trough reservoirs in the Western San Joaquin Valley, California, remain undeveloped because reserve bases are relatively small and occur in areas where thermal recovery activities have been low. Reservoir models with different configurations and reserve bases were used to compare the economic potential of these reservoirs and to develop guidelines for selecting reservoirs that can be economically exploited. The models were also used for determining the optimum steamflood strategies for the selected reservoirs. The study showed that, for a trough reservoir to be an economical prospect, it should contain a minimum oil-in-place of 300 MSTB per pattern length along the trough between the synclinal axis and the gas-oil contact. Optimum steamflood strategy for such reservoirs includes: (1) placing the injector away from the synclinal axis and gas-oil contact, (2) having a row of producers updip from the injector and another near the synclinal axis, (3) starting the steamflood with an intermediate rate and high quality of steam, and (4) shutting-in steam injection after 5.5 years of continuous injection at a constant rate. This strategy can result in an annual rate of return of 20%.

  4. Hydrothermal fluid flow system around the Iheya North Knoll in the mid-Okinawa trough based on seismic reflection data

    NASA Astrophysics Data System (ADS)

    Tsuji, Takeshi; Takai, Ken; Oiwane, Hisashi; Nakamura, Yasuyuki; Masaki, Yuka; Kumagai, Hidenori; Kinoshita, Masataka; Yamamoto, Fujio; Okano, Tadashi; Kuramoto, Shin'ichi

    2012-02-01

    Seismic reflection data around the Iheya North Knoll hydrothermal field provide insights into geological structures that control subseafloor hydrothermal fluid flow in the sediment-covered continental backarc basin of the mid-Okinawa Trough. We identified the seismic expression of widespread porous volcaniclastic pumiceous deposits and intrusions as a result of silicic arc volcanism. The porous and permeable volcanic deposits are distributed in an area extending updip from the thick succession of the deep trough to the seafloor at the hydrothermal field. Their regional structure focuses the flow of hydrothermal fluids derived from the surrounding trough-fill sediments and directs them to the vents of the hydrothermal field. The high concentrations of CH4 and NH4 in the fluids of the hydrothermal field are likely derived from the interaction of migrating fluids with trough-fill sediments.

  5. Optimize design of the parabolic gradient-index coupling lens for a laser diode to single-mode fiber

    NASA Astrophysics Data System (ADS)

    Huang, Yantang; Chen, Chao

    2002-09-01

    In this paper, we theoretically study the optimize design of the parabolic gradient-index lens used as laser diode to single mode fiber coupling lens. In order to enhance the coupling efficiency between the LD and the SMF, we have calculated the aberration (longitudinal spherical aberration (LSA), offense against sine condition (OSC) and optimized the parameter of the parabolic gradient-index coupling lens by solving the ray equation with the standard Runge-Kutta method. From analysis of the parabolic GRIN coupling lens, it turns out as follow: i) axis GRIN constant L can affect the aberration, ii) the plane-convex parabolic GRIN coupling lens with small end towards LD is the best design, iii) we obtain groups of optimized biplane, plane-convex parabolic GRIN coupling lens.

  6. Trough concentration of voriconazole and its relationship with efficacy and safety: a systematic review and meta-analysis

    PubMed Central

    Jin, Haiying; Wang, Tiansheng; Falcione, Bonnie A.; Olsen, Keith M.; Chen, Ken; Tang, Huilin; Hui, John; Zhai, Suodi

    2016-01-01

    Objectives The optimum trough concentration of voriconazole for clinical response and safety is controversial. The objective of this review was to determine the optimum trough concentration of voriconazole and evaluate its relationship with efficacy and safety. Methods MEDLINE, EMBASE, ClinicalTrials.gov, the Cochrane Library and three Chinese literature databases were searched. Observational studies that compared clinical outcomes below and above the trough concentration cut-off value were included. We set the trough concentration cut-off value for efficacy as 0.5, 1.0, 1.5, 2.0 and 3.0 mg/L and for safety as 3.0, 4.0, 5.0, 5.5 and 6.0 mg/L. The efficacy outcomes were invasive fungal infection-related mortality, all-cause mortality, rate of successful treatment and rate of prophylaxis failure. The safety outcomes included incidents of hepatotoxicity, neurotoxicity and visual disorders. Results A total of 21 studies involving 1158 patients were included. Compared with voriconazole trough concentrations of >0.5 mg/L, levels of <0.5 mg/L significantly decreased the rate of treatment success (risk ratio = 0.46, 95% CI 0.29–0.74). The incidence of hepatotoxicity was significantly increased with trough concentrations >3.0, >4.0, >5.5 and >6.0 mg/L. The incidence of neurotoxicity was significantly increased with trough concentrations >4.0 and >5.5 mg/L. Conclusions A voriconazole level of 0.5 mg/L should be considered the lower threshold associated with efficacy. A trough concentration >3.0 mg/L is associated with increased hepatotoxicity, particularly for the Asian population, and >4.0 mg/L is associated with increased neurotoxicity. PMID:26968880

  7. Variations of the parameters of the cold plasma in the region of the mid-latitude trough

    SciTech Connect

    Best, A.; Johanning, D.

    1981-01-01

    The main properties of the midlatitudinal trough are discussed using electron density and electron temperature measurements from the IK-10 and IK-18 satellites. It is shown that the electron temperature maximum coincides only rarely with the electron density minimum and that in most cases it occurs on the equatorward wall of the density trough. The question whether the Ne-minimum or the Te-maximum is a more suitable indicator for the position of the plasmasphere boundary is discussed.

  8. Combination of AUV high resolution mapping and submersible visual observations on the Guaymas Hydrothermal Fields (Southern Trough Ridge)

    NASA Astrophysics Data System (ADS)

    Ondreas, H.; Fouquet, Y.; Normand, A.; Rouxel, O.; Godfroy, A.

    2011-12-01

    The BIG cruise -leg I- was carried out on the Guaymas basin in June 2010 on board the French research vessel L'Atalante. An AUV high-resolution survey was made on the southern trough ridge to gather fine-scale bathymetry and acoustic imagery data. The results of the high resolution survey were used, the next days, to explore the vent's area during several Nautile dives. The southern trough hydrothermal fields of the Guaymas basin have often been studied. However, the local geological context was not really well-defined. During the AUV surveys, maps at 70 m above the seafloor were done over the hydrothermal area. The data were gridded at 2 m spacing. During the same cruise, Nautile dives help us to compare the field observations and the geological features revealed by the high resolution mapping and to investigate the fine-scale relationships between the vents and their geological environment. Integration of these data is made easier by the use of the GIS software technology. It helps us perpetuate data, undertake comparisons, combine different types of data, realize fine-scale geological mapping. Even if some problems are recurrent (precision of positioning, integration of old data...), such combinations of high resolution mapping and visual observations and sampling have changed our vision of hydrothermal geological context. In the Guaymas sedimented spreading axis, our new data show that major hydrothermal sites, in the south part of the southern trough only, are located inside or at the border of 100 to 250 m long, 60 to 150 m wide, 6 to 12 m deep small collapsed sub-circular depressions. The direction of the collapse is variable. Curved faults at the outer border of these depressions control the largest and mature edifices. Smaller, possibly younger, immature chimneys are located at the centre of some depressions. The mature hydrothermal structures appear as mounds up to 80 m in diameter, 20 m in high, each hydrothermal edifice being very-well identified on the

  9. Deglaciation of a major palaeo-ice stream in Disko Trough, West Greenland

    NASA Astrophysics Data System (ADS)

    Hogan, Kelly A.; Ó Cofaigh, Colm; Jennings, Anne E.; Dowdeswell, Julian A.; Hiemstra, John F.

    2016-09-01

    Recent work has confirmed that grounded ice reached the shelf break in central West Greenland during the Last Glacial Maximum (LGM). Here we use a combination of marine sediment-core data, including glacimarine lithofacies and IRD proxy records, and geomorphological and acoustic facies evidence to examine the nature of and controls on the retreat of a major outlet of the western sector of the Greenland Ice Sheet (GrIS) across the shelf. Retreat of this outlet, which contained the ancestral Jakobshavns Isbræ ice stream, from the outer shelf in Disko Trough was rapid and progressed predominantly through iceberg calving, however, minor pauses in retreat (tens of years) occurred on the middle shelf at a trough narrowing forming subtle grounding-zone wedges. By 12.1 cal kyr BP ice had retreated to a basalt escarpment and shallow banks on the inner continental shelf, where it was pinned and stabilised for at least 100 years. During this time the ice margin appears to have formed a calving bay over the trough and melting became an important mechanism of ice-mass loss. Fine-grained sediments (muds) were deposited alternately with IRD-rich sediments (diamictons) forming a characteristic deglacial lithofacies that may be related to seasonal climatic cycles. High influxes of subglacial meltwater, emanating from the nearby ice margins, deposited muddy sediments during the warmer summer months whereas winters were dominated by iceberg calving leading to the deposition of the diamictons. This is the first example of this glacimarine lithofacies from a continental-shelf setting and we suggest that the calving-bay configuration of the ice margin, plus the switching between calving and melting as ablation mechanisms, facilitated its deposition by channelling meltwater and icebergs through the inner trough. The occurrence of a major stillstand on the inner shelf in Disko Trough demonstrates that the ice-dynamical response to local topography was a crucial control on the behaviour

  10. Geological evidence for historical and older earthquakes and tsunamis along the Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Garrett, Ed; De Batist, Marc; Heyvaert, Vanessa M. A.; Hubert-Ferrari, Aurélia; Fujiwara, Osamu; Yokoyama, Yusuke; Brückner, Helmut; Garrett, Philip

    2015-04-01

    In the wake of the devastating 2011 Tōhoku earthquake and tsunami, the Central Disaster Management Council of the Japanese Cabinet Office issued new guidance for assessing seismic hazards in Japan. Before 2011, seismic hazard assessment relied on source models developed from knowledge of a small number of well-documented historical earthquakes. Less well-known historical earthquakes, including the AD 869 Jōgan Sanriku earthquake, were largely disregarded as their seismic intensities or tsunami heights could not be reconciled with the chosen seismic sources. Following the unexpectedly large size of the Tōhoku earthquake, the Cabinet Office advocated renewed investigation of earthquake and tsunami occurrence over historical and longer timescales, with a particular focus on defining the largest possible magnitudes. The new guidelines pay close attention to the Nankai Trough, the subduction zone where the Philippine Sea Plate dives beneath the Eurasian Plate. The Nankai Trough faces the densely populated and highly industrialised coastline of south central Japan and harbours a widely-known seismic gap along its eastern Tōkai segment. A full-length rupture of the Nankai Trough, including the Tōkai segment, could produce an earthquake with a magnitude approaching that of the 2011 event, with tsunami travel times to the closest shorelines of less than 30 minutes. We review geological evidence for historical and older earthquakes and tsunamis along the Nankai Trough. This evidence comes from a wide variety of sources, including uplifted marine terraces, subsided marshes, liquefaction features, turbidites and tsunami deposits in coastal lakes and lowlands. Examining papers published before and after 2011, we investigate the impact of the new Cabinet Office guidelines on attempts to understand the magnitude and recurrence of these events. Additionally, we introduce the Belgian Science Policy Office funded QuakeRecNankai project, a collaboration aiming to supplement

  11. Initial dose of vancomycin based on body weight and creatinine clearance to minimize inadequate trough levels in Japanese adults.

    PubMed

    Maki, N; Ohkuchi, A; Tashiro, Y; Kim, M R; Le, M; Sakamoto, T; Matsubara, S; Hakamata, Y

    2012-10-01

    Our aims were to elucidate the factors that affected vancomycin (VCM) serum trough levels and to find the optimal initial dose based on creatinine clearance (CrCl) and body weight (BW) to minimize inadequate trough levels in a retrospective observational study among Japanese adults. One hundred and six inpatients, in whom VCM trough levels were measured after completing the third dosing, were consecutively recruited into our study in a tertiary hospital. We considered the frequency of <30% as low. In the generalized linear model, initial VCM total daily dose, CrCl, and BW were independent risk factors of VCM trough levels. In patients with CrCl ≥30 and <50 mL/min, 1 g/day yielded low frequencies of a trough level of ≥20 mcg/mL, regardless of BW. In patients with CrCl ≥50 mL/min, 2 g/day yielded low frequencies of a trough level of <10 mcg/mL in patients weighing <55 kg, but not in patients weighing ≥55 kg. Optimal VCM initial total daily dose may be 1 g/day in patients with CrCl ≥30 and <50 mL/min regardless of BW and 2 g/day in patients weighing <55 kg with CrCl ≥50 mL/min among Japanese adults.

  12. IMAGE EUV Observations and Modeling of the Plasmaspheric Density Trough Associated with the 24 May 2000 Geomagnetic Storm

    NASA Technical Reports Server (NTRS)

    Adrian, M.L.; Gallagher, D. L.; Green, J. L.; Sandel, B. R.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The IMAGE EUV imager observed a plasmaspheric density trough in association with a geomagnetically active period on 24 May 2000. At EUV wavelengths, this density trough appeared as an Archimedes spiral extending from Earth's shadow to approximately 1800 MLT. We present an analysis of this density trough using simulated EUV images. Observational EUV images are subjected to edge analysis to establish the plasmapause L-shell and the location of the density trough in terms of L-shell, MLT extent, and radial width. The plasmaspheric density distribution is modeled using both static and dynamic models for the plasmasphere. The background plasmasphere is then numerically simulated using the 4-parameter plasmaspheric density model contained within the Global Core Plasma Model (GCPM) [Gallagher et al., 20001 and the Dynamic Global Core Plasma Model (DGCPM). Simulated EUV images of the model plasmasphere are produced once an artificial density depletion, matching the observed MLT extent and width, has been removed. Once the azimuthal extent and width of the trough have been simulated, the depth of the artificial density depletion is iteratively adjusted to produce simulated EUV images that approximate observation. The results of this analysis and discussion of possible origins for this density trough will be presented.

  13. Exploring Unconventional Hydrocarbons in the Makó Trough, Pannonian basin, Hungary: Results and Challenges

    NASA Astrophysics Data System (ADS)

    Horvath, Anita; Bada, Gabor; Szafian, Peter; Sztano, Orsolya; Law, Ben; Wallis, Rod

    2010-05-01

    The latest phase exploration in the Makó Trough, which commenced a few years ago, has focused on the utilization of unconventional hydrocarbons. Accumulations are regarded as "unconventional" when they cannot be produced economically except by means of some sort of stimulation, usually hydraulic fracturing. The model we have developed for the evaluation of the hydrocarbon potential indicates a significant gas accumulation in the area of the Makó Trough. The tally of the distinctive attributes of the hydrocarbon system and the combined analysis of the available geological data led to the conclusion that the Makó Trough represents an area of active basin-centered gas accumulation (BCGA), with very significant perspective reserves. In a BCGA, hydrocarbons do not accumulate conventionally, in structural or stratigraphic traps, but rather in cells. Due to the geological setting of the Makó Trough, the hydrocarbon cell here forms a relatively continuous zone marked by considerable internal lithological and petrophysical variability. The most prolific parts, called sweet spots, possess a reservoir potential higher than the average. The identification of these sweet spots constitutes one of the most important, and quite possibly the most challenging task of the entire exploration project. The hemipelagic Endrőd Formation, which acts as the source rock, contains organic-rich marls in a depth delimited by the 170-230 °C isotherms. These marls constitute the still active hydrocarbon "kitchen" of the BCGA in the Makó Trough. The top and bottom boundaries of the cell essentially coincide with the turbidites of the Szolnok Formation and the top of the pre-Neogene basement, respectively. In light of the fact that pressure, temperature, and maturity tests have produced rather similar results in a number of wells in the area, we have reason to believe that the extension of the Makó Trough's BCGA is of regional dimensions (>1000 km2). The thickness and lateral extension of

  14. Exploring a Parabolic Paradox with the Graphing Calculator.

    ERIC Educational Resources Information Center

    Shilgalis, Tom

    1997-01-01

    Argues that technology influences mathematics education by enabling students and teachers to discover and demonstrate generalizations and properties that were unthinkable a few years ago. Focuses on one example related to a paradox involving parabolas. (DDR)

  15. Time-parallel iterative methods for parabolic PDES: Multigrid waveform relaxation and time-parallel multigrid

    SciTech Connect

    Vandewalle, S.

    1994-12-31

    Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.

  16. On a Parabolic-Elliptic system with chemotaxis and logistic type growth

    NASA Astrophysics Data System (ADS)

    Galakhov, Evgeny; Salieva, Olga; Tello, J. Ignacio

    2016-10-01

    We consider a nonlinear PDEs system of two equations of Parabolic-Elliptic type with chemotactic terms. The system models the movement of a biological population "u" towards a higher concentration of a chemical agent "w" in a bounded and regular domain Ω ⊂RN for arbitrary N ∈ N. After normalization, the system is as follows

  17. Solution blow-up for a class of parabolic equations with double nonlinearity

    SciTech Connect

    Korpusov, Maxim O

    2013-03-31

    We consider a class of parabolic-type equations with double nonlinearity and derive sufficient conditions for finite time blow-up of its solutions in a bounded domain under the homogeneous Dirichlet condition. To prove the solution blow-up we use a modification of Levine's method. Bibliography: 13 titles.

  18. Application of the Parabolic Approximation to Predict Acoustical Propagation in the Ocean.

    ERIC Educational Resources Information Center

    McDaniel, Suzanne T.

    1979-01-01

    A simplified derivation of the parabolic approximation to the acoustical wave equation is presented. Exact solutions to this approximate equation are compared with solutions to the wave equation to demonstrate the applicability of this method to the study of underwater sound propagation. (Author/BB)

  19. Quasilinear parabolic variational inequalities with multi-valued lower-order terms

    NASA Astrophysics Data System (ADS)

    Carl, Siegfried; Le, Vy K.

    2014-10-01

    In this paper, we provide an analytical frame work for the following multi-valued parabolic variational inequality in a cylindrical domain : Find and an such that where is some closed and convex subset, A is a time-dependent quasilinear elliptic operator, and the multi-valued function is assumed to be upper semicontinuous only, so that Clarke's generalized gradient is included as a special case. Thus, parabolic variational-hemivariational inequalities are special cases of the problem considered here. The extension of parabolic variational-hemivariational inequalities to the general class of multi-valued problems considered in this paper is not only of disciplinary interest, but is motivated by the need in applications. The main goals are as follows. First, we provide an existence theory for the above-stated problem under coercivity assumptions. Second, in the noncoercive case, we establish an appropriate sub-supersolution method that allows us to get existence, comparison, and enclosure results. Third, the order structure of the solution set enclosed by sub-supersolutions is revealed. In particular, it is shown that the solution set within the sector of sub-supersolutions is a directed set. As an application, a multi-valued parabolic obstacle problem is treated.

  20. Solution blow-up for a class of parabolic equations with double nonlinearity

    NASA Astrophysics Data System (ADS)

    Korpusov, Maxim O.

    2013-03-01

    We consider a class of parabolic-type equations with double nonlinearity and derive sufficient conditions for finite time blow-up of its solutions in a bounded domain under the homogeneous Dirichlet condition. To prove the solution blow-up we use a modification of Levine's method. Bibliography: 13 titles.