NASA Astrophysics Data System (ADS)
Zhang, Zhipeng; von Wenckstern, Holger; Lenzner, Jörg; Grundmann, Marius
2016-06-01
We report on ultraviolet photodiodes with integrated optical filter based on the wurtzite (Mg,Zn)O thin films. Tuning of the bandgap of filter and active layers was realized by employing a continuous composition spread approach relying on the ablation of a single segmented target in pulsed-laser deposition. Filter and active layers of the device were deposited on opposite sides of a sapphire substrate with nearly parallel compositional gradients. Ensure that for each sample position the bandgap of the filter layer blocking the high energy radiation is higher than that of the active layer. Different oxygen pressures during the two depositions runs. The absorption edge is tuned over 360 meV and the spectral bandwidth of photodiodes is typically 100 meV and as low as 50 meV.
Reactanceless synthesized impedance bandpass amplifier
NASA Technical Reports Server (NTRS)
Kleinberg, L. L. (Inventor)
1985-01-01
An active R bandpass filter network is formed by four operational amplifier stages interconnected by discrete resistances. One pair of stages synthesize an equivalent input impedance of an inductance (L sub eq) in parallel with a discrete resistance (R sub o) while the second pair of stages synthesizes an equivalent input impedance of a capacitance (C sub eq) serially coupled to another discrete resistance (R sub i) coupled in parallel with the first two stages. The equivalent input impedances aggregately define a tuned resonant bandpass filter in the roll-off regions of the operational amplifiers.
Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm
NASA Astrophysics Data System (ADS)
Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui
2017-05-01
The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.
Real-time object tracking based on scale-invariant features employing bio-inspired hardware.
Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya
2016-09-01
We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parallel Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.
1995-01-01
Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.
An Improved Harmonic Current Detection Method Based on Parallel Active Power Filter
NASA Astrophysics Data System (ADS)
Zeng, Zhiwu; Xie, Yunxiang; Wang, Yingpin; Guan, Yuanpeng; Li, Lanfang; Zhang, Xiaoyu
2017-05-01
Harmonic detection technology plays an important role in the applications of active power filter. The accuracy and real-time performance of harmonic detection are the precondition to ensure the compensation performance of Active Power Filter (APF). This paper proposed an improved instantaneous reactive power harmonic current detection algorithm. The algorithm uses an improved ip -iq algorithm which is combined with the moving average value filter. The proposed ip -iq algorithm can remove the αβ and dq coordinate transformation, decreasing the cost of calculation, simplifying the extraction process of fundamental components of load currents, and improving the detection speed. The traditional low-pass filter is replaced by the moving average filter, detecting the harmonic currents more precisely and quickly. Compared with the traditional algorithm, the THD (Total Harmonic Distortion) of the grid currents is reduced from 4.41% to 3.89% for the simulations and from 8.50% to 4.37% for the experiments after the improvement. The results show the proposed algorithm is more accurate and efficient.
Craciun, Stefan; Brockmeier, Austin J; George, Alan D; Lam, Herman; Príncipe, José C
2011-01-01
Methods for decoding movements from neural spike counts using adaptive filters often rely on minimizing the mean-squared error. However, for non-Gaussian distribution of errors, this approach is not optimal for performance. Therefore, rather than using probabilistic modeling, we propose an alternate non-parametric approach. In order to extract more structure from the input signal (neuronal spike counts) we propose using minimum error entropy (MEE), an information-theoretic approach that minimizes the error entropy as part of an iterative cost function. However, the disadvantage of using MEE as the cost function for adaptive filters is the increase in computational complexity. In this paper we present a comparison between the decoding performance of the analytic Wiener filter and a linear filter trained with MEE, which is then mapped to a parallel architecture in reconfigurable hardware tailored to the computational needs of the MEE filter. We observe considerable speedup from the hardware design. The adaptation of filter weights for the multiple-input, multiple-output linear filters, necessary in motor decoding, is a highly parallelizable algorithm. It can be decomposed into many independent computational blocks with a parallel architecture readily mapped to a field-programmable gate array (FPGA) and scales to large numbers of neurons. By pipelining and parallelizing independent computations in the algorithm, the proposed parallel architecture has sublinear increases in execution time with respect to both window size and filter order.
Design of miniature type parallel coupled microstrip hairpin filter in UHF range
NASA Astrophysics Data System (ADS)
Hasan, Adib Belhaj; Rahman, Maj Tarikur; Kahhar, Azizul; Trina, Tasnim; Saha, Pran Kanai
2017-12-01
A microstrip parallel coupled line bandpass filter is designed in UHF range and the filter size is reduced by microstrip hairpin structure. The FR4 substrate is used as base material of the filter. The filter is analyzed by both ADS and CST design studio in the frequency range of 500 MHz to 650 MHz. The Bandwidth is found 13.27% with a center frequency 570 MHz. Simulation from both ADS and CST shows a very good agreement of performance of the filter.
NASA Astrophysics Data System (ADS)
Kim, Jae Wook
2013-05-01
This paper proposes a novel systematic approach for the parallelization of pentadiagonal compact finite-difference schemes and filters based on domain decomposition. The proposed approach allows a pentadiagonal banded matrix system to be split into quasi-disjoint subsystems by using a linear-algebraic transformation technique. As a result the inversion of pentadiagonal matrices can be implemented within each subdomain in an independent manner subject to a conventional halo-exchange process. The proposed matrix transformation leads to new subdomain boundary (SB) compact schemes and filters that require three halo terms to exchange with neighboring subdomains. The internode communication overhead in the present approach is equivalent to that of standard explicit schemes and filters based on seven-point discretization stencils. The new SB compact schemes and filters demand additional arithmetic operations compared to the original serial ones. However, it is shown that the additional cost becomes sufficiently low by choosing optimal sizes of their discretization stencils. Compared to earlier published results, the proposed SB compact schemes and filters successfully reduce parallelization artifacts arising from subdomain boundaries to a level sufficiently negligible for sophisticated aeroacoustic simulations without degrading parallel efficiency. The overall performance and parallel efficiency of the proposed approach are demonstrated by stringent benchmark tests.
Parallel Processing of Broad-Band PPM Signals
NASA Technical Reports Server (NTRS)
Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement
2010-01-01
A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).
Efficient Scalable Median Filtering Using Histogram-Based Operations.
Green, Oded
2018-05-01
Median filtering is a smoothing technique for noise removal in images. While there are various implementations of median filtering for a single-core CPU, there are few implementations for accelerators and multi-core systems. Many parallel implementations of median filtering use a sorting algorithm for rearranging the values within a filtering window and taking the median of the sorted value. While using sorting algorithms allows for simple parallel implementations, the cost of the sorting becomes prohibitive as the filtering windows grow. This makes such algorithms, sequential and parallel alike, inefficient. In this work, we introduce the first software parallel median filtering that is non-sorting-based. The new algorithm uses efficient histogram-based operations. These reduce the computational requirements of the new algorithm while also accessing the image fewer times. We show an implementation of our algorithm for both the CPU and NVIDIA's CUDA supported graphics processing unit (GPU). The new algorithm is compared with several other leading CPU and GPU implementations. The CPU implementation has near perfect linear scaling with a speedup on a quad-core system. The GPU implementation is several orders of magnitude faster than the other GPU implementations for mid-size median filters. For small kernels, and , comparison-based approaches are preferable as fewer operations are required. Lastly, the new algorithm is open-source and can be found in the OpenCV library.
Automated Handling of Garments for Pressing
1991-09-30
Parallel Algorithms for 2D Kalman Filtering ................................. 47 DJ. Potter and M.P. Cline Hash Table and Sorted Array: A Case Study of... Kalman Filtering on the Connection Machine ............................ 55 MA. Palis and D.K. Krecker Parallel Sorting of Large Arrays on the MasPar...ALGORITHM’VS FOR SEAM SENSING. .. .. .. ... ... .... ..... 24 6.1 KarelTW Algorithms .. .. ... ... ... ... .... ... ...... 24 6.1.1 Image Filtering
An efficient implementation of a high-order filter for a cubed-sphere spectral element model
NASA Astrophysics Data System (ADS)
Kang, Hyun-Gyu; Cheong, Hyeong-Bin
2017-03-01
A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele; Borovikov, Anna Y.; Suarez, Max
1999-01-01
A massively parallel ensemble Kalman filter (EnKF)is used to assimilate temperature data from the TOGA/TAO array and altimetry from TOPEX/POSEIDON into a Pacific basin version of the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. The EnKF is an approximate Kalman filter in which the error-covariance propagation step is modeled by the integration of multiple instances of a numerical model. An estimate of the true error covariances is then inferred from the distribution of the ensemble of model state vectors. This inplementation of the filter takes advantage of the inherent parallelism in the EnKF algorithm by running all the model instances concurrently. The Kalman filter update step also occurs in parallel by having each processor process the observations that occur in the region of physical space for which it is responsible. The massively parallel data assimilation system is validated by withholding some of the data and then quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The distributions of the forecast and analysis error covariances predicted by the ENKF are also examined.
Tracking moving radar targets with parallel, velocity-tuned filters
Bickel, Douglas L.; Harmony, David W.; Bielek, Timothy P.; Hollowell, Jeff A.; Murray, Margaret S.; Martinez, Ana
2013-04-30
Radar data associated with radar illumination of a movable target is processed to monitor motion of the target. A plurality of filter operations are performed in parallel on the radar data so that each filter operation produces target image information. The filter operations are defined to have respectively corresponding velocity ranges that differ from one another. The target image information produced by one of the filter operations represents the target more accurately than the target image information produced by the remainder of the filter operations when a current velocity of the target is within the velocity range associated with the one filter operation. In response to the current velocity of the target being within the velocity range associated with the one filter operation, motion of the target is tracked based on the target image information produced by the one filter operation.
Concurrent computation of attribute filters on shared memory parallel machines.
Wilkinson, Michael H F; Gao, Hui; Hesselink, Wim H; Jonker, Jan-Eppo; Meijster, Arnold
2008-10-01
Morphological attribute filters have not previously been parallelized, mainly because they are both global and non-separable. We propose a parallel algorithm that achieves efficient parallelism for a large class of attribute filters, including attribute openings, closings, thinnings and thickenings, based on Salembier's Max-Trees and Min-trees. The image or volume is first partitioned in multiple slices. We then compute the Max-trees of each slice using any sequential Max-Tree algorithm. Subsequently, the Max-trees of the slices can be merged to obtain the Max-tree of the image. A C-implementation yielded good speed-ups on both a 16-processor MIPS 14000 parallel machine, and a dual-core Opteron-based machine. It is shown that the speed-up of the parallel algorithm is a direct measure of the gain with respect to the sequential algorithm used. Furthermore, the concurrent algorithm shows a speed gain of up to 72 percent on a single-core processor, due to reduced cache thrashing.
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-10-12
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.
Qin, Wen; Li, Wei-Guang; Zhang, Duo-Ying; Huang, Xiao-Fei; Song, Yang
2016-03-01
We sought to confirm whether use of Acinetobacter strains Y7 and Y16, both strains of heterotrophic nitrifying bacteria, was practical for removing ammonium (NH4 (+)-N) from drinking water at low temperatures. To test this, ammonium-containing drinking water was treated with strains Y7 and Y16 at 8 and 2 °C. Continuous ammonium treatment was conducted in order to evaluate the performance of three biologically enhanced activated carbon (BEAC) filters in removing ammonium. The three BEAC filters were inoculated with strain Y7, strain Y16, and a mixture of strains Y7 and Y16, respectively. A granular activated carbon (GAC) filter, without inoculation by any strains, was tested in parallel with the BEAC filters as control. The results indicated that NH4 (+)-N removal was significant when a BEAC filter was inoculated with the mixture of strains Y7 and Y16 (BEAC-III filter). Amounts of 0.44 ± 0.05 and 0.25 ± 0.05 mg L(-1) NH4 (+)-N were removed using the BEAC-III filter at 8 and 2 °C, respectively. These values were 2.8-4.0-fold higher than the values of ammonium removal acquired using the GAC filter. The synergistic effect of using strains Y7 and Y16 in concert was the cause of the high-ammonium removal efficiency achieved by using the BEAC-III filter at low temperatures. In addition, a high C/N ratio may promote NH4 (+)-N removal efficiency by improving biomass and microbial activity. This study provides new insight into the use of biofilters to achieve biological removal of ammonium at low temperature.
NASA Astrophysics Data System (ADS)
Jasim, S. E.; Jusoh, M. A.; Mahmud, S. N. S.; Zamani, A. H.
2018-04-01
Development of low losses, small size and broad bandwidth microwave bandpass filter operating at higher frequencies is an active area of research. This paper presents a new route used to design and simulate microwave bandpass filter using finite element modelling and realized broad bandwidth, low losses, small dimension microwave bandpass filter operating at 10 GHz frequency using return loss method. The filter circuit has been carried out using Computer Aid Design (CAD), Ansoft HFSS software and designed with four parallel couple line model and small dimension (10 × 10 mm2) using LaAlO3 substrate. The response of the microwave filter circuit showed high return loss -50 dB at operating frequency at 10.4 GHz and broad bandwidth of 2.5 GHz from 9.5 to 12 GHz. The results indicate the filter design and simulation using HFSS is reliable and have the opportunity to transfer from lab potential experiments to the industry.
Implementation of a Parallel Kalman Filter for Stratospheric Chemical Tracer Assimilation
NASA Technical Reports Server (NTRS)
Chang, Lang-Ping; Lyster, Peter M.; Menard, R.; Cohn, S. E.
1998-01-01
A Kalman filter for the assimilation of long-lived atmospheric chemical constituents has been developed for two-dimensional transport models on isentropic surfaces over the globe. An important attribute of the Kalman filter is that it calculates error covariances of the constituent fields using the tracer dynamics. Consequently, the current Kalman-filter assimilation is a five-dimensional problem (coordinates of two points and time), and it can only be handled on computers with large memory and high floating point speed. In this paper, an implementation of the Kalman filter for distributed-memory, message-passing parallel computers is discussed. Two approaches were studied: an operator decomposition and a covariance decomposition. The latter was found to be more scalable than the former, and it possesses the property that the dynamical model does not need to be parallelized, which is of considerable practical advantage. This code is currently used to assimilate constituent data retrieved by limb sounders on the Upper Atmosphere Research Satellite. Tests of the code examined the variance transport and observability properties. Aspects of the parallel implementation, some timing results, and a brief discussion of the physical results will be presented.
2014-01-01
Background Exposure to particulate matter (PM) air pollution especially derived from traffic is associated with increases in cardiorespiratory morbidity and mortality. In this study, we evaluated the ability of novel vehicle cabin air inlet filters to reduce diesel exhaust (DE)-induced symptoms and markers of inflammation in human subjects. Methods Thirty healthy subjects participated in a randomized double-blind controlled crossover study where they were exposed to filtered air, unfiltered DE and DE filtered through two selected particle filters, one with and one without active charcoal. Exposures lasted for one hour. Symptoms were assessed before and during exposures and lung function was measured before and after each exposure, with inflammation assessed in peripheral blood five hours after exposures. In parallel, PM were collected from unfiltered and filtered DE and assessed for their capacity to drive damaging oxidation reactions in a cell-free model, or promote inflammation in A549 cells. Results The standard particle filter employed in this study reduced PM10 mass concentrations within the exposure chamber by 46%, further reduced to 74% by the inclusion of an active charcoal component. In addition use of the active charcoal filter was associated by a 75% and 50% reduction in NO2 and hydrocarbon concentrations, respectively. As expected, subjects reported more subjective symptoms after exposure to unfiltered DE compared to filtered air, which was significantly reduced by the filter with an active charcoal component. There were no significant changes in lung function after exposures. Similarly diesel exhaust did not elicit significant increases in any of the inflammatory markers examined in the peripheral blood samples 5 hour post-exposure. Whilst the filters reduced chamber particle concentrations, the oxidative activity of the particles themselves, did not change following filtration with either filter. In contrast, diesel exhaust PM passed through the active charcoal combination filter appeared less inflammatory to A549 cells. Conclusions A cabin air inlet particle filter including an active charcoal component was highly effective in reducing both DE particulate and gaseous components, with reduced exhaust-induced symptoms in healthy volunteers. These data demonstrate the effectiveness of cabin filters to protect subjects travelling in vehicles from diesel exhaust emissions. PMID:24621126
Statistical evaluation of synchronous spike patterns extracted by frequent item set mining
Torre, Emiliano; Picado-Muiño, David; Denker, Michael; Borgelt, Christian; Grün, Sonja
2013-01-01
We recently proposed frequent itemset mining (FIM) as a method to perform an optimized search for patterns of synchronous spikes (item sets) in massively parallel spike trains. This search outputs the occurrence count (support) of individual patterns that are not trivially explained by the counts of any superset (closed frequent item sets). The number of patterns found by FIM makes direct statistical tests infeasible due to severe multiple testing. To overcome this issue, we proposed to test the significance not of individual patterns, but instead of their signatures, defined as the pairs of pattern size z and support c. Here, we derive in detail a statistical test for the significance of the signatures under the null hypothesis of full independence (pattern spectrum filtering, PSF) by means of surrogate data. As a result, injected spike patterns that mimic assembly activity are well detected, yielding a low false negative rate. However, this approach is prone to additionally classify patterns resulting from chance overlap of real assembly activity and background spiking as significant. These patterns represent false positives with respect to the null hypothesis of having one assembly of given signature embedded in otherwise independent spiking activity. We propose the additional method of pattern set reduction (PSR) to remove these false positives by conditional filtering. By employing stochastic simulations of parallel spike trains with correlated activity in form of injected spike synchrony in subsets of the neurons, we demonstrate for a range of parameter settings that the analysis scheme composed of FIM, PSF and PSR allows to reliably detect active assemblies in massively parallel spike trains. PMID:24167487
Parallel processing architecture for H.264 deblocking filter on multi-core platforms
NASA Astrophysics Data System (ADS)
Prasad, Durga P.; Sonachalam, Sekar; Kunchamwar, Mangesh K.; Gunupudi, Nageswara Rao
2012-03-01
Massively parallel computing (multi-core) chips offer outstanding new solutions that satisfy the increasing demand for high resolution and high quality video compression technologies such as H.264. Such solutions not only provide exceptional quality but also efficiency, low power, and low latency, previously unattainable in software based designs. While custom hardware and Application Specific Integrated Circuit (ASIC) technologies may achieve lowlatency, low power, and real-time performance in some consumer devices, many applications require a flexible and scalable software-defined solution. The deblocking filter in H.264 encoder/decoder poses difficult implementation challenges because of heavy data dependencies and the conditional nature of the computations. Deblocking filter implementations tend to be fixed and difficult to reconfigure for different needs. The ability to scale up for higher quality requirements such as 10-bit pixel depth or a 4:2:2 chroma format often reduces the throughput of a parallel architecture designed for lower feature set. A scalable architecture for deblocking filtering, created with a massively parallel processor based solution, means that the same encoder or decoder will be deployed in a variety of applications, at different video resolutions, for different power requirements, and at higher bit-depths and better color sub sampling patterns like YUV, 4:2:2, or 4:4:4 formats. Low power, software-defined encoders/decoders may be implemented using a massively parallel processor array, like that found in HyperX technology, with 100 or more cores and distributed memory. The large number of processor elements allows the silicon device to operate more efficiently than conventional DSP or CPU technology. This software programing model for massively parallel processors offers a flexible implementation and a power efficiency close to that of ASIC solutions. This work describes a scalable parallel architecture for an H.264 compliant deblocking filter for multi core platforms such as HyperX technology. Parallel techniques such as parallel processing of independent macroblocks, sub blocks, and pixel row level are examined in this work. The deblocking architecture consists of a basic cell called deblocking filter unit (DFU) and dependent data buffer manager (DFM). The DFU can be used in several instances, catering to different performance needs the DFM serves the data required for the different number of DFUs, and also manages all the neighboring data required for future data processing of DFUs. This approach achieves the scalability, flexibility, and performance excellence required in deblocking filters.
On the application of under-decimated filter banks
NASA Technical Reports Server (NTRS)
Lin, Y.-P.; Vaidyanathan, P. P.
1994-01-01
Maximally decimated filter banks have been extensively studied in the past. A filter bank is said to be under-decimated if the number of channels is more than the decimation ratio in the subbands. A maximally decimated filter bank is well known for its application in subband coding. Another application of maximally decimated filter banks is in block filtering. Convolution through block filtering has the advantages that parallelism is increased and data are processed at a lower rate. However, the computational complexity is comparable to that of direct convolution. More recently, another type of filter bank convolver has been developed. In this scheme, the convolution is performed in the subbands. Quantization and bit allocation of subband signals are based on signal variance, as in subband coding. Consequently, for a fixed rate, the result of convolution is more accurate than is direct convolution. This type of filter bank convolver also enjoys the advantages of block filtering, parallelism, and a lower working rate. Nevertheless, like block filtering, there is no computational saving. In this article, under-decimated systems are introduced to solve the problem. The new system is decimated only by half the number of channels. Two types of filter banks can be used in the under-decimated system: the discrete Fourier transform (DFT) filter banks and the cosine modulated filter banks. They are well known for their low complexity. In both cases, the system is approximately alias free, and the overall response is equivalent to a tunable multilevel filter. Properties of the DFT filter banks and the cosine modulated filter banks can be exploited to simultaneously achieve parallelism, computational saving, and a lower working rate. Furthermore, for both systems, the implementation cost of the analysis or synthesis bank is comparable to that of one prototype filter plus some low-complexity modulation matrices. The individual analysis and synthesis filters have complex coefficients in the DFT filter banks but have real coefficients in the cosine modulated filter banks.
On the application of under-decimated filter banks
NASA Astrophysics Data System (ADS)
Lin, Y.-P.; Vaidyanathan, P. P.
1994-11-01
Maximally decimated filter banks have been extensively studied in the past. A filter bank is said to be under-decimated if the number of channels is more than the decimation ratio in the subbands. A maximally decimated filter bank is well known for its application in subband coding. Another application of maximally decimated filter banks is in block filtering. Convolution through block filtering has the advantages that parallelism is increased and data are processed at a lower rate. However, the computational complexity is comparable to that of direct convolution. More recently, another type of filter bank convolver has been developed. In this scheme, the convolution is performed in the subbands. Quantization and bit allocation of subband signals are based on signal variance, as in subband coding. Consequently, for a fixed rate, the result of convolution is more accurate than is direct convolution. This type of filter bank convolver also enjoys the advantages of block filtering, parallelism, and a lower working rate. Nevertheless, like block filtering, there is no computational saving. In this article, under-decimated systems are introduced to solve the problem. The new system is decimated only by half the number of channels. Two types of filter banks can be used in the under-decimated system: the discrete Fourier transform (DFT) filter banks and the cosine modulated filter banks. They are well known for their low complexity. In both cases, the system is approximately alias free, and the overall response is equivalent to a tunable multilevel filter. Properties of the DFT filter banks and the cosine modulated filter banks can be exploited to simultaneously achieve parallelism, computational saving, and a lower working rate.
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-01-01
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection. PMID:29023385
A Bio-Realistic Analog CMOS Cochlea Filter With High Tunability and Ultra-Steep Roll-Off.
Wang, Shiwei; Koickal, Thomas Jacob; Hamilton, Alister; Cheung, Rebecca; Smith, Leslie S
2015-06-01
This paper presents the design and experimental results of a cochlea filter in analog very large scale integration (VLSI) which highly resembles physiologically measured response of the mammalian cochlea. The filter consists of three specialized sub-filter stages which respectively provide passive response in low frequencies, actively tunable response in mid-band frequencies and ultra-steep roll-off at transition frequencies from pass-band to stop-band. The sub-filters are implemented in balanced ladder topology using floating active inductors. Measured results from the fabricated chip show that wide range of mid-band tuning including gain tuning of over 20 dB, Q factor tuning from 2 to 19 as well as the bio-realistic center frequency shift are achieved by adjusting only one circuit parameter. Besides, the filter has an ultra-steep roll-off reaching over 300 dB/dec. By changing biasing currents, the filter can be configured to operate with center frequencies from 31 Hz to 8 kHz. The filter is 9th order, consumes 59.5 ∼ 90.0 μW power and occupies 0.9 mm2 chip area. A parallel bank of the proposed filter can be used as the front-end in hearing prosthesis devices, speech processors as well as other bio-inspired auditory systems owing to its bio-realistic behavior, low power consumption and small size.
Engbers, Jordan D T; Anderson, Dustin; Asmara, Hadhimulya; Rehak, Renata; Mehaffey, W Hamish; Hameed, Shahid; McKay, Bruce E; Kruskic, Mirna; Zamponi, Gerald W; Turner, Ray W
2012-02-14
Encoding sensory input requires the expression of postsynaptic ion channels to transform key features of afferent input to an appropriate pattern of spike output. Although Ca(2+)-activated K(+) channels are known to control spike frequency in central neurons, Ca(2+)-activated K(+) channels of intermediate conductance (KCa3.1) are believed to be restricted to peripheral neurons. We now report that cerebellar Purkinje cells express KCa3.1 channels, as evidenced through single-cell RT-PCR, immunocytochemistry, pharmacology, and single-channel recordings. Furthermore, KCa3.1 channels coimmunoprecipitate and interact with low voltage-activated Cav3.2 Ca(2+) channels at the nanodomain level to support a previously undescribed transient voltage- and Ca(2+)-dependent current. As a result, subthreshold parallel fiber excitatory postsynaptic potentials (EPSPs) activate Cav3 Ca(2+) influx to trigger a KCa3.1-mediated regulation of the EPSP and subsequent after-hyperpolarization. The Cav3-KCa3.1 complex provides powerful control over temporal summation of EPSPs, effectively suppressing low frequencies of parallel fiber input. KCa3.1 channels thus contribute to a high-pass filter that allows Purkinje cells to respond preferentially to high-frequency parallel fiber bursts characteristic of sensory input.
A distributed, dynamic, parallel computational model: the role of noise in velocity storage
Merfeld, Daniel M.
2012-01-01
Networks of neurons perform complex calculations using distributed, parallel computation, including dynamic “real-time” calculations required for motion control. The brain must combine sensory signals to estimate the motion of body parts using imperfect information from noisy neurons. Models and experiments suggest that the brain sometimes optimally minimizes the influence of noise, although it remains unclear when and precisely how neurons perform such optimal computations. To investigate, we created a model of velocity storage based on a relatively new technique–“particle filtering”–that is both distributed and parallel. It extends existing observer and Kalman filter models of vestibular processing by simulating the observer model many times in parallel with noise added. During simulation, the variance of the particles defining the estimator state is used to compute the particle filter gain. We applied our model to estimate one-dimensional angular velocity during yaw rotation, which yielded estimates for the velocity storage time constant, afferent noise, and perceptual noise that matched experimental data. We also found that the velocity storage time constant was Bayesian optimal by comparing the estimate of our particle filter with the estimate of the Kalman filter, which is optimal. The particle filter demonstrated a reduced velocity storage time constant when afferent noise increased, which mimics what is known about aminoglycoside ablation of semicircular canal hair cells. This model helps bridge the gap between parallel distributed neural computation and systems-level behavioral responses like the vestibuloocular response and perception. PMID:22514288
3D Data Denoising via Nonlocal Means Filter by Using Parallel GPU Strategies
Cuomo, Salvatore; De Michele, Pasquale; Piccialli, Francesco
2014-01-01
Nonlocal Means (NLM) algorithm is widely considered as a state-of-the-art denoising filter in many research fields. Its high computational complexity leads researchers to the development of parallel programming approaches and the use of massively parallel architectures such as the GPUs. In the recent years, the GPU devices had led to achieving reasonable running times by filtering, slice-by-slice, and 3D datasets with a 2D NLM algorithm. In our approach we design and implement a fully 3D NonLocal Means parallel approach, adopting different algorithm mapping strategies on GPU architecture and multi-GPU framework, in order to demonstrate its high applicability and scalability. The experimental results we obtained encourage the usability of our approach in a large spectrum of applicative scenarios such as magnetic resonance imaging (MRI) or video sequence denoising. PMID:25045397
Satellite Angular Rate Estimation From Vector Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.
1996-01-01
This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.
GPU-based parallel algorithm for blind image restoration using midfrequency-based methods
NASA Astrophysics Data System (ADS)
Xie, Lang; Luo, Yi-han; Bao, Qi-liang
2013-08-01
GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.
Rapid code acquisition algorithms employing PN matched filters
NASA Technical Reports Server (NTRS)
Su, Yu T.
1988-01-01
The performance of four algorithms using pseudonoise matched filters (PNMFs), for direct-sequence spread-spectrum systems, is analyzed. They are: parallel search with fix dwell detector (PL-FDD), parallel search with sequential detector (PL-SD), parallel-serial search with fix dwell detector (PS-FDD), and parallel-serial search with sequential detector (PS-SD). The operation characteristic for each detector and the mean acquisition time for each algorithm are derived. All the algorithms are studied in conjunction with the noncoherent integration technique, which enables the system to operate in the presence of data modulation. Several previous proposals using PNMF are seen as special cases of the present algorithms.
NASA Astrophysics Data System (ADS)
Schleibinger, Hans; Rüden, Henning
The emission of volatile organic compounds (VOC) from air filters of HVAC systems was to be evaluated. In a first study carbonyl compounds (14 aldehydes and two ketones) were measured by reacting them with 2,4-dinitrophenylhydrazine (DNPH). Analysis was done by HPLC and UV detection. In laboratory experiments pieces of used and unused HVAC filters were incubated in test chambers. Filters to be investigated were taken from a filter bank of a large HVAC system in the centre of Berlin. First results show that - among those compounds - formaldehyde and acetone were found in higher concentrations in the test chambers filled with used filters in comparison to those with unused filters. Parallel field measurements were carried out at the prefilter and main filter banks of the two HVAC systems. Here measurements were carried out simultaneously before and after the filters to investigate whether those aldehydes or ketones arise from the filter material on site. Formaldehyde and acetone significantly increased in concentration after the filters of one HVAC system. In parallel experiments microorganisms were proved to be able to survive on air filters. Therefore, a possible source of formaldehyde and acetone might be microbes.
Highly efficient spatial data filtering in parallel using the opensource library CPPPO
NASA Astrophysics Data System (ADS)
Municchi, Federico; Goniva, Christoph; Radl, Stefan
2016-10-01
CPPPO is a compilation of parallel data processing routines developed with the aim to create a library for "scale bridging" (i.e. connecting different scales by mean of closure models) in a multi-scale approach. CPPPO features a number of parallel filtering algorithms designed for use with structured and unstructured Eulerian meshes, as well as Lagrangian data sets. In addition, data can be processed on the fly, allowing the collection of relevant statistics without saving individual snapshots of the simulation state. Our library is provided with an interface to the widely-used CFD solver OpenFOAM®, and can be easily connected to any other software package via interface modules. Also, we introduce a novel, extremely efficient approach to parallel data filtering, and show that our algorithms scale super-linearly on multi-core clusters. Furthermore, we provide a guideline for choosing the optimal Eulerian cell selection algorithm depending on the number of CPU cores used. Finally, we demonstrate the accuracy and the parallel scalability of CPPPO in a showcase focusing on heat and mass transfer from a dense bed of particles.
Controllable spin polarization and spin filtering in a zigzag silicene nanoribbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farokhnezhad, Mohsen, E-mail: Mohsen-farokhnezhad@physics.iust.ac.ir; Esmaeilzadeh, Mahdi, E-mail: mahdi@iust.ac.ir; Pournaghavi, Nezhat
2015-05-07
Using non-equilibrium Green's function, we study the spin-dependent electron transport properties in a zigzag silicene nanoribbon. To produce and control spin polarization, it is assumed that two ferromagnetic strips are deposited on the both edges of the silicene nanoribbon and an electric field is perpendicularly applied to the nanoribbon plane. The spin polarization is studied for both parallel and anti-parallel configurations of exchange magnetic fields induced by the ferromagnetic strips. We find that complete spin polarization can take place in the presence of perpendicular electric field for anti-parallel configuration and the nanoribbon can work as a perfect spin filter. Themore » spin direction of transmitted electrons can be easily changed from up to down and vice versa by reversing the electric field direction. For parallel configuration, perfect spin filtering can occur even in the absence of electric field. In this case, the spin direction can be changed by changing the electron energy. Finally, we investigate the effects of nonmagnetic Anderson disorder on spin dependent conductance and find that the perfect spin filtering properties of nanoribbon are destroyed by strong disorder, but the nanoribbon retains these properties in the presence of weak disorder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojciechowski, Kenneth E; Olsson, III, Roy H; Ziaei-Moayyed, Maryam
2013-07-30
A microelectromechanical (MEM) filter is disclosed which has a plurality of lattice networks formed on a substrate and electrically connected together in parallel. Each lattice network has a series resonant frequency and a shunt resonant frequency provided by one or more contour-mode resonators in the lattice network. Different types of contour-mode resonators including single input, single output resonators, differential resonators, balun resonators, and ring resonators can be used in MEM filter. The MEM filter can have a center frequency in the range of 10 MHz-10 GHz, with a filter bandwidth of up to about 1% when all of the latticemore » networks have the same series resonant frequency and the same shunt resonant frequency. The filter bandwidth can be increased up to about 5% by using unique series and shunt resonant frequencies for the lattice networks.« less
Hardware-efficient implementation of digital FIR filter using fast first-order moment algorithm
NASA Astrophysics Data System (ADS)
Cao, Li; Liu, Jianguo; Xiong, Jun; Zhang, Jing
2018-03-01
As the digital finite impulse response (FIR) filter can be transformed into the shift-add form of multiple small-sized firstorder moments, based on the existing fast first-order moment algorithm, this paper presents a novel multiplier-less structure to calculate any number of sequential filtering results in parallel. The theoretical analysis on its hardware and time-complexities reveals that by appropriately setting the degree of parallelism and the decomposition factor of a fixed word width, the proposed structure may achieve better area-time efficiency than the existing two-dimensional (2-D) memoryless-based filter. To evaluate the performance concretely, the proposed designs for different taps along with the existing 2-D memoryless-based filters, are synthesized by Synopsys Design Compiler with 0.18-μm SMIC library. The comparisons show that the proposed design has less area-time complexity and power consumption when the number of filter taps is larger than 48.
NASA Technical Reports Server (NTRS)
Woodgate, B. E.
1977-01-01
Multistage diffraction filter consisting of coalined series of pinholes on parallel sheets can be used as nondegradable UV filter. Beam is attenuated as each pinhole diffracts radiation in controlled manner into divergent beam, and following pinhole accepts only small part of that beam.
Language Classification using N-grams Accelerated by FPGA-based Bloom Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, A; Gokhale, M
N-Gram (n-character sequences in text documents) counting is a well-established technique used in classifying the language of text in a document. In this paper, n-gram processing is accelerated through the use of reconfigurable hardware on the XtremeData XD1000 system. Our design employs parallelism at multiple levels, with parallel Bloom Filters accessing on-chip RAM, parallel language classifiers, and parallel document processing. In contrast to another hardware implementation (HAIL algorithm) that uses off-chip SRAM for lookup, our highly scalable implementation uses only on-chip memory blocks. Our implementation of end-to-end language classification runs at 85x comparable software and 1.45x the competing hardware design.
A 64Cycles/MB, Luma-Chroma Parallelized H.264/AVC Deblocking Filter for 4K × 2K Applications
NASA Astrophysics Data System (ADS)
Shen, Weiwei; Fan, Yibo; Zeng, Xiaoyang
In this paper, a high-throughput debloking filter is presented for H.264/AVC standard, catering video applications with 4K × 2K (4096 × 2304) ultra-definition resolution. In order to strengthen the parallelism without simply increasing the area, we propose a luma-chroma parallel method. Meanwhile, this work reduces the number of processing cycles, the amount of external memory traffic and the working frequency, by using triple four-stage pipeline filters and a luma-chroma interlaced sequence. Furthermore, it eliminates most unnecessary off-chip memory bandwidth with a highly reusable memory scheme, and adopts a “slide window” buffer scheme. As a result, our design can support 4K × 2K at 30fps applications at the working frequency of only 70.8MHz.
Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava
Faced with physical and energy density limitations on clock speed, contemporary microprocessor designers have increasingly turned to on-chip parallelism for performance gains. Examples include the Intel Xeon Phi, GPGPUs, and similar technologies. Algorithms should accordingly be designed with ample amounts of fine-grained parallelism if they are to realize the full performance of the hardware. This requirement can be challenging for algorithms that are naturally expressed as a sequence of small-matrix operations, such as the Kalman filter methods widely in use in high-energy physics experiments. In the High-Luminosity Large Hadron Collider (HL-LHC), for example, one of the dominant computational problems ismore » expected to be finding and fitting charged-particle tracks during event reconstruction; today, the most common track-finding methods are those based on the Kalman filter. Experience at the LHC, both in the trigger and offline, has shown that these methods are robust and provide high physics performance. Previously we reported the significant parallel speedups that resulted from our efforts to adapt Kalman-filter-based tracking to many-core architectures such as Intel Xeon Phi. Here we report on how effectively those techniques can be applied to more realistic detector configurations and event complexity.« less
Fast Face-Recognition Optical Parallel Correlator Using High Accuracy Correlation Filter
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Kodate, Kashiko
2005-11-01
We designed and fabricated a fully automatic fast face recognition optical parallel correlator [E. Watanabe and K. Kodate: Appl. Opt. 44 (2005) 5666] based on the VanderLugt principle. The implementation of an as-yet unattained ultra high-speed system was aided by reconfiguring the system to make it suitable for easier parallel processing, as well as by composing a higher accuracy correlation filter and high-speed ferroelectric liquid crystal-spatial light modulator (FLC-SLM). In running trial experiments using this system (dubbed FARCO), we succeeded in acquiring remarkably low error rates of 1.3% for false match rate (FMR) and 2.6% for false non-match rate (FNMR). Given the results of our experiments, the aim of this paper is to examine methods of designing correlation filters and arranging database image arrays for even faster parallel correlation, underlining the issues of calculation technique, quantization bit rate, pixel size and shift from optical axis. The correlation filter has proved its excellent performance and higher precision than classical correlation and joint transform correlator (JTC). Moreover, arrangement of multi-object reference images leads to 10-channel correlation signals, as sharply marked as those of a single channel. This experiment result demonstrates great potential for achieving the process speed of 10000 face/s.
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Balas, M. J.
1980-01-01
A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.
Digital Optical Circuit Technology.
1985-03-01
ordinateurs ct des syst~mcs de diffusion de donn’es qui soient I la fois numcriques, entierement optiques. tres rapides etI I’abri des interferences et des...F.A.Hopf SESSION 11 - OPTICAL LOGIC PROSPECTS FOR PARALLEL NONLINEAR OPTICAL SIGNAL PROCESSING USING GaAs ETALONS AND ZnS INTERFERENCE FILTERS by...talks 1, 8, and 9) interference filters for room-temperature parallel processing. If one imposes a maximum heat load of 100 W/cm 2 , consistent with
Vinyl chloride removal from an air stream by biotrickling filter.
Faraj, S H Esmaeili; Esfahany, M Nasr; Kadivar, M; Zilouei, H
2012-01-01
A biofiltration process was used for degradation of vinyl chloride as a hazardous material in the air stream. Three biotrickling filters in series-parallel allowing uniform feed and moisture distribution all over the bed were used. Granular activated carbon mixed with compost was employed as carrier bed. The biological culture consisted of mixture of activated sludge from PVC wastewater treatment plant. Concurrent flow of gas and liquid was used in the bed. Results indicated that during the operation period of 110 days, the biotrickling bed was able to remove over 35% of inlet vinyl chloride. Maximum elimination capacity was calculated to be 0.56 g.m(-3).hr(-1). The amount of chlorine accumulated in the circulating liquid due to the degradation of vinyl chloride was measured to be equal to the vinyl chloride removed from the air stream.
Microplate-based filter paper assay to measure total cellulase activity.
Xiao, Zhizhuang; Storms, Reginald; Tsang, Adrian
2004-12-30
The standard filter paper assay (FPA) published by the International Union of Pure and Applied Chemistry (IUPAC) is widely used to determine total cellulase activity. However, the IUPAC method is not suitable for the parallel analyses of large sample numbers. We describe here a microplate-based method for assaying large sample numbers. To achieve this, we reduced the enzymatic reaction volume to 60 microl from the 1.5 ml used in the IUPAC method. The modified 60-microl format FPA can be carried out in 96-well assay plates. Statistical analyses showed that the cellulase activities of commercial cellulases from Trichoderma reesei and Aspergillus species determined with our 60-microl format FPA were not significantly different from the activities measured with the standard FPA. Our results also indicate that the 60-microl format FPA is quantitative and highly reproducible. Moreover, the addition of excess beta-glucosidase increased the sensitivity of the assay by up to 60%. 2004 Wiley Periodicals, Inc.
2010-02-01
channels, so the channel gain is known on each realization and used in a coherent matched filter; and (c) Rayleigh channels with noncoherent matched...gain is known on each realization and used in a coherent matched filter (channel model 1A); and (c) Rayleigh channels with noncoherent matched filters...filters, averaged over Rayleigh channel realizations (channel model 1A). (b) Noncoherent matched filters with Rayleigh fading (channel model 3). MSEs are
NASA Astrophysics Data System (ADS)
Wang, Tengxing; Rahman, B. M. Farid; Peng, Yujia; Xia, Tian; Wang, Guoan
2015-05-01
A well designed coplanar waveguide (CPW) based center frequency tunable bandpass filter (BPF) at 4 GHz enabled with patterned Permalloy (Py) thin film has been implemented. The operating frequency of BPF is tunable with only DC current without the use of any external magnetic field. Electromagnetic bandgap resonators structure is adopted in the BPF and thus external DC current can be applied between the input and output of the filter for tuning of Py permeability. Special configurations of resonators with multiple narrow parallel sections have been considered for larger inductance tenability; the tunability of CPW transmission lines of different widths with patterned Py thin film on the top of the signal lines is compared and measured. Py thin film patterned as bars is deposited on the top of the multiple narrow parallel sections of the designed filter. No extra area is required for the designed filter configuration. Filter is measured and results show that its center frequency could be tuned from 4 GHz to 4.02 GHz when the DC current is applied from 0 mA to 400 mA.
Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)
NASA Technical Reports Server (NTRS)
Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.
1974-01-01
The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis.
Method, systems, and computer program products for implementing function-parallel network firewall
Fulp, Errin W [Winston-Salem, NC; Farley, Ryan J [Winston-Salem, NC
2011-10-11
Methods, systems, and computer program products for providing function-parallel firewalls are disclosed. According to one aspect, a function-parallel firewall includes a first firewall node for filtering received packets using a first portion of a rule set including a plurality of rules. The first portion includes less than all of the rules in the rule set. At least one second firewall node filters packets using a second portion of the rule set. The second portion includes at least one rule in the rule set that is not present in the first portion. The first and second portions together include all of the rules in the rule set.
2003-04-01
range filters implemented with traditional semiconductor varactor diodes can require complex series-parallel circuit constructions to achieve sufficient...filter slice of the AIU and the varactor array modules are shown in Fig. 6.2. The complexity of the varactor array is clearly apparent. Further, it is...38 Fig. 6.2: Schematic of F-22 AIU UHF tracking filter, 2-pole filter, and varactor diode assembly
Recursive Algorithms for Real-Time Digital CR-RCn Pulse Shaping
NASA Astrophysics Data System (ADS)
Nakhostin, M.
2011-10-01
This paper reports on recursive algorithms for real-time implementation of CR-(RC)n filters in digital nuclear spectroscopy systems. The algorithms are derived by calculating the Z-transfer function of the filters for filter orders up to n=4 . The performances of the filters are compared with the performance of the conventional digital trapezoidal filter using a noise generator which separately generates pure series, 1/f and parallel noise. The results of our study enable one to select the optimum digital filter for different noise and rate conditions.
Flexible RF filter using a nonuniform SCISSOR.
Zhuang, Leimeng
2016-03-15
This work presents a flexible radiofrequency (RF) filter using an integrated microwave photonic circuit that comprises a nonuniform side-coupled integrated spaced sequence of resonators (N-SCISSOR). The filter passband can be reconfigured by varying the N-SCISSOR parameters. When employing a dual-parallel Mach-Zechnder modulator, the filter is also able to perform frequency down-conversion. In the experiment, various filter response shapes are shown, ranging from a flat-top band-pass filter to a total opposite high-rejection (>40 dB) notch filter, with a frequency coverage of greater than two octaves. The frequency down-conversion function is also demonstrated.
NASA Astrophysics Data System (ADS)
Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun
2018-03-01
Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.
Tunable THz notch filter with a single groove inside parallel-plate waveguides.
Lee, Eui Su; Jeon, Tae-In
2012-12-31
A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.
Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi
2015-08-01
Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.
Kalman Filter Tracking on Parallel Architectures
NASA Astrophysics Data System (ADS)
Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2016-11-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. In order to achieve the theoretical performance gains of these processors, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC), for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on a Kalman filter approach. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust, and are in use today at the LHC. Given the utility of the Kalman filter in track finding, we have begun to port these algorithms to parallel architectures, namely Intel Xeon and Xeon Phi. We report here on our progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a simplified experimental environment.
An image-space parallel convolution filtering algorithm based on shadow map
NASA Astrophysics Data System (ADS)
Li, Hua; Yang, Huamin; Zhao, Jianping
2017-07-01
Shadow mapping is commonly used in real-time rendering. In this paper, we presented an accurate and efficient method of soft shadows generation from planar area lights. First this method generated a depth map from light's view, and analyzed the depth-discontinuities areas as well as shadow boundaries. Then these areas were described as binary values in the texture map called binary light-visibility map, and a parallel convolution filtering algorithm based on GPU was enforced to smooth out the boundaries with a box filter. Experiments show that our algorithm is an effective shadow map based method that produces perceptually accurate soft shadows in real time with more details of shadow boundaries compared with the previous works.
Silica dust exposure: Effect of filter size to compliance determination
NASA Astrophysics Data System (ADS)
Amran, Suhaily; Latif, Mohd Talib; Khan, Md Firoz; Leman, Abdul Mutalib; Goh, Eric; Jaafar, Shoffian Amin
2016-11-01
Monitoring of respirable dust was performed using a set of integrated sampling system consisting of sampling pump attached with filter media and separating device such as cyclone or special cassette. Based on selected method, filter sizes are either 25 mm or 37 mm poly vinyl chloride (PVC) filter. The aim of this study was to compare performance of two types of filter during personal respirable dust sampling for silica dust under field condition. The comparison strategy focused on the final compliance judgment based on both dataset. Eight hour parallel sampling of personal respirable dust exposure was performed among 30 crusher operators at six quarries. Each crusher operator was attached with parallel set of integrated sampling train containing either 25 mm or 37 mm PVC filter. Each set consisted of standard flow SKC sampler, attached with SKC GS3 cyclone and 2 pieces cassette loaded with 5.0 µm of PVC filter. Samples were analyzed by gravimetric technique. Personal respirable dust exposure between the two types of filters indicated significant positive correlation (p < 0.05) with moderate relationship (r2 = 0.6431). Personal exposure based on 25 mm PVC filter indicated 0.1% non-compliance to overall data while 37 mm PVC filter indicated similar findings at 0.4 %. Both data showed similar arithmetic mean(AM) and geometric mean(GM). In overall we concluded that personal respirable dust exposure either based on 25mm or 37mm PVC filter will give similar compliance determination. Both filters are reliable to be used in respirable dust monitoring for silica dust related exposure.
Erusalimsky, J D; John, J; Hong, Y; Moore, M
1996-11-15
A filter binding assay that measures internucleosomal DNA fragmentation associated with apoptosis is described. The assay is based on a novel principle that consists of using simultaneously two kinds of glass fiber filters to harvest [3H]thymidine-prelabeled cells following their incubation with inducers of apoptosis. One filter, which is neutral, traps intact chromatin and high-molecular-weight DNA. The other filter, which is positively charged with DEAE active groups, traps low-molecular-weight DNA fragments. DNA fragmentation is quantified by measuring the radioactivity retained by each of the filters. The assay was evaluated with the histiocytic lymphoma cell line U937 and the topoisomerase inhibitors camptothecin, etoposide, and doxorubicin. These agents caused a dose-dependent decrease of radioactivity in the neutral filter and a parallel increase of radioactivity in the DEAE filter. Irradiation-induced single strand breaks and topoisomerase-mediated primary DNA damage were not detected by this method. Consistent with the detection of internucleosomal DNA fragmentation, the effects measured by this assay were prevented by the endonuclease inhibitor zinc acetate and by the metabolic inhibitor sodium azide. Results obtained using this assay were validated by observation of DNA ladders on agarose gels and by morphologic examination of apoptotic features. Evaluation of the assay in a mock screen demonstrated that the introduction of the DEAE filter increases the assay sensitivity and eliminates false positives. Thus, this assay may be used in high-throughput screening approaches to discover novel modulators of apoptosis.
Smart Optical Material Characterization System and Method
NASA Technical Reports Server (NTRS)
Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)
2015-01-01
Disclosed is a system and method for characterizing optical materials, using steps and equipment for generating a coherent laser light, filtering the light to remove high order spatial components, collecting the filtered light and forming a parallel light beam, splitting the parallel beam into a first direction and a second direction wherein the parallel beam travelling in the second direction travels toward the material sample so that the parallel beam passes through the sample, applying various physical quantities to the sample, reflecting the beam travelling in the first direction to produce a first reflected beam, reflecting the beam that passes through the sample to produce a second reflected beam that travels back through the sample, combining the second reflected beam after it travels back though the sample with the first reflected beam, sensing the light beam produced by combining the first and second reflected beams, and processing the sensed beam to determine sample characteristics and properties.
Micro benchtop optics by bulk silicon micromachining
Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.
2000-01-01
Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.
Efficient Parallel Video Processing Techniques on GPU: From Framework to Implementation
Su, Huayou; Wen, Mei; Wu, Nan; Ren, Ju; Zhang, Chunyuan
2014-01-01
Through reorganizing the execution order and optimizing the data structure, we proposed an efficient parallel framework for H.264/AVC encoder based on massively parallel architecture. We implemented the proposed framework by CUDA on NVIDIA's GPU. Not only the compute intensive components of the H.264 encoder are parallelized but also the control intensive components are realized effectively, such as CAVLC and deblocking filter. In addition, we proposed serial optimization methods, including the multiresolution multiwindow for motion estimation, multilevel parallel strategy to enhance the parallelism of intracoding as much as possible, component-based parallel CAVLC, and direction-priority deblocking filter. More than 96% of workload of H.264 encoder is offloaded to GPU. Experimental results show that the parallel implementation outperforms the serial program by 20 times of speedup ratio and satisfies the requirement of the real-time HD encoding of 30 fps. The loss of PSNR is from 0.14 dB to 0.77 dB, when keeping the same bitrate. Through the analysis to the kernels, we found that speedup ratios of the compute intensive algorithms are proportional with the computation power of the GPU. However, the performance of the control intensive parts (CAVLC) is much related to the memory bandwidth, which gives an insight for new architecture design. PMID:24757432
Introducing Filters and Amplifiers Using a Two-Channel Light Organ
NASA Astrophysics Data System (ADS)
Zavrel, Erik; Sharpsteen, Eric
2015-11-01
In an era when many students carry iPods, iPhones, and iPads, physics teachers are realizing that in order to continue to inspire and convey the amazing things made possible by a few fundamental principles, they must expand laboratory coverage of electricity and circuits beyond the conventional staples of constructing series and parallel arrangements of light bulbs and confirming Kirchhoff's laws. Indeed, physics teachers are already incorporating smartphones into their laboratory activities in an effort to convey concepts in a more contemporary and relatable manner. As part of Cornell's Learning Initiative in Medicine and Bioengineering (CLIMB), we set out to design and implement an engaging curriculum to introduce high school physics students to filters and amplifiers.
FIR Filter of DS-CDMA UWB Modem Transmitter
NASA Astrophysics Data System (ADS)
Kang, Kyu-Min; Cho, Sang-In; Won, Hui-Chul; Choi, Sang-Sung
This letter presents low-complexity digital pulse shaping filter structures of a direct sequence code division multiple access (DS-CDMA) ultra wide-band (UWB) modem transmitter with a ternary spreading code. The proposed finite impulse response (FIR) filter structures using a look-up table (LUT) have the effect of saving the amount of memory by about 50% to 80% in comparison to the conventional FIR filter structures, and consequently are suitable for a high-speed parallel data process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Li-Ling; School of Science, Hunan University of Technology, Zhuzhou 412007; Yang, Bing-Chu, E-mail: bingchuyang@csu.edu.cn
2014-07-21
Spin-dependent transport properties of nanodevices constructed by iron-phthalocyanine (FePc) molecule sandwiched between two zigzag graphene nanoribbon electrodes are studied using first-principles quantum transport calculations. The effects of the symmetry and spin configuration of electrodes have been taken into account. It is found that large magnetoresistance, large spin polarization, dual spin-filtering, and negative differential resistance (NDR) can coexist in these devices. Our results show that 5Z-FePc system presents well conductive ability in both parallel (P) and anti-parallel (AP) configurations. For 6Z-FePc-P system, spin filtering effect and large spin polarization can be found. A dual spin filtering and NDR can also bemore » shown in 6Z-FePc-AP. Our studies indicate that the dual spin filtering effect depends on the orbitals symmetry of the energy bands and spin mismatching of the electrodes. And all the effects would open up possibilities for their applications in spin-valve, spin-filter as well as effective spin diode devices.« less
Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu
2015-11-11
Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.
Biofiltration: an effective and simple method to reduce dialysis time.
Mingardi, G; Massazza, M; Viganò, G; Mecca, G
1986-12-01
Biofiltration: an effective and simple method to reduce dialysis time. Six stable anuric patients, on maintenance hemodialysis, were treated for 10 weeks with a parallel flow 1 m2 cuprophan filter, for 20 weeks with a parallel flow 1.2 m2 polyacrylonitrile filter using the biofiltration (BF) technique and again 10 weeks with the cuprophan filter. Usual monitors were used, without automatic control of ultrafiltration. Biochemical and hematological profile, urea kinetic parameters, incidence of hypotensive episodes, body weight and blood pressure did not change throughout the study. We conclude that three hours of BF, at least for 20 weeks, are as effective and well tolerated as four hours standard hemodialysis and could be of value in reducing dialysis time, to permit better utilization of dialysis beds.
Hansen, R; Thogersen, T; Rogalla, F
2007-01-01
In the early 1990s, the Wastewater Treatment Plant (WWTP) of Frederikshavn, Denmark, was extended to meet new requirements for nutrient removal (8 mg/L TN, 1.5 mg TP/L) as well as to increase its average daily flow to 16,500 m(3)/d (4.5 MGD). As the most economical upgrade of the existing activated sludge (AS) plant, a parallel biological aerated filter (BAF) was selected, and started up in 1995. Running two full scale processes in parallel for over ten years on the same wastewater and treatment objectives enabled a direct comparison in relation to operating performance, costs and experience. Common pretreatment consists of screening, an aerated grit and grease removal and three primary settlers with chemical addition. The effluent is then pumped to the two parallel biological treatment stages, AS with recirculation and an upflow BAF with floating media. The wastewater is a mixture of industrial and domestic wastewater, with a dominant discharge of fish processing effluent which can amount to 50% of the flow. The maximum hydraulic load on the pretreatment section as a whole is 1,530 m(3)/h. Approximately 60% of the sewer system is combined with a total of 32 overflow structures. To avoid the direct discharge of combined sewer overflows into the receiving waters, the total hydraulic wet weather capacity of the plant is increased to 4,330 m(3)/h, or 6 times average flow. During rain, some of the raw sewage can be directed through a stormwater bypass to the BAF, which can be modified in its operation to accommodate various treatment needs: either using simultaneous nitrification/denitrification in all filters with recirculation introducing bottom aeration with full nitrification in some filters for storm treatment and/or post-denitrification in one filter. After treatment, the wastewater is discharged to the Baltic Sea through a 500 m outfall. The BAF backwash sludge, approximately 1,900 m(3) per 24 h in dry weather, is redirected to the AS plant. Primary settler sludge and the combined biosolids from the AS plant are anaerobically digested, with methane gas being used for generation of heat and power. On-line measurements for the parameters NO3, NO2, NH4, temperature as well as dissolved oxygen (DO) are used for control of aeration and external carbon source (methanol). Dosing of flocculants for P-removal is carried out based on laboratory analysis and jar tests. This paper discusses the experience gained from the plant operation during the last ten years, compiling comparative performance and cost data of the two processes, as well as their optimisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Purba, Victor; Jafarpour, Saber
Given that next-generation infrastructures will contain large numbers of grid-connected inverters and these interfaces will be satisfying a growing fraction of system load, it is imperative to analyze the impacts of power electronics on such systems. However, since each inverter model has a relatively large number of dynamic states, it would be impractical to execute complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the pointmore » of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loop for grid synchronization. We outline a structure-preserving reduced-order inverter model for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. That is, we show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as an individual inverter in the paralleled system. Numerical simulations validate the reduced-order models.« less
Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.
Slażyński, Leszek; Bohte, Sander
2012-01-01
The arrival of graphics processing (GPU) cards suitable for massively parallel computing promises affordable large-scale neural network simulation previously only available at supercomputing facilities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of magnitude, the challenge is to develop fine-grained parallel algorithms to fully exploit the particulars of GPUs. Computation in a neural network is inherently parallel and thus a natural match for GPU architectures: given inputs, the internal state for each neuron can be updated in parallel. We show that for filter-based spiking neurons, like the Spike Response Model, the additive nature of membrane potential dynamics enables additional update parallelism. This also reduces the accumulation of numerical errors when using single precision computation, the native precision of GPUs. We further show that optimizing simulation algorithms and data structures to the GPU's architecture has a large pay-off: for example, matching iterative neural updating to the memory architecture of the GPU speeds up this simulation step by a factor of three to five. With such optimizations, we can simulate in better-than-realtime plausible spiking neural networks of up to 50 000 neurons, processing over 35 million spiking events per second.
NASA Astrophysics Data System (ADS)
Dettmer, J.; Quijano, J. E.; Dosso, S. E.; Holland, C. W.; Mandolesi, E.
2016-12-01
Geophysical seabed properties are important for the detection and classification of unexploded ordnance. However, current surveying methods such as vertical seismic profiling, coring, or inversion are of limited use when surveying large areas with high spatial sampling density. We consider surveys based on a source and receiver array towed by an autonomous vehicle which produce large volumes of seabed reflectivity data that contain unprecedented and detailed seabed information. The data are analyzed with a particle filter, which requires efficient reflection-coefficient computation, efficient inversion algorithms and efficient use of computer resources. The filter quantifies information content of multiple sequential data sets by considering results from previous data along the survey track to inform the importance sampling at the current point. Challenges arise from environmental changes along the track where the number of sediment layers and their properties change. This is addressed by a trans-dimensional model in the filter which allows layering complexity to change along a track. Efficiency is improved by likelihood tempering of various particle subsets and including exchange moves (parallel tempering). The filter is implemented on a hybrid computer that combines central processing units (CPUs) and graphics processing units (GPUs) to exploit three levels of parallelism: (1) fine-grained parallel computation of spherical reflection coefficients with a GPU implementation of Levin integration; (2) updating particles by concurrent CPU processes which exchange information using automatic load balancing (coarse grained parallelism); (3) overlapping CPU-GPU communication (a major bottleneck) with GPU computation by staggering CPU access to the multiple GPUs. The algorithm is applied to spherical reflection coefficients for data sets along a 14-km track on the Malta Plateau, Mediterranean Sea. We demonstrate substantial efficiency gains over previous methods. [This research was supported in part by the U.S. Dept of Defense, thought the Strategic Environmental Research and Development Program (SERDP).
Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.
Azevedo, Anthony W; Wilson, Rachel I
2017-10-11
To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na + and K + conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels. Copyright © 2017 Elsevier Inc. All rights reserved.
Method and apparatus for a self-cleaning filter
Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael
2013-09-10
A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.
Method and apparatus for a self-cleaning filter
Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael
2010-11-16
A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.
Simulation Exploration through Immersive Parallel Planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunhart-Lupo, Nicholas J; Bush, Brian W; Gruchalla, Kenny M
We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less
Simulation Exploration through Immersive Parallel Planes: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny
We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less
A highly parallel multigrid-like method for the solution of the Euler equations
NASA Technical Reports Server (NTRS)
Tuminaro, Ray S.
1989-01-01
We consider a highly parallel multigrid-like method for the solution of the two dimensional steady Euler equations. The new method, introduced as filtering multigrid, is similar to a standard multigrid scheme in that convergence on the finest grid is accelerated by iterations on coarser grids. In the filtering method, however, additional fine grid subproblems are processed concurrently with coarse grid computations to further accelerate convergence. These additional problems are obtained by splitting the residual into a smooth and an oscillatory component. The smooth component is then used to form a coarse grid problem (similar to standard multigrid) while the oscillatory component is used for a fine grid subproblem. The primary advantage in the filtering approach is that fewer iterations are required and that most of the additional work per iteration can be performed in parallel with the standard coarse grid computations. We generalize the filtering algorithm to a version suitable for nonlinear problems. We emphasize that this generalization is conceptually straight-forward and relatively easy to implement. In particular, no explicit linearization (e.g., formation of Jacobians) needs to be performed (similar to the FAS multigrid approach). We illustrate the nonlinear version by applying it to the Euler equations, and presenting numerical results. Finally, a performance evaluation is made based on execution time models and convergence information obtained from numerical experiments.
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2012-11-01
The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.
Reduced-Order Structure-Preserving Model for Parallel-Connected Three-Phase Grid-Tied Inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Purba, Victor; Jafarpour, Saber
Next-generation power networks will contain large numbers of grid-connected inverters satisfying a significant fraction of system load. Since each inverter model has a relatively large number of dynamic states, it is impractical to analyze complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the point of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loopmore » for grid synchronization. We outline a structure-preserving reduced-order inverter model with lumped parameters for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. We show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as any individual inverter in the system. Numerical simulations validate the reduced-order model.« less
Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.
Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H
2013-05-01
In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction. Copyright © 2012 Wiley Periodicals, Inc.
Kalman Filter Techniques for Accelerated Cartesian Dynamic Cardiac Imaging
Feng, Xue; Salerno, Michael; Kramer, Christopher M.; Meyer, Craig H.
2012-01-01
In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories, because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and SNR. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction. PMID:22926804
A Pervasive Parallel Processing Framework for Data Visualization and Analysis at Extreme Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth; Geveci, Berk
2014-11-01
The evolution of the computing world from teraflop to petaflop has been relatively effortless, with several of the existing programming models scaling effectively to the petascale. The migration to exascale, however, poses considerable challenges. All industry trends infer that the exascale machine will be built using processors containing hundreds to thousands of cores per chip. It can be inferred that efficient concurrency on exascale machines requires a massive amount of concurrent threads, each performing many operations on a localized piece of data. Currently, visualization libraries and applications are based off what is known as the visualization pipeline. In the pipelinemore » model, algorithms are encapsulated as filters with inputs and outputs. These filters are connected by setting the output of one component to the input of another. Parallelism in the visualization pipeline is achieved by replicating the pipeline for each processing thread. This works well for today’s distributed memory parallel computers but cannot be sustained when operating on processors with thousands of cores. Our project investigates a new visualization framework designed to exhibit the pervasive parallelism necessary for extreme scale machines. Our framework achieves this by defining algorithms in terms of worklets, which are localized stateless operations. Worklets are atomic operations that execute when invoked unlike filters, which execute when a pipeline request occurs. The worklet design allows execution on a massive amount of lightweight threads with minimal overhead. Only with such fine-grained parallelism can we hope to fill the billions of threads we expect will be necessary for efficient computation on an exascale machine.« less
Optical ranked-order filtering using threshold decomposition
Allebach, Jan P.; Ochoa, Ellen; Sweeney, Donald W.
1990-01-01
A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed.
Online Wavelet Complementary velocity Estimator.
Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin
2018-02-01
In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Flat-top passband filter based on parallel-coupled double microring resonators in silicon
NASA Astrophysics Data System (ADS)
Huang, Qingzhong; Xiao, Xi; Li, Yuntao; Li, Zhiyong; Yu, Yude; Yu, Jinzhong
2009-08-01
Optical filters with box-like response were designed and realized based on parallel-coupled double microrings in silicon-on-insulator. The properties of this design are simulated, considering the impact of the center-to-center distance of two rings, and coupling efficiency. Flat-top passband in the drop channel of the fabricated device was demonstrated with a 1dB bandwidth of 0.82nm, a 1dB/10dB bandwidth ratio of 0.51, an out of band rejection ratio of 14.6dB, as well as a free spectrum range of 13.6nm.
NASA Astrophysics Data System (ADS)
Lhamon, Michael Earl
A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.
NASA Technical Reports Server (NTRS)
Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, III, Robert A. (Inventor)
1996-01-01
An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.
NASA Technical Reports Server (NTRS)
Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, Robert A., III (Inventor)
1994-01-01
An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate is presented. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.
Islam, Mohammad Tariqul; Tanvir Ahmed, Sk.; Zabir, Ishmam; Shahnaz, Celia
2018-01-01
Photoplethysmographic (PPG) signal is getting popularity for monitoring heart rate in wearable devices because of simplicity of construction and low cost of the sensor. The task becomes very difficult due to the presence of various motion artefacts. In this study, an algorithm based on cascade and parallel combination (CPC) of adaptive filters is proposed in order to reduce the effect of motion artefacts. First, preliminary noise reduction is performed by averaging two channel PPG signals. Next in order to reduce the effect of motion artefacts, a cascaded filter structure consisting of three cascaded adaptive filter blocks is developed where three-channel accelerometer signals are used as references to motion artefacts. To further reduce the affect of noise, a scheme based on convex combination of two such cascaded adaptive noise cancelers is introduced, where two widely used adaptive filters namely recursive least squares and least mean squares filters are employed. Heart rates are estimated from the noise reduced PPG signal in spectral domain. Finally, an efficient heart rate tracking algorithm is designed based on the nature of the heart rate variability. The performance of the proposed CPC method is tested on a widely used public database. It is found that the proposed method offers very low estimation error and a smooth heart rate tracking with simple algorithmic approach. PMID:29515812
Optical ranked-order filtering using threshold decomposition
Allebach, J.P.; Ochoa, E.; Sweeney, D.W.
1987-10-09
A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed. 3 figs.
F3D Image Processing and Analysis for Many - and Multi-core Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizing for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expeditesmore » any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.« less
ERIC Educational Resources Information Center
Chen, Hsinchun; Martinez, Joanne; Kirchhoff, Amy; Ng, Tobun D.; Schatz, Bruce R.
1998-01-01
Grounded on object filtering, automatic indexing, and co-occurrence analysis, an experiment was performed using a parallel supercomputer to analyze over 400,000 abstracts in an INSPEC computer engineering collection. A user evaluation revealed that system-generated thesauri were better than the human-generated INSPEC subject thesaurus in concept…
Particle filters, a quasi-Monte-Carlo-solution for segmentation of coronaries.
Florin, Charles; Paragios, Nikos; Williams, Jim
2005-01-01
In this paper we propose a Particle Filter-based approach for the segmentation of coronary arteries. To this end, successive planes of the vessel are modeled as unknown states of a sequential process. Such states consist of the orientation, position, shape model and appearance (in statistical terms) of the vessel that are recovered in an incremental fashion, using a sequential Bayesian filter (Particle Filter). In order to account for bifurcations and branchings, we consider a Monte Carlo sampling rule that propagates in parallel multiple hypotheses. Promising results on the segmentation of coronary arteries demonstrate the potential of the proposed approach.
Kalman Filter Tracking on Parallel Architectures
NASA Astrophysics Data System (ADS)
Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2015-12-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques including Cellular Automata or returning to Hough Transform. The most common track finding techniques in use today are however those based on the Kalman Filter [2]. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust and are exactly those being used today for the design of the tracking system for HL-LHC. Our previous investigations showed that, using optimized data structures, track fitting with Kalman Filter can achieve large speedup both with Intel Xeon and Xeon Phi. We report here our further progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a realistic simulation setup.
Polarization division multiplexing for optical data communications
NASA Astrophysics Data System (ADS)
Ivanovich, Darko; Powell, Samuel B.; Gruev, Viktor; Chamberlain, Roger D.
2018-02-01
Multiple parallel channels are ubiquitous in optical communications, with spatial division multiplexing (separate physical paths) and wavelength division multiplexing (separate optical wavelengths) being the most common forms. Here, we investigate the viability of polarization division multiplexing, the separation of distinct parallel optical communication channels through the polarization properties of light. Two or more linearly polarized optical signals (at different polarization angles) are transmitted through a common medium, filtered using aluminum nanowire optical filters fabricated on-chip, and received using individual silicon photodetectors (one per channel). The entire receiver (including optics) is compatible with standard CMOS fabrication processes. The filter model is based upon an input optical signal formed as the sum of the Stokes vectors for each individual channel, transformed by the Mueller matrix that models the filter proper, resulting in an output optical signal that impinges on each photodiode. The results show that two- and three-channel systems can operate with a fixed-threshold comparator in the receiver circuit, but four-channel systems (and larger) will require channel coding of some form. For example, in the four-channel system, 10 of 16 distinct bit patterns are separable by the receiver. The model supports investigation of the range of variability tolerable in the fabrication of the on-chip polarization filters.
A Pervasive Parallel Processing Framework for Data Visualization and Analysis at Extreme Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Kwan-Liu
Most of today’s visualization libraries and applications are based off of what is known today as the visualization pipeline. In the visualization pipeline model, algorithms are encapsulated as “filtering” components with inputs and outputs. These components can be combined by connecting the outputs of one filter to the inputs of another filter. The visualization pipeline model is popular because it provides a convenient abstraction that allows users to combine algorithms in powerful ways. Unfortunately, the visualization pipeline cannot run effectively on exascale computers. Experts agree that the exascale machine will comprise processors that contain many cores. Furthermore, physical limitations willmore » prevent data movement in and out of the chip (that is, between main memory and the processing cores) from keeping pace with improvements in overall compute performance. To use these processors to their fullest capability, it is essential to carefully consider memory access. This is where the visualization pipeline fails. Each filtering component in the visualization library is expected to take a data set in its entirety, perform some computation across all of the elements, and output the complete results. The process of iterating over all elements must be repeated in each filter, which is one of the worst possible ways to traverse memory when trying to maximize the number of executions per memory access. This project investigates a new type of visualization framework that exhibits a pervasive parallelism necessary to run on exascale machines. Our framework achieves this by defining algorithms in terms of functors, which are localized, stateless operations. Functors can be composited in much the same way as filters in the visualization pipeline. But, functors’ design allows them to be concurrently running on massive amounts of lightweight threads. Only with such fine-grained parallelism can we hope to fill the billions of threads we expect will be necessary for efficient computation on an exascale computer. This project concludes with a functional prototype containing pervasively parallel algorithms that perform demonstratively well on many-core processors. These algorithms are fundamental for performing data analysis and visualization at extreme scale.« less
Comparison of Parallel and Series Hybrid Power Trains for Transit Bus Applications
Gao, Zhiming; Daw, C. Stuart; Smith, David E.; ...
2016-08-01
The fuel economy and emissions of conventional and hybrid buses equipped with emissions after treatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicated that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar carbon monoxide and hydrocarbon tailpipe emissions but were also predicted to have reduced tailpipe emissions of nitrogen oxides compared with the conventional bus in higher speed cycles. For the New York bus cycle, which hasmore » the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus; the parallel hybrid bus had significantly lower tailpipe emissions. All three bus power trains were found to require periodic active diesel particulate filter regeneration to maintain control of particulate matter. Finally, plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed because of the relatively large battery capacity that is typical of the series hybrid configuration.« less
Comparison of Parallel and Series Hybrid Power Trains for Transit Bus Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Daw, C. Stuart; Smith, David E.
The fuel economy and emissions of conventional and hybrid buses equipped with emissions after treatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicated that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar carbon monoxide and hydrocarbon tailpipe emissions but were also predicted to have reduced tailpipe emissions of nitrogen oxides compared with the conventional bus in higher speed cycles. For the New York bus cycle, which hasmore » the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus; the parallel hybrid bus had significantly lower tailpipe emissions. All three bus power trains were found to require periodic active diesel particulate filter regeneration to maintain control of particulate matter. Finally, plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed because of the relatively large battery capacity that is typical of the series hybrid configuration.« less
Application of multirate digital filter banks to wideband all-digital phase-locked loops design
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Shah, Biren; Hinedi, Sami
1993-01-01
A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.
Application of multirate digital filter banks to wideband all-digital phase-locked loops design
NASA Astrophysics Data System (ADS)
Sadr, Ramin; Shah, Biren; Hinedi, Sami
1993-06-01
A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.
Application of multirate digital filter banks to wideband all-digital phase-locked loops design
NASA Astrophysics Data System (ADS)
Sadr, R.; Shah, B.; Hinedi, S.
1992-11-01
A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.
Application of multirate digital filter banks to wideband all-digital phase-locked loops design
NASA Technical Reports Server (NTRS)
Sadr, R.; Shah, B.; Hinedi, S.
1992-01-01
A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.
Tunable high-q superconducting notch filter
Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.
1979-11-29
A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.
Neural network architecture for form and motion perception (Abstract Only)
NASA Astrophysics Data System (ADS)
Grossberg, Stephen
1991-08-01
Evidence is given for a new neural network theory of biological motion perception, a motion boundary contour system. This theory clarifies why parallel streams V1 yields V2 and V1 yields MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. The motion boundary contour system consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a motion oriented contrast (MOC) filter, for preprocessing moving images; and a cooperative-competitive feedback (CC) loop, for generating emergent boundary segmentations of the filtered signals. The present work uses the MOC filter to explain a variety of classical and recent data about short-range and long- range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed- up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte''s Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90 degree(s), whereas opposite directions differ by 180 degree(s), and why a cortical stream V1 yields V2 yields MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the motion boundary contour system design.
Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein
2016-09-05
We develop, analyze and apply a linearization technique based on dual parallel Mach-Zehnder modulator to self-beating microwave photonics systems. The approach enables broadband low-distortion transmission and reception at expense of a moderate electrical power penalty yielding a small optical power penalty (<1 dB).
Parallel processing of general and specific threat during early stages of perception
2016-01-01
Differential processing of threat can consummate as early as 100 ms post-stimulus. Moreover, early perception not only differentiates threat from non-threat stimuli but also distinguishes among discrete threat subtypes (e.g. fear, disgust and anger). Combining spatial-frequency-filtered images of fear, disgust and neutral scenes with high-density event-related potentials and intracranial source estimation, we investigated the neural underpinnings of general and specific threat processing in early stages of perception. Conveyed in low spatial frequencies, fear and disgust images evoked convergent visual responses with similarly enhanced N1 potentials and dorsal visual (middle temporal gyrus) cortical activity (relative to neutral cues; peaking at 156 ms). Nevertheless, conveyed in high spatial frequencies, fear and disgust elicited divergent visual responses, with fear enhancing and disgust suppressing P1 potentials and ventral visual (occipital fusiform) cortical activity (peaking at 121 ms). Therefore, general and specific threat processing operates in parallel in early perception, with the ventral visual pathway engaged in specific processing of discrete threats and the dorsal visual pathway in general threat processing. Furthermore, selectively tuned to distinctive spatial-frequency channels and visual pathways, these parallel processes underpin dimensional and categorical threat characterization, promoting efficient threat response. These findings thus lend support to hybrid models of emotion. PMID:26412811
90. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO ...
90. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO SUMP, LOWER RIGHT QUADRANT. DIAGONAL PIPE IN UPPER RIGHT IS AIR LINE TO AGITATORS. LAUNDER PARALLEL TO LEFT EDGE (FILLED WITH DEBRIS) RUNS FROM PRIMARY THICKENER No. 2 TO GOLD TANK No. 2. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
169. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO ...
169. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO SUMP, LOWER RIGHT QUADRANT. DIAGONAL PIPE IN UPPER RIGHT IS AIR LINE TO AGITATORS. LAUNDER PARALLEL TO LEFT EDGE (FILLED WITH DEBRIS) RUNS FROM PRIMARY THICKENER No. 2 TO GOLD TANK No. 2 - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Conversion and matched filter approximations for serial minimum-shift keyed modulation
NASA Technical Reports Server (NTRS)
Ziemer, R. E.; Ryan, C. R.; Stilwell, J. H.
1982-01-01
Serial minimum-shift keyed (MSK) modulation, a technique for generating and detecting MSK using series filtering, is ideally suited for high data rate applications provided the required conversion and matched filters can be closely approximated. Low-pass implementations of these filters as parallel inphase- and quadrature-mixer structures are characterized in this paper in terms of signal-to-noise ratio (SNR) degradation from ideal and envelope deviation. Several hardware implementation techniques utilizing microwave devices or lumped elements are presented. Optimization of parameter values results in realizations whose SNR degradation is less than 0.5 dB at error probabilities of .000001.
Spin filtering through ferromagnetic BiMn O3 tunnel barriers
NASA Astrophysics Data System (ADS)
Gajek, M.; Bibes, M.; Barthélémy, A.; Bouzehouane, K.; Fusil, S.; Varela, M.; Fontcuberta, J.; Fert, A.
2005-07-01
We report on experiments of spin filtering through ultrathin single-crystal layers of the insulating and ferromagnetic oxide BiMnO3 (BMO). The spin polarization of the electrons tunneling from a gold electrode through BMO is analyzed with a counterelectrode of the half-metallic oxide La2/3Sr1/3MnO3 (LSMO). At 3K we find a 50% change of the tunnel resistances according to whether the magnetizations of BMO and LSMO are parallel or opposite. This effect corresponds to a spin-filtering efficiency of up to 22%. Our results thus show the potential of complex ferromagnetic insulating oxides for spin filtering and injection.
A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes
NASA Technical Reports Server (NTRS)
Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.
1999-01-01
The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.
Proposed hardware architectures of particle filter for object tracking
NASA Astrophysics Data System (ADS)
Abd El-Halym, Howida A.; Mahmoud, Imbaby Ismail; Habib, SED
2012-12-01
In this article, efficient hardware architectures for particle filter (PF) are presented. We propose three different architectures for Sequential Importance Resampling Filter (SIRF) implementation. The first architecture is a two-step sequential PF machine, where particle sampling, weight, and output calculations are carried out in parallel during the first step followed by sequential resampling in the second step. For the weight computation step, a piecewise linear function is used instead of the classical exponential function. This decreases the complexity of the architecture without degrading the results. The second architecture speeds up the resampling step via a parallel, rather than a serial, architecture. This second architecture targets a balance between hardware resources and the speed of operation. The third architecture implements the SIRF as a distributed PF composed of several processing elements and central unit. All the proposed architectures are captured using VHDL synthesized using Xilinx environment, and verified using the ModelSim simulator. Synthesis results confirmed the resource reduction and speed up advantages of our architectures.
Stone, Jonathan W; Bleckley, Samuel; Lavelle, Sean; Schroeder, Susan J
2015-01-01
We present new modifications to the Wuchty algorithm in order to better define and explore possible conformations for an RNA sequence. The new features, including parallelization, energy-independent lonely pair constraints, context-dependent chemical probing constraints, helix filters, and optional multibranch loops, provide useful tools for exploring the landscape of RNA folding. Chemical probing alone may not necessarily define a single unique structure. The helix filters and optional multibranch loops are global constraints on RNA structure that are an especially useful tool for generating models of encapsidated viral RNA for which cryoelectron microscopy or crystallography data may be available. The computations generate a combinatorially complete set of structures near a free energy minimum and thus provide data on the density and diversity of structures near the bottom of a folding funnel for an RNA sequence. The conformational landscapes for some RNA sequences may resemble a low, wide basin rather than a steep funnel that converges to a single structure.
Time-frequency model for echo-delay resolution in wideband biosonar.
Neretti, Nicola; Sanderson, Mark I; Intrator, Nathan; Simmons, James A
2003-04-01
A time/frequency model of the bat's auditory system was developed to examine the basis for the fine (approximately 2 micros) echo-delay resolution of big brown bats (Eptesicus fuscus), and its performance at resolving closely spaced FM sonar echoes in the bat's 20-100-kHz band at different signal-to-noise ratios was computed. The model uses parallel bandpass filters spaced over this band to generate envelopes that individually can have much lower bandwidth than the bat's ultrasonic sonar sounds and still achieve fine delay resolution. Because fine delay separations are inside the integration time of the model's filters (approximately 250-300 micros), resolving them means using interference patterns along the frequency dimension (spectral peaks and notches). The low bandwidth content of the filter outputs is suitable for relay of information to higher auditory areas that have intrinsically poor temporal response properties. If implemented in fully parallel analog-digital hardware, the model is computationally extremely efficient and would improve resolution in military and industrial sonar receivers.
Zenker, Sven
2010-08-01
Combining mechanistic mathematical models of physiology with quantitative observations using probabilistic inference may offer advantages over established approaches to computerized decision support in acute care medicine. Particle filters (PF) can perform such inference successively as data becomes available. The potential of PF for real-time state estimation (SE) for a model of cardiovascular physiology is explored using parallel computers and the ability to achieve joint state and parameter estimation (JSPE) given minimal prior knowledge tested. A parallelized sequential importance sampling/resampling algorithm was implemented and its scalability for the pure SE problem for a non-linear five-dimensional ODE model of the cardiovascular system evaluated on a Cray XT3 using up to 1,024 cores. JSPE was implemented using a state augmentation approach with artificial stochastic evolution of the parameters. Its performance when simultaneously estimating the 5 states and 18 unknown parameters when given observations only of arterial pressure, central venous pressure, heart rate, and, optionally, cardiac output, was evaluated in a simulated bleeding/resuscitation scenario. SE was successful and scaled up to 1,024 cores with appropriate algorithm parametrization, with real-time equivalent performance for up to 10 million particles. JSPE in the described underdetermined scenario achieved excellent reproduction of observables and qualitative tracking of enddiastolic ventricular volumes and sympathetic nervous activity. However, only a subset of the posterior distributions of parameters concentrated around the true values for parts of the estimated trajectories. Parallelized PF's performance makes their application to complex mathematical models of physiology for the purpose of clinical data interpretation, prediction, and therapy optimization appear promising. JSPE in the described extremely underdetermined scenario nevertheless extracted information of potential clinical relevance from the data in this simulation setting. However, fully satisfactory resolution of this problem when minimal prior knowledge about parameter values is available will require further methodological improvements, which are discussed.
Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliescu, Bogdan; Haskal, Ziv J., E-mail: ziv2@mac.com
Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful,more » with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.« less
Traditional Tracking with Kalman Filter on Parallel Architectures
NASA Astrophysics Data System (ADS)
Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; MacNeill, Ian; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2015-05-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this, we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The most common track finding techniques in use today are however those based on the Kalman Filter. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. We report the results of our investigations into the potential and limitations of these algorithms on the new parallel hardware.
Brian hears: online auditory processing using vectorization over channels.
Fontaine, Bertrand; Goodman, Dan F M; Benichoux, Victor; Brette, Romain
2011-01-01
The human cochlea includes about 3000 inner hair cells which filter sounds at frequencies between 20 Hz and 20 kHz. This massively parallel frequency analysis is reflected in models of auditory processing, which are often based on banks of filters. However, existing implementations do not exploit this parallelism. Here we propose algorithms to simulate these models by vectorizing computation over frequency channels, which are implemented in "Brian Hears," a library for the spiking neural network simulator package "Brian." This approach allows us to use high-level programming languages such as Python, because with vectorized operations, the computational cost of interpretation represents a small fraction of the total cost. This makes it possible to define and simulate complex models in a simple way, while all previous implementations were model-specific. In addition, we show that these algorithms can be naturally parallelized using graphics processing units, yielding substantial speed improvements. We demonstrate these algorithms with several state-of-the-art cochlear models, and show that they compare favorably with existing, less flexible, implementations.
Parallel digital modem using multirate digital filter banks
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Vaidyanathan, P. P.; Raphaeli, Dan; Hinedi, Sami
1994-01-01
A new class of architectures for an all-digital modem is presented in this report. This architecture, referred to as the parallel receiver (PRX), is based on employing multirate digital filter banks (DFB's) to demodulate, track, and detect the received symbol stream. The resulting architecture is derived, and specifications are outlined for designing the DFB for the PRX. The key feature of this approach is a lower processing rate then either the Nyquist rate or the symbol rate, without any degradation in the symbol error rate. Due to the freedom in choosing the processing rate, the designer is able to arbitrarily select and use digital components, independent of the speed of the integrated circuit technology. PRX architecture is particularly suited for high data rate applications, and due to the modular structure of the parallel signal path, expansion to even higher data rates is accommodated with each. Applications of the PRX would include gigabit satellite channels, multiple spacecraft, optical links, interactive cable-TV, telemedicine, code division multiple access (CDMA) communications, and others.
Three-dimensional seismic depth migration
NASA Astrophysics Data System (ADS)
Zhou, Hongbo
1998-12-01
One-pass 3-D modeling and migration for poststack seismic data may be implemented by replacing the traditional 45sp° one-way wave equation (a third-order partial differential equation) with a pair of second and first order partial differential equations. Except for an extra correction term, the resulting second order equation has a form similar to Claerbout's 15sp° one-way wave equation, which is known to have a nearly circular horizontal impulse response. In this approach, there is no need to compensate for splitting errors. Numerical tests on synthetic data show that this algorithm has the desirable attributes of being second-order in accuracy and economical to solve. A modification of the Crank-Nicholson implementation maintains stability. Absorbing boundary conditions play an important role in one-way wave extrapolations by reducing reflections at grid edges. Clayton and Engquist's 2-D absorbing boundary conditions for one-way wave extrapolation by depth-stepping in the frequency domain are extended to 3-D using paraxial approximations of the scalar wave equation. Internal consistency is retained by incorporating the interior extrapolation equation with the absorbing boundary conditions. Numerical schemes are designed to make the proposed absorbing boundary conditions both mathematically correct and efficient with negligible extra cost. Synthetic examples illustrate the effectiveness of the algorithm for extrapolation with the 3-D 45sp° one-way wave equation. Frequency-space domain Butterworth and Chebyshev dip filters are implemented. By regrouping the product terms in the filter transfer function into summations, a cascaded (serial) Butterworth dip filter can be made parallel. A parallel Chebyshev dip filter can be similarly obtained, and has the same form as the Butterworth filter; but has different coeffcients. One of the advantages of the Chebyshev filter is that it has a sharper transition zone than that of Butterworth filter of the same order. Both filters are incorporated into 3-D one-way frequency-space depth migration for evanescent energy removal and for phase compensation of splitting errors; a single filter achieves both goals. Synthetic examples illustrate the behavior of the parallel filters. For a given order of filter, the cost of the Butterworth and Chebyshev filters is the same. A Chebyshev filter is more effective for phase compensation than the Butterworth filter of the same order, at the expense of some wavenumber-dependent amplitude ripples. An analytical formula for geometrical spreading is derived for a horizontally layered transversely isotropic medium with a vertical symmetry axis. Under this expression, geometrical spreading can be determined only by the anisotropic parameters in the first layer, the traveltime derivatives, and source-receiver offset. An explicit, numerically feasible expression for geometrical spreading can be further obtained by considering some of the special cases of transverse isotropy, such as weak anisotropy or elliptic anisotropy. Therefore, with the techniques of non-hyerbolic moveout for transverse isotropic media, geometrical spreading can be calculated by using picked traveltimes of primary P-wave reflections without having to know the actual parameters in the deeper subsurface; no ray tracing is needed. Synthetic examples verify the algorithm and show that it is numerically feasible for calculation of geometrical spreading.
A 48Cycles/MB H.264/AVC Deblocking Filter Architecture for Ultra High Definition Applications
NASA Astrophysics Data System (ADS)
Zhou, Dajiang; Zhou, Jinjia; Zhu, Jiayi; Goto, Satoshi
In this paper, a highly parallel deblocking filter architecture for H.264/AVC is proposed to process one macroblock in 48 clock cycles and give real-time support to QFHD@60fps sequences at less than 100MHz. 4 edge filters organized in 2 groups for simultaneously processing vertical and horizontal edges are applied in this architecture to enhance its throughput. While parallelism increases, pipeline hazards arise owing to the latency of edge filters and data dependency of deblocking algorithm. To solve this problem, a zig-zag processing schedule is proposed to eliminate the pipeline bubbles. Data path of the architecture is then derived according to the processing schedule and optimized through data flow merging, so as to minimize the cost of logic and internal buffer. Meanwhile, the architecture's data input rate is designed to be identical to its throughput, while the transmission order of input data can also match the zig-zag processing schedule. Therefore no intercommunication buffer is required between the deblocking filter and its previous component for speed matching or data reordering. As a result, only one 24×64 two-port SRAM as internal buffer is required in this design. When synthesized with SMIC 130nm process, the architecture costs a gate count of 30.2k, which is competitive considering its high performance.
Extracting spatial information from large aperture exposures of diffuse sources
NASA Technical Reports Server (NTRS)
Clarke, J. T.; Moos, H. W.
1981-01-01
The spatial properties of large aperture exposures of diffuse emission can be used both to investigate spatial variations in the emission and to filter out camera noise in exposures of weak emission sources. Spatial imaging can be accomplished both parallel and perpendicular to dispersion with a resolution of 5-6 arc sec, and a narrow median filter running perpendicular to dispersion across a diffuse image selectively filters out point source features, such as reseaux marks and fast particle hits. Spatial information derived from observations of solar system objects is presented.
A parallel VLSI architecture for a digital filter using a number theoretic transform
NASA Technical Reports Server (NTRS)
Truong, T. K.; Reed, I. S.; Yeh, C. S.; Shao, H. M.
1983-01-01
The advantages of a very large scalee integration (VLSI) architecture for implementing a digital filter using fermat number transforms (FNT) are the following: It requires no multiplication. Only additions and bit rotations are needed. It alleviates the usual dynamic range limitation for long sequence FNT's. It utilizes the FNT and inverse FNT circuits 100% of the time. The lengths of the input data and filter sequences can be arbitraty and different. It is regular, simple, and expandable, and as a consequence suitable for VLSI implementation.
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)
2000-01-01
We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Koblinsky, Chester (Technical Monitor)
2001-01-01
A multivariate ensemble Kalman filter (MvEnKF) implemented on a massively parallel computer architecture has been implemented for the Poseidon ocean circulation model and tested with a Pacific Basin model configuration. There are about two million prognostic state-vector variables. Parallelism for the data assimilation step is achieved by regionalization of the background-error covariances that are calculated from the phase-space distribution of the ensemble. Each processing element (PE) collects elements of a matrix measurement functional from nearby PEs. To avoid the introduction of spurious long-range covariances associated with finite ensemble sizes, the background-error covariances are given compact support by means of a Hadamard (element by element) product with a three-dimensional canonical correlation function. The methodology and the MvEnKF configuration are discussed. It is shown that the regionalization of the background covariances; has a negligible impact on the quality of the analyses. The parallel algorithm is very efficient for large numbers of observations but does not scale well beyond 100 PEs at the current model resolution. On a platform with distributed memory, memory rather than speed is the limiting factor.
Sekine, Yoshika; Fukuda, Mitsuru; Takao, Yosuke; Ozano, Takahiro; Sakuramoto, Hikaru; Wang, Kuan Wei
2011-12-01
Urgent measures for indoor air pollution caused by volatile organic compounds are required in urban areas of China. Considering indoor air concentration levels and hazardous properties, formaldehyde and benzene should be given priority for pollution control in China. The authors proposed the use of air-cleaning devices, including stand-alone room air cleaners and in-duct devices. This study aimed to find the best combination of sorption and decomposition filters for the simultaneous removal of formaldehyde and benzene, employing four types of air filter units: an activated charcoal filter (ACF), an ACF impregnated with a trapping agent for acidic gases (ACID), a MnO2 filter (MDF) for oxidative decomposition of formaldehyde at room temperature and a photocatalyst filter (PHOTO) coupled with a parallel beam ultraviolet (UV) irradiation device. The performance of the combined systems under air flow rates of 35-165 m3 h(-1) was evaluated in a test chamber (2 m3) with a constant gas generation system. The experimental results and data analysis using a kinetic approach showed the combined system of ACF, PHOTO and MDF significantly reduced both concentrations of formaldehyde and benzene in air without any unpleasant odours caused by the UV-induced photocatalytic reaction. The system was then evaluated in a full-size laboratory (22 m3). This test proved the practical performance of the system even at full scale, and also suggested that the filters should be arranged in the order of PHOTO/ACF/MDF from upstream to downstream. The proposed system has the potential of being used for improving indoor air quality of houses and buildings in China.
High-throughput sample adaptive offset hardware architecture for high-efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin
2018-03-01
A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.
Robot Acting on Moving Bodies (RAMBO): Interaction with tumbling objects
NASA Technical Reports Server (NTRS)
Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madhu; Harwood, David
1989-01-01
Interaction with tumbling objects will become more common as human activities in space expand. Attempting to interact with a large complex object translating and rotating in space, a human operator using only his visual and mental capacities may not be able to estimate the object motion, plan actions or control those actions. A robot system (RAMBO) equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a tumbling object, is being developed. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations rearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enhancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using dynamic interpolations between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.
Spin wave filtering and guiding in Permalloy/iron nanowires
NASA Astrophysics Data System (ADS)
Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.
2018-03-01
We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.
Narrow-band far-infrared interference filters with high-T c, superconducting reflectors
NASA Astrophysics Data System (ADS)
Schönberger, R.; Prückl, A.; Pechen, E. V.; Anzin, V. B.; Brunner, B.; Renk, K. F.
1994-10-01
We report on experiments showing that high-T c, superconductors are well suitable for constructing of high-quality far-infrared Fabry-Perot interference filters in the terahertz frequency range. In an interference filter we use two plane-parallel MgO plates with YBa 2 Cu 3 O 7 thin films as partly transparent reflectors on adjacent surfaces. For the first-order main resonances adjusted to frequencies around 2 THz a quality factor of ≅200 and a peak-transmissivity of 0˜.5 have been reached. Study of the filters with YBa 2 Cu 3 O 7 films of different thickness indicate the possibility of reaching still higher selectivity. An analysis of the filter characteristics delivered the dynamical conductivity of the high-T c films.
A decentralized square root information filter/smoother
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Belzer, M. R.
1985-01-01
A number of developments has recently led to a considerable interest in the decentralization of linear least squares estimators. The developments are partly related to the impending emergence of VLSI technology, the realization of parallel processing, and the need for algorithmic ways to speed the solution of dynamically decoupled, high dimensional estimation problems. A new method is presented for combining Square Root Information Filters (SRIF) estimates obtained from independent data sets. The new method involves an orthogonal transformation, and an information matrix filter 'homework' problem discussed by Schweppe (1973) is generalized. The employed SRIF orthogonal transformation methodology has been described by Bierman (1977).
Chromatography of blood-clotting factors and serum proteins on columns of diatomaceous earth.
MILSTONE, J H
1955-07-20
1. In batch adsorptions with prothrombin solutions, hyflo was the weakest adsorbent, standard super-cel intermediate, and filter-cel strongest. Of these three grades of diatomaceous earth, hyflo has the smallest surface area per gram and filter-cel the largest. In parallel breakthrough experiments, a column of standard super-cel had a capacity almost six times that of a hyflo column. 2. After partial removal of impurities by diatomaceous earth, prothrombin preparations contained less thrombokinase, were more stable, and displayed less tendency to form thrombin "spontaneously." Thrombokinase (or its precursor) was removed from a preparation of prothrombin by passage through a filter cake of standard super-cel. The specific activity of the prothrombin was increased; and 62 per cent of the activity was recovered. 3. Prothrombin was adsorbed from an ammonium sulfate solution at pH 5.26 by columns of hyflo or standard super-cel. When eluted by phosphate solutions, the protein moved down the columns more readily at higher pH and higher concentration of phosphate salts, within the pH range 5.0 to 6.6, and within the phosphate range 0.1 to 1.0 M. 4. Thrombin was adsorbed on a column of standard super-cel at pH 5.11. As successive eluents passed through the column, the thrombin emerged between two bands of impurities. The specific activity of the thrombin was raised; and 83 per cent of the activity was recovered. 5. With a column of standard super-cel, and with a series of eluents within the pH range 5.1 to 6.3, total serum proteins were separated into four major bands. About 94 per cent of the protein was recovered.
CHROMATOGRAPHY OF BLOOD-CLOTTING FACTORS AND SERUM PROTEINS ON COLUMNS OF DIATOMACEOUS EARTH
Milstone, J. H.
1955-01-01
1. In batch adsorptions with prothrombin solutions, hyflo was the weakest adsorbent, standard super-cel intermediate, and filter-cel strongest. Of these three grades of diatomaceous earth, hyflo has the smallest surface area per gram and filter-cel the largest. In parallel breakthrough experiments, a column of standard super-cel had a capacity almost six times that of a hyflo column. 2. After partial removal of impurities by diatomaceous earth, prothrombin preparations contained less thrombokinase, were more stable, and displayed less tendency to form thrombin "spontaneously." Thrombokinase (or its precursor) was removed from a preparation of prothrombin by passage through a filter cake of standard super-cel. The specific activity of the prothrombin was increased; and 62 per cent of the activity was recovered. 3. Prothrombin was adsorbed from an ammonium sulfate solution at pH 5.26 by columns of hyflo or standard super-cel. When eluted by phosphate solutions, the protein moved down the columns more readily at higher pH and higher concentration of phosphate salts, within the pH range 5.0 to 6.6, and within the phosphate range 0.1 to 1.0 M. 4. Thrombin was adsorbed on a column of standard super-cel at pH 5.11. As successive eluents passed through the column, the thrombin emerged between two bands of impurities. The specific activity of the thrombin was raised; and 83 per cent of the activity was recovered. 5. With a column of standard super-cel, and with a series of eluents within the pH range 5.1 to 6.3, total serum proteins were separated into four major bands. About 94 per cent of the protein was recovered. PMID:13242761
CUDA-based acceleration of collateral filtering in brain MR images
NASA Astrophysics Data System (ADS)
Li, Cheng-Yuan; Chang, Herng-Hua
2017-02-01
Image denoising is one of the fundamental and essential tasks within image processing. In medical imaging, finding an effective algorithm that can remove random noise in MR images is important. This paper proposes an effective noise reduction method for brain magnetic resonance (MR) images. Our approach is based on the collateral filter which is a more powerful method than the bilateral filter in many cases. However, the computation of the collateral filter algorithm is quite time-consuming. To solve this problem, we improved the collateral filter algorithm with parallel computing using GPU. We adopted CUDA, an application programming interface for GPU by NVIDIA, to accelerate the computation. Our experimental evaluation on an Intel Xeon CPU E5-2620 v3 2.40GHz with a NVIDIA Tesla K40c GPU indicated that the proposed implementation runs dramatically faster than the traditional collateral filter. We believe that the proposed framework has established a general blueprint for achieving fast and robust filtering in a wide variety of medical image denoising applications.
Wu, Yan; Aarts, Ronald M.
2018-01-01
A recurring problem regarding the use of conventional comb filter approaches for elimination of periodic waveforms is the degree of selectivity achieved by the filtering process. Some applications, such as the gradient artefact correction in EEG recordings during coregistered EEG-fMRI, require a highly selective comb filtering that provides effective attenuation in the stopbands and gain close to unity in the pass-bands. In this paper, we present a novel comb filtering implementation whereby the iterative filtering application of FIR moving average-based approaches is exploited in order to enhance the comb filtering selectivity. Our results indicate that the proposed approach can be used to effectively approximate the FIR moving average filter characteristics to those of an ideal filter. A cascaded implementation using the proposed approach shows to further increase the attenuation in the filter stopbands. Moreover, broadening of the bandwidth of the comb filtering stopbands around −3 dB according to the fundamental frequency of the stopband can be achieved by the novel method, which constitutes an important characteristic to account for broadening of the harmonic gradient artefact spectral lines. In parallel, the proposed filtering implementation can also be used to design a novel notch filtering approach with enhanced selectivity as well. PMID:29599955
Breaking Barriers to Low-Cost Modular Inverter Production & Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdan Borowy; Leo Casey; Jerry Foshage
2005-05-31
The goal of this cost share contract is to advance key technologies to reduce size, weight and cost while enhancing performance and reliability of Modular Inverter Product for Distributed Energy Resources (DER). Efforts address technology development to meet technical needs of DER market protection, isolation, reliability, and quality. Program activities build on SatCon Technology Corporation inverter experience (e.g., AIPM, Starsine, PowerGate) for Photovoltaic, Fuel Cell, Energy Storage applications. Efforts focused four technical areas, Capacitors, Cooling, Voltage Sensing and Control of Parallel Inverters. Capacitor efforts developed a hybrid capacitor approach for conditioning SatCon's AIPM unit supply voltages by incorporating several typesmore » and sizes to store energy and filter at high, medium and low frequencies while minimizing parasitics (ESR and ESL). Cooling efforts converted the liquid cooled AIPM module to an air-cooled unit using augmented fin, impingement flow cooling. Voltage sensing efforts successfully modified the existing AIPM sensor board to allow several, application dependent configurations and enabling voltage sensor galvanic isolation. Parallel inverter control efforts realized a reliable technique to control individual inverters, connected in a parallel configuration, without a communication link. Individual inverter currents, AC and DC, were balanced in the paralleled modules by introducing a delay to the individual PWM gate pulses. The load current sharing is robust and independent of load types (i.e., linear and nonlinear, resistive and/or inductive). It is a simple yet powerful method for paralleling both individual devices dramatically improves reliability and fault tolerance of parallel inverter power systems. A patent application has been made based on this control technology.« less
performance on a low cost, low size, weight, and power (SWAP) computer : a Raspberry Pi Model B. For a comparison of performance, a baseline implementation...improvement factor of 2-3 compared to filtered backprojection. Execution on a single Raspberry Pi is too slow for real-time imaging. However, factorized...backprojection is easily parallelized, and we include a discussion of parallel implementation across multiple Pis .
Brian Hears: Online Auditory Processing Using Vectorization Over Channels
Fontaine, Bertrand; Goodman, Dan F. M.; Benichoux, Victor; Brette, Romain
2011-01-01
The human cochlea includes about 3000 inner hair cells which filter sounds at frequencies between 20 Hz and 20 kHz. This massively parallel frequency analysis is reflected in models of auditory processing, which are often based on banks of filters. However, existing implementations do not exploit this parallelism. Here we propose algorithms to simulate these models by vectorizing computation over frequency channels, which are implemented in “Brian Hears,” a library for the spiking neural network simulator package “Brian.” This approach allows us to use high-level programming languages such as Python, because with vectorized operations, the computational cost of interpretation represents a small fraction of the total cost. This makes it possible to define and simulate complex models in a simple way, while all previous implementations were model-specific. In addition, we show that these algorithms can be naturally parallelized using graphics processing units, yielding substantial speed improvements. We demonstrate these algorithms with several state-of-the-art cochlear models, and show that they compare favorably with existing, less flexible, implementations. PMID:21811453
NASA Astrophysics Data System (ADS)
Wang, H. T.; Chen, T. T.; Yan, C.; Pan, H.
2018-05-01
For App recommended areas of mobile phone software, made while using conduct App application recommended combined weighted Slope One algorithm collaborative filtering algorithm items based on further improvement of the traditional collaborative filtering algorithm in cold start, data matrix sparseness and other issues, will recommend Spark stasis parallel algorithm platform, the introduction of real-time streaming streaming real-time computing framework to improve real-time software applications recommended.
Single and tandem Fabry-Perot etalons as solar background filters for lidar.
McKay, J A
1999-09-20
Atmospheric lidar is difficult in daylight because of sunlight scattered into the receiver field of view. In this research methods for the design and performance analysis of Fabry-Perot etalons as solar background filters are presented. The factor by which the signal to background ratio is enhanced is defined as a measure of the performance of the etalon as a filter. Equations for evaluating this parameter are presented for single-, double-, and triple-etalon filter systems. The role of reflective coupling between etalons is examined and shown to substantially reduce the contributions of the second and third etalons to the filter performance. Attenuators placed between the etalons can improve the filter performance, at modest cost to the signal transmittance. The principal parameter governing the performance of the etalon filters is the etalon defect finesse. Practical limitations on etalon plate smoothness and parallelism cause the defect finesse to be relatively low, especially in the ultraviolet, and this sets upper limits to the capability of tandem etalon filters to suppress the solar background at tolerable cost to the signal.
Parallel algorithm of real-time infrared image restoration based on total variation theory
NASA Astrophysics Data System (ADS)
Zhu, Ran; Li, Miao; Long, Yunli; Zeng, Yaoyuan; An, Wei
2015-10-01
Image restoration is a necessary preprocessing step for infrared remote sensing applications. Traditional methods allow us to remove the noise but penalize too much the gradients corresponding to edges. Image restoration techniques based on variational approaches can solve this over-smoothing problem for the merits of their well-defined mathematical modeling of the restore procedure. The total variation (TV) of infrared image is introduced as a L1 regularization term added to the objective energy functional. It converts the restoration process to an optimization problem of functional involving a fidelity term to the image data plus a regularization term. Infrared image restoration technology with TV-L1 model exploits the remote sensing data obtained sufficiently and preserves information at edges caused by clouds. Numerical implementation algorithm is presented in detail. Analysis indicates that the structure of this algorithm can be easily implemented in parallelization. Therefore a parallel implementation of the TV-L1 filter based on multicore architecture with shared memory is proposed for infrared real-time remote sensing systems. Massive computation of image data is performed in parallel by cooperating threads running simultaneously on multiple cores. Several groups of synthetic infrared image data are used to validate the feasibility and effectiveness of the proposed parallel algorithm. Quantitative analysis of measuring the restored image quality compared to input image is presented. Experiment results show that the TV-L1 filter can restore the varying background image reasonably, and that its performance can achieve the requirement of real-time image processing.
Data-Parallel Algorithm for Contour Tree Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sewell, Christopher Meyer; Ahrens, James Paul; Carr, Hamish
2017-01-19
The goal of this project is to develop algorithms for additional visualization and analysis filters in order to expand the functionality of the VTK-m toolkit to support less critical but commonly used operators.
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Stable, Thermally Conductive Fillers for Bolted Joints; Connecting to Thermocouples with Fewer Lead Wires; Zipper Connectors for Flexible Electronic Circuits; Safety Interlock for Angularly Misdirected Power Tool; Modular, Parallel Pulse-Shaping Filter Architectures; High-Fidelity Piezoelectric Audio Device; Photovoltaic Power Station with Ultracapacitors for Storage; Time Analyzer for Time Synchronization and Monitor of the Deep Space Network; Program for Computing Albedo; Integrated Software for Analyzing Designs of Launch Vehicles; Abstract-Reasoning Software for Coordinating Multiple Agents; Software Searches for Better Spacecraft-Navigation Models; Software for Partly Automated Recognition of Targets; Antistatic Polycarbonate/Copper Oxide Composite; Better VPS Fabrication of Crucibles and Furnace Cartridges; Burn-Resistant, Strong Metal-Matrix Composites; Self-Deployable Spring-Strip Booms; Explosion Welding for Hermetic Containerization; Improved Process for Fabricating Carbon Nanotube Probes; Automated Serial Sectioning for 3D Reconstruction; and Parallel Subconvolution Filtering Architectures.
Tatari, Karolina; Musovic, Sanin; Gülay, Arda; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen; Smets, Barth F
2017-12-15
We investigated the density and distribution of total bacteria, canonical Ammonia Oxidizing Bacteria (AOB) (Nitrosomonas plus Nitrosospira), Ammonia Oxidizing Archaea (AOA), as well as Nitrobacter and Nitrospira in rapid sand filters used for groundwater treatment. To investigate the spatial distribution of these guilds, filter material was sampled at four drinking water treatment plants (DWTPs) in parallel filters of the pre- and after-filtration stages at different locations and depths. The target guilds were quantified by qPCR targeting 16S rRNA and amoA genes. Total bacterial densities (ignoring 16S rRNA gene copy number variation) were high and ranged from 10 9 to 10 10 per gram (10 15 to 10 16 per m 3 ) of filter material. All examined guilds, except AOA, were stratified at only one of the four DWTPs. Densities varied spatially within filter (intra-filter variation) at two of the DWTPs and in parallel filters (inter-filter variation) at one of the DWTPs. Variation analysis revealed random sampling as the most efficient strategy to yield accurate mean density estimates, with collection of at least 7 samples suggested to obtain an acceptable (below half order of magnitude) density precision. Nitrospira was consistently the most dominant guild (5-10% of total community), and was generally up to 4 orders of magnitude more abundant than Nitrobacter and up to 2 orders of magnitude more abundant than canonical AOBs. These results, supplemented with further analysis of the previously reported diversity of Nitrospira in the studied DWTPs based on 16S rRNA and nxrB gene phylogeny (Gülay et al., 2016; Palomo et al., 2016), indicate that the high Nitrospira abundance is due to their comammox (complete ammonia oxidation) physiology. AOA densities were lower than AOB densities, except in the highly stratified filters, where they were of similar abundance. In conclusion, rapid sand filters are microbially dense, with varying degrees of spatial heterogeneity, which requires replicate sampling for a sufficiently precise determination of total microbial community and specific population densities. A consistently high Nitrospira to bacterial and archaeal AOB density ratio suggests that non-canonical pathways for nitrification may dominate the examined RSFs. Copyright © 2017 Elsevier Ltd. All rights reserved.
A novel cost-effective parallel narrowband ANC system with local secondary-path estimation
NASA Astrophysics Data System (ADS)
Delegà, Riccardo; Bernasconi, Giancarlo; Piroddi, Luigi
2017-08-01
Many noise reduction applications are targeted at multi-tonal disturbances. Active noise control (ANC) solutions for such problems are generally based on the combination of multiple adaptive notch filters. Both the performance and the computational cost are negatively affected by an increase in the number of controlled frequencies. In this work we study a different modeling approach for the secondary path, based on the estimation of various small local models in adjacent frequency subbands, that greatly reduces the impact of reference-filtering operations in the ANC algorithm. Furthermore, in combination with a frequency-specific step size tuning method it provides a balanced attenuation performance over the whole controlled frequency range (and particularly in the high end of the range). Finally, the use of small local models is greatly beneficial for the reactivity of the online secondary path modeling algorithm when the characteristics of the acoustic channels are time-varying. Several simulations are provided to illustrate the positive features of the proposed method compared to other well-known techniques.
Fast realization of nonrecursive digital filters with limits on signal delay
NASA Astrophysics Data System (ADS)
Titov, M. A.; Bondarenko, N. N.
1983-07-01
Attention is given to the problem of achieving a fast realization of nonrecursive digital filters with the aim of reducing signal delay. It is shown that a realization wherein the impulse characteristic of the filter is divided into blocks satisfies the delay requirements and is almost as economical in terms of the number of multiplications as conventional fast convolution. In addition, the block method leads to a reduction in the needed size of the memory and in the number of additions; the short-convolution procedure is substantially simplified. Finally, the block method facilitates the paralleling of computations owing to the simple transfers between subfilters.
Ueda, Masanori; Iwaki, Masafumi; Nishihara, Tokihiro; Satoh, Yoshio; Hashimoto, Ken-ya
2008-04-01
This paper describes a circuit model for the analysis of nonlinearity in the filters based on radiofrequency (RF) bulk acoustic wave (BAW) resonators. The nonlinear output is expressed by a current source connected parallel to the linear resonator. Amplitude of the nonlinear current source is programmed proportional to the product of linear currents flowing in the resonator. Thus, the nonlinear analysis is performed by the common linear analysis, even for complex device structures. The analysis is applied to a ladder-type RF BAW filter, and frequency dependence of the nonlinear output is discussed. Furthermore, this analysis is verified through comparison with experiments.
Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter
2016-09-01
Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the evaluation of advanced wastewater treatment processes. The results further indicate that post-treatment of ozonated wastewater with GAC filtration seems to be more suitable than BF, due to the sorption of formed TP to the activated carbon. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pieper, Andreas; Kreutzer, Moritz; Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de
2016-11-15
We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need formore » matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.« less
Nguyen, Tuan-Anh; Nakib, Amir; Nguyen, Huy-Nam
2016-06-01
The Non-local means denoising filter has been established as gold standard for image denoising problem in general and particularly in medical imaging due to its efficiency. However, its computation time limited its applications in real world application, especially in medical imaging. In this paper, a distributed version on parallel hybrid architecture is proposed to solve the computation time problem and a new method to compute the filters' coefficients is also proposed, where we focused on the implementation and the enhancement of filters' parameters via taking the neighborhood of the current voxel more accurately into account. In terms of implementation, our key contribution consists in reducing the number of shared memory accesses. The different tests of the proposed method were performed on the brain-web database for different levels of noise. Performances and the sensitivity were quantified in terms of speedup, peak signal to noise ratio, execution time, the number of floating point operations. The obtained results demonstrate the efficiency of the proposed method. Moreover, the implementation is compared to that of other techniques, recently published in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Modified current follower-based immittance function simulators
NASA Astrophysics Data System (ADS)
Alpaslan, Halil; Yuce, Erkan
2017-12-01
In this paper, four immittance function simulators consisting of a single modified current follower with single Z- terminal and a minimum number of passive components are proposed. The first proposed circuit can provide +L parallel with +R and the second proposed one can realise -L parallel with -R. The third proposed structure can provide +L series with +R and the fourth proposed one can realise -L series with -R. However, all the proposed immittance function simulators need a single resistive matching constraint. Parasitic impedance effects on all the proposed immittance function simulators are investigated. A second-order current-mode (CM) high-pass filter derived from the first proposed immittance function simulator is given as an application example. Also, a second-order CM low-pass filter derived from the third proposed immittance function simulator is given as an application example. A number of simulation results based on SPICE programme and an experimental test result are given to verify the theory.
Parallel filtering in global gyrokinetic simulations
NASA Astrophysics Data System (ADS)
Jolliet, S.; McMillan, B. F.; Villard, L.; Vernay, T.; Angelino, P.; Tran, T. M.; Brunner, S.; Bottino, A.; Idomura, Y.
2012-02-01
In this work, a Fourier solver [B.F. McMillan, S. Jolliet, A. Bottino, P. Angelino, T.M. Tran, L. Villard, Comp. Phys. Commun. 181 (2010) 715] is implemented in the global Eulerian gyrokinetic code GT5D [Y. Idomura, H. Urano, N. Aiba, S. Tokuda, Nucl. Fusion 49 (2009) 065029] and in the global Particle-In-Cell code ORB5 [S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T.M. Tran, B.F. McMillan, O. Sauter, K. Appert, Y. Idomura, L. Villard, Comp. Phys. Commun. 177 (2007) 409] in order to reduce the memory of the matrix associated with the field equation. This scheme is verified with linear and nonlinear simulations of turbulence. It is demonstrated that the straight-field-line angle is the coordinate that optimizes the Fourier solver, that both linear and nonlinear turbulent states are unaffected by the parallel filtering, and that the k∥ spectrum is independent of plasma size at fixed normalized poloidal wave number.
Model-based spectral estimation of Doppler signals using parallel genetic algorithms.
Solano González, J; Rodríguez Vázquez, K; García Nocetti, D F
2000-05-01
Conventional spectral analysis methods use a fast Fourier transform (FFT) on consecutive or overlapping windowed data segments. For Doppler ultrasound signals, this approach suffers from an inadequate frequency resolution due to the time segment duration and the non-stationarity characteristics of the signals. Parametric or model-based estimators can give significant improvements in the time-frequency resolution at the expense of a higher computational complexity. This work describes an approach which implements in real-time a parametric spectral estimator method using genetic algorithms (GAs) in order to find the optimum set of parameters for the adaptive filter that minimises the error function. The aim is to reduce the computational complexity of the conventional algorithm by using the simplicity associated to GAs and exploiting its parallel characteristics. This will allow the implementation of higher order filters, increasing the spectrum resolution, and opening a greater scope for using more complex methods.
Chromium: A Stress-Processing Framework for Interactive Rendering on Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphreys, G,; Houston, M.; Ng, Y.-R.
2002-01-11
We describe Chromium, a system for manipulating streams of graphics API commands on clusters of workstations. Chromium's stream filters can be arranged to create sort-first and sort-last parallel graphics architectures that, in many cases, support the same applications while using only commodity graphics accelerators. In addition, these stream filters can be extended programmatically, allowing the user to customize the stream transformations performed by nodes in a cluster. Because our stream processing mechanism is completely general, any cluster-parallel rendering algorithm can be either implemented on top of or embedded in Chromium. In this paper, we give examples of real-world applications thatmore » use Chromium to achieve good scalability on clusters of workstations, and describe other potential uses of this stream processing technology. By completely abstracting the underlying graphics architecture, network topology, and API command processing semantics, we allow a variety of applications to run in different environments.« less
A Soft Sensor for Bioprocess Control Based on Sequential Filtering of Metabolic Heat Signals
Paulsson, Dan; Gustavsson, Robert; Mandenius, Carl-Fredrik
2014-01-01
Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel. PMID:25264951
A soft sensor for bioprocess control based on sequential filtering of metabolic heat signals.
Paulsson, Dan; Gustavsson, Robert; Mandenius, Carl-Fredrik
2014-09-26
Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel.
Chiral filtration-induced spin/valley polarization in silicene line defects
NASA Astrophysics Data System (ADS)
Ren, Chongdan; Zhou, Benhu; Sun, Minglei; Wang, Sake; Li, Yunfang; Tian, Hongyu; Lu, Weitao
2018-06-01
The spin/valley polarization in silicene with extended line defects is investigated according to the chiral filtration mechanism. It is shown that the inner-built quantum Hall pseudo-edge states with identical chirality can serve as a chiral filter with a weak magnetic field and that the transmission process is restrained/strengthened for chiral states with reversed/identical chirality. With two parallel line defects, which act as natural chiral filtration, the filter effect is greatly enhanced, and 100% spin/valley polarization can be achieved.
Deferred discrimination algorithm (nibbling) for target filter management
NASA Astrophysics Data System (ADS)
Caulfield, H. John; Johnson, John L.
1999-07-01
A new method of classifying objects is presented. Rather than trying to form the classifier in one step or in one training algorithm, it is done in a series of small steps, or nibbles. This leads to an efficient and versatile system that is trained in series with single one-shot examples but applied in parallel, is implemented with single layer perceptrons, yet maintains its fully sequential hierarchical structure. Based on the nibbling algorithm, a basic new method of target reference filter management is described.
Akula, Nagaraju; Pattabiraman, Nagarajan
2005-06-01
Membrane proteins play a major role in number of biological processes such as signaling pathways. The determination of the three-dimensional structure of these proteins is increasingly important for our understanding of their structure-function relationships. Due to the difficulty in isolating membrane proteins for X-ray diffraction studies, computational techniques are being developed to generate the 3D structures of TM domains. Here, we present a systematic search method for the identification of energetically favorable and tightly packed transmembrane parallel alpha-helices. The first step in our systematic search method is the generation of 3D models for pairs of parallel helix bundles with all possible orientations followed by an energy-based filter to eliminate structures with severe non-bonded contacts. Then, a RMS-based filter was used to cluster these structures into families. Furthermore, these dimers were energy minimized using molecular mechanics force field. Finally, we identified the tightly packed parallel alpha-helices by using an interface surface area. To validate our search method, we compared our predicted GlycophorinA dimer structures with the reported NMR structures. With our search method, we are able to reproduce NMR structures of GPA with 0.9A RMSD. In addition, by considering the reported mutational data on GxxxG motif interactions, twenty percent of our predicted dimers are within in the 2.0A RMSD. The dimers obtained from our method were used to generate parallel trimeric and tetramer TM structures of GPA and found that the structure of GPA might exist only in a dimer form as reported earlier.
Active illuminated space object imaging and tracking simulation
NASA Astrophysics Data System (ADS)
Yue, Yufang; Xie, Xiaogang; Luo, Wen; Zhang, Feizhou; An, Jianzhu
2016-10-01
Optical earth imaging simulation of a space target in orbit and it's extraction in laser illumination condition were discussed. Based on the orbit and corresponding attitude of a satellite, its 3D imaging rendering was built. General simulation platform was researched, which was adaptive to variable 3D satellite models and relative position relationships between satellite and earth detector system. Unified parallel projection technology was proposed in this paper. Furthermore, we denoted that random optical distribution in laser-illuminated condition was a challenge for object discrimination. Great randomicity of laser active illuminating speckles was the primary factor. The conjunction effects of multi-frame accumulation process and some tracking methods such as Meanshift tracking, contour poid, and filter deconvolution were simulated. Comparison of results illustrates that the union of multi-frame accumulation and contour poid was recommendable for laser active illuminated images, which had capacities of high tracking precise and stability for multiple object attitudes.
Marcotegui, J Antonio; Illescas, Jesús Miguel; Estevez, Aritz; Falcone, Francisco
2013-01-01
A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)-a concept proposed here for the first time-are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems.
Marcotegui, J. Antonio; Illescas, Jesús Miguel; Estevez, Aritz
2013-01-01
A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)—a concept proposed here for the first time—are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems. PMID:24319366
Miniature spectrally selective dosimeter
NASA Technical Reports Server (NTRS)
Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr. (Inventor)
1980-01-01
A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame.
NASA Astrophysics Data System (ADS)
Ding, Yu; Chung, Yiu-Cho; Raman, Subha V.; Simonetti, Orlando P.
2009-06-01
Real-time dynamic magnetic resonance imaging (MRI) typically sacrifices the signal-to-noise ratio (SNR) to achieve higher spatial and temporal resolution. Spatial and/or temporal filtering (e.g., low-pass filtering or averaging) of dynamic images improves the SNR at the expense of edge sharpness. We describe the application of a temporal filter for dynamic MR image series based on the Karhunen-Loeve transform (KLT) to remove random noise without blurring stationary or moving edges and requiring no training data. In this paper, we present several properties of this filter and their effects on filter performance, and propose an automatic way to find the filter cutoff based on the autocorrelation of the eigenimages. Numerical simulation and in vivo real-time cardiac cine MR image series spanning multiple cardiac cycles acquired using multi-channel sensitivity-encoded MRI, i.e., parallel imaging, are used to validate and demonstrate these properties. We found that in this application, the noise standard deviation was reduced to 42% of the original with no apparent image blurring by using the proposed filter cutoff. Greater noise reduction can be achieved by increasing the length of the image series. This advantage of KLT filtering provides flexibility in the form of another scan parameter to trade for SNR.
20 kHz main inverter unit. [for space station power supplies
NASA Technical Reports Server (NTRS)
Hussey, S.
1989-01-01
A proof-of-concept main inverter unit has demonstrated the operation of a pulse-width-modulated parallel resonant power stage topology as a 20-kHz ac power source driver, showing simple output regulation, parallel operation, power sharing and short-circuit operation. The use of a two-stage dc input filter controls the electromagnetic compatibility (EMC) characteristics of the dc power bus, and the use of an ac harmonic trap controls the EMC characteristics of the 20-kHz ac power bus.
Garty, Guy; Chen, Youhua; Turner, Helen C; Zhang, Jian; Lyulko, Oleksandra V; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Lawrence Yao, Y; Brenner, David J
2011-08-01
Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT. The RABiT analyses fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cut-off dose. Through automated robotics, lymphocytes are extracted from fingerstick blood samples into filter-bottomed multi-well plates. Depending on the time since exposure, the RABiT scores either micronuclei or phosphorylation of the histone H2AX, in an automated robotic system, using filter-bottomed multi-well plates. Following lymphocyte culturing, fixation and staining, the filter bottoms are removed from the multi-well plates and sealed prior to automated high-speed imaging. Image analysis is performed online using dedicated image processing hardware. Both the sealed filters and the images are archived. We have developed a new robotic system for lymphocyte processing, making use of an upgraded laser power and parallel processing of four capillaries at once. This system has allowed acceleration of lymphocyte isolation, the main bottleneck of the RABiT operation, from 12 to 2 sec/sample. Reliability tests have been performed on all robotic subsystems. Parallel handling of multiple samples through the use of dedicated, purpose-built, robotics and high speed imaging allows analysis of up to 30,000 samples per day.
The Kalman Filter and High Performance Computing at NASA's Data Assimilation Office (DAO)
NASA Technical Reports Server (NTRS)
Lyster, Peter M.
1999-01-01
Atmospheric data assimilation is a method of combining actual observations with model simulations to produce a more accurate description of the earth system than the observations alone provide. The output of data assimilation, sometimes called "the analysis", are accurate regular, gridded datasets of observed and unobserved variables. This is used not only for weather forecasting but is becoming increasingly important for climate research. For example, these datasets may be used to assess retrospectively energy budgets or the effects of trace gases such as ozone. This allows researchers to understand processes driving weather and climate, which have important scientific and policy implications. The primary goal of the NASA's Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. This presentation will: (1) describe ongoing work on the advanced Kalman/Lagrangian filter parallel algorithm for the assimilation of trace gases in the stratosphere; and (2) discuss the Kalman filter in relation to other presentations from the DAO on Four Dimensional Data Assimilation at this meeting. Although the designation "Kalman filter" is often used to describe the overarching work, the series of talks will show that the scientific software and the kind of parallelization techniques that are being developed at the DAO are very different depending on the type of problem being considered, the extent to which the problem is mission critical, and the degree of Software Engineering that has to be applied.
Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava
2017-01-01
For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particlemore » tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.« less
Garty, Guy; Chen, Youhua; Turner, Helen; Zhang, Jian; Lyulko, Oleksandra; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Yao, Y. Lawrence; Brenner, David J.
2011-01-01
Purpose Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT. Materials and methods The RABiT analyzes fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cutoff dose. Through automated robotics, lymphocytes are extracted from fingerstick blood samples into filter-bottomed multi-well plates. Depending on the time since exposure, the RABiT scores either micronuclei or phosphorylation of the histone H2AX, in an automated robotic system, using filter-bottomed multi-well plates. Following lymphocyte culturing, fixation and staining, the filter bottoms are removed from the multi-well plates and sealed prior to automated high-speed imaging. Image analysis is performed online using dedicated image processing hardware. Both the sealed filters and the images are archived. Results We have developed a new robotic system for lymphocyte processing, making use of an upgraded laser power and parallel processing of four capillaries at once. This system has allowed acceleration of lymphocyte isolation, the main bottleneck of the RABiT operation, from 12 to 2 sec/sample. Reliability tests have been performed on all robotic subsystems. Conclusions Parallel handling of multiple samples through the use of dedicated, purpose-built, robotics and high speed imaging allows analysis of up to 30,000 samples per day. PMID:21557703
Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs
NASA Astrophysics Data System (ADS)
Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; Masciovecchio, Mario; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2017-08-01
For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.
CT of inferior vena cava filters: normal presentations and potential complications.
Georgiou, Nicholas A; Katz, Douglas S; Ganson, George; Eng, Kaitlin; Hon, Man
2015-12-01
With massive pulmonary embolism (PE) being the first or second leading cause of unexpected death in adults, protection against PE is critical in appropriately selected patients. The use of inferior vena cava (IVC) filters has increased over the years, paralleling the increased detection of deep venous thrombosis (DVT) and PE by improved and more available imaging techniques. The use of IVC filters has become very common as an alternative and/or as a supplement to anticoagulation, and these filters are often seen on routine abdominal CT, including in the emergency setting; therefore, knowledge of the normal spectrum of findings of IVC filters by the radiologist on CT is critical. Additionally, CT can be used specifically to identify complications related to IVC filters, and CT may alternatively demonstrate IVC filter-related problems which are not specifically anticipated clinically. With multiple available IVC filters on the US market, and even more available outside of the USA, it is important for the emergency and the general radiologist to recognize the different models and various appearances and positioning on CT, as well as their potential complications. These complications may be related to venous access, but also include thrombosis related to the filter, filter migration and penetration, and problems associated with filter deployment. With the increasing number of inferior vena cava filters placed and their duration within patients increasing over time, it is critical for emergency and other radiologists to be aware of these findings on CT.
Inverter Output Filter Effect on PWM Motor Drives of a Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Santiago, Walter
2004-01-01
NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheel systems for small satellite energy storage and attitude control applications. One research and development area has been the minimization of the switching noise produced by the pulsed width modulated (PWM) inverter that drives the flywheel permanent magnet motor/generator (PM M/G). This noise can interfere with the flywheel M/G hardware and the system avionics hampering the full speed performance of the flywheel system. One way to attenuate the inverter switching noise is by placing an AC filter at the three phase output terminals of the inverter with the filter neutral point connected to the DC link (DC bus) midpoint capacitors. The main benefit of using an AC filter in this fashion is the significant reduction of the inverter s high dv/dt switching and its harmonics components. Additionally, common mode (CM) and differential mode (DM) voltages caused by the inverter s high dv/dt switching are also reduced. Several topologies of AC filters have been implemented and compared. One AC filter topology consists of a two-stage R-L-C low pass filter. The other topology consists of the same two-stage R-L-C low pass filter with a series connected trap filter (an inductor and capacitor connected in parallel). This paper presents the analysis, design and experimental results of these AC filter topologies and the comparison between the no filter case and conventional AC filter.
Precise and versatile formula for birefringent filters
NASA Astrophysics Data System (ADS)
Shao, Zhongxing
1996-07-01
In an investigation of extraordinary-(E-) ray behavior and the index of refraction for E waves in a uniaxial crystal, a precise and versatile formula for birefringent filters, based on the exact construction of the optical path difference, is set up with neither the approximation Delta n = no - ne less than or equals no (or n e), nor the ambiguity sin( theta )/sin(rw) = ne. The exact construction gives the correct variation of the position and the dimension in each path, yielding the path difference while the filter is tuning. The formula is applicable not only to a filter with its optical axis parallel to the entrance surface (FAPS) but also to a filter with its axis inclined to the surface (FAIS). Also, the formula indicates that a FAIS allows laser wavelengths to be tuned over a wider range than does a FAPS. The origin of the wider range is interpreted to be the greater variation in the index for the FAIS while the filter is tuning. With the help of the formula we design a FAIS for tuning a cw 42.25.Lc.
Power Flow Angles for Slanted Finger Surface Acoustic Wave Filters on Langasite Substrate
NASA Astrophysics Data System (ADS)
Goto, Mikihiro; Yatsuda, Hiromi; Chiba, Takao
2007-07-01
Power flow angles (PFAs) on a langasite (LGS) substrate with Euler angles of (0{\\degree}, 138.5{\\degree}, \\psi), \\psi=25.7 to 27.7° are investigated for slanted finger interdigital transducer (SFIT) surface acoustic wave (SAW) filters by an electrical and optical methods. In the electrical method, several tilted SFIT SAW filters with different tilt angles for (0{\\degree}, 138.5{\\degree}, \\psi) LGS substrates were designed, and the frequency responses of the filters were measured. In the optical method, the PFAs were directly measured by optical probing for a parallel interdigital transducer (IDT) with wide propagation area on the substrate. As a result, a good correlation between electrical and optical measurements of the PFAs is obtained, but the calculated PFAs are slightly different from the measured PFAs. A good frequency response of a tilted 380 MHz SFIT SAW filter with an appropriate tilt angle corresponding to the PFA on the substrate is obtained even though the aperture is small.
Analysis of Time Filters in Multistep Methods
NASA Astrophysics Data System (ADS)
Hurl, Nicholas
Geophysical ow simulations have evolved sophisticated implicit-explicit time stepping methods (based on fast-slow wave splittings) followed by time filters to control any unstable models that result. Time filters are modular and parallel. Their effect on stability of the overall process has been tested in numerous simulations, but never analyzed. Stability is proven herein for the Crank-Nicolson Leapfrog (CNLF) method with the Robert-Asselin (RA) time filter and for the Crank-Nicolson Leapfrog method with the Robert-Asselin-Williams (RAW) time filter for systems by energy methods. We derive an equivalent multistep method for CNLF+RA and CNLF+RAW and stability regions are obtained. The time step restriction for energy stability of CNLF+RA is smaller than CNLF and CNLF+RAW time step restriction is even smaller. Numerical tests find that RA and RAW add numerical dissipation. This thesis also shows that all modes of the Crank-Nicolson Leap Frog (CNLF) method are asymptotically stable under the standard timestep condition.
An Adaptive Kalman Filter using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
Warburton, William K.; Zhou, Zhiquing
1999-01-01
A high speed, digitally based, signal processing system which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system livetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired.
Synthesizing parallel imaging applications using the CAP (computer-aided parallelization) tool
NASA Astrophysics Data System (ADS)
Gennart, Benoit A.; Mazzariol, Marc; Messerli, Vincent; Hersch, Roger D.
1997-12-01
Imaging applications such as filtering, image transforms and compression/decompression require vast amounts of computing power when applied to large data sets. These applications would potentially benefit from the use of parallel processing. However, dedicated parallel computers are expensive and their processing power per node lags behind that of the most recent commodity components. Furthermore, developing parallel applications remains a difficult task: writing and debugging the application is difficult (deadlocks), programs may not be portable from one parallel architecture to the other, and performance often comes short of expectations. In order to facilitate the development of parallel applications, we propose the CAP computer-aided parallelization tool which enables application programmers to specify at a high-level of abstraction the flow of data between pipelined-parallel operations. In addition, the CAP tool supports the programmer in developing parallel imaging and storage operations. CAP enables combining efficiently parallel storage access routines and image processing sequential operations. This paper shows how processing and I/O intensive imaging applications must be implemented to take advantage of parallelism and pipelining between data access and processing. This paper's contribution is (1) to show how such implementations can be compactly specified in CAP, and (2) to demonstrate that CAP specified applications achieve the performance of custom parallel code. The paper analyzes theoretically the performance of CAP specified applications and demonstrates the accuracy of the theoretical analysis through experimental measurements.
Zhu, Ying; Soeriyadi, Alexander H; Parker, Stephen G; Reece, Peter J; Gooding, J Justin
2014-06-21
Porous silicon (PSi) rugate filters modified with alkyne-terminated monolayers were chemically patterned using a combination of photolithography of photoresist and click chemistry. Two chemical functionalities were obtained by conjugating, via click reactions, ethylene glycol moieties containing two different terminal groups to discrete areas towards the exterior of a PSi rugate filter. The patterning of biological species to the functionalized surface was demonstrated through the conjugation of fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA). Fluorescence microscopy showed selective positioning of FITC-BSA at discretely functionalized areas. Meanwhile, the optical information from precisely defined positions on the patterned surface was monitored by optical reflectivity measurements. The optical measurements revealed successful step-wise chemical functionalization followed by immobilization of gelatin. Multiplex detection of protease activity from different array elements on the patterned surface was demonstrated by monitoring the blue shifts in the reflectivity spectra resulted from the digestion of gelatin by subtilisin. Precise information from both individual elements and average population was acquired. This technique is important for the development of PSi into a microarray platform for highly parallel biosensing applications, especially for cell-based assays.
An Expert Assistant for Computer Aided Parallelization
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Chun, Robert; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit
2004-01-01
The prototype implementation of an expert system was developed to assist the user in the computer aided parallelization process. The system interfaces to tools for automatic parallelization and performance analysis. By fusing static program structure information and dynamic performance analysis data the expert system can help the user to filter, correlate, and interpret the data gathered by the existing tools. Sections of the code that show poor performance and require further attention are rapidly identified and suggestions for improvements are presented to the user. In this paper we describe the components of the expert system and discuss its interface to the existing tools. We present a case study to demonstrate the successful use in full scale scientific applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M. R.; Burket, P. R.; Duignan, M. R.
2015-03-12
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRRmore » was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO 2, and NaNO 3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.« less
Parallel optimization of signal detection in active magnetospheric signal injection experiments
NASA Astrophysics Data System (ADS)
Gowanlock, Michael; Li, Justin D.; Rude, Cody M.; Pankratius, Victor
2018-05-01
Signal detection and extraction requires substantial manual parameter tuning at different stages in the processing pipeline. Time-series data depends on domain-specific signal properties, necessitating unique parameter selection for a given problem. The large potential search space makes this parameter selection process time-consuming and subject to variability. We introduce a technique to search and prune such parameter search spaces in parallel and select parameters for time series filters using breadth- and depth-first search strategies to increase the likelihood of detecting signals of interest in the field of magnetospheric physics. We focus on studying geomagnetic activity in the extremely and very low frequency ranges (ELF/VLF) using ELF/VLF transmissions from Siple Station, Antarctica, received at Québec, Canada. Our technique successfully detects amplified transmissions and achieves substantial speedup performance gains as compared to an exhaustive parameter search. We present examples where our algorithmic approach reduces the search from hundreds of seconds down to less than 1 s, with a ranked signal detection in the top 99th percentile, thus making it valuable for real-time monitoring. We also present empirical performance models quantifying the trade-off between the quality of signal recovered and the algorithm response time required for signal extraction. In the future, improved signal extraction in scenarios like the Siple experiment will enable better real-time diagnostics of conditions of the Earth's magnetosphere for monitoring space weather activity.
NASA Astrophysics Data System (ADS)
M, Mohery; A, M. Abdallah; A, Ali; S, S. Baz
2016-05-01
Atmospheric concentrations of radon (222Rn) gas and its short-lived progenies 218Po, 214Pb, and 214Po were continuously monitored every four hours at the ground level in Jeddah city, Kingdom of Saudi Arabia. The measurements were performed three times every week, starting from November 2014 to October 2015. A method of electrostatic precipitation of positively charged 218Po and 214Po by a positive voltage was applied for determining 222Rn gas concentration. The short-lived 222Rn progeny concentration was determined by using a filter holder connected with the alpha-spectrometric technique. The meteorological parameters (relative air humidity, air temperature, and wind speed) were determined during the measurements of 222Rn and its progeny concentrations. 222Rn gas as well as its short-lived progeny concentration display a daily and seasonal variation with high values in the night and early morning hours as compared to low values at noon and in the afternoon. The observed monthly atmospheric concentrations showed a seasonal trend with the highest values in the autumn/winter season and the lowest values in the spring/summer season. Moreover, and in parallel with alpha-spectrometric measurements, a single filter-holder was used to collect air samples. The deposited activities of 214Pb and the long-lived 222Rn daughter 210Pb on the filter were measured with the gamma spectrometric technique. The measured activity concentrations of 214Pb by both techniques were found to be relatively equal largely. The highest mean seasonally activity concentrations of 210Pb were observed in the autumn/winter season while the lowest mean were observed in the spring/summer season. The mean residence time (MRT) of aerosol particles in the atmospheric air could be estimated from the activity ratios of 210Pb/214Pb. Project supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (Grant No. 291/965/1434).
NASA Astrophysics Data System (ADS)
Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.
2017-10-01
Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.
Dynamic dual-tracer PET reconstruction.
Gao, Fei; Liu, Huafeng; Jian, Yiqiang; Shi, Pengcheng
2009-01-01
Although of important medical implications, simultaneous dual-tracer positron emission tomography reconstruction remains a challenging problem, primarily because the photon measurements from dual tracers are overlapped. In this paper, we propose a simultaneous dynamic dual-tracer reconstruction of tissue activity maps based on guidance from tracer kinetics. The dual-tracer reconstruction problem is formulated in a state-space representation, where parallel compartment models serve as continuous-time system equation describing the tracer kinetic processes of dual tracers, and the imaging data is expressed as discrete sampling of the system states in measurement equation. The image reconstruction problem has therefore become a state estimation problem in a continuous-discrete hybrid paradigm, and H infinity filtering is adopted as the estimation strategy. As H infinity filtering makes no assumptions on the system and measurement statistics, robust reconstruction results can be obtained for the dual-tracer PET imaging system where the statistical properties of measurement data and system uncertainty are not available a priori, even when there are disturbances in the kinetic parameters. Experimental results on digital phantoms, Monte Carlo simulations and physical phantoms have demonstrated the superior performance.
Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.
Karthikeyan, Muthukumarasamy; Vyas, Renu
2015-01-01
Advancement in chemoinformatics research in parallel with availability of high performance computing platform has made handling of large scale multi-dimensional scientific data for high throughput drug discovery easier. In this study we have explored publicly available molecular databases with the help of open-source based integrated in-house molecular informatics tools for virtual screening. The virtual screening literature for past decade has been extensively investigated and thoroughly analyzed to reveal interesting patterns with respect to the drug, target, scaffold and disease space. The review also focuses on the integrated chemoinformatics tools that are capable of harvesting chemical data from textual literature information and transform them into truly computable chemical structures, identification of unique fragments and scaffolds from a class of compounds, automatic generation of focused virtual libraries, computation of molecular descriptors for structure-activity relationship studies, application of conventional filters used in lead discovery along with in-house developed exhaustive PTC (Pharmacophore, Toxicophores and Chemophores) filters and machine learning tools for the design of potential disease specific inhibitors. A case study on kinase inhibitors is provided as an example.
pyAmpli: an amplicon-based variant filter pipeline for targeted resequencing data.
Beyens, Matthias; Boeckx, Nele; Van Camp, Guy; Op de Beeck, Ken; Vandeweyer, Geert
2017-12-14
Haloplex targeted resequencing is a popular method to analyze both germline and somatic variants in gene panels. However, involved wet-lab procedures may introduce false positives that need to be considered in subsequent data-analysis. No variant filtering rationale addressing amplicon enrichment related systematic errors, in the form of an all-in-one package, exists to our knowledge. We present pyAmpli, a platform independent parallelized Python package that implements an amplicon-based germline and somatic variant filtering strategy for Haloplex data. pyAmpli can filter variants for systematic errors by user pre-defined criteria. We show that pyAmpli significantly increases specificity, without reducing sensitivity, essential for reporting true positive clinical relevant mutations in gene panel data. pyAmpli is an easy-to-use software tool which increases the true positive variant call rate in targeted resequencing data. It specifically reduces errors related to PCR-based enrichment of targeted regions.
Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors.
Pezoa, Jorge E; Hayat, Majeed M; Torres, Sergio N; Rahman, Md Saifur
2006-06-01
We present an adaptive technique for the estimation of nonuniformity parameters of infrared focal-plane arrays that is robust with respect to changes and uncertainties in scene and sensor characteristics. The proposed algorithm is based on using a bank of Kalman filters in parallel. Each filter independently estimates state variables comprising the gain and the bias matrices of the sensor, according to its own dynamic-model parameters. The supervising component of the algorithm then generates the final estimates of the state variables by forming a weighted superposition of all the estimates rendered by each Kalman filter. The weights are computed and updated iteratively, according to the a posteriori-likelihood principle. The performance of the estimator and its ability to compensate for fixed-pattern noise is tested using both simulated and real data obtained from two cameras operating in the mid- and long-wave infrared regime.
Improved image reconstruction of low-resolution multichannel phase contrast angiography
P. Krishnan, Akshara; Joy, Ajin; Paul, Joseph Suresh
2016-01-01
Abstract. In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio. PMID:26835501
Airborne radar technology for windshear detection
NASA Technical Reports Server (NTRS)
Hibey, Joseph L.; Khalaf, Camille S.
1988-01-01
The objectives and accomplishments of the two-and-a-half year effort to describe how returns from on-board Doppler radar are to be used to detect the presence of a wind shear are reported. The problem is modeled as one of first passage in terms of state variables, the state estimates are generated by a bank of extended Kalman filters working in parallel, and the decision strategy involves the use of a voting algorithm for a series of likelihood ratio tests. The performance issue for filtering is addressed in terms of error-covariance reduction and filter divergence, and the performance issue for detection is addressed in terms of using a probability measure transformation to derive theoretical expressions for the error probabilities of a false alarm and a miss.
Genetically Engineered Microelectronic Infrared Filters
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
1998-01-01
A genetic algorithm is used for design of infrared filters and in the understanding of the material structure of a resonant tunneling diode. These two components are examples of microdevices and nanodevices that can be numerically simulated using fundamental mathematical and physical models. Because the number of parameters that can be used in the design of one of these devices is large, and because experimental exploration of the design space is unfeasible, reliable software models integrated with global optimization methods are examined The genetic algorithm and engineering design codes have been implemented on massively parallel computers to exploit their high performance. Design results are presented for the infrared filter showing new and optimized device design. Results for nanodevices are presented in a companion paper at this workshop.
Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields
NASA Technical Reports Server (NTRS)
Petty, Sara M.; deMello, Duilia F.; Wiklind, Tomy; Gardner, Jonathan P.; Mountain, Matt
2010-01-01
Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta < 0.2, which agrees with the sensitivities expected from the Balmer-break in our dataset. Five parallel fields observed by NICMOS have sensitivities in the H160-band of 80% at mAB = 25.4 and 50% at mAB = 26.7. Because the sample is H160-band selected, it is sensitive to stellar mass rather than UV luminosities. We also use Monte Carlo simulations to determine that the parameters from the best-fit SEDs are robust for the redshift ranges z > or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array.
A High-Resolution Seismic Survey Across the State Line fault, NV
NASA Astrophysics Data System (ADS)
Beachly, M.; Cox, C. M.; Saldana, S. C.; Snelson, C. M.; Taylor, W. J.; Robins, C.; Davis, R.; Stropky, M.; Phillips, R.; Cothrun, C.
2007-12-01
During the summer of 2007, an investigation of the faulting in Stewart Valley was under taken, located within the central Basin and Range province ~90 km west of Las Vegas, Nevada. The goal of this study was to resolve the seismic hazard potential of the State Line fault, a right-lateral strike-slip fault that runs the length of Stewart Valley. Four seismic reflection lines were acquired, two perpendicular and two parallel to the State Line fault. What is presented is an analysis of the western and eastern seismic lines parallel to the State Line fault. The western line was acquired utilizing a 144-channel geode system with each of the 4.5 Hz vertical geophones set out at 5 m intervals to form a 715 m long profile. The eastern line employed 120 of these geophones in a 595 m long profile. A mini-vibroseis served as the seismic source every ten meters, between geophones. The vibroseis was programmed to produce an 8 s linear sweep from 20-160 Hz. Three sweeps were recorded at each shot location without acquisition filters at a sampling rate of 0.5 ms. The three shot gathers were then stacked at each location to reduce noise. The data collected had minimal noise, although; during the processing of the eastern line a notch filtered was used to remove the 60 Hz noise created by adjacent power line. These lines, acquired parallel to the State Line fault, contain matching features that serve to determine how much lateral displacement the fault has undergone. The amount of the displacement can indicate how active the fault is, and thus, what magnitude of earthquake can be expected in the future. This will in turn contribute to determining the seismic hazard potential for southern Nevada. A preliminary interpretation of the seismic reflection sections indicates an average displacement of about 20 - 38 m with greater displacement in the deeper sections of the image. The shallow depth displacement calculations are consistent with previous work in the area. The State Line fault is believed to be a result of strain partitioning from the San Andreas Fault. By studying this more localized active strike-slip fault system the results of this study can contribute to a model that provides a better understanding of the tectonics in the central Basin and Range.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., fabric filter, activated carbon injection, selective noncatalytic reduction, an electrostatic... filter, activated carbon injection, selective noncatalytic reduction, an electrostatic precipitator, or a... than a wet scrubber, activated carbon injection, selective noncatalytic reduction, fabric filter, an...
Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V
2015-01-01
Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.
A parallel bubble column system for the cultivation of phototrophic microorganisms.
Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk
2008-07-01
An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).
Parallel Processing of Large Scale Microphone Arrays for Sound Capture
NASA Astrophysics Data System (ADS)
Jan, Ea-Ee.
1995-01-01
Performance of microphone sound pick up is degraded by deleterious properties of the acoustic environment, such as multipath distortion (reverberation) and ambient noise. The degradation becomes more prominent in a teleconferencing environment in which the microphone is positioned far away from the speaker. Besides, the ideal teleconference should feel as easy and natural as face-to-face communication with another person. This suggests hands-free sound capture with no tether or encumbrance by hand-held or body-worn sound equipment. Microphone arrays for this application represent an appropriate approach. This research develops new microphone array and signal processing techniques for high quality hands-free sound capture in noisy, reverberant enclosures. The new techniques combine matched-filtering of individual sensors and parallel processing to provide acute spatial volume selectivity which is capable of mitigating the deleterious effects of noise interference and multipath distortion. The new method outperforms traditional delay-and-sum beamformers which provide only directional spatial selectivity. The research additionally explores truncated matched-filtering and random distribution of transducers to reduce complexity and improve sound capture quality. All designs are first established by computer simulation of array performance in reverberant enclosures. The simulation is achieved by a room model which can efficiently calculate the acoustic multipath in a rectangular enclosure up to a prescribed order of images. It also calculates the incident angle of the arriving signal. Experimental arrays were constructed and their performance was measured in real rooms. Real room data were collected in a hard-walled laboratory and a controllable variable acoustics enclosure of similar size, approximately 6 x 6 x 3 m. An extensive speech database was also collected in these two enclosures for future research on microphone arrays. The simulation results are shown to be consistent with the real room data. Localization of sound sources has been explored using cross-power spectrum time delay estimation and has been evaluated using real room data under slightly, moderately and highly reverberant conditions. To improve the accuracy and reliability of the source localization, an outlier detector that removes incorrect time delay estimation has been invented. To provide speaker selectivity for microphone array systems, a hands-free speaker identification system has been studied. A recently invented feature using selected spectrum information outperforms traditional recognition methods. Measured results demonstrate the capabilities of speaker selectivity from a matched-filtered array. In addition, simulation utilities, including matched -filtering processing of the array and hands-free speaker identification, have been implemented on the massively -parallel nCube super-computer. This parallel computation highlights the requirements for real-time processing of array signals.
Composition of the excimer laser-induced plume produced during LASIK refractive surgery
NASA Astrophysics Data System (ADS)
Glickman, Randolph D.; Liu, Yun; Mayo, George L.; Baribeau, Alan D.; Starck, Tomy; Bankhead, Tom
2003-07-01
Because of concerns about potential hazards to surgical personnel of the plume associated with laser refractive surgery, this study was performed to characterize the composition of such plumes. Filter elements were removed from the smoke evacuator of a VISX S3 excimer laser (filter pore size ~0.3 microns) and from a Mastel Clean Room ( filter pore size ~0.2 microns) used with a LADARVISION excimer laser. The filters from both laser systems captured the laser-induced plumes from multiple, routine, LASIK patient procedures. Some filters were processed for scanning electron microscopy, while others were extracted with methanol and chloroform for biochemical analysis. Both the VISX "Final Air" filter and the Mastel "Clean Room" filter captured material that was not observed in filters that had clean operating room air only passed through them. In the VISX system, air flows through the filter unit parallel to the filter matrix. SEM analysis showed these filters captured discrete particles of 0.3 to 3.0 microns in size. In the Mastel Clean Room unit, air flows orthogonally through the filter, and the filter matrix was heavily layered with captured debris so that individual particles were not readily distinguished. Amino acid analysis and gel electrophoresis of extracted material revealed proteinaceous molecules as large as 5000 molecular weight. Such large molecules in the laser plume are not predicted by the existing theory of photochemical ablation. The presence of relatively large biomolecules may constitute a risk of allergenic reactions in personnel exposed to the plume, and also calls into question the precise mechanism of excimer laser photochemical ablation. Supported by the RMG Research Endowment, and Research to Prevent Blindness
NASA Astrophysics Data System (ADS)
Outerbridge, Gregory John, II
Pose estimation techniques have been developed on both optical and digital correlator platforms to aid in the autonomous rendezvous and docking of spacecraft. This research has focused on the optical architecture, which utilizes high-speed bipolar-phase grayscale-amplitude spatial light modulators as the image and correlation filter devices. The optical approach has the primary advantage of optical parallel processing: an extremely fast and efficient way of performing complex correlation calculations. However, the constraints imposed on optically implementable filters makes optical correlator based posed estimation technically incompatible with the popular weighted composite filter designs successfully used on the digital platform. This research employs a much simpler "bank of filters" approach to optical pose estimation that exploits the inherent efficiency of optical correlation devices. A novel logarithmically mapped optically implementable matched filter combined with a pose search algorithm resulted in sub-degree standard deviations in angular pose estimation error. These filters were extremely simple to generate, requiring no complicated training sets and resulted in excellent performance even in the presence of significant background noise. Common edge detection and scaling of the input image was the only image pre-processing necessary for accurate pose detection at all alignment distances of interest.
NASA Astrophysics Data System (ADS)
Watanabe, Shuji; Takano, Hiroshi; Fukuda, Hiroya; Hiraki, Eiji; Nakaoka, Mutsuo
This paper deals with a digital control scheme of multiple paralleled high frequency switching current amplifier with four-quadrant chopper for generating gradient magnetic fields in MRI (Magnetic Resonance Imaging) systems. In order to track high precise current pattern in Gradient Coils (GC), the proposal current amplifier cancels the switching current ripples in GC with each other and designed optimum switching gate pulse patterns without influences of the large filter current ripple amplitude. The optimal control implementation and the linear control theory in GC current amplifiers have affinity to each other with excellent characteristics. The digital control system can be realized easily through the digital control implementation, DSPs or microprocessors. Multiple-parallel operational microprocessors realize two or higher paralleled GC current pattern tracking amplifier with optimal control design and excellent results are given for improving the image quality of MRI systems.
High-performance analysis of filtered semantic graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluc, Aydin; Fox, Armando; Gilbert, John R.
2012-01-01
High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry "attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices and edges of interest. The filtered approach is superior due to its generality, ease of use, and memory efficiency, but may carry amore » performance cost. In the Knowledge Discovery Toolbox (KDT), a Python library for parallel graph computations, the user writes filters in a high-level language, but those filters result in relatively low performance due to the bottleneck of having to call into the Python interpreter for each edge. In this work, we use the Selective Embedded JIT Specialization (SEJITS) approach to automatically translate filters defined by programmers into a lower-level efficiency language, bypassing the upcall into Python. We evaluate our approach by comparing it with the high-performance C++ /MPI Combinatorial BLAS engine, and show that the productivity gained by using a high-level filtering language comes without sacrificing performance.« less
Design parameters for rotating cylindrical filtration
NASA Technical Reports Server (NTRS)
Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.
2002-01-01
Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.
High power density dc/dc converter: Selection of converter topology
NASA Technical Reports Server (NTRS)
Divan, Deepakraj M.
1990-01-01
The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.
Riede, Tobias; Goller, Franz
2010-10-01
Song production in songbirds is a model system for studying learned vocal behavior. As in humans, bird phonation involves three main motor systems (respiration, vocal organ and vocal tract). The avian respiratory mechanism uses pressure regulation in air sacs to ventilate a rigid lung. In songbirds sound is generated with two independently controlled sound sources, which reside in a uniquely avian vocal organ, the syrinx. However, the physical sound generation mechanism in the syrinx shows strong analogies to that in the human larynx, such that both can be characterized as myoelastic-aerodynamic sound sources. Similarities include active adduction and abduction, oscillating tissue masses which modulate flow rate through the organ and a layered structure of the oscillating tissue masses giving rise to complex viscoelastic properties. Differences in the functional morphology of the sound producing system between birds and humans require specific motor control patterns. The songbird vocal apparatus is adapted for high speed, suggesting that temporal patterns and fast modulation of sound features are important in acoustic communication. Rapid respiratory patterns determine the coarse temporal structure of song and maintain gas exchange even during very long songs. The respiratory system also contributes to the fine control of airflow. Muscular control of the vocal organ regulates airflow and acoustic features. The upper vocal tract of birds filters the sounds generated in the syrinx, and filter properties are actively adjusted. Nonlinear source-filter interactions may also play a role. The unique morphology and biomechanical system for sound production in birds presents an interesting model for exploring parallels in control mechanisms that give rise to highly convergent physical patterns of sound generation. More comparative work should provide a rich source for our understanding of the evolution of complex sound producing systems. Copyright © 2009 Elsevier Inc. All rights reserved.
A zero-voltage-switched three-phase interleaved buck converter
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Ching; Huang, Bing-Siang; Lin, Jing-Yuan; Pham, Phu Hieu; Chen, Po-Hao; Chiu, Huang-Jen
2018-04-01
This paper proposes a three-phase interleaved buck converter which is composed of three identical paralleled buck converters. The proposed solution has three shunt inductors connected between each other of three basic buck conversion units. With the help of the shunt inductors, the MOSFET parasitic capacitances will resonate to achieve zero-voltage-switching. Furthermore, the decreasing rate of the current through the free-wheeling diodes is limited, and therefore, their reverse-recovery losses can be minimised. The active power switches are controlled by interleaved pulse-width modulation signals to reduce the input and output current ripples. Therefore, the filtering capacitances on the input and output sides can be reduced. The power efficiency is measured to be as high as 98% in experiment with a prototype circuit.
Neurovision processor for designing intelligent sensors
NASA Astrophysics Data System (ADS)
Gupta, Madan M.; Knopf, George K.
1992-03-01
A programmable multi-task neuro-vision processor, called the Positive-Negative (PN) neural processor, is proposed as a plausible hardware mechanism for constructing robust multi-task vision sensors. The computational operations performed by the PN neural processor are loosely based on the neural activity fields exhibited by certain nervous tissue layers situated in the brain. The neuro-vision processor can be programmed to generate diverse dynamic behavior that may be used for spatio-temporal stabilization (STS), short-term visual memory (STVM), spatio-temporal filtering (STF) and pulse frequency modulation (PFM). A multi- functional vision sensor that performs a variety of information processing operations on time- varying two-dimensional sensory images can be constructed from a parallel and hierarchical structure of numerous individually programmed PN neural processors.
An Adaptive Kalman Filter Using a Simple Residual Tuning Method
NASA Technical Reports Server (NTRS)
Harman, Richard R.
1999-01-01
One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.
Warburton, W.K.
1999-02-16
A high speed, digitally based, signal processing system is disclosed which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system lifetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired. 31 figs.
Modified signed-digit trinary addition using synthetic wavelet filter
NASA Astrophysics Data System (ADS)
Iftekharuddin, K. M.; Razzaque, M. A.
2000-09-01
The modified signed-digit (MSD) number system has been a topic of interest as it allows for parallel carry-free addition of two numbers for digital optical computing. In this paper, harmonic wavelet joint transform (HWJT)-based correlation technique is introduced for optical implementation of MSD trinary adder implementation. The realization of the carry-propagation-free addition of MSD trinary numerals is demonstrated using synthetic HWJT correlator model. It is also shown that the proposed synthetic wavelet filter-based correlator shows high performance in logic processing. Simulation results are presented to validate the performance of the proposed technique.
Quantifying In Situ Metal and Organic Contaminant Mobility in Marine Sediments
2009-01-01
and west of Ford Island, within the Pearl Harbor Naval Base. Sediments are fine grain silts and clays of basaltic origins and contain various... fiber filters for organics), and check valves (Figure 8) connected to synchronized parallel rotary valves connected to the collection chamber. Samples
Understanding the Behaviour of Infinite Ladder Circuits
ERIC Educational Resources Information Center
Ucak, C.; Yegin, K.
2008-01-01
Infinite ladder circuits are often encountered in undergraduate electrical engineering and physics curricula when dealing with series and parallel combination of impedances, as a part of filter design or wave propagation on transmission lines. The input impedance of such infinite ladder circuits is derived by assuming that the input impedance does…
Analysis, preliminary design and simulation systems for control-structure interaction problems
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.
1991-01-01
Software aspects of control-structure interaction (CSI) analysis are discussed. The following subject areas are covered: (1) implementation of a partitioned algorithm for simulation of large CSI problems; (2) second-order discrete Kalman filtering equations for CSI simulations; and (3) parallel computations and control of adaptive structures.
Microwave active filters based on coupled negative resistance method
NASA Astrophysics Data System (ADS)
Chang, Chi-Yang; Itoh, Tatsuo
1990-12-01
A novel coupled negative resistance method for building a microwave active bandpass filter is introduced. Based on this method, four microstrip line end-coupled filters were built. Two are fixed-frequency one-pole and two-pole filters, and two are tunable one-pole and two-pole filters. In order to broaden the bandwidth of the end-coupled filter, a modified end-coupled structure is proposed. Using the modified structure, an active filter with a bandwidth up to 7.5 percent was built. All of the filters show significant passband performance improvement. Specifically, the passband bandwidth was broadened by a factor of 5 to 20.
System-level analysis and design for RGB-NIR CMOS camera
NASA Astrophysics Data System (ADS)
Geelen, Bert; Spooren, Nick; Tack, Klaas; Lambrechts, Andy; Jayapala, Murali
2017-02-01
This paper presents system-level analysis of a sensor capable of simultaneously acquiring both standard absorption based RGB color channels (400-700nm, 75nm FWHM), as well as an additional NIR channel (central wavelength: 808 nm, FWHM: 30nm collimated light). Parallel acquisition of RGB and NIR info on the same CMOS image sensor is enabled by monolithic pixel-level integration of both a NIR pass thin film filter and NIR blocking filters for the RGB channels. This overcomes the need for a standard camera-level NIR blocking filter to remove the NIR leakage present in standard RGB absorption filters from 700-1000nm. Such a camera-level NIR blocking filter would inhibit the acquisition of the NIR channel on the same sensor. Thin film filters do not operate in isolation. Rather, their performance is influenced by the system context in which they operate. The spectral distribution of light arriving at the photo diode is shaped a.o. by the illumination spectral profile, optical component transmission characteristics and sensor quantum efficiency. For example, knowledge of a low quantum efficiency (QE) of the CMOS image sensor above 800nm may reduce the filter's blocking requirements and simplify the filter structure. Similarly, knowledge of the incoming light angularity as set by the objective lens' F/# and exit pupil location may be taken into account during the thin film's optimization. This paper demonstrates how knowledge of the application context can facilitate filter design and relax design trade-offs and presents experimental results.
Active disturbance rejection controller of fine tracking system for free space optical communication
NASA Astrophysics Data System (ADS)
Cui, Ning; Liu, Yang; Chen, Xinglin; Wang, Yan
2013-08-01
Free space optical communication is one of the best approaches in future communications. Laser beam's acquisition, pointing and tracking are crucial technologies of free space optical communication. Fine tracking system is important component of APT (acquisition, pointing and tracking) system. It cooperates with the coarse pointing system in executing the APT mission. Satellite platform vibration and disturbance, which reduce received optical power, increase bit error rate and affect seriously the natural performance of laser communication. For the characteristic of satellite platform, an active disturbance rejection controller was designed to reduce the vibration and disturbance. There are three major contributions in the paper. Firstly, the effects of vibration on the inter satellite optical communications were analyzed, and the reasons and characters of vibration of the satellite platform were summarized. The amplitude-frequency response of a filter was designed according to the power spectral density of platform vibration of SILEX (Semiconductor Inter-satellite Laser Experiment), and then the signals of platform vibration were generated by filtering white Gaussian noise using the filter. Secondly, the fast steering mirror is a key component of the fine tracking system for optical communication. The mechanical design and model analysis was made to the tip/tilt mirror driven by the piezoelectric actuator and transmitted by the flexure hinge. The transfer function of the fast steering mirror, camera, D/A data acquisition card was established, and the theory model of transfer function of this system was further obtained. Finally, an active disturbance rejection control method is developed, multiple parallel extended state observers were designed for estimation of unknown dynamics and external disturbance, and the estimated states were used for nonlinear feedback control and compensation to improve system performance. The simulation results show that the designed controller not only accurately estimates and compensates the disturbances, but also realizes the robustness to estimation of unknown dynamics. The controller can satisfy the requirement of fine tracking accuracy for free space optical communication system.
Messaraa, C; Metois, A; Walsh, M; Hurley, S; Doyle, L; Mansfield, A; O'Connor, C; Mavon, A
2018-01-24
Skin topographic measurements are of paramount importance in the field of dermo-cosmetic evaluation. The aim of this study was to investigate how the Antera 3D, a multi-purpose handheld camera, correlates with other topographic techniques and changes in skin topography following the use of a cosmetic product. Skin topographic measurements were collected on 26 female volunteers aged 45-70 years with the Antera 3D, the DermaTOP and image analysis on parallel-polarized pictures. Different filters for analysis from the Antera 3D were investigated for repeatability, correlations with other imaging techniques and ability to detect improvements of skin topography following application of a serum. Most of Antera 3D parameters were found to be strongly correlated with the DermaTOP parameters. No association was found between the Antera 3D parameters and measurements on parallel-polarized photographs. The measurements repeatability was comparable among the different filters for analysis, with the exception of wrinkle max depth and roughness Rt. Following a single application of a tightening serum, both Antera 3D wrinkles and texture parameters were able to record significant improvements, with the best improvements observed with the large filter. The Antera 3D demonstrated its relevance for cosmetic product evaluation. We also provide recommendations for the analysis based on our findings. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A distributed code for color in natural scenes derived from center-surround filtered cone signals
Kellner, Christian J.; Wachtler, Thomas
2013-01-01
In the retina of trichromatic primates, chromatic information is encoded in an opponent fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel pathways. Chromatic selectivities of neurons in the LGN form two separate clusters, corresponding to two classes of cone opponency. In the visual cortex, however, the chromatic selectivities are more distributed, which is in accordance with a population code for color. Previous studies of cone signals in natural scenes typically found opponent codes with chromatic selectivities corresponding to two directions in color space. Here we investigated how the non-linear spatio-chromatic filtering in the retina influences the encoding of color signals. Cone signals were derived from hyper-spectral images of natural scenes and preprocessed by center-surround filtering and rectification, resulting in parallel ON and OFF channels. Independent Component Analysis (ICA) on these signals yielded a highly sparse code with basis functions that showed spatio-chromatic selectivities. In contrast to previous analyses of linear transformations of cone signals, chromatic selectivities were not restricted to two main chromatic axes, but were more continuously distributed in color space, similar to the population code of color in the early visual cortex. Our results indicate that spatio-chromatic processing in the retina leads to a more distributed and more efficient code for natural scenes. PMID:24098289
The Oxidized Low-Density Lipoprotein Receptor Mediates Vascular Effects of Inhaled Vehicle Emissions
Lucero, JoAnn; Harman, Melissa; Madden, Michael C.; McDonald, Jacob D.; Seagrave, Jean Clare; Campen, Matthew J.
2011-01-01
Rationale: To determine vascular signaling pathways involved in inhaled air pollution (vehicular engine emission) exposure–induced exacerbation of atherosclerosis that are associated with onset of clinical cardiovascular events. Objectives: To elucidate the role of oxidized low-density lipoprotein (oxLDL) and its primary receptor on endothelial cells, the lectin-like oxLDL receptor (LOX-1), in regulation of endothelin-1 expression and matrix metalloproteinase activity associated with inhalational exposure to vehicular engine emissions. Methods: Atherosclerotic apolipoprotein E knockout mice were exposed by inhalation to filtered air or mixed whole engine emissions (250 μg particulate matter [PM]/m3 diesel + 50 μg PM/m3 gasoline exhausts) 6 h/d for 7 days. Concurrently, mice were treated with either mouse IgG or neutralizing antibodies to LOX-1 every other day. Vascular and plasma markers of oxidative stress and expression proatherogenic factors were assessed. In a parallel study, healthy human subjects were exposed to either 100 μg PM/m3 diesel whole exhaust or high-efficiency particulate air and charcoal-filtered “clean” air (control subjects) for 2 hours, on separate occasions. Measurements and Main Results: Mixed emissions exposure increased oxLDL and vascular reactive oxygen species, as well as LOX-1, matrix metalloproteinase-9, and endothelin-1 mRNA expression and also monocyte/macrophage infiltration, each of which was attenuated with LOX-1 antibody treatment. In a parallel study, diesel exhaust exposure in volunteer human subjects induced significant increases in plasma-soluble LOX-1. Conclusions: These findings demonstrate that acute exposure to vehicular source pollutants results in up-regulation of vascular factors associated with progression of atherosclerosis, endothelin-1, and matrix metalloproteinase-9, mediated through oxLDL–LOX-1 receptor signaling, which may serve as a novel target for future therapy. PMID:21493736
Code of Federal Regulations, 2014 CFR
2014-07-01
..., fabric filter, activated carbon injection, selective noncatalytic reduction, an electrostatic... use a wet scrubber, fabric filter, activated carbon injection, selective noncatalytic reduction, an... reduction, fabric filter, an electrostatic precipitator, or a dry scrubber or limit emissions in some other...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., fabric filter, activated carbon injection, selective noncatalytic reduction, an electrostatic... use a wet scrubber, fabric filter, activated carbon injection, selective noncatalytic reduction, an... reduction, fabric filter, an electrostatic precipitator, or a dry scrubber or limit emissions in some other...
NASA Astrophysics Data System (ADS)
Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki
2012-11-01
This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.
Research on Palmprint Identification Method Based on Quantum Algorithms
Zhang, Zhanzhan
2014-01-01
Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT) is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%. PMID:25105165
NASA Astrophysics Data System (ADS)
Liu, Zhonglun; Xin, Zhaowei; Long, Huabao; Wei, Dong; Dai, Wanwan; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
Previous studies have presented the usefulness of typical liquid-crystal Fabry-Perot (LC-FP) infrared filters for spectral imaging detection. Yet, their infrared transmission performances still remain to improve or even rise. In this paper, we propose a new type of electrically tunable LC-FP infrared filter to solve the problem above. The key component of the device is a FP resonant cavity composed of two parallel plane mirrors, in which the zinc selenide (ZnSe) materials with a very high transmittance in the mid-long-wavelength infrared regions are used as the electrode substrates and a layer of nano-aluminum (Al) film, which is directly contacted with liquid-crystal materials, is chosen to make high reflective mirrors as well as the electrodes. Particularly, it should be noted that the directional layer made up of ployimide (PI) used previously is removed. The experiment results indicate that the filter can reduce the absorption of infrared wave remarkably, and thus highlight a road to effectively improve the infrared transmittance ability.
SERODS optical data storage with parallel signal transfer
Vo-Dinh, Tuan
2003-09-02
Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.
SERODS optical data storage with parallel signal transfer
Vo-Dinh, Tuan
2003-06-24
Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.
Multilayer MgB{sub 2} superconducting quantum interference filter magnetometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Elias; Melbourne, Thomas; Davidson, Bruce A.
2016-04-25
We report two types of all-MgB{sub 2} superconductive quantum interference filter (SQIF) magnetometers that can measure absolute magnetic fields with high sensitivity. In one configuration, the SQIFs were made of 20 multilayer nonplanar all-MgB{sub 2} superconducting quantum interference devices (SQUIDs) connected in parallel with loop areas ranging in size from 0.4 to 3.6 μm{sup 2}. These devices are sensitive to magnetic fields parallel to the substrate and show a single antipeak from 3 to 16 K with a maximum transfer function of ∼16 V/T at 3 K and a field noise of ∼110 pT/Hz{sup 1/2} above 100 Hz at 10 K. In a second configuration, themore » SQIFs were made with 16 planar SQUIDs connected in parallel with loop areas ranging in size from 4 μm{sup 2} to 25 μm{sup 2} and are sensitive to the magnetic fields perpendicular to the substrate. The planar SQIF shows a single antipeak from 10 to 22 K with a maximum transfer function of 7800 V/T at 10 K and a field noise of ∼70 pT/Hz{sup 1/2} above 100 Hz at 20 K.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
..., fabric filter, activated carbon injection, selective noncatalytic reduction, or an electrostatic... Limitations and Operating Limits § 60.2115 What if I do not use a wet scrubber, fabric filter, activated... carbon injection, selective noncatalytic reduction, fabric filter, or an electrostatic precipitator or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...
Code of Federal Regulations, 2014 CFR
2014-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...
Code of Federal Regulations, 2013 CFR
2013-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...
Code of Federal Regulations, 2011 CFR
2011-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...
Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V
2015-07-16
We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kondo, Ryota; Akagi, Hirofumi
This paper presents a transformerless hybrid active filter that is integrated into medium-voltage adjustable-speed motor drives for fans, pumps, and compressors without regenerative braking. The authors have designed and constructed a three-phase experimental system rated at 400V and 15kW, which is a downscaled model from a feasible 6.6-kV 1-MW motor drive system. This system consists of the hybrid filter connecting a passive filter tuned to the 7th harmonic filter in series with an active filter that is based on a three-level diode-clamped PWM converter, as well as an adjustable-speed motor drive in which a diode rectifier is used as the front end. The hybrid filter is installed on the ac side of the diode rectifier with no line-frequency transformer. The downscaled system has been exclusively tested so as to confirm the overall compensating performance of the hybrid filter and the filtering performance of a switching-ripple filter for mitigating switching-ripple voltages produced by the active filter. Experimental results verify that the hybrid filter achieves harmonic compensation of the source current in all the operating regions from no-load to the rated-load conditions, and that the switching-ripple filter reduces the switching-ripple voltages as expected.
Handbook of Supersonic Aerodynamics. Section 20. Wind Tunnel Instrumentation and Operation
1961-01-01
colored Wratten gelatin filters are mounted in a suitable holder with the sides of the strips parallel and close enough to prevent light from passing...Knoblork, F. D., "A Hot-Wire Anemometer Developed for Full-Scale 0 Airship Measurements," The Daniel Guggenheim Airship Inst., pp. 58-61, 1935. 619
Hysteresis Control of Parallel-Connected Hybrid Inverters
2005-09-01
92 C. MILITARY APPLICATIONS .....................................................................92 D...unbalanced to replicate the “real-world” application of the controller. Other areas of the controller could be changed to improve the fidelity of the load...a chip to perform the complex mathematics to transform from one reference frame to another while automatically adjusting the filter parameters. The
An improved non-uniformity correction algorithm and its GPU parallel implementation
NASA Astrophysics Data System (ADS)
Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui
2018-05-01
The performance of SLP-THP based non-uniformity correction algorithm is seriously affected by the result of SLP filter, which always leads to image blurring and ghosting artifacts. To address this problem, an improved SLP-THP based non-uniformity correction method with curvature constraint was proposed. Here we put forward a new way to estimate spatial low frequency component. First, the details and contours of input image were obtained respectively by minimizing local Gaussian curvature and mean curvature of image surface. Then, the guided filter was utilized to combine these two parts together to get the estimate of spatial low frequency component. Finally, we brought this SLP component into SLP-THP method to achieve non-uniformity correction. The performance of proposed algorithm was verified by several real and simulated infrared image sequences. The experimental results indicated that the proposed algorithm can reduce the non-uniformity without detail losing. After that, a GPU based parallel implementation that runs 150 times faster than CPU was presented, which showed the proposed algorithm has great potential for real time application.
NASA Astrophysics Data System (ADS)
Wang, Yihan; Lu, Tong; Wan, Wenbo; Liu, Lingling; Zhang, Songhe; Li, Jiao; Zhao, Huijuan; Gao, Feng
2018-02-01
To fully realize the potential of photoacoustic tomography (PAT) in preclinical and clinical applications, rapid measurements and robust reconstructions are needed. Sparse-view measurements have been adopted effectively to accelerate the data acquisition. However, since the reconstruction from the sparse-view sampling data is challenging, both of the effective measurement and the appropriate reconstruction should be taken into account. In this study, we present an iterative sparse-view PAT reconstruction scheme where a virtual parallel-projection concept matching for the proposed measurement condition is introduced to help to achieve the "compressive sensing" procedure of the reconstruction, and meanwhile the spatially adaptive filtering fully considering the a priori information of the mutually similar blocks existing in natural images is introduced to effectively recover the partial unknown coefficients in the transformed domain. Therefore, the sparse-view PAT images can be reconstructed with higher quality compared with the results obtained by the universal back-projection (UBP) algorithm in the same sparse-view cases. The proposed approach has been validated by simulation experiments, which exhibits desirable performances in image fidelity even from a small number of measuring positions.
Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering
NASA Astrophysics Data System (ADS)
Panomruttanarug, Benjamas; Higuchi, Kohji
This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.
A dual-processor multi-frequency implementation of the FINDS algorithm
NASA Technical Reports Server (NTRS)
Godiwala, Pankaj M.; Caglayan, Alper K.
1987-01-01
This report presents a parallel processing implementation of the FINDS (Fault Inferring Nonlinear Detection System) algorithm on a dual processor configured target flight computer. First, a filter initialization scheme is presented which allows the no-fail filter (NFF) states to be initialized using the first iteration of the flight data. A modified failure isolation strategy, compatible with the new failure detection strategy reported earlier, is discussed and the performance of the new FDI algorithm is analyzed using flight recorded data from the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment. The results show that low level MLS, IMU, and IAS sensor failures are detected and isolated instantaneously, while accelerometer and rate gyro failures continue to take comparatively longer to detect and isolate. The parallel implementation is accomplished by partitioning the FINDS algorithm into two parts: one based on the translational dynamics and the other based on the rotational kinematics. Finally, a multi-rate implementation of the algorithm is presented yielding significantly low execution times with acceptable estimation and FDI performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-25
... DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: BioWatch Filter Holder Log, Filter Holder Log DHS Form 9500 AGENCY: Office of Health Affairs, DHS. ACTION: 60-Day Notice and....: Daniel Yereb, [email protected] 703- 647-8052. SUPPLEMENTARY INFORMATION: Following collection, the filter...
A real-time multi-scale 2D Gaussian filter based on FPGA
NASA Astrophysics Data System (ADS)
Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin
2014-11-01
Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.
Kuroda, Noritaka; Hird, Nick; Cork, David G
2006-01-01
During further improvement of a high-throughput, solution-phase synthesis system, new workup tools and apparatus for parallel liquid-liquid extraction and evaporation have been developed. A combination of in-house design and collaboration with external manufacturers has been used to address (1) environmental issues concerning solvent emissions and (2) sample tracking errors arising from manual intervention. A parallel liquid-liquid extraction unit, containing miniature high-speed magnetic stirrers for efficient mixing of organic and aqueous phases, has been developed for use on a multichannel liquid handler. Separation of the phases is achieved by dispensing them into a newly patented filter tube containing a vertical hydrophobic porous membrane, which allows only the organic phase to pass into collection vials positioned below. The vertical positioning of the membrane overcomes the hitherto dependence on the use of heavier-than-water, bottom-phase, organic solvents such as dichloromethane, which are restricted due to environmental concerns. Both small (6-mL) and large (60-mL) filter tubes were developed for parallel phase separation in library and template synthesis, respectively. In addition, an apparatus for parallel solvent evaporation was developed to (1) remove solvent from the above samples with highly efficient recovery and (2) avoid the movement of individual samples between their collection on a liquid handler and registration to prevent sample identification errors. The apparatus uses a diaphragm pump to achieve a dynamic circulating closed system with a heating block for the rack of 96 sample vials and an efficient condenser to trap the solvents. Solvent recovery is typically >98%, and convenient operation and monitoring has made the apparatus the first choice for removal of volatile solvents.
NASA Astrophysics Data System (ADS)
Shen, Yannan; Istock, André; Zaman, Anik; Woidt, Carsten; Hillmer, Hartmut
2018-05-01
Miniaturization of optical spectrometers can be achieved by Fabry-Pérot (FP) filter arrays. Each FP filter consists of two parallel highly reflecting mirrors and a resonance cavity in between. Originating from different individual cavity heights, each filter transmits a narrow spectral band (transmission line) with different wavelengths. Considering the fabrication efficiency, plasma enhanced chemical vapor deposition (PECVD) technology is applied to implement the high-optical-quality distributed Bragg reflectors (DBRs), while substrate conformal imprint lithography (one type of nanoimprint technology) is utilized to achieve the multiple cavities in just a single step. The FP filter array fabricated by nanoimprint combined with corresponding detector array builds a so-called "nanospectrometer". However, the silicon nitride and silicon dioxide stacks deposited by PECVD result in a limited stopband width of DBR (i.e., < 100 nm), which then limits the sensing range of filter arrays. However, an extension of the spectral range of filter arrays is desired and the topic of this investigation. In this work, multiple DBRs with different central wavelengths (λ c) are structured, deposited, and combined on a single substrate to enlarge the entire stopband. Cavity arrays are successfully aligned and imprinted over such terrace like surface in a single step. With this method, small chip size of filter arrays can be preserved, and the fabrication procedure of multiple resonance cavities is kept efficient as well. The detecting range of filter arrays is increased from roughly 50 nm with single DBR to 163 nm with three different DBRs.
Kalman filter tracking on parallel architectures
NASA Astrophysics Data System (ADS)
Cerati, G.; Elmer, P.; Krutelyov, S.; Lantz, S.; Lefebvre, M.; McDermott, K.; Riley, D.; Tadel, M.; Wittich, P.; Wurthwein, F.; Yagil, A.
2017-10-01
We report on the progress of our studies towards a Kalman filter track reconstruction algorithm with optimal performance on manycore architectures. The combinatorial structure of these algorithms is not immediately compatible with an efficient SIMD (or SIMT) implementation; the challenge for us is to recast the existing software so it can readily generate hundreds of shared-memory threads that exploit the underlying instruction set of modern processors. We show how the data and associated tasks can be organized in a way that is conducive to both multithreading and vectorization. We demonstrate very good performance on Intel Xeon and Xeon Phi architectures, as well as promising first results on Nvidia GPUs.
NASA Technical Reports Server (NTRS)
Welch, J. D.
1975-01-01
The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.
NASA Astrophysics Data System (ADS)
Liu, N.; Liu, J. B.; Yao, K. L.; Ni, Y.; Wang, S. L.
2016-03-01
In this paper, we propose a new device of spintronics by embedding two FeN4 molecules into armchair graphene nanoribbon and sandwiching them between N-doped graphene nanoribbon electrodes. Our first-principle quantum transport calculations show that the device is a perfect spin filter with high spin-polarizations both in parallel configuration (PC) and antiparallel configuration (APC). Moreover, negative differential resistance phenomena are obtained for the spin-down current in PC, and the spin-up and spin-down currents in APC. These transport properties are explained by the bias-dependent evolution of molecular orbitals and the transmission spectra.
Reconstruction of three-dimensional ultrasound images based on cyclic Savitzky-Golay filters
NASA Astrophysics Data System (ADS)
Toonkum, Pollakrit; Suwanwela, Nijasri C.; Chinrungrueng, Chedsada
2011-01-01
We present a new algorithm for reconstructing a three-dimensional (3-D) ultrasound image from a series of two-dimensional B-scan ultrasound slices acquired in the mechanical linear scanning framework. Unlike most existing 3-D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the cyclic Savitzky-Golay (CSG) reconstruction filter, is an improvement on the original Savitzky-Golay filter in two respects: First, it is extended to accept a 3-D array of data as the filter input instead of a one-dimensional data sequence. Second, it incorporates the cyclic indicator function in its least-squares objective function so that the CSG algorithm can simultaneously perform both smoothing and interpolating tasks. The performance of the CSG reconstruction filter compared to that of most existing reconstruction algorithms in generating a 3-D synthetic test image and a clinical 3-D carotid artery bifurcation in the mechanical linear scanning framework are also reported.
Observing with HST V: Improvements to the Scheduling of HST Parallel Observations
NASA Astrophysics Data System (ADS)
Taylor, D. K.; Vanorsow, D.; Lucks, M.; Henry, R.; Ratnatunga, K.; Patterson, A.
1994-12-01
Recent improvements to the Hubble Space Telescope (HST) ground system have significantly increased the frequency of pure parallel observations, i.e. the simultaneous use of multiple HST instruments by different observers. Opportunities for parallel observations are limited by a variety of timing, hardware, and scientific constraints. Formerly, such opportunities were heuristically predicted prior to the construction of the primary schedule (or calendar), and lack of complete information resulted in high rates of scheduling failures and missed opportunities. In the current process the search for parallel opportunities is delayed until the primary schedule is complete, at which point new software tools are employed to identify places where parallel observations are supported. The result has been a considerable increase in parallel throughput. A new technique, known as ``parallel crafting,'' is currently under development to streamline further the parallel scheduling process. This radically new method will replace the standard exposure logsheet with a set of abstract rules from which observation parameters will be constructed ``on the fly'' to best match the constraints of the parallel opportunity. Currently, parallel observers must specify a huge (and highly redundant) set of exposure types in order to cover all possible types of parallel opportunities. Crafting rules permit the observer to express timing, filter, and splitting preferences in a far more succinct manner. The issue of coordinated parallel observations (same PI using different instruments simultaneously), long a troublesome aspect of the ground system, is also being addressed. For Cycle 5, the Phase II Proposal Instructions now have an exposure-level PAR WITH special requirement. While only the primary's alignment will be scheduled on the calendar, new commanding will provide for parallel exposures with both instruments.
Effects of antimicrobial treatment on fiberglass-acrylic filters.
Cecchini, C; Verdenelli, M C; Orpianesi, C; Dadea, G M; Cresci, A
2004-01-01
The aims of the present study were to: (i) analyse a group of antimicrobial agents and to select the most active against test microbial strains; (ii) test the effect of the antimicrobial treatment on air filters in order to reduce microbial colonization. Different kinds of antimicrobial agents were analysed to assess their compatibility with the production process of air filter media. The minimal inhibitory concentration for each antimicrobial agent was determined against a defined list of microbial strains, and an antimicrobial activity assay of filter prototypes was developed to determine the most active agent among the compatible antimicrobials. Then, the most active was chosen and added directly to the filter during the production process. The microbial colonization of treated and untreated filter media was assessed at different working times for different incubation times by stereomicroscope and scanning electron microscope analysis. Some of the antimicrobial agents analysed were more active against microbial test strains and compatible with the production process of the filter media. Filter sections analysis of treated filter media showed a significantly lower microbial colonization than those untreated, a reduction of species both in density and varieties and of the presence of bacteria and fungal hyphae with reproductive structures. This study demonstrated the ability of antimicrobial treatments to inhibit the growth of micro-organisms in filter media and subsequently to increase indoor air quality (IAQ), highlighting the value of adding antimicrobials to filter media. To make a contribution to solving the problem of microbial contamination of air filters, by demonstrating the efficacy of incorporating antimicrobial agents in the filter media to improve IAQ and health.
NASA Astrophysics Data System (ADS)
Memon, Imran; Shen, Yannan; Khan, Abdullah; Woidt, Carsten; Hillmer, Hartmut
2016-04-01
Miniaturized optical spectrometers can be implemented by an array of Fabry-Pérot (FP) filters. FP filters are composed of two highly reflecting parallel mirrors and a resonance cavity. Each filter transmits a small spectral band (filter line) depending on its individual cavity height. The optical nanospectrometer, a miniaturized FP-based spectrometer, implements 3D NanoImprint technology for the fabrication of multiple FP filter cavities in a single process step. However, it is challenging to avoid the dependency of residual layer (RL) thickness on the shape of the printed patterns in NanoImprint. Since in a nanospectrometer the filter cavities vary in height between neighboring FP filters and, thus, the volume of each cavity varies causing that the RL varies slightly or noticeably between different filters. This is one of the few disadvantages of NanoImprint using soft templates such as substrate conformal imprint lithography which is used in this paper. The advantages of large area soft templates can be revealed substantially if the problem of laterally inhomogeneous RLs can be avoided or reduced considerably. In the case of the nanospectrometer, non-uniform RLs lead to random variations in the designed cavity heights resulting in the shift of desired filter lines. To achieve highly uniform RLs, we report a volume-equalized template design with the lateral distribution of 64 different cavity heights into several units with each unit comprising four cavity heights. The average volume of each unit is kept constant to obtain uniform filling of imprint material per unit area. The imprint results, based on the volume-equalized template, demonstrate highly uniform RLs of 110 nm thickness.
Mueller, Jaclyn A.; Culley, Alexander I.
2014-01-01
Anodic aluminum oxide (AAO) filters have high porosity and can be manufactured with a pore size that is small enough to quantitatively capture viruses. These properties make the filters potentially useful for harvesting total microbial communities from water samples for molecular analyses, but their performance for nucleic acid extraction has not been systematically or quantitatively evaluated. In this study, we characterized the flux of water through commercially produced nanoporous (0.02 μm) AAO filters (Anotop; Whatman) and used isolates (a virus, a bacterium, and a protist) and natural seawater samples to test variables that we expected would influence the efficiency with which nucleic acids are recovered from the filters. Extraction chemistry had a significant effect on DNA yield, and back flushing the filters during extraction was found to improve yields of high-molecular-weight DNA. Using the back-flush protocol, the mass of DNA recovered from microorganisms collected on AAO filters was ≥100% of that extracted from pellets of cells and viruses and 94% ± 9% of that obtained by direct extraction of a liquid bacterial culture. The latter is a minimum estimate of the relative recovery of microbial DNA, since liquid cultures include dissolved nucleic acids that are retained inefficiently by the filter. In conclusion, we demonstrate that nucleic acids can be extracted from microorganisms on AAO filters with an efficiency similar to that achievable by direct extraction of microbes in suspension or in pellets. These filters are therefore a convenient means by which to harvest total microbial communities from multiple aqueous samples in parallel for subsequent molecular analyses. PMID:24747903
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, S; Wang, W; Tang, X
2014-06-15
Purpose: With the major benefit in dealing with data truncation for ROI reconstruction, the algorithm of differentiated backprojection followed by Hilbert filtering (DBPF) is originally derived for image reconstruction from parallel- or fan-beam data. To extend its application for axial CB scan, we proposed the integration of the DBPF algorithm with 3-D weighting. In this work, we further propose the incorporation of Butterfly filtering into the 3-D weighted axial CB-DBPF algorithm and conduct an evaluation to verify its performance. Methods: Given an axial scan, tomographic images are reconstructed by the DBPF algorithm with 3-D weighting, in which streak artifacts existmore » along the direction of Hilbert filtering. Recognizing this orientation-specific behavior, a pair of orthogonal Butterfly filtering is applied on the reconstructed images with the horizontal and vertical Hilbert filtering correspondingly. In addition, the Butterfly filtering can also be utilized for streak artifact suppression in the scenarios wherein only partial scan data with an angular range as small as 270° are available. Results: Preliminary data show that, with the correspondingly applied Butterfly filtering, the streak artifacts existing in the images reconstructed by the 3-D weighted DBPF algorithm can be suppressed to an unnoticeable level. Moreover, the Butterfly filtering also works at the scenarios of partial scan, though the 3-D weighting scheme may have to be dropped because of no sufficient projection data are available. Conclusion: As an algorithmic step, the incorporation of Butterfly filtering enables the DBPF algorithm for CB image reconstruction from data acquired along either a full or partial axial scan.« less
Highly scalable parallel processing of extracellular recordings of Multielectrode Arrays.
Gehring, Tiago V; Vasilaki, Eleni; Giugliano, Michele
2015-01-01
Technological advances of Multielectrode Arrays (MEAs) used for multisite, parallel electrophysiological recordings, lead to an ever increasing amount of raw data being generated. Arrays with hundreds up to a few thousands of electrodes are slowly seeing widespread use and the expectation is that more sophisticated arrays will become available in the near future. In order to process the large data volumes resulting from MEA recordings there is a pressing need for new software tools able to process many data channels in parallel. Here we present a new tool for processing MEA data recordings that makes use of new programming paradigms and recent technology developments to unleash the power of modern highly parallel hardware, such as multi-core CPUs with vector instruction sets or GPGPUs. Our tool builds on and complements existing MEA data analysis packages. It shows high scalability and can be used to speed up some performance critical pre-processing steps such as data filtering and spike detection, helping to make the analysis of larger data sets tractable.
Processing large remote sensing image data sets on Beowulf clusters
Steinwand, Daniel R.; Maddox, Brian; Beckmann, Tim; Schmidt, Gail
2003-01-01
High-performance computing is often concerned with the speed at which floating- point calculations can be performed. The architectures of many parallel computers and/or their network topologies are based on these investigations. Often, benchmarks resulting from these investigations are compiled with little regard to how a large dataset would move about in these systems. This part of the Beowulf study addresses that concern by looking at specific applications software and system-level modifications. Applications include an implementation of a smoothing filter for time-series data, a parallel implementation of the decision tree algorithm used in the Landcover Characterization project, a parallel Kriging algorithm used to fit point data collected in the field on invasive species to a regular grid, and modifications to the Beowulf project's resampling algorithm to handle larger, higher resolution datasets at a national scale. Systems-level investigations include a feasibility study on Flat Neighborhood Networks and modifications of that concept with Parallel File Systems.
Stepan, Jens; Dine, Julien; Eder, Matthias
2015-01-01
Decades of brain research have identified various parallel loops linking the hippocampus with neocortical areas, enabling the acquisition of spatial and episodic memories. Especially the hippocampal trisynaptic circuit [entorhinal cortex layer II → dentate gyrus (DG) → cornu ammonis (CA)-3 → CA1] was studied in great detail because of its seemingly simple connectivity and characteristic structures that are experimentally well accessible. While numerous researchers focused on functional aspects, obtained from a limited number of cells in distinct hippocampal subregions, little is known about the neuronal network dynamics which drive information across multiple synapses for subsequent long-term storage. Fast voltage-sensitive dye imaging in vitro allows real-time recording of activity patterns in large/meso-scale neuronal networks with high spatial resolution. In this way, we recently found that entorhinal theta-frequency input to the DG most effectively passes filter mechanisms of the trisynaptic circuit network, generating activity waves which propagate across the entire DG-CA axis. These "trisynaptic circuit waves" involve high-frequency firing of CA3 pyramidal neurons, leading to a rapid induction of classical NMDA receptor-dependent long-term potentiation (LTP) at CA3-CA1 synapses (CA1 LTP). CA1 LTP has been substantially evidenced to be essential for some forms of explicit learning in mammals. Here, we review data with particular reference to whole network-level approaches, illustrating how activity propagation can take place within the trisynaptic circuit to drive formation of CA1 LTP.
Gostner, Johanna M; Schroecksnadel, Sebastian; Jenny, Marcel; Klein, Angela; Ueberall, Florian; Schennach, Harald; Fuchs, Dietmar
2015-01-01
Coffee consumption is considered to exert an influence on mood, the immune system, cardiovascular disease, and cancer development, but the mechanisms of action of coffee and its compounds are only partly known and understood. Immunomodulatory effects of filtered extracts of coffee and decaffeinated coffee as well as coffee compounds were investigated in human peripheral blood mononuclear cells (PBMCs) stimulated with mitogen phytohemagglutinin (PHA). The activation of PBMCs was monitored by the breakdown of tryptophan to kynurenine via enzyme indoleamine 2,3-dioxygenase (IDO) and the production of the immune activation marker neopterin by GTP-cyclohydrolase I (GCH1). Both of these biochemical pathways are induced during cellular immune activation in response to the Th1-type cytokine interferon-γ (IFN-γ). Filtered extracts of coffee and decaffeinated coffee both suppressed tryptophan breakdown and neopterin formation in mitogen-stimulated PBMCs efficiently and in a dose-dependent manner. Of 4 coffee compounds tested individually, only gallic acid and less strong also caffeic acid had a consistent suppressive influence but also affected cell viability, whereas pure caffeine and chlorogenic acid exerted no relevant effect in the PBMC assay. The parallel influence of extracts on tryptophan breakdown and neopterin production shows an anti-inflammatory and immunosuppressive property of coffee extracts and some of its compounds. When extrapolating the in vitro results to in vivo, IFN-γ-mediated breakdown of tryptophan could be counteracted by the consumption of coffee or decaffeinated coffee. This may increase tryptophan availability for the biosynthesis of the neurotransmitter 5-hydroxytryptamine (serotonin) and thereby improve mood and quality of life.
76 FR 42130 - Agency Information Collection Activities: BioWatch Filter Holder Log
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-18
... DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: BioWatch Filter Holder...) assigned responsibility for installing and removing filters from aerosol collection devices and transportation to local laboratories for sample analysis. A standard filter log form is completed for each sample...
76 FR 24504 - Agency Information Collection Activities: BioWatch Filter Holder Log
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: BioWatch Filter Holder...) assigned responsibility for installing and removing filters from aerosol collection devices and transportation to local laboratories for sample analysis. A standard filter log form is completed for each sample...
Final Report for Geometric Observers and Particle Filtering for Controlled Active Vision
2016-12-15
code) 15-12-2016 Final Report 01Sep06 - 09May11 Final Report for Geometric Observers & Particle Filtering for Controlled Active Vision 49414-NS.1Allen...Observers and Particle Filtering for Controlled Active Vision by Allen R. Tannenbaum School of Electrical and Computer Engineering Georgia Institute of...7 2.2.4 Conformal Area Minimizing Flows . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Particle Filters
Study of the atmospheric aerosol composition in equatorial Africa using PIXE as analytical technique
NASA Astrophysics Data System (ADS)
Maenhaut, W.; Akilimali, K.
1987-03-01
Small Nuclepore total filter holders and a single orifice 8-stage cascade impactor were used to collect atmospheric aerosol samples in Kinshasa, Zaire, and Butare, Rwanda. The samples were analyzed for about 20 elements by means of the PIXE technique. The results obtained for parallel samples, taken with two total filter holders and one cascade impactor, were generally in excellent agreement, suggesting that the different samplers collected very similar aerosol particle populations. Most elements were associated with a crustal dust dispersion source, which may include road dust dispersal. The Butare samples, particularly those collected during the night, were significantly influenced by biomass burning, as was deduced from enhanced filter blackness and noncrustal K levels. The pyrogenic component also contained P, S, Mn and Rb. Br and Pb were highly enriched at both locations, indicating that automotive sources had a strong influence on the aerosol composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, J. D.
1985-06-25
A simplified, relatively inexpensive laser device, wherein the laser elements are fixed in a body exoskeleton of electrical insulating material having a low coefficient of thermal expansion. The preferred embodiment includes a shotgun type laser filter having parallel bores which receive the laser flashlamp and laser rod in fixed relation in a body chamber. The reflector surrounds the laser filter and retains the filter within the body chamber. In the preferred method of this invention, several controlled lasing pulses are generated with each illumination pulse of the flashlamp, substantially increasing the efficiency of the laser device. The number of pulsesmore » is generally controlled by increasing the voltage to the flashlamp. The rapid multiple lasing pulses generate an elongated plasma in a fluid medium, such as the vitreous fluid body of an eye which makes the laser device extemely efficient for treating glaucoma and other medical treatments.« less
Stacked, Filtered Multi-Channel X-Ray Diode Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacNeil, Lawrence P.; Dutra, Eric C.; Raphaelian, Mark
2015-08-01
This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilitiesmore » to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.« less
Neuromorphic Kalman filter implementation in IBM’s TrueNorth
NASA Astrophysics Data System (ADS)
Carney, R.; Bouchard, K.; Calafiura, P.; Clark, D.; Donofrio, D.; Garcia-Sciveres, M.; Livezey, J.
2017-10-01
Following the advent of a post-Moore’s law field of computation, novel architectures continue to emerge. With composite, multi-million connection neuromorphic chips like IBM’s TrueNorth, neural engineering has now become a feasible technology in this novel computing paradigm. High Energy Physics experiments are continuously exploring new methods of computation and data handling, including neuromorphic, to support the growing challenges of the field and be prepared for future commodity computing trends. This work details the first instance of a Kalman filter implementation in IBM’s neuromorphic architecture, TrueNorth, for both parallel and serial spike trains. The implementation is tested on multiple simulated systems and its performance is evaluated with respect to an equivalent non-spiking Kalman filter. The limits of the implementation are explored whilst varying the size of weight and threshold registers, the number of spikes used to encode a state, size of neuron block for spatial encoding, and neuron potential reset schemes.
Numerical simulation of two-phase filtration in the near well bore zone
NASA Astrophysics Data System (ADS)
Maksat, Kalimoldayev; Kalipa, Kuspanova; Kulyash, Baisalbayeva; Orken, Mamyrbayev; Assel, Abdildayeva
2018-04-01
On the basis of the fundamental laws of energy conservation, nonstationary processes of filtration of two-phase liquids in multilayered reservoirs in the near well bore zone are considered. Number of reservoirs, fluid pressure in the given reservoirs, reservoir permeability, oil viscosity, etc. are taken into account upon that. Plane-parallel flow and axisymmetric cases have been studied. In the numerical solution, non-structured meshes are used. Closer to the well, the meshes thicken. The integration step over time is defined by the generalized Courant inequality. As a result, there are no large oscillations in the numerical solutions obtained. Oil production rates, Poisson's ratios, D-diameters of the well, filter height, filter permeability, and cumulative thickness of the filter cake and the area have been taken as the main inputs in numerical simulation of non-stationary processes of two-phase filtration.
Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM
NASA Technical Reports Server (NTRS)
Gray, Andrew; Lee, Dennis; Hoy, Scott; Fisher, Dave; Fong, Wai; Ghuman, Parminder
2009-01-01
There has been some additional development of parts reported in "Multi-Modulator for Bandwidth-Efficient Communication" (NPO-40807), NASA Tech Briefs, Vol. 32, No. 6 (June 2009), page 34. The focus was on 1) The generation of M-order quadrature amplitude modulation (M-QAM) and octonary-phase-shift-keying, trellis-coded modulation (8PSK TCM), 2) The use of square-root raised-cosine pulse-shaping filters, 3) A parallel-processing architecture that enables low-speed [complementary metal oxide/semiconductor (CMOS)] circuitry to perform the coding, modulation, and pulse-shaping computations at a high rate; and 4) Implementation of the architecture in a CMOS field-programmable gate array.
Robot acting on moving bodies (RAMBO): Preliminary results
NASA Technical Reports Server (NTRS)
Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madju; Harwood, David
1989-01-01
A robot system called RAMBO is being developed. It is equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a moving object. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations nearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enchancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows the use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using parametric cubic splines between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.
Fast experiments for structure elucidation of small molecules: Hadamard NMR with multiple receivers.
Gierth, Peter; Codina, Anna; Schumann, Frank; Kovacs, Helena; Kupče, Ēriks
2015-11-01
We propose several significant improvements to the PANSY (Parallel NMR SpectroscopY) experiments-PANSY COSY and PANSY-TOCSY. The improved versions of these experiments provide sufficient spectral information for structure elucidation of small organic molecules from just two 2D experiments. The PANSY-TOCSY-Q experiment has been modified to allow for simultaneous acquisition of three different types of NMR spectra-1D C-13 of non-protonated carbon sites, 2D TOCSY and multiplicity edited 2D HETCOR. In addition the J-filtered 2D PANSY-gCOSY experiment records a 2D HH gCOSY spectrum in parallel with a (1) J-filtered HC long-range HETCOR spectrum as well as offers a simplified data processing. In addition to parallel acquisition, further time savings are feasible because of significantly smaller F1 spectral windows as compared to the indirect detection experiments. Use of cryoprobes and multiple receivers can significantly alleviate the sensitivity issues that are usually associated with the so called direct detection experiments. In cases where experiments are sampling limited rather than sensitivity limited further reduction of experiment time is achieved by using Hadamard encoding. In favorable cases the total recording time for the two PANSY experiments can be reduced to just 40 s. The proposed PANSY experiments provide sufficient information to allow the CMCse software package (Bruker) to solve structures of small organic molecules. Copyright © 2015 John Wiley & Sons, Ltd.
40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...
40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...
40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...
40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...
40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...
Investigation of Voltage-Activated BAW Devices and Filters
2016-09-04
strontium titanate (STO) and barium-strontium titanate (BST), with the ultimate objective of creating high- performance, reconfigurable filters and...Distribution Unlimited UU UU UU UU 04-09-2016 1-Sep-2010 31-Aug-2014 Final Report: Investigation of Voltage-Activated BAW Devices and Filters The views...2016 Investigation of Voltage-Activated BAW Devices and Filters Final Report Award Information: Contract Number: W911NF1010286 Period of Work
NASA Astrophysics Data System (ADS)
Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz
2017-10-01
Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.
Development and Testing of PRD-66 Hot Gas Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, J.A.; Garnier, J.E.; McMahon, T. J.
1996-12-31
The overall objective of this program is to develop and commercialize PRD-66 hot gas filters for application in pressurized fluidized bed combustors (PFBC) and Integrated Gas Combined Cycle (IGCC) power generation systems. The work is being carried out in phases with the following specific objectives: 1. Demonstrate acceptable mechanical, chemical, and filtration properties in exposure tests. 2. Produce and qualify selected prototype design filter elements in high temperature high pressure (HTHP) simulated PFBC exposure tests. 3. (Option) Generate a manufacturing plan to support commercial scale-up. 4. (Option) Recommend process equipment upgrades and produce 50 candle filters. Since the beginning ofmore » this program, a parallel evaluation of DuPont Lanxide Composites Inc. (DLC) PRD-66 hot gas candle filters took place using AEP`s TIDD PFBC facility. Several PRD-66 filters experienced damage during the final testing phase at TIDD, after highly successful testing in earlier runs. During the past year, DLC has undertaken a study under this contract to understand the mechanism of damage sustained in TIDD Test Segment 5. DLC has formulated a hypothesis for the damage mechanism based on the available evidence, and verified that the damage mechanism is possible given the conditions known to exist in TIDD. Improvements to the filter design to eliminate the root cause of the failure have been undertaken. This report details DLC`s conclusions regarding the failure mechanism, the evidence supporting the conclusions, and steps being taken to eliminate the root cause.« less
Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can
2011-04-01
In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.
Piezoelectric actuators for active optics
NASA Astrophysics Data System (ADS)
Le Letty, R.; Barillot, F.; Fabbro, H.; Guay, Ph.; Cadiergues, L.
2017-11-01
Piezoelectric actuators find their first applications in active space optics. The purpose of this paper is to describe the state of the art and some applications. Piezo actuators display attractive features for space applications, such as precise positioning, unlubricated, non magnetic and compact features, and low power consumption. However, piezo mechanisms cannot be considered separately from their driving and control electronic. Piezo actuators, such as Amplified Piezo Actuators or Parallel Pre-stressed Actuators, initially designed under CNES contracts, shall find their first space flight applications in optics on the PHARAO Laser bench: • fine pointing of the laser beams, • laser cavity tuning. Breadboard mechanisms based on piezo actuators have also been tested for refocusing purposes. Other applications includes the improvement of the CCD resolution through an oversampling technique, such as in the SOHO/LASCO instrument, fast optical shutter operation, optical filter in combination with a Fabry - Perot interferometer, such as in future LIDAR for earth observation. The first applications shall be described and an overview of the future potential applications shall be given.
Andersson, A; Laurent, P; Kihn, A; Prévost, M; Servais, P
2001-08-01
The impact of temperature on nitrification in biological granular activated carbon (GAC) filters was evaluated in order to improve the understanding of the nitrification process in drinking water treatment. The study was conducted in a northern climate where very cold water temperatures (below 2 degrees C) prevail for extended periods and rapid shifts of temperature are frequent in the spring and fall. Ammonia removals were monitored and the fixed nitrifying biomass was measured using a method of potential nitrifying activity. The impact of temperature was evaluated on two different filter media: an opened superstructure wood-based activated carbon and a closed superstructure activated carbon-based on bituminous coal. The study was conducted at two levels: pilot scale (first-stage filters) and full-scale (second-stage filters) and the results indicate a strong temperature impact on nitrification activity. Ammonia removal capacities ranged from 40 to 90% in pilot filters, at temperatures above 10 degrees C, while more than 90% ammonia was removed in the full-scale filters for the same temperature range. At moderate temperatures (4-10 degrees C), the first stage pilot filters removed 10-40% of incoming ammonia for both media (opened and closed superstructure). In the full-scale filters, a difference between the two media in nitrification performances was observed at moderate temperatures: the ammonia removal rate in the opened superstructure support (more than 90%) was higher than in the closed superstructure support (45%). At low temperatures (below 4 degrees C) both media performed poorly. Ammonia removal capacities were below 30% in both pilot- and full-scale filters.
A robust technique based on VLM and Frangi filter for retinal vessel extraction and denoising.
Khan, Khan Bahadar; Khaliq, Amir A; Jalil, Abdul; Shahid, Muhammad
2018-01-01
The exploration of retinal vessel structure is colossally important on account of numerous diseases including stroke, Diabetic Retinopathy (DR) and coronary heart diseases, which can damage the retinal vessel structure. The retinal vascular network is very hard to be extracted due to its spreading and diminishing geometry and contrast variation in an image. The proposed technique consists of unique parallel processes for denoising and extraction of blood vessels in retinal images. In the preprocessing section, an adaptive histogram equalization enhances dissimilarity between the vessels and the background and morphological top-hat filters are employed to eliminate macula and optic disc, etc. To remove local noise, the difference of images is computed from the top-hat filtered image and the high-boost filtered image. Frangi filter is applied at multi scale for the enhancement of vessels possessing diverse widths. Segmentation is performed by using improved Otsu thresholding on the high-boost filtered image and Frangi's enhanced image, separately. In the postprocessing steps, a Vessel Location Map (VLM) is extracted by using raster to vector transformation. Postprocessing steps are employed in a novel way to reject misclassified vessel pixels. The final segmented image is obtained by using pixel-by-pixel AND operation between VLM and Frangi output image. The method has been rigorously analyzed on the STARE, DRIVE and HRF datasets.
Emrich, Stephen M; Busseri, Michael A
2015-09-01
The amount of task-irrelevant information encoded in visual working memory (VWM), referred to as unnecessary storage, has been proposed as a potential mechanism underlying individual differences in VWM capacity. In addition, a number of studies have provided evidence for additional activity that initiates the filtering process originating in the frontal cortex and basal ganglia, and is therefore a crucial step in the link between unnecessary storage and VWM capacity. Here, we re-examine data from two prominent studies that identified unnecessary storage activity as a predictor of VWM capacity by directly testing the implied path model linking filtering-related activity, unnecessary storage, and VWM capacity. Across both studies, we found that unnecessary storage was not a significant predictor of individual differences in VWM capacity once activity associated with filtering was accounted for; instead, activity associated with filtering better explained variation in VWM capacity. These findings suggest that unnecessary storage is not a limiting factor in VWM performance, whereas neural activity associated with filtering may play a more central role in determining VWM performance that goes beyond preventing unnecessary storage.
Long-term effects on symptoms by reducing electric fields from visual display units.
Oftedal, G; Nyvang, A; Moen, B E
1999-10-01
The purpose of the study was to see whether the results of an earlier study [ie, that skin symptoms were reduced by reducing electric fields from visual display units (VDU)] could be reproduced or not. In addition, an attempt was made to determine whether eye symptoms and symptoms from the nervous system could be reduced by reducing VDU electric fields. The study was designed as a controlled double-blind intervention. The electric fields were reduced by using electric-conducting screen filters. Forty-two persons completed the study while working at their ordinary job, first 1 week with no filter, then 3 months with an inactive filter and then 3 months with an active filter (or in reverse order). The inactive filters were identical to the active ones, except that their ground cables were replaced by empty plastic insulation. The inactive filters did not reduce the fields from the VDU. The fields were significantly lower with active filters than with inactive filters. Most of the symptoms were statistically significantly less pronounced in the periods with the filters when compared with the period with no filter. This finding can be explained by visual effects and psychological effects. No statistically significant difference in symptom severeness was observed between the period with an inactive filter and the one with an active filter. The study does not support the hypothesis that skin, eye, or nervous system symptoms can be reduced by reducing VDU electric fields.
An optimized strain demodulation method for PZT driven fiber Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Sheng, Wenjuan; Peng, G. D.; Liu, Yang; Yang, Ning
2015-08-01
An optimized strain-demodulation-method based on piezo-electrical transducer (PZT) driven fiber Fabry-Perot (FFP) filter is proposed and experimentally demonstrated. Using a parallel processing mode to drive the PZT continuously, the hysteresis effect is eliminated, and the system demodulation rate is increased. Furthermore, an AC-DC compensation method is developed to address the intrinsic nonlinear relationship between the displacement and voltage of PZT. The experimental results show that the actual demodulation rate is improved from 15 Hz to 30 Hz, the random error of the strain measurement is decreased by 95%, and the deviation between the test values after compensation and the theoretical values is less than 1 pm/με.
A novel 6-DOF parallel robot and its pose errors compensation
NASA Astrophysics Data System (ADS)
Shi, Zhixin; Ye, Meiyan; Luo, Yufeng
2011-10-01
In the traditional security solution conditions, software firewall cannot intercept and respond the invasion before being attacked. And because of the high cost, the hardware firewall does not apply to the security strategy of the end nodes, so we have designed a kind of solution of embedded firewall with hardware and software. With ARM embedding Linux operating system, we have designed packet filter module and intrusion detection module to implement the basic function of firewall. Experiments and results show that that firewall has the advantages of low cost, high processing speed, high safety and the application of the computer terminals. This paper focuses on packet filtering module design and implementation.
MANUFACTURING FACILITY FOR ACTIVATED CARBON AND CERAMIC WATER FILTERS AT THE SONGHAI CENTER, BENIN
Ceramic filters will be manufactured at the Songhai Center in Porto-Novo, Benin for cost-effective drinking water treatment. The efficiency of the ceramic filters will be improved by adding activated carbon cartridges to remove organic and inorganic impurities. The activate...
Implementation of a high-speed face recognition system that uses an optical parallel correlator.
Watanabe, Eriko; Kodate, Kashiko
2005-02-10
We implement a fully automatic fast face recognition system by using a 1000 frame/s optical parallel correlator designed and assembled by us. The operational speed for the 1:N (i.e., matching one image against N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 s, including the preprocessing and postprocessing times. The binary real-only matched filter is devised for the sake of face recognition, and the system is optimized by the false-rejection rate (FRR) and the false-acceptance rate (FAR), according to 300 samples selected by the biometrics guideline. From trial 1:N identification experiments with the optical parallel correlator, we acquired low error rates of 2.6% FRR and 1.3% FAR. Facial images of people wearing thin glasses or heavy makeup that rendered identification difficult were identified with this system.
Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter
Das, Bhargab; Yelleswarapu, Chandra S; Rao, DVGLN
2012-01-01
We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography. PMID:23109732
Comparison of Virtual Oscillator and Droop Control: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Rodriguez, Miguel; Dhople, Sairaj
Virtual oscillator control and droop control are two techniques that can be used to ensure synchronization and power sharing of parallel inverters in islanded operation. VOC relies on the implementation of non-linear Van der Pol oscillator equations in the control system of the inverter, acting upon the time-domain instantaneous inverter current and terminal voltage. On the other hand, DC explicitly computes active and reactive power produced by the inverter and relies on limited bandwidth low-pass filters. Even though both methods can be engineered to produce the same steady-state characteristics, their dynamic performances are significantly different. This paper presents analytical andmore » experimental results that aim to compare both methods. It is shown that VOC is inherently faster and enables minimizing the circulating currents. The results are verified using three 120V, 1kW inverters.« less
Biwavelength transceiver module for parallel simultaneous bidirectional optical interconnections
NASA Astrophysics Data System (ADS)
Nguyen, Nga T. H.; Ukaegbu, Ikechi A.; Sangirov, Jamshid; Cho, Mu-Hee; Lee, Tae-Woo; Park, Hyo-Hoon
2013-12-01
The design of a biwavelength transceiver (TRx) module for parallel simultaneous bidirectional optical interconnects is described. The TRx module has been implemented using two different wavelengths, 850 and 1060 nm, to send and receive signals simultaneously through a common optical interface while optimizing cost and performance. Filtering mirrors are formed in the optical fibers which are embedded on a V-grooved silicon substrate for reflecting and filtering optical signals from/to vertical-cavity surface-emitting laser (VCSEL)/photodiode (PD). The VCSEL and PD are flip-chip bonded on individual silicon optical benches, which are attached on the silicon substrate for optical signal coupling from the VCSEL to fiber and from fiber to the PD. A high-speed and low-loss ceramic printed circuit board, which has a compact size of 0.033 cc, has been designed to carry transmitter and receiver chips for easy packaging of the TRx module. Applied for quad small form-factor pluggable applications at 40-Gbps operation, the four-channel biwavelength TRx module showed clear eye diagrams with a bit error rate (BER) of 10-12 at input powers of -5 and -5.8 dBm for 1060 and 850 nm operation modes, respectively.
NASA Technical Reports Server (NTRS)
Keppenne, C. L.; Rienecker, M.; Borovikov, A. Y.
1999-01-01
Two massively parallel data assimilation systems in which the model forecast-error covariances are estimated from the distribution of an ensemble of model integrations are applied to the assimilation of 97-98 TOPEX/POSEIDON altimetry and TOGA/TAO temperature data into a Pacific basin version the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. in the first system, ensemble of model runs forced by an ensemble of atmospheric model simulations is used to calculate asymptotic error statistics. The data assimilation then occurs in the reduced phase space spanned by the corresponding leading empirical orthogonal functions. The second system is an ensemble Kalman filter in which new error statistics are computed during each assimilation cycle from the time-dependent ensemble distribution. The data assimilation experiments are conducted on NSIPP's 512-processor CRAY T3E. The two data assimilation systems are validated by withholding part of the data and quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The pros and cons of each system are discussed.
BPF-type region-of-interest reconstruction for parallel translational computed tomography.
Wu, Weiwen; Yu, Hengyong; Wang, Shaoyu; Liu, Fenglin
2017-01-01
The objective of this study is to present and test a new ultra-low-cost linear scan based tomography architecture. Similar to linear tomosynthesis, the source and detector are translated in opposite directions and the data acquisition system targets on a region-of-interest (ROI) to acquire data for image reconstruction. This kind of tomographic architecture was named parallel translational computed tomography (PTCT). In previous studies, filtered backprojection (FBP)-type algorithms were developed to reconstruct images from PTCT. However, the reconstructed ROI images from truncated projections have severe truncation artefact. In order to overcome this limitation, we in this study proposed two backprojection filtering (BPF)-type algorithms named MP-BPF and MZ-BPF to reconstruct ROI images from truncated PTCT data. A weight function is constructed to deal with data redundancy for multi-linear translations modes. Extensive numerical simulations are performed to evaluate the proposed MP-BPF and MZ-BPF algorithms for PTCT in fan-beam geometry. Qualitative and quantitative results demonstrate that the proposed BPF-type algorithms cannot only more accurately reconstruct ROI images from truncated projections but also generate high-quality images for the entire image support in some circumstances.
NASA Astrophysics Data System (ADS)
Xu, Bing; Du, Wen-Qiang; Li, Jia-Wen; Hu, Yan-Lei; Yang, Liang; Zhang, Chen-Chu; Li, Guo-Qiang; Lao, Zhao-Xin; Ni, Jin-Cheng; Chu, Jia-Ru; Wu, Dong; Liu, Su-Ling; Sugioka, Koji
2016-01-01
High efficiency fabrication and integration of three-dimension (3D) functional devices in Lab-on-a-chip systems are crucial for microfluidic applications. Here, a spatial light modulator (SLM)-based multifoci parallel femtosecond laser scanning technology was proposed to integrate microstructures inside a given ‘Y’ shape microchannel. The key novelty of our approach lies on rapidly integrating 3D microdevices inside a microchip for the first time, which significantly reduces the fabrication time. The high quality integration of various 2D-3D microstructures was ensured by quantitatively optimizing the experimental conditions including prebaking time, laser power and developing time. To verify the designable and versatile capability of this method for integrating functional 3D microdevices in microchannel, a series of microfilters with adjustable pore sizes from 12.2 μm to 6.7 μm were fabricated to demonstrate selective filtering of the polystyrene (PS) particles and cancer cells with different sizes. The filter can be cleaned by reversing the flow and reused for many times. This technology will advance the fabrication technique of 3D integrated microfluidic and optofluidic chips.
A comparison of linear and non-linear data assimilation methods using the NEMO ocean model
NASA Astrophysics Data System (ADS)
Kirchgessner, Paul; Tödter, Julian; Nerger, Lars
2015-04-01
The assimilation behavior of the widely used LETKF is compared with the Equivalent Weight Particle Filter (EWPF) in a data assimilation application with an idealized configuration of the NEMO ocean model. The experiments show how the different filter methods behave when they are applied to a realistic ocean test case. The LETKF is an ensemble-based Kalman filter, which assumes Gaussian error distributions and hence implicitly requires model linearity. In contrast, the EWPF is a fully nonlinear data assimilation method that does not rely on a particular error distribution. The EWPF has been demonstrated to work well in highly nonlinear situations, like in a model solving a barotropic vorticity equation, but it is still unknown how the assimilation performance compares to ensemble Kalman filters in realistic situations. For the experiments, twin assimilation experiments with a square basin configuration of the NEMO model are performed. The configuration simulates a double gyre, which exhibits significant nonlinearity. The LETKF and EWPF are both implemented in PDAF (Parallel Data Assimilation Framework, http://pdaf.awi.de), which ensures identical experimental conditions for both filters. To account for the nonlinearity, the assimilation skill of the two methods is assessed by using different statistical metrics, like CRPS and Histograms.
NASA Technical Reports Server (NTRS)
Wasynczuk, O.; Krause, P. C.; Biess, J. J.; Kapustka, R.
1990-01-01
A detailed computer simulation was used to illustrate the steady-state and dynamic operating characteristics of a 20-kHz resonant spacecraft power system. The simulated system consists of a parallel-connected set of DC-inductor resonant inverters (drivers), a 440-V cable, a node transformer, a 220-V cable, and a transformer-rectifier-filter (TRF) AC-to-DC receiver load. Also included in the system are a 1-kW 0.8-pf RL load and a double-LC filter connected at the receiving end of the 20-kHz AC system. The detailed computer simulation was used to illustrate the normal steady-state operating characteristics and the dynamic system performance following, for example, TRF startup. It is shown that without any filtering the given system exhibits harmonic resonances due to an interaction between the switching of the source and/or load converters and the AC system. However, the double-LC filter at the receiving-end of the AC system and harmonic traps connected in series with each of the drivers significantly reduce the harmonic distortion of the 20-kHz bus voltage. Significant additional improvement in the waveform quality can be achieved by including a double-LC filter with each driver.
NASA Astrophysics Data System (ADS)
Zhang, J.; Zeng, L. H.; Hu, C. L.; Yan, W. S.; Pennec, Yan; Hu, N.
2018-03-01
For the elastic SV (transverse) waves in metals, a high-quality narrow passband filter that consists of aligned parallel thin plates with small gaps is designed. In order to obtain a good performance, the thin plates should be constituted by materials with a smaller mass density and Young's modulus, such as polymethylmethacrylate (PMMA), compared to the embedded materials in which the elastic SV waves propagate. Both the theoretical model and the full numerical simulation show that the transmission spectrum of the designed filter demonstrates several peaks with flawless transmission within 0 KHz ˜20 KHz frequency range. The peaks can be readily tuned by manipulating the geometrical parameters of the plates. Therefore, the current design works well for both low and high frequencies with a controllable size. Even for low frequencies on the order of kilohertz, the size of this filter can be still limited to the order of centimeters, which significantly benefits the real applications. The investigation also finds that the same filter is valid when using different metals and the reason behind this is explained theoretically. Additionally, the effect of bonding conditions of interfaces between thin plates and the base material is investigated using a spring model.
Kim, Jeremie S; Senol Cali, Damla; Xin, Hongyi; Lee, Donghyuk; Ghose, Saugata; Alser, Mohammed; Hassan, Hasan; Ergin, Oguz; Alkan, Can; Mutlu, Onur
2018-05-09
Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be applied to any read mapper. We hope that our results provide inspiration for new works to design other bioinformatics algorithms that take advantage of emerging technologies and new processing paradigms, such as processing-in-memory using 3D-stacked memory devices.
Active pixel sensors with substantially planarized color filtering elements
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)
1999-01-01
A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.
Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan
2017-07-12
Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.
Performance Evaluation of Axial Flow AG-1 FC and Prototype FM (High Strength) HEPA Filters - 13123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giffin, Paxton K.; Parsons, Michael S.; Wilson, John A.
High efficiency particulate air (HEPA) filters are routinely used in DOE nuclear containment activities. The Nuclear Air Cleaning Handbook (NACH) stipulates that air cleaning devices and equipment used in DOE nuclear applications must meet the American Society of Mechanical Engineers (ASME) Code on Nuclear Air and Gas Treatment (AG-1) standard. This testing activity evaluates two different axial flow HEPA filters, those from AG-1 Sections FC and FM. Section FM is under development and has not yet been added to AG-1 due to a lack of qualification data available for these filters. Section FC filters are axial flow units that utilizemore » a fibrous glass filtering medium. The section FM filters utilize a similar fibrous glass medium, but also have scrim backing. The scrim-backed filters have demonstrated the ability to endure pressure impulses capable of completely destroying FC filters. The testing activities presented herein will examine the total lifetime loading for both FC and FM filters under ambient conditions and at elevated conditions of temperature and relative humidity. Results will include loading curves, penetration curves, and testing condition parameters. These testing activities have been developed through collaborations with representatives from the National Nuclear Security Administration (NNSA), DOE Office of Environmental Management (DOE-EM), New Mexico State University, and Mississippi State University. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strong, J.C.; Swift, D.L.
In order to estimate accurately an effective dose equivalent for exposures to radon daughters, knowledge of their deposition in the lung is required. However, the nose and mouth are effective filters for removing aerosol particles, especially in the range of sizes of {open_quotes}unattached{close_quotes} radon daughters. Therefore, it is equally important to have reliable data on deposition in this region of the respiratory tract. We will describe our work in studying nasal and oral deposition of {open_quotes}unattached{close_quotes} radon daughters in casts of these airways. Several hollow casts of adult and child nasal and oral airways were fabricated at The John Hopkinsmore » University from layers of Perspect{trademark} (an acrylic plastic). The shapes of the airway passages were obtained from nuclear magnetic resonance sectional images of healthy subjects. The casts were exposed to radon gas and daughters produced by flushing filtered air through a commercially available {sup 226}Ra source. The gas stream was drawn through a 1.4-L cylindrical tube to allow measurable growth of {sup 218}Po activity before it was passed through casts of both nasal passages or the oral cavity. The deposition of {open_quotes}unattached{close_quotes} {sup 218}Po was measured by comparing the activity collected on filters mounted in series and in parallel with a cast. Measurements were made at various flow rates (Q; 4 to 20 L min{sup -1}). The diffusion coefficient (D) of {sup 218}Po was measured each time the flow rate was changed, by replacing the cast with a stainless steel gauze screen and measuring the activity penetrating the screen. The measured diffusion coefficient ranged from 0.02 to 0.05 cm{sup 2} s{sup -1} and was found to vary with the residence time of {sup 218}Po in the growth tube. The deposition efficiency ({eta}) of {sup 218}Po measured in these casts ranged from 50 to 70%, and was similar to values we found previously, using casts of nasal and oral airways from cadavers.« less
Curve fitting air sample filter decay curves to estimate transuranic content.
Hayes, Robert B; Chiou, Hung Cheng
2004-01-01
By testing industry standard techniques for radon progeny evaluation on air sample filters, a new technique is developed to evaluate transuranic activity on air filters by curve fitting the decay curves. The industry method modified here is simply the use of filter activity measurements at different times to estimate the air concentrations of radon progeny. The primary modification was to not look for specific radon progeny values but rather transuranic activity. By using a method that will provide reasonably conservative estimates of the transuranic activity present on a filter, some credit for the decay curve shape can then be taken. By carrying out rigorous statistical analysis of the curve fits to over 65 samples having no transuranic activity taken over a 10-mo period, an optimization of the fitting function and quality tests for this purpose was attained.
Sim, Kyoung Mi; Kim, Kyung Hwan; Hwang, Gi Byoung; Seo, SungChul; Bae, Gwi-Nam; Jung, Jae Hee
2014-09-15
Activated carbon fiber (ACF) filters have a wide range of applications, including air purification, dehumidification, and water purification, due to their large specific surface area, high adsorption capacity and rate, and specific surface reactivity. However, when airborne microorganisms such as bacteria and fungi adhere to the carbon substrate, ACF filters can become a source of microbial contamination, and their filter efficacy declines. Antimicrobial treatments are a promising means of preventing ACF bio-contamination. In this study, we demonstrate the use of Sophora flavescens in antimicrobial nanoparticles coated onto ACF filters. The particles were prepared using an aerosol process consisting of nebulization-thermal drying and particle deposition. The extract from S. flavescens is an effective, natural antimicrobial agent that exhibits antibacterial activity against various pathogens. The efficiency of Staphylococcus epidermidis inactivation increased with the concentration of S. flavescens nanoparticles in the ACF filter coating. The gas adsorption efficiency of the coated antimicrobial ACF filters was also evaluated using toluene. The toluene-removal capacity of the ACF filters remained unchanged while the antimicrobial activity was over 90% for some nanoparticle concentrations. Our results provide a scientific basis for controlling both bioaerosol and gaseous pollutants using antimicrobial ACF filters coated with S. flavescens nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.
Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young
2015-10-01
Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.
NASA Astrophysics Data System (ADS)
Song, Qing; Zhu, Sijia; Yan, Han; Wu, Wenqian
2008-03-01
Parallel light projection method for the diameter measurement is to project the workpiece to be measured on the photosensitive units of CCD, but the original signal output from CCD cannot be directly used for counting or measurement. The weak signal with high-frequency noise should be filtered and amplified firstly. This paper introduces RC low-pass filter and multiple feed-back second-order low-pass filter with infinite gain. Additionally there is always dispersion on the light band and the output signal has a transition between the irradiant area and the shadow, because of the instability of the light source intensity and the imperfection of the light system adjustment. To obtain exactly the shadow size related to the workpiece diameter, binary-value processing is necessary to achieve a square wave. Comparison method and differential method can be adopted for binary-value processing. There are two ways to decide the threshold value when using voltage comparator: the fixed level method and the floated level method. The latter has a high accuracy. Deferential method is to output two spike pulses with opposite pole by the rising edge and the failing edge of the video signal related to the differential circuit firstly, then the rising edge of the signal output from the differential circuit is acquired by half-wave rectifying circuit. After traveling through the zero passing comparator and the maintain- resistance edge trigger, the square wave which indicates the measured size is acquired at last. And then it is used for filling through standard pulses and for counting through the counter. Data acquisition and information processing is accomplished by the computer and the control software. This paper will introduce in detail the design and analysis of the filter circuit, binary-value processing circuit and the interface circuit towards the computer.
NASA Technical Reports Server (NTRS)
Lyster, Peter M.; Guo, J.; Clune, T.; Larson, J. W.; Atlas, Robert (Technical Monitor)
2001-01-01
The computational complexity of algorithms for Four Dimensional Data Assimilation (4DDA) at NASA's Data Assimilation Office (DAO) is discussed. In 4DDA, observations are assimilated with the output of a dynamical model to generate best-estimates of the states of the system. It is thus a mapping problem, whereby scattered observations are converted into regular accurate maps of wind, temperature, moisture and other variables. The DAO is developing and using 4DDA algorithms that provide these datasets, or analyses, in support of Earth System Science research. Two large-scale algorithms are discussed. The first approach, the Goddard Earth Observing System Data Assimilation System (GEOS DAS), uses an atmospheric general circulation model (GCM) and an observation-space based analysis system, the Physical-space Statistical Analysis System (PSAS). GEOS DAS is very similar to global meteorological weather forecasting data assimilation systems, but is used at NASA for climate research. Systems of this size typically run at between 1 and 20 gigaflop/s. The second approach, the Kalman filter, uses a more consistent algorithm to determine the forecast error covariance matrix than does GEOS DAS. For atmospheric assimilation, the gridded dynamical fields typically have More than 10(exp 6) variables, therefore the full error covariance matrix may be in excess of a teraword. For the Kalman filter this problem can easily scale to petaflop/s proportions. We discuss the computational complexity of GEOS DAS and our implementation of the Kalman filter. We also discuss and quantify some of the technical issues and limitations in developing efficient, in terms of wall clock time, and scalable parallel implementations of the algorithms.
Banerjee, Amartya S.; Lin, Lin; Hu, Wei; ...
2016-10-21
The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A central issue for large-scale calculations, however, is the computation of the electron density (and subsequently, ground state properties) from the discretized Hamiltonian in an efficient and scalable manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) canmore » be used to address this issue and push the envelope in large-scale materials simulations in a discontinuous Galerkin framework. We describe how the subspace filtering steps can be performed in an efficient and scalable manner using a two-dimensional parallelization scheme, thanks to the orthogonality of the DG basis set and block-sparse structure of the DG Hamiltonian matrix. The on-the-fly nature of the ALB functions requires additional care in carrying out the subspace iterations. We demonstrate the parallel scalability of the DG-CheFSI approach in calculations of large-scale twodimensional graphene sheets and bulk three-dimensional lithium-ion electrolyte systems. In conclusion, employing 55 296 computational cores, the time per self-consistent field iteration for a sample of the bulk 3D electrolyte containing 8586 atoms is 90 s, and the time for a graphene sheet containing 11 520 atoms is 75 s.« less
A European-wide 222radon and 222radon progeny comparison study
NASA Astrophysics Data System (ADS)
Schmithüsen, Dominik; Chambers, Scott; Fischer, Bernd; Gilge, Stefan; Hatakka, Juha; Kazan, Victor; Neubert, Rolf; Paatero, Jussi; Ramonet, Michel; Schlosser, Clemens; Schmid, Sabine; Vermeulen, Alex; Levin, Ingeborg
2017-04-01
Although atmospheric 222radon (222Rn) activity concentration measurements are currently performed worldwide, they are being made by many different laboratories and with fundamentally different measurement principles, so compatibility issues can limit their utility for regional-to-global applications. Consequently, we conducted a European-wide 222Rn / 222Rn progeny comparison study in order to evaluate the different measurement systems in use, determine potential systematic biases between them, and estimate correction factors that could be applied to harmonize data for their use as a tracer in atmospheric applications. Two compact portable Heidelberg radon monitors (HRM) were moved around to run for at least 1 month at each of the nine European measurement stations included in this comparison. Linear regressions between parallel data sets were calculated, yielding correction factors relative to the HRM ranging from 0.68 to 1.45. A calibration bias between ANSTO (Australian Nuclear Science and Technology Organisation) two-filter radon monitors and the HRM of ANSTO / HRM = 1.11 ± 0.05 was found. Moreover, for the continental stations using one-filter systems that derive atmospheric 222Rn activity concentrations from measured atmospheric progeny activity concentrations, preliminary 214Po / 222Rn disequilibrium values were also estimated. Mean station-specific disequilibrium values between 0.8 at mountain sites (e.g. Schauinsland) and 0.9 at non-mountain sites for sampling heights around 20 to 30 m above ground level were determined. The respective corrections for calibration biases and disequilibrium derived in this study need to be applied to obtain a compatible European atmospheric 222Rn data set for use in quantitative applications, such as regional model intercomparison and validation or trace gas flux estimates with the radon tracer method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, Matthew R
2014-01-01
The novel ADER-DT time discretization is applied to two-dimensional transport in a quadrature-free, WENO- and FCT-limited, Finite-Volume context. Emphasis is placed on (1) the serial and parallel computational properties of ADER-DT and this framework and (2) the flexibility of ADER-DT and this framework in efficiently balancing accuracy with other constraints important to transport applications. This study demonstrates a range of choices for the user when approaching their specific application while maintaining good parallel properties. In this method, genuine multi-dimensionality, single-step and single-stage time stepping, strict positivity, and a flexible range of limiting are all achieved with only one parallel synchronizationmore » and data exchange per time step. In terms of parallel data transfers per simulated time interval, this improves upon multi-stage time stepping and post-hoc filtering techniques such as hyperdiffusion. This method is evaluated with standard transport test cases over a range of limiting options to demonstrate quantitatively and qualitatively what a user should expect when employing this method in their application.« less
Algorithms and programming tools for image processing on the MPP, part 2
NASA Technical Reports Server (NTRS)
Reeves, Anthony P.
1986-01-01
A number of algorithms were developed for image warping and pyramid image filtering. Techniques were investigated for the parallel processing of a large number of independent irregular shaped regions on the MPP. In addition some utilities for dealing with very long vectors and for sorting were developed. Documentation pages for the algorithms which are available for distribution are given. The performance of the MPP for a number of basic data manipulations was determined. From these results it is possible to predict the efficiency of the MPP for a number of algorithms and applications. The Parallel Pascal development system, which is a portable programming environment for the MPP, was improved and better documentation including a tutorial was written. This environment allows programs for the MPP to be developed on any conventional computer system; it consists of a set of system programs and a library of general purpose Parallel Pascal functions. The algorithms were tested on the MPP and a presentation on the development system was made to the MPP users group. The UNIX version of the Parallel Pascal System was distributed to a number of new sites.
Bessel smoothing filter for spectral-element mesh
NASA Astrophysics Data System (ADS)
Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.
2017-06-01
Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the efficiency and flexibility of the approach proposed.
Rudell, B.; Wass, U.; Horstedt, P.; Levin, J. O.; Lindahl, R.; Rannug, U.; Sunesson, A. L.; Ostberg, Y.; Sandstrom, T.
1999-01-01
OBJECTIVES: To evaluate the efficiency of different automotive cabin air filters to prevent penetration of components of diesel exhaust and thereby reduce biomedical effects in human subjects. Filtered air and unfiltered diluted diesel exhaust (DDE) were used as negative and positive controls, respectively, and were compared with exposure to DDE filtered with four different filter systems. METHODS: 32 Healthy non- smoking subjects (age 21-53) participated in the study. Each subject was exposed six times for 1 hour in a specially designed exposure chamber: once to air, once to unfiltered DDE, and once to DDE filtered with the four different cabin air filters. Particle concentrations during exposure to unfiltered DDE were kept at 300 micrograms/m3. Two of the filters were particle filters. The other two were particle filters combined with active charcoal filters that might reduce certain gaseous components. Subjective symptoms were recorded and nasal airway lavage (NAL), acoustic rhinometry, and lung function measurements were performed. RESULTS: The two particle filters decreased the concentrations of diesel exhaust particles by about half, but did not reduce the intensity of symptoms induced by exhaust. The combination of active charcoal filters and a particle filter significantly reduced the symptoms and discomfort caused by the diesel exhaust. The most noticable differences in efficacy between the filters were found in the reduction of detection of an unpleasant smell from the diesel exhaust. In this respect even the two charcoal filter combinations differed significantly. The efficacy to reduce symptoms may depend on the abilities of the filters investigated to reduce certain hydrocarbons. No acute effects on NAL, rhinometry, and lung function variables were found. CONCLUSIONS: This study has shown that the use of active charcoal filters, and a particle filter, clearly reduced the intensity of symptoms induced by diesel exhaust. Complementary studies on vehicle cabin air filters may result in further diminishing the biomedical effects of diesel exhaust in subjects exposed in traffic and workplaces. PMID:10450238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Koenig, Gregory A; Machovec, Dylan
2016-01-01
Abstract: The worth of completing parallel tasks is modeled using utility functions, which monotonically-decrease with time and represent the importance and urgency of a task. These functions define the utility earned by a task at the time of its completion. The performance of such a system is measured as the total utility earned by all completed tasks over some interval of time (e.g., 24 hours). To maximize system performance when scheduling dynamically arriving parallel tasks onto a high performance computing (HPC) system that is oversubscribed and energy-constrained, we have designed, analyzed, and compared different heuristic techniques. Four utility-aware heuristics (i.e.,more » Max Utility, Max Utility-per-Time, Max Utility-per-Resource, and Max Utility-per-Energy), three FCFS-based heuristics (Conservative Backfilling, EASY Backfilling, and FCFS with Multiple Queues), and a Random heuristic were examined in this study. A technique that is often used with the FCFS-based heuristics is the concept of a permanent reservation. We compare the performance of permanent reservations with temporary place-holders to demonstrate the advantages that place-holders can provide. We also present a novel energy filtering technique that constrains the maximum energy-per-resource used by each task. We conducted a simulation study to evaluate the performance of these heuristics and techniques in an energy-constrained oversubscribed HPC environment. With place-holders, energy filtering, and dropping tasks with low potential utility, our utility-aware heuristics are able to significantly outperform the existing FCFS-based techniques.« less
Using Parallel Processing for Problem Solving.
1979-12-01
are the basic parallel proces- sing primitive . Different goals of the system can be pursued in parallel by placing them in separate activities...Language primitives are provided for manipulating running activities. Viewpoints are a generalization of context FOM -(over "*’ DD I FON 1473 ’EDITION OF I...arc the basic parallel processing primitive . Different goals of the system can be pursued in parallel by placing them in separate activities. Language
Translations on Environmental Quality, Number 128
1977-01-17
filters. The mechanical filter has a 5 cubic meter filtering material operational volume and is charged with activized BAU charcoal . The cationite...cubic meter activized BAU charcoal . The cationite and anionite filters are charged with strong acid cationite and strong alkali anionite in their N and...Extensive Reprocessing of Slags. In ferrous metallurgy , pig and steel pro- duction is inescapably connected with the production of large amounts of
[Traffic-related PM2.5 regulates IL-2 releasing in Jurkat T cells by calcium signaling pathway].
Tong, Guoqiang; Zhang, Zhihong; Han, Jianbiao; Qiu, Yong; Xu, Jianjun
2013-09-01
To explore the effects of traffic-related PM2.5 on interleukin-2 (IL-2) in Jurkat T cells and the regulatory action of calcium signaling pathway. The cells were exposed to 100 microg/ml of PM2.5 for 3, 6 and 24 h. Normal saline group, blank filter group, calcium chelating agent EGTA group and the calcineurin antagonist cyclosporine A (CSA) group were as parallel control. The level of IL-2 was detected by ELISA kits, the mRNA expression of CaN, NFAT were determined by QRT-PCR. The nuclear distribution of NFAT was observed by immunofluorescence microscopy. The level of IL-2 in Jurkat T cells exposed to 100 microg/ml PM2.5 was significantly lower than parallel groups, but higher than PM2.5 + CSA group and PM2.5 + EGTA group (P < 0.05). With the increase of time, the releasing level of IL-2 appeared reducing trend in 100 microg/ml of PM2.5 group. The mRNA expression level of NFAT and CaN were higher than parallel groups, PM2.5 + CSA group and PM2.5 + EGTA group (P < 0.05). PM2.5 can induce NFAT protein with dephosphorylation and be activated, and NFAT protein can shift into nuclear. The level of IL-2 was negatively associated with the expression level of NFAT and CaN gene (P < 0.05). Traffic-related PM2.5 may inhibit the releasing of IL-2, Ca(2+)-CaN-NFAT signal pathway may involve in the regulation of IL-2.
Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank
NASA Astrophysics Data System (ADS)
Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.
2014-05-01
Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is achieved without use of polyphase signal processing or time-interleaved ADC methods. That is, all digital processors operate at the same Fclk clock frequency without phasing, while wideband operation is achieved by sub-sampling of narrower sub-bands at the the RF channelizer outputs.
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Hall, Trevor
2016-11-01
In the title paper, Li et al. have presented a scheme for filter-less photonic millimetre-wave (mm-wave) generation based on two polarization multiplexed parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). For frequency octo-tupling, all the harmonics are suppressed except those of order 4l, where l is the integer. The carrier is then suppressed by the polarization multiplexing technique, which is the principal innovative step in their design. Frequency 12-tupling and 16-tupling is also described following a similar method. The two DP-MZM are similarly driven and provide identical outputs for the same RF modulation indices. Consequently, a demerit of their design is the requirement to apply two different RF signal modulation indexes in a particular range and set the polarizer to a precise angle which depends on the pair of modulation indices used in order to suppress the unwanted harmonics (e.g. the carrier) without simultaneously suppressing the wanted harmonics. The aim of this comment is to show that, an adjustment of the RF drive phases with a fixed polarizer angle with the design presented by Li, all harmonics can be suppressed except those of order4l, where l is an odd integer. Hence, a filter-less frequency octo-tupling can be generated whose performance is not limited by the careful adjustment of the RF drive signal, rather it can be operated for a wide range of modulation indexes (m 2.5 → 7.5). If the modulation index is adjusted to suppress 4th harmonics, then the design can be used to perform frequency 24-tupling. Since, the carrier is suppressed by design in the modified architecture, the strict requirement to adjust the RF drive (and polarizer angle) can be avoided without any significant change to the circuit complexity.
Chameleon's behavior of modulable nonlinear electrical transmission line
NASA Astrophysics Data System (ADS)
Togueu Motcheyo, A. B.; Tchinang Tchameu, J. D.; Fewo, S. I.; Tchawoua, C.; Kofane, T. C.
2017-12-01
We show that modulable discrete nonlinear transmission line can adopt Chameleon's behavior due to the fact that, without changing its appearance structure, it can become alternatively purely right or left handed line which is different to the composite one. Using a quasidiscrete approximation, we derive a nonlinear Schrödinger equation, that predicts accurately the carrier frequency threshold from the linear analysis. It appears that the increasing of the linear capacitor in parallel in the series branch induced the selectivity of the filter in the right-handed region while it increases band pass filter in the left-handed region. Numerical simulations of the nonlinear model confirm the forward wave in the right handed line and the backward wave in the left handed one.
Systems and methods for controlling diesel engine emissions
Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.
2004-06-01
Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.
2017-07-01
The FY17Q3 milestone of the ECP/VTK-m project includes the completion of a VTK-m filter that computes normal vectors for surfaces. Normal vectors are those that point perpendicular to the surface and are an important direction when rendering the surface. The implementation includes the parallel algorithm itself, a filter module to simplify integrating it into other software, and documentation in the VTK-m Users’ Guide. With the completion of this milestone, we are able to necessary information to rendering systems to provide appropriate shading of surfaces. This milestone also feeds into subsequent milestones that progressively improve the approximation of surface direction.
Towards Photo Watercolorization with Artistic Verisimilitude.
Wang, Miaoyi; Wang, Bin; Fei, Yun; Qian, Kanglai; Wang, Wenping; Chen, Jiating; Yong, Jun-Hai
2014-10-01
We present a novel artistic-verisimilitude driven system for watercolor rendering of images and photos. Our system achieves realistic simulation of a set of important characteristics of watercolor paintings that have not been well implemented before. Specifically, we designed several image filters to achieve: 1) watercolor-specified color transferring; 2) saliency-based level-of-detail drawing; 3) hand tremor effect due to human neural noise; and 4) an artistically controlled wet-in-wet effect in the border regions of different wet pigments. A user study indicates that our method can produce watercolor results of artistic verisimilitude better than previous filter-based or physical-based methods. Furthermore, our algorithm is efficient and can easily be parallelized, making it suitable for interactive image watercolorization.
Design and Performance of a 2.7 THz Waveguide Tripler
NASA Technical Reports Server (NTRS)
Maiwald, Frank; Martin, S.; Bruston, J.; Maestrini, A.; Crawford, T.; Siegel, P. H.
2001-01-01
The design and performance of a 0.9 THz to 2.7 THz waveguide tripler are presented. An unusual split block configuration with parallel input and output waveguides accommodates a monolithic membrane diode (MoMeD) circuit. Submicron planar GaAs Schottky diodes in single and antiparallel pairs are implemented with matching filters on a 3-micrometer thick suspended substrate as part of the MoMeD structure. The filters are a combination of short hammerheads and high-low impedance elements. Only a few circuit variations have been measured to date. The best current performance shows an output power of 0.1 microW and an efficiency of 0.002% at the band center frequency of 2.55 THz.
NASA Astrophysics Data System (ADS)
Liu, N.; Liu, J. B.; Yao, K. L.
2017-12-01
We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit)2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC) and the antiparallel configuration (APC). At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.
A high-order spatial filter for a cubed-sphere spectral element model
NASA Astrophysics Data System (ADS)
Kang, Hyun-Gyu; Cheong, Hyeong-Bin
2017-04-01
A high-order spatial filter is developed for the spectral-element-method dynamical core on the cubed-sphere grid which employs the Gauss-Lobatto Lagrange interpolating polynomials (GLLIP) as orthogonal basis functions. The filter equation is the high-order Helmholtz equation which corresponds to the implicit time-differencing of a diffusion equation employing the high-order Laplacian. The Laplacian operator is discretized within a cell which is a building block of the cubed sphere grid and consists of the Gauss-Lobatto grid. When discretizing a high-order Laplacian, due to the requirement of C0 continuity along the cell boundaries the grid-points in neighboring cells should be used for the target cell: The number of neighboring cells is nearly quadratically proportional to the filter order. Discrete Helmholtz equation yields a huge-sized and highly sparse matrix equation whose size is N*N with N the number of total grid points on the globe. The number of nonzero entries is also almost in quadratic proportion to the filter order. Filtering is accomplished by solving the huge-matrix equation. While requiring a significant computing time, the solution of global matrix provides the filtered field free of discontinuity along the cell boundaries. To achieve the computational efficiency and the accuracy at the same time, the solution of the matrix equation was obtained by only accounting for the finite number of adjacent cells. This is called as a local-domain filter. It was shown that to remove the numerical noise near the grid-scale, inclusion of 5*5 cells for the local-domain filter was found sufficient, giving the same accuracy as that obtained by global domain solution while reducing the computing time to a considerably lower level. The high-order filter was evaluated using the standard test cases including the baroclinic instability of the zonal flow. Results indicated that the filter performs better on the removal of grid-scale numerical noises than the explicit high-order viscosity. It was also presented that the filter can be easily implemented on the distributed-memory parallel computers with a desirable scalability.
Optimal design of a bank of spatio-temporal filters for EEG signal classification.
Higashi, Hiroshi; Tanaka, Toshihisa
2011-01-01
The spatial weights for electrodes called common spatial pattern (CSP) are known to be effective in EEG signal classification for motor imagery based brain computer interfaces (MI-BCI). To achieve accurate classification in CSP, the frequency filter should be properly designed. To this end, several methods for designing the filter have been proposed. However, the existing methods cannot consider plural brain activities described with different frequency bands and different spatial patterns such as activities of mu and beta rhythms. In order to efficiently extract these brain activities, we propose a method to design plural filters and spatial weights which extract desired brain activity. The proposed method designs finite impulse response (FIR) filters and the associated spatial weights by optimization of an objective function which is a natural extension of CSP. Moreover, we show by a classification experiment that the bank of FIR filters which are designed by introducing an orthogonality into the objective function can extract good discriminative features. Moreover, the experiment result suggests that the proposed method can automatically detect and extract brain activities related to motor imagery.
NASA Astrophysics Data System (ADS)
Labunets, Valeri G.; Labunets-Rundblad, Ekaterina V.; Astola, Jaakko T.
2001-12-01
Fast algorithms for a wide class of non-separable n-dimensional (nD) discrete unitary K-transforms (DKT) are introduced. They need less 1D DKTs than in the case of the classical radix-2 FFT-type approach. The method utilizes a decomposition of the nD K-transform into the product of a new nD discrete Radon transform and of a set of parallel/independ 1D K-transforms. If the nD K-transform has a separable kernel (e.g., the case of the discrete Fourier transform) our approach leads to decrease of multiplicative complexity by the factor of n comparing to the classical row/column separable approach. It is well known that an n-th order Volterra filter of one dimensional signal can be evaluated by an appropriate nD linear convolution. This work describes new superfast algorithm for Volterra filtering. New approach is based on the superfast discrete Radon and Nussbaumer polynomial transforms.
Tunneling magnetoresistance from a symmetry filtering effect
Butler, William H
2008-01-01
This paper provides a brief overview of the young, but rapidly growing field of spintronics. Its primary objective is to explain how as electrons tunnel through simple insulators such as MgO, wavefunctions of certain symmetries are preferentially transmitted. This symmetry filtering property can be converted into a spin-filtering property if the insulator is joined epitaxially to a ferromagnetic electrode with the same two-dimensional symmetry parallel to the interface. A second requirement of the ferromagnetic electrodes is that a wavefunction with the preferred symmetry exists in one of the two spin channels but not in the other. These requirements are satisfied for electrons traveling perpendicular to the interface for Fe–MgO–Fe tunnel barriers. This leads to a large change in the resistance when the magnetic moment of one of the electrodes is rotated relative to those of the other electrode. This large tunneling magnetoresistance effect is being used as the read sensor in hard drives and may form the basis for a new type of magnetic memory. PMID:27877932
Digital Control Technologies for Modular DC-DC Converters
NASA Technical Reports Server (NTRS)
Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon
2002-01-01
Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.
Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun
2016-01-01
Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems. PMID:27883028
Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun
2016-11-24
Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than -10 dB within the -3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.
Quantitative color measurement of pH indicator paper using trichromatic LEDs and TCS230 color sensor
NASA Astrophysics Data System (ADS)
Ghorude, T. N.; Chaudhari, A. L.; Shaligram, A. D.
2008-11-01
Quantitative analysis of pH indicator paper color is needed in the various fields. An indigenously developed Tristimulus colorimeter is used in this work for pH Indicator paper color measurement. The colorimeter uses Trichromatic RGB LEDs and a programmable color light to frequency converter (TCS230), combining configurable silicon photodiodes and a current to frequency converter on a single monolithic CMOS integrated circuit. The output is a square wave (50% duty cycle) with frequency directly proportional to light intensity. Digital input and digital output allow directly to a microcontroller. The light to frequency converter reads an 8*8 array of photodiodes. Sixteen photodiodes have red filters, 16 photodiodes have green filters, 16 photodiodes have blue filters, and 16 photodiodes are clear with no filters. All 16 photodiodes of the same colors are connected in parallel and type of photodiode the device uses during operation is pin selectable. Solutions having different standard pH were prepared and indicator paper was dipped in solution, it shows change in color. Using the developed RGB colorimeter chromaticity coordinates were measured and compared with the chromaticity coordinates measured using Ocean Optics HR-4000 high resolution spectrophotometer.
Impact of fine mesh sieve primary treatment on nitrogen removal in moving bed biofilm reactors.
Rusten, B; Razafimanantsoa, V A; Andriamiarinjaka, M A; Otis, C L; Sahu, A K; Bilstad, T
2016-01-01
The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10-15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge.
Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G
2018-02-01
Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3 g -1 ), surface area (124.61 m 2 g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.
Parallel Activation in Bilingual Phonological Processing
ERIC Educational Resources Information Center
Lee, Su-Yeon
2011-01-01
In bilingual language processing, the parallel activation hypothesis suggests that bilinguals activate their two languages simultaneously during language processing. Support for the parallel activation mainly comes from studies of lexical (word-form) processing, with relatively less attention to phonological (sound) processing. According to…
Soderstrand, Michael A.
1976-01-01
An operational amplifier-type active filter in which the only capacitor in the circuit is the compensating capacitance of the operational amplifiers, the various feedback and coupling elements being essentially solely resistive.
NASA Astrophysics Data System (ADS)
Ahrens, H.; Argin, F.; Klinkenbusch, L.
2013-07-01
The non-invasive and radiation-free imaging of the electrical activity of the heart with Electrocardiography (ECG) or Magnetocardiography (MCG) can be helpful for physicians for instance in the localization of the origin of cardiac arrhythmia. In this paper we compare two Kalman Filter algorithms for the solution of a nonlinear state-space model and for the subsequent imaging of the activation/depolarization times of the heart muscle: the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). The algorithms are compared for simulations of a (6×6) magnetometer array, a torso model with piecewise homogeneous conductivities, 946 current dipoles located in a small part of the heart (apex), and several noise levels. It is found that for all tested noise levels the convergence of the activation times is faster for the UKF.
Calculation of airborne radioactivity in a Technegas lung ventilation unit.
López Medina, A; Miñano, J A; Terrón, J A; Bullejos, J A; Guerrero, R; Arroyo, T; Ramírez, A; Llamas, J M
1999-12-01
Airborne contamination by 99Tcm has been monitored in the Nuclear Medicine Department in our hospital to assess the risk of internal contamination to occupational workers exposed to Technegas studies. An air sampler fitted with a membrane filter was used. The optimum time for air absorption for obtaining the maximum activity in the filter was calculated. Maximum activity in the membrane filter ensures minimum uncertainty, which is especially important when low-level activities are being measured. The optimum time depends on air absorption velocity, room volume and filter efficiency for isotope collection. It tends to 1/lambda (lambda = disintegration constant for 99Tcm) for large volume and low velocity. Room activity with the air pump switched on was related to filter activity, and its variation with time was studied. Free activity in air for each study was approximately 7 x 10(-4) the activity used, and the effective half-life of the isotope in the room was 13.9 min (decay and diffusion). For a typical study (630 MBq), the effective dose to staff was 0.01 microSv when in the room for 10 min.
Reducing multi-sensor data to a single time course that reveals experimental effects
2013-01-01
Background Multi-sensor technologies such as EEG, MEG, and ECoG result in high-dimensional data sets. Given the high temporal resolution of such techniques, scientific questions very often focus on the time-course of an experimental effect. In many studies, researchers focus on a single sensor or the average over a subset of sensors covering a “region of interest” (ROI). However, single-sensor or ROI analyses ignore the fact that the spatial focus of activity is constantly changing, and fail to make full use of the information distributed over the sensor array. Methods We describe a technique that exploits the optimality and simplicity of matched spatial filters in order to reduce experimental effects in multivariate time series data to a single time course. Each (multi-sensor) time sample of each trial is replaced with its projection onto a spatial filter that is matched to an observed experimental effect, estimated from the remaining trials (Effect-Matched Spatial filtering, or EMS filtering). The resulting set of time courses (one per trial) can be used to reveal the temporal evolution of an experimental effect, which distinguishes this approach from techniques that reveal the temporal evolution of an anatomical source or region of interest. Results We illustrate the technique with data from a dual-task experiment and use it to track the temporal evolution of brain activity during the psychological refractory period. We demonstrate its effectiveness in separating the means of two experimental conditions, and in significantly improving the signal-to-noise ratio at the single-trial level. It is fast to compute and results in readily-interpretable time courses and topographies. The technique can be applied to any data-analysis question that can be posed independently at each sensor, and we provide one example, using linear regression, that highlights the versatility of the technique. Conclusion The approach described here combines established techniques in a way that strikes a balance between power, simplicity, speed of processing, and interpretability. We have used it to provide a direct view of parallel and serial processes in the human brain that previously could only be measured indirectly. An implementation of the technique in MatLab is freely available via the internet. PMID:24125590
133Xe contamination found in internal bacteria filter of xenon ventilation system.
Hackett, Michael T; Collins, Judith A; Wierzbinski, Rebecca S
2003-09-01
We report on (133)Xe contamination found in the reusable internal bacteria filter of our xenon ventilation system. Internal bacteria filters (n = 6) were evaluated after approximately 1 mo of normal use. The ventilation system was evacuated twice to eliminate (133)Xe in the system before removal of the filter. Upon removal, the filter was monitored using a survey meter with an energy-compensated probe and was imaged on a scintillation camera. The filter was monitored and imaged over several days and was stored in a fume hood. Estimated (133)Xe activity in each filter immediately after removal ranged from 132 to 2,035 kBq (3.6-55.0 micro Ci), based on imaging. Initial surface radiation levels ranged from 0.4 to 4.5 micro Sv/h (0.04-0.45 mrem/h). The (133)Xe activity did not readily leave the filter over time (i.e., time to reach half the counts of the initial decay-corrected image ranged from <6 to >72 h). The majority of the image counts (approximately 70%) were seen in 2 distinctive areas in the filter. They corresponded to sites where the manufacturer used polyurethane adhesive to attach the fiberglass filter medium to the filter housing. (133)Xe contamination within the reusable internal bacteria filter of our ventilation system was easily detected by a survey meter and imaging. Although initial activities and surface radiation levels were low, radiation safety practices would dictate that a (133)Xe-contaminated bacteria filter be stored preferably in a fume hood until it cannot be distinguished from background before autoclaving or disposal.
Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Arnold, Andrea; Calvetti, Daniela; Somersalo, Erkki
2014-10-01
A commonly encountered problem in numerous areas of applications is to estimate the unknown coefficients of a dynamical system from direct or indirect observations at discrete times of some of the components of the state vector. A related problem is to estimate unobserved components of the state. An egregious example of such a problem is provided by metabolic models, in which the numerous model parameters and the concentrations of the metabolites in tissue are to be estimated from concentration data in the blood. A popular method for addressing similar questions in stochastic and turbulent dynamics is the ensemble Kalman filter (EnKF), a particle-based filtering method that generalizes classical Kalman filtering. In this work, we adapt the EnKF algorithm for deterministic systems in which the numerical approximation error is interpreted as a stochastic drift with variance based on classical error estimates of numerical integrators. This approach, which is particularly suitable for stiff systems where the stiffness may depend on the parameters, allows us to effectively exploit the parallel nature of particle methods. Moreover, we demonstrate how spatial prior information about the state vector, which helps the stability of the computed solution, can be incorporated into the filter. The viability of the approach is shown by computed examples, including a metabolic system modeling an ischemic episode in skeletal muscle, with a high number of unknown parameters.
Explicit filtering in large eddy simulation using a discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Brazell, Matthew J.
The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG's framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is based on an improved model, handles the laminar-turbulent transition region well while also showing additional robustness.
SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliopoulos, AS; Sun, X; Floros, D
Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well asmore » histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial signal/noise variations. An efficient multi-scale computational mechanism is developed to curtail processing latency. Spatially adaptive filtering may impact subsequent processing tasks such as reconstruction and numerical gradient computations for deformable registration. NIH Grant No. R01-184173.« less
Dalahmeh, Sahar; Ahrens, Lutz; Gros, Meritxell; Wiberg, Karin; Pell, Mikael
2018-01-15
This study investigated the potential of biochar filters as a replacement or complement for sand filters for removal of pharmaceutically active compounds (PhACs) from wastewater in onsite sewage facilities (OSSF). Specifically, the study investigated the effects of biodegradation, adsorption and a combination of these processes on removal of four model PhACs from wastewater in biochar filters operated under hydraulic loading conditions mimicking those found in onsite infiltration beds. Concentrations and removal of the four PhACs (i.e. carbamazepine, metoprolol, ranitidine and caffeine) were investigated over 22weeks in four treatments: biochar (BC) with active or inactive biofilm (BC-active-biofilm, BC-inactive-biofilm), biochar without biofilm (BC-no-biofilm) and sand with active biofilm (Sand-active-biofilm). The adsorption of carbamazepine was high in BC-no-biofilm (99% removal after 22weeks), while biodegradation was very low in Sand-active-biofilm (7% removal after 22weeks). Removal of carbamazepine in BC-active-biofilm was high and stable over the 22weeks (>98%), showing a significant role of biofilm in filter biogeneration. However, carbamazepine removal declined over time in BC-inactive-biofilm, from 99% in week 13 to 73% in week 22. Metoprolol was poorly degraded in Sand-active-biofilm (37% after 22weeks), while adsorption seemed to be the major pathway for removal of metoprolol in biochar. Ranitidine and caffeine were efficiently removed by either adsorption (97% and 98%, respectively, after 22weeks) or biodegradation (99% and >99%, respectively, after 22weeks). In conclusion, biochar is a promising filter medium for OSSF, especially for persistent PhACs such as carbamazepine and metoprolol. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-31
...; cover assemblies; strainer assemblies; oil filter assemblies; air filter assemblies; screen assemblies; filter assemblies; breather assemblies; filter box assemblies; sand trap assemblies; valve stems; brake... holders; staples; rivets; brazing alloys; diesel engines; frame assemblies; air inlets; filter box air...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... systems; duct temperature limiters; air/oil heat exchangers; oil cooler fans; fuel filter assemblies... assemblies; filter extractors; de- coupler/disassembly wrenches; torque wrench adaptors; test benches; drills...; filter assemblies; oil filter install kits; cartridge screens; filter housings; trim balance weights...
Real-time computer treatment of THz passive device images with the high image quality
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Trofimov, Vladislav V.
2012-06-01
We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.
Issues in the digital implementation of control compensators. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Moroney, P.
1979-01-01
Techniques developed for the finite-precision implementation of digital filters were used, adapted, and extended for digital feedback compensators, with particular emphasis on steady state, linear-quadratic-Gaussian compensators. Topics covered include: (1) the linear-quadratic-Gaussian problem; (2) compensator structures; (3) architectural issues: serialism, parallelism, and pipelining; (4) finite wordlength effects: quantization noise, quantizing the coefficients, and limit cycles; and (5) the optimization of structures.
NASA Astrophysics Data System (ADS)
Noh, S.; Tachikawa, Y.; Shiiba, M.; Kim, S.
2011-12-01
Applications of the sequential data assimilation methods have been increasing in hydrology to reduce uncertainty in the model prediction. In a distributed hydrologic model, there are many types of state variables and each variable interacts with each other based on different time scales. However, the framework to deal with the delayed response, which originates from different time scale of hydrologic processes, has not been thoroughly addressed in the hydrologic data assimilation. In this study, we propose the lagged filtering scheme to consider the lagged response of internal states in a distributed hydrologic model using two filtering schemes; particle filtering (PF) and ensemble Kalman filtering (EnKF). The EnKF is one of the widely used sub-optimal filters implementing an efficient computation with limited number of ensemble members, however, still based on Gaussian approximation. PF can be an alternative in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions involved. In case of PF, advanced particle regularization scheme is implemented together to preserve the diversity of the particle system. In case of EnKF, the ensemble square root filter (EnSRF) are implemented. Each filtering method is parallelized and implemented in the high performance computing system. A distributed hydrologic model, the water and energy transfer processes (WEP) model, is applied for the Katsura River catchment, Japan to demonstrate the applicability of proposed approaches. Forecasted results via PF and EnKF are compared and analyzed in terms of the prediction accuracy and the probabilistic adequacy. Discussions are focused on the prospects and limitations of each data assimilation method.
NASA Technical Reports Server (NTRS)
Adam, Niklas; Cox, Trey; Larner, Katherine; Carter, Donald; Kouba, Coy
2017-01-01
In order to reduce the infiltration of dimethylsilanediol (DMSD) and other organosilicon containing species through the Multifiltration Beds (MF Beds), an alternate activated carbon was found to replace the obsolete Barnabey Cheney 580-26 activated carbon. The carbon that removed the most organosilicon compounds in testing1 was a synthetic activated carbon named Schunk 4652 which later became Ambersorb 4652. Since activated carbon has a large capacity for iodine (I2), and is used in the Activated Carbon Ion Exchange (ACTEX) filters on the International Space Station (ISS), testing was performed on the Ambersorb 4652 carbon to determine the effectiveness of the material for use in ACTEX filters to remove iodine. This work summarizes the testing and the certification of Ambersorb 4652 for use in the ACTEX filters for the ISS.
Zhu, Zihang; Zhao, Shanghong; Zheng, Wanze; Wang, Wei; Lin, Baoqin
2015-11-10
A novel frequency 12-tupling optical millimeter-wave (mm-wave) generation using two cascaded dual-parallel Mach-Zehnder modulators (DP-MZMs) without an optical filter is proposed and demonstrated by computer simulation. By properly adjusting the amplitude and phase of radio frequency (RF) driving signal and the direct current (DC) bias points of two DP-MZMs, a 120 GHz mm-wave with an optical sideband suppression ratio (OSSR) of 25.1 dB and a radio frequency spurious suppression ratio (RFSSR) of 19.1 dB is shown to be generated from a 10 GHz RF driving signal, which largely reduces the response frequency of electronic devices. Furthermore, it is also proved to be valid that even if the phase difference of RF driving signals, the RF driving voltage, and the DC bias voltage deviate from the ideal values to a certain degree, the performance is still acceptable. Since no optical filter is employed to suppress the undesired optical sidebands, a high-spectral-purity mm-wave signal tunable from 48 to 216 GHz can be obtained theoretically when a RF driving signal from 4 to 18 GHz is applied to the DP-MZMs, and the system can be readily implemented in wavelength-division-multiplexing upconversion systems to provide high-quality optical local oscillator signal.
Filtering versus parallel processing in RSVP tasks.
Botella, J; Eriksen, C W
1992-04-01
An experiment of McLean, D. E. Broadbent, and M. H. P. Broadbent (1983) using rapid serial visual presentation (RSVP) was replicated. A series of letters in one of 5 colors was presented, and the subject was asked to identify the letter that appeared in a designated color. There were several innovations in our procedure, the most important of which was the use of a response menu. After each trial, the subject was presented with 7 candidate letters from which to choose his/her response. In three experimental conditions, the target, the letter following the target, and all letters other than the target were, respectively, eliminated from the menu. In other conditions, the stimulus list was manipulated by repeating items in the series, repeating the color of successive items, or even eliminating the target color. By means of these manipulations, we were able to determine more precisely the information that subjects had obtained from the presentation of the stimulus series. Although we replicated the results of McLean et al. (1983), the more extensive information that our procedure produced was incompatible with the serial filter model that McLean et al. had used to describe their data. Overall, our results were more compatible with a parallel-processing account. Furthermore, intrusion errors are apparently not only a perceptual phenomenon but a memory problem as well.
Kaarela, Outi E; Härkki, Heli A; Palmroth, Marja R T; Tuhkanen, Tuula A
2015-01-01
Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it.
NASA Astrophysics Data System (ADS)
Birkbeck, Aaron L.
A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.
Kotb, Hussein; Abdelalim, Mohamed A; Anis, Hanan
2015-11-16
A significant change in active similariton characteristics, both numerically and experimentally, is observed as a function of the location of the lumped spectral filter. The closer the spectral filter is to the input of the Yb(3+)-doped fiber, the shorter the de-chirped pulse width. The peak power of the de-chirped pulse has its maximum value at a certain location of the spectral filter. Four different positions of the spectral filter inside the laser cavity have been theoretically studied and two of them have been verified experimentally.
NASA Astrophysics Data System (ADS)
Bai, Guang-Fu; Hu, Lin; Jiang, Yang; Tian, Jing; Zi, Yue-Jiao; Wu, Ting-Wei; Huang, Feng-Qin
2017-08-01
In this paper, a photonic microwave waveform generator based on a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. In this reported scheme, only one radio frequency signal is used to drive the dual-parallel Mach-Zehnder modulator. Meanwhile, dispersive elements or filters are not required in the proposed scheme, which make the scheme simpler and more stable. In this way, six variables can be adjusted. Through the different combinations of these variables, basic waveforms with full duty and small duty cycle can be generated. Tunability of the generator can be achieved by adjusting the frequency of the RF signal and the optical carrier. The corresponding theoretical analysis and simulation have been conducted. With guidance of theory and simulation, proof-of-concept experiments are carried out. The basic waveforms, including Gaussian, saw-up, and saw-down waveforms, with full duty and small duty cycle are generated at the repetition rate of 2 GHz. The theoretical and simulation results agree with the experimental results very well.
Lu, Jianing; Li, Xiang; Fu, Songnian; Luo, Ming; Xiang, Meng; Zhou, Huibin; Tang, Ming; Liu, Deming
2017-03-06
We present dual-polarization complex-weighted, decision-aided, maximum-likelihood algorithm with superscalar parallelization (SSP-DP-CW-DA-ML) for joint carrier phase and frequency-offset estimation (FOE) in coherent optical receivers. By pre-compensation of the phase offset between signals in dual polarizations, the performance can be substantially improved. Meanwhile, with the help of modified SSP-based parallel implementation, the acquisition time of FO and the required number of training symbols are reduced by transferring the complex weights of the filters between adjacent buffers, where differential coding/decoding is not required. Simulation results show that the laser linewidth tolerance of our proposed algorithm is comparable to traditional blind phase search (BPS), while a complete FOE range of ± symbol rate/2 can be achieved. Finally, performance of our proposed algorithm is experimentally verified under the scenario of back-to-back (B2B) transmission using 10 Gbaud DP-16/32-QAM formats.
Performance enhancement of various real-time image processing techniques via speculative execution
NASA Astrophysics Data System (ADS)
Younis, Mohamed F.; Sinha, Purnendu; Marlowe, Thomas J.; Stoyenko, Alexander D.
1996-03-01
In real-time image processing, an application must satisfy a set of timing constraints while ensuring the semantic correctness of the system. Because of the natural structure of digital data, pure data and task parallelism have been used extensively in real-time image processing to accelerate the handling time of image data. These types of parallelism are based on splitting the execution load performed by a single processor across multiple nodes. However, execution of all parallel threads is mandatory for correctness of the algorithm. On the other hand, speculative execution is an optimistic execution of part(s) of the program based on assumptions on program control flow or variable values. Rollback may be required if the assumptions turn out to be invalid. Speculative execution can enhance average, and sometimes worst-case, execution time. In this paper, we target various image processing techniques to investigate applicability of speculative execution. We identify opportunities for safe and profitable speculative execution in image compression, edge detection, morphological filters, and blob recognition.
Accelerating separable footprint (SF) forward and back projection on GPU
NASA Astrophysics Data System (ADS)
Xie, Xiaobin; McGaffin, Madison G.; Long, Yong; Fessler, Jeffrey A.; Wen, Minhua; Lin, James
2017-03-01
Statistical image reconstruction (SIR) methods for X-ray CT can improve image quality and reduce radiation dosages over conventional reconstruction methods, such as filtered back projection (FBP). However, SIR methods require much longer computation time. The separable footprint (SF) forward and back projection technique simplifies the calculation of intersecting volumes of image voxels and finite-size beams in a way that is both accurate and efficient for parallel implementation. We propose a new method to accelerate the SF forward and back projection on GPU with NVIDIA's CUDA environment. For the forward projection, we parallelize over all detector cells. For the back projection, we parallelize over all 3D image voxels. The simulation results show that the proposed method is faster than the acceleration method of the SF projectors proposed by Wu and Fessler.13 We further accelerate the proposed method using multiple GPUs. The results show that the computation time is reduced approximately proportional to the number of GPUs.
EMG prediction from Motor Cortical Recordings via a Non-Negative Point Process Filter
Nazarpour, Kianoush; Ethier, Christian; Paninski, Liam; Rebesco, James M.; Miall, R. Chris; Miller, Lee E.
2012-01-01
A constrained point process filtering mechanism for prediction of electromyogram (EMG) signals from multi-channel neural spike recordings is proposed here. Filters from the Kalman family are inherently sub-optimal in dealing with non-Gaussian observations, or a state evolution that deviates from the Gaussianity assumption. To address these limitations, we modeled the non-Gaussian neural spike train observations by using a generalized linear model (GLM) that encapsulates covariates of neural activity, including the neurons’ own spiking history, concurrent ensemble activity, and extrinsic covariates (EMG signals). In order to predict the envelopes of EMGs, we reformulated the Kalman filter (KF) in an optimization framework and utilized a non-negativity constraint. This structure characterizes the non-linear correspondence between neural activity and EMG signals reasonably. The EMGs were recorded from twelve forearm and hand muscles of a behaving monkey during a grip-force task. For the case of limited training data, the constrained point process filter improved the prediction accuracy when compared to a conventional Wiener cascade filter (a linear causal filter followed by a static non-linearity) for different bin sizes and delays between input spikes and EMG output. For longer training data sets, results of the proposed filter and that of the Wiener cascade filter were comparable. PMID:21659018
Self absorption of alpha and beta particles in a fiberglass filter.
Luetzelschwab, J W; Storey, C; Zraly, K; Dussinger, D
2000-10-01
Environmental air sampling uses fiberglass filters to collect particulate matter from the air and then a gas flow detector to measure the alpha and beta activity on the filter. When counted, the filter is located close to the detector so the alpha and beta particles emerging from the filter travel toward the detector at angles ranging from zero to nearly 90 degrees to the normal to the filter surface. The particles at small angles can readily pass through the filter, but particles at large angles pass through a significant amount of filter material and can be totally absorbed. As a result, counting losses can be great. For 4 MeV alpha particles, the filter used in this experiment absorbs 43% of the alpha particles; for 7.5 MeV alphas, the absorption is 13%. The measured beta activities also can have significant counting losses. Beta particles with maximum energies of 0.2 and 2.0 MeV have absorptions of 44 and 2%, respectively.
Advanced study of video signal processing in low signal to noise environments
NASA Technical Reports Server (NTRS)
Carden, F.; Henry, R.
1972-01-01
A nonlinear analysis of a multifilter phase-lockloop (MPLL) by using the method of harmonic balance is presented. The particular MPLL considered has a low-pass filter and a band-pass filter in parallel. An analytic expression for the relationship between the input signal phase deviation and the phase error is determined for sinusoidal FM in the absence of noise. The expression is used to determine bounds on the proper operating region for the MPLL and to investigate the jump phenomenon previously observed. From these results the proper modulation index, modulating frequency, etc. used for the design of a MPLL are determined. Data for the loop unlock boundary obtained from the theoretical expression are compared to data obtained from analog computer simulations of the MPLL.
Analysis and design of planar waveguide elements for use in filters and sensors
NASA Astrophysics Data System (ADS)
Chen, Guangzhou
In this dissertation we present both theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on supermode theory combined with the resonance method for the determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including corrections due to the fields in the corner regions of the waveguides using perturbation theory. We analyze in detail two particular devices, an optical filter/combiner and an optical sensor. An optical wavelength filter/combiner is a common element in an integrated optical circuit. A new "bend free" filter/combiner is proposed and analyzed. The new wavelength filter consists of only straight parallel channels, which considerably simplify both the analysis and fabrication of the device. We show in detail how the operation of the device depends upon each of the design parameters. The intrinsic power loss in the proposed filter/combiner is minimized. The optical sensor is another important device and the sensitivity of measurement is an important issue in its design. Two operating mechanisms used in prior optical sensors are evanescent wave sensing or surface plasmon excitation. In this dissertation, we present a sensor with a directional coupler structure in which a measurand to be detected is interfaced with one side of the cladding. The analysis shows that it is possible to make a high resolution device by adjusting the design parameters. The dimensions and materials used in an optimized design are presented.
A parallel-architecture parametric equalizer for air-coupled capacitive ultrasonic transducers.
McSweeney, Sean G; Wright, William M D
2012-01-01
Parametric equalization is rarely applied to ultrasonic transducer systems, for which it could be used on either the transmitter or the receiver to achieve a desired response. An optimized equalizer with both bump and cut capabilities would be advantageous for ultrasonic systems in applications in which variations in the transducer performance or the properties of the propagating medium produce a less-than-desirable signal. Compensation for non-ideal transducer response could be achieved using equalization on a device-by-device basis. Additionally, calibration of ultrasonic systems in the field could be obtained by offline optimization of equalization coefficients. In this work, a parametric equalizer for ultrasonic applications has been developed using multiple bi-quadratic filter elements arranged in a novel parallel arrangement to increase the flexibility of the equalization. The equalizer was implemented on a programmable system-on-chip (PSOC) using a small number of parallel 4th-order infinite impulse response switchedcapacitor band-pass filters. Because of the interdependency of the required coefficients for the switched capacitors, particle swarm optimization (PSO) was used to determine the optimum values. The response of a through-transmission system using air-coupled capacitive ultrasonic transducers was then equalized to idealized Hamming function or brick-wall frequencydomain responses. In each case, there was excellent agreement between the equalized signals and the theoretical model, and the fidelity of the time-domain response was maintained. The bandwidth and center frequency response of the system were significantly improved. It was also shown that the equalizer could be used on either the transmitter or the receiver, and the system could compensate for the effects of transmitterreceiver misalignment. © 2012 IEEE
Variable Bandwidth Filtering for Improved Sensitivity of Cross-Frequency Coupling Metrics
McDaniel, Jonathan; Liu, Song; Cornew, Lauren; Gaetz, William; Roberts, Timothy P.L.; Edgar, J. Christopher
2012-01-01
Abstract There is an increasing interest in examining cross-frequency coupling (CFC) between groups of oscillating neurons. Most CFC studies examine how the phase of lower-frequency brain activity modulates the amplitude of higher-frequency brain activity. This study focuses on the signal filtering that is required to isolate the higher-frequency neuronal activity which is hypothesized to be amplitude modulated. In particular, previous publications have used a filter bandwidth fixed to a constant for all assessed modulation frequencies. The present article demonstrates that fixed bandwidth filtering can destroy amplitude modulation and create false-negative CFC measures. To overcome this limitation, this study presents a variable bandwidth filter that ensures preservation of the amplitude modulation. Simulated time series data were created with theta-gamma, alpha-gamma, and beta-gamma phase-amplitude coupling. Comparisons between filtering methods indicate that the variable bandwidth approach presented in this article is preferred when examining amplitude modulations above the theta band. The variable bandwidth method of filtering an amplitude modulated signal is proposed to preserve amplitude modulation and enable accurate CFC measurements. PMID:22577870
Scalable and balanced dynamic hybrid data assimilation
NASA Astrophysics Data System (ADS)
Kauranne, Tuomo; Amour, Idrissa; Gunia, Martin; Kallio, Kari; Lepistö, Ahti; Koponen, Sampsa
2017-04-01
Scalability of complex weather forecasting suites is dependent on the technical tools available for implementing highly parallel computational kernels, but to an equally large extent also on the dependence patterns between various components of the suite, such as observation processing, data assimilation and the forecast model. Scalability is a particular challenge for 4D variational assimilation methods that necessarily couple the forecast model into the assimilation process and subject this combination to an inherently serial quasi-Newton minimization process. Ensemble based assimilation methods are naturally more parallel, but large models force ensemble sizes to be small and that results in poor assimilation accuracy, somewhat akin to shooting with a shotgun in a million-dimensional space. The Variational Ensemble Kalman Filter (VEnKF) is an ensemble method that can attain the accuracy of 4D variational data assimilation with a small ensemble size. It achieves this by processing a Gaussian approximation of the current error covariance distribution, instead of a set of ensemble members, analogously to the Extended Kalman Filter EKF. Ensemble members are re-sampled every time a new set of observations is processed from a new approximation of that Gaussian distribution which makes VEnKF a dynamic assimilation method. After this a smoothing step is applied that turns VEnKF into a dynamic Variational Ensemble Kalman Smoother VEnKS. In this smoothing step, the same process is iterated with frequent re-sampling of the ensemble but now using past iterations as surrogate observations until the end result is a smooth and balanced model trajectory. In principle, VEnKF could suffer from similar scalability issues as 4D-Var. However, this can be avoided by isolating the forecast model completely from the minimization process by implementing the latter as a wrapper code whose only link to the model is calling for many parallel and totally independent model runs, all of them implemented as parallel model runs themselves. The only bottleneck in the process is the gathering and scattering of initial and final model state snapshots before and after the parallel runs which requires a very efficient and low-latency communication network. However, the volume of data communicated is small and the intervening minimization steps are only 3D-Var, which means their computational load is negligible compared with the fully parallel model runs. We present example results of scalable VEnKF with the 4D lake and shallow sea model COHERENS, assimilating simultaneously continuous in situ measurements in a single point and infrequent satellite images that cover a whole lake, with the fully scalable VEnKF.
NASA Astrophysics Data System (ADS)
Tzanis, Andreas
2013-02-01
The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures, etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets. This paper introduces a method to de-noise GPR data and extract geometric information from scale-and-dip dependent structural features, based on one-dimensional B-Spline Wavelets, two-dimensional directional B-Spline Wavelet (BSW) Filters and two-dimensional Gabor Filters. A directional BSW Filter is built by sidewise arranging s identical one-dimensional wavelets of length L, tapering the s-parallel direction (span) with a suitable window function and rotating the resulting matrix to the desired orientation. The length L of the wavelet defines the temporal and spatial scale to be isolated and the span determines the length over which to smooth (spatial resolution). The Gabor Filter is generated by multiplying an elliptical Gaussian by a complex plane wave; at any orientation the temporal or spatial scale(s) to be isolated are determined by the wavelength. λ of the plane wave and the spatial resolution by the spatial aspect ratio γ, which specifies the ellipticity of the support of the Gabor function. At any orientation, both types of filter may be tuned at any frequency or spatial wavenumber by varying the length or the wavelength respectively. The filters can be applied directly to two-dimensional radargrams, in which case they abstract information about given scales at given orientations. Alternatively, they can be rotated to different orientations under adaptive control, so that they remain tuned at a given frequency or wavenumber and the resulting images can be stacked in the LS sense, so as to obtain a complete representation of the input data at a given temporal or spatial scale. In addition to isolating geometrical information for further scrutiny, the proposed filtering methods can be used to enhance the S/N ratio in a manner particularly suitable for GPR data, because the frequency response of the filters mimics the frequency characteristics of the source wavelet. Finally, signal attenuation and temporal localization are closely associated: low attenuation interfaces tend to produce reflections rich in high frequencies and fine-scale localization as a function of time. Conversely, high attenuation interfaces will produce reflections rich in low frequencies and broad localization. Accordingly, the temporal localization characteristics of the filters may be exploited to investigate the characteristics of signal propagation (hence material properties). The method is shown to be very effective in extracting fine to coarse scale information from noisy data and is demonstrated with applications to noisy GPR data from archaeometric and geotechnical surveys.
NASA Astrophysics Data System (ADS)
Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael
2005-05-01
Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.
Microbial survey of a full-scale, biologically active filter for treatment of drinking water.
White, Colin P; Debry, Ronald W; Lytle, Darren A
2012-09-01
The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods.
Active imaging system with Faraday filter
Snyder, James J.
1993-01-01
An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.
Active imaging system with Faraday filter
Snyder, J.J.
1993-04-13
An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.
Abdul Aziz,, Siti Aishah; Mohd Saparudin, Abdul Khaliq; Harun, Ahmad Zaky
2013-01-01
Background: Different target-filter combinations in computed radiography have different impacts on the dose and image quality in digital radiography. This study aims to evaluate the mean glandular dose (MGD) and modulation transfer function (MTF) of various target-filter combinations by investigating the signal intensities of X-ray beams. Methods: General Electric (GE) Senographe DMR Plus mammography unit was used for MGD and MTF evaluation. The measured MGD was compared with the dose reference level (DRL), whereas the MTF was evaluated using ImageJ 1.46o software. A modified Mammography Accreditation Phantom RMI 156 was exposed using different target-filter combinations of molybdenum-molybdenum (Mo-Mo), molybdenum-rhodium (Mo-Rh) and rhodium-rhodium (Rh-Rh) at two different tube voltages, 26 kV and 32 kV with 50 mAs. Results: In the MGD evaluations, all target-filters gave an MGD value of < 1.5 mGy. The one-way ANOVA test showed a highly significant interaction between the MGD and the kilovoltage and target-filter material used (26 kV: F (2,12) = 49,234, P = 0.001;32 kV: F (2,12) = 89,972, P = 0.001). A Tukey post-hoc test revealed that the MGD for 26 kV and 32 kV was highly affected by the target-filter combinations. The test of homogeneity of variances indicates that the MGD varies significantly for 26 kV and 32 kV images (0.045 and 0.030 (P < 0.05), respectively). However, the one-way ANOVA for the MTF shows that no significant difference exists between the target-filter combinations used with 26 kV and 32 kV images either in parallel or perpendicular to the chest wall side F (2,189) = 0.26, P > 0.05). Conclusion: Higher tube voltage and atomic number target-filter yield higher MGD values. However, the MTF is independent of the X-ray energy and the type of target-filter combinations used. PMID:23966821
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming pool filtration, tobacco smoke filters, kitchen ventilators, medical filtration treatment, and odor absorbing materials. (Contains 250 citations and includes a subject term index and title list.)
Aldred, J R; Darling, E; Morrison, G; Siegel, J; Corsi, R L
2016-06-01
This study involved the development of a model for evaluating the potential costs and benefits of ozone control by activated carbon filtration in single-family homes. The modeling effort included the prediction of indoor ozone with and without activated carbon filtration in the HVAC system. As one application, the model was used to predict benefit-to-cost ratios for single-family homes in 12 American cities in five different climate zones. Health benefits were evaluated using disability-adjusted life-years and included city-specific age demographics for each simulation. Costs of commercially available activated carbon filters included capital cost differences when compared to conventional HVAC filters of similar particle removal efficiency, energy penalties due to additional pressure drop, and regional utility rates. The average indoor ozone removal effectiveness ranged from 4 to 20% across the 12 target cities and was largely limited by HVAC system operation time. For the parameters selected in this study, the mean predicted benefit-to-cost ratios for 1-inch filters were >1.0 in 10 of the 12 cities. The benefits of residential activated carbon filters were greatest in cities with high seasonal ozone and HVAC usage, suggesting the importance of targeting such conditions for activated carbon filter applications. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Illumination system for a projector composed of three LCD panels
NASA Astrophysics Data System (ADS)
Ho, Fang C.; Chu, Cheng-Wei; Lee, William
2004-10-01
A novel compound prism device consisting of a cubic polarizing beam splitter (PBS) and a non-polarizing dichroic prism is configured as the core component of the illumination unit of a full color projection display system of three pieces of reflective type liquid crystal imaging panels. When the in-coming light beam impinging on the PBS at 45 deg. of incidence, the beam component polarized perpendicularly to the plane of incidence is reflected and directed toward a LCD panel of red-image signal addressed after transmitted through a red-passing dichroic filter. The beam component polarized in parallel with the plane of incidence of the PBS is transmitted and passing through a red-cut dichroic filter. The rest portion of the light beam is then got the blue and green color bands separated by the dichroic filter at 30 deg. of incidence and directed to a blue and green signal addressed LCD panel respectively. All the dichroic filters are designed polarization independent and the PBS has a high contrast ratio of 1000 for the on/off states of teh addressed pixels of the image panels. The color separation and re-combination prism unit will provide a screen uniformity of d(u',v') <0.01 when it is accomodated in the projector with a projection lens assembly of F/#2.4.
Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal
NASA Astrophysics Data System (ADS)
Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen
2015-03-01
We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.
Miller, Arthur L; Drake, Pamela L; Murphy, Nathaniel C; Cauda, Emanuele G; LeBouf, Ryan F; Markevicius, Gediminas
Miners are exposed to silica-bearing dust which can lead to silicosis, a potentially fatal lung disease. Currently, airborne silica is measured by collecting filter samples and sending them to a laboratory for analysis. Since this may take weeks, a field method is needed to inform decisions aimed at reducing exposures. This study investigates a field-portable Fourier transform infrared (FTIR) method for end-of-shift (EOS) measurement of silica on filter samples. Since the method entails localized analyses, spatial uniformity of dust deposition can affect accuracy and repeatability. The study, therefore, assesses the influence of radial deposition uniformity on the accuracy of the method. Using laboratory-generated Minusil and coal dusts and three different types of sampling systems, multiple sets of filter samples were prepared. All samples were collected in pairs to create parallel sets for training and validation. Silica was measured by FTIR at nine locations across the face of each filter and the data analyzed using a multiple regression analysis technique that compared various models for predicting silica mass on the filters using different numbers of "analysis shots." It was shown that deposition uniformity is independent of particle type (kaolin vs. silica), which suggests the role of aerodynamic separation is negligible. Results also reflected the correlation between the location and number of shots versus the predictive accuracy of the models. The coefficient of variation (CV) for the models when predicting mass of validation samples was 4%-51% depending on the number of points analyzed and the type of sampler used, which affected the uniformity of radial deposition on the filters. It was shown that using a single shot at the center of the filter yielded predictivity adequate for a field method, (93% return, CV approximately 15%) for samples collected with 3-piece cassettes.
Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens
2015-01-01
In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 105 degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales. PMID:26590282
Fan beam image reconstruction with generalized Fourier slice theorem.
Zhao, Shuangren; Yang, Kang; Yang, Kevin
2014-01-01
For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N
Unscented Kalman Filter for Brain-Machine Interfaces
Li, Zheng; O'Doherty, Joseph E.; Hanson, Timothy L.; Lebedev, Mikhail A.; Henriquez, Craig S.; Nicolelis, Miguel A. L.
2009-01-01
Brain machine interfaces (BMIs) are devices that convert neural signals into commands to directly control artificial actuators, such as limb prostheses. Previous real-time methods applied to decoding behavioral commands from the activity of populations of neurons have generally relied upon linear models of neural tuning and were limited in the way they used the abundant statistical information contained in the movement profiles of motor tasks. Here, we propose an n-th order unscented Kalman filter which implements two key features: (1) use of a non-linear (quadratic) model of neural tuning which describes neural activity significantly better than commonly-used linear tuning models, and (2) augmentation of the movement state variables with a history of n-1 recent states, which improves prediction of the desired command even before incorporating neural activity information and allows the tuning model to capture relationships between neural activity and movement at multiple time offsets simultaneously. This new filter was tested in BMI experiments in which rhesus monkeys used their cortical activity, recorded through chronically implanted multielectrode arrays, to directly control computer cursors. The 10th order unscented Kalman filter outperformed the standard Kalman filter and the Wiener filter in both off-line reconstruction of movement trajectories and real-time, closed-loop BMI operation. PMID:19603074
Traitement directionnel d'images utilisant l'astigmatisme en lumiere incoherente
NASA Astrophysics Data System (ADS)
Bouchaud, P.; Gaggioli, N. G.
1982-05-01
If we observe a line drawn on any background through a cylindrical lens, it becomes practically invisible provided it is parallel to the axis of the cylinder. When the line is perpendicular to this direction, its remains perfectly contrasted. Using this simple principle, lines of any arbitrary direction can be filtered by suitable rotation of the lens or any other astigmatic system. Experiments have also been carried out with completely incoherent light.
An Annotated Bibliography on Tactical Map Display Symbology
1989-08-01
failure of attention to be focused on one element selectively in filtering tasks where only that one element was relevant to the discrimination. Failure of...The present study evaluates a class of models of human information processing made popular by Broadbent . A brief tachistoscopic display of one or two...213-219. Two experiments were performed to test Neisser’s two-stage model of recognition as applied to matching. Evidence of parallel processing was
Wang, Hongyu; He, Jiajie; Yang, Kai
2010-01-01
This study evaluated the partial nitrification performances of two biofilm filters over a synthetic non-ammonium-rich wastewater at a 20°C room temperature under both limited DO (∼2.0 mg/L) and unlimited DO (∼4.0 mg/L) conditions. The two filters were each of 80 cm long and used different biofilm carriers: activated carbon and ceramic granule. Results showed that partial nitrification was accomplished for both filters under the limited DO condition. However, the effluent NO(2)-N was higher in the ceramic granule filter than in the activated carbon filter, and was less susceptible to the influent COD/N changes. Further investigation into the water phase COD and NH(4)-N depth profiles and bacteria population within the two filters showed that by putting upper filter layer (upstream) to confront relatively higher influent COD/N ratios, the filtration process naturally put lower filter layers (downstream) relatively more favorable for nitrifying bacteria (ammonia oxidizing bacteria in this study) to prosper, making the filter depth left for nitrification a crucial factor for the effectiveness of nitrification with a filter. The potentially different porous flow velocities of the two filters might be the reason to cause their different partial nitrification performances, with a lower porous flow velocity (the ceramic granule filter) favoring partial nitrification more. In summation, DO, filter depth, and filtration speed should be played together to successfully operate a biofilm filter for partial nitrification.
Implementation of a partitioned algorithm for simulation of large CSI problems
NASA Technical Reports Server (NTRS)
Alvin, Kenneth F.; Park, K. C.
1991-01-01
The implementation of a partitioned numerical algorithm for determining the dynamic response of coupled structure/controller/estimator finite-dimensional systems is reviewed. The partitioned approach leads to a set of coupled first and second-order linear differential equations which are numerically integrated with extrapolation and implicit step methods. The present software implementation, ACSIS, utilizes parallel processing techniques at various levels to optimize performance on a shared-memory concurrent/vector processing system. A general procedure for the design of controller and filter gains is also implemented, which utilizes the vibration characteristics of the structure to be solved. Also presented are: example problems; a user's guide to the software; the procedures and algorithm scripts; a stability analysis for the algorithm; and the source code for the parallel implementation.
Hubble Sees Turquoise-Tinted Plumes in Large Magellanic Cloud
2017-12-08
The brightly glowing plumes seen in this image are reminiscent of an underwater scene, with turquoise-tinted currents and nebulous strands reaching out into the surroundings. However, this is no ocean. This image actually shows part of the Large Magellanic Cloud (LMC), a small nearby galaxy that orbits our galaxy, the Milky Way, and appears as a blurred blob in our skies. The NASA/European Space Agency (ESA) Hubble Space Telescope has peeked many times into this galaxy, releasing stunning images of the whirling clouds of gas and sparkling stars (opo9944a, heic1301, potw1408a). This image shows part of the Tarantula Nebula's outskirts. This famously beautiful nebula, located within the LMC, is a frequent target for Hubble (heic1206, heic1402). In most images of the LMC the color is completely different to that seen here. This is because, in this new image, a different set of filters was used. The customary R filter, which selects the red light, was replaced by a filter letting through the near-infrared light. In traditional images, the hydrogen gas appears pink because it shines most brightly in the red. Here however, other less prominent emission lines dominate in the blue and green filters. This data is part of the Archival Pure Parallel Project (APPP), a project that gathered together and processed over 1,000 images taken using Hubble’s Wide Field Planetary Camera 2, obtained in parallel with other Hubble instruments. Much of the data in the project could be used to study a wide range of astronomical topics, including gravitational lensing and cosmic shear, exploring distant star-forming galaxies, supplementing observations in other wavelength ranges with optical data, and examining star populations from stellar heavyweights all the way down to solar-mass stars. Image Credit: ESA/Hubble & NASA: acknowledgement: Josh Barrington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Code of Federal Regulations, 2012 CFR
2012-07-01
... the Act and in subpart A of this part. Cartridge filter means a discrete filter unit containing both filter paper and activated carbon that traps and removes contaminants from petroleum solvent, together... cleaning facility that uses petroleum solvent in a combination of washers, dryers, filters, stills, and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the Act and in subpart A of this part. Cartridge filter means a discrete filter unit containing both filter paper and activated carbon that traps and removes contaminants from petroleum solvent, together... cleaning facility that uses petroleum solvent in a combination of washers, dryers, filters, stills, and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the Act and in subpart A of this part. Cartridge filter means a discrete filter unit containing both filter paper and activated carbon that traps and removes contaminants from petroleum solvent, together... cleaning facility that uses petroleum solvent in a combination of washers, dryers, filters, stills, and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the Act and in subpart A of this part. Cartridge filter means a discrete filter unit containing both filter paper and activated carbon that traps and removes contaminants from petroleum solvent, together... cleaning facility that uses petroleum solvent in a combination of washers, dryers, filters, stills, and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... the Act and in subpart A of this part. Cartridge filter means a discrete filter unit containing both filter paper and activated carbon that traps and removes contaminants from petroleum solvent, together... cleaning facility that uses petroleum solvent in a combination of washers, dryers, filters, stills, and...
Shirey, T B; Thacker, R W; Olson, J B
2012-06-01
Granular activated carbon (GAC) is an alternative filter substrate for municipal water treatment as it provides a high surface area suitable for microbial colonization. The resulting microbial growth promotes biodegradation of organic materials and other contaminants from influent waters. Here, the community structure of the bacteria associated with three GAC and two anthracite filters was examined over 12 months to monitor changes in community composition. Nearly complete 16S rRNA genes were polymerase chain reaction amplified for terminal restriction fragment length polymorphism (T-RFLP) analyses. The identity of commonly occurring peaks was determined through the construction of five representative 16S rRNA clone libraries. Based on sequence analysis, the bacterial communities associated with both anthracite and GAC filters appear to be composed of environmentally derived bacteria, with no known human pathogens. Analysis of similarity tests revealed that significant differences in bacterial community structure occurred over time, with filter substrate playing an important role in determining community composition. GAC filters exhibited the greatest degree of bacterial community variability over the sampling period, while anthracite filters showed a lower degree of variability and less change in community composition. Thus, GAC may be a suitable biologically active filter substrate for the treatment of municipal drinking water.
Optimal Recursive Digital Filters for Active Bending Stabilization
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2013-01-01
In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.
Microbial Survey of a Full-Scale, Biologically Active Filter for Treatment of Drinking Water
DeBry, Ronald W.; Lytle, Darren A.
2012-01-01
The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods. PMID:22752177
Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1993-01-01
Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.
Optimal exposure techniques for iodinated contrast enhanced breast CT
NASA Astrophysics Data System (ADS)
Glick, Stephen J.; Makeev, Andrey
2016-03-01
Screening for breast cancer using mammography has been very successful in the effort to reduce breast cancer mortality, and its use has largely resulted in the 30% reduction in breast cancer mortality observed since 1990 [1]. However, diagnostic mammography remains an area of breast imaging that is in great need for improvement. One imaging modality proposed for improving the accuracy of diagnostic workup is iodinated contrast-enhanced breast CT [2]. In this study, a mathematical framework is used to evaluate optimal exposure techniques for contrast-enhanced breast CT. The ideal observer signal-to-noise ratio (i.e., d') figure-of-merit is used to provide a task performance based assessment of optimal acquisition parameters under the assumptions of a linear, shift-invariant imaging system. A parallel-cascade model was used to estimate signal and noise propagation through the detector, and a realistic lesion model with iodine uptake was embedded into a structured breast background. Ideal observer performance was investigated across kVp settings, filter materials, and filter thickness. Results indicated many kVp spectra/filter combinations can improve performance over currently used x-ray spectra.
Characterization of soluble microbial products in a drinking water biological aerated filter.
Kang, Jia; Ma, Teng-Fei; Zhang, Peng; Gao, Xu; Chen, You-Peng
2016-05-01
Utilization-associated products (UAPs) and biomass-associated products (BAPs) were quantified separately in this study to characterize soluble microbial products (SMPs) in a drinking water lab-scale biological aerated filter (BAF), and their basic characteristics were explored using gel filtration chromatography and three-dimensional excitation-emission matrix (3D-EEM) spectrophotometry with fluorescence regional integration analysis and parallel factor model. UAPs were observed increased with the increase of filter media depth and accumulated after BAF treatment, whereas BAPs were basically constant. 3D-EEM spectroscopy analysis result showed that tryptophan and protein-like compounds were the main components of UAPs and BAPs, and fulvic-acid-like substance was a major component of BAPs, rather than UAPs. In terms of molecular weight (MW) distribution, UAP MW presented a bimodal distribution in the range of 1-5 and >10 kDa, while BAP MW exhibited unimodal distribution with MW >20 kDa fraction accounting for more than 90 %. The macromolecules of UAPs accumulated after BAF treatment. This study provides theoretical support for in-depth study of SMP characteristics.
Inactivation of indigenous coliform bacteria in unfiltered surface water by ultraviolet light.
Cantwell, Raymond E; Hofmann, Ron
2008-05-01
This study examined the potential for naturally occurring particles to protect indigenous coliform from ultraviolet (UV) disinfection in four surface waters. Tailing in the UV dose-response curve of the bacteria was observed in 3 of the 4 water samples after 1.3-2.6-log of log-linear inactivation, implying particle-related protection. The impact of particles was confirmed by comparing coliform UV inactivation data for parallel filtered (11 microm pore-size nylon filters) and unfiltered surface water. In samples from the Grand River (UVT: 65%/cm; 5.4 nephelometric turbidity units (NTU)) and the Rideau Canal (UVT: 60%/cm; 0.84 NTU), a limit of approximately 2.5 log inactivation was achieved in the unfiltered samples for a UV dose of 20 mJ/cm2 while both the filtered samples exhibited >3.4-log inactivation of indigenous coliform bacteria. The results suggest that particles as small as 11 microm, naturally found in surface water with low turbidity (<3NTU), are able to harbor indigenous coliform bacteria and offer protection from low-pressure UV light.
Van Kessel, J S; Karns, J S; Wolfgang, D R; Hovingh, E; Jayarao, B M; Van Tassell, C P; Schukken, Y H
2008-10-01
Although dairy cattle are known reservoirs for salmonellae, cattle that are shedding this organism are often asymptomatic and difficult to identify. A dairy herd that was experiencing a sustained, subclinical outbreak of Salmonella enterica subsp. enterica Cerro was monitored for 2 years. Fecal samples from the lactating cows were collected every 6 to 8 weeks and tested for the presence of Salmonella. Fecal prevalence of Salmonella fluctuated throughout the observation period and ranged from 8 to 88%. Manure composites and water trough samples were collected along with the fecal samples, and bulk milk and milk filters were cultured for the presence of Salmonella on a weekly basis. Over 90% of the manure composites--representing high-animal-traffic areas-were positive at each sampling. Salmonella was detected in 11% of milk samples and in 66% of the milk filters. Results of weekly bulk milk quality testing (i.e., bulk tank somatic cell score, standard plate count, preliminary incubation count) were typically well within acceptable ranges. Milk quality variables had low correlations with herd Salmonella fecal prevalence. When observed over time, sampling period average prevalence of Salmonella in milk filters closely paralleled fecal prevalence of Salmonella in the herd. Based on results of this study, milk filters appear to be an effective method for monitoring shedding prevalence at the herd level. In-line filter testing is also a more sensitive measure of Salmonella, and perhaps other pathogens, in raw milk than testing the milk alone.
Critically safe vacuum pickup for use in wet or dry cleanup of radioactive materials
Zeren, Joseph D.
1994-01-01
A vacuum pickup of critically safe quantity and geometric shape is used in cleanup of radioactive materials. Collected radioactive material is accumulated in four vertical, parallel, equally spaced canisters arranged in a cylinder configuration. Each canister contains a filter bag. An upper intake manifold includes four 90 degree spaced, downward facing nipples. Each nipple communicates with the top of a canister. The bottom of each canister communicates with an exhaust manifold comprising four radially extending tubes that meet at the bottom of a centrally located vertical cylinder. The top of the central cylinder terminates at a motor/fan power head. A removable HEPA filter is located intermediate the top of the central cylinder and the power head. Four horizontal bypass tubes connect the top of the central cylinder to the top of each of the canisters. Air enters the vacuum cleaner via a hose connected to the intake manifold. Air then travels down the canisters, where particulate material is accumulated in generally equal quantities in each filter bag. Four air paths of bag filtered air then pass radially inward to the bottom of the central cylinder. Air moves up the central cylinder, through the HEPA filter, through a vacuum fan compartment, and exits the vacuum cleaner. A float air flow valve is mounted at the top of the central cylinder. When liquid accumulates to a given level within the central cylinder, the four bypass tubes, and the four canisters, suction is terminated by operation of the float valve.
Tronstad, Christian; Staal, Odd M; Saelid, Steinar; Martinsen, Orjan G
2015-08-01
Measurement of electrodermal activity (EDA) has recently made a transition from the laboratory into daily life with the emergence of wearable devices. Movement and nongelled electrodes make these devices more susceptible to noise and artifacts. In addition, real-time interpretation of the measurement is needed for user feedback. The Kalman filter approach may conveniently deal with both these issues. This paper presents a biophysical model for EDA implemented in an extended Kalman filter. Employing the filter on data from Physionet along with simulated noise and artifacts demonstrates noise and artifact suppression while implicitly providing estimates of model states and parameters such as the sudomotor nerve activation.
Wave-filter-based approach for generation of a quiet space in a rectangular cavity
NASA Astrophysics Data System (ADS)
Iwamoto, Hiroyuki; Tanaka, Nobuo; Sanada, Akira
2018-02-01
This paper is concerned with the generation of a quiet space in a rectangular cavity using active wave control methodology. It is the purpose of this paper to present the wave filtering method for a rectangular cavity using multiple microphones and its application to an adaptive feedforward control system. Firstly, the transfer matrix method is introduced for describing the wave dynamics of the sound field, and then feedforward control laws for eliminating transmitted waves is derived. Furthermore, some numerical simulations are conducted that show the best possible result of active wave control. This is followed by the derivation of the wave filtering equations that indicates the structure of the wave filter. It is clarified that the wave filter consists of three portions; modal group filter, rearrangement filter and wave decomposition filter. Next, from a numerical point of view, the accuracy of the wave decomposition filter which is expressed as a function of frequency is investigated using condition numbers. Finally, an experiment on the adaptive feedforward control system using the wave filter is carried out, demonstrating that a quiet space is generated in the target space by the proposed method.
CMOS analog switches for adaptive filters
NASA Technical Reports Server (NTRS)
Dixon, C. E.
1980-01-01
Adaptive active low-pass filters incorporate CMOS (Complimentary Metal-Oxide Semiconductor) analog switches (such as 4066 switch) that reduce variation in switch resistance when filter is switched to any selected transfer function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming-pool filtration, tobacco-smoke filters, kitchen ventilators, medical filtration treatment, and odor-absorbing materials. (This updated bibliography contains 173 citations, 12 of which are new entries to the previous edition.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking-water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming-pool filtration, tobacco-smoke filters, kitchen ventilators, medical-filtration treatment, and odor absorbing materials. (This updated bibliography contains 161 citations, 32 of which are new entries to the previous edition.)
Orthonormal filters for identification in active control systems
NASA Astrophysics Data System (ADS)
Mayer, Dirk
2015-12-01
Many active noise and vibration control systems require models of the control paths. When the controlled system changes slightly over time, adaptive digital filters for the identification of the models are useful. This paper aims at the investigation of a special class of adaptive digital filters: orthonormal filter banks possess the robust and simple adaptation of the widely applied finite impulse response (FIR) filters, but at a lower model order, which is important when considering implementation on embedded systems. However, the filter banks require prior knowledge about the resonance frequencies and damping of the structure. This knowledge can be supposed to be of limited precision, since in many practical systems, uncertainties in the structural parameters exist. In this work, a procedure using a number of training systems to find the fixed parameters for the filter banks is applied. The effect of uncertainties in the prior knowledge on the model error is examined both with a basic example and in an experiment. Furthermore, the possibilities to compensate for the imprecise prior knowledge by a higher filter order are investigated. Also comparisons with FIR filters are implemented in order to assess the possible advantages of the orthonormal filter banks. Numerical and experimental investigations show that significantly lower computational effort can be reached by the filter banks under certain conditions.
Practical Active Capacitor Filter
NASA Technical Reports Server (NTRS)
Shuler, Robert L., Jr. (Inventor)
2005-01-01
A method and apparatus is described that filters an electrical signal. The filtering uses a capacitor multiplier circuit where the capacitor multiplier circuit uses at least one amplifier circuit and at least one capacitor. A filtered electrical signal results from a direct connection from an output of the at least one amplifier circuit.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
...; cable clamps; locks; belts; O-rings; sealing gaskets; support packages; filter bags; disposable bags; assembly bags; dust bags; maintenance packs; paper bags; dirt tube kits; paper adaptor bags; filters...; wire racks; bake pans; pizza pans; coffee water filters; water filters; base assemblies; dust cup...
Martínez-Guitarte, José-Luis
2018-03-01
Ultraviolet (UV) filters are compounds used to prevent the damage produced by UV radiation in personal care products, plastics, etc. They have been associated with endocrine disruption, showing anti-estrogen activity in vertebrates and altering the ecdysone pathway in invertebrates. Although they have attracted the attention of multiple research teams there is a lack of data about how animals activate detoxification systems, especially in invertebrates. Here, analysis of the effects of two UV filters, benzophenone-3 (BP3) and 4-methylbenzylidene camphor (4MBC), on the transcriptional activity of nine genes covering the three steps of the detoxification process has been performed. Four cytochrome P450 genes belonging to different members of this family, five GST genes, and the multidrug resistance protein 1 (MRP1) gene were studied by RT-PCR to analyze their transcriptional activity in fourth instar larvae exposed to the UV filters for 8 and 24h. The obtained results show a differential response with downregulation of the different Cyp450s tested by 4MBC while BP3 seems not to modify their expression. On the other hand, some of the GST genes were affected by one or other of the filters, showing a less homogenous response. Finally, MRP1 was activated by both filters but at different times. These results demonstrate for first time that UV filters alter the expression of genes involved in the different steps of the detoxification process and that they can be processed by phase I enzymes other than Cyp450s. They also suggest that UV filters affect biotransformation processes, compromising the ability of the individual to respond to chemical stress, so further research is needed to know the extent of the damage that they can produce in the resistance of the cell to chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.
A comparative analysis of signal processing methods for motion-based rate responsive pacing.
Greenhut, S E; Shreve, E A; Lau, C P
1996-08-01
Pacemakers that augment heart rate (HR) by sensing body motion have been the most frequently prescribed rate responsive pacemakers. Many comparisons between motion-based rate responsive pacemaker models have been published. However, conclusions regarding specific signal processing methods used for rate response (e.g., filters and algorithms) can be affected by device-specific features. To objectively compare commonly used motion sensing filters and algorithms, acceleration and ECG signals were recorded from 16 normal subjects performing exercise and daily living activities. Acceleration signals were filtered (1-4 or 15-Hz band-pass), then processed using threshold crossing (TC) or integration (IN) algorithms creating four filter/algorithm combinations. Data were converted to an acceleration indicated rate and compared to intrinsic HR using root mean square difference (RMSd) and signed RMSd. Overall, the filters and algorithms performed similarly for most activities. The only differences between filters were for walking at an increasing grade (1-4 Hz superior to 15-Hz) and for rocking in a chair (15-Hz superior to 1-4 Hz). The only differences between algorithms were for bicycling (TC superior to IN), walking at an increasing grade (IN superior to TC), and holding a drill (IN superior to TC). Performance of the four filter/algorithm combinations was also similar over most activities. The 1-4/IN (filter [Hz]/algorithm) combination performed best for walking at a grade, while the 15/TC combination was best for bicycling. However, the 15/TC combination tended to be most sensitive to higher frequency artifact, such as automobile driving, downstairs walking, and hand drilling. Chair rocking artifact was highest for 1-4/IN. The RMSd for bicycling and upstairs walking were large for all combinations, reflecting the nonphysiological nature of the sensor. The 1-4/TC combination demonstrated the least intersubject variability, was the only filter/algorithm combination insensitive to changes in footwear, and gave similar RMSd over a large range of amplitude thresholds for most activities. In conclusion, based on overall error performance, the preferred filter/algorithm combination depended upon the type of activity.
Real-time acquisition and tracking system with multiple Kalman filters
NASA Astrophysics Data System (ADS)
Beard, Gary C.; McCarter, Timothy G.; Spodeck, Walter; Fletcher, James E.
1994-07-01
The design of a real-time, ground-based, infrared tracking system with proven field success in tracking boost vehicles through burnout is presented with emphasis on the software design. The system was originally developed to deliver relative angular positions during boost, and thrust termination time to a sensor fusion station in real-time. Autonomous target acquisition and angle-only tracking features were developed to ensure success under stressing conditions. A unique feature of the system is the incorporation of multiple copies of a Kalman filter tracking algorithm running in parallel in order to minimize run-time. The system is capable of updating the state vector for an object at measurement rates approaching 90 Hz. This paper will address the top-level software design, details of the algorithms employed, system performance history in the field, and possible future upgrades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spataru, Sergiu; Hacke, Peter; Sera, Dezso
A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potentialmore » for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.« less
A spin filter transistor made of topological Weyl semimetal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhangsheng; Wang, Maoji; Wu, Jiansheng, E-mail: wujs@sustc.edu.cn
2015-09-07
Topological boundary states (TBSs) in Weyl semimetal (WSM) thin film can induce tunneling. Such TBSs are spin polarized inducing spin-polarized current, which can be used to build a spin-filter transistor (SFT) in spintronics. The WSM thin film can be viewed as a series of decoupled quantum anomalous Hall insulator (QAHI) wires connected in parallel, so compared with the proposed SFT made of QAHI nanowire, this SFT has a broader working energy region and easier to be manipulated. And within a narrow region outside this energy domain, the 2D WSM is with very low conductance, so it makes a good on/offmore » switch device with controllable chemical potential induced by liquid ion gate. We also construct a loop device made of 2D WSM with inserted controllable flux to control the polarized current.« less
JPL Activated Carbon Treatment System (ACTS) for sewage
NASA Technical Reports Server (NTRS)
1976-01-01
An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.
Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna
2013-10-08
The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.
Investigating the Use of the Intel Xeon Phi for Event Reconstruction
NASA Astrophysics Data System (ADS)
Sherman, Keegan; Gilfoyle, Gerard
2014-09-01
The physics goal of Jefferson Lab is to understand how quarks and gluons form nuclei and it is being upgraded to a higher, 12-GeV beam energy. The new CLAS12 detector in Hall B will collect 5-10 terabytes of data per day and will require considerable computing resources. We are investigating tools, such as the Intel Xeon Phi, to speed up the event reconstruction. The Kalman Filter is one of the methods being studied. It is a linear algebra algorithm that estimates the state of a system by combining existing data and predictions of those measurements. The tools required to apply this technique (i.e. matrix multiplication, matrix inversion) are being written using C++ intrinsics for Intel's Xeon Phi Coprocessor, which uses the Many Integrated Cores (MIC) architecture. The Intel MIC is a new high-performance chip that connects to a host machine through the PCIe bus and is built to run highly vectorized and parallelized code making it a well-suited device for applications such as the Kalman Filter. Our tests of the MIC optimized algorithms needed for the filter show significant increases in speed. For example, matrix multiplication of 5x5 matrices on the MIC was able to run up to 69 times faster than the host core. The physics goal of Jefferson Lab is to understand how quarks and gluons form nuclei and it is being upgraded to a higher, 12-GeV beam energy. The new CLAS12 detector in Hall B will collect 5-10 terabytes of data per day and will require considerable computing resources. We are investigating tools, such as the Intel Xeon Phi, to speed up the event reconstruction. The Kalman Filter is one of the methods being studied. It is a linear algebra algorithm that estimates the state of a system by combining existing data and predictions of those measurements. The tools required to apply this technique (i.e. matrix multiplication, matrix inversion) are being written using C++ intrinsics for Intel's Xeon Phi Coprocessor, which uses the Many Integrated Cores (MIC) architecture. The Intel MIC is a new high-performance chip that connects to a host machine through the PCIe bus and is built to run highly vectorized and parallelized code making it a well-suited device for applications such as the Kalman Filter. Our tests of the MIC optimized algorithms needed for the filter show significant increases in speed. For example, matrix multiplication of 5x5 matrices on the MIC was able to run up to 69 times faster than the host core. Work supported by the University of Richmond and the US Department of Energy.
NASA Astrophysics Data System (ADS)
Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar
2016-12-01
This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.
A GPU-Parallelized Eigen-Based Clutter Filter Framework for Ultrasound Color Flow Imaging.
Chee, Adrian J Y; Yiu, Billy Y S; Yu, Alfred C H
2017-01-01
Eigen-filters with attenuation response adapted to clutter statistics in color flow imaging (CFI) have shown improved flow detection sensitivity in the presence of tissue motion. Nevertheless, its practical adoption in clinical use is not straightforward due to the high computational cost for solving eigendecompositions. Here, we provide a pedagogical description of how a real-time computing framework for eigen-based clutter filtering can be developed through a single-instruction, multiple data (SIMD) computing approach that can be implemented on a graphical processing unit (GPU). Emphasis is placed on the single-ensemble-based eigen-filtering approach (Hankel singular value decomposition), since it is algorithmically compatible with GPU-based SIMD computing. The key algebraic principles and the corresponding SIMD algorithm are explained, and annotations on how such algorithm can be rationally implemented on the GPU are presented. Real-time efficacy of our framework was experimentally investigated on a single GPU device (GTX Titan X), and the computing throughput for varying scan depths and slow-time ensemble lengths was studied. Using our eigen-processing framework, real-time video-range throughput (24 frames/s) can be attained for CFI frames with full view in azimuth direction (128 scanlines), up to a scan depth of 5 cm ( λ pixel axial spacing) for slow-time ensemble length of 16 samples. The corresponding CFI image frames, with respect to the ones derived from non-adaptive polynomial regression clutter filtering, yielded enhanced flow detection sensitivity in vivo, as demonstrated in a carotid imaging case example. These findings indicate that the GPU-enabled eigen-based clutter filtering can improve CFI flow detection performance in real time.
Performance index: A method for quantitative evaluation of filters used in clinical SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contino, J.; Touya, J.J.; Corbus, H.F.
1984-01-01
The purpose of this study was to design a method for optimal filter selection during the reconstruction of clinical SPECT images. Hamming, Bartlett, Parzen and Butterworth filters were evaluated at different cutoff frequencies when applied to reconstruction of the Jaszczak phantom and liver SPECTs. The phantom filled with 6 mCi of Tc-99m was imaged following 4 different protocols which varied in matrix sizes (128 x 128 or 64 x 64) and in number of steps (128 or 64). Total imaging time in the 4 protocols was 24 minutes. A total of 160 reconstructions were analyzed. Liver SPECTs from 2 patientsmore » with small metastatic lesions from colon Ca were similarly studied. An ECT Performance Index (ECT PI) was defined as the product of the contrast efficiency function (ECT C) and uniformity (ECT U). ECT C as a function of the radius was measured following Rollo's approach. ECT U was measured as the ratio between min. and max. counts per pixel in a known uniform region. ECT PI was computed on a slice through the void spheres region of the phantom. In liver SPECTs the ECT U was measured over the spleen. The most favorable ECT PI (0.35, radius 7.9 mm) was obtained with images in 128 x 128 matrices, 128 steps, processed with a Butterworth cutoff frequency of 0.19, filter order 4. When images were acquired in 64 x 64 matrices using 64 steps the ECT PI was lower and influenced to a lesser degree by both choice of filter and cutoff frequency. Results in the two liver SPECT examinations were parallel to those found in the phantom studies confirming the clinical usefulness of the ECT PI in the evaluation of filters for reconstruction of SPECT images.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... assemblies; oil/fuel filters; air/oil separation equipment; air filters/elements; catalytic converters... assemblies; AC line filters; dielectric items of paper/plastic; capacitors; circuit breakers; switching...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.M.; Finnegan, D.L.; Zoller, W.H.
1987-12-10
Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (/sup 7/LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 daysmore » after episode 11 (cooling vent samples) and (2) the stage of episode 13 (active vent samples).« less
Ferraz, Aline S; Belo, Elza F T; Coutinho, Ligia M C C; Oliveira, Ana P; Carmo, Andréia M S; Franco, Daniele L; Ferreira, Tatiane; Yto, André Y; Machado, Marta S F; Scola, Monica C G; De Gaspari, Elizabeth
2008-03-06
A simple filter paper method was developed for, the transport and storage of monoclonal antibodies (Mabs) at room temperature or -20 degrees C after spotting on filter paper, for subsequent serotyping of outer membrane antigens of N.meningitidis by dot-blot ELISA. Monoclonal antibodies (Mabs) were spotted within a 0.5-1 cm diameter area of Whatman grade 903 paper, which were stored individually at room temperature or at -20 degrees C. These MAbs were stored and analyzed after periods of one week, 4 weeks, 12 months, or 13 years in the case of frozen Mab aliquots, or after 4 weeks at -20 degrees C or at room temperature (RT) in the case of Mabs dried on filter paper strips. Assays were performed in parallel using dot-blot ELISA. In addition to the MAbs specific for serotyping class 1, 2 or 3, we used a larger number of Mabs for polysaccharides, lipooligosaccharides (LOS), class 5 and cross-reactive antigens for native outer membrane of N.meningitidis. The Mabs dried on filter paper were eluted with phosphate-buffered saline (PBS) containing 0.2% gelatin. Mabs of the isotypes IgG and IgM dried on filter papers were not affected by duration of storage. The detection by serotyping Mabs was generally consistent for dried filter paper MAb samples stored frozen for over 1 year at -20 degrees C, and although decreased reactive antibody titers were found after storage, this did not interfere with the specificity of the Mabs used after 13 years as dry spots on filter paper. The use of filter paper is an inexpensive and convenient method for collecting, storing, and transporting Mab samples for serotyping studies. In addition, the samples occupy little space and can be readily transported without freezing. The efficiency of using immunoglobulin G (IgG) or M (IgM) eluted was found to be consistent with measurement of IgG or IgM titers in most corresponding, ascites Mabs stored frozen for over 1 year. The application of meningococcal typing methods and designations depend on the question being asked.
Kaliyadan, Antony G; Chawla, Harnish; Fischman, David L; Ruggiero, Nicholas; Gannon, Michael; Walinsky, Paul; Savage, Michael P
2017-02-01
This study assessed the impact of adjunct delivery techniques on the deployment success of distal protection filters in saphenous vein grafts (SVGs). Despite their proven clinical benefit, distal protection devices are underutilized in SVG interventions. Deployment of distal protection filters can be technically challenging in the presence of complex anatomy. Techniques that facilitate the delivery success of these devices could potentially improve clinical outcomes and promote greater use of distal protection. Outcomes of 105 consecutive SVG interventions with attempted use of a FilterWire distal protection device (Boston Scientific) were reviewed. In patients in whom filter delivery initially failed, the success of attempted redeployment using adjunct delivery techniques was assessed. Two strategies were utilized sequentially: (1) a 0.014" moderate-stiffness hydrophilic guidewire was placed first to function as a parallel buddy wire to support subsequent FilterWire crossing; and (2) if the buddy-wire approach failed, predilation with a 2.0 mm balloon at low pressure was performed followed by reattempted filter delivery. The study population consisted of 80 men and 25 women aged 73 ± 10 years. Mean SVG age was 14 ± 6 years. Complex disease (American College of Cardiology/American Heart Association class B2 or C) was present in 92%. Initial delivery of the FilterWire was successful in 82/105 patients (78.1%). Of the 23 patients with initial failed delivery, 8 (35%) had successful deployment with a buddy wire alone, 7 (30%) had successful deployment with balloon predilation plus buddy wire, 4 (17%) had failed reattempt at deployment despite adjunct maneuvers, and in 4 (17%) no additional attempts at deployment were made at the operator's discretion. Deployment failure was reduced from 21.9% initially to 7.6% after use of adjunct delivery techniques (P<.01). No adverse events were observed with these measures. Deployment of distal protection devices can be technically difficult with complex SVG disease. Adjunct delivery techniques are important to optimize deployment success of distal protection filters during SVG intervention.
Parallel Vision Algorithm Design and Implementation 1988 End of Year Report
1989-08-01
as a local operation, the provided C code used raster order processing to speed up execution time. This made it impossible to implement the code using...Apply, which does not allow the programmer to take advantage of raster order processing . Therefore, the 5x5 median filter algorithm was a straight...possible to exploit raster- order processing in W2, giving greater efficiency. The first advantage is the reason that connected components and the Hough
A Parallel Hypothesis Method of Autonomous Underwater Vehicle Navigation
2009-06-01
that is a hybrid of instantaneous and filtered localization methods. As discussed in Smith’s text on mathematical modeling and digital simulation ...rich in acoustic multipaths. The method was extended, in simulation , to other shallow water environments which could also be expected to be rich in...and the observed water depth profile is shown in Figure 6-17. The ABE164 survey dive ended early because ABE became entangled in a piece of 1/4
Development of Nano Plasmonic Structures for Multispectral IR Filters
the polarization is parallel to the short ridge of the rectangle hole, it yields high optical transmission. The hole aspects are very important to the...Cross-shaped-hole arrays (CSHAs) are selected3 to diminish the polarization-dependent transmission differences of incident plane waves. The transmission...for the CSHA are set to 280nm and 50nm for period of 350nm, respectively; and the thicknesses of the metal films are set to 100nm. We varied the
The Design and Performance Characteristics of a Cellular Logic 3-D Image Classification Processor.
1981-04-01
34 AGARD Proc. No. 94 on Artificiel Intelligence , 217: 1-13 (1971) 7. Golay, Marcel J. E. "Hexagonal Parallel Pattern Transformations." IEEE Trans. on...nonrandom nature of the data and features must be understood in order to intelligently select a reasonable three-dimensional noise filter. This completes...tactical targets which are located hundreds of meters away and are controlled and disguised by equally intelligent human beings, the difficulty of the
Abbasi, Fereshteh; Engheta, Nader
2014-10-20
The concept of metamaterial-inspired nanocircuits, dubbed metatronics, was introduced in [Science 317, 1698 (2007); Phys. Rev. Lett. 95, 095504 (2005)]. It was suggested how optical lumped elements (nanoelements) can be made using subwavelength plasmonic or non-plasmonic particles. As a result, the optical metatronic equivalents of a number of electronic circuits, such as frequency mixers and filters, were suggested. In this work we further expand the concept of electronic lumped element networks into optical metatronic circuits and suggest a conceptual model applicable to various metatronic passive networks. In particular, we differentiate between the series and parallel networks using epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials. We employ layered structures with subwavelength thicknesses for the nanoelements as the building blocks of collections of metatronic networks. Furthermore, we explore how by choosing the non-zero constitutive parameters of the materials with specific dispersions, either Drude or Lorentzian dispersion with suitable parameters, capacitive and inductive responses can be achieved in both series and parallel networks. Next, we proceed with the one-to-one analogy between electronic circuits and optical metatronic filter layered networks and justify our analogies by comparing the frequency response of the two paradigms. Finally, we examine the material dispersion of near-zero relative permittivity as well as other physically important material considerations such as losses.
Rausch, Tobias; Thomas, Alun; Camp, Nicola J.; Cannon-Albright, Lisa A.; Facelli, Julio C.
2008-01-01
This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms (GA) to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene-gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene-gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise. PMID:18547558
Brazilian academic search filter: application to the scientific literature on physical activity.
Sanz-Valero, Javier; Ferreira, Marcos Santos; Castiel, Luis David; Wanden-Berghe, Carmina; Guilam, Maria Cristina Rodrigues
2010-10-01
To develop a search filter in order to retrieve scientific publications on physical activity from Brazilian academic institutions. The academic search filter consisted of the descriptor "exercise" associated through the term AND, to the names of the respective academic institutions, which were connected by the term OR. The MEDLINE search was performed with PubMed on 11/16/2008. The institutions were selected according to the classification from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for interuniversity agreements. A total of 407 references were retrieved, corresponding to about 0.9% of all articles about physical activity and 0.5% of the Brazilian academic publications indexed in MEDLINE on the search date. When compared with the manual search undertaken, the search filter (descriptor + institutional filter) showed a sensitivity of 99% and a specificity of 100%. The institutional search filter showed high sensitivity and specificity, and is applicable to other areas of knowledge in health sciences. It is desirable that every Brazilian academic institution establish its "standard name/brand" in order to efficiently retrieve their scientific literature.
High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors
Kim, Sungho
2015-01-01
This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448
NASA Astrophysics Data System (ADS)
Wang, Yang; Wang, Qianqian
2008-12-01
When laser ranger is transported or used in field operations, the transmitting axis, receiving axis and aiming axis may be not parallel. The nonparallelism of the three-light-axis will affect the range-measuring ability or make laser ranger not be operated exactly. So testing and adjusting the three-light-axis parallelity in the production and maintenance of laser ranger is important to ensure using laser ranger reliably. The paper proposes a new measurement method using digital image processing based on the comparison of some common measurement methods for the three-light-axis parallelity. It uses large aperture off-axis paraboloid reflector to get the images of laser spot and white light cross line, and then process the images on LabVIEW platform. The center of white light cross line can be achieved by the matching arithmetic in LABVIEW DLL. And the center of laser spot can be achieved by gradation transformation, binarization and area filter in turn. The software system can set CCD, detect the off-axis paraboloid reflector, measure the parallelity of transmitting axis and aiming axis and control the attenuation device. The hardware system selects SAA7111A, a programmable vedio decoding chip, to perform A/D conversion. FIFO (first-in first-out) is selected as buffer.USB bus is used to transmit data to PC. The three-light-axis parallelity can be achieved according to the position bias between them. The device based on this method has been already used. The application proves this method has high precision, speediness and automatization.
Yorioka, Katsuhiro; Oie, Shigeharu; Hayashi, Koji; Kimoto, Hiroo; Furukawa, Hiroyuki
2016-06-01
Although microbial contamination of ice machines has been reported, no previous study has addressed microbial contamination of ice produced by machines equipped with activated charcoal (AC) filters in hospitals. The aim of this study was to provide clinical data for evaluating AC filters to prevent microbial contamination of ice. We compared microbial contamination in ice samples produced by machines with (n = 20) and without an AC filter (n = 40) in Shunan City Shinnanyo Municipal Hospital. All samples from the ice machine equipped with an AC filter contained 10-116 CFUs/g of glucose nonfermenting gram-negative bacteria such as Pseudomonas aeruginosa and Chryseobacterium meningosepticum. No microorganisms were detected in samples from ice machines without AC filters. After the AC filter was removed from the ice machine that tested positive for Gram-negative bacteria, the ice was resampled (n = 20). Analysis found no contaminants. Ice machines equipped with AC filters pose a serious risk factor for ice contamination. New filter-use guidelines and regulations on bacterial detection limits to prevent contamination of ice in healthcare facilities are necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, D. E.
2002-02-28
High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications.more » Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications.« less
The Environmental Assessment and Management (TEAM) Guide: New York Supplement
2010-03-01
pressure-sensitive tape regardless of substance (including paper , fabric or plastic film) and related web coating processes on plastic film such as...Cartridge Filter - a replaceable cartridge filter that contains one of the following as the filter medium: paper , activated carbon, or paper and activated...associated drying or curing areas. A single coating line ends after drying or curing and before other surface coatings are applied. For any web
Characterization of Filters Loaded With Reactor Strontium Carbonate - 13203
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephson, Walter S.; Steen, Franciska H.
A collection of three highly radioactive filters containing reactor strontium carbonate were being prepared for disposal. All three filters were approximately characterized at the time of manufacture by gravimetric methods. The first filter had been partially emptied, and the quantity of residual activity was uncertain. Dose rate to activity modeling using the Monte-Carlo N Particle (MCNP) code was selected to confirm the gravimetric characterization of the full filters, and to fully characterize the partially emptied filter. Although dose rate to activity modeling using MCNP is a common technique, it is not often used for Bremsstrahlung-dominant materials such as reactor strontium.more » As a result, different MCNP modeling options were compared to determine the optimum approach. This comparison indicated that the accuracy of the results were heavily dependent on the MCNP modeling details and the location of the dose rate measurement point. The optimum model utilized a photon spectrum generated by the Oak Ridge Isotope Generation and Depletion (ORIGEN) code and dose rates measured at 30 cm. Results from the optimum model agreed with the gravimetric estimates within 15%. It was demonstrated that dose rate to activity modeling can be successful for Bremsstrahlung-dominant radioactive materials. However, the degree of success is heavily dependent on the choice of modeling techniques. (authors)« less
Sundberg, C; Tonderski, K; Lindgren, P E
2007-01-01
Constructed wetlands can be used to decrease the high ammonium concentrations in landfill leachates. We investigated nitrification/denitrification activity and the corresponding bacterial communities in landfill leachate that was treated in a compact constructed wetland, Tveta Recycling Facility, Sweden. Samples were collected at three depths in a filter bed and the sediment from a connected open pond in July, September and November 2004. Potential ammonia oxidation was measured by short-term incubation method and potential denitrification by the acetylene inhibition technique. The ammonia-oxidising and the denitrifying bacterial communities were investigated using group-specific PCR primers targeting 16S rRNA genes and the functional gene nosZ, respectively. PCR products were analysed by denaturing gradient gel electrophoresis and nucleotide sequencing. The same degree of nitrification activity was observed in the pond sediment and at all levels in the filter bed, whereas the denitrification activity decreased with filter bed depth. Denitrification rates were higher in the open pond, even though the denitrifying bacterial community was more diverse in the filter bed. The ammonia-oxidising community was also more varied in the filter bed. In the filter bed and the open pond, there was no obvious relationship between the nitrification/denitrification activities and the composition of the corresponding bacterial communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This bibliography contains citations of selected patents concerning activated-charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic gases and pollutants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, swimming pool filtration, waste conversion, automobile fuel and exhaust systems, and footwear deodorizing. (Contains 129 citations fully indexed and including a title list.)
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J.
2015-04-01
Yin et al. have described an innovative filter-less optical millimeter-wave generation scheme for octotupling of a 10 GHz RF oscillator, or sedecimtupling of a 5 GHz RF oscillator using two parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). The great merit of their design is the suppression of all harmonics except those of order ? (octotupling) or all harmonics except those of order ? (sedecimtupling), where ? is an integer. A demerit of their scheme is the requirement to set a precise RF signal modulation index in order to suppress the zeroth order optical carrier. The purpose of this comment is to show that, in the case of the octotupling function, all harmonics may be suppressed except those of order ?, where ? is an odd integer, by the simple addition of an optical ? phase shift between the two DP-MZMs and an adjustment of the RF drive phases. Since the carrier is suppressed in the modified architecture, the octotupling circuit is thereby released of the strict requirement to set the drive level to a precise value without any significant increase in circuit complexity.
Cache-Oblivious parallel SIMD Viterbi decoding for sequence search in HMMER.
Ferreira, Miguel; Roma, Nuno; Russo, Luis M S
2014-05-30
HMMER is a commonly used bioinformatics tool based on Hidden Markov Models (HMMs) to analyze and process biological sequences. One of its main homology engines is based on the Viterbi decoding algorithm, which was already highly parallelized and optimized using Farrar's striped processing pattern with Intel SSE2 instruction set extension. A new SIMD vectorization of the Viterbi decoding algorithm is proposed, based on an SSE2 inter-task parallelization approach similar to the DNA alignment algorithm proposed by Rognes. Besides this alternative vectorization scheme, the proposed implementation also introduces a new partitioning of the Markov model that allows a significantly more efficient exploitation of the cache locality. Such optimization, together with an improved loading of the emission scores, allows the achievement of a constant processing throughput, regardless of the innermost-cache size and of the dimension of the considered model. The proposed optimized vectorization of the Viterbi decoding algorithm was extensively evaluated and compared with the HMMER3 decoder to process DNA and protein datasets, proving to be a rather competitive alternative implementation. Being always faster than the already highly optimized ViterbiFilter implementation of HMMER3, the proposed Cache-Oblivious Parallel SIMD Viterbi (COPS) implementation provides a constant throughput and offers a processing speedup as high as two times faster, depending on the model's size.
NASA Astrophysics Data System (ADS)
Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.
2014-09-01
The purpose of this study is to derive optimized parameters for a detector module employing an off-the-shelf X-ray camera and a pinhole array collimator applicable for a range of different SPECT systems. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were performed to estimate the performance of the pinhole array collimators and were compared to that of low energy high resolution (LEHR) parallel-hole collimator in a four head SPECT system. A detector module was simulated to have 48 mm by 48 mm active area along with 1mm, 1.6mm and 2 mm pinhole aperture sizes at 0.48 mm pitch on a tungsten plate. Perpendicular lead septa were employed to verify overlapping and non-overlapping projections against a proper acceptance angle without lead septa. A uniform shape cylindrical water phantom was used to evaluate the performance of the proposed four head SPECT system of the pinhole array detector module. For each head, 100 pinhole configurations were evaluated based on sensitivity and detection efficiency for 140 keV γ-rays, and compared to LEHR parallel-hole collimator. SPECT images were reconstructed based on filtered back projection (FBP) algorithm where neither scatter nor attenuation corrections were performed. A better reconstruction algorithm development for this specific system is in progress. Nevertheless, activity distribution was well visualized using the backprojection algorithm. In this study, we have evaluated several quantitative and comparative analyses for a pinhole array imaging system providing high detection efficiency and better system sensitivity over a large FOV, comparing to the conventional four head SPECT system. The proposed detector module is expected to provide improved performance in various SPECT imaging.
Visual Tracking Using 3D Data and Region-Based Active Contours
2016-09-28
adaptive control strategies which explicitly take uncertainty into account. Filtering methods ranging from the classical Kalman filters valid for...linear systems to the much more general particle filters also fit into this framework in a very natural manner. In particular, the particle filtering ...the number of samples required for accurate filtering increases with the dimension of the system noise. In our approach, we approximate curve
de Vet, W W J M; Kleerebezem, R; van der Wielen, P W J J; Rietveld, L C; van Loosdrecht, M C M
2011-07-01
In groundwater treatment for drinking water production, the causes of nitrification problems and the effectiveness of process optimization in rapid sand filters are often not clear. To assess both issues, the performance of a full-scale groundwater filter with nitrification problems and another filter with complete nitrification and pretreatment by subsurface aeration was monitored over nine months. Quantitative real-time polymerase chain reaction (qPCR) targeting the amoA gene of bacteria and archaea and activity measurements of ammonia oxidation were used to regularly evaluate water and filter sand samples. Results demonstrated that subsurface aeration stimulated the growth of ammonia-oxidizing prokaryotes (AOP) in the aquifer. Cell balances, using qPCR counts of AOP for each filter, showed that the inoculated AOP numbers from the aquifer were marginal compared with AOP numbers detected in the filter. Excessive washout of AOP was not observed and did not cause the nitrification problems. Ammonia-oxidizing archaea grew in both filters, but only in low numbers compared to bacteria. The cell-specific nitrification rate in the sand and backwash water samples was high for the subsurface aerated filter, but systematically much lower for the filter with nitrification problems. From this, we conclude that incomplete nitrification was caused by nutrient limitation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Technological development of multispectral filter assemblies for micro bolometer
NASA Astrophysics Data System (ADS)
Le Goff, Roland; Tanguy, François; Fuss, Philippe; Etcheto, Pierre
2017-11-01
Since 2007 Sodern has successfully developed visible and near infrared multispectral filter assemblies for Earth remote sensing imagers. Filter assembly is manufactured by assembling several sliced filter elements (so-called strips), each corresponding to one spectral band. These strips are cut from wafers using a two dimensional accuracy precision process. In the frame of a 2011 R&T preparatory initiative undertaken by the French agency CNES, the filter assembly concept was adapted by Sodern to the long wave infrared spectral band taken into account the germanium substrate, the multilayer bandpass filters and the F-number of the optics. Indeed the current trend in space instrumentation toward more compact uncooled infrared radiometer leads to replace the filter wheel with a multispectral filter assembly mounted directly above the micro bolometer window. The filter assembly was customized to fit the bolometer size. For this development activity we consider a ULIS VGA LWIR micro bolometer with 640 by 480 pixels and 25 microns pixel pitch. The feasibility of the concept and the ability to withstand space environment were investigated and demonstrated by bread boarding activities. The presentation will contain a detailed description of the bolometer and filter assembly design, the stray light modeling analysis assessing the crosstalk between adjacent spectral bands and the results of the manufacturing and environmental tests (damp heat and thermal vacuum cycling).
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2006-01-01
A miniature, ultra-high resolution, and color scanning microscope using microchannel and solid-state technology that does not require focus adjustment. One embodiment includes a source of collimated radiant energy for illuminating a sample, a plurality of narrow angle filters comprising a microchannel structure to permit the passage of only unscattered radiant energy through the microchannels with some portion of the radiant energy entering the microchannels from the sample, a solid-state sensor array attached to the microchannel structure, the microchannels being aligned with an element of the solid-state sensor array, that portion of the radiant energy entering the microchannels parallel to the microchannel walls travels to the sensor element generating an electrical signal from which an image is reconstructed by an external device, and a moving element for movement of the microchannel structure relative to the sample. Discloses a method for scanning samples whereby the sensor array elements trace parallel paths that are arbitrarily close to the parallel paths traced by other elements of the array.
Su, Hao; Dickstein-Fischer, Laurie; Harrington, Kevin; Fu, Qiushi; Lu, Weina; Huang, Haibo; Cole, Gregory; Fischer, Gregory S
2010-01-01
This paper presents the development of new prismatic actuation approach and its application in human-safe humanoid head design. To reduce actuator output impedance and mitigate unexpected external shock, the prismatic actuation method uses cables to drive a piston with preloaded spring. By leveraging the advantages of parallel manipulator and cable-driven mechanism, the developed neck has a parallel manipulator embodiment with two cable-driven limbs embedded with preloaded springs and one passive limb. The eye mechanism is adapted for low-cost webcam with succinct "ball-in-socket" structure. Based on human head anatomy and biomimetics, the neck has 3 degree of freedom (DOF) motion: pan, tilt and one decoupled roll while each eye has independent pan and synchronous tilt motion (3 DOF eyes). A Kalman filter based face tracking algorithm is implemented to interact with the human. This neck and eye structure is translatable to other human-safe humanoid robots. The robot's appearance reflects a non-threatening image of a penguin, which can be translated into a possible therapeutic intervention for children with Autism Spectrum Disorders.
A general purpose wideband optical spatial frequency spectrum analyzer
NASA Technical Reports Server (NTRS)
Ballard, G. S.; Mellor, F. A.
1972-01-01
The light scattered at various angles by a transparent media is studied. An example of these applications is the optical Fourier spectrum measurement resulting from various spatial frequencies which were recorded on a photographic emulsion. A method for obtaining these measurements consists of illuminating the test object with parallel monochromatic light. A stationary lens, placed in the resulting wavefield at a distance of one focal length from the object, will focus parallel waves emanating from the test object at a point lying in the focal plane of the lens. A light detector with a small filtering aperture is then used to measure the intensity variation of the light in the focal or transform plane of the lens. Such measurements require the use of a lens which is highly corrected for all of the common aberrations except chromatic aberration.
Parallel detecting, spectroscopic ellipsometers/polarimeters
Furtak, Thomas E.
2002-01-01
The parallel detecting spectroscopic ellipsometer/polarimeter sensor has no moving parts and operates in real-time for in-situ monitoring of the thin film surface properties of a sample within a processing chamber. It includes a multi-spectral source of radiation for producing a collimated beam of radiation directed towards the surface of the sample through a polarizer. The thus polarized collimated beam of radiation impacts and is reflected from the surface of the sample, thereby changing its polarization state due to the intrinsic material properties of the sample. The light reflected from the sample is separated into four separate polarized filtered beams, each having individual spectral intensities. Data about said four individual spectral intensities is collected within the processing chamber, and is transmitted into one or more spectrometers. The data of all four individual spectral intensities is then analyzed using transformation algorithms, in real-time.
Coupled microwave ECR and radio-frequency plasma source for plasma processing
Tsai, Chin-Chi; Haselton, Halsey H.
1994-01-01
In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.
Coupled microwave ECR and radio-frequency plasma source for plasma processing
Tsai, C.C.; Haselton, H.H.
1994-03-08
In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.
Rouse, Elliott J; Hargrove, Levi J; Perreault, Eric J; Peshkin, Michael A; Kuiken, Todd A
2013-08-01
The mechanical properties of human joints (i.e., impedance) are constantly modulated to precisely govern human interaction with the environment. The estimation of these properties requires the displacement of the joint from its intended motion and a subsequent analysis to determine the relationship between the imposed perturbation and the resultant joint torque. There has been much investigation into the estimation of upper-extremity joint impedance during dynamic activities, yet the estimation of ankle impedance during walking has remained a challenge. This estimation is important for understanding how the mechanical properties of the human ankle are modulated during locomotion, and how those properties can be replicated in artificial prostheses designed to restore natural movement control. Here, we introduce a mechatronic platform designed to address the challenge of estimating the stiffness component of ankle impedance during walking, where stiffness denotes the static component of impedance. The system consists of a single degree of freedom mechatronic platform that is capable of perturbing the ankle during the stance phase of walking and measuring the response torque. Additionally, we estimate the platform's intrinsic inertial impedance using parallel linear filters and present a set of methods for estimating the impedance of the ankle from walking data. The methods were validated by comparing the experimentally determined estimates for the stiffness of a prosthetic foot to those measured from an independent testing machine. The parallel filters accurately estimated the mechatronic platform's inertial impedance, accounting for 96% of the variance, when averaged across channels and trials. Furthermore, our measurement system was found to yield reliable estimates of stiffness, which had an average error of only 5.4% (standard deviation: 0.7%) when measured at three time points within the stance phase of locomotion, and compared to the independently determined stiffness values of the prosthetic foot. The mechatronic system and methods proposed in this study are capable of accurately estimating ankle stiffness during the foot-flat region of stance phase. Future work will focus on the implementation of this validated system in estimating human ankle impedance during the stance phase of walking.
High exhaust temperature, zoned, electrically-heated particulate matter filter
Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima
2015-09-22
A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.
Parallelism Effects and Verb Activation: The Sustained Reactivation Hypothesis
Shapiro, Lewis P.; Love, Tracy
2010-01-01
This study investigated the processes underlying parallelism by evaluating the activation of a parallel element (i.e., a verb) throughout and-coordinated sentences. Four points were tested: (1) approximately 1,600ms after the verb in the first conjunct (PP1), (2) immediately following the conjunction (PP2), (3) approximately 1,100ms after the conjunction (PP3), (4) at the end of the second conjunct (PP4). The results revealed no activation at PP1, suggesting activation related to the initial presentation had decayed by this point; however, activation was observed at PP2, PP3, and PP4, suggesting the conjunction elicits reactivation that is sustained throughout the second conjunct. These findings support a specific hypothesis about parallelism, the sustained reactivation hypothesis. This hypothesis claims that, in conjoined structures, a cue that is associated with parallelism elicits the reactivation of material from the first conjunct and that this activation is sustained until integration with the second conjunct can be completed. PMID:19774464
Parallelism effects and verb activation: the sustained reactivation hypothesis.
Callahan, Sarah M; Shapiro, Lewis P; Love, Tracy
2010-04-01
This study investigated the processes underlying parallelism by evaluating the activation of a parallel element (i.e., a verb) throughout and-coordinated sentences. Four points were tested: (1) approximately 1,600 ms after the verb in the first conjunct (PP1), (2) immediately following the conjunction (PP2), (3) approximately 1,100 ms after the conjunction (PP3), (4) at the end of the second conjunct (PP4). The results revealed no activation at PP1, suggesting activation related to the initial presentation had decayed by this point; however, activation was observed at PP2, PP3, and PP4, suggesting the conjunction elicits reactivation that is sustained throughout the second conjunct. These findings support a specific hypothesis about parallelism, the sustained reactivation hypothesis. This hypothesis claims that, in conjoined structures, a cue that is associated with parallelism elicits the reactivation of material from the first conjunct and that this activation is sustained until integration with the second conjunct can be completed.
NASA Astrophysics Data System (ADS)
Didkovsky, Leonid; Wieman, Seth; Woods, Thomas
2016-10-01
The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.
Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee
2015-11-15
In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...
Code of Federal Regulations, 2012 CFR
2012-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...
Code of Federal Regulations, 2014 CFR
2014-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...
Code of Federal Regulations, 2013 CFR
2013-07-01
... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...
Investigation of x-ray spectra for iodinated contrast-enhanced dedicated breast CT
Glick, Stephen J.; Makeev, Andrey
2017-01-01
Abstract. Screening for breast cancer with mammography has been very successful, resulting in part to a reduction of breast cancer mortality by approximately 39% since 1990. However, mammography still has limitations in performance, especially for women with dense breast tissue. Iodinated contrast-enhanced, dedicated breast CT (BCT) has been proposed to improve lesion analysis and the accuracy of diagnostic workup for patients suspected of having breast cancer. A mathematical analysis to explore the use of various x-ray filters for iodinated contrast-enhanced BCT is presented. To assess task-based performance, the ideal linear observer signal-to-noise ratio (SNR) is used as a figure-of-merit under the assumptions of a linear, shift-invariant imaging system. To estimate signal and noise propagation through the BCT detector, a parallel-cascade model was used. The lesion model was embedded into a structured background and included a realistic level of iodine uptake. SNR was computed for 84,000 different exposure settings by varying the kV setting, x-ray filter materials and thickness, breast size, and composition and radiation dose. It is shown that some x-ray filter material/thickness combinations can provide up to 75% improvement in the linear ideal observer SNR over a conventionally used x-ray filter for BCT. This improvement in SNR can be traded off for substantial reductions in mean glandular dose. PMID:28149923
Iridium emissions from Hawaiian volcanoes
NASA Technical Reports Server (NTRS)
Finnegan, D. L.; Zoller, W. H.; Miller, T. M.
1988-01-01
Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; Fales, Carl L.
1990-01-01
Researchers are concerned with the end-to-end performance of image gathering, coding, and processing. The applications range from high-resolution television to vision-based robotics, wherever the resolution, efficiency and robustness of visual information acquisition and processing are critical. For the presentation at this workshop, it is convenient to divide research activities into the following two overlapping areas: The first is the development of focal-plane processing techniques and technology to effectively combine image gathering with coding, with an emphasis on low-level vision processing akin to the retinal processing in human vision. The approach includes the familiar Laplacian pyramid, the new intensity-dependent spatial summation, and parallel sensing/processing networks. Three-dimensional image gathering is attained by combining laser ranging with sensor-array imaging. The second is the rigorous extension of information theory and optimal filtering to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing.
Effects of ethylene on gene expression in carrot roots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, S.E.
1984-01-01
To investigate ethylene effects on expression of genetic information, cDNA clones corresponding to ethylene-induced carrot root mRNAs were constructed and isolated. RNA dot blot analysis showed that for the three clones studied peak cytosolic mRNA prevalence occurred at 21 hours of treatment followed thereafter by rapid messenger decay. DNA filter excess hybridization to in vitro synthesized nuclear RNA showed that the ethylene-induced mRNA increase is engendered by transcription of previously quiescent genes. The kinetics and magnitude of changes in mRNA prevalence parallel changes in transcriptional activity; therefore, the ethylene effect is primarily at the level of the transcription. In vivomore » pulse labelling with (/sup 35/S)-methionine showed that between 18 and 27 hours of ethylene treatment a 2.5 fold increase in translational efficiency occurred for one message studied. The resulting protein is the predominant protein synthesized in carrots treated with ethylene for 27 hours. Thus, ethylene exerts multiple regulatory controls on the expression of genetic information.« less
Used tire recycling to produce granulates: evaluation of occupational exposure to chemical agents.
Savary, Barbara; Vincent, Raymond
2011-10-01
Exposure was assessed in four facilities where used tires are turned into rubber granulates. Particulate exposure levels were measured using filter samples and gravimetric analysis. In parallel, volatile organic compounds (VOCs) screening was carried out using samples taken on activated carbon supports, followed by an analysis using a gas chromatograph coupled to a spectrometric detector. The exposure level medians are between 0.58 and 3.95 mg m(-3). Clogging of the textile fiber separation systems can lead to worker exposure; in this case, the measured concentrations can reach 41 mg m(-3). However, in contrast to the data in the literature, VOC levels >1 p.p.m. were not detected. The particulate mixtures deposited on the installation surfaces are complex; some of the chemical agents are toxic to humans. The results of this study indicate significant exposure to complex mixtures of rubber dust. Optimizing exhaust ventilation systems inside the shredders, with a cyclone for example, is essential for reducing the exposure of workers in this rapidly developing sector.
The infrared imaging spectrograph (IRIS) for TMT: latest science cases and simulations
NASA Astrophysics Data System (ADS)
Wright, Shelley A.; Walth, Gregory; Do, Tuan; Marshall, Daniel; Larkin, James E.; Moore, Anna M.; Adamkovics, Mate; Andersen, David; Armus, Lee; Barth, Aaron; Cote, Patrick; Cooke, Jeff; Chisholm, Eric M.; Davidge, Timothy; Dunn, Jennifer S.; Dumas, Christophe; Ellerbroek, Brent L.; Ghez, Andrea M.; Hao, Lei; Hayano, Yutaka; Liu, Michael; Lopez-Rodriguez, Enrique; Lu, Jessica R.; Mao, Shude; Marois, Christian; Pandey, Shashi B.; Phillips, Andrew C.; Schoeck, Matthias; Subramaniam, Annapurni; Subramanian, Smitha; Suzuki, Ryuji; Tan, Jonathan C.; Terai, Tsuyoshi; Treu, Tommaso; Simard, Luc; Weiss, Jason L.; Wincentsen, James; Wong, Michael; Zhang, Kai
2016-07-01
The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.
DART -- Data acquisition for the next generation of Fermilab fixed target experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oleynik, G.; Anderson, J.; Appleton, L.
1994-02-01
DART is the name of the data acquisition effort for Fermilab experiments taking data in the '94--'95 time frame and beyond. Its charge is to provide a common system of hardware and software, which can be easily configured and extended to meet the wide range of data acquisition requirements of the experiments. Its strategy is to provide incrementally functional data acquisition systems to the experiments at frequent intervals to support the ongoing DA activities of the experiments. DART is a collaborative development effort between the experimenters and the Fermilab Computing Division. Experiments collaborating in DART cover a range of requirementsmore » from 400 Kbytes/sec event readout using a single DA processor, to 200 Mbytes/sec event readout involving 10 parallel readout streams, 10 VME event building planes and greater than 1,000 MIPs of event filter processing. The authors describe the requirements, architecture, and plans for the project and report on its current status.« less
Comparison of filtering methods for extracellular gastric slow wave recordings.
Paskaranandavadivel, Niranchan; O'Grady, Gregory; Du, Peng; Cheng, Leo K
2013-01-01
Extracellular recordings are used to define gastric slow wave propagation. Signal filtering is a key step in the analysis and interpretation of extracellular slow wave data; however, there is controversy and uncertainty regarding the appropriate filtering settings. This study investigated the effect of various standard filters on the morphology and measurement of extracellular gastric slow waves. Experimental extracellular gastric slow waves were recorded from the serosal surface of the stomach from pigs and humans. Four digital filters: finite impulse response filter (0.05-1 Hz); Savitzky-Golay filter (0-1.98 Hz); Bessel filter (2-100 Hz); and Butterworth filter (5-100 Hz); were applied on extracellular gastric slow wave signals to compare the changes temporally (morphology of the signal) and spectrally (signals in the frequency domain). The extracellular slow wave activity is represented in the frequency domain by a dominant frequency and its associated harmonics in diminishing power. Optimal filters apply cutoff frequencies consistent with the dominant slow wave frequency (3-5 cpm) and main harmonics (up to ≈ 2 Hz). Applying filters with cutoff frequencies above or below the dominant and harmonic frequencies was found to distort or eliminate slow wave signal content. Investigators must be cognizant of these optimal filtering practices when detecting, analyzing, and interpreting extracellular slow wave recordings. The use of frequency domain analysis is important for identifying the dominant and harmonics of the signal of interest. Capturing the dominant frequency and major harmonics of slow wave is crucial for accurate representation of slow wave activity in the time domain. Standardized filter settings should be determined. © 2012 Blackwell Publishing Ltd.
Optical filter finesses enhancement based on nested coupled cavities and active medium
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2016-04-01
Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.
Automated target recognition and tracking using an optical pattern recognition neural network
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
1991-01-01
The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.
Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides
NASA Astrophysics Data System (ADS)
Tsilipakos, Odysseas; Kriezis, Emmanouil E.; Bozhevolnyi, Sergey I.
2011-04-01
Thermo-optic switching elements made of dielectric-loaded plasmonic (DLSPP) waveguides are theoretically investigated by utilizing the three-dimensional vector finite element method. The configurations considered employ microring resonators, whose resonant frequency is varied by means of thermal tuning. First, a classic add-drop filter with parallel access waveguides is examined. Such a component features very poor drop port extinction ratio (ER). We therefore extend the analysis to add-drop filters with perpendicular access waveguides, which are found to exhibit superior drop port ERs, due to interference effects associated with the drop port transmission. In the process, the performance of a DLSPP waveguide crossing is also assessed, since it is a building block of those filters whose bus waveguides intersect. An elliptic tapering scheme is proposed for minimizing cross talk and its effect on the filter performance is explored. The dual-resonator add-drop filter with perpendicular bus waveguides and an untreated waveguide crossing of Sec. V can act as an efficient 2×2 switching element (the single-resonator variant can only act as a 1×2 switch due to structure asymmetry), possessing two equivalent input ports and featuring high ERs for both output ports over a broad wavelength range. Specifically, an extinction ratio of at least 8 dB can be attained for both output ports over a wavelength range of 3.2 nm, accommodating four 100-GHz-spaced channels. Switching times are in the order of a few microseconds, rendering the aforementioned structure capable of handling real-world routing scenarios.
French vertical-flow constructed wetland design: adaptations for tropical climates.
Molle, P; Latune, R Lombard; Riegel, C; Lacombe, G; Esser, D; Mangeot, L
2015-01-01
The French Outermost Regions are under tropical climate yet still have to comply with both French and EU regulations. French vertical-flow constructed wetland systems appear well adapted to the technical specifics of these regions but their adaptation to tropical climate requires new design guidelines to be defined (area needed, number of filters, type of plants, material to be used, etc.). A study was started in 2008, with backing from the national water authorities, to implement full-scale experimental sites and assess the impacts of local context on design and performances. This paper reports the monitoring results on three vertical-flow constructed wetlands fed directly with raw wastewater (known as the 'French system') in Mayotte and French Guiana. The plants, now in operation for between 1 and 6 years, range from 160 to 480 population equivalent (p.e.). Monitoring consisted of 28 daily composite flow samples in different seasons (dry season, rainy season) at the inlet and outlet of each filter. Performances are benchmarked against French mainland area standards from Irstea's database. Results show that performances are improved by warmer temperature for chemical oxygen demand (COD), suspended solids (SS) and total Kjeldahl nitrogen (TKN) and satisfy national quality objectives with a single stage of filters. Treatment plant footprint can thus be reduced as only two parallel filters are needed. Indeed, warm temperatures allow faster mineralization of the sludge deposit, making it possible to operate at similar rest and feeding period durations. Systems operated using one twin-filter stage can achieve over 90% COD, SS and TKN removal for a total surface of 0.8 m²/p.e.
Creating a Parallel Version of VisIt for Microsoft Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlock, B J; Biagas, K S; Rawson, P L
2011-12-07
VisIt is a popular, free interactive parallel visualization and analysis tool for scientific data. Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images or movies for presentations. VisIt was designed from the ground up to work on many scales of computers from modest desktops up to massively parallel clusters. VisIt is comprised of a set of cooperating programs. All programs can be run locally or in client/server mode in which some run locally and some run remotely on compute clusters. The VisIt program most able to harness today's computing powermore » is the VisIt compute engine. The compute engine is responsible for reading simulation data from disk, processing it, and sending results or images back to the VisIt viewer program. In a parallel environment, the compute engine runs several processes, coordinating using the Message Passing Interface (MPI) library. Each MPI process reads some subset of the scientific data and filters the data in various ways to create useful visualizations. By using MPI, VisIt has been able to scale well into the thousands of processors on large computers such as dawn and graph at LLNL. The advent of multicore CPU's has made parallelism the 'new' way to achieve increasing performance. With today's computers having at least 2 cores and in many cases up to 8 and beyond, it is more important than ever to deploy parallel software that can use that computing power not only on clusters but also on the desktop. We have created a parallel version of VisIt for Windows that uses Microsoft's MPI implementation (MSMPI) to process data in parallel on the Windows desktop as well as on a Windows HPC cluster running Microsoft Windows Server 2008. Initial desktop parallel support for Windows was deployed in VisIt 2.4.0. Windows HPC cluster support has been completed and will appear in the VisIt 2.5.0 release. We plan to continue supporting parallel VisIt on Windows so our users will be able to take full advantage of their multicore resources.« less
Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C
2009-01-01
Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.
Parallel language activation and cognitive control during spoken word recognition in bilinguals
Blumenfeld, Henrike K.; Marian, Viorica
2013-01-01
Accounts of bilingual cognitive advantages suggest an associative link between cross-linguistic competition and inhibitory control. We investigate this link by examining English-Spanish bilinguals’ parallel language activation during auditory word recognition and nonlinguistic Stroop performance. Thirty-one English-Spanish bilinguals and 30 English monolinguals participated in an eye-tracking study. Participants heard words in English (e.g., comb) and identified corresponding pictures from a display that included pictures of a Spanish competitor (e.g., conejo, English rabbit). Bilinguals with higher Spanish proficiency showed more parallel language activation and smaller Stroop effects than bilinguals with lower Spanish proficiency. Across all bilinguals, stronger parallel language activation between 300–500ms after word onset was associated with smaller Stroop effects; between 633–767ms, reduced parallel language activation was associated with smaller Stroop effects. Results suggest that bilinguals who perform well on the Stroop task show increased cross-linguistic competitor activation during early stages of word recognition and decreased competitor activation during later stages of word recognition. Findings support the hypothesis that cross-linguistic competition impacts domain-general inhibition. PMID:24244842
Recent improvements of the JET lithium beam diagnostica)
NASA Astrophysics Data System (ADS)
Brix, M.; Dodt, D.; Dunai, D.; Lupelli, I.; Marsen, S.; Melson, T. F.; Meszaros, B.; Morgan, P.; Petravich, G.; Refy, D. I.; Silva, C.; Stamp, M.; Szabolics, T.; Zastrow, K.-D.; Zoletnik, S.; JET-EFDA Contributors
2012-10-01
A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).
A closed-loop automatic control system for high-intensity acoustic test systems.
NASA Technical Reports Server (NTRS)
Slusser, R. A.
1973-01-01
Sound at sound pressure levels in the range from 130 to 160 dB is used in the investigation. Random noise is passed through a series of parallel filters, generally 1/3-octave wide. A basic automatic system is investigated because of preadjustment inaccuracies and high costs found in a study of a typical manually controlled acoustic testing system. The unit described has been successfully used in automatic acoustic tests in connection with the spacecraft tests for the Mariner 1971 program.
Hagen, Nathan; Kester, Robert T.; Gao, Liang; Tkaczyk, Tomasz S.
2012-01-01
The snapshot advantage is a large increase in light collection efficiency available to high-dimensional measurement systems that avoid filtering and scanning. After discussing this advantage in the context of imaging spectrometry, where the greatest effort towards developing snapshot systems has been made, we describe the types of measurements where it is applicable. We then generalize it to the larger context of high-dimensional measurements, where the advantage increases geometrically with measurement dimensionality. PMID:22791926
2008-03-11
JTC) 2 based on a dynamic material answers the challenge of fast correlation with large databases. Images retrieved from the SPHRAM and used as the...transform (JTC) and matched spatial filter or VanderLugt ( VLC ) correlators, either of which can be implemented in real-time by degenerate four wave-mixing in...proposed system, consisting of the SPHROM coupled with a shift-invariant real-time VLC . The correlation is performed in the VLC architecture to
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1976-01-01
A number of current research directions in the fields of digital signal processing and modern control and estimation theory were studied. Topics such as stability theory, linear prediction and parameter identification, system analysis and implementation, two-dimensional filtering, decentralized control and estimation, image processing, and nonlinear system theory were examined in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the two disciplines. An extensive bibliography is included.
Active control of fan noise from a turbofan engine
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.
1993-01-01
A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.
An RC active filter design handbook
NASA Technical Reports Server (NTRS)
Deboo, G. J.
1977-01-01
The design of filters is described. Emphasis is placed on simplified procedures that can be used by the reader who has minimum knowledge about circuit design and little acquaintance with filter theory. The handbook has three main parts. The first part is a review of some information that is essential for work with filters. The second part includes design information for specific types of filter circuitry and describes simple procedures for obtaining the component values for a filter that will have a desired set of characteristics. Pertinent information relating to actual performance is given. The third part (appendix) is a review of certain topics in filter theory and is intended to provide some basic understanding of how filters are designed.
NASA Astrophysics Data System (ADS)
Swain, Sushree Diptimayee; Ray, Pravat Kumar; Mohanty, K. B.
2016-06-01
This research paper discover the design of a shunt Passive Power Filter (PPF) in Hybrid Series Active Power Filter (HSAPF) that employs a novel analytic methodology which is superior than FFT analysis. This novel approach consists of the estimation, detection and classification of the signals. The proposed method is applied to estimate, detect and classify the power quality (PQ) disturbance such as harmonics. This proposed work deals with three methods: the harmonic detection through wavelet transform method, the harmonic estimation by Kalman Filter algorithm and harmonic classification by decision tree method. From different type of mother wavelets in wavelet transform method, the db8 is selected as suitable mother wavelet because of its potency on transient response and crouched oscillation at frequency domain. In harmonic compensation process, the detected harmonic is compensated through Hybrid Series Active Power Filter (HSAPF) based on Instantaneous Reactive Power Theory (IRPT). The efficacy of the proposed method is verified in MATLAB/SIMULINK domain and as well as with an experimental set up. The obtained results confirm the superiority of the proposed methodology than FFT analysis. This newly proposed PPF is used to make the conventional HSAPF more robust and stable.
Two multichannel integrated circuits for neural recording and signal processing.
Obeid, Iyad; Morizio, James C; Moxon, Karen A; Nicolelis, Miguel A L; Wolf, Patrick D
2003-02-01
We have developed, manufactured, and tested two analog CMOS integrated circuit "neurochips" for recording from arrays of densely packed neural electrodes. Device A is a 16-channel buffer consisting of parallel noninverting amplifiers with a gain of 2 V/V. Device B is a 16-channel two-stage analog signal processor with differential amplification and high-pass filtering. It features selectable gains of 250 and 500 V/V as well as reference channel selection. The resulting amplifiers on Device A had a mean gain of 1.99 V/V with an equivalent input noise of 10 microV(rms). Those on Device B had mean gains of 53.4 and 47.4 dB with a high-pass filter pole at 211 Hz and an equivalent input noise of 4.4 microV(rms). Both devices were tested in vivo with electrode arrays implanted in the somatosensory cortex.
A digital optical phase-locked loop for diode lasers based on field programmable gate array.
Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui
2012-09-01
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382∕MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad(2) and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.
A digital optical phase-locked loop for diode lasers based on field programmable gate array
NASA Astrophysics Data System (ADS)
Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui
2012-09-01
We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.
Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh
2018-01-01
Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images.
Image-algebraic design of multispectral target recognition algorithms
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.
1994-06-01
In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.
Ultra-wideband microwave photonic link based on single-sideband modulation
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu
2017-10-01
Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.
Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh
2018-01-01
Background: Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. Methods: In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Results: Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Conclusions: Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images. PMID:29535920
Li, Jianjun; Ye, Guangyun; Sun, Duanfang; Sun, Guoping; Zeng, Xiaowei; Xu, Jian; Liang, Shizhong
2012-09-01
Two identical biotrickling filters named BTFa and BTFb were run in parallel to examine their performances in removing hydrogen sulfide. BTFa was filled with ceramic granules, and BTFb was filled with volcanic rocks. The results showed that BTFb was more robust than BTFa under acidic conditions. At empty bed residence times (EBRTs) of 20 and 15 s, the removal efficiency of BTFa was close to 100%. At EBRTs of 10 and 5 s, the removal efficiency of BTFa slightly decreased. The removal efficiencies of BTFa decreased by different degrees at the end of each stage, dropping to 94%, 81%, 60%, and 71%, respectively. However, the H(2)S removal efficiency in BTFb consistently reached 99% throughout the experiment. Pyrosequencing analyses indicated that members of Thiomonas dominated in both BTFs, but the relative abundance of Acidithiobacillus was higher in BTFb than in BTFa.
Dynamic Filtering Improves Attentional State Prediction with fNIRS
NASA Technical Reports Server (NTRS)
Harrivel, Angela R.; Weissman, Daniel H.; Noll, Douglas C.; Huppert, Theodore; Peltier, Scott J.
2016-01-01
Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%).
Rottenstreich, Amihai; Kleinstern, Geffen; Bloom, Allan I; Klimov, Alexander; Kalish, Yosef
2017-10-01
The utilization of inferior vena cava filter placement for pulmonary embolism prevention in elderly patients has not been well characterized. The present study aimed to review indications, complications and follow-up data of elderly patients undergoing inferior vena cava filter placement. A retrospective review was carried out of consecutive admitted patients who underwent inferior vena cava filter insertion at a large university hospital with a level I trauma center. Overall, 455 retrievable filters were inserted between 2009 and 2014. A total of 133 patients (29.2%) were aged ≥70 years. Elderly patients were less likely to have their filter retrieved compared with non-elderly patients (5.3% vs 21.4%, P < 0.001). Filter-related complications occurred in 13% of non-elderly patients and 14.3% of elderly patients (P = 0.72), most of them occurring in the first 3 months after filter placement. Survival among elderly patients with no evidence of active malignancy was similar to the non-elderly patients with a 1-year survival rate of 76.3% versus 82% in non-elderly patients (P = 0.22), and a 2-year survival rate of 73.1% versus 78.6% in non-elderly patients (P = 0.27). Although decreased, survival rates among elderly patients with active cancer were still substantial, with a 1-year survival rate of 45% and 2-year survival rate of 40%. Elderly patients had significantly lower rates of filter retrieval with similar complication rate. Survival rates among elderly patients were substantial, and in elderly patients with no active cancer were even comparable with non-elderly patients. When feasible, filter retrieval should be attempted in all elderly patients in order to prevent filter-related complications. Geriatr Gerontol Int 2017; 17: 1508-1514. © 2016 Japan Geriatrics Society.
Scale-free brain quartet: artistic filtering of multi-channel brainwave music.
Wu, Dan; Li, Chaoyi; Yao, Dezhong
2013-01-01
To listen to the brain activities as a piece of music, we proposed the scale-free brainwave music (SFBM) technology, which translated scalp EEGs into music notes according to the power law of both EEG and music. In the present study, the methodology was extended for deriving a quartet from multi-channel EEGs with artistic beat and tonality filtering. EEG data from multiple electrodes were first translated into MIDI sequences by SFBM, respectively. Then, these sequences were processed by a beat filter which adjusted the duration of notes in terms of the characteristic frequency. And the sequences were further filtered from atonal to tonal according to a key defined by the analysis of the original music pieces. Resting EEGs with eyes closed and open of 40 subjects were utilized for music generation. The results revealed that the scale-free exponents of the music before and after filtering were different: the filtered music showed larger variety between the eyes-closed (EC) and eyes-open (EO) conditions, and the pitch scale exponents of the filtered music were closer to 1 and thus it was more approximate to the classical music. Furthermore, the tempo of the filtered music with eyes closed was significantly slower than that with eyes open. With the original materials obtained from multi-channel EEGs, and a little creative filtering following the composition process of a potential artist, the resulted brainwave quartet opened a new window to look into the brain in an audible musical way. In fact, as the artistic beat and tonal filters were derived from the brainwaves, the filtered music maintained the essential properties of the brain activities in a more musical style. It might harmonically distinguish the different states of the brain activities, and therefore it provided a method to analyze EEGs from a relaxed audio perspective.
Scale-Free Brain Quartet: Artistic Filtering of Multi-Channel Brainwave Music
Wu, Dan; Li, Chaoyi; Yao, Dezhong
2013-01-01
To listen to the brain activities as a piece of music, we proposed the scale-free brainwave music (SFBM) technology, which translated scalp EEGs into music notes according to the power law of both EEG and music. In the present study, the methodology was extended for deriving a quartet from multi-channel EEGs with artistic beat and tonality filtering. EEG data from multiple electrodes were first translated into MIDI sequences by SFBM, respectively. Then, these sequences were processed by a beat filter which adjusted the duration of notes in terms of the characteristic frequency. And the sequences were further filtered from atonal to tonal according to a key defined by the analysis of the original music pieces. Resting EEGs with eyes closed and open of 40 subjects were utilized for music generation. The results revealed that the scale-free exponents of the music before and after filtering were different: the filtered music showed larger variety between the eyes-closed (EC) and eyes-open (EO) conditions, and the pitch scale exponents of the filtered music were closer to 1 and thus it was more approximate to the classical music. Furthermore, the tempo of the filtered music with eyes closed was significantly slower than that with eyes open. With the original materials obtained from multi-channel EEGs, and a little creative filtering following the composition process of a potential artist, the resulted brainwave quartet opened a new window to look into the brain in an audible musical way. In fact, as the artistic beat and tonal filters were derived from the brainwaves, the filtered music maintained the essential properties of the brain activities in a more musical style. It might harmonically distinguish the different states of the brain activities, and therefore it provided a method to analyze EEGs from a relaxed audio perspective. PMID:23717527
Calibration sources and filters of the soft x-ray spectrometer instrument on the Hitomi spacecraft
NASA Astrophysics Data System (ADS)
de Vries, Cor P.; Haas, Daniel; Yamasaki, Noriko Y.; Herder, Jan-Willem den; Paltani, Stephane; Kilbourne, Caroline; Tsujimoto, Masahiro; Eckart, Megan E.; Leutenegger, Maurice A.; Costantini, Elisa; Dercksen, Johannes P. C.; Dubbeldam, Luc; Frericks, Martin; Laubert, Phillip P.; van Loon, Sander; Lowes, Paul; McCalden, Alec J.; Porter, Frederick S.; Ruijter, Jos; Wolfs, Rob
2018-01-01
The soft x-ray spectrometer was designed to operate onboard the Japanese Hitomi (ASTRO-H) satellite. In the beam of this instrument, there was a filter wheel containing x-ray filters and active calibration sources. This paper describes this filter wheel. We show the purpose of the filters and the preflight calibrations performed. In addition, we present the calibration source design and measured performance. Finally, we conclude with prospects for future missions.
Integrating powdered activated carbon into wastewater tertiary filter for micro-pollutant removal.
Hu, Jingyi; Aarts, Annelies; Shang, Ran; Heijman, Bas; Rietveld, Luuk
2016-07-15
Integrating powdered activated carbon (PAC) into wastewater tertiary treatment is a promising technology to reduce organic micro-pollutant (OMP) discharge into the receiving waters. To take advantage of the existing tertiary filter, PAC was pre-embedded inside the filter bed acting as a fixed-bed adsorber. The pre-embedding (i.e. immobilization) of PAC was realized by direct dosing a PAC solution on the filter top, which was then promoted to penetrate into the filter media by a down-flow of tap water. In order to examine the effectiveness of this PAC pre-embedded filter towards OMP removal, batch adsorption tests, representing PAC contact reactor (with the same PAC mass-to-treated water volume ratio as in the PAC pre-embedded filter) were performed as references. Moreover, as a conventional dosing option, PAC was dosed continuously with the filter influent (i.e. the wastewater secondary effluent with the investigated OMPs). Comparative results confirmed a higher OMP removal efficiency associated with the PAC pre-embedded filter, as compared to the batch system with a practical PAC residence time. Furthermore, over a filtration period of 10 h (approximating a realistic filtration cycle for tertiary filters), the continuous dosing approach resulted in less OMP removal. Therefore, it was concluded that the pre-embedding approach can be preferentially considered when integrating PAC into the wastewater tertiary treatment for OMP elimination. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Peter Jen-Hung
This research first proposes a method to merge photovoltaic (PV) cells or PV panels within the internal components DC-DC converters. The purpose of this merged structure is to reconfigure the PV modules between series and parallel connections using high switching frequencies (hundreds of kHz). This leads to multi-levels of voltages and currents that become applied to the output filter of the converter. Further, this research introduces a concept of a switching cell that utilizes the reconfiguration of series and parallel connections in DC-DC converters. The switching occurs at high switching frequency and the switches can be integrated to be within the solar panels or in between the solar cells. The concept is generalized and applied to basic buck and boost topologies. As examples of the new types of converters: reconfigurable PV-buck and PV-boost converter topologies are presented. It is also possible to create other reconfigurable power converters: non-isolated and isolated topologies. Analysis, simulation and experimental verification for the reconfigurable PV-buck and PV-boost converters are presented extensively to illustrate proof of concept. Benefits and drawbacks of the new approach are discussed. The second part of this research proposes to utilize the internal solar cell capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Their analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable PV panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor. Benefits and drawbacks of new proposed PV submodule integrated boost converters are discussed.
Spinning Spacecraft Attitude Estimation Using Markley Variables: Filter Implementation And Results
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.
2005-01-01
Attitude estimation is often more difficult for spinning spacecraft than for three-axis stabilized platforms due to the need to follow rapidly-varying state vector elements and the lack of three-axis rate measurements from gyros. The estimation problem simplifies when torques are negligible and nutation has damped out, but the general case requires a sequential filter with dynamics propagation. This paper describes the implementation and test results for an extended Kalman filter for spinning spacecraft attitude and rate estimation based on a novel set of variables suggested in a paper by Markley [AAS93-3301 (referred to hereafter as Markley variables). Markley has demonstrated that the new set of variables provides a superior parameterization for numerical integration of the attitude dynamics for spinning or momentum-biased spacecraft. The advantage is that the Markley variables have fewer rapidly-varying elements than other representations such as the attitude quaternion and rate vector. A filter based on these variables was expected to show improved performance due to the more accurate numerical state propagation. However, for a variety of test cases, it has been found that the new filter, as currently implemented, does not perform significantly better than a quaternion-based filter that was developed and tested in parallel. This paper reviews the mathematical background for a filter based on Markley variables. It also describes some features of the implementation and presents test results. The test cases are based on a mission using magnetometer and Sun sensor data and gyro measurements on two axes normal to the spin axis. The orbit and attitude scenarios and spacecraft parameters are modeled after one of the THEMIS (Time History of Events and Macroscale Interactions during Substorms) probes. Several tests are presented that demonstrate the filter accuracy and convergence properties. The tests include torque-free motion with various nutation angles, large constant-torque attitude slews, sensor misalignments, large initial attitude and rate errors, and cases with low data frequency. It is found that the convergence is rapid, the radius of convergence is large, and the results are reasonably accurate even in the presence of unmodeled perturbations.