Sample records for parallel beam geometry

  1. Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter

    PubMed Central

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, DVGLN

    2012-01-01

    We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography. PMID:23109732

  2. Development of high-resolution x-ray CT system using parallel beam geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika; Hyodo, Kazuyuki

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  3. Image reconstruction from cone-beam projections with attenuation correction

    NASA Astrophysics Data System (ADS)

    Weng, Yi

    1997-07-01

    In single photon emission computered tomography (SPECT) imaging, photon attenuation within the body is a major factor contributing to the quantitative inaccuracy in measuring the distribution of radioactivity. Cone-beam SPECT provides improved sensitivity for imaging small organs. This thesis extends the results for 2D parallel- beam and fan-beam geometry to 3D parallel-beam and cone- beam geometries in order to derive filtered backprojection reconstruction algorithms for the 3D exponential parallel-beam transform and for the exponential cone-beam transform with sampling on a sphere. An exact inversion formula for the 3D exponential parallel-beam transform is obtained and is extended to the 3D exponential cone-beam transform. Sampling on a sphere is not useful clinically and current cone-beam tomography, with the focal point traversing a planar orbit, does not acquire sufficient data to give an accurate reconstruction. Thus a data acquisition method that obtains complete data for cone-beam SPECT by simultaneously rotating the gamma camera and translating the patient bed, so that cone-beam projections can be obtained with the focal point traversing a helix that surrounds the patient was developed. First, an implementation of Grangeat's algorithm for helical cone- beam projections was developed without attenuation correction. A fast new rebinning scheme was developed that uses all of the detected data to reconstruct the image and properly normalizes any multiply scanned data. In the case of attenuation no theorem analogous to Tuy's has been proven. We hypothesized that an artifact-free reconstruction could be obtained even if the cone-beam data are attenuated, provided the imaging orbit satisfies Tuy's condition and the exact attenuation map is known. Cone-beam emission data were acquired by using a circle- and-line and a helix orbit on a clinical SPECT system. An iterative conjugate gradient reconstruction algorithm was used to reconstruct projection data with a known attenuation map. The quantitative accuracy of the attenuation-corrected emission reconstruction was significantly improved.

  4. Three-Dimensional Weighting in Cone Beam FBP Reconstruction and Its Transformation Over Geometries.

    PubMed

    Tang, Shaojie; Huang, Kuidong; Cheng, Yunyong; Niu, Tianye; Tang, Xiangyang

    2018-06-01

    With substantially increased number of detector rows in multidetector CT (MDCT), axial scan with projection data acquired along a circular source trajectory has become the method-of-choice in increasing clinical applications. Recognizing the practical relevance of image reconstruction directly from the projection data acquired in the native cone beam (CB) geometry, especially in scenarios wherein the most achievable in-plane resolution is desirable, we present a three-dimensional (3-D) weighted CB-FBP algorithm in such geometry in this paper. We start the algorithm's derivation in the cone-parallel geometry. Via changing of variables, taking the Jacobian into account and making heuristic and empirical assumptions, we arrive at the formulas for 3-D weighted image reconstruction in the native CB geometry. Using the projection data simulated by computer and acquired by an MDCT scanner, we evaluate and verify performance of the proposed algorithm for image reconstruction directly from projection data acquired in the native CB geometry. The preliminary data show that the proposed algorithm performs as well as the 3-D weighted CB-FBP algorithm in the cone-parallel geometry. The proposed algorithm is anticipated to find its utility in extensive clinical and preclinical applications wherein the reconstruction of images in the native CB geometry, i.e., the geometry for data acquisition, is of relevance.

  5. Generalized Fourier slice theorem for cone-beam image reconstruction.

    PubMed

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  6. Spin-exchange relaxation-free magnetometer with nearly parallel pump and probe beams

    DOE PAGES

    Karaulanov, Todor; Savukov, Igor; Kim, Young Jin

    2016-03-22

    We constructed a spin-exchange relaxation-free (SERF) magnetometer with a small angle between the pump and probe beams facilitating a multi-channel design with a flat pancake cell. This configuration provides almost complete overlap of the beams in the cell, and prevents the pump beam from entering the probe detection channel. By coupling the lasers in multi-mode fibers, without an optical isolator or field modulation, we demonstrate a sensitivity of 10 fTmore » $$/\\sqrt{\\text{Hz}}$$ for frequencies between 10 Hz and 100 Hz. In addition to the experimental study of sensitivity, we present a theoretical analysis of SERF magnetometer response to magnetic fields for small-angle and parallel-beam configurations, and show that at optimal DC offset fields the magnetometer response is comparable to that in the orthogonal-beam configuration. Based on the analysis, we also derive fundamental and probe-limited sensitivities for the arbitrary non-orthogonal geometry. The expected practical and fundamental sensitivities are of the same order as those in the orthogonal geometry. As a result, we anticipate that our design will be useful for magnetoencephalography (MEG) and magnetocardiography (MCG) applications.« less

  7. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prudencio, E.; Candel, A.; Ge, L.

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation timemore » from days to some hours.« less

  8. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uvarov, Vladimir, E-mail: vladimiru@savion.huji.ac.il; Popov, Inna

    2013-11-15

    Crystallite size values were determined by X-ray diffraction methods for 183 powder samples. The tested size range was from a few to about several hundred nanometers. Crystallite size was calculated with direct use of the Scherrer equation, the Williamson–Hall method and the Rietveld procedure via the application of a series of commercial and free software. The results were statistically treated to estimate the significance of the difference in size resulting from these methods. We also estimated effect of acquisition conditions (Bragg–Brentano, parallel-beam geometry, step size, counting time) and data processing on the calculated crystallite size values. On the basis ofmore » the obtained results it is possible to conclude that direct use of the Scherrer equation, Williamson–Hall method and the Rietveld refinement employed by a series of software (EVA, PCW and TOPAS respectively) yield very close results for crystallite sizes less than 60 nm for parallel beam geometry and less than 100 nm for Bragg–Brentano geometry. However, we found that despite the fact that the differences between the crystallite sizes, which were calculated by various methods, are small by absolute values, they are statistically significant in some cases. The values of crystallite size determined from XRD were compared with those obtained by imaging in a transmission (TEM) and scanning electron microscopes (SEM). It was found that there was a good correlation in size only for crystallites smaller than 50 – 60 nm. Highlights: • The crystallite sizes for 183 nanopowders were calculated using different XRD methods • Obtained results were subject to statistical treatment • Results obtained with Bragg-Brentano and parallel beam geometries were compared • Influence of conditions of XRD pattern acquisition on results was estimated • Calculated by XRD crystallite sizes were compared with same obtained by TEM and SEM.« less

  9. WE-AB-207A-12: HLCC Based Quantitative Evaluation Method of Image Artifact in Dental CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Wu, S; Qi, H

    Purpose: Image artifacts are usually evaluated qualitatively via visual observation of the reconstructed images, which is susceptible to subjective factors due to the lack of an objective evaluation criterion. In this work, we propose a Helgason-Ludwig consistency condition (HLCC) based evaluation method to quantify the severity level of different image artifacts in dental CBCT. Methods: Our evaluation method consists of four step: 1) Acquire Cone beam CT(CBCT) projection; 2) Convert 3D CBCT projection to fan-beam projection by extracting its central plane projection; 3) Convert fan-beam projection to parallel-beam projection utilizing sinogram-based rebinning algorithm or detail-based rebinning algorithm; 4) Obtain HLCCmore » profile by integrating parallel-beam projection per view and calculate wave percentage and variance of the HLCC profile, which can be used to describe the severity level of image artifacts. Results: Several sets of dental CBCT projections containing only one type of artifact (i.e. geometry, scatter, beam hardening, lag and noise artifact), were simulated using gDRR, a GPU tool developed for efficient, accurate, and realistic simulation of CBCT Projections. These simulated CBCT projections were used to test our proposed method. HLCC profile wave percentage and variance induced by geometry distortion are about 3∼21 times and 16∼393 times as large as that of the artifact-free projection, respectively. The increase factor of wave percentage and variance are 6 and133 times for beam hardening, 19 and 1184 times for scatter, and 4 and16 times for lag artifacts, respectively. In contrast, for noisy projection the wave percentage, variance and inconsistency level are almost the same with those of the noise-free one. Conclusion: We have proposed a quantitative evaluation method of image artifact based on HLCC theory. According to our simulation results, the severity of different artifact types is found to be in a following order: Scatter>Geometry>Beam hardening>Lag>Noise>Artifact-free in dental CBCT.« less

  10. Hybrid Parallel-Slant Hole Collimators for SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Shao, Ling; Ye, Jinghan; Durbin, M.; Petrillo, M.

    2004-06-01

    We propose a new collimator geometry, the hybrid parallel-slant (HPS) hole geometry, to improve sensitivity for SPECT imaging with large field of view (LFOV) gamma cameras. A HPS collimator has one segment with parallel holes and one or more segments with slant holes. The collimator can be mounted on a conventional SPECT LFOV system that uses parallel-beam collimators, and no additional detector or collimator motion is required for data acquisition. The parallel segment of the collimator allows for the acquisition of a complete data set of the organs-of-interest and the slant segments provide additional data. In this work, simulation studies of an MCAT phantom were performed with a HPS collimator with one slant segment. The slant direction points from patient head to patient feet with a slant angle of 30/spl deg/. We simulated 64 projection views over 180/spl deg/ with the modeling of nonuniform attenuation effect, and then reconstructed images using an MLEM algorithm that incorporated the hybrid geometry. It was shown that sensitivity to the cardiac region of the phantom was increased by approximately 50% when using the HPS collimator compared with a parallel-hole collimator. No visible artifacts were observed in the myocardium and the signal-to-noise ratio (SNR) of the myocardium walls was improved. Compared with collimators with other geometries, using a HPS collimator has the following advantages: (a) significant sensitivity increase; (b) a complete data set obtained from the parallel segment that allows for artifact-free image reconstruction; and (c) no additional collimator or detector motion. This work demonstrates the potential value of hybrid geometry in collimator design for LFOV SPECT imaging.

  11. Optimization of beam orientation in radiotherapy using planar geometry

    NASA Astrophysics Data System (ADS)

    Haas, O. C. L.; Burnham, K. J.; Mills, J. A.

    1998-08-01

    This paper proposes a new geometrical formulation of the coplanar beam orientation problem combined with a hybrid multiobjective genetic algorithm. The approach is demonstrated by optimizing the beam orientation in two dimensions, with the objectives being formulated using planar geometry. The traditional formulation of the objectives associated with the organs at risk has been modified to account for the use of complex dose delivery techniques such as beam intensity modulation. The new algorithm attempts to replicate the approach of a treatment planner whilst reducing the amount of computation required. Hybrid genetic search operators have been developed to improve the performance of the genetic algorithm by exploiting problem-specific features. The multiobjective genetic algorithm is formulated around the concept of Pareto optimality which enables the algorithm to search in parallel for different objectives. When the approach is applied without constraining the number of beams, the solution produces an indication of the minimum number of beams required. It is also possible to obtain non-dominated solutions for various numbers of beams, thereby giving the clinicians a choice in terms of the number of beams as well as in the orientation of these beams.

  12. RFQ device for accelerating particles

    DOEpatents

    Shepard, Kenneth W.; Delayen, Jean R.

    1995-01-01

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium.

  13. Beam quality corrections for parallel-plate ion chambers in electron reference dosimetry

    NASA Astrophysics Data System (ADS)

    Zink, K.; Wulff, J.

    2012-04-01

    Current dosimetry protocols (AAPM, IAEA, IPEM, DIN) recommend parallel-plate ionization chambers for dose measurements in clinical electron beams. This study presents detailed Monte Carlo simulations of beam quality correction factors for four different types of parallel-plate chambers: NACP-02, Markus, Advanced Markus and Roos. These chambers differ in constructive details which should have notable impact on the resulting perturbation corrections, hence on the beam quality corrections. The results reveal deviations to the recommended beam quality corrections given in the IAEA TRS-398 protocol in the range of 0%-2% depending on energy and chamber type. For well-guarded chambers, these deviations could be traced back to a non-unity and energy-dependent wall perturbation correction. In the case of the guardless Markus chamber, a nearly energy-independent beam quality correction is resulting as the effects of wall and cavity perturbation compensate each other. For this chamber, the deviations to the recommended values are the largest and may exceed 2%. From calculations of type-B uncertainties including effects due to uncertainties of the underlying cross-sectional data as well as uncertainties due to the chamber material composition and chamber geometry, the overall uncertainty of calculated beam quality correction factors was estimated to be <0.7%. Due to different chamber positioning recommendations given in the national and international dosimetry protocols, an additional uncertainty in the range of 0.2%-0.6% is present. According to the IAEA TRS-398 protocol, the uncertainty in clinical electron dosimetry using parallel-plate ion chambers is 1.7%. This study may help to reduce this uncertainty significantly.

  14. A new spherical model for computing the radiation field available for photolysis and heating at twilight

    NASA Technical Reports Server (NTRS)

    Dahlback, Arne; Stamnes, Knut

    1991-01-01

    Accurate computation of atmospheric photodissociation and heating rates is needed in photochemical models. These quantities are proportional to the mean intensity of the solar radiation penetrating to various levels in the atmosphere. For large solar zenith angles a solution of the radiative transfer equation valid for a spherical atmosphere is required in order to obtain accurate values of the mean intensity. Such a solution based on a perturbation technique combined with the discrete ordinate method is presented. Mean intensity calculations are carried out for various solar zenith angles. These results are compared with calculations from a plane parallel radiative transfer model in order to assess the importance of using correct geometry around sunrise and sunset. This comparison shows, in agreement with previous investigations, that for solar zenith angles less than 90 deg adequate solutions are obtained for plane parallel geometry as long as spherical geometry is used to compute the direct beam attenuation; but for solar zenith angles greater than 90 deg this pseudospherical plane parallel approximation overstimates the mean intensity.

  15. RFQ device for accelerating particles

    DOEpatents

    Shepard, K.W.; Delayen, J.R.

    1995-06-06

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium. 5 figs.

  16. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  17. Wakefield computations for a corrugated pipe as a beam dechirper for FEL applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C. K.; Bane, K. L.F.

    A beam “dechirper” based on a corrugated, metallic vacuum chamber has been proposed recently to cancel residual energy chirp in a beam before it enters the undulator in a linac-based X-ray FEL. Rather than the round geometry that was originally proposed, we consider a pipe composed of two parallel plates with corrugations. The advantage is that the strength of the wake effect can be tuned by adjusting the separation of the plates. The separation of the plates is on the order of millimeters, and the corrugations are fractions of a millimeter in size. The dechirper needs to be meters longmore » in order to provide sufficient longitudinal wakefield to cancel the beam chirp. Considerable computation resources are required to determine accurately the wakefield for such a long structure with small corrugation gaps. Combining the moving window technique and parallel computing using multiple processors, the time domain module in the parallel finite-element electromagnetic suite ACE3P allows efficient determination of the wakefield through convergence studies. In this paper, we will calculate the longitudinal, dipole and quadrupole wakefields for the dechirper and compare the results with those of analytical and field matching approaches.« less

  18. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, K. H.; Battista, J. J.; Jordan, K. J.

    2017-05-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaulanov, Todor; Savukov, Igor; Kim, Young Jin

    We constructed a spin-exchange relaxation-free (SERF) magnetometer with a small angle between the pump and probe beams facilitating a multi-channel design with a flat pancake cell. This configuration provides almost complete overlap of the beams in the cell, and prevents the pump beam from entering the probe detection channel. By coupling the lasers in multi-mode fibers, without an optical isolator or field modulation, we demonstrate a sensitivity of 10 fTmore » $$/\\sqrt{\\text{Hz}}$$ for frequencies between 10 Hz and 100 Hz. In addition to the experimental study of sensitivity, we present a theoretical analysis of SERF magnetometer response to magnetic fields for small-angle and parallel-beam configurations, and show that at optimal DC offset fields the magnetometer response is comparable to that in the orthogonal-beam configuration. Based on the analysis, we also derive fundamental and probe-limited sensitivities for the arbitrary non-orthogonal geometry. The expected practical and fundamental sensitivities are of the same order as those in the orthogonal geometry. As a result, we anticipate that our design will be useful for magnetoencephalography (MEG) and magnetocardiography (MCG) applications.« less

  20. OSIRIS - an object-oriented parallel 3D PIC code for modeling laser and particle beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Hemker, Roy

    1999-11-01

    The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.

  1. Monte Carlo modelling the dosimetric effects of electrode material on diamond detectors.

    PubMed

    Baluti, Florentina; Deloar, Hossain M; Lansley, Stuart P; Meyer, Juergen

    2015-03-01

    Diamond detectors for radiation dosimetry were modelled using the EGSnrc Monte Carlo code to investigate the influence of electrode material and detector orientation on the absorbed dose. The small dimensions of the electrode/diamond/electrode detector structure required very thin voxels and the use of non-standard DOSXYZnrc Monte Carlo model parameters. The interface phenomena was investigated by simulating a 6 MV beam and detectors with different electrode materials, namely Al, Ag, Cu and Au, with thickens of 0.1 µm for the electrodes and 0.1 mm for the diamond, in both perpendicular and parallel detector orientation with regards to the incident beam. The smallest perturbations were observed for the parallel detector orientation and Al electrodes (Z = 13). In summary, EGSnrc Monte Carlo code is well suited for modelling small detector geometries. The Monte Carlo model developed is a useful tool to investigate the dosimetric effects caused by different electrode materials. To minimise perturbations cause by the detector electrodes, it is recommended that the electrodes should be made from a low-atomic number material and placed parallel to the beam direction.

  2. Beam-smiling in bent-Laue monochromators

    NASA Astrophysics Data System (ADS)

    Ren, B.; Dilmanian, F. A.; Chapman, L. D.; Wu, X. Y.; Zhong, Z.; Ivanov, I.; Thomlinson, W. C.; Huang, X.

    1997-07-01

    When a wide fan-shaped x-ray beam is diffracted by a bent crystal in the Laue geometry, the profile of the diffracted beam generally does not appear as a straight line, but as a line with its ends curved up or curved down. This effect, referred to as "beam-smiling", has been a major obstacle in developing bent-Laue crystal monochromators for medical applications of synchrotron x-ray. We modeled a cylindrically bent crystal using the Finite Element Analysis (FEA) method, and we carried out experiments at the National Synchrotron Light Source and Cornell High Energy Synchrotron Source. Our studies show that, while beam-smiling exists in most of the crystal's area because of anticlastic bending effects, there is a region parallel to the bending axis of the crystal where the diffracted beam is "smile-free". By applying asymmetrical bending, this smile-free region can be shifted vertically away from the geometric center of the crystal, as desired. This leads to a novel method of compensating for beam-smiling. We will discuss the method of "differential bending" for smile removal, beam-smiling in the Cauchios and the polychromatic geometry, and the implications of the method on developing single- and double-bent Laue monochromators. The experimental results will be discussed, concentrating on specific beam-smiling observation and removal as applied to the new monochromator of the Multiple Energy Computed Tomography [MECT] project of the Medical Department, Brookhaven National Laboratory.

  3. Synchrotron-based multiple-beam FTIR chemical imaging of a multi-layered polymer in transmission and reflection: towards cultural heritage applications

    NASA Astrophysics Data System (ADS)

    Unger, Miriam; Mattson, Eric; Schmidt Patterson, Catherine; Alavi, Zahrasadet; Carson, David; Hirschmugl, Carol J.

    2013-04-01

    IRENI (infrared environmental imaging) is a recently commissioned Fourier transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center in Madison, WI, USA. This novel beamline extracts 320 mrad of radiation, horizontally, from one bending magnet. The optical transport separates and recombines the beam into 12 parallel collimated beams to illuminate a commercial FTIR microspectrometer (Bruker Hyperion 3000) equipped with a focal plane array detector where single pixels in the detector image a projected sample area of either 0.54×0.54 μm2 or 2×2 μm2, depending in the measurement geometry. The 12 beams are partially overlapped and defocused, similar to wide-field microscopy, homogeneously illuminating a relatively large sample area compared to single-beam arrangements. Both transmission and reflection geometries are used to examine a model cross section from a layered polymer material. The compromises for sample preparation and measurement strategies are discussed, and the chemical composition and spatial definition of the layers are distinguished in chemical images generated from data sets. Deconvolution methods that may allow more detailed data analysis are also discussed.

  4. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOEpatents

    Susemihl, Ingo

    1990-01-01

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut.

  5. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOEpatents

    Susemihl, I.

    1990-03-13

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut. 7 figs.

  6. Methods for implementing microbeam radiation therapy

    DOEpatents

    Dilmanian, F. Avraham; Morris, Gerard M.; Hainfeld, James F.

    2007-03-20

    A method of performing radiation therapy includes delivering a therapeutic dose such as X-ray only to a target (e.g., tumor) with continuous broad beam (or in-effect continuous) using arrays of parallel planes of radiation (microbeams/microplanar beams). Microbeams spare normal tissues, and when interlaced at a tumor, form a broad-beam for tumor ablation. Bidirectional interlaced microbeam radiation therapy (BIMRT) uses two orthogonal arrays with inter-beam spacing equal to beam thickness. Multidirectional interlaced MRT (MIMRT) includes irradiations of arrays from several angles, which interleave at the target. Contrast agents, such as tungsten and gold, are administered to preferentially increase the target dose relative to the dose in normal tissue. Lighter elements, such as iodine and gadolinium, are used as scattering agents in conjunction with non-interleaving geometries of array(s) (e.g., unidirectional or cross-fired (intersecting) to generate a broad beam effect only within the target by preferentially increasing the valley dose within the tumor.

  7. GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code.

    PubMed

    E, J C; Wang, L; Chen, S; Zhang, Y Y; Luo, S N

    2018-03-01

    GAPD, a graphics-processing-unit (GPU)-accelerated atom-based polychromatic diffraction simulation code for direct, kinematics-based, simulations of X-ray/electron diffraction of large-scale atomic systems with mono-/polychromatic beams and arbitrary plane detector geometries, is presented. This code implements GPU parallel computation via both real- and reciprocal-space decompositions. With GAPD, direct simulations are performed of the reciprocal lattice node of ultralarge systems (∼5 billion atoms) and diffraction patterns of single-crystal and polycrystalline configurations with mono- and polychromatic X-ray beams (including synchrotron undulator sources), and validation, benchmark and application cases are presented.

  8. Misalignments calibration in small-animal PET scanners based on rotating planar detectors and parallel-beam geometry.

    PubMed

    Abella, M; Vicente, E; Rodríguez-Ruano, A; España, S; Lage, E; Desco, M; Udias, J M; Vaquero, J J

    2012-11-21

    Technological advances have improved the assembly process of PET detectors, resulting in quite small mechanical tolerances. However, in high-spatial-resolution systems, even submillimetric misalignments of the detectors may lead to a notable degradation of image resolution and artifacts. Therefore, the exact characterization of misalignments is critical for optimum reconstruction quality in such systems. This subject has been widely studied for CT and SPECT scanners based on cone beam geometry, but this is not the case for PET tomographs based on rotating planar detectors. The purpose of this work is to analyze misalignment effects in these systems and to propose a robust and easy-to-implement protocol for geometric characterization. The result of the proposed calibration method, which requires no more than a simple calibration phantom, can then be used to generate a correct 3D-sinogram from the acquired list mode data.

  9. Optically driven oscillations of ellipsoidal particles. Part I: experimental observations.

    PubMed

    Mihiretie, B M; Snabre, P; Loudet, J-C; Pouligny, B

    2014-12-01

    We report experimental observations of the mechanical effects of light on ellipsoidal micrometre-sized dielectric particles, in water as the continuous medium. The particles, made of polystyrene, have shapes varying between near disk-like (aspect ratio k = 0.2) to very elongated needle-like (k = 8). Rather than the very tightly focused beam geometry of optical tweezers, we use a moderately focused laser beam to manipulate particles individually by optical levitation. The geometry allows us varying the longitudinal position of the particle, and to capture images perpendicular to the beam axis. Experiments show that moderate-k particles are radially trapped with their long axis lying parallel to the beam. Conversely, elongated (k > 3) or flattened (k < 0.3) ellipsoids never come to rest, and permanently "dance" around the beam, through coupled translation-rotation motions. The oscillations are shown to occur in general, be the particle in bulk water or close to a solid boundary, and may be periodic or irregular. We provide evidence for two bifurcations between static and oscillating states, at k ≈ 0.33 and k ≈ 3 for oblate and prolate ellipsoids, respectively. Based on a recently developed 2-dimensional ray-optics simulation (Mihiretie et al., EPL 100, 48005 (2012)), we propose a simple model that allows understanding the physical origin of the oscillations.

  10. Shielding properties of lead-free protective clothing and their impact on radiation doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlattl, Helmut; Zankl, Maria; Eder, Heinrich

    2007-11-15

    The shielding properties of two different lead-free materials--tin and a compound of 80% tin and 20% bismuth--for protective clothing are compared with those of lead for three typical x-ray spectra generated at tube voltages of 60, 75, and 120 kV. Three different quantities were used to compare the shielding capability of the different materials: (1) Air-kerma attenuation factors in narrow-beam geometry, (2) air-kerma attenuation factors in broad-beam geometry, and (3) ratios of organ and effective doses in the human body for a whole-body irradiation with a parallel beam directed frontally at the body. The thicknesses of tin (0.45 mm) andmore » the tin/bismuth compound (0.41 mm) to be compared against lead correspond to a lead equivalence value of 0.35 mm for the 75 kV spectrum. The narrow-beam attenuation factors for 0.45 mm tin are 54% and 32% lower than those for 0.35 mm lead for 60 and 120 kV; those for 0.41 mm tin/bismuth are 12% and 32% lower, respectively. The decrease of the broad-beam air-kerma attenuation factors compared to lead is 74%, 46%, and 41% for tin and 42%, 26%, and 33% for tin/bismuth and the spectra at 60, 75, and 120 kV, respectively. Therefore, it is recommended that the characterization of the shielding potential of a material should be done by measurements in broad-beam geometry. Since the secondary radiation that is mainly responsible for the shielding reduction in broad-beam geometry is of low penetrability, only more superficially located organs receive significantly enhanced doses. The increase for the dose to the glandular breast tissue (female) compared to being shielded by lead is 143%, 37%, and 45% when shielded by tin, and 35%, 15%, and 39% when shielded by tin/bismuth for 60, 75, and 120 kV, respectively. The effective dose rises by 60%, 6%, and 38% for tin, and 14%, 3% and, 35% for tin/bismuth shielding, respectively.« less

  11. MO-F-CAMPUS-I-04: Characterization of Fan Beam Coded Aperture Coherent Scatter Spectral Imaging Methods for Differentiation of Normal and Neoplastic Breast Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R; Albanese, K; Lakshmanan, M

    Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality formore » breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded aperture coherent scatter imaging a clinically viable method for breast cancer detection. United States Department of Homeland Security; Duke University Medical Center - Department of Radiology; Carl E Ravin Advanced Imaging Laboratories; Duke University Medical Physics Graduate Program.« less

  12. SU-E-T-33: A Feasibility-Seeking Algorithm Applied to Planning of Intensity Modulated Proton Therapy: A Proof of Principle Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfold, S; Casiraghi, M; Dou, T

    2015-06-15

    Purpose: To investigate the applicability of feasibility-seeking cyclic orthogonal projections to the field of intensity modulated proton therapy (IMPT) inverse planning. Feasibility of constraints only, as opposed to optimization of a merit function, is less demanding algorithmically and holds a promise of parallel computations capability with non-cyclic orthogonal projections algorithms such as string-averaging or block-iterative strategies. Methods: A virtual 2D geometry was designed containing a C-shaped planning target volume (PTV) surrounding an organ at risk (OAR). The geometry was pixelized into 1 mm pixels. Four beams containing a subset of proton pencil beams were simulated in Geant4 to provide themore » system matrix A whose elements a-ij correspond to the dose delivered to pixel i by a unit intensity pencil beam j. A cyclic orthogonal projections algorithm was applied with the goal of finding a pencil beam intensity distribution that would meet the following dose requirements: D-OAR < 54 Gy and 57 Gy < D-PTV < 64.2 Gy. The cyclic algorithm was based on the concept of orthogonal projections onto half-spaces according to the Agmon-Motzkin-Schoenberg algorithm, also known as ‘ART for inequalities’. Results: The cyclic orthogonal projections algorithm resulted in less than 5% of the PTV pixels and less than 1% of OAR pixels violating their dose constraints, respectively. Because of the abutting OAR-PTV geometry and the realistic modelling of the pencil beam penumbra, complete satisfaction of the dose objectives was not achieved, although this would be a clinically acceptable plan for a meningioma abutting the brainstem, for example. Conclusion: The cyclic orthogonal projections algorithm was demonstrated to be an effective tool for inverse IMPT planning in the 2D test geometry described. We plan to further develop this linear algorithm to be capable of incorporating dose-volume constraints into the feasibility-seeking algorithm.« less

  13. High-precision laser microcutting and laser microdrilling using diffractive beam-splitting and high-precision flexible beam alignment

    NASA Astrophysics Data System (ADS)

    Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.

    2017-08-01

    High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.

  14. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  15. Dose perturbation effect of metallic spinal implants in proton beam therapy.

    PubMed

    Jia, Yingcui; Zhao, Li; Cheng, Chee-Wai; McDonald, Mark W; Das, Indra J

    2015-09-08

    The purpose of this study was to investigate the effect of dose perturbations for two metallic spinal screw implants in proton beam therapy in the perpendicular and parallel beam geometry. A 5.5 mm (diameter) by 45 mm (length) stainless steel (SS) screw and a 5.5 mm by 35 mm titanium (Ti) screw commonly used for spinal fixation were CT-scanned in a hybrid phantom of water and solid water. The CT data were processed with an orthopedic metal artifact reduction (O-MAR) algorithm. Treatment plans were generated for each metal screw with a proton beam oriented, first parallel and then perpendicular, to the longitudinal axis of the screw. The calculated dose profiles were compared with measured results from a plane-parallel ion chamber and Gafchromic EBT2 films. For the perpendicular setup, the measured dose immediately downstream from the screw exhibited dose enhancement up to 12% for SS and 8% for Ti, respectively, but such dose perturbation was not observed outside the lateral edges of the screws. The TPS showed 5% and 2% dose reductions immediately at the interface for the SS nd Ti screws, respectively, and up to 9% dose enhancements within 1 cm outside of the lateral edges of the screws. The measured dose enhancement was only observed within 5 mm from the interface along the beam path. At deeper depths, the lateral dose profiles appeared to be similar between the measurement and TPS, with dose reduction in the screw shadow region and dose enhancement within 1-2 cm outside of the lateral edges of the metals. For the parallel setup, no significant dose perturbation was detected at lateral distance beyond 3 mm away from both screws. Significant dose discrepancies exist between TPS calculations and ion chamber and film measurements in close proximity of high-Z inhomogeneities. The observed dose enhancement effect with proton therapy is not correctly modeled by TPS. An extra measure of caution should be taken when evaluating dosimetry with spinal metallic implants.

  16. Endpoint-based parallel data processing with non-blocking collective instructions in a parallel active messaging interface of a parallel computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Charles J; Blocksome, Michael A; Cernohous, Bob R

    Methods, apparatuses, and computer program products for endpoint-based parallel data processing with non-blocking collective instructions in a parallel active messaging interface (`PAMI`) of a parallel computer are provided. Embodiments include establishing by a parallel application a data communications geometry, the geometry specifying a set of endpoints that are used in collective operations of the PAMI, including associating with the geometry a list of collective algorithms valid for use with the endpoints of the geometry. Embodiments also include registering in each endpoint in the geometry a dispatch callback function for a collective operation and executing without blocking, through a single onemore » of the endpoints in the geometry, an instruction for the collective operation.« less

  17. A scheme for solving the plane-plane challenge in force measurements at the nanoscale.

    PubMed

    Siria, Alessandro; Huant, Serge; Auvert, Geoffroy; Comin, Fabio; Chevrier, Joel

    2010-05-19

    Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB) and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a "gedanken" surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  18. Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.

    2018-04-01

    The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.

  19. OPTMAIN- A FORTRAN CODE FOR THE CALCULATION OF PROBE VOLUME GEOMETRY CHANGES IN A LASER ANEMOMETRY SYSTEM CAUSED BY WINDOW REFRACTION

    NASA Technical Reports Server (NTRS)

    Owen, A. K.

    1994-01-01

    The laser anemometer has provided the fluid dynamicist with a powerful tool for nonintrusively measuring fluid velocities. One of the more common types of laser anemometers, the laser fringe anemometer, divides a single laser beam into two parallel beams and then focuses them on a point in space called the "probe volume" (PV) where the fluid velocity is measured. Many applications using this method for measuring fluid velocities require the observation of fluids through a window. The passage of the laser beams through materials having different indices of refraction has the following effects: 1) the position of the probe volume will change; 2) the beams will uncross, i.e., no longer lie in the same plane at the probe volume location; and 3) for nonflat plate windows, the crossing angle of the two beams will change. OPTMAIN uses a ray tracing technique, which is not restricted to special cases, to study the changes in probe volume geometry and position due to refraction effects caused by both flat and general smooth windows. Input parameters are the indices of refraction on both sides of the window and of the window itself, the window shape, the assumed position of the probe volume and the actual position of the focusing lens relative to the window, the orientation of the plane which contains the laser beams, the beam crossing angle, and the laser beam wavelength. OPTMAIN is written in FORTRAN 77 for interactive execution. It has been implemented on a DEC VAX 11/780 under VMS 5.0 with a virtual memory requirement of 50K. OPTMAIN was developed in 1987.

  20. Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.

    Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less

  1. Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons

    DOE PAGES

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; ...

    2016-08-29

    Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less

  2. Formation of Ordered and Disordered Dielectric/metal Nanowire Arrays and their Plasmonic Behavior

    DTIC Science & Technology

    2007-01-01

    sheath geometry. 2. EXPERIMENTAL PROCEDURES Several different nanowire systems have been grown, including random Ga2O3 nanowires, InAs...nanowires, ZnO nanowires, as well as Au lines produced by e-beam lithography. The growth of the Ga2O3 nanowires was achieved by the controlled oxidation...CLOSELY-SPACED PARALLEL ZnO NANOWIRES AND CROSSED Ga2O3 NANOWIRES. As discussed above, due to the far separation of the gold colloid catalyst in the

  3. Enhanced coherent terahertz beam with a photoconductive antenna containing a chaotic shape electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Dong Ho; Kim, Christopher; Graber, Benjamin

    2014-03-01

    Photoconductive antenna is one of the most popular methods to produce a broadband terahertz beam. Our recent experiments indicate that a photoconductive antenna containing a pair of parallel micro-strip-line electrodes produces both incoherent and coherent terahertz beam. When we drive the antenna with a low bias voltage and a weak femto-second laser power, it produces mostly coherent terahertz beam. However, as the bias voltage and/or the femto-second laser power increase, the incoherent terahertz beam strength increases exponentially with the bias voltage.[1] When the bias voltage and/or the femto-second laser power exceeds critical values, heat associated with the incoherent beam eventually leads to a catastrophic antenna failure, resulting in a permanent damage on the antenna.[2] In order to improve our photoconductive antenna we have implemented a chaotic geometry in the photoconductive antenna's electrodes. Our experimental results show that the new antenna produces substantially more coherent terahertz beam and much less incoherent terahertz beam. We will present the details of our experimental results and discuss the merits of new antenna design. We will also examine some theory to understand our experimental results. Supported by DTRA.

  4. Low energy, high power hydrogen neutral beam for plasma heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase themore » efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.« less

  5. Multiple grid problems on concurrent-processing computers

    NASA Technical Reports Server (NTRS)

    Eberhardt, D. S.; Baganoff, D.

    1986-01-01

    Three computer codes were studied which make use of concurrent processing computer architectures in computational fluid dynamics (CFD). The three parallel codes were tested on a two processor multiple-instruction/multiple-data (MIMD) facility at NASA Ames Research Center, and are suggested for efficient parallel computations. The first code is a well-known program which makes use of the Beam and Warming, implicit, approximate factored algorithm. This study demonstrates the parallelism found in a well-known scheme and it achieved speedups exceeding 1.9 on the two processor MIMD test facility. The second code studied made use of an embedded grid scheme which is used to solve problems having complex geometries. The particular application for this study considered an airfoil/flap geometry in an incompressible flow. The scheme eliminates some of the inherent difficulties found in adapting approximate factorization techniques onto MIMD machines and allows the use of chaotic relaxation and asynchronous iteration techniques. The third code studied is an application of overset grids to a supersonic blunt body problem. The code addresses the difficulties encountered when using embedded grids on a compressible, and therefore nonlinear, problem. The complex numerical boundary system associated with overset grids is discussed and several boundary schemes are suggested. A boundary scheme based on the method of characteristics achieved the best results.

  6. The first target experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.

    2007-08-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.

  7. High-speed volume measurement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Michael H.; Doyle, Jr., James L.; Brinkman, Michael J.

    2018-01-30

    Disclosed is a volume sensor having a first axis, a second axis, and a third axis, each axis including a laser source configured to emit a beam; a parallel beam generating assembly configured to receive the beam and split the beam into a first parallel beam and a second parallel beam, a beam-collimating assembly configured to receive the first parallel beam and the second parallel beam and output a first beam sheet and a second beam sheet, the first beam sheet and the second beam sheet being configured to traverse the object aperture; a first collecting lens and a secondmore » collecting lens; and a first photodetector and a second photodetector, the first photodetector and the second photodetector configured to output an electrical signal proportional to the object; wherein the first axis, the second axis, and the third axis are arranged at an angular offset with respect to each other.« less

  8. Endpoint-based parallel data processing with non-blocking collective instructions in a parallel active messaging interface of a parallel computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Charles J; Blocksome, Michael A; Cernohous, Bob R

    Endpoint-based parallel data processing with non-blocking collective instructions in a PAMI of a parallel computer is disclosed. The PAMI is composed of data communications endpoints, each including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task. The compute nodes are coupled for data communications through the PAMI. The parallel application establishes a data communications geometry specifying a set of endpoints that are used in collective operations of the PAMI by associating with the geometry a list of collective algorithms valid for use with themore » endpoints of the geometry; registering in each endpoint in the geometry a dispatch callback function for a collective operation; and executing without blocking, through a single one of the endpoints in the geometry, an instruction for the collective operation.« less

  9. Experimental determination of the effective point of measurement of cylindrical ionization chambers for high-energy photon and electron beams.

    PubMed

    Huang, Yanxiao; Willomitzer, Christian; Zakaria, Golam Abu; Hartmann, Guenther H

    2010-01-01

    Measurements of depth-dose curves in water phantom using a cylindrical ionization chamber require that its effective point of measurement is located at the measuring depth. Recommendations for the position of the effective point of measurement with respect to the central axis valid for high-energy electron and photon beams are given in dosimetry protocols. According to these protocols, the use of a constant shift P(eff) is currently recommended. However, this is still based on a very limited set of experimental results. It is therefore expected that an improved knowledge of the exact position of the effective point of measurement will further improve the accuracy of dosimetry. Recent publications have revealed that the position of the effective point of measurement is indeed varying with beam energy, field size and also with chamber geometry. The aim of this study is to investigate whether the shift of P(eff) can be taken to be constant and independent from the beam energy. An experimental determination of the effective point of measurement is presented based on a comparison between cylindrical chambers and a plane-parallel chamber using conventional dosimetry equipment. For electron beams, the determination is based on the comparison of halfvalue depth R(50) between the cylindrical chamber of interest and a well guarded plane-parallel Roos chamber. For photon beams, the depth of dose maximum, d(max), the depth of 80% dose, d(80), and the dose parameter PDD(10) were used. It was again found that the effective point of measurement for both, electron and photon beams Dosimetry, depends on the beam energy. The deviation from a constant value remains very small for photons, whereas significant deviations were found for electrons. It is therefore concluded that use of a single upstream shift value from the centre of the cylindrical chamber as recommended in current dosimetry protocols is adequate for photons, however inadequate for accurate electron beam dosimetry.

  10. Endpoint-based parallel data processing in a parallel active messaging interface of a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael E; Ratterman, Joseph D; Smith, Brian E

    2014-02-11

    Endpoint-based parallel data processing in a parallel active messaging interface ('PAMI') of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective opeartion through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.

  11. Endpoint-based parallel data processing in a parallel active messaging interface of a parallel computer

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-08-12

    Endpoint-based parallel data processing in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective operation through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.

  12. PEM Water Electrolysis: Preliminary Investigations Using Neutron Radiography

    NASA Astrophysics Data System (ADS)

    de Beer, Frikkie; van der Merwe, Jan-Hendrik; Bessarabov, Dmitri

    The quasi-dynamic water distribution and performance of a proton exchange membrane (PEM) electrolyzer at both a small fuel cell's anode and cathode was observed and quantitatively measured in the in-plane imaging geometry direction(neutron beam parallel to membrane and with channels parallel to the beam) by applying the neutron radiography principle at the neutron imaging facility (NIF) of NIST, Gaithersburg, USA. The test section had 6 parallel channels with an active area of 5 cm2 and in-situ neutron radiography observation entails the liquid water content along the total length of each of the channels. The acquisition was made with a neutron cMOS-camera system with performance of 10 sec per frame to achieve a relatively good pixel dynamic range and at a pixel resolution of 10 x 10 μm2. A relatively high S/N ratio was achieved in the radiographs to observe in quasi real time the water management as well as quantification of water / gas within the channels. The water management has been observed at increased steps (0.2A/cm2) of current densities until 2V potential has been achieved. These observations were made at 2 different water flow rates, at 3 temperatures for each flow rate and repeated for both the vertical and horizontal electrolyzer orientation geometries. It is observed that there is water crossover from the anode through the membrane to the cathode. A first order quantification (neutron scattering correction not included) shows that the physical vertical and horizontal orientation of the fuel cell as well as the temperature of the system up to 80 °C has no significant influence on the percentage water (∼18%) that crossed over into the cathode. Additionally, a higher water content was observed in the Gas Diffusion Layer at the position of the channels with respect to the lands.

  13. Parallel ptychographic reconstruction

    DOE PAGES

    Nashed, Youssef S. G.; Vine, David J.; Peterka, Tom; ...

    2014-12-19

    Ptychography is an imaging method whereby a coherent beam is scanned across an object, and an image is obtained by iterative phasing of the set of diffraction patterns. It is able to be used to image extended objects at a resolution limited by scattering strength of the object and detector geometry, rather than at an optics-imposed limit. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes, yet at the same time there is also a need to deliver reconstructed images immediately so that one can evaluate the next steps tomore » take in an experiment. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs) and then employs novel techniques to merge sub-datasets into a single complex phase and amplitude image. Results are shown on a simulated specimen and a real dataset from an X-ray experiment conducted at a synchrotron light source.« less

  14. The dynamics of current carriers in standing Alfvén waves: Parallel electric fields in the auroral acceleration region

    NASA Astrophysics Data System (ADS)

    Wright, Andrew N.; Allan, W.; Ruderman, Michael S.; Elphic, R. C.

    2002-07-01

    The acceleration of current carriers in an Alfvén wave current system is considered. The model incorporates a dipole magnetic field geometry, and we present an analytical solution of the two-fluid equations by successive approximations. The leading solution corresponds to the familiar single-fluid toroidal oscillations. The next order describes the nonlinear dynamics of electrons responsible for carrying a few μAm-2 field aligned current into the ionosphere. The solution shows how most of the electron acceleration in the magnetosphere occurs within 1 RE of the ionosphere, and that a parallel electric field of the order of 1 mVm-1 is responsible for energising the electrons to 1 keV. The limitations of the electron fluid approximation are considered, and a qualitative solution including electron beams and a modified E∥ is developed in accord with observations. We find that the electron acceleration can be nonlinear, (ve∥∇∥)ve∥ > ωve∥, as a result of our nonuniform equilibrium field geometry even when ve∥ is less than the Alfvén speed. Our calculation also elucidates the processes through which E∥ is generated and supported.

  15. SU-E-T-191: Commissioning and Dosimetric Characteristics of Elekta Agility for Total Skin Electron Beam (TSEB) Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayler, E; Charpentier, P; Micaily, B

    2015-06-15

    Purpose The purpose of this work is to publish beam data from Elekta Synergy(R) linear accelerators with Agility(TM) MLC for total skin electron beam (TSEB) therapy using the HDRE1 (High Dose Rate Electron 6MeV) energy. Method & Materials The optimal gantry angles for TSEB were determined using ion chamber measurements along a vertical profile at 450cm SSD. After gantry angles were chosen, field uniformity was measured over the entire treatment area. Uniformity was measured with and without the patient support device, allowing the dosimetric effect of the support device to be determined. Beam output and PDD were measured at themore » calibration point (450cm SSD) for a dual beam using a parallel plate chamber in solid water. These measurements were repeated with the chamber and phantom rotated about the patient isocenter at various angles, in order to measure the contribution from oblique beams. This technique provides a precise measurement of the treatment skin dose (TSD). Lastly, ion chamber measurements were verified by film and diodes. Results The optimal gantry angle for 450 cm SSD was determined to be 90±16°. This achieved uniformity better than 96% on the vertical axis, and 92% along the horizontal axis. HDRE1 was calibrated to deliver 10 cGy/MU at standard geometry (100 cm SSD, 1.2 cm depth). Thus at TSEB geometry (450 cm SSD, 0.1 cm depth) the output of the AP dual field was measured to be 0.35 cGy/MU. The TSD of a 20 cm radius cylinder for six (equally, 60° spaced) dual fields was measured to be 1.19 cGy/MU. Percent Depth Dose data for the AP dual field and TSD are shown in Figure 2. Conclusion This paper provides a modern procedure for commissioning TSEB therapy on a linear accelerator, and clinical beam data for the Elekta Synergy(R) with Agility(TM) MLC.« less

  16. Smart Optical Material Characterization System and Method

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    Disclosed is a system and method for characterizing optical materials, using steps and equipment for generating a coherent laser light, filtering the light to remove high order spatial components, collecting the filtered light and forming a parallel light beam, splitting the parallel beam into a first direction and a second direction wherein the parallel beam travelling in the second direction travels toward the material sample so that the parallel beam passes through the sample, applying various physical quantities to the sample, reflecting the beam travelling in the first direction to produce a first reflected beam, reflecting the beam that passes through the sample to produce a second reflected beam that travels back through the sample, combining the second reflected beam after it travels back though the sample with the first reflected beam, sensing the light beam produced by combining the first and second reflected beams, and processing the sensed beam to determine sample characteristics and properties.

  17. Improved Beam Diagnostic Spatial Calibration Using In-Situ Measurements of Beam Emission

    NASA Astrophysics Data System (ADS)

    Chrystal, C.; Burrell, K. H.; Pace, D. C.; Grierson, B. A.; Pablant, N. A.

    2014-10-01

    A new technique has been developed for determining the measurement geometry of the charge exchange recombination spectroscopy diagnostic (CER) on DIII-D. This technique removes uncertainty in the measurement geometry related to the position of the neutral beams when they are injecting power. This has been accomplished by combining standard measurements that use in-vessel calibration targets with spectroscopic measurements of Doppler shifted and Stark split beam emission to fully describe the neutral beam positions and CER views. A least squares fitting routine determines the measurement geometry consistent with all the calibration data. The use of beam emission measurements allows the position of the neutral beams to be determined in-situ by the same views that makeup the CER diagnostic. Results indicate that changes in the measurement geometry are required to create a consistent set of calibration measurements. However, changes in quantities derived from the geometry, e.g. ion temperature gradient and poloidal rotation, are small. Work supported by the US DOE under DE-FG02-07ER54917, DE-FC02-04ER54698, and DE-AC02-09H11466.

  18. Inpainting approaches to fill in detector gaps in phase contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Brun, F.; Delogu, P.; Longo, R.; Dreossi, D.; Rigon, L.

    2018-01-01

    Photon counting semiconductor detectors in radiation imaging present attractive properties, such as high efficiency, low noise, and energy sensitivity. The very complex electronics limits the sensitive area of current devices to a few square cm. This disadvantage is often compensated by tiling a larger matrix with an adequate number of detector units but this usually results in non-negligible insensitive gaps between two adjacent modules. When considering the case of Computed Tomography (CT), these gaps lead to degraded reconstructed images with severe streak and ring artifacts. This work presents two digital image processing solutions to fill in these gaps when considering the specific case of synchrotron radiation x-ray parallel beam phase contrast CT. While not discussed with experimental data, other CT modalities, such as spectral, cone beam and other geometries might benefit from the presented approaches.

  19. Demonstration of electronic design automation flow for massively parallel e-beam lithography

    NASA Astrophysics Data System (ADS)

    Brandt, Pieter; Belledent, Jérôme; Tranquillin, Céline; Figueiro, Thiago; Meunier, Stéfanie; Bayle, Sébastien; Fay, Aurélien; Milléquant, Matthieu; Icard, Beatrice; Wieland, Marco

    2014-07-01

    For proximity effect correction in 5 keV e-beam lithography, three elementary building blocks exist: dose modulation, geometry (size) modulation, and background dose addition. Combinations of these three methods are quantitatively compared in terms of throughput impact and process window (PW). In addition, overexposure in combination with negative bias results in PW enhancement at the cost of throughput. In proximity effect correction by over exposure (PEC-OE), the entire layout is set to fixed dose and geometry sizes are adjusted. In PEC-dose to size (DTS) both dose and geometry sizes are locally optimized. In PEC-background (BG), a background is added to correct the long-range part of the point spread function. In single e-beam tools (Gaussian or Shaped-beam), throughput heavily depends on the number of shots. In raster scan tools such as MAPPER Lithography's FLX 1200 (MATRIX platform) this is not the case and instead of pattern density, the maximum local dose on the wafer is limiting throughput. The smallest considered half-pitch is 28 nm, which may be considered the 14-nm node for Metal-1 and the 10-nm node for the Via-1 layer, achieved in a single exposure with e-beam lithography. For typical 28-nm-hp Metal-1 layouts, it was shown that dose latitudes (size of process window) of around 10% are realizable with available PEC methods. For 28-nm-hp Via-1 layouts this is even higher at 14% and up. When the layouts do not reach the highest densities (up to 10∶1 in this study), PEC-BG and PEC-OE provide the capability to trade throughput for dose latitude. At the highest densities, PEC-DTS is required for proximity correction, as this method adjusts both geometry edges and doses and will reduce the dose at the densest areas. For 28-nm-hp lines critical dimension (CD), hole&dot (CD) and line ends (edge placement error), the data path errors are typically 0.9, 1.0 and 0.7 nm (3σ) and below, respectively. There is not a clear data path performance difference between the investigated PEC methods. After the simulations, the methods were successfully validated in exposures on a MAPPER pre-alpha tool. A 28-nm half pitch Metal-1 and Via-1 layouts show good performance in resist that coincide with the simulation result. Exposures of soft-edge stitched layouts show that beam-to-beam position errors up to ±7 nm specified for FLX 1200 show no noticeable impact on CD. The research leading to these results has been performed in the frame of the industrial collaborative consortium IMAGINE.

  20. Electrically-induced stresses and deflection in multiple plates

    NASA Astrophysics Data System (ADS)

    Hu, Jih-Perng; Tichler, P. R.

    1992-04-01

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis was made to evaluate the magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.

  1. Combined algorithmic and GPU acceleration for ultra-fast circular conebeam backprojection

    NASA Astrophysics Data System (ADS)

    Brokish, Jeffrey; Sack, Paul; Bresler, Yoram

    2010-04-01

    In this paper, we describe the first implementation and performance of a fast O(N3logN) hierarchical backprojection algorithm for cone beam CT with a circular trajectory1,developed on a modern Graphics Processing Unit (GPU). The resulting tomographic backprojection system for 3D cone beam geometry combines speedup through algorithmic improvements provided by the hierarchical backprojection algorithm with speedup from a massively parallel hardware accelerator. For data parameters typical in diagnostic CT and using a mid-range GPU card, we report reconstruction speeds of up to 360 frames per second, and relative speedup of almost 6x compared to conventional backprojection on the same hardware. The significance of these results is twofold. First, they demonstrate that the reduction in operation counts demonstrated previously for the FHBP algorithm can be translated to a comparable run-time improvement in a massively parallel hardware implementation, while preserving stringent diagnostic image quality. Second, the dramatic speedup and throughput numbers achieved indicate the feasibility of systems based on this technology, which achieve real-time 3D reconstruction for state-of-the art diagnostic CT scanners with small footprint, high-reliability, and affordable cost.

  2. Parallels, How Many? Geometry Module for Use in a Mathematics Laboratory Setting.

    ERIC Educational Resources Information Center

    Brotherton, Sheila; And Others

    This is one of a series of geometry modules developed for use by secondary students in a laboratory setting. This module was conceived as an alternative approach to the usual practice of giving Euclid's parallel postulate and then mentioning that alternate postulates would lead to an alternate geometry or geometries. Instead, the student is led…

  3. Optical profilometer using laser based conical triangulation for inspection of inner geometry of corroded pipes in cylindrical coordinates

    NASA Astrophysics Data System (ADS)

    Buschinelli, Pedro D. V.; Melo, João. Ricardo C.; Albertazzi, Armando; Santos, João. M. C.; Camerini, Claudio S.

    2013-04-01

    An axis-symmetrical optical laser triangulation system was developed by the authors to measure the inner geometry of long pipes used in the oil industry. It has a special optical configuration able to acquire shape information of the inner geometry of a section of a pipe from a single image frame. A collimated laser beam is pointed to the tip of a 45° conical mirror. The laser light is reflected in such a way that a radial light sheet is formed and intercepts the inner geometry and forms a bright laser line on a section of the inspected pipe. A camera acquires the image of the laser line through a wide angle lens. An odometer-based triggering system is used to shot the camera to acquire a set of equally spaced images at high speed while the device is moved along the pipe's axis. Image processing is done in real-time (between images acquisitions) thanks to the use of parallel computing technology. The measured geometry is analyzed to identify corrosion damages. The measured geometry and results are graphically presented using virtual reality techniques and devices as 3D glasses and head-mounted displays. The paper describes the measurement principles, calibration strategies, laboratory evaluation of the developed device, as well as, a practical example of a corroded pipe used in an industrial gas production plant.

  4. Coupling impedance and wake functions for laminated structures with an application to the Fermilab Booster

    DOE PAGES

    Macridin, Alexandru; Spentzouris, Panagiotis; Amundson, James; ...

    2011-06-28

    We calculate the impedance and wake functions for laminated structures with parallel-plane and circular geometries. We critically examine the approximations used in the literature for the coupling impedance in laminated chambers and find that most of them are not justified because the wall surface impedance is large. A comparison between flat and circular geometry impedances is presented. We apply our calculation in a state-of-the-art beam dynamics simulation of the Fermilab Booster which includes nonlinear optics, laminated wakefields, and space charge impedance. The latter can have a significant effect away from the ultrarelativistic limit. Even though the simulations and the comparisonmore » with the experiment are done at the Booster injection energy, where the relativistic factor γ = 1.42, we find good agreement between our calculation of the coherent tune shift and recent experimental measurements.« less

  5. Neutron beam flux monitors in coaxial and planar geometry for neutron scattering instruments at Dhruva reactor

    NASA Astrophysics Data System (ADS)

    Desai, Shraddha S.; Devan, Shylaja; Das, Amrita; Patkar, S. M.; Rao, Mala N.

    2018-04-01

    Neutron scattering instruments at Dhruva reactor are equipped with in house developed neutron beam flux monitors. Measurements of variations in intensity are essential to normalize the scattered neutron spectra against the reactor power fluctuations, energy of monochromatic beam, and various other factors. Two different beam monitor geometries are considered as per the beam size and optics. These detectors are fabricated with tailor-made designs to suit individual beam size and neutron flux. Pencil size beam monitors for integral intensity measurement are fabricated with coaxial geometry and BF3 fill gas for high n-gamma discrimination and count rate capability. Brass cathode design is modified to SS based rugged design, considering beam transmission. Coaxial beam monitor partially intercepts the collimated beam and gives relative magnitude of the flux with time. For certain experiments, size of beam varies due to use of focusing monochromator. Thus a beam monitor with square sensitive region covering entire beam is essential. Multiwire based planar detector for use in transmission mode is designed. Negligible absorption of neutron beam intensity within the detector hardware is ensured. Design of detectors is tailor made for beam geometry. Both these types of beam monitors are fabricated and characterized at G2 beam line and Triple Axis Spectrometer at Dhruva reactor. Performance of detector is suitable for the beam monitoring up to neutron flux ˜ 106 n/cm2/sec. Design aspects and performance details of these beam monitors are mentioned in the paper.

  6. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE PAGES

    Gu, X.; Mildner, D. F. R.

    2016-05-16

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  7. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Mildner, D. F. R.

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  8. Investigation of converging and collimated beam instrument geometry on specular gloss measurements

    NASA Astrophysics Data System (ADS)

    Zwinkels, Joanne C.; Côté, Éric; Morgan, John

    2018-02-01

    Specular gloss is an important appearance property of a wide variety of manufactured goods. Depending upon the application, e.g. paints, paper, ceramics, etc. different instrument designs and measurement geometries are specified in standard test methods. For a given specular angle, these instrument designs can be broadly classified as converging beam (TAPPI method) and collimated beam (DIN method). In recent comparisons of specular gloss measurements using different glossmeters, very large standard deviations have been reported, well exceeding the manufacturers claims. In this paper, we investigate the effect of instrument beam geometry on gloss measurements. These results indicate that this difference in beam geometry can give the magnitude of gloss differences reported in these comparisons and highlights the importance of educating the user community of best measurement practices and obtaining appropriate traceability for their glossmeters.

  9. Engineered second-harmonic diffraction from highly transmissive metasurfaces composed of complementary split-ring resonators.

    PubMed

    Yang, Xin; Zhang, Chi; Wan, Mingjie; Chen, Zhuo; Wang, Zhenlin

    2016-07-01

    We theoretically and experimentally investigated the optical second-harmonic (SH) diffraction from metasurfaces based on gold complementary split-ring resonators (CSRRs). We have demonstrated that the generated SH currents are mostly parallel to the incident polarization and are asymmetric with respect to the base of a CSRR, thus allowing us to impose the phase change of π on the SH radiation by reversing the CSRR's orientation. We verified this concept of geometry-induced nonlinear phase by designing and fabricating a nonlinear metasurface consisting of supercells of CSRRs with opposite orientations that can function as a SH beam splitter. The ability to control the phase of the local nonlinearity coupled with the high transmittance at both fundamental and SHG wavelengths makes the CSRRs good candidates for the construction of highly efficient three-dimensional nonlinear metamaterials and suitable for applications in nonlinear beam shaping.

  10. High spatial resolution technique for SPECT using a fan-beam collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichihar, T.; Nambu, K.; Motomura, N.

    1993-08-01

    The physical characteristics of the collimator cause degradation of resolution with increasing distance from the collimator surface. A new convolutional backprojection algorithm has been derived for fanbeam SPECT data without rebinding into parallel beam geometry. The projections are filtered and then backprojected into the area within an isosceles triangle whose vertex is the focal point of the fan-beam and whose base is the fan-beam collimator face, and outside of the circle whose center is located midway between the focal point and the center of rotation and whose diameter is the distance between the focal point and the center of rotation.more » Consequently the backprojected area is close to the collimator surface. This algorithm has been implemented on a GCA-9300A SPECT system showing good results with both phantom and patient studies. The SPECT transaxial resolution was 4.6mm FWHM (reconstructed image matrix size of 256x256) at the center of SPECT FOV using UHR (ultra-high-resolution) fan beam collimators for brain study. Clinically, Tc-99m HMPAO and Tc-99m ECD brain data were reconstructed using this algorithm. The reconstruction results were compared with MRI images of the same slice position and showed significantly improved over results obtained with standard reconstruction algorithms.« less

  11. Toward quantum plasmonic networks

    DOE PAGES

    Holtfrerich, M. W.; Dowran, M.; Davidson, R.; ...

    2016-08-30

    Here, we demonstrate the transduction of macroscopic quantum entanglement by independent, distant plasmonic structures embedded in separate thin silver films. In particular, we show that the plasmon-mediated transmission through each film conserves spatially dependent, entangled quantum images, opening the door for the implementation of parallel quantum protocols, super-resolution imaging, and quantum plasmonic sensing geometries at the nanoscale level. The conservation of quantum information by the transduction process shows that continuous variable multi-mode entanglement is momentarily transferred from entangled beams of light to the space-like separated, completely independent plasmonic structures, thus providing a first important step toward establishing a multichannel quantummore » network across separate solid-state substrates.« less

  12. Optimized cell geometry for buffer-gas-cooled molecular-beam sources

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Samanta, Amit K.; Roth, Nils; Gusa, Daniel; Ossenbrüggen, Tim; Rubinsky, Igor; Horke, Daniel A.; Küpper, Jochen

    2018-03-01

    We have designed, constructed, and commissioned a cryogenic helium buffer-gas source for producing a cryogenically cooled molecular beam and evaluated the effect of different cell geometries on the intensity of the produced molecular beam, using ammonia as a test molecule. Planar and conical entrance and exit geometries are tested. We observe a threefold enhancement in the NH3 signal for a cell with planar entrance and conical-exit geometry, compared to that for a typically used "boxlike" geometry with planar entrance and exit. These observations are rationalized by flow field simulations for the different buffer-gas cell geometries. The full thermalization of molecules with the helium buffer gas is confirmed through rotationally resolved resonance-enhanced multiphoton ionization spectra yielding a rotational temperature of 5 K.

  13. Parallel O(N) Stokes’ solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xujun; Li, Jiyuan; Jiang, Xikai

    An efficient parallel Stokes’s solver is developed towards the complete inclusion of hydrodynamic interactions of Brownian particles in any geometry. A Langevin description of the particle dynamics is adopted, where the long-range interactions are included using a Green’s function formalism. We present a scalable parallel computational approach, where the general geometry Stokeslet is calculated following a matrix-free algorithm using the General geometry Ewald-like method. Our approach employs a highly-efficient iterative finite element Stokes’ solver for the accurate treatment of long-range hydrodynamic interactions within arbitrary confined geometries. A combination of mid-point time integration of the Brownian stochastic differential equation, the parallelmore » Stokes’ solver, and a Chebyshev polynomial approximation for the fluctuation-dissipation theorem result in an O(N) parallel algorithm. We also illustrate the new algorithm in the context of the dynamics of confined polymer solutions in equilibrium and non-equilibrium conditions. Our method is extended to treat suspended finite size particles of arbitrary shape in any geometry using an Immersed Boundary approach.« less

  14. Parallel O(N) Stokes’ solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries

    DOE PAGES

    Zhao, Xujun; Li, Jiyuan; Jiang, Xikai; ...

    2017-06-29

    An efficient parallel Stokes’s solver is developed towards the complete inclusion of hydrodynamic interactions of Brownian particles in any geometry. A Langevin description of the particle dynamics is adopted, where the long-range interactions are included using a Green’s function formalism. We present a scalable parallel computational approach, where the general geometry Stokeslet is calculated following a matrix-free algorithm using the General geometry Ewald-like method. Our approach employs a highly-efficient iterative finite element Stokes’ solver for the accurate treatment of long-range hydrodynamic interactions within arbitrary confined geometries. A combination of mid-point time integration of the Brownian stochastic differential equation, the parallelmore » Stokes’ solver, and a Chebyshev polynomial approximation for the fluctuation-dissipation theorem result in an O(N) parallel algorithm. We also illustrate the new algorithm in the context of the dynamics of confined polymer solutions in equilibrium and non-equilibrium conditions. Our method is extended to treat suspended finite size particles of arbitrary shape in any geometry using an Immersed Boundary approach.« less

  15. Immunofluorescent Detection of DNA Double Strand Breaks induced by High-LET Radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Desai, Nirav

    2004-01-01

    Within cell nuclei, traversing charged heavy ion particles lead to the accumulation of proteins related to DNA lesions and repair along the ion trajectories. Irradiation using a standard geometric setup with the beam path perpendicular to the cell monolayer generates discrete foci of several proteins known to localize at sites of DNA double strand breaks (DSBs). One such molecule is the histone protein H2AX (gamma-H2AX), which gets rapidly phosphorylated in response to ionizing radiation. Here we present data obtained with a modified irradiation geometry characterized by a beam path parallel to a monolayer of human fibroblast cells. This new irradiation geometry leads to the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in the x/y plane, thus enabling the analysis of the fluorescence distributions along the particle trajectories. Qualitative analysis of these distributions presented insights into the DNA repair kinetics along the primary track structure and visualization of possible chromatin movement. We also present evidence of colocalization of gamma-H2AX with several other proteins in responses to ionizing radiation exposure. Analysis of gamma-H2AX has the potential to provide useful information on human cell responses to high LET radiation after exposure to space-like radiation.

  16. Improved Design of Beam Tunnel for 42 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, A. K.

    2011-04-01

    In gyrotron, there is the chance of generation and excitation of unwanted RF modes (parasite oscillations). These modes may interact with electron beam and consequently degrade the beam quality. This paper presents the improved design of the beam tunnel to reduce the parasite oscillations and the effect of beam tunnel geometry on the electron beam parameters. The design optimization of the beam tunnel has been done with the help of 3-D simulation software CST-Microwave Studio and the effect of beam tunnel geometry on the electron beam parameters has been analyzed by EGUN code.

  17. Measurement of the curvature of a surface using parallel light beams

    DOEpatents

    Chason, Eric H.; Floro, Jerrold A.; Seager, Carleton H.; Sinclair, Michael B.

    1999-01-01

    Apparatus for measuring curvature of a surface wherein a beam of collimated light is passed through means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90.degree. about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90.degree. relative to the line onto which the single set of parallel beams from the first etalon would have fallen.

  18. Measurement of the curvature of a surface using parallel light beams

    DOEpatents

    Chason, E.H.; Floro, J.A.; Seager, C.H.; Sinclair, M.B.

    1999-06-15

    Apparatus is disclosed for measuring curvature of a surface wherein a beam of collimated light is passed through a means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90[degree] about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90[degree] relative to the line onto which the single set of parallel beams from the first etalon would have fallen. 5 figs.

  19. A preliminary investigation of ROI-image reconstruction with the rebinned BPF algorithm

    NASA Astrophysics Data System (ADS)

    Bian, Junguo; Xia, Dan; Yu, Lifeng; Sidky, Emil Y.; Pan, Xiaochuan

    2008-03-01

    The back-projection filtration (BPF)algorithm is capable of reconstructing ROI images from truncated data acquired with a wide class of general trajectories. However, it has been observed that, similar to other algorithms for convergent beam geometries, the BPF algorithm involves a spatially varying weighting factor in the backprojection step. This weighting factor can not only increase the computation load, but also amplify the noise in reconstructed images The weighting factor can be eliminated by appropriately rebinning the measured cone-beam data into fan-parallel-beam data. Such an appropriate data rebinning not only removes the weighting factor, but also retain other favorable properties of the BPF algorithm. In this work, we conduct a preliminary study of the rebinned BPF algorithm and its noise property. Specifically, we consider an application in which the detector and source can move in several directions for achieving ROI data acquisition. The combined motion of the detector and source generally forms a complex trajectory. We investigate in this work image reconstruction within an ROI from data acquired in this kind of applications.

  20. The Parallel Axiom

    ERIC Educational Resources Information Center

    Rogers, Pat

    1972-01-01

    Criteria for a reasonable axiomatic system are discussed. A discussion of the historical attempts to prove the independence of Euclids parallel postulate introduces non-Euclidean geometries. Poincare's model for a non-Euclidean geometry is defined and analyzed. (LS)

  1. Electrically-induced stresses and deflection in multiple plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jih-Perng; Tichler, P.R.

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis has been made to evaluate themore » magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.« less

  2. Reduce beam hardening artifacts of polychromatic X-ray computed tomography by an iterative approximation approach.

    PubMed

    Shi, Hongli; Yang, Zhi; Luo, Shuqian

    2017-01-01

    The beam hardening artifact is one of most important modalities of metal artifact for polychromatic X-ray computed tomography (CT), which can impair the image quality seriously. An iterative approach is proposed to reduce beam hardening artifact caused by metallic components in polychromatic X-ray CT. According to Lambert-Beer law, the (detected) projections can be expressed as monotonic nonlinear functions of element geometry projections, which are the theoretical projections produced only by the pixel intensities (image grayscale) of certain element (component). With help of a prior knowledge on spectrum distribution of X-ray beam source and energy-dependent attenuation coefficients, the functions have explicit expressions. Newton-Raphson algorithm is employed to solve the functions. The solutions are named as the synthetical geometry projections, which are the nearly linear weighted sum of element geometry projections with respect to mean of each attenuation coefficient. In this process, the attenuation coefficients are modified to make Newton-Raphson iterative functions satisfy the convergence conditions of fixed pointed iteration(FPI) so that the solutions will approach the true synthetical geometry projections stably. The underlying images are obtained using the projections by general reconstruction algorithms such as the filtered back projection (FBP). The image gray values are adjusted according to the attenuation coefficient means to obtain proper CT numbers. Several examples demonstrate the proposed approach is efficient in reducing beam hardening artifacts and has satisfactory performance in the term of some general criteria. In a simulation example, the normalized root mean square difference (NRMSD) can be reduced 17.52% compared to a newest algorithm. Since the element geometry projections are free from the effect of beam hardening, the nearly linear weighted sum of them, the synthetical geometry projections, are almost free from the effect of beam hardening. By working out the synthetical geometry projections, the proposed approach becomes quite efficient in reducing beam hardening artifacts.

  3. Fan beam image reconstruction with generalized Fourier slice theorem.

    PubMed

    Zhao, Shuangren; Yang, Kang; Yang, Kevin

    2014-01-01

    For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N^3), where N is the number of pixel in one dimension.

  4. Scaling device for photographic images

    NASA Technical Reports Server (NTRS)

    Rivera, Jorge E. (Inventor); Youngquist, Robert C. (Inventor); Cox, Robert B. (Inventor); Haskell, William D. (Inventor); Stevenson, Charles G. (Inventor)

    2005-01-01

    A scaling device projects a known optical pattern into the field of view of a camera, which can be employed as a reference scale in a resulting photograph of a remote object, for example. The device comprises an optical beam projector that projects two or more spaced, parallel optical beams onto a surface of a remotely located object to be photographed. The resulting beam spots or lines on the object are spaced from one another by a known, predetermined distance. As a result, the size of other objects or features in the photograph can be determined through comparison of their size to the known distance between the beam spots. Preferably, the device is a small, battery-powered device that can be attached to a camera and employs one or more laser light sources and associated optics to generate the parallel light beams. In a first embodiment of the invention, a single laser light source is employed, but multiple parallel beams are generated thereby through use of beam splitting optics. In another embodiment, multiple individual laser light sources are employed that are mounted in the device parallel to one another to generate the multiple parallel beams.

  5. Optimum Laser Beam Characteristics for Achieving Smoother Ablations in Laser Vision Correction.

    PubMed

    Verma, Shwetabh; Hesser, Juergen; Arba-Mosquera, Samuel

    2017-04-01

    Controversial opinions exist regarding optimum laser beam characteristics for achieving smoother ablations in laser-based vision correction. The purpose of the study was to outline a rigorous simulation model for simulating shot-by-shot ablation process. The impact of laser beam characteristics like super Gaussian order, truncation radius, spot geometry, spot overlap, and lattice geometry were tested on ablation smoothness. Given the super Gaussian order, the theoretical beam profile was determined following Lambert-Beer model. The intensity beam profile originating from an excimer laser was measured with a beam profiler camera. For both, the measured and theoretical beam profiles, two spot geometries (round and square spots) were considered, and two types of lattices (reticular and triangular) were simulated with varying spot overlaps and ablated material (cornea or polymethylmethacrylate [PMMA]). The roughness in ablation was determined by the root-mean-square per square root of layer depth. Truncating the beam profile increases the roughness in ablation, Gaussian profiles theoretically result in smoother ablations, round spot geometries produce lower roughness in ablation compared to square geometry, triangular lattices theoretically produce lower roughness in ablation compared to the reticular lattice, theoretically modeled beam profiles show lower roughness in ablation compared to the measured beam profile, and the simulated roughness in ablation on PMMA tends to be lower than on human cornea. For given input parameters, proper optimum parameters for minimizing the roughness have been found. Theoretically, the proposed model can be used for achieving smoothness with laser systems used for ablation processes at relatively low cost. This model may improve the quality of results and could be directly applied for improving postoperative surface quality.

  6. Modeling the truebeam linac using a CAD to Geant4 geometry implementation: dose and IAEA-compliant phase space calculations.

    PubMed

    Constantin, Magdalena; Perl, Joseph; LoSasso, Tom; Salop, Arthur; Whittum, David; Narula, Anisha; Svatos, Michelle; Keall, Paul J

    2011-07-01

    To create an accurate 6 MV Monte Carlo simulation phase space for the Varian TrueBeam treatment head geometry imported from CAD (computer aided design) without adjusting the input electron phase space parameters. GEANT4 v4.9.2.p01 was employed to simulate the 6 MV beam treatment head geometry of the Varian TrueBeam linac. The electron tracks in the linear accelerator were simulated with Parmela, and the obtained electron phase space was used as an input to the Monte Carlo beam transport and dose calculations. The geometry components are tessellated solids included in GEANT4 as GDML (generalized dynamic markup language) files obtained via STEP (standard for the exchange of product) export from Pro/Engineering, followed by STEP import in Fastrad, a STEP-GDML converter. The linac has a compact treatment head and the small space between the shielding collimator and the divergent are of the upper jaws forbids the implementation of a plane for storing the phase space. Instead, an IAEA (International Atomic Energy Agency) compliant phase space writer was implemented on a cylindrical surface. The simulation was run in parallel on a 1200 node Linux cluster. The 6 MV dose calculations were performed for field sizes varying from 4 x 4 to 40 x 40 cm2. The voxel size for the 60 x 60 x 40 cm3 water phantom was 4 x 4 x 4 mm3. For the 10 x 10 cm2 field, surface buildup calculations were performed using 4 x 4 x 2 mm3 voxels within 20 mm of the surface. For the depth dose curves, 98% of the calculated data points agree within 2% with the experimental measurements for depths between 2 and 40 cm. For depths between 5 and 30 cm, agreement within 1% is obtained for 99% (4 x 4), 95% (10 x 10), 94% (20 x 20 and 30 x 30), and 89% (40 x 40) of the data points, respectively. In the buildup region, the agreement is within 2%, except at 1 mm depth where the deviation is 5% for the 10 x 10 cm2 open field. For the lateral dose profiles, within the field size for fields up to 30 x 30 cm2, the agreement is within 2% for depths up to 10 cm. At 20 cm depth, the in-field maximum dose difference for the 30 x 30 cm2 open field is within 4%, while the smaller field sizes agree within 2%. Outside the field size, agreement within 1% of the maximum dose difference is obtained for all fields. The calculated output factors varied from 0.938 +/- 0.015 for the 4 x 4 cm2 field to 1.088 +/- 0.024 for the 40 x 40 cm2 field. Their agreement with the experimental output factors is within 1%. The authors have validated a GEANT4 simulated IAEA-compliant phase space of the TrueBeam linac for the 6 MV beam obtained using a high accuracy geometry implementation from CAD. These files are publicly available and can be used for further research.

  7. Relationship between mathematical abstraction in learning parallel coordinates concept and performance in learning analytic geometry of pre-service mathematics teachers: an investigation

    NASA Astrophysics Data System (ADS)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2018-05-01

    As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.

  8. Modeling the TrueBeam linac using a CAD to Geant4 geometry implementation: Dose and IAEA-compliant phase space calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Magdalena; Perl, Joseph; LoSasso, Tom

    2011-07-15

    Purpose: To create an accurate 6 MV Monte Carlo simulation phase space for the Varian TrueBeam treatment head geometry imported from cad (computer aided design) without adjusting the input electron phase space parameters. Methods: geant4 v4.9.2.p01 was employed to simulate the 6 MV beam treatment head geometry of the Varian TrueBeam linac. The electron tracks in the linear accelerator were simulated with Parmela, and the obtained electron phase space was used as an input to the Monte Carlo beam transport and dose calculations. The geometry components are tessellated solids included in geant4 as gdml (generalized dynamic markup language) files obtainedmore » via STEP (standard for the exchange of product) export from Pro/Engineering, followed by STEP import in Fastrad, a STEP-gdml converter. The linac has a compact treatment head and the small space between the shielding collimator and the divergent arc of the upper jaws forbids the implementation of a plane for storing the phase space. Instead, an IAEA (International Atomic Energy Agency) compliant phase space writer was implemented on a cylindrical surface. The simulation was run in parallel on a 1200 node Linux cluster. The 6 MV dose calculations were performed for field sizes varying from 4 x 4 to 40 x 40 cm{sup 2}. The voxel size for the 60x60x40 cm{sup 3} water phantom was 4x4x4 mm{sup 3}. For the 10x10 cm{sup 2} field, surface buildup calculations were performed using 4x4x2 mm{sup 3} voxels within 20 mm of the surface. Results: For the depth dose curves, 98% of the calculated data points agree within 2% with the experimental measurements for depths between 2 and 40 cm. For depths between 5 and 30 cm, agreement within 1% is obtained for 99% (4x4), 95% (10x10), 94% (20x20 and 30x30), and 89% (40x40) of the data points, respectively. In the buildup region, the agreement is within 2%, except at 1 mm depth where the deviation is 5% for the 10x10 cm{sup 2} open field. For the lateral dose profiles, within the field size for fields up to 30x30 cm{sup 2}, the agreement is within 2% for depths up to 10 cm. At 20 cm depth, the in-field maximum dose difference for the 30x30 cm{sup 2} open field is within 4%, while the smaller field sizes agree within 2%. Outside the field size, agreement within 1% of the maximum dose difference is obtained for all fields. The calculated output factors varied from 0.938{+-}0.015 for the 4x4 cm{sup 2} field to 1.088{+-}0.024 for the 40x40 cm{sup 2} field. Their agreement with the experimental output factors is within 1%. Conclusions: The authors have validated a geant4 simulated IAEA-compliant phase space of the TrueBeam linac for the 6 MV beam obtained using a high accuracy geometry implementation from cad. These files are publicly available and can be used for further research.« less

  9. Optimizing RF gun cavity geometry within an automated injector design system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alicia Hofler ,Pavel Evtushenko

    2011-03-28

    RF guns play an integral role in the success of several light sources around the world, and properly designed and optimized cw superconducting RF (SRF) guns can provide a path to higher average brightness. As the need for these guns grows, it is important to have automated optimization software tools that vary the geometry of the gun cavity as part of the injector design process. This will allow designers to improve existing designs for present installations, extend the utility of these guns to other applications, and develop new designs. An evolutionary algorithm (EA) based system can provide this capability becausemore » EAs can search in parallel a large parameter space (often non-linear) and in a relatively short time identify promising regions of the space for more careful consideration. The injector designer can then evaluate more cavity design parameters during the injector optimization process against the beam performance requirements of the injector. This paper will describe an extension to the APISA software that allows the cavity geometry to be modified as part of the injector optimization and provide examples of its application to existing RF and SRF gun designs.« less

  10. Massively parallelized Monte Carlo software to calculate the light propagation in arbitrarily shaped 3D turbid media

    NASA Astrophysics Data System (ADS)

    Zoller, Christian; Hohmann, Ansgar; Ertl, Thomas; Kienle, Alwin

    2017-07-01

    The Monte Carlo method is often referred as the gold standard to calculate the light propagation in turbid media [1]. Especially for complex shaped geometries where no analytical solutions are available the Monte Carlo method becomes very important [1, 2]. In this work a Monte Carlo software is presented, to simulate the light propagation in complex shaped geometries. To improve the simulation time the code is based on OpenCL such that graphics cards can be used as well as other computing devices. Within the software an illumination concept is presented to realize easily all kinds of light sources, like spatial frequency domain (SFD), optical fibers or Gaussian beam profiles. Moreover different objects, which are not connected to each other, can be considered simultaneously, without any additional preprocessing. This Monte Carlo software can be used for many applications. In this work the transmission spectrum of a tooth and the color reconstruction of a virtual object are shown, using results from the Monte Carlo software.

  11. Controlling hollow relativistic electron beam orbits with an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; ...

    2015-02-06

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I 1), while the outer conductor carries the remainder (I 2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I 2-I 1), while the average force on the envelope (the beam width) is proportional to the beam current I b = (I 2more » + I 1). The values of I 1 and I 2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less

  12. Space Charge Effect in the Sheet and Solid Electron Beam

    NASA Astrophysics Data System (ADS)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  13. Coupled ridge waveguide distributed feedback quantum cascade laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang

    2015-04-06

    A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less

  14. Low-frequency quadrupole impedance of undulators and wigglers

    DOE PAGES

    Blednykh, A.; Bassi, G.; Hidaka, Y.; ...

    2016-10-25

    An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ r. Here, in the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ r → ∞), and the case in which the magnets are fullymore » saturated (μ r = 1).« less

  15. Development of a GPU-Accelerated 3-D Full-Wave Code for Electromagnetic Wave Propagation in a Cold Plasma

    NASA Astrophysics Data System (ADS)

    Woodbury, D.; Kubota, S.; Johnson, I.

    2014-10-01

    Computer simulations of electromagnetic wave propagation in magnetized plasmas are an important tool for both plasma heating and diagnostics. For active millimeter-wave and microwave diagnostics, accurately modeling the evolution of the beam parameters for launched, reflected or scattered waves in a toroidal plasma requires that calculations be done using the full 3-D geometry. Previously, we reported on the application of GPGPU (General-Purpose computing on Graphics Processing Units) to a 3-D vacuum Maxwell code using the FDTD (Finite-Difference Time-Domain) method. Tests were done for Gaussian beam propagation with a hard source antenna, utilizing the parallel processing capabilities of the NVIDIA K20M. In the current study, we have modified the 3-D code to include a soft source antenna and an induced current density based on the cold plasma approximation. Results from Gaussian beam propagation in an inhomogeneous anisotropic plasma, along with comparisons to ray- and beam-tracing calculations will be presented. Additional enhancements, such as advanced coding techniques for improved speedup, will also be investigated. Supported by U.S. DoE Grant DE-FG02-99-ER54527 and in part by the U.S. DoE, Office of Science, WDTS under the Science Undergraduate Laboratory Internship program.

  16. Passive, achromatic, nearly isochronous bending system

    DOEpatents

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  17. Cell Migration in 1D and 2D Nanofiber Microenvironments.

    PubMed

    Estabridis, Horacio M; Jana, Aniket; Nain, Amrinder; Odde, David J

    2018-03-01

    Understanding how cells migrate in fibrous environments is important in wound healing, immune function, and cancer progression. A key question is how fiber orientation and network geometry influence cell movement. Here we describe a quantitative, modeling-based approach toward identifying the mechanisms by which cells migrate in fibrous geometries having well controlled orientation. Specifically, U251 glioblastoma cells were seeded onto non-electrospinning Spinneret based tunable engineering parameters fiber substrates that consist of networks of suspended 400 nm diameter nanofibers. Cells were classified based on the local fiber geometry and cell migration dynamics observed by light microscopy. Cells were found in three distinct geometries: adhering two a single fiber, adhering to two parallel fibers, and adhering to a network of orthogonal fibers. Cells adhering to a single fiber or two parallel fibers can only move in one dimension along the fiber axis, whereas cells on a network of orthogonal fibers can move in two dimensions. We found that cells move faster and more persistently in 1D geometries than in 2D, with cell migration being faster on parallel fibers than on single fibers. To explain these behaviors mechanistically, we simulated cell migration in the three different geometries using a motor-clutch based model for cell traction forces. Using nearly identical parameter sets for each of the three cases, we found that the simulated cells naturally replicated the reduced migration in 2D relative to 1D geometries. In addition, the modestly faster 1D migration on parallel fibers relative to single fibers was captured using a correspondingly modest increase in the number of clutches to reflect increased surface area of adhesion on parallel fibers. Overall, the integrated modeling and experimental analysis shows that cell migration in response to varying fibrous geometries can be explained by a simple mechanical readout of geometry via a motor-clutch mechanism.

  18. An improved FIB sample preparation technique for site-specific plan-view specimens: A new cutting geometry.

    PubMed

    Li, Chen; Habler, Gerlinde; Baldwin, Lisa C; Abart, Rainer

    2018-01-01

    Focused ion beam (FIB) sample preparation technique in plan-view geometry allows direct correlations of the atomic structure study via transmission electron microscopy with micrometer-scale property measurements. However, one main technical difficulty is that a large amount of material must be removed underneath the specimen. Furthermore, directly monitoring the milling process is difficult unless very large material volumes surrounding the TEM specimen site are removed. In this paper, a new cutting geometry is introduced for FIB lift-out sample preparation with plan-view geometry. Firstly, an "isolated" cuboid shaped specimen is cut out, leaving a "bridge" connecting it with the bulk material. Subsequently the two long sides of the "isolated" cuboid are wedged, forming a triangular prism shape. A micromanipulator needle is used for in-situ transfer of the specimen to a FIB TEM grid, which has been mounted parallel with the specimen surface using a simple custom-made sample slit. Finally, the grid is transferred to the standard FIB grid holder for final thinning with standard procedures. This new cutting geometry provides clear viewing angles for monitoring the milling process, which solves the difficulty of judging whether the specimen has been entirely detached from the bulk material, with the least possible damage to the surrounding materials. With an improved success rate and efficiency, this plan-view FIB lift-out specimen preparation technique should have a wide application for material science. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Rapid Prediction of Unsteady Three-Dimensional Viscous Flows in Turbopump Geometries

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.

    1998-01-01

    A program is underway to improve the efficiency of a three-dimensional Navier-Stokes code and generalize it for nozzle and turbopump geometries. Code modifications have included the implementation of parallel processing software, incorporation of new physical models and generalization of the multiblock capability. The final report contains details of code modifications, numerical results for several nozzle and turbopump geometries, and the implementation of the parallelization software.

  20. Rhomboid prism pair for rotating the plane of parallel light beams

    NASA Technical Reports Server (NTRS)

    Orloff, K. L. (Inventor); Yanagita, H.

    1982-01-01

    An optical system is described for rotating the plane defined by a pair of parallel light beams. In one embodiment a single pair of rhomboid prisms have their respective input faces disposed to receive the respective input beams. Each prism is rotated about an axis of revolution coaxial with each of the respective input beams by means of a suitable motor and gear arrangement to cause the plane of the parallel output beams to be rotated relative to the plane of the input beams. In a second embodiment, two pairs of rhomboid prisms are provided. In a first angular orientation of the output beams, the prisms merely decrease the lateral displacement of the output beams in order to keep in the same plane as the input beams. In a second angular orientation of the prisms, the input faces of the second pair of prisms are brought into coincidence with the input beams for rotating the plane of the output beams by a substantial angle such as 90 deg.

  1. Feasibility of employing thick microbeams from superficial and orthovoltage kVp x-ray tubes for radiotherapy of superficial cancers

    NASA Astrophysics Data System (ADS)

    Kamali-Zonouzi, P.; Shutt, A.; Nisbet, A.; Bradley, D. A.

    2017-11-01

    Preclinical investigations of thick microbeams show these to be feasible for use in radiotherapeutic dose delivery. To create the beams we access a radiotherapy x-ray tube that is familiarly used within a conventional clinical environment, coupling this with beam-defining grids. Beam characterisation, both single and in the form of arrays, has been by use of both MCNP simulation and direct Gafchromic EBT film dosimetry. As a first step in defining optimal exit-beam profiles over a range of beam energies, simulation has been made of the x-ray tube and numbers of beam-defining parallel geometry grids, the latter being made to vary in thickness, slit separation and material composition. For a grid positioned after the treatment applicator, and of similar design to those used in the first part of the study, MCNP simulation and Gafchromic EBT film were then applied in examining the resultant radiation profiles. MCNP simulations and direct dosimetry both show useful thick microbeams to be produced from the x-ray tube, with peak-to-valley dose ratios (PVDRs) in the approximate range 8.8-13.9. Although the potential to create thick microbeams using radiotherapy x-ray tubes and a grid has been demonstrated, Microbeam Radiation Therapy (MRT) would still need to be approved outside of the preclinical setting, a viable treatment technique of clinical interest needing to benefit for instance from substantially improved x-ray tube dose rates.

  2. A comparison of FE beam and continuum elements for typical nitinol stent geometries

    NASA Astrophysics Data System (ADS)

    Ballew, Wesley; Seelecke, Stefan

    2009-03-01

    With interest in improved efficiency and a more complete description of the SMA material, this paper compares finite element (FE) simulations of typical stent geometries using two different constitutive models and two different element types. Typically, continuum elements are used for the simulation of stents, for example the commercial FE software ANSYS offers a continuum element based on Auricchio's SMA model. Almost every stent geometry, however, is made up of long and slender components and can be modeled more efficiently, in the computational sense, with beam elements. Using the ANSYS user programmable material feature, we implement the free energy based SMA model developed by Mueller and Seelecke into the ANSYS beam element 188. Convergence behavior for both, beam and continuum formulations, is studied in terms of element and layer number, respectively. This is systematically illustrated first for the case of a straight cantilever beam under end loading, and subsequently for a section of a z-bend wire, a typical stent sub-geometry. It is shown that the computation times for the beam element are reduced to only one third of those of the continuum element, while both formulations display a comparable force/displacement response.

  3. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    NASA Astrophysics Data System (ADS)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  4. Anisotropic ultrafast response of MoS2 on rippled substrates

    NASA Astrophysics Data System (ADS)

    Cinquanta, Eugenio; Camellini, Andrea; Martella, Christian; Mennucci, Carlo; Lamperti, Alessio; Della Valle, Giuseppe; Zavelani Rossi, Margherita; Buatier de Mongeot, Francesco; Molle, Alessandro; Stagira, Salvatore

    TMDs represent one of the most promising option for new devices characterized by high performances for opto- and nanoelectronics applications. Top-down schemes have been fruitfully exploited for the tuning of TMDs physics by stain engineering in exfoliated flakes. We propose an original bottom-up strategy based on the CVD growth of MoS2 on anisotropic substrates and its characterization by means of pump-probe spectroscopy. The ultrafast response of the rippled MoS2 reveals strongly anisotropic. While the transient absorption emerges as independent from the orientation of the pump beam polarization, the angle between the probe beam polarization and the ripples induces remarkable effects. Within an orthogonal geometry, both the overall intensity of the transient spectrum and the el-ph scattering decay time are halved while the photo-bleaching at 450 nm is blueshifted with respect to the parallel orientation case. Our results demonstrate that the coupling of TMDs with anisotropic substrates is a promising way for the integration of TMDs photonics devices.

  5. Flat profile laser beam shaper

    DOEpatents

    Johnson, Todd R.

    2017-09-12

    A system for shaping a beam comprises an emitter for emitting coherent electromagnetic radiation. Birefringent displacers are configured between the emitter and a target wherein the at least two birefringent displacers split the coherent electromagnetic radiation into a plurality of coherent parallel beams of electromagnetic radiation thereby producing a shaped wave front of the coherent parallel beams of electromagnetic radiation.

  6. Build-up and surface dose measurements on phantoms using micro-MOSFET in 6 and 10 MV x-ray beams and comparisons with Monte Carlo calculations.

    PubMed

    Xiang, Hong F; Song, Jun S; Chin, David W H; Cormack, Robert A; Tishler, Roy B; Makrigiorgos, G Mike; Court, Laurence E; Chin, Lee M

    2007-04-01

    This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 degrees-80 degrees onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC calculation within 6%, including uncertainties of micro-MOSFET measurements of 2%-3% (1 standard deviation), MOSFET angular dependence of 3.0%-3.5%, and 1%-2% systematical error due to phantom setup geometry asymmetry. Micro-MOSFET can be used for skin dose measurements in 6 and 10 MV beams with an estimated accuracy of +/- 6%.

  7. Evaluation of Parallel and Fan-Beam Data Acquisition Geometries and Strategies for Myocardial SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Qi, Yujin; Tsui, B. M. W.; Gilland, K. L.; Frey, E. C.; Gullberg, G. T.

    2004-06-01

    This study evaluates myocardial SPECT images obtained from parallel-hole (PH) and fan-beam (FB) collimator geometries using both circular-orbit (CO) and noncircular-orbit (NCO) acquisitions. A newly developed 4-D NURBS-based cardiac-torso (NCAT) phantom was used to simulate the /sup 99m/Tc-sestamibi uptakes in human torso with myocardial defects in the left ventricular (LV) wall. Two phantoms were generated to simulate patients with thick and thin body builds. Projection data including the effects of attenuation, collimator-detector response and scatter were generated using SIMSET Monte Carlo simulations. A large number of photon histories were generated such that the projection data were close to noise free. Poisson noise fluctuations were then added to simulate the count densities found in clinical data. Noise-free and noisy projection data were reconstructed using the iterative OS-EM reconstruction algorithm with attenuation compensation. The reconstructed images from noisy projection data show that the noise levels are lower for the FB as compared to the PH collimator due to increase in detected counts. The NCO acquisition method provides slightly better resolution and small improvement in defect contrast as compared to the CO acquisition method in noise-free reconstructed images. Despite lower projection counts the NCO shows the same noise level as the CO in the attenuation corrected reconstruction images. The results from the channelized Hotelling observer (CHO) study show that FB collimator is superior to PH collimator in myocardial defect detection, but the NCO shows no statistical significant difference from the CO for either PH or FB collimator. In conclusion, our results indicate that data acquisition using NCO makes a very small improvement in the resolution over CO for myocardial SPECT imaging. This small improvement does not make a significant difference on myocardial defect detection. However, an FB collimator provides better defect detection than a PH collimator with similar spatial resolution for myocardial SPECT imaging.

  8. Craft Stick Beams

    NASA Technical Reports Server (NTRS)

    Karplus, Alan K.

    1996-01-01

    The objective of this exercise is to provide a phenomenological 'hands-on' experience that shows how geometry can affect the load carrying capacity of a material used in construction, how different materials have different failure characteristics, and how construction affects the performance of a composite material. This will be accomplished by building beams of a single material and composite beams of a mixture of materials (popsicle sticks, fiberboard sheets, and tongue depressors); testing these layered beams to determine how and where they fail; and based on the failure analysis, designing a layered beam that will fail in a predicted manner. The students will learn the effects of lamination, adhesion, and geometry in layered beam construction on beam strength and failure location.

  9. Controlling hollow relativistic electron beam orbits with an inductive current divider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.

    2015-02-15

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). Themore » values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less

  10. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  11. Spatial structure of ion beams in an expanding plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, E. M.; Scime, E. E.; Thompson, D. S.; Good, T. N.

    2017-12-01

    We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas.

  12. Geometrical modeling of optical phase difference for analyzing atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Yuksel, Demet; Yuksel, Heba

    2013-09-01

    Ways of calculating phase shifts between laser beams propagating through atmospheric turbulence can give us insight towards the understanding of spatial diversity in Free-Space Optical (FSO) links. We propose a new geometrical model to estimate phase shifts between rays as the laser beam propagates through a simulated turbulent media. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. The level of turbulence is increased by elongating the range and/or increasing the number of bubbles that the rays interact with along their path. For each statistical representation of the atmosphere, the trajectories of two parallel rays separated by a particular distance are analyzed and computed simultaneously using geometrical optics. The three-dimensional geometry of the spheres is taken into account in the propagation of the rays. The bubble model is used to calculate the correlation between the two rays as their separation distance changes. The total distance traveled by each ray as both rays travel to the target is computed. The difference in the path length traveled will yield the phase difference between the rays. The mean square phase difference is taken to be the phase structure function which in the literature, for a pair of collimated parallel pencil thin rays, obeys a five-third law assuming weak turbulence. All simulation results will be compared with the predictions of wave theory.

  13. TU-H-CAMPUS-IeP3-02: Neurovascular 4D Parametric Imaging Using Co-Registration of Biplane DSA Sequences with 3D Vascular Geometry Obtained From Cone Beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramoniam, A; Bednarek, D; Rudin, S

    Purpose: To create 4D parametric images using biplane Digital Subtraction Angiography (DSA) sequences co-registered with the 3D vascular geometry obtained from Cone Beam-CT (CBCT). Methods: We investigated a method to derive multiple 4D Parametric Imaging (PI) maps using only one CBCT acquisition. During this procedure a 3D-DSA geometry is stored and used subsequently for all 4D images. Each time a biplane DSA is acquired, we calculate 2D parametric maps of Bolus Arrival Time (BAT), Mean Transit Time (MTT) and Time to Peak (TTP). Arterial segments which are nearly parallel with one of the biplane imaging planes in the 2D parametricmore » maps are co-registered with the 3D geometry. The values in the remaining vascular network are found using spline interpolation since the points chosen for co-registration on the vasculature are discrete and remaining regions need to be interpolated. To evaluate the method we used a patient CT volume data set for 3D printing a neurovascular phantom containing a complete Circle of Willis. We connected the phantom to a flow loop with a peristaltic pump, simulating physiological flow conditions. Contrast media was injected with an automatic injector at 10 ml/sec. Images were acquired with a Toshiba Infinix C-arm and 4D parametric image maps of the vasculature were calculated. Results: 4D BAT, MTT, and TTP parametric image maps of the Circle of Willis were derived. We generated color-coded 3D geometries which avoided artifacts due to vessel overlap or foreshortening in the projection direction. Conclusion: The software was tested successfully and multiple 4D parametric images were obtained from biplane DSA sequences without the need to acquire additional 3D-DSA runs. This can benefit the patient by reducing the contrast media and the radiation dose normally associated with these procedures. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  14. CT cardiac imaging: evolution from 2D to 3D backprojection

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Pan, Tinsu; Sasaki, Kosuke

    2004-04-01

    The state-of-the-art multiple detector-row CT, which usually employs fan beam reconstruction algorithms by approximating a cone beam geometry into a fan beam geometry, has been well recognized as an important modality for cardiac imaging. At present, the multiple detector-row CT is evolving into volumetric CT, in which cone beam reconstruction algorithms are needed to combat cone beam artifacts caused by large cone angle. An ECG-gated cardiac cone beam reconstruction algorithm based upon the so-called semi-CB geometry is implemented in this study. To get the highest temporal resolution, only the projection data corresponding to 180° plus the cone angle are row-wise rebinned into the semi-CB geometry for three-dimensional reconstruction. Data extrapolation is utilized to extend the z-coverage of the ECG-gated cardiac cone beam reconstruction algorithm approaching the edge of a CT detector. A helical body phantom is used to evaluate the ECG-gated cone beam reconstruction algorithm"s z-coverage and capability of suppressing cone beam artifacts. Furthermore, two sets of cardiac data scanned by a multiple detector-row CT scanner at 16 x 1.25 (mm) and normalized pitch 0.275 and 0.3 respectively are used to evaluate the ECG-gated CB reconstruction algorithm"s imaging performance. As a reference, the images reconstructed by a fan beam reconstruction algorithm for multiple detector-row CT are also presented. The qualitative evaluation shows that, the ECG-gated cone beam reconstruction algorithm outperforms its fan beam counterpart from the perspective of cone beam artifact suppression and z-coverage while the temporal resolution is well maintained. Consequently, the scan speed can be increased to reduce the contrast agent amount and injection time, improve the patient comfort and x-ray dose efficiency. Based up on the comparison, it is believed that, with the transition of multiple detector-row CT into volumetric CT, ECG-gated cone beam reconstruction algorithms will provide better image quality for CT cardiac applications.

  15. On the conversion of infrared radiation from fission reactor-based photon engine into parallel beam

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Levchenko, Vladislav E.; Loginov, Nicolay I.; Kukharchuk, Oleg F.; Evtodiev, Denis A.; Zrodnikov, Anatoly V.

    2002-01-01

    The efficiency of infrared radiation conversion from photon engine based on fission reactor into parallel photon beam is discussed. Two different ways of doing that are considered. One of them is to use the parabolic mirror to convert of infrared radiation into parallel photon beam. The another one is based on the use of special lattice consisting of numerous light conductors. The experimental facility and some results are described. .

  16. A novel electron gun for inline MRI-linac configurations.

    PubMed

    Constantin, Dragoş E; Holloway, Lois; Keall, Paul J; Fahrig, Rebecca

    2014-02-01

    This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Simple electron gun geometry modifications of a Varian 600 C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600 C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ± 15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600 C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.

  17. A novel electron gun for inline MRI-linac configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Dragoş E., E-mail: dragos.constantin@varian.com; Fahrig, Rebecca; Holloway, Lois

    2014-02-15

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered andmore » solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.« less

  18. A novel electron gun for inline MRI-linac configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Dragoş E., E-mail: dragos.constantin@varian.com; Fahrig, Rebecca; Holloway, Lois

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered andmore » solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.« less

  19. Multidimensional electron beam-plasma instabilities in the relativistic regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Gremillet, L.; Dieckmann, M. E.

    2010-12-15

    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, themore » basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell-Juettner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.« less

  20. A Lattice-Boltzmann model to simulate diffractive nonlinear ultrasound beam propagation in a dissipative fluid medium

    NASA Astrophysics Data System (ADS)

    Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan

    2012-12-01

    Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.

  1. General rigid motion correction for computed tomography imaging based on locally linear embedding

    NASA Astrophysics Data System (ADS)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  2. Parallel transmit beamforming using orthogonal frequency division multiplexing applied to harmonic imaging--a feasibility study.

    PubMed

    Demi, Libertario; Verweij, Martin D; Van Dongen, Koen W A

    2012-11-01

    Real-time 2-D or 3-D ultrasound imaging systems are currently used for medical diagnosis. To achieve the required data acquisition rate, these systems rely on parallel beamforming, i.e., a single wide-angled beam is used for transmission and several narrow parallel beams are used for reception. When applied to harmonic imaging, the demand for high-amplitude pressure wave fields, necessary to generate the harmonic components, conflicts with the use of a wide-angled beam in transmission because this results in a large spatial decay of the acoustic pressure. To enhance the amplitude of the harmonics, it is preferable to do the reverse: transmit several narrow parallel beams and use a wide-angled beam in reception. Here, this concept is investigated to determine whether it can be used for harmonic imaging. The method proposed in this paper relies on orthogonal frequency division multiplexing (OFDM), which is used to create distinctive parallel beams in transmission. To test the proposed method, a numerical study has been performed, in which the transmit, receive, and combined beam profiles generated by a linear array have been simulated for the second-harmonic component. Compared with standard parallel beamforming, application of the proposed technique results in a gain of 12 dB for the main beam and in a reduction of the side lobes. Experimental verification in water has also been performed. Measurements obtained with a single-element emitting transducer and a hydrophone receiver confirm the possibility of exciting a practical ultrasound transducer with multiple Gaussian modulated pulses, each having a different center frequency, and the capability to generate distinguishable second-harmonic components.

  3. Cleaved-edge-overgrowth nanogap electrodes.

    PubMed

    Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc

    2011-02-11

    We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 MΩ range with kΩ lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.

  4. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  5. Ion and Electron Energization in Guide Field Reconnection Outflows with Kinetic Riemann Simulations and Parallel Shock Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Drake, J. F.; Swisdak, M.

    2017-12-01

    How ions and electrons are energized in magnetic reconnection outflows is an essential topic throughout the heliosphere. Here we carry out guide field PIC Riemann simulations to explore the ion and electron energization mechanisms far downstream of the x-line. Riemann simulations, with their simple magnetic geometry, facilitate the study of the reconnection outflow far downstream of the x-line in much more detail than is possible with conventional reconnection simulations. We find that the ions get accelerated at rotational discontinuities, counter stream, and give rise to two slow shocks. We demonstrate that the energization mechanism at the slow shocks is essentially the same as that of parallel electrostatic shocks. Also, the electron confining electric potential at the slow shocks is driven by the counterstreaming beams, which tend to break the quasi-neutrality. Based on this picture, we build a kinetic model to self consistently predict the downstream ion and electron temperatures. Additional explorations using parallel shock simulations also imply that in a very low beta(0.001 0.01 for a modest guide field) regime, electron energization will be insignificant compared to the ion energization. Our model and the parallel shock simulations might be used as simple tools to understand and estimate the energization of ions and electrons and the energy partition far downstream of the x-line.

  6. Performance Evaluation of 40 cm Ion Optics for the NEXT Ion Engine

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.

    2002-01-01

    The results of performance tests with two 40 cm ion optics sets are presented and compared to those of 30 cm ion optics with similar aperture geometries. The 40 cm ion optics utilized both NSTAR and TAG (Thick-Accelerator-Grid) aperture geometries. All 40 cm ion optics tests were conducted on a NEXT (NASA's Evolutionary Xenon Thruster) laboratory model ion engine. Ion optics performance tests were conducted over a beam current range of 1.20 to 3.52 A and an engine input power range of 1.1 to 6.9 kW. Measured ion optics' performance parameters included near-field radial beam current density profiles, impingement-limited total voltages, electron backstreaming limits, screen grid ion transparencies, beam divergence angles, and start-up transients. Impingement-limited total voltages for 40 cm ion optics with the NSTAR aperture geometry were 60 to 90 V lower than those with the TAG aperture geometry. This difference was speculated to be due to an incomplete burn-in of the TAG ion optics. Electron backstreaming limits for the 40 cm ion optics with the TAG aperture geometry were 8 to 19 V higher than those with the NSTAR aperture geometry due to the thicker accelerator grid of the TAG geometry. Because the NEXT ion engine provided beam flatness parameters that were 40 to 63 percent higher than those of the NSTAR ion engine, the 40 cm ion optics outperformed the 30 cm ion optics.

  7. Issues and opportunities: beam simulations for heavy ion fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A

    1999-07-15

    UCRL- JC- 134975 PREPRINT code offering 3- D, axisymmetric, and ''transverse slice'' (steady flow) geometries, with a hierarchy of models for the ''lattice'' of focusing, bending, and accelerating elements. Interactive and script- driven code steering is afforded through an interpreter interface. The code runs with good parallel scaling on the T3E. Detailed simulations of machine segments and of complete small experiments, as well as simplified full- system runs, have been carried out, partially benchmarking the code. A magnetoinductive model, with module impedance and multi- beam effects, is under study. experiments, including an injector scalable to multi- beam arrays, a high-more » current beam transport and acceleration experiment, and a scaled final- focusing experiment. These ''phase I'' projects are laying the groundwork for the next major step in HIF development, the Integrated Research Experiment (IRE). Simulations aimed directly at the IRE must enable us to: design a facility with maximum power on target at minimal cost; set requirements for hardware tolerances, beam steering, etc.; and evaluate proposed chamber propagation modes. Finally, simulations must enable us to study all issues which arise in the context of a fusion driver, and must facilitate the assessment of driver options. In all of this, maximum advantage must be taken of emerging terascale computer architectures, requiring an aggressive code development effort. An organizing principle should be pursuit of the goal of integrated and detailed source- to- target simulation. methods for analysis of the beam dynamics in the various machine concepts, using moment- based methods for purposes of design, waveform synthesis, steering algorithm synthesis, etc. Three classes of discrete- particle models should be coupled: (1) electrostatic/ magnetoinductive PIC simulations should track the beams from the source through the final- focusing optics, passing details of the time- dependent distribution function to (2) electromagnetic or magnetoinductive PIC or hybrid PIG/ fluid simulations in the fusion chamber (which would finally pass their particle trajectory information to the radiation- hydrodynamics codes used for target design); in parallel, (3) detailed PIC, delta- f, core/ test- particle, and perhaps continuum Vlasov codes should be used to study individual sections of the driver and chamber very carefully; consistency may be assured by linking data from the PIC sequence, and knowledge gained may feed back into that sequence.« less

  8. Computational modelling of the cerebral cortical microvasculature: effect of x-ray microbeams versus broad beam irradiation

    NASA Astrophysics Data System (ADS)

    Merrem, A.; Bartzsch, S.; Laissue, J.; Oelfke, U.

    2017-05-01

    Microbeam Radiation Therapy is an innovative pre-clinical strategy which uses arrays of parallel, tens of micrometres wide kilo-voltage photon beams to treat tumours. These x-ray beams are typically generated on a synchrotron source. It was shown that these beam geometries allow exceptional normal tissue sparing from radiation damage while still being effective in tumour ablation. A final biological explanation for this enhanced therapeutic ratio has still not been found, some experimental data support an important role of the vasculature. In this work, the effect of microbeams on a normal microvascular network of the cerebral cortex was assessed in computer simulations and compared to the effect of homogeneous, seamless exposures at equal energy absorption. The anatomy of a cerebral microvascular network and the inflicted radiation damage were simulated to closely mimic experimental data using a novel probabilistic model of radiation damage to blood vessels. It was found that the spatial dose fractionation by microbeam arrays significantly decreased the vascular damage. The higher the peak-to-valley dose ratio, the more pronounced the sparing effect. Simulations of the radiation damage as a function of morphological parameters of the vascular network demonstrated that the distribution of blood vessel radii is a key parameter determining both the overall radiation damage of the vasculature and the dose-dependent differential effect of microbeam irradiation.

  9. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    NASA Astrophysics Data System (ADS)

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack—a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of {226} MeV u-1. The beam image in the phantom is reconstructed from a set of nine discrete detector positions between {-80}^\\circ and {50}^\\circ from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of {2.85} cm and density differences down to {0.3} g cm-3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was found to be feasible.

  10. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks.

    PubMed

    Reinhart, Anna Merle; Spindeldreier, Claudia Katharina; Jakubek, Jan; Martišíková, Mária

    2017-06-21

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, even small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live, non-invasive monitoring system of the beam delivery within the patient is therefore highly desirable, and could improve patient treatment. We present a novel three-dimensional method for imaging the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack-a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximization. We demonstrate the applicability of the new method in the irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of [Formula: see text] MeV u -1 . The beam image in the phantom is reconstructed from a set of nine discrete detector positions between [Formula: see text] and [Formula: see text] from the beam axis. Furthermore, we demonstrate the potential to visualize inhomogeneities by irradiating a PMMA phantom with an air gap as well as bone and adipose tissue surrogate inserts. We successfully reconstructed a three-dimensional image of the treatment beam in the phantom from single secondary ion tracks. The beam image corresponds well to the beam direction and energy. In addition, cylindrical inhomogeneities with a diameter of [Formula: see text] cm and density differences down to [Formula: see text] g cm -3 to the surrounding material are clearly visualized. This novel three-dimensional method to image a therapeutic carbon ion beam in the irradiated object does not interfere with the treatment and requires knowledge only of single secondary ion tracks. Even with detectors with only a small angular coverage, the three-dimensional reconstruction of the fragmentation points presented in this work was found to be feasible.

  11. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    PubMed

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  12. Evaluation of a Cone Beam Computed Tomography Geometry for Image Guided Small Animal Irradiation

    PubMed Central

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (“tubular” geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (“pancake” geometry). The small animal radiation research platform (SARRP) developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Notwithstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e., pancake and tubular geometry, respectively. PMID:26083659

  13. Vectorial magnetometry with the magneto-optic Kerr effect applied to Co/Cu/Co trilayer structures

    NASA Astrophysics Data System (ADS)

    Daboo, C.; Bland, J. A. C.; Hicken, R. J.; Ives, A. J. R.; Baird, M. J.; Walker, M. J.

    1993-05-01

    We describe an arrangement in which the magnetization components parallel and perpendicular to the applied field are both determined from longitudinal magneto-optic Kerr effect measurements. This arrangement differs from the usual procedures in that the same optical geometry is used but the magnet geometry altered. This leads to two magneto-optic signals which are directly comparable in magnitude thereby giving the in-plane magnetization vector directly. We show that it is of great value to study both in-plane magnetization vector components when studying coupled structures where significant anisotropies are also present. We discuss simulations which show that it is possible to accurately determine the coupling strength in such structures by examining the behavior of the component of magnetization perpendicular to the applied field in the vicinity of the hard in-plane anisotropy axis. We illustrate this technique by examining the magnetization and magnetic anisotropy behavior of ultrathin Co/Cu(111)/Co (dCu=20 Å and 27 Å) trilayer structures prepared by molecular beam epitaxy, in which coherent rotation of the magnetization vector is observed when the magnetic field B is applied along the hard in-plane anisotropy axis, with the magnitude of the magnetization vector constant and close to its bulk value. Results of micromagnetic calculations closely reproduce the observed parallel and perpendicular magnetization loops, and yield strong uniaxial magnetic anisotropies in both layers, while the interlayer coupling appears to be absent or negligible in comparison with the anisotropy strengths.

  14. Explorations of Space-Charge Limits in Parallel-Plate Diodes and Associated Techniques for Automation

    NASA Astrophysics Data System (ADS)

    Ragan-Kelley, Benjamin

    Space-charge limited flow is a topic of much interest and varied application. We extend existing understanding of space-charge limits by simulations, and develop new tools and techniques for doing these simulations along the way. The Child-Langmuir limit is a simple analytic solution for space-charge limited current density in a one-dimensional diode. It has been previously extended to two dimensions by numerical calculation in planar geometries. By considering an axisymmetric cylindrical system with axial emission from a circular cathode of finite radius r and outer drift tube R > r and gap length L, we further examine the space charge limit in two dimensions. We simulate a two-dimensional axisymmetric parallel plate diode of various aspect ratios (r/L), and develop a scaling law for the measured two-dimensional space-charge limit (2DSCL) relative to the Child-Langmuir limit as a function of the aspect ratio of the diode. These simulations are done with a large (100T) longitudinal magnetic field to restrict electron motion to 1D, with the two-dimensional particle-in-cell simulation code OOPIC. We find a scaling law that is a monotonically decreasing function of this aspect ratio, and the one-dimensional result is recovered in the limit as r >> L. The result is in good agreement with prior results in planar geometry, where the emission area is proportional to the cathode width. We find a weak contribution from the effects of the drift tube for current at the beam edge, and a strong contribution of high current-density "wings" at the outer-edge of the beam, with a very large relative contribution when the beam is narrow. Mechanisms for enhancing current beyond the Child-Langmuir limit remain a matter of great importance. We analyze the enhancement effects of upstream ion injection on the transmitted current in a one-dimensional parallel plate diode. Electrons are field-emitted at the cathode, and ions are injected at a controlled current from the anode. An analytic solution is derived for maximizing the electron current throughput in terms of the ion current. This analysis accounts for various energy regimes, from classical to fully relativistic. The analytical result is then confirmed by simulation of the diode in each energy regime. Field-limited emission is an approach for using Gauss's law to satisfy the space charge limit for emitting current in particle-in-cell simulations. We find that simple field-limited emission models make several assumptions, which introduce small, systematic errors in the system. We make a thorough analysis of each assumption, and ultimately develop and test a new emission scheme that accounts for each. The first correction we make is to allow for a non-zero surface field at the boundary. Since traditional field-emission schemes only aim to balance Gauss's law at the surface, a zero surface field is an assumed condition. But for many systems, this is not appropriate, so the addition of a target surface field is made. The next correction is to account for nonzero initial velocity, which, if neglected, results in a systematic underestimation of the current, due to assuming that all emitted charge will be weighted to the boundary, when in fact it will be weighted as a fraction strictly less than unity, depending on the distance across the initial cell the particle travels in its initial fractional timestep. A correction is made to the scheme, to use the actual particle weight to adjust the target emission. The final analyses involve geometric terms, analyzing the effects of cylindrical coordinates, and taking particular care to analyze the center of a cylindrical beam, as well as the outer edge of the beam, in Cartesian coordinates. We find that balancing Gauss's law at the edge of the beam is not the correct behavior, and that it is important to resolve the profile of the emitted current, in order to avoid systematic errors. A thorough analysis is done of the assumptions made in prior implementations, and corrections are introduced for cylindrical geometry, non-zero injection velocity, and non-zero surface field. Particular care is taken to determine special conditions for the outermost node, where we find that forcing a balance of Gauss's law would be incorrect. (Abstract shortened by UMI.)

  15. The Dynamics of Current Carriers In Standing Alfven Waves

    NASA Astrophysics Data System (ADS)

    Wright, A. N.; Allan, W.; Ruderman, M. S.; Elphic, R. C.

    The acceleration of current carriers in an Alfvén wave current system is considered. The model incorporates a dipole magnetic field geometry, and we present an analyt- ical solution of the two-fluid equations by successive approximations. The leading solution corresponds to the familiar single-fluid toroidal oscillations. The next order describes the nonlinear dynamics of electrons responsible for carrying a few µAm-2 field aligned current into the ionosphere. The solution shows how most of the elec- tron acceleration in the magnetosphere occurs within 1 RE of the ionosphere, and that a parallel electric field of the order of 1 mVm-1 is reponsible for energising the electrons to 1 keV. The limitations of the electron fluid approximation are considered, and a qualitative solution including electron beams and a modified E is developed in accord with observations. We find that the electron acceleration can be nonlinear, (ve )ve > ve , as a result of our nonuniform equilibrium field geometry even when ve is less than the Alfvén speed. Our calculation also elucidates the processes through which E is generated and supported.

  16. Optical measurement of sound using time-varying laser speckle patterns

    NASA Astrophysics Data System (ADS)

    Leung, Terence S.; Jiang, Shihong; Hebden, Jeremy

    2011-02-01

    In this work, we introduce an optical technique to measure sound. The technique involves pointing a coherent pulsed laser beam on the surface of the measurement site and capturing the time-varying speckle patterns using a CCD camera. Sound manifests itself as vibrations on the surface which induce a periodic translation of the speckle pattern over time. Using a parallel speckle detection scheme, the dynamics of the time-varying speckle patterns can be captured and processed to produce spectral information of the sound. One potential clinical application is to measure pathological sounds from the brain as a screening test. We performed experiments to demonstrate the principle of the detection scheme using head phantoms. The results show that the detection scheme can measure the spectra of single frequency sounds between 100 and 2000 Hz. The detection scheme worked equally well in both a flat geometry and an anatomical head geometry. However, the current detection scheme is too slow for use in living biological tissues which has a decorrelation time of a few milliseconds. Further improvements have been suggested.

  17. Ion resonances and ELF wave production by an electron beam injected into the ionosphere - ECHO 6

    NASA Astrophysics Data System (ADS)

    Winckler, J. R.; Steffen, J. E.; Malcolm, P. R.; Erickson, K. N.; Abe, Y.; Swanson, R. L.

    1984-09-01

    Two effects observed with electron antennas ejected from a sounding rocket launched into the ionosphere in March 1983 carrying electron beam guns are discussed. The sensor packages were ejected and travelled parallel to the vehicle trajectory. Electric potentials were measured between the single probes and a plasma diagnostic package while the gun injected electrons into the ionosphere in perpendicular and parallel 1 kHz directions. Signal pulses over the dc-1250 kHz range were detected. A kHz gun frequency caused a signal that decreased by two orders of magnitude between 45-90 m from the beam field line. However, the signal was detectable at 1 mV/m at 120 m, supporting earlier data that indicated that pulsed electron beams can cause ELF waves in space. Beam injection parallel to the magnetic field produced an 840 Hz resonance that could be quenched by activation of a transverse beam.

  18. Means and method for the focusing and acceleration of parallel beams of charged particles

    DOEpatents

    Maschke, Alfred W.

    1983-07-05

    A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.

  19. Long pulse diode experiments

    NASA Astrophysics Data System (ADS)

    McClenahan, Charles R.; Weber, Gerald J.; Omalley, Martin W.; Stewart, Joseph; Rinehart, Larry F.; Buttram, Malcolm T.

    1990-10-01

    A diode employing a thermionic cathode has produced 80 A beams at 200 kV for at least 6 microseconds. Moreover, the diode operates at rates as high as 1 Hz. EGUN simulations of the experimental geometry agree with the experiments. Finally, simulation of a proposed diode geometry predicts a 1 kA, 500 kV beam.

  20. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  1. Unavoidable trapped mode in the interaction region of colliding beams

    DOE PAGES

    Novokhatski, Alexander; Sullivan, Michael; Belli, Eleonora; ...

    2017-11-22

    Here, we discuss the nature of the electromagnetic fields excited by the beams in the beam pipe of an interaction region. In trying to find an optimum geometry for this region with a minimum of electromagnetic wave excitation, we have discovered one mode, which remains even in a very smooth geometry. This mode has a longitudinal electrical component and can be easily excited by the beam. By analyzing the structure of this mode we have found a way to absorb this mode. The work was done in connection with a proposal for a future electron-positron collider.

  2. The Role of Beam Geometry in Population Statistics and Pulse Profiles of Radio and Gamma-ray Pulsars

    NASA Technical Reports Server (NTRS)

    Gonthier, Peter L.; VanGuilder, Robert; Harding, Alice K.

    2004-01-01

    We present results of a pulsar population synthesis study that incorporates a number of recent developments and some significant improvements over our previous study. We have included the results of the Parkes multi-beam pulsar survey in our select group of nine radio surveys, doubling our sample of radio pulsars. More realistic geometries for the radio and gamma-ray beams are included in our Monte Carlo computer code that simulates the characteristics of the Galactic population of radio and gamma-ray pulsars. We adopted with some modifications the radio beam geometry of Arzoumanian, Chernoff & Cordes (2002). For the gamma-ray beam, we have assumed the slot gap geometry described in the work of Muslimov & Harding (2003). To account for the shape of the distribution of radio pulsars in the P(dot) - P diagram, we continue to find that decay of the magnetic field on a timescale of 2.8 Myr is needed. With all nine surveys, our model predicts that EGRET should have seen 7 radio-quiet (below the sensitivity of these radio surveys) and 19 radio-loud gamma-ray pulsars. AGILE (nominal sensitivity map) is expected to detect 13 radio-quiet and 37 radio-loud gamma-ray pulsars, while GLAST, with greater sensitivity is expected to detect 276 radio-quiet and 344 radio-loud gamma-ray pulsars. When the Parkes multi-beam pulsar survey is excluded, the ratio of radio-loud to radio-quiet gamma-ray pulsars decreases, especially for GLAST. The decrease for EGRET is 45%, implying that some fraction of EGRET unidentified sources are radio-loud gamma-ray pulsars. In the radio geometry adopted, short period pulsars are core dominated. Unlike the EGRET gamma-ray pulsars, our model predicts that when two gamma-ray peaks appear in the pulse profile, a dominant radio core peak appears in between the gamma-ray peaks. Our findings suggest that further improvements are required in describing both the radio and gamma-ray geometries.

  3. Analysis of the longitudinal space charge impedance of a round uniform beam inside parallel plates and rectangular chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Li, Y.

    2015-02-03

    This paper analyzes the longitudinal space charge impedances of a round uniform beam inside a rectangular and parallel plate chambers using the image charge method. This analysis is valid for arbitrary wavelengths, and the calculations converge rapidly. The research shows that only a few of the image beams are needed to obtain a relative error less than 0.1%. The beam offset effect is also discussed in the analysis.

  4. High-temperature transverse fracture toughness of Nicalon-fiber-reinforced CAS-II glass-ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahraman, R.; Mandell, J.F.; Deibert, M.C.

    Cracking parallel to the fibers in off-axis plies is usually the initial form of damage in composite laminates. This cracking process has been associated with the (transverse) fracture toughness, defined by the critical strain energy release rate, G{sub Ic}. The measurement of G{sub Ic} provides basic information about the transverse crack resistance. In this study, the utility of the double torsion (DT) test technique to determine G{sub Ic} in a glass-ceramic matrix composite (Nicalon/CAS-II) at temperatures up to 1,000 C has been demonstrated. G{sub Ic} did decrease moderately with increasing temperature (as does the bulk matrix); however, no evidence ofmore » an interphase oxidizing effect on crack growth (parallel to the fibers) could be found. The inevitable misalignment of fibers in the material was not very efficient at bridging the crack in the DT specimens, in contrast to the significant matrix crack interactions with the fibers reported for other geometries such as double cantilever beam and flexure specimens.« less

  5. Technical Note: Impact of the geometry dependence of the ion chamber detector response function on a convolution-based method to address the volume averaging effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraclough, Brendan; Lebron, Sharon; Li, Jonathan G.

    2016-05-15

    Purpose: To investigate the geometry dependence of the detector response function (DRF) of three commonly used scanning ionization chambers and its impact on a convolution-based method to address the volume averaging effect (VAE). Methods: A convolution-based approach has been proposed recently to address the ionization chamber VAE. It simulates the VAE in the treatment planning system (TPS) by iteratively convolving the calculated beam profiles with the DRF while optimizing the beam model. Since the convolved and the measured profiles are subject to the same VAE, the calculated profiles match the implicit “real” ones when the optimization converges. Three DRFs (Gaussian,more » Lorentzian, and parabolic function) were used for three ionization chambers (CC04, CC13, and SNC125c) in this study. Geometry dependent/independent DRFs were obtained by minimizing the difference between the ionization chamber-measured profiles and the diode-measured profiles convolved with the DRFs. These DRFs were used to obtain eighteen beam models for a commercial TPS. Accuracy of the beam models were evaluated by assessing the 20%–80% penumbra width difference (PWD) between the computed and diode-measured beam profiles. Results: The convolution-based approach was found to be effective for all three ionization chambers with significant improvement for all beam models. Up to 17% geometry dependence of the three DRFs was observed for the studied ionization chambers. With geometry dependent DRFs, the PWD was within 0.80 mm for the parabolic function and CC04 combination and within 0.50 mm for other combinations; with geometry independent DRFs, the PWD was within 1.00 mm for all cases. When using the Gaussian function as the DRF, accounting for geometry dependence led to marginal improvement (PWD < 0.20 mm) for CC04; the improvement ranged from 0.38 to 0.65 mm for CC13; for SNC125c, the improvement was slightly above 0.50 mm. Conclusions: Although all three DRFs were found adequate to represent the response of the studied ionization chambers, the Gaussian function was favored due to its superior overall performance. The geometry dependence of the DRFs can be significant for clinical applications involving small fields such as stereotactic radiotherapy.« less

  6. Technical Note: Impact of the geometry dependence of the ion chamber detector response function on a convolution-based method to address the volume averaging effect.

    PubMed

    Barraclough, Brendan; Li, Jonathan G; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2016-05-01

    To investigate the geometry dependence of the detector response function (DRF) of three commonly used scanning ionization chambers and its impact on a convolution-based method to address the volume averaging effect (VAE). A convolution-based approach has been proposed recently to address the ionization chamber VAE. It simulates the VAE in the treatment planning system (TPS) by iteratively convolving the calculated beam profiles with the DRF while optimizing the beam model. Since the convolved and the measured profiles are subject to the same VAE, the calculated profiles match the implicit "real" ones when the optimization converges. Three DRFs (Gaussian, Lorentzian, and parabolic function) were used for three ionization chambers (CC04, CC13, and SNC125c) in this study. Geometry dependent/independent DRFs were obtained by minimizing the difference between the ionization chamber-measured profiles and the diode-measured profiles convolved with the DRFs. These DRFs were used to obtain eighteen beam models for a commercial TPS. Accuracy of the beam models were evaluated by assessing the 20%-80% penumbra width difference (PWD) between the computed and diode-measured beam profiles. The convolution-based approach was found to be effective for all three ionization chambers with significant improvement for all beam models. Up to 17% geometry dependence of the three DRFs was observed for the studied ionization chambers. With geometry dependent DRFs, the PWD was within 0.80 mm for the parabolic function and CC04 combination and within 0.50 mm for other combinations; with geometry independent DRFs, the PWD was within 1.00 mm for all cases. When using the Gaussian function as the DRF, accounting for geometry dependence led to marginal improvement (PWD < 0.20 mm) for CC04; the improvement ranged from 0.38 to 0.65 mm for CC13; for SNC125c, the improvement was slightly above 0.50 mm. Although all three DRFs were found adequate to represent the response of the studied ionization chambers, the Gaussian function was favored due to its superior overall performance. The geometry dependence of the DRFs can be significant for clinical applications involving small fields such as stereotactic radiotherapy.

  7. Evaluation of the effects of patient arm attenuation in SPECT cardiac perfusion imaging

    NASA Astrophysics Data System (ADS)

    Luo, Dershan; King, M. A.; Pan, Tin-Su; Xia, Weishi

    1996-12-01

    It was hypothesized that the use of attenuation correction could compensate for degradation in the uniformity of apparent localization of imaging agents seen in cardiac walls when patients are imaged with arms at their sides. Noise-free simulations of the digital MCAT phantom were employed to investigate this hypothesis. Four variations in camera size and collimation scheme were investigated. We observed that: 1) without attenuation correction, the arms had little additional influences on the uniformity of the heart for 180/spl deg/ reconstructions and caused a small increase in nonuniformity for 360/spl deg/ reconstructions, where the impact of both arms was included; 2) change in patient size had more of an impact on count uniformity than the presence of the arms, either with or without attenuation correction; 3) for a low number of iterations and large patient size, slightly better uniformity was obtained from parallel emission data than from fan-beam emission data, independent of whether parallel or fan-beam transmission data was used to reconstruct the attenuation maps; and 4) for all camera configurations, uniformity was improved with attenuation correction and, given sufficient number of iterations, it was compatible among different imaging geometry combinations. Thus, iterative algorithms can compensate for the additional attenuation imposed by larger patients or having the arms on the sides. When the arms are at the sides of the patient, however, a larger radius of rotation may be required, resulting in decreased spatial resolution.

  8. Evaluation of the effects of patient arm attenuation in SPECT cardiac perfusion imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, D.; King, M.A.; Pan, T.S.

    1996-12-01

    It was hypothesized that the use of attenuation correction could compensate for degradation in the uniformity of apparent localization of imaging agents seen in cardiac walls when patients are imaged with arms at their sides. Noise-free simulations of the digital MCAT phantom were employed to investigate this hypothesis. Four variations in camera size and collimation scheme were investigated. The authors observed that: (1) without attenuation correction, the arms had little additional influences on the uniformity of the heart for 180{degree} reconstructions and caused a small increase in nonuniformity for 360{degree} reconstructions, where the impact of both arms was included; (2)more » change in patient size had more of an impact on count uniformity than the presence of the arms, either with or without attenuation correction; (3) for a low number of iterations and large patient size, slightly better uniformity was obtained from parallel emission data than from fan-beam emission data, independent of whether parallel or fan-beam transmission data was used to reconstruct the attenuation maps; and (4) for all camera configurations, uniformity was improved with attenuation correction and, given sufficient number of iterations, it was compatible among different imaging geometry combinations. Thus, iterative algorithms can compensate for the additional attenuation imposed by larger patients or having the arms on the sides. When the arms are at the sides of the patient, however, a larger radius of rotation may be required, resulting in decreased spatial resolution.« less

  9. Nanoboomerang-based inverse metasurfaces—A promising path towards ultrathin photonic devices for transmission operation

    NASA Astrophysics Data System (ADS)

    Zeisberger, Matthias; Schneidewind, Henrik; Huebner, Uwe; Popp, Juergen; Schmidt, Markus A.

    2017-03-01

    Metasurfaces have revolutionized photonics due to their ability to shape phase fronts as requested and to tune beam directionality using nanoscale metallic or dielectric scatterers. Here we reveal inverse metasurfaces showing superior properties compared to their positive counterparts if transmission mode operation is considered. The key advantage of such slot-type metasurfaces is the strong reduction of light in the parallel-polarization state, making the crossed-polarization, being essential for metasurface operation, dominant and highly visible. In the experiment, we show an up to four times improvement in polarization extinction for the individual metasurface element geometry consisting of deep subwavelength nanoboomerangs with feature sizes of the order of 100 nm. As confirmed by simulations, strong plasmonic hybridization yields two spectrally separated plasmonic resonances, ultimately allowing for the desired phase and scattering engineering in transmission. Due to the design flexibility of inverse metasurfaces, a large number of highly integrated ultra-flat photonic elements can be envisioned, examples of which include monolithic lenses for telecommunications and spectroscopy, beam shaper or generator for particle trapping or acceleration or sophisticated polarization control for microscopy.

  10. Light beam frequency comb generator

    DOEpatents

    Priatko, G.J.; Kaskey, J.A.

    1992-11-24

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.

  11. Light beam frequency comb generator

    DOEpatents

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1992-01-01

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

  12. Comparison of the IAEA TRS-398 and AAPM TG-51 absorbed dose to water protocols in the dosimetry of high-energy photon and electron beams

    NASA Astrophysics Data System (ADS)

    Saiful Huq, M.; Andreo, Pedro; Song, Haijun

    2001-11-01

    The International Atomic Energy Agency (IAEA TRS-398) and the American Association of Physicists in Medicine (AAPM TG-51) have published new protocols for the calibration of radiotherapy beams. These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. This paper compares the recommendations of the two protocols in two ways: (i) by analysing in detail the differences in the basic data included in the two protocols for photon and electron beam dosimetry and (ii) by performing measurements in clinical photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols. Measurements were made with two Farmer-type ionization chambers and three plane-parallel ionization chamber types in 6, 18 and 25 MV photon beams and 6, 8, 10, 12, 15 and 18 MeV electron beams. The Farmer-type chambers used were NE 2571 and PTW 30001, and the plane-parallel chambers were a Scanditronix-Wellhöfer NACP and Roos, and a PTW Markus chamber. For photon beams, the measured ratios TG-51/TRS-398 of absorbed dose to water Dw ranged between 0.997 and 1.001, with a mean value of 0.999. The ratios for the beam quality correction factors kQ were found to agree to within about +/-0.2% despite significant differences in the method of beam quality specification for photon beams and in the basic data entering into kQ. For electron beams, dose measurements were made using direct ND,w calibrations of cylindrical and plane-parallel chambers in a 60Co gamma-ray beam, as well as cross-calibrations of plane-parallel chambers in a high-energy electron beam. For the direct ND,w calibrations the ratios TG-51/TRS-398 of absorbed dose to water Dw were found to lie between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017, respectively, for the cylindrical, well-guarded and not well-guarded plane-parallel chambers. The Dw ratios measured for the cross-calibration procedures varied between 0.993 and 0.997. The largest discrepancies for electron beams between the two protocols arise from the use of different data for the perturbation correction factors pwall and pdis of cylindrical and plane-parallel chambers, all in 60Co. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and the quantities in the two protocols.

  13. Unstable Resonator Optical Parametric Oscillator Based on Quasi-Phase-Matched RbTiOAsO(4).

    PubMed

    Hansson, G; Karlsson, H; Laurell, F

    2001-10-20

    We demonstrate improved signal and idler-beam quality of a 3-mm-aperture quasi-phase-matched RbTiOAsO(4) optical parametric oscillator through use of a confocal unstable resonator as compared with a plane-parallel resonator. Both oscillators were singly resonant, and the periodically poled RbTiOAsO(4) crystal generated a signal at 1.56 mum and an idler at 3.33 mum when pumped at 1.064 mum. We compared the beam quality produced by the 1.2-magnification confocal unstable resonator with the beam quality produced by the plane-parallel resonator by measuring the signal and the idler beam M(2) value. We also investigated the effect of pump-beam intensity distribution by comparing the result of a Gaussian and a top-hat intensity profile pump beam. We generated a signal beam of M(2) approximately 7 and an idler beam of M(2) approximately 2.5 through use of an unstable resonator and a Gaussian intensity profile pump beam. This corresponds to an increase of a factor of approximately 2 in beam quality for the signal and a factor of 3 for the idler, compared with the beam quality of the plane-parallel resonator optical parametric oscillator.

  14. SU-E-T-276: Dose Calculation Accuracy with a Standard Beam Model for Extended SSD Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisling, K; Court, L; Kirsner, S

    2015-06-15

    Purpose: While most photon treatments are delivered near 100cm SSD or less, a subset of patients may benefit from treatment at SSDs greater than 100cm. A proposed rotating chair for upright treatments would enable isocentric treatments at extended SSDs. The purpose of this study was to assess the accuracy of the Pinnacle{sup 3} treatment planning system dose calculation for standard beam geometries delivered at extended SSDs with a beam model commissioned at 100cm SSD. Methods: Dose to a water phantom at 100, 110, and 120cm SSD was calculated with the Pinnacle {sup 3} CC convolve algorithm for 6x beams formore » 5×5, 10×10, 20×20, and 30×30cm{sup 2} field sizes (defined at the water surface for each SSD). PDDs and profiles (depths of 1.5, 12.5, and 22cm) were compared to measurements in water with an ionization chamber. Point-by-point agreement was analyzed, as well as agreement in field size defined by the 50% isodose. Results: The deviations of the calculated PDDs from measurement, analyzed from depth of maximum dose to 23cm, were all within 1.3% for all beam geometries. In particular, the calculated PDDs at 10cm depth were all within 0.7% of measurement. For profiles, the deviations within the central 80% of the field were within 2.2% for all geometries. The field sizes all agreed within 2mm. Conclusion: The agreement of the PDDs and profiles calculated by Pinnacle3 for extended SSD geometries were within the acceptability criteria defined by Van Dyk (±2% for PDDs and ±3% for profiles). The accuracy of the calculation of more complex beam geometries at extended SSDs will be investigated to further assess the feasibility of using a standard beam model commissioned at 100cm SSD in Pinnacle3 for extended SSD treatments.« less

  15. Parallel-hierarchical processing and classification of laser beam profile images based on the GPU-oriented architecture

    NASA Astrophysics Data System (ADS)

    Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan

    2017-08-01

    The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.

  16. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    NASA Astrophysics Data System (ADS)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  17. Progress towards an intense beam of positrons created by a Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Lund, K. R.; Weber, M. H.; Lynn, K. G.; Jennings, J.; Minnal, C.; Narimannezhad, A.; Rao, R.; Monster, K. A. W.

    2017-12-01

    A 4MV Van de Graaff accelerator was used to induce the nuclear reaction 12C(d,n)13N in order to produce an intense beam of positrons. The graphite target was heated so the radioactive 13N would desorb from the bulk into the vacuum. This radioactive gas is frozen onto a cryogenic freezer where it decays to produce an antiparticle beam of positrons. This high current beam is then guided into a superconducting magnet with field strength up to 7 Tesla where the positrons will be stored in a newly designed Micro-Penning-Malmberg trap. Several source geometries have been experimented on and found a maximum antimatter beam with a positron flux of greater than 0.55 ± 0.03 × 106 e+s-1 was achieved. This beam was produced using a solid rare gas moderator composed of krypton (Kr) at a temperature of 25 ± 5 K. Due to geometric restrictions on this set up and other loss mechanisms, 107-108 e+s-1 of the total number of positrons are lost. Simulations and preliminary experiments suggest a new geometry, currently under testing, will produce a beam of 107 e+s-1 or more. The setup and preliminary results for the new geometry will be discussed as well.

  18. Intrafractional dose variation and beam configuration in carbon ion radiotherapy for esophageal cancer.

    PubMed

    Haefner, M F; Sterzing, F; Krug, D; Koerber, S A; Jaekel, O; Debus, J; Haertig, M M

    2016-11-15

    In carbon ion radiotherapy (CIR) for esophageal cancer, organ and target motion is a major challenge for treatment planning due to potential range deviations. This study intends to analyze the impact of intrafractional variations on dosimetric parameters and to identify favourable settings for robust treatment plans. We contoured esophageal boost volumes in different organ localizations for four patients and calculated CIR-plans with 13 different beam geometries on a free-breathing CT. Forward calculation of these plans was performed on 4D-CT datasets representing seven different phases of the breathing cycle. Plan quality was assessed for each patient and beam configuration. Target volume coverage was adequate for all settings in the baseline CIR-plans (V 95  > 98% for two-beam geometries, > 94% for one-beam geometries), but reduced on 4D-CT plans (V 95 range 50-95%). Sparing of the organs at risk (OAR) was adequate, but range deviations during the breathing cycle partly caused critical, maximum doses to spinal cord up to 3.5x higher than expected. There was at least one beam configuration for each patient with appropriate plan quality. Despite intrafractional motion, CIR for esophageal cancer is possible with robust treatment plans when an individually optimized beam setup is selected depending on tumor size and localization.

  19. Design optimization of a smooth headlamp reflector to SAE/DOT beam-shape requirements

    NASA Astrophysics Data System (ADS)

    Shatz, Narkis E.; Bortz, John C.; Dassanayake, Mahendra S.

    1999-10-01

    The optical design of Ford Motor Company's 1992 Mercury Grand Marquis headlamp utilized a Sylvania 9007 filament source, a paraboloidal reflector and an array of cylindrical lenses (flutes). It has been of interest to Ford to determine the practicality of closely reproducing the on- road beam pattern performance of this headlamp, with an alternate optical arrangement whereby the control of the beam would be achieved solely by means of the geometry of the surface of the reflector, subject to a requirement of smooth-surface continuity; replacing the outer lens with a clear plastic cover having no beam-forming function. To this end the far-field intensity distribution produced by the 9007 bulb was measured at the low-beam setting. These measurements were then used to develop a light-source model for use in ray tracing simulations of candidate reflector geometries. An objective function was developed to compare candidate beam patterns with the desired beam pattern. Functional forms for the 3D reflector geometry were developed with free parameters to be subsequently optimized. A solution was sought meeting the detailed US SAE/DOT constraints for minimum and maximum permissible levels of illumination in the different portions of the beam pattern. Simulated road scenes were generated by Ford Motor Company to compare the illumination properties of the new design with those of the original Grand Marquis headlamp.

  20. Interface and process for enhanced transmission of non-circular ion beams between stages at unequal pressure

    DOEpatents

    Tang, Keqi [Richland, WA; Shvartsburg, Alexandre A [Richland, WA; Smith, Richard D [Richland, WA

    2008-03-04

    The invention discloses a new interface with non-circular conductance limit aperture(s) useful for effective transmission of non-circular ion beams between stages with different gas pressure. In particular, the invention provides an improved coupling of field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of planar or side-to-side geometry to downstream stages such as mass spectrometry or ion mobility spectrometry. In this case, the non-circular aperture is rectangular; other geometries may be optimum in other applications. In the preferred embodiment, the non-circular aperture interface is followed by an electrodynamic ion funnel that may focus wide ion beams of any shape into tight circular beams with virtually no losses. The jet disrupter element of the funnel may also have a non-circular geometry, matching the shape of arriving ion beam. The improved sensitivity of planar FAIMS/MS has been demonstrated in experiments using a non-contiguous elongated aperture but other embodiments (e.g., with a contiguous slit aperture) may be preferable, especially in conjunction with an ion funnel operated at high pressures.

  1. Method of and apparatus for collecting solar radiation utilizing variable curvature cylindrical reflectors

    DOEpatents

    Treytl, William J.; Slemmons, Arthur J.; Andeen, Gerry B.

    1979-01-01

    A heliostat apparatus includes a frame which is rotatable about an axis which is parallel to the aperture plane of an elongate receiver. A plurality of flat flexible mirror elements are mounted to the frame between several parallel, uniformly spaced resilient beams which are pivotally connected at their ends to the frame. Channels are mounted to the sides of the beams for supporting the edges of the mirror elements. Each of the beams has a longitudinally varying configuration designed to bow into predetermined, generally circular curvatures of varying radii when the center of the beam is deflected relative to the pivotally connected ends of the beams. All of the parallel resilient beams are simultaneously deflected by a cam shaft assembly extending through openings in the centers of the beams, whereby the mirror elements together form an upwardly concave, cylindrical reflecting surface. The heliostat is rotated about its axis to track the apparent diurnal movement of the sun, while the reflecting surface is substantially simultaneously bowed into a cylindrical trough having a radius adapted to focus incident light at the plane of the receiver aperture.

  2. Reassessment of the Necessity of the Proton Gantry: Analysis of Beam Orientations From 4332 Treatments at the Massachusetts General Hospital Proton Center Over the Past 10 Years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Susu, E-mail: syan5@mgh.harvard.edu; Lu, Hsiao-Ming; Flanz, Jay

    2016-05-01

    Purpose: To retrospectively analyze the beam approaches used in gantry-based proton treatments, and to reassess the practical advantages of the gantry, compared with beam approaches that are achievable without a gantry, in the context of present-day technology. Methods and Materials: We reviewed the proton therapy plans of 4332 patients treated on gantries at our hospital, delivered by the double scattering technique (n=4228) and, more recently, pencil beam scanning (PBS) (n=104). Beam approaches, relative to the patient frame, were analyzed individually to identify cases that could be treated without a gantry. Three treatment configurations were considered, with the patient in lying position,more » sitting position, or both. The FIXED geometry includes a fixed horizontal portal. The BEND geometry enables a limited vertical inflection of the beam by up to 20°. The MOVE geometry allows for flexibility of the patient head and body setup. Results: The percentage of patients with head and neck tumors that could be treated without a gantry using double scattering was 44% in FIXED, 70% in 20° BEND, and 100% in 90° MOVE. For torso regions, 99% of patients could be treated in 20° BEND. Of 104 PBS treatments, all but 1 could be reproduced with FIXED geometry. The only exception would require a 10° BEND capability. Note here that the PBS treatments were applied to select anatomic sites, including only 2 patients with skull-base tumors. Conclusions: The majority of practical beam approaches can be realized with gantry-less delivery, aided by limited beam bending and patient movements. Practical limitations of the MOVE geometry, and treatments requiring a combination of lying and sitting positions, may lower the percentage of head and neck patients who could be treated without a gantry. Further investigation into planning, immobilization, and imaging is needed to remove the practical limitations and to facilitate proton treatment without a gantry.« less

  3. Transport properties of discontinuous Co{sub 80}Fe{sub 20}/Al{sub 2}O{sub 3} multilayers, prepared by ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakazei, G.N.; Freitas, P.P.; Cardoso, S.

    1999-09-01

    Ion beam sputtered Co{sub 80}Fe{sub 20}(t)/Al{sub 2}O{sub 3}(30 {angstrom}) multilayers were obtained. The Co{sub 80}Fe{sub 20} layers become discontinuous for nominal thicknesses T {le} 18{angstrom}. Tunnel magnetoresistance was measured in CIP and CPP geometries, reaching up to 6.5% at room temperature and 11% at 15 K, for as-deposited films in CIP geometry. The temperature dependence of MR was found quite different for the two geometries: fairly strong in the CIP case and almost absent in the CPP geometry. A model is proposed to explain these large differences in behavior.

  4. Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2014-12-01

    The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 < Kn < 0.5). Currently, the study of slip-flows is for the most part limited to simple tube and channel geometries, however, the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion-beam scanning electron microscopy. These results are analyzed to determine grid-independent resolutions, and used to explore the relationship between effective permeability and Knudsen number in complex geometries.

  5. Advanced Modeling of Micromirror Devices

    NASA Technical Reports Server (NTRS)

    Michalicek, M. Adrian; Sene, Darren E.; Bright, Victor M.

    1995-01-01

    The flexure-beam micromirror device (FBMD) is a phase only piston style spatial light modulator demonstrating properties which can be used for phase adaptive corrective optics. This paper presents a complete study of a square FBMD, from advanced model development through final device testing and model verification. The model relates the electrical and mechanical properties of the device by equating the electrostatic force of a parallel-plate capacitor with the counter-acting spring force of the device's support flexures. The capacitor solution is derived via the Schwartz-Christoffel transformation such that the final solution accounts for non-ideal electric fields. The complete model describes the behavior of any piston-style device, given its design geometry and material properties. It includes operational parameters such as drive frequency and temperature, as well as fringing effects, mirror surface deformations, and cross-talk from neighboring devices. The steps taken to develop this model can be applied to other micromirrors, such as the cantilever and torsion-beam designs, to produce an advanced model for any given device. The micromirror devices studied in this paper were commercially fabricated in a surface micromachining process. A microscope-based laser interferometer is used to test the device in which a beam reflected from the device modulates a fixed reference beam. The mirror displacement is determined from the relative phase which generates a continuous set of data for each selected position on the mirror surface. Plots of this data describe the localized deflection as a function of drive voltage.

  6. Texas Intense Positron Source (TIPS)

    NASA Astrophysics Data System (ADS)

    O'Kelly, D.

    2003-03-01

    The Texas Intense Positron Source (TIPS) is a state of the art variable energy positron beam under construction at the Nuclear Engineering Teaching Laboratory (NETL). Projected intensities on the order of the order of 10^7 e+/second using ^64Cu as the positron source are expected. Owing to is short half-life (t1/2 12.8 hrs), plans are to produce the ^64Cu isotope on-site using beam port 1 of NETL TRIGA Mark II reactor. Following tungsten moderation, the positrons will be electrostatically focused and accelerated from few 10's of eV up to 30 keV. This intensity and energy range should allow routine performance of several analytical techniques of interest to surface scientists (PALS, PADB and perhaps PAES and LEPD.) The TIPS project is being developed in parallel phases. Phase I of the project entails construction of the vacuum system, source chamber, main beam line, electrostatic/magnetic focusing and transport system as well as moderator design. Initial construction, testing and characterization of moderator and beam transport elements are underway and will use a commercially available 10 mCi ^22Na radioisotope as a source of positrons. Phase II of the project is concerned primarily with the Cu source geometry and thermal properties as well as production and physical handling of the radioisotope. Additional instrument optimizing based upon experience gained during Phase I will be incorporated in the final design. Current progress of both phases will be presented along with motivations and future directions.

  7. DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations

    PubMed Central

    Rusling, David A.; Laurens, Niels; Pernstich, Christian; Wuite, Gijs J. L.; Halford, Stephen E.

    2012-01-01

    Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology. PMID:22362745

  8. High-speed volume measurement system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Michael H.; Doyle, Jr., James L.; Brinkman, Michael J.

    2017-12-12

    Disclosed is a volume sensor having first, second, and third laser sources emitting first, second, and third laser beams; first, second, and third beam splitters splitting the first, second, and third laser beams into first, second, and third beam pairs; first, second, and third optical assemblies expanding the first, second, and third beam pairs into first, second, and third pairs of parallel beam sheets; fourth, fifth, and sixth optical assemblies focusing the first, second, and third beam sheet pairs into fourth, fifth, and sixth beam pairs; and first, second, and third detector pairs receiving the fourth, fifth, and sixth beammore » pairs and converting a change in intensity of at least one of the beam pairs resulting from an object passing through at least one of the first, second, and third parallel beam sheets into at least one electrical signal proportional to a three-dimensional representation of the object.« less

  9. X-ray luminescence computed tomography imaging based on X-ray distribution model and adaptively split Bregman method

    PubMed Central

    Chen, Dongmei; Zhu, Shouping; Cao, Xu; Zhao, Fengjun; Liang, Jimin

    2015-01-01

    X-ray luminescence computed tomography (XLCT) has become a promising imaging technology for biological application based on phosphor nanoparticles. There are mainly three kinds of XLCT imaging systems: pencil beam XLCT, narrow beam XLCT and cone beam XLCT. Narrow beam XLCT can be regarded as a balance between the pencil beam mode and the cone-beam mode in terms of imaging efficiency and image quality. The collimated X-ray beams are assumed to be parallel ones in the traditional narrow beam XLCT. However, we observe that the cone beam X-rays are collimated into X-ray beams with fan-shaped broadening instead of parallel ones in our prototype narrow beam XLCT. Hence we incorporate the distribution of the X-ray beams in the physical model and collected the optical data from only two perpendicular directions to further speed up the scanning time. Meanwhile we propose a depth related adaptive regularized split Bregman (DARSB) method in reconstruction. The simulation experiments show that the proposed physical model and method can achieve better results in the location error, dice coefficient, mean square error and the intensity error than the traditional split Bregman method and validate the feasibility of method. The phantom experiment can obtain the location error less than 1.1 mm and validate that the incorporation of fan-shaped X-ray beams in our model can achieve better results than the parallel X-rays. PMID:26203388

  10. Narrow beam neutron dosimetry.

    PubMed

    Ferenci, M Sutton

    2004-01-01

    Organ and effective doses have been estimated for male and female anthropomorphic mathematical models exposed to monoenergetic narrow beams of neutrons with energies from 10(-11) to 1000 MeV. Calculations were performed for anterior-posterior, posterior-anterior, left-lateral and right-lateral irradiation geometries. The beam diameter used in the calculations was 7.62 cm and the phantoms were irradiated at a height of 1 m above the ground. This geometry was chosen to simulate an accidental scenario (a worker walking through the beam) at Flight Path 30 Left (FP30L) of the Weapons Neutron Research (WNR) Facility at Los Alamos National Laboratory. The calculations were carried out using the Monte Carlo transport code MCNPX 2.5c.

  11. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.

    PubMed

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jäkel, O; Martišíková, M

    2013-06-07

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient's geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations in the beam width could be measured with a precision of 0.9 mm. Furthermore, shifts of the lateral beam position could be monitored with a sub-millimetre precision. The presented investigations demonstrate experimentally that the non-invasive measurement and analysis of secondary ion distributions around head-sized homogeneous objects provide information on the actual beam delivery. Beam range, width and position could be monitored with a precision attractive for therapeutic situations.

  12. Simultaneous calibration phantom commission and geometry calibration in cone beam CT

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong

    2017-09-01

    Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm-1. The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.

  13. Computer simulations of electromagnetic cool ion beam instabilities. [in near earth space

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Madland, C. D.; Schriver, D.; Winske, D.

    1986-01-01

    Electromagnetic ion beam instabilities driven by cool ion beams at propagation parallel or antiparallel to a uniform magnetic field are studied using computer simulations. The elements of linear theory applicable to electromagnetic ion beam instabilities and the simulations derived from a one-dimensional hybrid computer code are described. The quasi-linear regime of the right-hand resonant ion beam instability, and the gyrophase bunching of the nonlinear regime of the right-hand resonant and nonresonant instabilities are examined. It is detected that in the quasi-linear regime the instability saturation is due to a reduction in the beam core relative drift speed and an increase in the perpendicular-to-parallel beam temperature; in the nonlinear regime the instabilities saturate when half the initial beam drift kinetic energy density is converted to fluctuating magnetic field energy density.

  14. Theory and simulations of current drive via injection of an electron beam in the ACT-1 device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuda, H.; Horton, R.; Ono, M.

    1985-02-01

    One- and two-dimensional particle simulations of beam-plasma interaction have been carried out in order to understand current drive experiments that use an electron beam injected into the ACT-1 device. Typically, the beam velocity along the magnetic field is V = 10/sup 9/ cm/sec while the thermal velocity of the background electrons is v/sub t/ = 10/sup 8//cm. The ratio of the beam density to the background density is about 10% so that a strong beam-plasma instability develops causing rapid diffusion of beam particles. For both one- and two- dimensional simulations, it is found that a significant amount of beam andmore » background electrons is accelerated considerably beyond the initial beam velocity when the beam density is more than a few percent of the background plasma density. In addition, electron distribution along the magnetic field has a smooth negative slope, f' (v/sub parallel/) < 0, for v/ sub parallel/ > 0 extending v/sub parallel/ = 1.5 V approx. 2 V, which is in sharp contrast to the predictions from quasilinear theory. An estimate of the mean-free path for beam electrons due to Coulomb collisions reveals that the beam electrons can propagate a much longer distance than is predicted from a quasilinear theory, due to the presence of a high energy tail. These simulation results agree well with the experimental observations from the ACT-1 device.« less

  15. The effect of earthquake on architecture geometry with non-parallel system irregularity configuration

    NASA Astrophysics Data System (ADS)

    Teddy, Livian; Hardiman, Gagoek; Nuroji; Tudjono, Sri

    2017-12-01

    Indonesia is an area prone to earthquake that may cause casualties and damage to buildings. The fatalities or the injured are not largely caused by the earthquake, but by building collapse. The collapse of the building is resulted from the building behaviour against the earthquake, and it depends on many factors, such as architectural design, geometry configuration of structural elements in horizontal and vertical plans, earthquake zone, geographical location (distance to earthquake center), soil type, material quality, and construction quality. One of the geometry configurations that may lead to the collapse of the building is irregular configuration of non-parallel system. In accordance with FEMA-451B, irregular configuration in non-parallel system is defined to have existed if the vertical lateral force-retaining elements are neither parallel nor symmetric with main orthogonal axes of the earthquake-retaining axis system. Such configuration may lead to torque, diagonal translation and local damage to buildings. It does not mean that non-parallel irregular configuration should not be formed on architectural design; however the designer must know the consequence of earthquake behaviour against buildings with irregular configuration of non-parallel system. The present research has the objective to identify earthquake behaviour in architectural geometry with irregular configuration of non-parallel system. The present research was quantitative with simulation experimental method. It consisted of 5 models, where architectural data and model structure data were inputted and analyzed using the software SAP2000 in order to find out its performance, and ETAB2015 to determine the eccentricity occurred. The output of the software analysis was tabulated, graphed, compared and analyzed with relevant theories. For areas of strong earthquake zones, avoid designing buildings which wholly form irregular configuration of non-parallel system. If it is inevitable to design a building with building parts containing irregular configuration of non-parallel system, make it more rigid by forming a triangle module, and use the formula.A good collaboration is needed between architects and structural experts in creating earthquake architecture.

  16. Wide field of view common-path lateral-shearing digital holographic interference microscope

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.

  17. Wide field of view common-path lateral-shearing digital holographic interference microscope.

    PubMed

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    PubMed Central

    Neculaes, V. Bogdan; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun; Pelc, Norbert J.; Lounsberry, Brian

    2016-01-01

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations. PMID:27487878

  19. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caia

    2016-08-15

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode blockmore » per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations.« less

  20. Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ji; Lin, Yu; Johnson, Jay R.

    In a previous study on the generation and signatures of kinetic Alfv en waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfv enic. As a result of waveparticle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. We then heat ions in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the T more » $$\\perp$$ ion temperature and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with the perpendicular temperature T $$\\perp$$>T $$\\parallel$$ temperature. The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating, ultimately leading to overlap of the beams and an overall anisotropy with T $$\\perp$$>T $$\\parallel$$.« less

  1. Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection

    DOE PAGES

    Liang, Ji; Lin, Yu; Johnson, Jay R.; ...

    2017-09-19

    In a previous study on the generation and signatures of kinetic Alfv en waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfv enic. As a result of waveparticle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. We then heat ions in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the T more » $$\\perp$$ ion temperature and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with the perpendicular temperature T $$\\perp$$>T $$\\parallel$$ temperature. The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating, ultimately leading to overlap of the beams and an overall anisotropy with T $$\\perp$$>T $$\\parallel$$.« less

  2. Simulation and optimization of a new focusing polarizing bender for the diffuse neutrons scattering spectrometer DNS at MLZ

    NASA Astrophysics Data System (ADS)

    Nemkovski, K.; Ioffe, A.; Su, Y.; Babcock, E.; Schweika, W.; Brückel, Th

    2017-06-01

    We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed.

  3. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.

  4. Comparison of algebraic and analytical approaches to the formulation of the statistical model-based reconstruction problem for X-ray computed tomography.

    PubMed

    Cierniak, Robert; Lorent, Anna

    2016-09-01

    The main aim of this paper is to investigate properties of our originally formulated statistical model-based iterative approach applied to the image reconstruction from projections problem which are related to its conditioning, and, in this manner, to prove a superiority of this approach over ones recently used by other authors. The reconstruction algorithm based on this conception uses a maximum likelihood estimation with an objective adjusted to the probability distribution of measured signals obtained from an X-ray computed tomography system with parallel beam geometry. The analysis and experimental results presented here show that our analytical approach outperforms the referential algebraic methodology which is explored widely in the literature and exploited in various commercial implementations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Poster — Thur Eve — 35: The impact of intensity- and energy-modulated photon radiotherapy (XMRT) optimization on a variety of organ geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGeachy, P.; Villarreal-Barajas, J. E.; Khan, R.

    2014-08-15

    We previously reported on a novel, modulated in both energy and intensity; photon radiotherapy (XMRT) optimization technique. The purpose of this investigation was to test this XMRT optimization against conventional intensity modulated radiotherapy (IMRT) optimization on four different organ test geometries. All geometries mimicked clinically relevant scenarios. Both IMRT and XMRT were based on a linear programming approach where the objective function was the mean dose to healthy organs and organ-specific linear dose-point constraints were used. For IMRT, the beam energy was fixed to 6 MV while XMRT optimized in terms of both 6 and 18 MV beams. All plansmore » consisted of a seven beam coplanar arrangement. All organ geometries were contoured on a 25cm diameter cylindrical water phantom in open source radiotherapy research software known as CERR. Solutions for both IMRT and XMRT were obtained for each geometry using a numerical solver Gurobi. Analyzing the quality of the solutions was done by comparing dose distributions and dose volume histograms calculated using CERR. For all four geometries, IMRT and XMRT solutions were comparable in terms of target coverage. For two of the geometries, IMRT provided an advantage in terms of reduced dose to the healthy structures. XMRT showed improved dose reduction to healthy organs for one geometry and a comparable dose distribution to IMRT for the remaining geometry. The inability to exploit the benefits of using multiple energies may be attributed to limited water phantom diameter and having the majority of the organs in close proximity to the transverse axis.« less

  6. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten

    1994-01-01

    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  7. High efficiency laser spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  8. Beam characterization at BATMAN for variation of the Cs evaporation asymmetry and comparing two driver geometries

    NASA Astrophysics Data System (ADS)

    Aza, E.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Fantz, U.

    2017-08-01

    The properties of the negative hydrogen ion beam produced by the scaled prototype ITER NBI source at the BATMAN testbed were investigated by means of two beam diagnostics: Beam Emission Spectroscopy (BES) and a calorimeter. Two modifications to the prototype were applied. The first was the installation of a second Cs oven at the bottom part of the backplate in addition to the standard one at the upper part of the backplate varying the Cs evaporation asymmetry inside the source. The second consisted in the replacement of the cylindrical driver with a larger racetrack-shaped RF driver and placing a single Cs oven in a central position at the backplate of the driver. The resulting beam characteristics are discussed and compared with those obtained with the previous source design. The position of the Cs oven and the different driver size and geometry appear not to influence the beam profile and the beam deflection for a well-conditioned source.

  9. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy

    PubMed Central

    Peterson, S W; Robertson, D; Polf, J

    2011-01-01

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ~10−6 to 10−3 prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy. PMID:21048295

  10. Rapid Prediction of Unsteady Three-Dimensional Viscous Flows in Turbopump Geometries

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.

    1998-01-01

    A program is underway to improve the efficiency of a three-dimensional Navier-Stokes code and generalize it for nozzle and turbopump geometries. Code modifications will include the implementation of parallel processing software, incorporating new physical models and generalizing the multi-block capability to allow the simultaneous simulation of nozzle and turbopump configurations. The current report contains details of code modifications, numerical results of several flow simulations and the status of the parallelization effort.

  11. SU-D-BRB-02: Investigations of Secondary Ion Distributions in Carbon Ion Therapy Using the Timepix Detector.

    PubMed

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jaekel, O; Martisikova, M

    2012-06-01

    Due to the high conformity of carbon ion therapy, unpredictable changes in the patient's geometry or deviations from the planned beam properties can result in changes of the dose distribution. PET has been used successfully to monitor the actual dose distribution in the patient. However, it suffers from biological washout processes and low detection efficiency. The purpose of this contribution is to investigate the potential of beam monitoring by detection of prompt secondary ions emerging from a homogeneous phantom, simulating a patient's head. Measurements were performed at the Heidelberg Ion-Beam Therapy Center (Germany) using a carbon ion pencil beam irradiated on a cylindrical PMMA phantom (16cm diameter). For registration of the secondary ions, the Timepix detector was used. This pixelated silicon detector allows position-resolved measurements of individual ions (256×256 pixels, 55μm pitch). To track the secondary ions we used several parallel detectors (3D voxel detector). For monitoring of the beam in the phantom, we analyzed the directional distribution of the registered ions. This distribution shows a clear dependence on the initial beam energy, width and position. Detectable were range differences of 1.7mm, as well as vertical and horizontal shifts of the beam position by 1mm. To estimate the clinical potential of this method, we measured the yield of secondary ions emerging from the phantom for a beam energy of 226MeV/u. The differential distribution of secondary ions as a function of the angle from the beam axis for angles between 0 and 90° will be presented. In this setup the total yield in the forward hemisphere was found to be in the order of 10 -1 secondary ions per primary carbon ion. The presented measurements show that tracking of secondary ions provides a promising method for non-invasive monitoring of ion beam parameters for clinical relevant carbon ion fluences. Research with the pixel detectors was carried out in frame of the Medipix Collaboration. © 2012 American Association of Physicists in Medicine.

  12. BPF-type region-of-interest reconstruction for parallel translational computed tomography.

    PubMed

    Wu, Weiwen; Yu, Hengyong; Wang, Shaoyu; Liu, Fenglin

    2017-01-01

    The objective of this study is to present and test a new ultra-low-cost linear scan based tomography architecture. Similar to linear tomosynthesis, the source and detector are translated in opposite directions and the data acquisition system targets on a region-of-interest (ROI) to acquire data for image reconstruction. This kind of tomographic architecture was named parallel translational computed tomography (PTCT). In previous studies, filtered backprojection (FBP)-type algorithms were developed to reconstruct images from PTCT. However, the reconstructed ROI images from truncated projections have severe truncation artefact. In order to overcome this limitation, we in this study proposed two backprojection filtering (BPF)-type algorithms named MP-BPF and MZ-BPF to reconstruct ROI images from truncated PTCT data. A weight function is constructed to deal with data redundancy for multi-linear translations modes. Extensive numerical simulations are performed to evaluate the proposed MP-BPF and MZ-BPF algorithms for PTCT in fan-beam geometry. Qualitative and quantitative results demonstrate that the proposed BPF-type algorithms cannot only more accurately reconstruct ROI images from truncated projections but also generate high-quality images for the entire image support in some circumstances.

  13. Advances in Parallelization for Large Scale Oct-Tree Mesh Generation

    NASA Technical Reports Server (NTRS)

    O'Connell, Matthew; Karman, Steve L.

    2015-01-01

    Despite great advancements in the parallelization of numerical simulation codes over the last 20 years, it is still common to perform grid generation in serial. Generating large scale grids in serial often requires using special "grid generation" compute machines that can have more than ten times the memory of average machines. While some parallel mesh generation techniques have been proposed, generating very large meshes for LES or aeroacoustic simulations is still a challenging problem. An automated method for the parallel generation of very large scale off-body hierarchical meshes is presented here. This work enables large scale parallel generation of off-body meshes by using a novel combination of parallel grid generation techniques and a hybrid "top down" and "bottom up" oct-tree method. Meshes are generated using hardware commonly found in parallel compute clusters. The capability to generate very large meshes is demonstrated by the generation of off-body meshes surrounding complex aerospace geometries. Results are shown including a one billion cell mesh generated around a Predator Unmanned Aerial Vehicle geometry, which was generated on 64 processors in under 45 minutes.

  14. Cusped magnetic field mercury ion thruster. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.

    1976-01-01

    The importance of a uniform current density profile in the exhaust beam of an electrostatic ion thruster is discussed in terms of thrust level and accelerator system lifetime. A residence time approach is used to explain the nonuniform beam current density profile of the divergent magnetic field thruster. Mathematical expressions are derived which relate the thruster discharge power loss, propellant utilization, and double to single ion density ratio to the geometry and plasma properties of the discharge chamber. These relationships are applied to a cylindrical discharge chamber model of the thruster. Experimental results are presented for a wide range of the discharge chamber length. The thruster designed for this investigation was operated with a cusped magnetic field as well as a divergent field geometry, and the cusped field geometry is shown to be superior from the standpoint of beam profile uniformity, performance, and double ion population.

  15. Optical Magnetometry using Multipass Cells with overlapping beams

    NASA Astrophysics Data System (ADS)

    McDonough, Nathaniel David; Lucivero, Vito Giovanni; Dural, Nezih; Romalis, Michael

    2017-04-01

    In recent years, multipass cells with cylindrical mirrors have proven to be a successful way of making highly sensitive atomic magnetometers. In such cells a small laser beam makes 40 to 100 passes within the cell without significant overlap with itself. Here we describe a new multi-pass geometry which uses spherical mirrors to reflect the probe beam multiple times over the same cell region. Such geometry reduces the effects of atomic diffusion while preserving the advantages of multi-pass cells over standing-wave cavities, namely a deterministic number of passes and absence of interference. We have fabricated several cells with this geometry and obtained good agreement between the measured and calculated levels of quantum spin noise. We will report on our effort to characterize the diffusion spin-correlation function in these cells and operation of the cell as a magnetometer. This work is supported by DARPA.

  16. An Improved Extrapolation Scheme for Truncated CT Data Using 2D Fourier-Based Helgason-Ludwig Consistency Conditions.

    PubMed

    Xia, Yan; Berger, Martin; Bauer, Sebastian; Hu, Shiyang; Aichert, Andre; Maier, Andreas

    2017-01-01

    We improve data extrapolation for truncated computed tomography (CT) projections by using Helgason-Ludwig (HL) consistency conditions that mathematically describe the overlap of information between projections. First, we theoretically derive a 2D Fourier representation of the HL consistency conditions from their original formulation (projection moment theorem), for both parallel-beam and fan-beam imaging geometry. The derivation result indicates that there is a zero energy region forming a double-wedge shape in 2D Fourier domain. This observation is also referred to as the Fourier property of a sinogram in the previous literature. The major benefit of this representation is that the consistency conditions can be efficiently evaluated via 2D fast Fourier transform (FFT). Then, we suggest a method that extrapolates the truncated projections with data from a uniform ellipse of which the parameters are determined by optimizing these consistency conditions. The forward projection of the optimized ellipse can be used to complete the truncation data. The proposed algorithm is evaluated using simulated data and reprojections of clinical data. Results show that the root mean square error (RMSE) is reduced substantially, compared to a state-of-the-art extrapolation method.

  17. An Improved Extrapolation Scheme for Truncated CT Data Using 2D Fourier-Based Helgason-Ludwig Consistency Conditions

    PubMed Central

    Berger, Martin; Bauer, Sebastian; Hu, Shiyang; Aichert, Andre

    2017-01-01

    We improve data extrapolation for truncated computed tomography (CT) projections by using Helgason-Ludwig (HL) consistency conditions that mathematically describe the overlap of information between projections. First, we theoretically derive a 2D Fourier representation of the HL consistency conditions from their original formulation (projection moment theorem), for both parallel-beam and fan-beam imaging geometry. The derivation result indicates that there is a zero energy region forming a double-wedge shape in 2D Fourier domain. This observation is also referred to as the Fourier property of a sinogram in the previous literature. The major benefit of this representation is that the consistency conditions can be efficiently evaluated via 2D fast Fourier transform (FFT). Then, we suggest a method that extrapolates the truncated projections with data from a uniform ellipse of which the parameters are determined by optimizing these consistency conditions. The forward projection of the optimized ellipse can be used to complete the truncation data. The proposed algorithm is evaluated using simulated data and reprojections of clinical data. Results show that the root mean square error (RMSE) is reduced substantially, compared to a state-of-the-art extrapolation method. PMID:28808441

  18. Parallel multiplex laser feedback interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Song; Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn

    2013-12-15

    We present a parallel multiplex laser feedback interferometer based on spatial multiplexing which avoids the signal crosstalk in the former feedback interferometer. The interferometer outputs two close parallel laser beams, whose frequencies are shifted by two acousto-optic modulators by 2Ω simultaneously. A static reference mirror is inserted into one of the optical paths as the reference optical path. The other beam impinges on the target as the measurement optical path. Phase variations of the two feedback laser beams are simultaneously measured through heterodyne demodulation with two different detectors. Their subtraction accurately reflects the target displacement. Under typical room conditions, experimentalmore » results show a resolution of 1.6 nm and accuracy of 7.8 nm within the range of 100 μm.« less

  19. Optimum structural sizing of conventional cantilever and joined wing configurations using equivalent beam models

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Chen, J. L.

    1986-01-01

    The present paper describes an approach for the optimum sizing of single and joined wing structures that is based on representing the built-up finite element model of the structure by an equivalent beam model. The low order beam model is computationally more efficient in an environment that requires repetitive analysis of several trial designs. The design procedure is implemented in a computer program that requires geometry and loading data typically available from an aerodynamic synthesis program, to create the finite element model of the lifting surface and an equivalent beam model. A fully stressed design procedure is used to obtain rapid estimates of the optimum structural weight for the beam model for a given geometry, and a qualitative description of the material distribution over the wing structure. The synthesis procedure is demonstrated for representative single wing and joined wing structures.

  20. Studies on ion scattering and sputtering processes relevant to ion beam sputter deposition of multicomponent thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auciello, O.; Ameen, M.S.; Kingon, A.I.

    1989-01-01

    Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr{sup +} or Xe{sup +} ions is preferable to the most commonly used Ar{sup +} ions, since the undesirable phenomena mentioned above are minimized for the first two ions.more » These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs.« less

  1. Elliptically polarizing adjustable phase insertion device

    DOEpatents

    Carr, Roger

    1995-01-01

    An insertion device for extracting polarized electromagnetic energy from a beam of particles is disclosed. The insertion device includes four linear arrays of magnets which are aligned with the particle beam. The magnetic field strength to which the particles are subjected is adjusted by altering the relative alignment of the arrays in a direction parallel to that of the particle beam. Both the energy and polarization of the extracted energy may be varied by moving the relevant arrays parallel to the beam direction. The present invention requires a substantially simpler and more economical superstructure than insertion devices in which the magnetic field strength is altered by changing the gap between arrays of magnets.

  2. Generation and investigation of terahertz Airy beam realized using parallel-plate waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Mengru; Lang, Tingting; Shi, Guohua; Han, Zhanghua

    2018-03-01

    In this paper, the launching of Airy beam in the terahertz region using waveguiding structures was proposed, designed and numerically characterized. By properly designing the waveguide slit width and the packing number in different sections of parallel-plate waveguides (PPWGs) array, arbitrary phase delay and lateral position-dependent amplitude transmission through the structure, required to realize the target Airy beam profile, can be easily fulfilled. Airy beams working at the frequency of 0.3 THz with good non-diffracting, self-bending, and self-healing features are demonstrated. This study represents a new alternative to scattering-based metasurface structures, and can be utilized in many modern applications.

  3. Multistable wireless micro-actuator based on antagonistic pre-shaped double beams

    NASA Astrophysics Data System (ADS)

    Liu, X.; Lamarque, F.; Doré, E.; Pouille, P.

    2015-07-01

    This paper presents a monolithic multistable micro-actuator based on antagonistic pre-shaped double beams. The designed micro-actuator is formed by two rows of bistable micro-actuators providing four stable positions. The bistable mechanism for each row is a pair of antagonistic pre-shaped beams. This bistable mechanism has an easier pre-load operation compared to the pre-compressed bistable beams method. Furthermore, it solves the asymmetrical force output problem of parallel pre-shaped bistable double beams. At the same time, the geometrical limit is lower than parallel pre-shaped bistable double beams, which ensures a smaller stroke of the micro-actuator with the same dimensions. The designed micro-actuator is fabricated using laser cutting machine on medium density fiberboard (MDF). The bistability and merits of antagonistic pre-shaped double beams are experimentally validated. Finally, a contactless actuation test is performed using 660 nm wavelength laser heating shape memory alloy (SMA) active elements.

  4. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.

    PubMed

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-12-01

    In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials. In this paper, new reflector/moderator geometries including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. It was found that the proposed configurations have a significant effect to improve the thermal to epithermal neutron flux ratio which is an important neutron beam parameter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Pluridirectional High-Energy Agile Scanning Electron Radiotherapy (PHASER): Extremely Rapid Treatment for Early Lung Cancer

    DTIC Science & Technology

    2014-06-01

    BEAMnrc Monte Carlo (MC) codes were used to simulate 50- 150MeV VHEE beam dose deposition and its effects on steel and titanium (Ti) heterogeneities in a...performed on water-only geometry and water with segmented prostheses ( steel and Ti) geometries with 100MeV and 150MeV beams...8 Results: 100MeV PDD 5cm behind steel /Ti heterogeneity was 51% less than in the

  6. Controls on Early-Rift Geometry: New Perspectives From the Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, Å.; Biggs, J.; Mdala, H.

    2018-05-01

    We use the ˜110-km long Bilila-Mtakataka fault in the amagmatic southern East African Rift, Malawi, to investigate the controls on early-rift geometry at the scale of a major border fault. Morphological variations along the 14 ± 8-m high scarp define six 10- to 40-km long segments, which are either foliation parallel or oblique to both foliation and the current regional extension direction. As the scarp is neither consistently parallel to foliation nor well oriented for the current regional extension direction, we suggest that the segmented surface expression is related to the local reactivation of well-oriented weak shallow fabrics above a broadly continuous structure at depth. Using a geometrical model, the geometry of the best fitting subsurface structure is consistent with the local strain field from recent seismicity. In conclusion, within this early-rift, preexisting weaknesses only locally control border fault geometry at subsurface.

  7. New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system

    NASA Astrophysics Data System (ADS)

    Shimada, Ken-ichi; Ide, Tatsuro; Shimano, Takeshi; Anderson, Ken; Curtis, Kevin

    2014-02-01

    A new optical architecture for holographic data storage system which is compatible with a Blu-ray Disc™ (BD) system is proposed. In the architecture, both signal and reference beams pass through a single objective lens with numerical aperture (NA) 0.85 for realizing angularly multiplexed recording. The geometry of the architecture brings a high affinity with an optical architecture in the BD system because the objective lens can be placed parallel to a holographic medium. Through the comparison of experimental results with theory, the validity of the optical architecture was verified and demonstrated that the conventional objective lens motion technique in the BD system is available for angularly multiplexed recording. The test-bed composed of a blue laser system and an objective lens of the NA 0.85 was designed. The feasibility of its compatibility with BD is examined through the designed test-bed.

  8. The slab geometry laser. I - Theory

    NASA Technical Reports Server (NTRS)

    Eggleston, J. M.; Kane, T. J.; Kuhn, K.; Byer, R. L.; Unternahrer, J.

    1984-01-01

    Slab geometry solid-state lasers offer significant performance improvements over conventional rod-geometry lasers. A detailed theoretical description of the thermal, stress, and beam-propagation characteristics of a slab laser is presented. The analysis includes consideration of the effects of the zig-zag optical path, which eliminates thermal and stress focusing and reduces residual birefringence.

  9. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  10. Final Report for "Design calculations for high-space-charge beam-to-RF conversion".

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N Smithe

    2008-10-17

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimummore » energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other defense applications.« less

  11. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    We present that third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and rampedmore » operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. In conclusion, this made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.« less

  12. Elliptically polarizing adjustable phase insertion device

    DOEpatents

    Carr, R.

    1995-01-17

    An insertion device for extracting polarized electromagnetic energy from a beam of particles is disclosed. The insertion device includes four linear arrays of magnets which are aligned with the particle beam. The magnetic field strength to which the particles are subjected is adjusted by altering the relative alignment of the arrays in a direction parallel to that of the particle beam. Both the energy and polarization of the extracted energy may be varied by moving the relevant arrays parallel to the beam direction. The present invention requires a substantially simpler and more economical superstructure than insertion devices in which the magnetic field strength is altered by changing the gap between arrays of magnets. 3 figures.

  13. (2+1)-dimensional spacetimes containing closed timelike curves

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew P.; Gott, J. Richard, III

    1994-12-01

    We investigate the global geometries of (2+1)-dimensional spacetimes as characterized by the transformations undergone by tangent spaces upon parallel transport around closed curves. We critically discuss the use of the term ``total energy-momentum'' as a label for such parallel-transport transformations, pointing out several problems with it. We then investigate parallel-transport transformations in the known (2+1)-dimensional spacetimes containing closed timelike curves (CTC's), and introduce a few new such spacetimes. Using the more specific concept of the holonomy of a closed curve, applicable in simply connected spacetimes, we emphasize that Gott's two-particle CTC-containing spacetime does not have a tachyonic geometry. Finally, we prove the following modified version of Kabat's conjecture: if a CTC is deformable to spacelike or null infinity while remaining a CTC, then its parallel-transport transformation cannot be a rotation; therefore its holonomy, if defined, cannot be a rotation other than through a multiple of 2π.

  14. Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.

    PubMed

    Livingstone, Jayde; Stevenson, Andrew W; Butler, Duncan J; Häusermann, Daniel; Adam, Jean-François

    2016-07-01

    Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy. Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence of the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30-120 keV. The dose-rate dependence was measured in the range 1-700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters. The detector exhibits an energy dependence; however, beam quality correction factors (kQ) have been measured for energies in the range 30-120 keV. The kQ factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1-700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic film data. The synthetic diamond detector is now well characterized and will be used to develop an experimental dosimetry protocol for spatially fractionated synchrotron radiotherapy.

  15. CSM parallel structural methods research

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1989-01-01

    Parallel structural methods, research team activities, advanced architecture computers for parallel computational structural mechanics (CSM) research, the FLEX/32 multicomputer, a parallel structural analyses testbed, blade-stiffened aluminum panel with a circular cutout and the dynamic characteristics of a 60 meter, 54-bay, 3-longeron deployable truss beam are among the topics discussed.

  16. Improved double-pass michelson interferometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A.

    1978-01-01

    Interferometer design separates beams by offsetting centerlines of cat's-eye retroreflectors vertically rather than horizontally. Since beam splitter is insensitive to minimum-thickness condition in this geometry, relatively-low-cost, optically flat plate can be used.

  17. Progress on CBET Platform at the Nike Laser

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; McKenty, P.; Oh, J.; Kehne, D.; Schmitt, A. J.; Obenschain, S.; Serlin, V.; Lehmberg, R.; Tsung, F.

    2015-11-01

    Cross-beam energy transport (CBET) studies are underway at the Nike krypton-fluoride (KrF) laser at NRL. This facility has unique characteristics that provide an excellent platform for CBET work - including short wavelength (248 nm), large bandwidth (1-3 THz), beam smoothing by induced spatial incoherence (ISI), and full aperture focal spot zooming. Nike's two beam arrays are widely separated (135° in azimuth) which facilitates CBET studies in a nearly opposing geometry, relevant to Polar Direct Drive implosions. Various target types are planned: planar slabs, cylindrical and spherical shells, and low-density targets. The solid targets will be used to examine gradient geometries and the latter will access larger volume, more uniform plasmas. The initial campaign is exploring changes observed by scattered light diagnostics for both beam arrays as the probe laser spectrum is modified. Work supported by DoE/NNSA.

  18. Synthesis and temperature dependent Raman studies of large crystalline faces topological GeBi4Te7 single crystal

    NASA Astrophysics Data System (ADS)

    Mal, Priyanath; Bera, G.; Turpu, G. R.; Srivastava, Sunil K.; Das, Pradip

    2018-05-01

    We present a study of structural and vibrational properties of topological insulator GeBi4Te7. Modified Bridgeman technique is employed to synthesize the single crystal with relatively large crystalline faces. Sharp (0 0 l) reflection confirms the high crystallinity of the single crystal. We have performed temperature dependent Raman measurement for both parallel and perpendicular to crystallographic c axis geometry. In parallel configuration we have observed seven Raman modes whereas in perpendicular geometry only four of these are identified. Appearance and disappearance of Raman modes having different intensities for parallel and perpendicular to c measurement attribute to the mode polarization. Progressive blue shift is observed with lowering temperature, reflects the increase in internal stress.

  19. An investigation of dynamic-analysis methods for variable-geometry structures

    NASA Technical Reports Server (NTRS)

    Austin, F.

    1980-01-01

    Selected space structure configurations were reviewed in order to define dynamic analysis problems associated with variable geometry. The dynamics of a beam being constructed from a flexible base and the relocation of the completed beam by rotating the remote manipulator system about the shoulder joint were selected. Equations of motion were formulated in physical coordinates for both of these problems, and FORTRAN programs were developed to generate solutions by numerically integrating the equations. These solutions served as a standard of comparison to gauge the accuracy of approximate solution techniques that were developed and studied. Good control was achieved in both problems. Unstable control system coupling with the system flexibility did not occur. An approximate method was developed for each problem to enable the analyst to investigate variable geometry effects during a short time span using standard fixed geometry programs such as NASTRAN. The average angle and average length techniques are discussed.

  20. Mapper: high throughput maskless lithography

    NASA Astrophysics Data System (ADS)

    Kuiper, V.; Kampherbeek, B. J.; Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Boers, J.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.

    2009-01-01

    Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. A new platform has been designed and built which contains a 300 mm wafer stage, a wafer handler and an electron beam column with 110 parallel electron beams. This manuscript describes the first patterning results with this 300 mm platform.

  1. SU-D-206-02: Evaluation of Partial Storage of the System Matrix for Cone Beam Computed Tomography Using a GPU Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matenine, D; Cote, G; Mascolo-Fortin, J

    2016-06-15

    Purpose: Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersections between the photons’ trajectories and the object, also called ray-tracing or system matrix computation. This work evaluates different ways to store the system matrix, aiming to reconstruct dense image grids in reasonable time. Methods: We propose an optimized implementation of the Siddon’s algorithm using graphics processing units (GPUs) with a novel data storage scheme. The algorithm computes a part of the system matrix on demand, typically, for one projection angle. The proposed method was enhanced with accelerating options: storage of larger subsets of themore » system matrix, systematic reuse of data via geometric symmetries, an arithmetic-rich parallel code and code configuration via machine learning. It was tested on geometries mimicking a cone beam CT acquisition of a human head. To realistically assess the execution time, the ray-tracing routines were integrated into a regularized Poisson-based reconstruction algorithm. The proposed scheme was also compared to a different approach, where the system matrix is fully pre-computed and loaded at reconstruction time. Results: Fast ray-tracing of realistic acquisition geometries, which often lack spatial symmetry properties, was enabled via the proposed method. Ray-tracing interleaved with projection and backprojection operations required significant additional time. In most cases, ray-tracing was shown to use about 66 % of the total reconstruction time. In absolute terms, tracing times varied from 3.6 s to 7.5 min, depending on the problem size. The presence of geometrical symmetries allowed for non-negligible ray-tracing and reconstruction time reduction. Arithmetic-rich parallel code and machine learning permitted a modest reconstruction time reduction, in the order of 1 %. Conclusion: Partial system matrix storage permitted the reconstruction of higher 3D image grid sizes and larger projection datasets at the cost of additional time, when compared to the fully pre-computed approach. This work was supported in part by the Fonds de recherche du Quebec - Nature et technologies (FRQ-NT). The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council of Canada (Grant No. 432290).« less

  2. A dosimetry study comparing NCS report-5, IAEA TRS-381, AAPM TG-51 and IAEA TRS-398 in three clinical electron beam energies

    NASA Astrophysics Data System (ADS)

    Palmans, Hugo; Nafaa, Laila; de Patoul, Nathalie; Denis, Jean-Marc; Tomsej, Milan; Vynckier, Stefaan

    2003-05-01

    New codes of practice for reference dosimetry in clinical high-energy photon and electron beams have been published recently, to replace the air kerma based codes of practice that have determined the dosimetry of these beams for the past twenty years. In the present work, we compared dosimetry based on the two most widespread absorbed dose based recommendations (AAPM TG-51 and IAEA TRS-398) with two air kerma based recommendations (NCS report-5 and IAEA TRS-381). Measurements were performed in three clinical electron beam energies using two NE2571-type cylindrical chambers, two Markus-type plane-parallel chambers and two NACP-02-type plane-parallel chambers. Dosimetry based on direct calibrations of all chambers in 60Co was investigated, as well as dosimetry based on cross-calibrations of plane-parallel chambers against a cylindrical chamber in a high-energy electron beam. Furthermore, 60Co perturbation factors for plane-parallel chambers were derived. It is shown that the use of 60Co calibration factors could result in deviations of more than 2% for plane-parallel chambers between the old and new codes of practice, whereas the use of cross-calibration factors, which is the first recommendation in the new codes, reduces the differences to less than 0.8% for all situations investigated here. The results thus show that neither the chamber-to-chamber variations, nor the obtained absolute dose values are significantly altered by changing from air kerma based dosimetry to absorbed dose based dosimetry when using calibration factors obtained from the Laboratory for Standard Dosimetry, Ghent, Belgium. The values of the 60Co perturbation factor for plane-parallel chambers (katt . km for the air kerma based and pwall for the absorbed dose based codes of practice) that are obtained from comparing the results based on 60Co calibrations and cross-calibrations are within the experimental uncertainties in agreement with the results from other investigators.

  3. Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Liang, Ji; Lin, Yu; Johnson, Jay R.; Wang, Zheng-Xiong; Wang, Xueyi

    2017-10-01

    Our previous study on the generation and signatures of kinetic Alfvén waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfvénic. As a result of wave-particle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. The ions are heated in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the perpendicular ion temperature T⊥ and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with T⊥>T∥ . The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating, ultimately leading to overlap of the beams and an overall anisotropy with T∥>T⊥ .

  4. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.

    PubMed

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-06-21

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.

  5. Pinhole diffraction filter

    NASA Technical Reports Server (NTRS)

    Woodgate, B. E.

    1977-01-01

    Multistage diffraction filter consisting of coalined series of pinholes on parallel sheets can be used as nondegradable UV filter. Beam is attenuated as each pinhole diffracts radiation in controlled manner into divergent beam, and following pinhole accepts only small part of that beam.

  6. Observations of ionospheric electron beams in the plasma sheet.

    PubMed

    Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K

    2012-11-16

    Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is δn(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high β plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities.

  7. Flexoelectro-optic effect and two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch horizontal helix

    NASA Astrophysics Data System (ADS)

    Reshetnyak, V. Yu.; Pinkevych, I. P.; Evans, D. R.

    2018-06-01

    We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch helix oriented parallel to the cell substrates (so-called uniformly lying helix configuration). Weak and strong light beams incident on the hybrid cell interfere and induce a periodic space-charge field in the photorefractive substrate of the cell, which penetrates into the cholesteric liquid crystal (LC). Due to the flexoelectro-optic effect an interaction of the photorefractive field with the LC flexopolarization causes the spatially periodic modulation of the helix axis in the plane parallel to the cell substrates. Coupling of a weak signal beam with a strong pump beam at the LC permittivity grating, induced by the periodically tilted helix axis, leads to the energy gain of the weak signal beam. Dependence of the signal beam gain coefficient on the parameters of the short-pitch cholesteric LC is studied.

  8. Behaviors of ellipsoidal micro-particles within a two-beam optical levitator

    NASA Astrophysics Data System (ADS)

    Petkov, T.; Yang, M.; Ren, K. F.; Pouligny, B.; Loudet, J.-C.

    2017-07-01

    The two-beam levitator (TBL) is a standard optical setup made of a couple of counter-propagating beams. Note worthily, TBLs allow the manipulation and trapping of particles at long working distances. While much experience has been accumulated in the trapping of single spherical particles in TBLs, the behaviors of asymmetrical particles turn out to be more complex, and even surprising. Here, we report observations with prolate ellipsoidal polystyrene particles, with varying aspect ratio and ratio of the two beam powers. Generalizing the earlier work by Mihiretie et al. in single beam geometries [JQSRT 126, 61 (2013)], we observe that particles may be either static, or permanently oscillating, and that the two-beam geometry produces new particle responses: some of them are static, but non-symmetrical, while others correspond to new types of oscillations. A two-dimensional model based on ray-optics qualitatively accounts for these configurations and for the "primary" oscillations of the particles. Furthermore, levitation powers measured in the experiments are in fair agreement with those computed from GLMT (Generalized Lorentz Mie Theory), MLFMA (Multilevel Fast Multipole Algorithm) and approximate ray-optics methods.

  9. Design and analysis of all-dielectric broadband nonpolarizing parallel-plate beam splitters.

    PubMed

    Wang, Wenliang; Xiong, Shengming; Zhang, Yundong

    2007-06-01

    Past research on the all-dielectric nonpolarizing beam splitter is reviewed. With the aid of the needle thin-film synthesis method and the conjugate graduate refine method, three different split ratio nonpolarizing parallel-plate beam splitters over a 200 nm spectral range centered at 550 nm with incidence angles of 45 degrees are designed. The chosen materials component and the initial stack are based on the Costich and Thelen theories. The results of design and analysis show that the designs maintain a very low polarization ratio in the working range of the spectrum and has a reasonable angular field.

  10. All-dielectric broadband non-polarizing parallel plate beam splitter operating between 450-650nm

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Xiong, Shenming; Zhang, Yundong

    2007-12-01

    Past research on all-dielectric non-polarizing beam splitter is reviewed. With the aid of needle thin film synthesis method and conjugate graduate refining method, three non-polarizing parallel plate beam splitters with different split ratios over a 200nm spectral range centered at 550nm with incidence angle 45° are designed. Selection of material components and initial stack are based on Costich and Thelen's theory. The results of design and analysis show that it maintains a very low polarization ratio in the working range of spectrum and has a reasonable angular field.

  11. Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; /Beijing, Inst. High Energy Phys.; Cai, Y.

    2006-02-10

    It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.

  12. Electric currents and voltage drops along auroral field lines

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1983-01-01

    An assessment is presented of the current state of knowledge concerning Birkeland currents and the parallel electric field, with discussions focusing on the Birkeland primary region 1 sheets, the region 2 sheets which parallel them and appear to close in the partial ring current, the cusp currents (which may be correlated with the interplanetary B(y) component), and the Harang filament. The energy required by the parallel electric field and the associated particle acceleration processes appears to be derived from the Birkeland currents, for which evidence is adduced from particles, inverted V spectra, rising ion beams and expanded loss cones. Conics may on the other hand signify acceleration by electrostatic ion cyclotron waves associated with beams accelerated by the parallel electric field.

  13. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  14. Nanotomography and Micromagnetic Modelling of Remanence Carriers in the Semarkona LL3.0 Chondrite: A New View of the Vortex State

    NASA Astrophysics Data System (ADS)

    Harrison, R. J.; Einsle, J. F.; Williams, W.; Ó Conbhuí, P.; Fu, R. R.; Weiss, B. P.; Kasama, T.

    2015-12-01

    Dusty-olivine chondrules are carriers of stable pre-accretionary remanence, and have recently been used to obtain the first reliable estimate of the magnetic field of the early solar nebula. Here we show how the magnetic architecture of a single dusty olivine grain from the Semarkona LL3.0 ordinary chondrite meteorite can be fully characterised in three-dimensions, using a combination of Focussed-Ion-Beam nanotomography (FIB-nt), electron tomography and finite-element micromagnetic modelling. We present a 3D volume reconstruction of a dusty olivine grain, obtained by selective milling through a region of interest in a series of sequential 20 nm slices, which are then imaged using scanning electron microscopy. The data provide a quantitative description of the iron particle ensemble, including the distribution of particle sizes, shapes, interparticle spacings and preferred orientations. Iron particles are predominantly oblate ellipoids. Particles nucleate on dislocation networks and are loosely arranged in a series of parallel sheets with their shortest dimension oriented normal to the sheets and their longest dimensions preferentially aligned within the sheets. Individual particle geometries are converted to a finite-element mesh and used to perform micromagnetic simulations. The majority of particles adopt a single vortex state, with 'bulk' spins that rotate around a central vortex core. The results challenge pre-conceived ideas about the remanence carrying properties of vortex states. We find that remanence is carried by bulk spins rather than the vortex core. Although the orientation of the core is determined by the ellipsoidal geometry (parallel to the major axis for prolate ellipsoids; parallel to the minor axis for oblate ellipsoids), the remanence vectors generally lie at large angles (and in many cases antiparallel) to the core magnetisation. Even in the case of prolate particles, the resulting remanence vector can make a large angle of ~50° to the expected easy axis. The results reconcile the predicted and observed directions of remanence anisotropy, and demonstrate how this combination of nanotomography and micromagnetics will become an essential component of future single-crystal paleomagnetic studies.

  15. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    Polevoy, Jeffrey Todd

    1989-06-01

    Experimental measurements of the average axial velocity v(sub parallel) of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V(sub p) and the beam current I(sub b). The V(sub p) is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I(sub b) is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v(sub parallel) and calculations of the corresponding transverse to longitudinal beam velocity ratio (alpha) = v(sub perpendicular)/v(sub parallel) at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical RF interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v(sub parallel) and (alpha) are determined through the use of a computer code (EGUN) which is used to model the cathode and anode regions of the gyrotron. It also computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of (alpha) at low (alpha), with the expected values from EGUN often falling within the standard errors of the measured values.

  16. SU-E-I-09: The Impact of X-Ray Scattering On Image Noise for Dedicated Breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, K; Gazi, P; Boone, J

    2015-06-15

    Purpose: To quantify the impact of detected x-ray scatter on image noise in flat panel based dedicated breast CT systems and to determine the optimal scanning geometry given practical trade-offs between radiation dose and scatter reduction. Methods: Four different uniform polyethylene cylinders (104, 131, 156, and 184 mm in diameter) were scanned as the phantoms on a dedicated breast CT scanner developed in our laboratory. Both stationary projection imaging and rotational cone-beam CT imaging was performed. For each acquisition type, three different x-ray beam collimations were used (12, 24, and 109 mm measured at isocenter). The aim was to quantifymore » image noise properties (pixel variance, SNR, and image NPS) under different levels of x-ray scatter, in order to optimize the scanning geometry. For both projection images and reconstructed CT images, individual pixel variance and NPS were determined and compared. Noise measurement from the CT images were also performed with different detector binning modes and reconstruction matrix sizes. Noise propagation was also tracked throughout the intermediate steps of cone-beam CT reconstruction, including the inverse-logarithmic process, Fourier-filtering before backprojection. Results: Image noise was lower in the presence of higher scatter levels. For the 184 mm polyethylene phantom, the image noise (measured in pixel variance) was ∼30% lower with full cone-beam acquisition compared to a narrow (12 mm) fan-beam acquisition. This trend is consistent across all phantom sizes and throughout all steps of CT image reconstruction. Conclusion: From purely a noise perspective, the cone-beam geometry (i.e. the full cone-angle acquisition) produces lower image noise compared to the lower-scatter fan-beam acquisition for breast CT. While these results are relevant in homogeneous phantoms, the full impact of scatter on noise in bCT should involve contrast-to-noise-ratio measurements in heterogeneous phantoms if the goal is to optimize the scanning geometry for dedicated breast CT. This work was supported by a grant from the National Institute for Biomedical Imaging and Bioengineering (R01 EB002138)« less

  17. SU-E-T-106: Development of a Collision Prediction Algorithm for Determining Problematic Geometry for SBRT Treatments Using a Stereotactic Body Frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagar, M; Friesen, S; Mannarino, E

    2014-06-01

    Purpose: Collision between the gantry and the couch or patient during Radiotherapy is not a common concern for conventional RT (static fields or arc). With the increase in the application of stereotactic planning techniques to the body, collisions have become a greater concern. Non-coplanar beam geometry is desirable in stereotatic treatments in order to achieve sharp gradients and a high conformality. Non-coplanar geometry is less intuitive in the body and often requires an iterative process of planning and dry runs to guarantee deliverability. Methods: Purpose written software was developed in order to predict the likelihood of collision between the headmore » of the gantry and the couch, patient or stereotatic body frame. Using the DICOM plan and structures set, exported by the treatment planning system, this software is able to predict the possibility of a collision. Given the plan's isocenter, treatment geometry and exterior contours, the software is able to determine if a particular beam/arc is clinically deliverable or if collision is imminent. Results: The software was tested on real world treatment plans with untreatable beam geometry. Both static non-coplanar and VMAT plans were tested. Of these, the collision prediction software could identify all as having potentially problematic geometry. Re-plans of the same cases were also tested and validated as deliverable. Conclusion: This software is capable of giving good initial indication of deliverability for treatment plans that utilize complex geometry (SBRT) or have lateral isocenters. This software is not intended to replace the standard pre-treatment QA dry run. The effectiveness is limited to those portions of the patient and immobilization devices that have been included in the simulation CT and contoured in the planning system. It will however aid the planner in reducing the iterations required to create complex treatment geometries necessary to achieve ideal conformality and organ sparing.« less

  18. A fully parallel in time and space algorithm for simulating the electrical activity of a neural tissue.

    PubMed

    Bedez, Mathieu; Belhachmi, Zakaria; Haeberlé, Olivier; Greget, Renaud; Moussaoui, Saliha; Bouteiller, Jean-Marie; Bischoff, Serge

    2016-01-15

    The resolution of a model describing the electrical activity of neural tissue and its propagation within this tissue is highly consuming in term of computing time and requires strong computing power to achieve good results. In this study, we present a method to solve a model describing the electrical propagation in neuronal tissue, using parareal algorithm, coupling with parallelization space using CUDA in graphical processing unit (GPU). We applied the method of resolution to different dimensions of the geometry of our model (1-D, 2-D and 3-D). The GPU results are compared with simulations from a multi-core processor cluster, using message-passing interface (MPI), where the spatial scale was parallelized in order to reach a comparable calculation time than that of the presented method using GPU. A gain of a factor 100 in term of computational time between sequential results and those obtained using the GPU has been obtained, in the case of 3-D geometry. Given the structure of the GPU, this factor increases according to the fineness of the geometry used in the computation. To the best of our knowledge, it is the first time such a method is used, even in the case of neuroscience. Parallelization time coupled with GPU parallelization space allows for drastically reducing computational time with a fine resolution of the model describing the propagation of the electrical signal in a neuronal tissue. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. An empirical model of diagnostic x-ray attenuation under narrow-beam geometry.

    PubMed

    Mathieu, Kelsey B; Kappadath, S Cheenu; White, R Allen; Atkinson, E Neely; Cody, Dianna D

    2011-08-01

    The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semi-logarithmic (exponential) and linear interpolation]. The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R2 > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).

  20. An empirical model of diagnostic x-ray attenuation under narrow-beam geometry

    PubMed Central

    Mathieu, Kelsey B.; Kappadath, S. Cheenu; White, R. Allen; Atkinson, E. Neely; Cody, Dianna D.

    2011-01-01

    Purpose: The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. Methods: An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49–33.03 mm Al on a computed tomography (CT) scanner, 0.09–1.93 mm Al on two mammography systems, and 0.1–0.45 mm Cu and 0.49–14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semilogarithmic (exponential) and linear interpolation]. Results: The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R2 > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and∕or QVL than the traditional methods of semilogarithmic and linear interpolation. Conclusions: The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry). PMID:21928626

  1. An empirical model of diagnostic x-ray attenuation under narrow-beam geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, Kelsey B.; Kappadath, S. Cheenu; White, R. Allen

    2011-08-15

    Purpose: The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. Methods: An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87more » mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semilogarithmic (exponential) and linear interpolation]. Results: The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R{sup 2} > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. Conclusions: The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).« less

  2. Realistic simulations of a cyclotron spiral inflector within a particle-in-cell framework

    NASA Astrophysics Data System (ADS)

    Winklehner, Daniel; Adelmann, Andreas; Gsell, Achim; Kaman, Tulin; Campo, Daniela

    2017-12-01

    We present an upgrade to the particle-in-cell ion beam simulation code opal that enables us to run highly realistic simulations of the spiral inflector system of a compact cyclotron. This upgrade includes a new geometry class and field solver that can handle the complicated boundary conditions posed by the electrode system in the central region of the cyclotron both in terms of particle termination, and calculation of self-fields. Results are benchmarked against the analytical solution of a coasting beam. As a practical example, the spiral inflector and the first revolution in a 1 MeV /amu test cyclotron, located at Best Cyclotron Systems, Inc., are modeled and compared to the simulation results. We find that opal can now handle arbitrary boundary geometries with relative ease. Simulated injection efficiencies and beam shape compare well with measured efficiencies and a preliminary measurement of the beam distribution after injection.

  3. Beam Dynamics Simulation Platform and Studies of Beam Breakup in Dielectric Wakefield Structures

    NASA Astrophysics Data System (ADS)

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Gai, W.

    2010-11-01

    A particle-Green's function beam dynamics code (BBU-3000) to study beam breakup effects is incorporated into a parallel computing framework based on the Boinc software environment, and supports both task farming on a heterogeneous cluster and local grid computing. User access to the platform is through a web browser.

  4. SUNWARD PROPAGATING ALFVÉN WAVES IN ASSOCIATION WITH SUNWARD DRIFTING PROTON BEAMS IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jiansen; Pei, Zhongtian; Wang, Linghua

    Using measurements from the WIND spacecraft, here we report the observation of sunward propagating Alfvén waves (AWs) in solar wind that is magnetically disconnected from the Earth's bow shock. In the sunward magnetic field sector, we find a period lasting for more than three days in which there existed (during most time intervals) a negative correlation between the flow velocity and magnetic field fluctuations, thus indicating that the related AWs are mainly propagating sunward. Simultaneous observations of counter-streaming suprathermal electrons suggest that these sunward AWs may not simply be due to the deflection of an open magnetic field line. Moreover,more » no interplanetary coronal mass ejection appears to be associated with the counter-streaming suprathermal electrons. As the scale goes from the magnetohydrodynamic down to the ion kinetic regime, the wave vector of magnetic fluctuations usually becomes more orthogonal to the mean magnetic field direction, and the fluctuations become increasingly compressible, which are both features consistent with quasi-perpendicular kinetic AWs. However, in the case studied here, we find clear signatures of quasi-parallel sunward propagating ion-cyclotron waves. Concurrently, the solar wind proton velocity distribution reveals a sunward field-aligned beam that drifts at about the local Alfvén speed. This beam is found to run in the opposite direction of the normally observed (anti-sunward) proton beam, and is apparently associated with sunward propagating Alfvén/ion-cyclotron waves. The results and conclusions of this study enrich our knowledge of solar wind turbulence and foster our understanding of proton heating and acceleration within a complex magnetic field geometry.« less

  5. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Kallol, E-mail: das7@illinois.edu; Johnson, Harley T., E-mail: htj@illinois.edu; Freund, Jonathan B., E-mail: jbfreund@illinois.edu

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can bemore » shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.« less

  6. Radiation torque on an absorptive spherical drop centered on an acoustic helicoidal Bessel beam

    NASA Astrophysics Data System (ADS)

    Zhang, Likun; Marston, Philip L.

    2009-11-01

    Circularly polarized electromagnetic waves carry axial angular momentum and analysis shows that the axial radiation torque on an illuminated sphere is proportional to the power absorbed by the sphere [1]. Helicoidal acoustic beams also carry axial angular momentum and absorption of such a beam should also produce an axial radiation torque [2]. In the present work the acoustic radiation torque on solid spheres and spherical drops centered on acoustic helicoidal Bessel beams is examined. The torque is predicted to be proportional to the ratio of the absorbed power to the acoustic frequency. Depending on the beam helicity, the torque is parallel or anti-parallel to the beam axis. The analysis uses a relation between the scattering and the partial wave coefficients for a sphere in a helicoidal Bessel beam. Calculations suggest that beams with a low topological charge are more efficient for generating torques on solid spheres.[4pt] [1] P. L. Marston and J. H. Crichton, Phys. Rev. A. 30, 2508-2516 (1984).[0pt] [2] B. T. Hefner and P. L. Marston, J. Acoust. Soc. Am. 106, 3313-3316 (1999).

  7. Beam shaping of laser diode radiation by waveguides with arbitrary cladding geometry written with fs-laser radiation.

    PubMed

    Beckmann, Dennis; Schnitzler, Daniel; Schaefer, Dagmar; Gottmann, Jens; Kelbassa, Ingomar

    2011-12-05

    Waveguides with arbitrary cross sections are written in the volume of Al(2)O(3)-crystals using tightly focused femtosecond laser radiation. Utilizing a scanning system with large numerical aperture, complex cladding geometries are realized with a precision around 0.5 µm and a scanning speed up to 100 mm/s. Individual beam and mode shaping of laser diode radiation is demonstrated by varying the design of the waveguide cladding. The influence of the writing parameters on the waveguide properties are investigated resulting in a numerical aperture of the waveguides in the range of 0.1. This direct laser writing technique enables optical devices which could possibly replace bulky beam shaping setups with an integrated solution.

  8. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  9. Progress report on PIXIE3D, a fully implicit 3D extended MHD solver

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2008-11-01

    Recently, invited talk at DPP07 an optimal, massively parallel implicit algorithm for 3D resistive magnetohydrodynamics (PIXIE3D) was demonstrated. Excellent algorithmic and parallel results were obtained with up to 4096 processors and 138 million unknowns. While this is a remarkable result, further developments are still needed for PIXIE3D to become a 3D extended MHD production code in general geometries. In this poster, we present an update on the status of PIXIE3D on several fronts. On the physics side, we will describe our progress towards the full Braginskii model, including: electron Hall terms, anisotropic heat conduction, and gyroviscous corrections. Algorithmically, we will discuss progress towards a robust, optimal, nonlinear solver for arbitrary geometries, including preconditioning for the new physical effects described, the implementation of a coarse processor-grid solver (to maintain optimal algorithmic performance for an arbitrarily large number of processors in massively parallel computations), and of a multiblock capability to deal with complicated geometries. L. Chac'on, Phys. Plasmas 15, 056103 (2008);

  10. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-03-14

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  11. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  12. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.

  13. Potential errors in relative dose measurements in kilovoltage photon beams due to polarity effects in plane-parallel ionisation chambers

    NASA Astrophysics Data System (ADS)

    Dowdell, S.; Tyler, M.; McNamara, J.; Sloan, K.; Ceylan, A.; Rinks, A.

    2016-12-01

    Plane-parallel ionisation chambers are regularly used to conduct relative dosimetry measurements for therapeutic kilovoltage beams during commissioning and routine quality assurance. This paper presents the first quantification of the polarity effect in kilovoltage photon beams for two types of commercially available plane-parallel ionisation chambers used for such measurements. Measurements were performed at various depths along the central axis in a solid water phantom and for different field sizes at 2 cm depth to determine the polarity effect for PTW Advanced Markus and Roos ionisation chambers (PTW-Freiburg, Germany). Data was acquired for kilovoltage beams between 100 kVp (half-value layer (HVL)  =  2.88 mm Al) and 250 kVp (HVL  =  2.12 mm Cu) and field sizes of 3-15 cm diameter for 30 cm focus-source distance (FSD) and 4  ×  4 cm2-20  ×  20 cm2 for 50 cm FSD. Substantial polarity effects, up to 9.6%, were observed for the Advanced Markus chamber compared to a maximum 0.5% for the Roos chamber. The magnitude of the polarity effect was observed to increase with field size and beam energy but was consistent with depth. The polarity effect is directly influenced by chamber design, with potentially large polarity effects for some plane-parallel ionisation chambers. Depending on the specific chamber used, polarity corrections may be required for output factor measurements of kilovoltage photon beams. Failure to account for polarity effects could lead to an incorrect dose being delivered to the patient.

  14. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry.

    PubMed

    McCaw, Travis J; Micka, John A; DeWerd, Larry A

    2014-05-01

    Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. A film stack dosimeter was developed using Gafchromic(®) EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.

  15. Tempest Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.

    2006-04-01

    We are developing a continuum gyrokinetic full-F code, TEMPEST, to simulate edge plasmas. The geometry is that of a fully diverted tokamak and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The code, presently 4-dimensional (2D2V), includes kinetic ions and electrons, a gyrokinetic Poisson solver for electric field, and the nonlinear Fokker-Planck collision operator. Here we present the simulation results of neoclassical transport with Boltzmann electrons. In a large aspect ratio circular geometry, excellent agreement is found for neoclassical equilibrium with parallel flows in the banana regime without a temperature gradient. In divertor geometry, it is found that the endloss of particles and energy induces pedestal-like density and temperature profiles inside the magnetic separatrix and parallel flow stronger than the neoclassical predictions in the SOL. The impact of the X-point divertor geometry on the self-consistent electric field and geo-acoustic oscillations will be reported. We will also discuss the status of extending TEMPEST into a 5-D code.

  16. Improved tomographic reconstructions using adaptive time-dependent intensity normalization.

    PubMed

    Titarenko, Valeriy; Titarenko, Sofya; Withers, Philip J; De Carlo, Francesco; Xiao, Xianghui

    2010-09-01

    The first processing step in synchrotron-based micro-tomography is the normalization of the projection images against the background, also referred to as a white field. Owing to time-dependent variations in illumination and defects in detection sensitivity, the white field is different from the projection background. In this case standard normalization methods introduce ring and wave artefacts into the resulting three-dimensional reconstruction. In this paper the authors propose a new adaptive technique accounting for these variations and allowing one to obtain cleaner normalized data and to suppress ring and wave artefacts. The background is modelled by the product of two time-dependent terms representing the illumination and detection stages. These terms are written as unknown functions, one scaled and shifted along a fixed direction (describing the illumination term) and one translated by an unknown two-dimensional vector (describing the detection term). The proposed method is applied to two sets (a stem Salix variegata and a zebrafish Danio rerio) acquired at the parallel beam of the micro-tomography station 2-BM at the Advanced Photon Source showing significant reductions in both ring and wave artefacts. In principle the method could be used to correct for time-dependent phenomena that affect other tomographic imaging geometries such as cone beam laboratory X-ray computed tomography.

  17. Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, Thomas Allen; Walsh, Kaitlin M.; Markus, Thorsten

    2013-01-01

    The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05 degrees) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on approx. 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.

  18. Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, Thomas A.; Walsh, Kaitlin M.; Markus, Thorsten

    2014-01-01

    The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05?) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.

  19. Neutron Zeeman beam-splitting for the investigation of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, S. V.; Ott, F.; Semenova, E.

    2017-03-01

    Zeeman spatial splitting of a neutron beam takes place during a neutron spin-flip in magnetically non-collinear systems at grazing incidence geometry. We apply the neutron beam-splitting method for the investigation of magnetically non-collinear clusters of submicron size in a thin film. The experimental results are compared with ones obtained by other methods.

  20. Neutron skyshine calculations with the integral line-beam method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gui, A.A.; Shultis, J.K.; Faw, R.E.

    1997-10-01

    Recently developed line- and conical-beam response functions are used to calculate neutron skyshine doses for four idealized source geometries. These calculations, which can serve as benchmarks, are compared with MCNP calculations, and the excellent agreement indicates that the integral conical- and line-beam method is an effective alternative to more computationally expensive transport calculations.

  1. Proton core-beam system in the expanding solar wind: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Trávníček, Pavel M.

    2011-11-01

    Results of a two-dimensional hybrid expanding box simulation of a proton beam-core system in the solar wind are presented. The expansion with a strictly radial magnetic field leads to a decrease of the ratio between the proton perpendicular and parallel temperatures as well as to an increase of the ratio between the beam-core differential velocity and the local Alfvén velocity creating a free energy for many different instabilities. The system is indeed most of the time marginally stable with respect to the parallel magnetosonic, oblique Alfvén, proton cyclotron and parallel fire hose instabilities which determine the system evolution counteracting some effects of the expansion and interacting with each other. Nonlinear evolution of these instabilities leads to large modifications of the proton velocity distribution function. The beam and core protons are slowed with respect to each other and heated, and at later stages of the evolution the two populations are not clearly distinguishable. On the macroscopic level the instabilities cause large departures from the double adiabatic prediction leading to an efficient isotropization of effective proton temperatures in agreement with Helios observations.

  2. General wave optics propagation scaling law.

    PubMed

    Shakir, Sami A; Dolash, Thomas M; Spencer, Mark; Berdine, Richard; Cargill, Daniel S; Carreras, Richard

    2016-12-01

    A general far-field wave propagation scaling law is developed. The formulation is simple but predicts diffraction peak irradiance accurately in the far field, regardless of the near-field beam type or geometry, including laser arrays. We also introduce the concept of the equivalent uniform circular beam that generates a far-field peak irradiance and power-in-the-bucket that are the same as an arbitrary laser source. Applications to clipped Gaussian beams with an obscuration, both as a single beam and as an array of beams, are shown.

  3. The calibration of plane parallel ionisation chambers for the measurement of absorbed dose in electron beams of low to medium energies. Part 2: The PTW/MARKUS chamber.

    PubMed

    Cross, P; Freeman, N

    1997-06-01

    The purpose of Part 2 study of calibration methods for plane parallel ionisation chambers was to determine the feasibility of using beams of calibration of the MARKUS chamber other than the standard AAPM TG39 reference beams of 60Co and a high energy electron beam (E0 > or = 15 MeV). A previous study of the NACP chamber had demonstrated an acceptable level of accuracy with corresponding spread of -0.5% to +0.8% for its calibration in non-standard situations (medium to low energy electron and photon beams). For non-standard situations the spread in NDMARKUS values was found to be +/-2.5%. The results suggest that user calibrations of the MARKUS chamber in non-standard situations are associated with more uncertainties than is the case with the NACP chamber.

  4. Pressure dependence of an ion beam accelerating structure in an expanding helicon plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Aguirre, Evan; Thompson, Derek S.; McKee, John; Henriquez, Miguel; Scime, Earl E.

    2018-02-01

    We present measurements of the parallel ion velocity distribution function and electric field in an expanding helicon source plasma plume as a function of downstream gas pressure and radial and axial positions. The ion beam that appears spontaneously in the plume persists for all downstream pressures investigated, with the largest parallel ion beam velocities obtained for the lowest downstream pressures. However, the change in ion beam velocity exceeds what would be expected simply for a change in the collisionality of the system. Electric field measurements confirm that it is the magnitude of the potential structure responsible for accelerating the ion beam that changes with downstream pressure. Interestingly, the ion density radial profile is hollow close to the end of the plasma source for all pressures, but it is hollow at downstream distances far from the source only at the highest downstream neutral pressures.

  5. Armor structures

    DOEpatents

    Chu, Henry Shiu-Hung [Idaho Falls, ID; Lacy, Jeffrey M [Idaho Falls, ID

    2008-04-01

    An armor structure includes first and second layers individually containing a plurality of i-beams. Individual i-beams have a pair of longitudinal flanges interconnected by a longitudinal crosspiece and defining opposing longitudinal channels between the pair of flanges. The i-beams within individual of the first and second layers run parallel. The laterally outermost faces of the flanges of adjacent i-beams face one another. One of the longitudinal channels in each of the first and second layers faces one of the longitudinal channels in the other of the first and second layers. The channels of the first layer run parallel with the channels of the second layer. The flanges of the first and second layers overlap with the crosspieces of the other of the first and second layers, and portions of said flanges are received within the facing channels of the i-beams of the other of the first and second layers.

  6. Experimental, theoretical, and device application development of nanoscale focused electron-beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Randolph, Steven Jeffrey

    Electron-beam-induced deposition (EBID) is a highly versatile nanofabrication technique that allows for growth of a variety of materials with nanoscale precision and resolution. While several applications and studies of EBID have been reported and published, there is still a significant lack of understanding of the complex mechanisms involved in the process. Consequently, EBID process control is, in general, limited and certain common experimental results regarding nanofiber growth have yet to be fully explained. Such anomalous results have been addressed in this work both experimentally and by computer simulation. Specifically, a correlation between SiOx nanofiber deposition observations and the phenomenon of electron beam heating (EBH) was shown by comparison of thermal computer models and experimental results. Depending on the beam energy, beam current, and nanostructure geometry, the heat generated can be substantial and may influence the deposition rate. Temperature dependent EBID growth experiments qualitatively verified the results of the EBH model. Additionally, EBID was used to produce surface image layers for maskless, direct-write lithography (MDL). A single layer process used directly written SiOx features as a masking layer for amorphous silicon thin films. A bilayer process implemented a secondary masking layer consisting of standard photoresist into which a pattern---directly written by EBID tungsten---was transferred. The single layer process was found to be extremely sensitive to the etch selectivity of the plasma etch. In the bilayer process, EBID tungsten was written onto photoresist and the pattern transferred by means of oxygen plasma dry development following a brief refractory descum. Conditions were developed to reduce the spatial spread of electrons in the photoresist layer and obtain ˜ 35 nm lines. Finally, an EBID-based technique for field emitter repair was applied to the Digital Electrostatically focused e-beam Array Lithography (DEAL) parallel electron beam lithography configuration to repair damaged or missing carbon nanofiber cathodes. The I-V response and lithography results from EBID tungsten-based devices were comparable to CNF-based DEAL devices indicating a successful repair technique.

  7. Controls on the spacing and geometry of rill networks on hillslopes: Rainsplash detachment, initial hillslope roughness, and the competition between fluvial and colluvial transport

    USDA-ARS?s Scientific Manuscript database

    Rill networks have been a focus of study for many decades but we still lack a complete understanding of what variables control the spacing of rills and the geometry of rill networks (e.g. parallel or dendritic) on hillslopes. In this paper we investigate the controls on the spacing and geometry of ...

  8. The effect of beam pre-bunching on the excitation of terahertz plasmons in a parallel plane guiding system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Suresh C.; Malik, Pratibha

    2015-04-15

    The excitation of terahertz (THz) plasmons by a pre-bunched relativistic electron beam propagating in a parallel plane semiconducting guiding system is studied. It is found that the n-InSb semiconductor strongly supports the confined surface plasmons in the terahertz frequency range. The growth rate and efficiency of the THz surface plasmons increase linearly with modulation index and show the largest value as modulation index approaches unity. Moreover, the growth rate of the instability scales as one-third power of the beam density and inverse one-third power of the THz radiation frequency.

  9. Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams.

    PubMed

    Lehmann, Joerg; Dunn, Leon; Lye, Jessica E; Kenny, John W; Alves, Andrew D C; Cole, Andrew; Asena, Andre; Kron, Tomas; Williams, Ivan M

    2014-06-01

    The purpose of this investigation was to assess the angular dependence of a commercial optically stimulated luminescence dosimeter (OSLD) dosimetry system in MV x-ray beams at depths beyond d(max) and to find ways to mitigate this dependence for measurements in phantoms. Two special holders were designed which allow a dosimeter to be rotated around the center of its sensitive volume. The dosimeter's sensitive volume is a disk, 5 mm in diameter and 0.2 mm thick. The first holder rotates the disk in the traditional way. It positions the disk perpendicular to the beam (gantry pointing to the floor) in the initial position (0°). When the holder is rotated the angle of the disk towards the beam increases until the disk is parallel with the beam ("edge on," 90°). This is referred to as Setup 1. The second holder offers a new, alternative measurement position. It positions the disk parallel to the beam for all angles while rotating around its center (Setup 2). Measurements with five to ten dosimeters per point were carried out for 6 MV at 3 and 10 cm depth. Monte Carlo simulations using GEANT4 were performed to simulate the response of the active detector material for several angles. Detector and housing were simulated in detail based on microCT data and communications with the manufacturer. Various material compositions and an all-water geometry were considered. For the traditional Setup 1 the response of the OSLD dropped on average by 1.4% ± 0.7% (measurement) and 2.1% ± 0.3% (Monte Carlo simulation) for the 90° orientation compared to 0°. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming the layer to completely consist of the active material (Al2O3) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response within the simulation uncertainty of about 1%. For the new Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. The dosimeter system exhibits a small angular dependence of approximately 2% which needs to be considered for measurements involving other than normal incident beams angles. This applies in particular to clinical in vivo measurements where the orientation of the dosimeter is dictated by clinical circumstances and cannot be optimized as otherwise suggested here. When measuring in a phantom, the proposed new setup should be considered. It changes the orientation of the dosimeter so that a coplanar beam arrangement always hits the disk shaped detector material from the thin side and thereby reduces the angular dependence of the response to within the measurement uncertainty of about 1%. This improvement makes the dosimeter more attractive for clinical measurements with multiple coplanar beams in phantoms, as the overall measurement uncertainty is reduced. Similarly, phantom based postal audits can transition from the traditional TLD to the more accurate and convenient OSLD.

  10. Two and Three Beam Pumped Optical Parametric Amplifier of Chirped Pulses

    NASA Astrophysics Data System (ADS)

    Ališauskas, S.; Butkus, R.; Pyragaitė, V.; Smilgevičius, V.; Stabinis, A.; Piskarskas, A.

    2010-04-01

    We present two and three beam pumped optical parametric amplifier of broadband chirped pulses. The seed pulses from Ti:sapphire oscillator were stretched and amplified in a non-collinear geometry pumping with up to three beams derived from independent laser amplifiers. The signal with ˜90 nm bandwidth was amplified up to 0.72 mJ. The conversion efficiency dependence on intersection angles of pump beams is also revealed.

  11. Self-pumped Gaussian beam-coupling and stimulated backscatter due to reflection gratings in a photorefractive material

    NASA Astrophysics Data System (ADS)

    Saleh, Mohammad Abu

    2007-05-01

    When overlapping monochromatic light beams interfere in a photorefractive material, the resulting intensity fringes create a spatially modulated charge distribution. The resulting refractive index grating may cause power transfer from one beam (the pump) to the other beam (the signal). In a special case of the reflection grating geometry, the Fresnel reflection of the pump beam from the rear surface of the crystal is used as the signal beam. It has been noted that for this self-pumped, contra-directional two-beam coupling (SPCD-TBC) geometry, the coupling efficiency seems to be strongly dependent on the focal position and spot size, which is attributed to diffraction and the resulting change in the spatial overlaps between the pump and signal. In this work a full diffraction based simulation of SPCD-TBC for a Gaussian beam is developed with a novel algorithm. In a related context involving reflection gratings, a particular phenomenon named six-wave mixing has received some interest in the photorefractive research. The generation of multiple waves during near-oblique incidence of a 532 nm weakly focused laser light on photorefractive iron doped lithium niobate in a typical reflection geometry configuration is studied. It is shown that these waves are produced through two-wave coupling (self-diffraction) and four-wave mixing (parametric diffraction). One of these waves, the stimulated photorefractive backscatter produced from parametric diffraction, contains the self-phase conjugate. The dynamics of six-wave mixing, and their dependence on crystal parameters, angle of incidence, and pump power are analyzed. A novel order analysis of the interaction equations provides further insight into experimental observations in the steady state. The quality of the backscatter is evaluated through image restoration, interference experiments, and visibility measurement. Reduction of two-wave coupling may significantly improve the quality of the self-phase conjugate.

  12. The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Henry, Matthew R.; Kim, Song-Kil; Fedorov, Andrei G.; Kulkarni, Dhaval; Singamaneni, Srikanth; Tsukruk, Vladimir V.

    2010-01-01

    Multiwall carbon nanotubes (MWNTs) are promising candidates for yielding next generation electrical and electronic devices such as interconnects and tips for conductive force microscopy. One of the main challenges in MWNT implementation in such devices is the high contact resistance of the MWNT-metal electrode interface. Electron beam induced deposition (EBID) of an amorphous carbon interface has previously been demonstrated to simultaneously lower the electrical contact resistance and improve the mechanical characteristics of the MWNT-electrode connection. In this work, we investigate the influence of process parameters, such as the electron beam energy, current, geometry, and deposition time, on the EBID-made carbon joint geometry and electrical contact resistance. The influence of the composition of the deposited material on its resistivity is also investigated. The relative importance of each component of the contact resistance and the limiting factor of the overall electrical resistance of a MWNT-based interconnect is determined through a combination of a model analysis and comprehensive experiments.

  13. Laser schlieren crystal monitor

    NASA Technical Reports Server (NTRS)

    Owen, Robert B. (Inventor); Johnston, Mary H. (Inventor)

    1987-01-01

    A system and method for monitoring the state of a crystal which is suspended in a solution is described which includes providing a light source for emitting a beam of light along an optical axis. A collimating lens is arranged along the optical axis for collimating the emitted beam to provide a first collimated light beam consisting of parallel light rays. By passing the first collimated light beam through a transparent container, a number of the parallel light rays are deflected off the surfaces of said crystal being monitored according to the refractive index gradient to provide a deflected beam of deflected light rays. A focusing lens is arranged along optical axis for focusing the deflected rays towards a desired focal point. A knife edge is arranged in a predetermined orientation at the focal point; and a screen is provided. A portion of the deflected beam is blocked with the knife edge to project only a portion of the deflected beam. A band is created at one edge of the image of the crystal which indicates the state of change of the surface of the crystal being monitored.

  14. Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes.

    PubMed

    Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S

    2018-06-06

    A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.

  15. Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanco Kiely, Janid Patricia, E-mail: jkiely@sas.upenn.edu; White, Benjamin M.

    2016-05-01

    Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planningmore » CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal cancer may reduce radiation treatment–related toxicity.« less

  16. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualitiesmore » were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.« less

  17. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures.

    PubMed

    Safari, M J; Wong, J H D; Ng, K H; Jong, W L; Cutajar, D L; Rosenfeld, A B

    2015-05-01

    The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (± 1%), field size (± 1%), frame rate (± 3%), or beam energy (± 5%). The detector angular dependence was within ± 5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ± 3%. The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  18. Simultaneous fluoroscopic and nuclear imaging: impact of collimator choice on nuclear image quality.

    PubMed

    van der Velden, Sandra; Beijst, Casper; Viergever, Max A; de Jong, Hugo W A M

    2017-01-01

    X-ray-guided oncological interventions could benefit from the availability of simultaneously acquired nuclear images during the procedure. To this end, a real-time, hybrid fluoroscopic and nuclear imaging device, consisting of an X-ray c-arm combined with gamma imaging capability, is currently being developed (Beijst C, Elschot M, Viergever MA, de Jong HW. Radiol. 2015;278:232-238). The setup comprises four gamma cameras placed adjacent to the X-ray tube. The four camera views are used to reconstruct an intermediate three-dimensional image, which is subsequently converted to a virtual nuclear projection image that overlaps with the X-ray image. The purpose of the present simulation study is to evaluate the impact of gamma camera collimator choice (parallel hole versus pinhole) on the quality of the virtual nuclear image. Simulation studies were performed with a digital image quality phantom including realistic noise and resolution effects, with a dynamic frame acquisition time of 1 s and a total activity of 150 MBq. Projections were simulated for 3, 5, and 7 mm pinholes and for three parallel hole collimators (low-energy all-purpose (LEAP), low-energy high-resolution (LEHR) and low-energy ultra-high-resolution (LEUHR)). Intermediate reconstruction was performed with maximum likelihood expectation-maximization (MLEM) with point spread function (PSF) modeling. In the virtual projection derived therefrom, contrast, noise level, and detectability were determined and compared with the ideal projection, that is, as if a gamma camera were located at the position of the X-ray detector. Furthermore, image deformations and spatial resolution were quantified. Additionally, simultaneous fluoroscopic and nuclear images of a sphere phantom were acquired with a physical prototype system and compared with the simulations. For small hot spots, contrast is comparable for all simulated collimators. Noise levels are, however, 3 to 8 times higher in pinhole geometries than in parallel hole geometries. This results in higher contrast-to-noise ratios for parallel hole geometries. Smaller spheres can thus be detected with parallel hole collimators than with pinhole collimators (17 mm vs 28 mm). Pinhole geometries show larger image deformations than parallel hole geometries. Spatial resolution varied between 1.25 cm for the 3 mm pinhole and 4 cm for the LEAP collimator. The simulation method was successfully validated by the experiments with the physical prototype. A real-time hybrid fluoroscopic and nuclear imaging device is currently being developed. Image quality of nuclear images obtained with different collimators was compared in terms of contrast, noise, and detectability. Parallel hole collimators showed lower noise and better detectability than pinhole collimators. © 2016 American Association of Physicists in Medicine.

  19. Afterburner Performance of Circular V-Gutters and a Sector of Parallel V-Gutters for a Range of Inlet Temperatures to 1255 K (1800 F)

    NASA Technical Reports Server (NTRS)

    Brandstetter, J. Robert; Reck, Gregory M.

    1973-01-01

    Combustion tests of two V-gutter types were conducted in a 19.25-in. diameter duct using vitiated air. Fuel spraybars were mounted in line with the V-gutters. Combustor length was set by flame-quench water sprays which were part of a calorimeter for measuring combustion efficiency. Although the levels of performance of the parallel and circular array afterburners were different, the trends with geometry variations were consistent. Therefore, parallel arrays can be used for evaluating V-gutter geometry effects on combustion performance. For both arrays, the highest inlet temperature produced combustion efficiencies near 100 percent. A 5-in. spraybar - to - V-gutter spacing gave higher efficiency and better lean blowout performance than a spacing twice as large. Gutter durability was good.

  20. Beam dynamics in MABE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poukey, J.W.; Coleman, P.D.; Sanford, T.W.L.

    1985-10-01

    MABE is a multistage linear electron accelerator which accelerates up to nine beams in parallel. Nominal parameters per beam are 25 kA, final energy 7 MeV, and guide field 20 kG. We report recent progress via theory and simulation in understanding the beam dynamics in such a system. In particular, we emphasize our results on the radial oscillations and emittance growth for a beam passing through a series of accelerating gaps.

  1. Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting

    NASA Astrophysics Data System (ADS)

    Goppold, Cindy; Pinder, Thomas; Herwig, Patrick

    2016-02-01

    Sheet metals with thicknesses >8 mm have a distinct cutting performance. The free choice of the optical configuration composed of fiber diameter, collimation, and focal length offers many opportunities to influence the static beam geometry. Previous analysis points out the limitations of this method in the thick section area. Within the present study, an experimental investigation of fiber laser fusion cutting of 12 mm stainless steel was performed by means of dynamical beam oscillation. Two standard optical setups are combined with a highly dynamic galvano-driven scanner that achieves frequencies up to 4 kHz. Dependencies of the scanner parameter, the optical circumstances, and the conventional cutting parameters are discussed. The aim is to characterize the capabilities and challenges of the dynamic beam shaping in comparison to the state-of-the-art static beam shaping. Thus, the trials are evaluated by quality criteria of the cut edge as surface roughness and burr height, the feed rate, and the cut kerf geometry. The investigation emphasizes promising procedural possibilities for improvements of the cutting performance in the case of fiber laser fusion cutting of thick stainless steel by means of the application of a highly dynamic scanner.

  2. Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction

    PubMed Central

    Hart, Michael L.; Drakopoulos, Michael; Reinhard, Christina; Connolley, Thomas

    2013-01-01

    A complete calibration method to characterize a static planar two-dimensional detector for use in X-ray diffraction at an arbitrary wavelength is described. This method is based upon geometry describing the point of intersection between a cone’s axis and its elliptical conic section. This point of intersection is neither the ellipse centre nor one of the ellipse focal points, but some other point which lies in between. The presented solution is closed form, algebraic and non-iterative in its application, and gives values for the X-ray beam energy, the sample-to-detector distance, the location of the beam centre on the detector surface and the detector tilt relative to the incident beam. Previous techniques have tended to require prior knowledge of either the X-ray beam energy or the sample-to-detector distance, whilst other techniques have been iterative. The new calibration procedure is performed by collecting diffraction data, in the form of diffraction rings from a powder standard, at known displacements of the detector along the beam path. PMID:24068840

  3. Beam and tissue factors affecting Cherenkov image intensity for quantitative entrance and exit dosimetry on human tissue

    PubMed Central

    Zhang, Rongxiao; Glaser, Adam K.; Andreozzi, Jacqueline; Jiang, Shudong; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2017-01-01

    This study’s goal was to determine how Cherenkov radiation emission observed in radiotherapy is affected by predictable factors expected in patient imaging. Factors such as tissue optical properties, radiation beam properties, thickness of tissues, entrance/exit geometry, curved surface effects, curvature and imaging angles were investigated through Monte Carlo simulations. The largest physical cause of variation of the correlation factor between of Cherenkov emission and dose was the entrance/exit geometry (~50%). The largest human tissue effect was from different optical properties (~45%). Beyond these, clinical beam energy varies the correlation factor significantly (~20% for x-ray beams), followed by curved surfaces (~15% for x-ray beams and ~8% for electron beams), and finally, the effect of field size (~5% for x-ray beams). Other investigated factors which caused variations less than 5% were tissue thicknesses and source to surface distance. The effect of non-Lambertian emission was negligible for imaging angles smaller than 60 degrees. The spectrum of Cherenkov emission tends to blue-shift along the curved surface. A simple normalization approach based on the reflectance image was experimentally validated by imaging a range of tissue phantoms, as a first order correction for different tissue optical properties. PMID:27507213

  4. Dose calculation and verification of the Vero gimbal tracking treatment delivery

    NASA Astrophysics Data System (ADS)

    Prasetio, H.; Wölfelschneider, J.; Ziegler, M.; Serpa, M.; Witulla, B.; Bert, C.

    2018-02-01

    The Vero linear accelerator delivers dynamic tumor tracking (DTT) treatment using a gimbal motion. However, the availability of treatment planning systems (TPS) to simulate DTT is limited. This study aims to implement and verify the gimbal tracking beam geometry in the dose calculation. Gimbal tracking was implemented by rotating the reference CT outside the TPS according to the ring, gantry, and gimbal tracking position obtained from the tracking log file. The dose was calculated using these rotated CTs. The geometric accuracy was verified by comparing calculated and measured film response using a ball bearing phantom. The dose was verified by comparing calculated 2D dose distributions and film measurements in a ball bearing and a homogeneous phantom using a gamma criterion of 2%/2 mm. The effect of implementing the gimbal tracking beam geometry in a 3D patient data dose calculation was evaluated using dose volume histograms (DVH). Geometrically, the gimbal tracking implementation accuracy was  <0.94 mm. The isodose lines agreed with the film measurement. The largest dose difference of 9.4% was observed at maximum tilt positions with an isocenter and target separation of 17.51 mm. Dosimetrically, gamma passing rates were  >98.4%. The introduction of the gimbal tracking beam geometry in the dose calculation shifted the DVH curves by 0.05%-1.26% for the phantom geometry and by 5.59% for the patient CT dataset. This study successfully demonstrates a method to incorporate the gimbal tracking beam geometry into dose calculations. By combining CT rotation and MU distribution according to the log file, the TPS was able to simulate the Vero tracking treatment dose delivery. The DVH analysis from the gimbal tracking dose calculation revealed changes in the dose distribution during gimbal DTT that are not visible with static dose calculations.

  5. A FORTRAN code for the calculation of probe volume geometry changes in a laser anemometry system caused by window refraction

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1987-01-01

    A computer code was written which utilizes ray tracing techniques to predict the changes in position and geometry of a laser Doppler velocimeter probe volume resulting from refraction effects. The code predicts the position change, changes in beam crossing angle, and the amount of uncrossing that occur when the beams traverse a region with a changed index of refraction, such as a glass window. The code calculates the changes for flat plate, cylinder, general axisymmetric and general surface windows and is currently operational on a VAX 8600 computer system.

  6. Two-dimensional simulations of stimulated Brillouin scattering in laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Amin, M. R.; Capjack, C. E.; Frycz, P.; Rozmus, W.; Tikhonchuk, V. T.

    1993-07-01

    A system of electromagnetic and ion acoustic wave equations coupled via the ponderomotive force are solved numerically in a two-dimensional planar geometry. The competition between forward, side, and backward Brillouin scattering of the finite size laser beam is studied for the first time without the standard paraxial optics approximation. Simulations reveal a strong dependence of the scattered light characteristics on the geometry of the interaction region, the shape of the pump beam, and the ion acoustic wave damping. The main effects include side and forward scattering enhancement and a stimulation of collimated backward scattered radiation.

  7. Simulation of SEU Cross-sections using MRED under Conditions of Limited Device Information

    NASA Technical Reports Server (NTRS)

    Lauenstein, J. M.; Reed, R. A.; Weller, R. A.; Mendenhall, M. H.; Warren, K. M.; Pellish, J. A.; Schrimpf, R. D.; Sierawski, B. D.; Massengill, L. W.; Dodd, P. E.; hide

    2007-01-01

    This viewgraph presentation reviews the simulation of Single Event Upset (SEU) cross sections using the membrane electrode assembly (MEA) resistance and electrode diffusion (MRED) tool using "Best guess" assumptions about the process and geometry, and direct ionization, low-energy beam test results. This work will also simulate SEU cross-sections including angular and high energy responses and compare the simulated results with beam test data for the validation of the model. Using MRED, we produced a reasonably accurate upset response model of a low-critical charge SRAM without detailed information about the circuit, device geometry, or fabrication process

  8. SKYDOSE: A code for gamma skyshine calculations using the integral line-beam method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J.K.; Faw, R.E.; Brockhoff, R.C.

    1994-07-01

    SKYDOS evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated by three simple geometries: (1) a source in a silo; (2) a source behind an infinitely long, vertical, black wall; and (3) a source in a rectangular building. In all three geometries, an optical overhead shield may be specified. The source energy must be between 0.02 and 100 MeV (10 MeV for sources with an overhead shield). This is a user`s manual. Other references give more detail on the integral line-beam method used by SKYDOSE.

  9. Implementation Plan for Flexible Automation in U.S. Shipyards

    DTIC Science & Technology

    1985-01-01

    process steps, cramped work sites, interrupted geometries , irregular or novel shapes, and other factors that affect automatability. We also try to...held by 2 hands in awkward places. Interrupt geometry of plates and beams. Cannot predict outcome. Creates need to measure and recut. Automation, if...of standard. enough over time I every job. I Rearrange work.Redefine work units. Too many interruptions Time, space, geometry only a little work gets

  10. Possibilities and limitations of rod-beam theories. [nonlinear distortion tensor and nonlinear stress tensors

    NASA Technical Reports Server (NTRS)

    Peterson, D.

    1979-01-01

    Rod-beam theories are founded on hypotheses such as Bernouilli's suggesting flat cross-sections under deformation. These assumptions, which make rod-beam theories possible, also limit the accuracy of their analysis. It is shown that from a certain order upward terms of geometrically nonlinear deformations contradict the rod-beam hypotheses. Consistent application of differential geometry calculus also reveals differences from existing rod theories of higher order. These differences are explained by simple examples.

  11. Improved Modeling of Structural Joint Damping

    DTIC Science & Technology

    1986-12-01

    fourth order beam equation. Griffel has tabulated the results for a number of beam loading geometries and, as seen in Figure 2-11, has plotted the shear... Griffel . Having the solution to the built-in beam symmetric case we can now move on to the development of the Boundary Element theory. 2.3 indirect...December 1985. 9. Greenwood, D. T., Principle? &t PY"affllC3/ New Jersey, Prentice-Hall, Inc., 1965. 10. Griffel , William, Beam Formulas. New York

  12. Three-dimensional spatially curved local Bessel beams generated by metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wu, Jiawen; Cheng, Bo; Li, Hongliang

    2018-03-01

    We propose a reflective metasurface based on an artificial admittance modulation surface to generate three-dimensional spatially curved beams. The phase acquisition utilized to modulate this sinusoidally varying surface admittance combines the enveloping theory of differential geometry and the method for producing two-dimensional Bessel beams. The metasurface is fabricated, and the comparison between the full-wave simulations and experimental results demonstrates good performance of three-dimensional spatially curved beams generated by the metasurface.

  13. PIXIE3D: A Parallel, Implicit, eXtended MHD 3D Code

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2006-10-01

    We report on the development of PIXIE3D, a 3D parallel, fully implicit Newton-Krylov extended MHD code in general curvilinear geometry. PIXIE3D employs a second-order, finite-volume-based spatial discretization that satisfies remarkable properties such as being conservative, solenoidal in the magnetic field to machine precision, non-dissipative, and linearly and nonlinearly stable in the absence of physical dissipation. PIXIE3D employs fully-implicit Newton-Krylov methods for the time advance. Currently, second-order implicit schemes such as Crank-Nicolson and BDF2 (2^nd order backward differentiation formula) are available. PIXIE3D is fully parallel (employs PETSc for parallelism), and exhibits excellent parallel scalability. A parallel, scalable, MG preconditioning strategy, based on physics-based preconditioning ideas, has been developed for resistive MHD, and is currently being extended to Hall MHD. In this poster, we will report on progress in the algorithmic formulation for extended MHD, as well as the the serial and parallel performance of PIXIE3D in a variety of problems and geometries. L. Chac'on, Comput. Phys. Comm., 163 (3), 143-171 (2004) L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002); J. Comput. Phys., 188 (2), 573-592 (2003) L. Chac'on, 32nd EPS Conf. Plasma Physics, Tarragona, Spain, 2005 L. Chac'on et al., 33rd EPS Conf. Plasma Physics, Rome, Italy, 2006

  14. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and neck phantoms. The conclusions of this investigation were: (1) the implementation of intermediate view estimation techniques to megavoltage cone-beam CT produced improvements in image quality, with the largest impact occurring for smaller numbers of initially-acquired projections, (2) the SPECS scatter correction algorithm could be successfully incorporated into projection data acquired using an electronic portal imaging device during megavoltage cone-beam CT image reconstruction, (3) a large range of SPECS parameters were shown to reduce cupping artifacts as well as improve reconstruction accuracy, with application to anthropomorphic phantom geometries improving the percent difference in reconstructed electron density for soft tissue from -13.6% to -2.0%, and for cortical bone from -9.7% to 1.4%, (4) dose measurements in the anthropomorphic phantoms showed consistent agreement between planar measurements using radiochromic film and point measurements using thermoluminescent dosimeters, and (5) a comparison of normalized dose measurements acquired with radiochromic film to those calculated using multiple treatment planning systems, accelerator-detector combinations, patient geometries and accelerator outputs produced a relatively good agreement.

  15. F100(3) parallel compressor computer code and user's manual

    NASA Technical Reports Server (NTRS)

    Mazzawy, R. S.; Fulkerson, D. A.; Haddad, D. E.; Clark, T. A.

    1978-01-01

    The Pratt & Whitney Aircraft multiple segment parallel compressor model has been modified to include the influence of variable compressor vane geometry on the sensitivity to circumferential flow distortion. Further, performance characteristics of the F100 (3) compression system have been incorporated into the model on a blade row basis. In this modified form, the distortion's circumferential location is referenced relative to the variable vane controlling sensors of the F100 (3) engine so that the proper solution can be obtained regardless of distortion orientation. This feature is particularly important for the analysis of inlet temperature distortion. Compatibility with fixed geometry compressor applications has been maintained in the model.

  16. NOTE: MCDE: a new Monte Carlo dose engine for IMRT

    NASA Astrophysics Data System (ADS)

    Reynaert, N.; DeSmedt, B.; Coghe, M.; Paelinck, L.; Van Duyse, B.; DeGersem, W.; DeWagter, C.; DeNeve, W.; Thierens, H.

    2004-07-01

    A new accurate Monte Carlo code for IMRT dose computations, MCDE (Monte Carlo dose engine), is introduced. MCDE is based on BEAMnrc/DOSXYZnrc and consequently the accurate EGSnrc electron transport. DOSXYZnrc is reprogrammed as a component module for BEAMnrc. In this way both codes are interconnected elegantly, while maintaining the BEAM structure and only minimal changes to BEAMnrc.mortran are necessary. The treatment head of the Elekta SLiplus linear accelerator is modelled in detail. CT grids consisting of up to 200 slices of 512 × 512 voxels can be introduced and up to 100 beams can be handled simultaneously. The beams and CT data are imported from the treatment planning system GRATIS via a DICOM interface. To enable the handling of up to 50 × 106 voxels the system was programmed in Fortran95 to enable dynamic memory management. All region-dependent arrays (dose, statistics, transport arrays) were redefined. A scoring grid was introduced and superimposed on the geometry grid, to be able to limit the number of scoring voxels. The whole system uses approximately 200 MB of RAM and runs on a PC cluster consisting of 38 1.0 GHz processors. A set of in-house made scripts handle the parallellization and the centralization of the Monte Carlo calculations on a server. As an illustration of MCDE, a clinical example is discussed and compared with collapsed cone convolution calculations. At present, the system is still rather slow and is intended to be a tool for reliable verification of IMRT treatment planning in the case of the presence of tissue inhomogeneities such as air cavities.

  17. Beam dynamics in MABE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poukey, J.W.; Coleman, P.D.; Sanford, T.W.L.

    1985-01-01

    MABE is a multistage linear electron accelerator which accelerates up to nine beams in parallel. Nominal parameters per beam are 25 kA, final energy 7 MeV, and guide field 20 kG. We report recent progress via theory and simulation in understanding the beam dynamics in such a system. In particular, we emphasize our results on the radial oscillations and emittance growth for a beam passing through a series of accelerating gaps. 12 refs., 8 figs.

  18. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  19. EBQ code: Transport of space-charge beams in axially symmetric devices

    NASA Astrophysics Data System (ADS)

    Paul, A. C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WODF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  20. Interaction of upgoing auroral H(+) and O(+) beams

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Ludlow, G. R.; Collin, H. L.; Peterson, W. K.; Burch, J. L.

    1986-01-01

    Data from the S3-3 and DE 1 satellites are analyzed to study the interaction between H(+) and O(+) ions in upgoing auroral beams. Every data set analyzed showed some evidence of an interaction. The measured plasma was found to be unstable to a low-frequency electrostatic wave that propagates at an oblique angle to vector-B(0). A second wave, which can propagate parallel to vector-B(0), is weakly damped in the plasma studied in most detail. It is likely that the upgoing ion beams generate this parallel wave at lower altitudes. The resulting wave-particle interactions qualitatively can explain most of the features observed in ion distribution functions.

  1. SU-F-T-432: Magnetic Field Dose Effects for Various Radiation Beam Geometries for Patients Treated with Hypofractionated Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim-Reinders, S; University of Toronto, Department of Physics; Keller, B

    Purpose: Hypofractionated partial breast irradiation (HPBI) is being used at our clinic to treat inoperable breast cancer patients who have advanced disease. We are investigating how these patients could benefit from being treated in an MRI-linac, where real-time daily MRI tumor imaging and plan adaptation would be possible. As a first step, this study evaluates the dosimetric impact of the magnetic field for different radiation beam geometries on relevant OARs. Methods: Five patients previously treated using HPBI were selected. Six treatment plans were generated for each patient, evaluating three beam geometries (VMAT, IMRT, 3DCRT) with and without B{sub 0}=1.5 T.more » The Monaco TPS was used with the Elekta MRI-Linac beam model, where the magnetic field is orthogonal to the radiation beam. All plans were re-scaled to the same isocoverage with a prescription of 40Gy/5 to the PTV. Plans were evaluated for the effect of the magnetic field and beam modality on skin V{sub 3} {sub 0}, lung V{sub 2} {sub 0} and mean heart dose. Results: Averaged over all patients, skin V{sub 3} {sub 0}for 3DCRT was higher than VMAT and IMRT (by +22% and +21%, with B{sub 0}-ON). The magnetic field caused larger increases in skin V{sub 3} {sub 0}for 3DCRT (+8%) than VMAT (+3%) and IMRT (+4%) compared with B{sub 0}-OFF. With B{sub 0}-ON, 3DCRT had a markedly lower mean heart dose than VMAT (by 538cGy) and IMRT (by 562cGy); for lung V{sub 2} {sub 0}, 3DCRT had a marginally lower dose than VMAT (by −2.2%) and IMRT (also −2.2%). The magnetic field had minimal effect on the mean heart dose and lung V{sub 2} {sub 0} for all geometries. Conclusion: The decreased skin dose in VMAT and IMRT can potentially mitigate the effects of skin reactions for HPBI in an MRI-linac. This study illustrated that more beam angles may result in lower skin toxicity and better tumor conformality, with the trade-off of elevated heart and lung doses. We are receiving funding support from Elekta.« less

  2. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.up

    Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittalmore » breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.« less

  3. Geometry modeling of single track cladding deposited by high power diode laser with rectangular beam spot

    NASA Astrophysics Data System (ADS)

    Liu, Huaming; Qin, Xunpeng; Huang, Song; Hu, Zeqi; Ni, Mao

    2018-01-01

    This paper presents an investigation on the relationship between the process parameters and geometrical characteristics of the sectional profile for the single track cladding (STC) deposited by High Power Diode Laser (HPDL) with rectangle beam spot (RBS). To obtain the geometry parameters, namely cladding width Wc and height Hc of the sectional profile, a full factorial design (FFD) of experiment was used to conduct the experiments with a total of 27. The pre-placed powder technique has been employed during laser cladding. The influence of the process parameters including laser power, powder thickness and scanning speed on the Wc and Hc was analyzed in detail. A nonlinear fitting model was used to fit the relationship between the process parameters and geometry parameters. And a circular arc was adopted to describe the geometry profile of the cross-section of STC. The above models were confirmed by all the experiments. The results indicated that the geometrical characteristics of the sectional profile of STC can be described as the circular arc, and the other geometry parameters of the sectional profile can be calculated only using Wc and Hc. Meanwhile, the Wc and Hc can be predicted through the process parameters.

  4. Multisensor Modeling Underwater with Uncertain Information

    DTIC Science & Technology

    1988-07-01

    133 Figure 6.4: Sidescan geometry artifacts ................................ 133 Figure 6.5: Sea MARC I intensity map of Clipperton ...area ................. 136 Figure 6.6: Sea MARC I intensity map of Clipperton area (from Kasiens et al.). .. 137 Figure 6.7: Sea Beam contour map of... Clipperton area .................... 138 Figure 6.8: Sea Beam contour map of Clipperton area (from Gallo ei al.) ....... 139 Figure 6.9: Sea Beam

  5. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types.

    PubMed

    Muir, B R; Rogers, D W O

    2014-11-01

    To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers' effective point of measurement (EPOM) and beam quality conversion factors. The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R50 converted from I50 (calculated using ion chamber simulations in phantom) to R50 calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, kQ, as a function of R50. The optimal shift of cylindrical chambers is found to be less than the 0.5 rcav recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 rcav. Values of kecal are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R50 = 7.5 cm (kQ (')) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.

  6. Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian

    The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.

  7. Molecular-Flow Properties of RIB Type Vapor-Transport Systems Using a Fast-Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, Gerald D; Bilheux, Hassina Z; Zhang, Y.

    2014-01-01

    The advent of the fast-valve device, described previously, permits measurement of molecular-flow times of chemically active or inactive gaseous species through radioactive ion beam (RIB) target ion source systems, independent of size, geometry and materials of construction. Thus, decay losses of short-half-life RIBs can be determined for a given target/vapor-transport system in advance of on-line operation, thereby ascertaining the feasibility of the system design for successful processing of a given isotope. In this article, molecular-flow-time theory and experimentally measured molecular-flow time data are given for serial- and parallel-coupled Ta metal RIB vapor-transport systems similar to those used at ISOL basedmore » RIB facilities. In addition, the effect of source type on the molecular-flow time properties of a given system is addressed, and a chemical passivation method for negating surface adsorption enthalpies for chemically active gaseous species on Ta surfaces is demonstrated.« less

  8. nem_spread Ver. 5.10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HENNIGAN, GARY; SHADID, JOHN; SJAARDEMA, GREGORY

    2009-06-08

    Nem_spread reads it's input command file (default name nem_spread.inp), takes the named ExodusII geometry definition and spreads out the geometry (and optionally results) contained in that file out to a parallel disk system. The decomposition is taken from a scalar Nemesis load balance file generated by the companion utility nem_slice.

  9. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  10. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  11. Load responsive hydrodynamic bearing

    DOEpatents

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  12. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1986-01-01

    The Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) specimens are employed to characterize MODE I and MODE II interlaminar fracture resistance of graphite/epoxy (CYCOM 982) and graphite/PEEK (APC2) composites. Sizing of test specimen geometries to achieve crack growth in the linear elastic regime is presented. Data reduction schemes based upon beam theory are derived for the ENF specimen and include the effects of shear deformation and friction between crack surfaces on compliance, C, and strain energy release rate, G sub II. Finite element (FE) analyses of the ENF geometry including the contact problem with friction are presented to assess the accuracy of beam theory expressions for C and G sub II. Virtual crack closure techniques verify that the ENF specimen is a pure Mode II test. Beam theory expressions are shown to be conservative by 20 to 40 percent for typical unidirectional test specimen geometries. A FE parametric study investigating the influence of delamination length and depth, span, thickness and material properties on G sub II is presented. Mode I and II interlaminar fracture test results are presented. Important experimental parameters are isolated, such as precracking techniques, rate effects, and nonlinear load-deflection response. It is found that subcritical crack growth and inelastic materials behavior, responsible for the observed nonlinearities, are highly rate-dependent phenomena with high rates generally leading to linear elastic response.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Ludmila, E-mail: llm@ispms.tsc.ru; Meisner, Stanislav, E-mail: msn@ispms.tsc.ru; Mironov, Yurii, E-mail: myp@ispms.tsc.ru

    The paper considers the effects arising on X-ray diffraction patterns taken in different diffraction geometries and how these effects can be interpreted to judge structural states in NiTi near-surface regions after electron and ion beam treatment. It is shown that qualitative and quantitative analysis of phase composition, lattice parameters of main phases, elastic stress states, and their in-depth variation requires X-ray diffraction patterns in both symmetric Bragg–Brentano and asymmetric Lambot–Vassamilleta geometries with variation in X-ray wavelengths and imaging conditions (with and with no β-filter). These techniques of structural phase analysis are more efficient when the thickness of modified NiTi surfacemore » layers is 1–10 μm (after electron beam treatment) and requires special imaging conditions when the thickness of modified NiTi surface layers is no greater than 1 μm (after ion beam treatment)« less

  14. Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  15. Parallel Transport with Sheath and Collisional Effects in Global Electrostatic Turbulent Transport in FRCs

    NASA Astrophysics Data System (ADS)

    Bao, Jian; Lau, Calvin; Kuley, Animesh; Lin, Zhihong; Fulton, Daniel; Tajima, Toshiki; Tri Alpha Energy, Inc. Team

    2017-10-01

    Collisional and turbulent transport in a field reversed configuration (FRC) is studied in global particle simulation by using GTC (gyrokinetic toroidal code). The global FRC geometry is incorporated in GTC by using a field-aligned mesh in cylindrical coordinates, which enables global simulation coupling core and scrape-off layer (SOL) across the separatrix. Furthermore, fully kinetic ions are implemented in GTC to treat magnetic-null point in FRC core. Both global simulation coupling core and SOL regions and independent SOL region simulation have been carried out to study turbulence. In this work, the ``logical sheath boundary condition'' is implemented to study parallel transport in the SOL. This method helps to relax time and spatial steps without resolving electron plasma frequency and Debye length, which enables turbulent transports simulation with sheath effects. We will study collisional and turbulent SOL parallel transport with mirror geometry and sheath boundary condition in C2-W divertor.

  16. Sinogram restoration in computed tomography with an edge-preserving penalty

    PubMed Central

    Little, Kevin J.; La Rivière, Patrick J.

    2015-01-01

    Purpose: With the goal of producing a less computationally intensive alternative to fully iterative penalized-likelihood image reconstruction, our group has explored the use of penalized-likelihood sinogram restoration for transmission tomography. Previously, we have exclusively used a quadratic penalty in our restoration objective function. However, a quadratic penalty does not excel at preserving edges while reducing noise. Here, we derive a restoration update equation for nonquadratic penalties. Additionally, we perform a feasibility study to extend our sinogram restoration method to a helical cone-beam geometry and clinical data. Methods: A restoration update equation for nonquadratic penalties is derived using separable parabolic surrogates (SPS). A method for calculating sinogram degradation coefficients for a helical cone-beam geometry is proposed. Using simulated data, sinogram restorations are performed using both a quadratic penalty and the edge-preserving Huber penalty. After sinogram restoration, Fourier-based analytical methods are used to obtain reconstructions, and resolution-noise trade-offs are investigated. For the fan-beam geometry, a comparison is made to image-domain SPS reconstruction using the Huber penalty. The effects of varying object size and contrast are also investigated. For the helical cone-beam geometry, we investigate the effect of helical pitch (axial movement/rotation). Huber-penalty sinogram restoration is performed on 3D clinical data, and the reconstructed images are compared to those generated with no restoration. Results: We find that by applying the edge-preserving Huber penalty to our sinogram restoration methods, the reconstructed image has a better resolution-noise relationship than an image produced using a quadratic penalty in the sinogram restoration. However, we find that this relatively straightforward approach to edge preservation in the sinogram domain is affected by the physical size of imaged objects in addition to the contrast across the edge. This presents some disadvantages of this method relative to image-domain edge-preserving methods, although the computational burden of the sinogram-domain approach is much lower. For a helical cone-beam geometry, we found applying sinogram restoration in 3D was reasonable and that pitch did not make a significant difference in the general effect of sinogram restoration. The application of Huber-penalty sinogram restoration to clinical data resulted in a reconstruction with less noise while retaining resolution. Conclusions: Sinogram restoration with the Huber penalty is able to provide better resolution-noise performance than restoration with a quadratic penalty. Additionally, sinogram restoration with the Huber penalty is feasible for helical cone-beam CT and can be applied to clinical data. PMID:25735286

  17. Sinogram restoration in computed tomography with an edge-preserving penalty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, Kevin J., E-mail: little@uchicago.edu; La Rivière, Patrick J.

    2015-03-15

    Purpose: With the goal of producing a less computationally intensive alternative to fully iterative penalized-likelihood image reconstruction, our group has explored the use of penalized-likelihood sinogram restoration for transmission tomography. Previously, we have exclusively used a quadratic penalty in our restoration objective function. However, a quadratic penalty does not excel at preserving edges while reducing noise. Here, we derive a restoration update equation for nonquadratic penalties. Additionally, we perform a feasibility study to extend our sinogram restoration method to a helical cone-beam geometry and clinical data. Methods: A restoration update equation for nonquadratic penalties is derived using separable parabolic surrogatesmore » (SPS). A method for calculating sinogram degradation coefficients for a helical cone-beam geometry is proposed. Using simulated data, sinogram restorations are performed using both a quadratic penalty and the edge-preserving Huber penalty. After sinogram restoration, Fourier-based analytical methods are used to obtain reconstructions, and resolution-noise trade-offs are investigated. For the fan-beam geometry, a comparison is made to image-domain SPS reconstruction using the Huber penalty. The effects of varying object size and contrast are also investigated. For the helical cone-beam geometry, we investigate the effect of helical pitch (axial movement/rotation). Huber-penalty sinogram restoration is performed on 3D clinical data, and the reconstructed images are compared to those generated with no restoration. Results: We find that by applying the edge-preserving Huber penalty to our sinogram restoration methods, the reconstructed image has a better resolution-noise relationship than an image produced using a quadratic penalty in the sinogram restoration. However, we find that this relatively straightforward approach to edge preservation in the sinogram domain is affected by the physical size of imaged objects in addition to the contrast across the edge. This presents some disadvantages of this method relative to image-domain edge-preserving methods, although the computational burden of the sinogram-domain approach is much lower. For a helical cone-beam geometry, we found applying sinogram restoration in 3D was reasonable and that pitch did not make a significant difference in the general effect of sinogram restoration. The application of Huber-penalty sinogram restoration to clinical data resulted in a reconstruction with less noise while retaining resolution. Conclusions: Sinogram restoration with the Huber penalty is able to provide better resolution-noise performance than restoration with a quadratic penalty. Additionally, sinogram restoration with the Huber penalty is feasible for helical cone-beam CT and can be applied to clinical data.« less

  18. Preliminary studies of radiation coupling between remote soft X-ray laser amplifiers

    NASA Astrophysics Data System (ADS)

    Cairns, G.; Lewis, C. L. S.; Macphee, A. G.; Neely, D.; Holden, M.; Krishnan, J.; Tallents, G. J.; Key, M. H.; Norreys, P. N.; Smith, C. G.; Zhang, J.; Holden, P. B.; Pert, G. J.; Plowes, J.; Ramsden, S. A.

    1994-01-01

    Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface.

  19. MEMS fabrication and frequency sweep for suspending beam and plate electrode in electrostatic capacitor

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxiong; Song, Weixing

    2018-01-01

    We report a MEMS fabrication and frequency sweep for a high-order mode suspending beam and plate layer in electrostatic micro-gap semiconductor capacitor. This suspended beam and plate was designed with silicon oxide (SiO2) film which was fabricated using bulk silicon micromachining technology on both side of a silicon substrate. The designed semiconductor capacitors were driven by a bias direct current (DC) and a sweep frequency alternative current (AC) in a room temperature for an electrical response test. Finite element calculating software was used to evaluate the deformation mode around its high-order response frequency. Compared a single capacitor with a high-order response frequency (0.42 MHz) and a 1 × 2 array parallel capacitor, we found that the 1 × 2 array parallel capacitor had a broader high-order response range. And it concluded that a DC bias voltage can be used to modulate a high-order response frequency for both a single and 1 × 2 array parallel capacitors.

  20. A simple X-ray source of two orthogonal beams for small samples imaging

    NASA Astrophysics Data System (ADS)

    Hrdý, J.

    2018-04-01

    A simple method for simultaneous imaging of small samples by two orthogonal beams is proposed. The method is based on one channel-cut crystal which is oriented such that the beam is diffracted on two crystallographic planes simultaneously. These planes are symmetrically inclined to the crystal surface. The beams are three times diffracted. After the first diffraction the beam is split. After the second diffraction the split beams become parallel. Finally, after the third diffraction the beams become convergent and may be used for imaging. The corresponding angular relations to obtain orthogonal beams are derived.

  1. PREFACE: Conceptual and Technical Challenges for Quantum Gravity 2014 - Parallel session: Noncommutative Geometry and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Martinetti, P.; Wallet, J.-C.; Amelino-Camelia, G.

    2015-08-01

    The conference Conceptual and Technical Challenges for Quantum Gravity at Sapienza University of Rome, from 8 to 12 September 2014, has provided a beautiful opportunity for an encounter between different approaches and different perspectives on the quantum-gravity problem. It contributed to a higher level of shared knowledge among the quantum-gravity communities pursuing each specific research program. There were plenary talks on many different approaches, including in particular string theory, loop quantum gravity, spacetime noncommutativity, causal dynamical triangulations, asymptotic safety and causal sets. Contributions from the perspective of philosophy of science were also welcomed. In addition several parallel sessions were organized. The present volume collects contributions from the Noncommutative Geometry and Quantum Gravity parallel session4, with additional invited contributions from specialists in the field. Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: • from models of quantum space-time (with or without breaking of Lorentz symmetry) to loop gravity and string theory, • from early considerations on UV-divergencies in quantum field theory to recent models of gauge theories on noncommutative spacetime, • from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. This volume provides an overview of these various topics, interesting for the specialist as well as accessible to the newcomer. 4partially funded by CNRS PEPS /PTI ''Metric aspect of noncommutative geometry: from Monge to Higgs''

  2. Magnetorheological effect in the magnetic field oriented along the vorticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzhir, P., E-mail: pavel.kuzhir@unice.fr; Magnet, C.; Fezai, H.

    2014-11-01

    In this work, we have studied the magnetorheological (MR) fluid rheology in the magnetic field parallel to the fluid vorticity. Experimentally, the MR fluid flow was realized in the Couette coaxial cylinder geometry with the magnetic field parallel to the symmetry axis. The rheological measurements were compared to those obtained in the cone-plate geometry with the magnetic field perpendicular to the lower rheometer plate. Experiments revealed a quasi-Bingham behavior in both geometries with the stress level being just a few dozens of percent smaller in the Couette cylindrical geometry at the same internal magnetic field. The unexpectedly high MR responsemore » in the magnetic field parallel to the fluid vorticity is explained by stochastic fluctuations of positions and orientations of the particle aggregates. These fluctuations are induced by magnetic interactions between them. Once misaligned from the vorticity direction, the aggregates generate a high stress independent of the shear rate, and thus assimilated to the suspension apparent (dynamic) yield stress. Quantitatively, the fluctuations of the aggregate orientation are modeled as a rotary diffusion process with a diffusion constant proportional to the mean square interaction torque. The model gives a satisfactory agreement with the experimental field dependency of the apparent yield stress and confirms the nearly quadratic concentration dependency σ{sub Y}∝Φ{sup 2.2}, revealed in experiments. The practical interest of this study lies in the development of MR smart devices with the magnetic field nonperpendicular to the channel walls.« less

  3. Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingstone, Jayde, E-mail: Jayde.Livingstone@sync

    Purpose: Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy. Methods: Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence ofmore » the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30–120 keV. The dose-rate dependence was measured in the range 1–700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters. Results: The detector exhibits an energy dependence; however, beam quality correction factors (k{sub Q}) have been measured for energies in the range 30–120 keV. The k{sub Q} factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1–700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic film data. Conclusions: The synthetic diamond detector is now well characterized and will be used to develop an experimental dosimetry protocol for spatially fractionated synchrotron radiotherapy.« less

  4. Surface flatness measurement of quasi-parallel plates employing three-beam interference with strong reference beam

    NASA Astrophysics Data System (ADS)

    Sunderland, Zofia; Patorski, Krzysztof

    2016-12-01

    A big challenge for standard interferogram analysis methods such as Temporal Phase Shifting or Fourier Transform is a parasitic set of fringes which might occur in the analyzed fringe pattern intensity distribution. It is encountered, for example, when transparent glass plates with quasi-parallel surfaces are tested in Fizeau or Twyman-Green interferometers. Besides the beams reflected from the plate front surface and the interferometer reference the beam reflected from the plate rear surface also plays important role; its amplitude is comparable with the amplitude of other beams. In result we face three families of fringes of high contrast which cannot be easily separated. Earlier we proposed a competitive solution for flatness measurements which relies on eliminating one of those fringe sets from the three-beam interferogram and separating two remaining ones with the use of 2D Continuous Wavelet Transform. In this work we cover the case when the intensity of the reference beam is significantly higher than the intensities of two object beams. The main advantage of differentiating beam intensities is the change in contrast of individual fringe families. Processing of such three-beam interferograms is modified but also takes advantage of 2D CWT. We show how to implement this method in Twyman-Green and Fizeau setups and compare this processing path and measurement procedures with previously proposed solutions.

  5. Energy harvesting from localized dynamic transitions in post-buckled elastic beams under quasi-static loading

    NASA Astrophysics Data System (ADS)

    Borchani, Wassim

    The deployability of structural health monitoring self-powered sensors relies on their capability to harvest energy from signals being monitored. Many of the signals required to assess the structure condition are quasi-static events which limits the levels of power that can be extracted. Several vibration-based techniques have been proposed to increase the transferred level of power and broaden the harvester operating bandwidth. However, these techniques require vibration input excitations at frequencies higher than dominant structural response frequencies which makes them inefficient and not suitable for ambient quasi-static excitations. This research proposes a novel sensing and energy harvesting technique at low frequencies using mechanical energy concentrators and triggers. These mechanisms consist of axially-loaded bilaterally-constrained beams with attached piezoelectric energy harvesters. When the quasi-static axial load reaches a certain mechanical threshold, a sudden snap-through mode-switching occurs. These transitions excite the attached piezoelectric scavengers with high-rate input accelerations, generating then electric power. The main objectives are to understand and model the post-buckling behavior of bilaterally-constrained beams, control it by tailoring geometry and material properties of the buckled elements or stacking them into system assemblies, and finally characterize the energy harvesting and sensing capability of the system under quasi-static excitations. The fundamental principle relies on the following concept. Under axial load, a straight slender beam buckles in the first buckling mode. The increased transverse deformations from a buckled shape lead to contact interaction with the lateral boundaries. The contact interaction generates transverse forces that induce the development of higher order buckling configurations. Transitions between the buckled configurations occur not only during loading, but also unloading. In this work, the post-buckling response of the bilaterally constrained beam subjected to axial loading is investigated experimentally, numerically, and theoretically. The capability of the system to generate electric energy under quasi-static excitation is also assessed experimentally. The post-buckling behavior is reproducible under cyclic loadings and independent of the input loading frequency. The static and dynamic response of the beam is theoretically studied using an energy method. The model adequately predicts the beam geometry at every loading stage, including the flattening behavior just before the snap buckling transitions, the mode transition events and the released kinetic energy as well as accelerations of the beam during transitions. The buckling transitions generate high kinetic energy and acceleration spikes. However, the location of the maximum acceleration differs from one transition to another. Tuning the parameters of the system affects dramatically the accelerations generated during snap-through transitions. However, it does not affect the number and spacing between these events. To achieve better control of the system, multiple slender beams with different geometric and material properties are stacked in parallel configurations. The system allows then to control the spacing between energy bursts and reduce the energy leakage in electronic circuits. As an application example, the mechanical energy concentrators and triggers were integrated with a piezo-floating gate events sensor. This allowed for harvesting and recording of bursts and impulses of released energy at very low frequencies. The system can be calibrated to determine the number of times the magnitude of the input signal exceeded a mechanical threshold. The mechanism allows for frequency up-conversion from the low input frequency (in the order of mHz) to the natural frequency of the piezoelectric scavenger.

  6. Organ and Effective Dose Coefficients for Cranial and Caudal Irradiation Geometries: Neutrons

    NASA Astrophysics Data System (ADS)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; Hiller, M. M.

    2017-09-01

    With the introduction of new recommendations by ICRP Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors, and the introduction of reference sex-specific computational phantoms (ICRP Publication 110). Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT), and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue absorbed doses for caudal and cranial exposures to neutrons ranging in energy from 10-9 MeV to 10 GeV have been performed using the MCNP6 radiation transport code and the adult reference voxel phantoms of ICRP Publication 110. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above about 30 MeV the cranial and caudal values are greater.

  7. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    PubMed Central

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2014-01-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise. PMID:23588373

  8. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    NASA Astrophysics Data System (ADS)

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2013-05-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise.

  9. Parallel SOR methods with a parabolic-diffusion acceleration technique for solving an unstructured-grid Poisson equation on 3D arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Zapata, M. A. Uh; Van Bang, D. Pham; Nguyen, K. D.

    2016-05-01

    This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.

  10. Design and Optimization of AlN based RF MEMS Switches

    NASA Astrophysics Data System (ADS)

    Hasan Ziko, Mehadi; Koel, Ants

    2018-05-01

    Radio frequency microelectromechanical system (RF MEMS) switch technology might have potential to replace the semiconductor technology in future communication systems as well as communication satellites, wireless and mobile phones. This study is to explore the possibilities of RF MEMS switch design and optimization with aluminium nitride (AlN) thin film as the piezoelectric actuation material. Achieving low actuation voltage and high contact force with optimal geometry using the principle of piezoelectric effect is the main motivation for this research. Analytical and numerical modelling of single beam type RF MEMS switch used to analyse the design parameters and optimize them for the minimum actuation voltage and high contact force. An analytical model using isotropic AlN material properties used to obtain the optimal parameters. The optimized geometry of the device length, width and thickness are 2000 µm, 500 µm and 0.6 µm respectively obtained for the single beam RF MEMS switch. Low actuation voltage and high contact force with optimal geometry are less than 2 Vand 100 µN obtained by analytical analysis. Additionally, the single beam RF MEMS switch are optimized and validated by comparing the analytical and finite element modelling (FEM) analysis.

  11. Ribbon electron beam formation by a forevacuum plasma electron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimov, A. S., E-mail: klimov@main.tusur.ru; Burdovitsin, V. A.; Grishkov, A. A.

    2016-01-15

    Results of the numerical analysis and experimental research on ribbon electron beam generation based on hollow cathode discharge at forevacuum gas pressure are presented. Geometry of the accelerating gap has modified. It lets us focus the ribbon electron beam and to transport it on a distance of several tens of centimeters in the absence of an axial magnetic field. The results of numerical simulations are confirmed by the experiment.

  12. Systematic Studies for the Development of High-Intensity Abs

    NASA Astrophysics Data System (ADS)

    Barion, L.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Lenisa, P.; Statera, M.

    2011-01-01

    The effect of the dissociator cooling temperature has been tested in order to explain the unexpected RHIC atomic beam intensity. Studies on trumpet nozzle geometry, compared to standard sonic nozzle have been performed, both with simulation methods and test bench measurements on molecular beams, obtaining promising results.

  13. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  14. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  15. A possibility of parallel and anti-parallel diffraction measurements on neu- tron diffractometer employing bent perfect crystal monochromator at the monochromatic focusing condition

    NASA Astrophysics Data System (ADS)

    Choi, Yong Nam; Kim, Shin Ae; Kim, Sung Kyu; Kim, Sung Baek; Lee, Chang-Hee; Mikula, Pavel

    2004-07-01

    In a conventional diffractometer having single monochromator, only one position, parallel position, is used for the diffraction experiment (i.e. detection) because the resolution property of the other one, anti-parallel position, is very poor. However, a bent perfect crystal (BPC) monochromator at monochromatic focusing condition can provide a quite flat and equal resolution property at both parallel and anti-parallel positions and thus one can have a chance to use both sides for the diffraction experiment. From the data of the FWHM and the Delta d/d measured on three diffraction geometries (symmetric, asymmetric compression and asymmetric expansion), we can conclude that the simultaneous diffraction measurement in both parallel and anti-parallel positions can be achieved.

  16. Stability of laser-propelled wafer satellites

    NASA Astrophysics Data System (ADS)

    Srinivasan, Prashant; Hughes, Gary B.; Lubin, Philip; Zhang, Qicheng; Madajian, Jonathan; Brashears, Travis; Kulkarni, Neeraj; Cohen, Alexander; Griswold, Janelle

    2016-09-01

    For interstellar missions, directed energy is envisioned to drive wafer-scale spacecraft to relativistic speeds. Spacecraft propulsion is provided by a large array of phase-locked lasers, either in Earth orbit or stationed on the ground. The directed-energy beam is focused on the spacecraft, which includes a reflective sail that propels the craft by reflecting the beam. Fluctuations and asymmetry in the beam will create rotational forces on the sail, so the sail geometry must possess an inherent, passive stabilizing effect. A hyperboloid shape is proposed, since changes in the incident beam angle due to yaw will passively counteract rotational forces. This paper explores passive stability properties of a hyperboloid reflector being bombarded by directed-energy beam. A 2D cross-section is analyzed for stability under simulated asymmetric loads. Passive stabilization is confirmed over a range of asymmetries. Realistic values of radiation pressure magnitude are drawn from the physics of light-mirror interaction. Estimates of beam asymmetry are drawn from optical modeling of a laser array far-field intensity using fixed and stochastic phase perturbations. A 3D multi-physics model is presented, using boundary conditions and forcing terms derived from beam simulations and lightmirror interaction models. The question of optimal sail geometry can be pursued, using concepts developed for the baseline hyperboloid. For example, higher curvature of the hyperboloid increases stability, but reduces effective thrust. A hyperboloid sail could be optimized by seeking the minimum curvature that is stable over the expected range of beam asymmetries.

  17. An energy harvesting solution based on the post-buckling response of non-prismatic slender beams

    NASA Astrophysics Data System (ADS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Alavi, Amir H.; Lajnef, Nizar

    2017-04-01

    Systems based on post-buckled structural elements have been extensively used in many applications such as actuation, remote sensing and energy harvesting thanks to their efficiency enhancement. The post-buckling snap- through behavior of bilaterally constrained beams has been used to create an efficient energy harvesting mechanism under quasi-static excitations. The conversion mechanism has been used to transform low-rate and low-frequency excitations into high-rate motions. Electric energy can be generated from such high-rate motions using piezoelectric transducers. However, lack of control over the post-buckling behavior severely limits the mechanism's efficiency. This study aims to maximize the levels of the harvestable power by controlling the location of the snapping point along the beam at different buckling transitions. Since the snap-through location cannot be controlled by tuning the geometry properties of a uniform cross-section beam, non-uniform cross sections are examined. An energy-based theoretical model is herein developed to predict the post-buckling response of non-uniform cross-section beams. The total potential energy is minimized under constraints that represent the physical confinement of the beam between the lateral boundaries. Experimentally validated results show that changing the shape and geometry dimensions of non- uniform cross-section beams allows for the accurate control of the snap-through location at different buckling transitions. A 78.59% increase in harvested energy levels is achieved by optimizing the beam's shape.

  18. Development of geometry materials based on scientific approach for junior high school students

    NASA Astrophysics Data System (ADS)

    Nurafni; Siswanto, R. D.; Azhar, E.

    2018-01-01

    A scientific approach is a learning process designed so that learners can actively construct concepts, encourage learners to find out from various sources through observation, and not just be told. Therefore, learning by scientific approach offers a solution, because the goals, principles, and stages of the scientific approach allow for a good understanding of the students. Because of the absence of teaching materials “polyhedron geometry based on scientific approach” which is widely published in Indonesia, then we need to develop the teaching materials. The results obtained in this study are the tasks presented on teaching materials with a scientific approach both in defining the cube and the beam, identify and solve problems related to the properties and elements of cubes and beams, making cube and beam nets, solving problems related to cube and beam nets, solving problems related to cube and beam surface area. Beginning with the difficulties students face. Then, based on the results of interviews with teachers and analysis of student difficulties on each indicator, researchers revise the teaching materials as needed. Teaching materials that have not found any more student difficulties then the teaching materials are considered valid and ready for use by teachers and students.

  19. About a method for compressing x-ray computed microtomography data

    NASA Astrophysics Data System (ADS)

    Mancini, Lucia; Kourousias, George; Billè, Fulvio; De Carlo, Francesco; Fidler, Aleš

    2018-04-01

    The management of scientific data is of high importance especially for experimental techniques that produce big data volumes. Such a technique is x-ray computed tomography (CT) and its community has introduced advanced data formats which allow for better management of experimental data. Rather than the organization of the data and the associated meta-data, the main topic on this work is data compression and its applicability to experimental data collected from a synchrotron-based CT beamline at the Elettra-Sincrotrone Trieste facility (Italy) and studies images acquired from various types of samples. This study covers parallel beam geometry, but it could be easily extended to a cone-beam one. The reconstruction workflow used is the one currently in operation at the beamline. Contrary to standard image compression studies, this manuscript proposes a systematic framework and workflow for the critical examination of different compression techniques and does so by applying it to experimental data. Beyond the methodology framework, this study presents and examines the use of JPEG-XR in combination with HDF5 and TIFF formats providing insights and strategies on data compression and image quality issues that can be used and implemented at other synchrotron facilities and laboratory systems. In conclusion, projection data compression using JPEG-XR appears as a promising, efficient method to reduce data file size and thus to facilitate data handling and image reconstruction.

  20. Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam.

    PubMed

    Zhao, Haichuan; Wang, Xiaolin; Ma, Haotong; Zhou, Pu; Ma, Yanxing; Xu, Xiaojun; Zhao, Yijun

    2011-08-01

    We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.

  1. Coaxial microreactor for particle synthesis

    DOEpatents

    Bartsch, Michael; Kanouff, Michael P; Ferko, Scott M; Crocker, Robert W; Wally, Karl

    2013-10-22

    A coaxial fluid flow microreactor system disposed on a microfluidic chip utilizing laminar flow for synthesizing particles from solution. Flow geometries produced by the mixing system make use of hydrodynamic focusing to confine a core flow to a small axially-symmetric, centrally positioned and spatially well-defined portion of a flow channel cross-section to provide highly uniform diffusional mixing between a reactant core and sheath flow streams. The microreactor is fabricated in such a way that a substantially planar two-dimensional arrangement of microfluidic channels will produce a three-dimensional core/sheath flow geometry. The microreactor system can comprise one or more coaxial mixing stages that can be arranged singly, in series, in parallel or nested concentrically in parallel.

  2. Numerical design and analysis of parasitic mode oscillations for 95 GHz gyrotron beam tunnel

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Yadav, Vivek; Kumar, Anil; Sinha, A. K.

    2013-05-01

    The beam tunnel, equipped with the high lossy ceramics, is designed for 95 GHz gyrotron. The geometry of the beam tunnel is optimized considering the maximum RF absorption (ideally 100%) and the suppression of parasitic oscillations. The excitation of parasitic modes is a concerning problem for high frequency, high power gyrotrons. Considering the problem of parasitic mode excitation in beam tunnel, a detail analysis is performed for the suppression of these kinds of modes. Trajectory code EGUN and CST Microwave Studio are used for the simulations of electron beam trajectory and electromagnetic analysis, respectively.

  3. Collision-Driven Negative-Energy Waves and the Weibel Instability of a Relativistic Electron Beam in a Quasineutral Plasma

    NASA Astrophysics Data System (ADS)

    Karmakar, Anupam; Kumar, Naveen; Shvets, Gennady; Polomarov, Oleg; Pukhov, Alexander

    2008-12-01

    A new model describing the Weibel instability of a relativistic electron beam propagating through a resistive plasma is developed. For finite-temperature beams, a new class of negative-energy magnetosound waves is identified, whose growth due to collisional dissipation destabilizes the beam-plasma system even for high beam temperatures. We perform 2D and 3D particle-in-cell simulations and show that in 3D geometry the Weibel instability persists even for collisionless background plasma. The anomalous plasma resistivity in 3D is caused by the two-stream instability.

  4. Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework

    PubMed Central

    Dunkerley, David A. P.; Tomkowiak, Michael T.; Slagowski, Jordan M.; McCabe, Bradley P.; Funk, Tobias; Speidel, Michael A.

    2015-01-01

    Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8–6.4% (18.6–31.5 cm acrylic, 100 kV), versus 2.1–4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems. PMID:26113765

  5. Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework.

    PubMed

    Dunkerley, David A P; Tomkowiak, Michael T; Slagowski, Jordan M; McCabe, Bradley P; Funk, Tobias; Speidel, Michael A

    2015-02-21

    Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8-6.4% (18.6-31.5 cm acrylic, 100 kV), versus 2.1-4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems.

  6. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  7. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  8. Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Joerg, E-mail: Joerg.Lehmann@sydney.edu.au; Institute of Medical Physics, University of Sydney, Physics Road A28, Sydney, NSW 2006; School of Applied Sciences, Royal Melbourne Institute of Technology

    Purpose: The purpose of this investigation was to assess the angular dependence of a commercial optically stimulated luminescence dosimeter (OSLD) dosimetry system in MV x-ray beams at depths beyondd{sub max} and to find ways to mitigate this dependence for measurements in phantoms. Methods: Two special holders were designed which allow a dosimeter to be rotated around the center of its sensitive volume. The dosimeter's sensitive volume is a disk, 5 mm in diameter and 0.2 mm thick. The first holder rotates the disk in the traditional way. It positions the disk perpendicular to the beam (gantry pointing to the floor)more » in the initial position (0°). When the holder is rotated the angle of the disk towards the beam increases until the disk is parallel with the beam (“edge on,” 90°). This is referred to as Setup 1. The second holder offers a new, alternative measurement position. It positions the disk parallel to the beam for all angles while rotating around its center (Setup 2). Measurements with five to ten dosimeters per point were carried out for 6 MV at 3 and 10 cm depth. Monte Carlo simulations using GEANT4 were performed to simulate the response of the active detector material for several angles. Detector and housing were simulated in detail based on microCT data and communications with the manufacturer. Various material compositions and an all-water geometry were considered. Results: For the traditional Setup 1 the response of the OSLD dropped on average by 1.4% ± 0.7% (measurement) and 2.1% ± 0.3% (Monte Carlo simulation) for the 90° orientation compared to 0°. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming the layer to completely consist of the active material (Al{sub 2}O{sub 3}) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response within the simulation uncertainty of about 1%. For the new Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusions: The dosimeter system exhibits a small angular dependence of approximately 2% which needs to be considered for measurements involving other than normal incident beams angles. This applies in particular to clinicalin vivo measurements where the orientation of the dosimeter is dictated by clinical circumstances and cannot be optimized as otherwise suggested here. When measuring in a phantom, the proposed new setup should be considered. It changes the orientation of the dosimeter so that a coplanar beam arrangement always hits the disk shaped detector material from the thin side and thereby reduces the angular dependence of the response to within the measurement uncertainty of about 1%. This improvement makes the dosimeter more attractive for clinical measurements with multiple coplanar beams in phantoms, as the overall measurement uncertainty is reduced. Similarly, phantom based postal audits can transition from the traditional TLD to the more accurate and convenient OSLD.« less

  9. Pyramid beam splitter

    DOEpatents

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  10. Novel Optical Processor for Phased Array Antenna.

    DTIC Science & Technology

    1992-10-20

    parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in

  11. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaw, Travis J., E-mail: mccaw@wisc.edu; Micka, John A.; DeWerd, Larry A.

    Purpose: Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. Methods: A film stack dosimeter was developed using Gafchromic{sup ®} EBT2 films. The dosimeter consists of 22 films separated bymore » 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. Results: The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. Conclusions: The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.« less

  12. Bessel beam CARS of axially structured samples

    NASA Astrophysics Data System (ADS)

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-01

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  13. Bessel beam CARS of axially structured samples.

    PubMed

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-05

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  14. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters

    PubMed Central

    Gratuze, Mathieu; Elsayed, Mohannad Y.

    2018-01-01

    Piezoelectric energy harvesters have proven to have the potential to be a power source in a wide range of applications. As the harvester dimensions scale down, the resonance frequencies of these devices increase drastically. Proof masses are essential in micro-scale devices in order to decrease the resonance frequency and increase the strain along the beam to increase the output power. In this work, the effects of proof mass geometry on piezoelectric energy harvesters are studied. Different geometrical dimension ratios have significant impact on the resonance frequency, e.g., beam to mass lengths, and beam to mass widths. A piezoelectric energy harvester has been fabricated and tested operating at a frequency of about 4 kHz within the audible range. The responses of various prototypes were studied, and an optimized T-shaped piezoelectric vibration energy harvester design is presented for improved performance. PMID:29772706

  15. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters.

    PubMed

    Alameh, Abdul Hafiz; Gratuze, Mathieu; Elsayed, Mohannad Y; Nabki, Frederic

    2018-05-16

    Piezoelectric energy harvesters have proven to have the potential to be a power source in a wide range of applications. As the harvester dimensions scale down, the resonance frequencies of these devices increase drastically. Proof masses are essential in micro-scale devices in order to decrease the resonance frequency and increase the strain along the beam to increase the output power. In this work, the effects of proof mass geometry on piezoelectric energy harvesters are studied. Different geometrical dimension ratios have significant impact on the resonance frequency, e.g., beam to mass lengths, and beam to mass widths. A piezoelectric energy harvester has been fabricated and tested operating at a frequency of about 4 kHz within the audible range. The responses of various prototypes were studied, and an optimized T-shaped piezoelectric vibration energy harvester design is presented for improved performance.

  16. Non-linear optical flow cytometry using a scanned, Bessel beam light-sheet.

    PubMed

    Collier, Bradley B; Awasthi, Samir; Lieu, Deborah K; Chan, James W

    2015-05-29

    Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers.

  17. A planar comparison of actuators for vibration control of flexible structures

    NASA Technical Reports Server (NTRS)

    Clark, William W.; Robertshaw, Harry H.; Warrington, Thomas J.

    1989-01-01

    The methods and results of an analytical study comparing the effectiveness of four actuators in damping the vibrations of a planar clamped-free beam are presented. The actuators studied are two inertia-type actuators, the proof mass and reaction wheel, and two variable geometry trusses, the planar truss and the planar truss proof mass (a combination variable geometry truss/inertia-type actuator). Actuator parameters used in the models were chosen based on the results of a parametric study. A full-state, LQR optimal feedback control law was used for control in each system. Numerical simulations of each beam/actuator system were performed in response to initial condition inputs. These simulations provided information such as time response of the closed-loop system and damping provided to the beam. This information can be used to determine the 'best' actuator for a given purpose.

  18. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2014YQ060537), and the National Basic Research Program, China (Grant No. 2013CB632803).

  19. Large-Signal Code TESLA: Current Status and Recent Development

    DTIC Science & Technology

    2008-04-01

    K.Eppley, J.J.Petillo, “ High - power four cavity S - band multiple- beam klystron design”, IEEE Trans. Plasma Sci. , vol. 32, pp. 1119-1135, June 2004. 4...advances in the development of the large-signal code TESLA, mainly used for the modeling of high - power single- beam and multiple-beam klystron ...amplifiers. Keywords: large-signal code; multiple-beam klystrons ; serial and parallel versions. Introduction The optimization and design of new high power

  20. Dynamic Airblast Simulator (DABS) Instrumentation Development. Phase 1

    DTIC Science & Technology

    1978-08-01

    the laser system employing two beams . This theory will be expanded to provide insight to the design of a suitable velocity measure- ment system for...Laser Beam Crossover Region 91 B3 Cross Section of Ellipsoidal Interference Region 95 B4 Doppler Difference Measurement Geometry 96 B5 Scattering...Volume Assumptions 116 B6 Microwave Veloclmeter, Tunnel Floor Installation Layout, Typical for 120° Beam Intersection at 10.525 GHz 119 B7 Ku-Band

  1. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1981-01-01

    A miniature drag force anemometer is described which is capable of measuring unsteady as well as steady state velocity head and flow direction. It consists of a cantilevered beam with strain gages located at the base of the beam as the force measuring element. The dynamics of the beam are like those of lightly damped second order system with a natural frequency as high as 40 kilohertz depending on beam geometry and material. The anemometer is used in both forward and reversed flow. Anemometer characteristics and several designs are presented along with discussions of several applications.

  2. Enabling inspection solutions for future mask technologies through the development of massively parallel E-Beam inspection

    NASA Astrophysics Data System (ADS)

    Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Jindal, Vibhu; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik

    2015-09-01

    The new device architectures and materials being introduced for sub-10nm manufacturing, combined with the complexity of multiple patterning and the need for improved hotspot detection strategies, have pushed current wafer inspection technologies to their limits. In parallel, gaps in mask inspection capability are growing as new generations of mask technologies are developed to support these sub-10nm wafer manufacturing requirements. In particular, the challenges associated with nanoimprint and extreme ultraviolet (EUV) mask inspection require new strategies that enable fast inspection at high sensitivity. The tradeoffs between sensitivity and throughput for optical and e-beam inspection are well understood. Optical inspection offers the highest throughput and is the current workhorse of the industry for both wafer and mask inspection. E-beam inspection offers the highest sensitivity but has historically lacked the throughput required for widespread adoption in the manufacturing environment. It is unlikely that continued incremental improvements to either technology will meet tomorrow's requirements, and therefore a new inspection technology approach is required; one that combines the high-throughput performance of optical with the high-sensitivity capabilities of e-beam inspection. To support the industry in meeting these challenges SUNY Poly SEMATECH has evaluated disruptive technologies that can meet the requirements for high volume manufacturing (HVM), for both the wafer fab [1] and the mask shop. Highspeed massively parallel e-beam defect inspection has been identified as the leading candidate for addressing the key gaps limiting today's patterned defect inspection techniques. As of late 2014 SUNY Poly SEMATECH completed a review, system analysis, and proof of concept evaluation of multiple e-beam technologies for defect inspection. A champion approach has been identified based on a multibeam technology from Carl Zeiss. This paper includes a discussion on the need for high-speed e-beam inspection and then provides initial imaging results from EUV masks and wafers from 61 and 91 beam demonstration systems. Progress towards high resolution and consistent intentional defect arrays (IDA) is also shown.

  3. CBET Experiments with Wavelength Shifting at the Nike Laser

    NASA Astrophysics Data System (ADS)

    Weaver, James; McKenty, P.; Bates, J.; Myatt, J.; Shaw, J.; Obenschain, K.; Oh, J.; Kehne, D.; Obenschain, S.; Lehmberg, R. H.; Tsung, F.; Schmitt, A. J.; Serlin, V.

    2016-10-01

    Studies conducted at NRL during 2015 searched for cross-beam energy transport (CBET) in small-scale plastic targets with strong gradients in planar, cylindrical, and spherical geometries. The targets were irradiated by two widely separated beam arrays in a geometry similar to polar direct drive. Data from these shots will be presented that show a lack of a clear CBET signature even with wavelength shifting of one set of beams. This poster will discuss the next campaign being planned, in part, with modelling codes developed at LLE. The next experiments will use a target configuration optimized to create stronger SBS growth. The primary path under consideration is to increase scale lengths 5-10x over the previous study by using exploding foils or low density foams. In addition to simulations, the presentation will also discuss improvements to the diagnostic suite and laser operations; for example, a new set of etalons will be available for the next campaign that should double the range of wavelength shifting between the two beam arrays. Work supported by DoE/NNSA.

  4. Parametric Modelling of As-Built Beam Framed Structure in Bim Environment

    NASA Astrophysics Data System (ADS)

    Yang, X.; Koehl, M.; Grussenmeyer, P.

    2017-02-01

    A complete documentation and conservation of a historic timber roof requires the integration of geometry modelling, attributional and dynamic information management and results of structural analysis. Recently developed as-built Building Information Modelling (BIM) technique has the potential to provide a uniform platform, which provides possibility to integrate the traditional geometry modelling, parametric elements management and structural analysis together. The main objective of the project presented in this paper is to develop a parametric modelling tool for a timber roof structure whose elements are leaning and crossing beam frame. Since Autodesk Revit, as the typical BIM software, provides the platform for parametric modelling and information management, an API plugin, able to automatically create the parametric beam elements and link them together with strict relationship, was developed. The plugin under development is introduced in the paper, which can obtain the parametric beam model via Autodesk Revit API from total station points and terrestrial laser scanning data. The results show the potential of automatizing the parametric modelling by interactive API development in BIM environment. It also integrates the separate data processing and different platforms into the uniform Revit software.

  5. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  6. In Situ Aerosol Detector

    NASA Technical Reports Server (NTRS)

    Vakhtin, Andrei; Krasnoperov, Lev

    2011-01-01

    An affordable technology designed to facilitate extensive global atmospheric aerosol measurements has been developed. This lightweight instrument is compatible with newly developed platforms such as tethered balloons, blimps, kites, and even disposable instruments such as dropsondes. This technology is based on detection of light scattered by aerosol particles where an optical layout is used to enhance the performance of the laboratory prototype instrument, which allows detection of smaller aerosol particles and improves the accuracy of aerosol particle size measurement. It has been determined that using focused illumination geometry without any apertures is advantageous over using the originally proposed collimated beam/slit geometry (that is supposed to produce uniform illumination over the beam cross-section). The illumination source is used more efficiently, which allows detection of smaller aerosol particles. Second, the obtained integral scattered light intensity measured for the particle can be corrected for the beam intensity profile inhomogeneity based on the measured beam intensity profile and measured particle location. The particle location (coordinates) in the illuminated sample volume is determined based on the information contained in the image frame. The procedure considerably improves the accuracy of determination of the aerosol particle size.

  7. Achromatic recirculated chicane with fixed geometry and independently variable path length and momentum compaction

    DOEpatents

    Douglas, David R.; Neil, George R.

    2005-04-26

    A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.

  8. Matematica Para La Escuela Secundaria: Geometria (Parte 1). Traduccion Preliminar de la Edicion Inglesa Revisada. (Mathematics for High School: Geometry, Part 1. Preliminary Translation of the Revised English Edition).

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    This is part one of a two-part SMSG mathematics text for high school students. Topics include plane geometry, real numbers, triangles and angles, congruence, construction, parallel lines, perpendicular lines, and parallelograms. The text is written in Spanish. (RH)

  9. MCM Polarimetric Radiometers for Planar Arrays

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase shift). Each of these beams enters the MCM through one of two WR-22 waveguide input terminals in the lid of the MCM. The h + i(nu0 and h - i(nu) signals are amplified, then fed to a phase-discriminator hybrid designed specifically to fit the predominantly planar character of the MCM geometry and to enable determination of Q and U. The phase-discriminator hybrid generates four outputs, which are detected and used to calculate I, Q, and U.

  10. X-Ray and TeV Gamma-Ray Emission from Parallel Electron-Positron or Electron-Proton Beams in BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Krawczynski, H.

    2007-04-01

    In this paper we discuss models of the X-ray and TeV γ-ray emission from BL Lac objects based on parallel electron-positron or electron-proton beams that form close to the central black hole, due to the strong electric fields generated by the accretion disk and possibly also by the black hole itself. Fitting the energy spectrum of the BL Lac object Mrk 501, we obtain tight constraints on the beam properties. Launching a sufficiently energetic beam requires rather strong magnetic fields close to the black hole (~100-1000 G). However, the model fits imply that the magnetic field in the emission region is only ~0.02 G. Thus, the particles are accelerated close to the black hole and propagate a considerable distance before instabilities trigger the dissipation of energy through synchrotron and self-Compton emission. We discuss various approaches to generate enough power to drive the jet and, at the same time, to accelerate particles to ~20 TeV energies. Although the parallel beam model has its own problems, it explains some of the long-standing problems that plague models based on Fermi-type particle acceleration, such as the presence of a very high minimum Lorentz factor of accelerated particles. We conclude with a brief discussion of the implications of the model for the difference between the processes of jet formation in BL Lac-type objects and those in quasars.

  11. X-ray and TeV Gamma-Ray Emission from Parallel Electron-Positron or Electron-Proton Beams in BL Lac Objects

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric

    2007-04-01

    In this contribution we discuss models of the X-rays and TeV gamma-ray emission from BL Lac objects based on parallel electron-positron or electron-proton beams that form close to the central black hole owing to the strong electric fields generated by the accretion disk and possibly also by the black hole itself. Fitting the energy spectrum of the BL Lac object Mrk 501, we obtain tight constrains on the beam properties. Launching a sufficiently energetic beam requires rather strong magnetic fields close to the black hole 100-1000 G. However, the model fits imply that the magnetic field in the emission region is only 0.02 G. Thus, the particles are accelerated close to the black hole and propagate a considerable distance before instabilities trigger the dissipation of energy through synchrotron and self-Compton emission. We discuss various approaches to generate enough power to drive the jet and, at the same time, to accelerate particles to 20 TeV energies. Although the parallel beam model has its own problems, it explains some of the long-standing problems that plague models based on Fermi type particle acceleration, like the presence of a very high minimum Lorentz factor of accelerated particles. We conclude with a brief discussion of the implications of the model for the difference between the processes of jet formation in BL Lac type objects and in quasars.

  12. Creating aperiodic photonic structures by synthesized Mathieu-Gauss beams

    NASA Astrophysics Data System (ADS)

    Vasiljević, Jadranka M.; Zannotti, Alessandro; Timotijević, Dejan V.; Denz, Cornelia; Savić, Dragana M. Jović

    2017-08-01

    We demonstrate a kind of aperiodic photonic structure realized using the interference of multiple Mathieu-Gauss beams. Depending on the beam configurations, their mutual distances, angles of rotation, or phase relations we are able to observe different classes of such aperiodic optically induced refractive index structures. Our experimental approach is based on the optical induction in a single parallel writing process.

  13. Dual beam translator for use in Laser Doppler anemometry

    DOEpatents

    Brudnoy, David M.

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  14. Dual beam translator for use in Laser Doppler anemometry

    DOEpatents

    Brudnoy, D.M.

    1984-04-12

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  15. New x-ray parallel beam facility XPBF 2.0 for the characterization of silicon pore optics

    NASA Astrophysics Data System (ADS)

    Krumrey, Michael; Müller, Peter; Cibik, Levent; Collon, Max; Barrière, Nicolas; Vacanti, Giuseppe; Bavdaz, Marcos; Wille, Eric

    2016-07-01

    A new X-ray parallel beam facility (XPBF 2.0) has been installed in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II in Berlin to characterize silicon pore optics (SPOs) for the future X-ray observatory ATHENA. As the existing XPBF which is operated since 2005, the new beamline provides a pencil beam of very low divergence, a vacuum chamber with a hexapod system for accurate positioning of the SPO to be investigated, and a vertically movable CCD-based camera system to register the direct and the reflected beam. In contrast to the existing beamline, a multilayer-coated toroidal mirror is used for beam monochromatization at 1.6 keV and collimation, enabling the use of beam sizes between about 100 μm and at least 5 mm. Thus the quality of individual pores as well as the focusing properties of large groups of pores can be investigated. The new beamline also features increased travel ranges for the hexapod to cope with larger SPOs and a sample to detector distance of 12 m corresponding to the envisaged focal length of ATHENA.

  16. Modelling and simulation of parallel triangular triple quantum dots (TTQD) by using SIMON 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fathany, Maulana Yusuf, E-mail: myfathany@gmail.com; Fuada, Syifaul, E-mail: fsyifaul@gmail.com; Lawu, Braham Lawas, E-mail: bram-labs@rocketmail.com

    2016-04-19

    This research presents analysis of modeling on Parallel Triple Quantum Dots (TQD) by using SIMON (SIMulation Of Nano-structures). Single Electron Transistor (SET) is used as the basic concept of modeling. We design the structure of Parallel TQD by metal material with triangular geometry model, it is called by Triangular Triple Quantum Dots (TTQD). We simulate it with several scenarios using different parameters; such as different value of capacitance, various gate voltage, and different thermal condition.

  17. On the Use of CAD and Cartesian Methods for Aerodynamic Optimization

    NASA Technical Reports Server (NTRS)

    Nemec, M.; Aftosmis, M. J.; Pulliam, T. H.

    2004-01-01

    The objective for this paper is to present the development of an optimization capability for Curt3D, a Cartesian inviscid-flow analysis package. We present the construction of a new optimization framework and we focus on the following issues: 1) Component-based geometry parameterization approach using parametric-CAD models and CAPRI. A novel geometry server is introduced that addresses the issue of parallel efficiency while only sparingly consuming CAD resources; 2) The use of genetic and gradient-based algorithms for three-dimensional aerodynamic design problems. The influence of noise on the optimization methods is studied. Our goal is to create a responsive and automated framework that efficiently identifies design modifications that result in substantial performance improvements. In addition, we examine the architectural issues associated with the deployment of a CAD-based approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute engines. We demonstrate the effectiveness of the framework for a design problem that features topology changes and complex geometry.

  18. Direct write electron beam lithography: a historical overview

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans C.

    2010-09-01

    Maskless pattern generation capability in combination with practically limitless resolution made probe-forming electron beam systems attractive tools in the semiconductor fabrication process. However, serial exposure of pattern elements with a scanning beam is a slow process and throughput presented a key challenge in electron beam lithography from the beginning. To meet this challenge imaging concepts with increasing exposure efficiency have been developed projecting ever larger number of pixels in parallel. This evolution started in the 1960s with the SEM-type Gaussian beam systems writing one pixel at a time directly on wafers. During the 1970s IBM pioneered the concept of shaped beams containing multiple pixels which led to higher throughput and an early success of e-beam direct write (EBDW) in large scale manufacturing of semiconductor chips. EBDW in a mix-and match approach with optical lithography provided unique flexibility in part number management and cycle time reduction and proved extremely cost effective in IBM's Quick-Turn-Around-Time (QTAT) facilities. But shaped beams did not keep pace with Moore's law because of limitations imposed by the physics of charged particles: Coulomb interactions between beam electrons cause image blur and consequently limit beam current and throughput. A new technology approach was needed. Physically separating beam electrons into multiple beamlets to reduce Coulomb interaction led to the development of massively parallel projection of pixels. Electron projection lithography (EPL) - a mask based imaging technique emulating optical steppers - was pursued during the 1990s by Bell Labs with SCALPEL and by IBM with PREVAIL in partnership with Nikon. In 2003 Nikon shipped the first NCR-EB1A e-beam stepper based on the PREVAIL technology to Selete. It exposed pattern segments containing 10 million pixels in single shot and represented the first successful demonstration of massively parallel pixel projection. However the window of opportunity for EPL had closed with the quick implementation of immersion lithography and the interest of the industry has since shifted back to maskless lithography (ML2). This historical overview of EBDW will highlight opportunities and limitation of the technology with particular focus on technical challenges facing the current ML2 development efforts in Europe and the US. A brief status report and risk assessment of the ML2 approaches will be provided.

  19. Filamentation instability of a fast electron beam in a dielectric target.

    PubMed

    Debayle, A; Tikhonchuk, V T

    2008-12-01

    High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam production. At current densities exceeding a several kA microm{-2} , the beam propagation is maintained by an almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed flows, beam instabilities can develop, depending on the target and the beam parameters. The present paper proposes an analytical description of the filamentation instability of an electron beam propagating through an insulator target. It is shown that the collisionless and resistive instabilities enter into competition with the ionization instability. This latter process is dominant in insulator targets where the field ionization by the fast beam provides free electrons for the neutralization current.

  20. Nonlinear Elastic J-Integral Measurements in Mode I Using a Tapered Double Cantilever Beam Geometry

    NASA Technical Reports Server (NTRS)

    Macon, David J.

    2006-01-01

    An expression for the J-integral of a nonlinear elastic material is derived for an advancing crack in a tapered double cantilever beam fracture specimen. The elastic and plastic fracture energies related to the test geometry and how these energies correlates to the crack position are discussed. The dimensionless shape factors eta(sub el and eta(sub p) are shown to be equivalent and the deformation J-integral is analyzed in terms of the eta(sub el) function. The fracture results from a structural epoxy are interpreted using the discussed approach. The magnitude of the plastic dissipation is found to strongly depend upon the initial crack shape.

  1. Airborne Lidar Bathymetry Beam Diagnostics Using an Underwater Optical Detector Array

    NASA Astrophysics Data System (ADS)

    Birkebak, Matthew

    The surface geometry of air-water interface is considered as an important factor affecting the performance of Airborne Lidar Bathymetry (ALB), and laser optical communication through the water surface. ALB is a remote sensing technique that utilizes a pulsed green (532 nm) laser mounted to an airborne platform in order to measure water depth. The water surface (i.e., air-water interface) can distort the light beam's ray-path geometry and add uncertainty to range calculation measurements. Previous studies on light refracting through a complex water surface are heavily dependent on theoretical models and simulations. In addition, only very limited work has been conducted to validate these theoretical models using experiments under well-controlled laboratory conditions. The goal of the study is to establish a clear relationship between water-surface conditions and the uncertainty of ALB measurement. This relationship will be determined by conducting more extensive empirical measurements to characterize the changes in beam slant path associated with a variety of short wavelength wind ripples, typically seen in ALB survey conditions. This study will focus on the effects of capillary and gravity-capillary waves with surface wavelengths smaller than the diameter of the laser beam on the water surface. Simulations using Monte-Carlo techniques of the ALB beam footprints and the environmental conditions were used to analyze the ray-path geometries. Based on the simulation results, laboratory experiments were then designed to test key parameters that have the greatest contribution on beam path and direction through the water. The laser beam dispersion experiments were conducted in well-controlled laboratory setting at the University of New Hampshire's Wave and Tow tank. The spatial elevations of the water surface were independently measured using a high resolution wave staff. The refracted laser beam footprint was measured using an underwater optical detector consisting of a 6x6 array of photodiodes. Image processing techniques were used to estimate the laser's incidence angle intercepted by the detector array. Beam patterns that resulted from intersection between the laser beam light field underwater and the detector array were modeled and used to calculate changes in position and orientation for water surface conditions containing wavelengths less than 0.1m. Finally, a total horizontal uncertainty (THU) model was estimated, which can be implemented in total propagated uncertainty (TPU) models for reporting as a measure of the quality of each measurement. The wave refraction error for various sea states and beam characteristics was successfully quantified using both experimental and analytical techniques.

  2. The effects of transducer geometry on artifacts common to diagnostic bone imaging with conventional medical ultrasound.

    PubMed

    Mauldin, F William; Owen, Kevin; Tiouririne, Mohamed; Hossack, John A

    2012-06-01

    The portability, low cost, and non-ionizing radiation associated with medical ultrasound suggest that it has potential as a superior alternative to X-ray for bone imaging. However, when conventional ultrasound imaging systems are used for bone imaging, clinical acceptance is frequently limited by artifacts derived from reflections occurring away from the main axis of the acoustic beam. In this paper, the physical source of off-axis artifacts and the effect of transducer geometry on these artifacts are investigated in simulation and experimental studies. In agreement with diffraction theory, the sampled linear-array geometry possessed increased off-axis energy compared with single-element piston geometry, and therefore, exhibited greater levels of artifact signal. Simulation and experimental results demonstrated that the linear-array geometry exhibited increased artifact signal when the center frequency increased, when energy off-axis to the main acoustic beam (i.e., grating lobes) was perpendicularly incident upon off-axis surfaces, and when off-axis surfaces were specular rather than diffusive. The simulation model used to simulate specular reflections was validated experimentally and a correlation coefficient of 0.97 between experimental and simulated peak reflection contrast was observed. In ex vivo experiments, the piston geometry yielded 4 and 6.2 dB average contrast improvement compared with the linear array when imaging the spinous process and interlaminar space of an animal spine, respectively. This work indicates that off-axis reflections are a major source of ultrasound image artifacts, particularly in environments comprising specular reflecting (i.e., bone or bone-like) objects. Transducer geometries with reduced sensitivity to off-axis surface reflections, such as a piston transducer geometry, yield significant reductions in image artifact.

  3. NOTE: MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning

    NASA Astrophysics Data System (ADS)

    Alexander, A.; DeBlois, F.; Stroian, G.; Al-Yahya, K.; Heath, E.; Seuntjens, J.

    2007-07-01

    Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM_RT, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform-independent, large-scale MC treatment planning for different treatment sites. Patient recalculations were performed to validate the software and ensure proper functionality.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalas, S.; Dornmair, I.; Lehe, R.

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR - or even suppress it - and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be pronemore » to NCR. Here in this paper, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.« less

  5. Spatial Studies of Ion Beams in an Expanding Plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, Evan; Good, Timothy; Scime, Earl; Thompson, Derek

    2017-10-01

    We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.

  6. Simulation-based artifact correction (SBAC) for metrological computed tomography

    NASA Astrophysics Data System (ADS)

    Maier, Joscha; Leinweber, Carsten; Sawall, Stefan; Stoschus, Henning; Ballach, Frederic; Müller, Tobias; Hammer, Michael; Christoph, Ralf; Kachelrieß, Marc

    2017-06-01

    Computed tomography (CT) is a valuable tool for the metrolocical assessment of industrial components. However, the application of CT to the investigation of highly attenuating objects or multi-material components is often restricted by the presence of CT artifacts caused by beam hardening, x-ray scatter, off-focal radiation, partial volume effects or the cone-beam reconstruction itself. In order to overcome this limitation, this paper proposes an approach to calculate a correction term that compensates for the contribution of artifacts and thus enables an appropriate assessment of these components using CT. Therefore, we make use of computer simulations of the CT measurement process. Based on an appropriate model of the object, e.g. an initial reconstruction or a CAD model, two simulations are carried out. One simulation considers all physical effects that cause artifacts using dedicated analytic methods as well as Monte Carlo-based models. The other one represents an ideal CT measurement i.e. a measurement in parallel beam geometry with a monochromatic, point-like x-ray source and no x-ray scattering. Thus, the difference between these simulations is an estimate for the present artifacts and can be used to correct the acquired projection data or the corresponding CT reconstruction, respectively. The performance of the proposed approach is evaluated using simulated as well as measured data of single and multi-material components. Our approach yields CT reconstructions that are nearly free of artifacts and thereby clearly outperforms commonly used artifact reduction algorithms in terms of image quality. A comparison against tactile reference measurements demonstrates the ability of the proposed approach to increase the accuracy of the metrological assessment significantly.

  7. Comparison of Microstructures and Mechanical Properties for Solid and Mesh Cobalt-Base Alloy Prototypes Fabricated by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Gaytan, S. M.; Murr, L. E.; Martinez, E.; Martinez, J. L.; Machado, B. I.; Ramirez, D. A.; Medina, F.; Collins, S.; Wicker, R. B.

    2010-12-01

    The microstructures and mechanical behavior of simple, as-fabricated, solid geometries (with a density of 8.4 g/cm3), as-fabricated and fabricated and annealed femoral (knee) prototypes, and reticulated mesh components (with a density of 1.5 g/cm3) all produced by additive manufacturing (AM) using electron beam melting (EBM) of Co-26Cr-6Mo-0.2C powder are examined and compared in this study. Microstructures and microstructural issues are examined by optical metallography (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD), while mechanical properties included selective specimen tensile testing and Vickers microindentation hardness (HV) and Rockwell C-scale hardness (HRC) measurements. Orthogonal (X-Y) melt scanning of the electron beam during AM produced unique, orthogonal and related Cr23C6 carbide (precipitate) arrays (a controlled microstructural architecture) with dimensions of 2 μm in the build plane perpendicular to the build direction, while connected carbide columns were formed in the vertical plane, parallel to the build direction, with microindentation hardnesses ranging from 4.4 to 5.9 GPa, corresponding to a yield stress and ultimate tensile strength (UTS) of 0.51 and 1.45 GPa with elongations ranging from 1.9 to 5.3 pct. Annealing produced an equiaxed fcc grain structure with some grain boundary carbides, frequent annealing twins, and often a high density of intrinsic {111} stacking faults within the grains. The reticulated mesh strut microstructure consisted of dense carbide arrays producing an average microindentation hardness of 6.2 GPa or roughly 25 pct higher than the fully dense components.

  8. Pilot study about dose-effect relationship of ocular injury in argon laser photocoagulation

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhang, C. P.; Fu, X. B.; Zhang, T. M.; Wang, C. Z.; Qian, H. W.; San, Q.

    2011-03-01

    The aim of this article was to study the injury effect of either convergent or parallel argon laser beam on rabbit retina, get the dose-effect relationship for the two types of laser beams, and calculate the damage threshold of argon laser for human retinas. An argon laser therapeutic instrument for ophthalmology was used in this study. A total of 80 rabbit eyes were irradiated for 600 lesions, half of which were treated by convergent laser and the other half were done with parallel laser beam. After irradiation, slit lamp microscope and fundus photography were used to observe the lesions, change and the incidence of injury was processed statistically to get the damage threshold of rabbit retina. Based on results from the experiments on animals and the data from clinical cases of laser treatment, the photocoagulation damage thresholds of human retinas for convergent and parallel argon laser were calculated to be 0.464 and 0.285 mJ respectively. These data provided biological reference for safely operation when employing laser photocoagulation in clinical practice and other fields.

  9. Method For Enhanced Gas Monitoring In High Density Flow Streams

    DOEpatents

    Von Drasek, William A.; Mulderink, Kenneth A.; Marin, Ovidiu

    2005-09-13

    A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

  10. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishikawa, K.; Frank, L.A.; Huang, C.Y.

    Plasma data from ISEE 1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electronmore » beam and the ion beam excite ion acoustic waves with the Doppler-shifted real frequency ..omega..approx. = +- k/sub parallel/(c/sub s/-V/sub i//sub //sub parallel/). However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion beam is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points for simulations show turbulence generated by growing waves. The frequency of these spectra ranges from ..cap omega../sub i/ to ..omega../sub p//sub e/, which is in qualitative agreement with the satellite data. copyright American Geophysical Union 1988« less

  11. Intense positron beam as a source for production of electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Stoneking, M. R.; Horn-Stanja, J.; Stenson, E. V.; Pedersen, T. Sunn; Saitoh, H.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Hugenschmidt, C.; Piochacz, C.

    2016-10-01

    We aim to produce magnetically confined, short Debye length electron-positron plasma and test predicted properties for such systems. A first challenge is obtaining large numbers of positrons; a table-top experiment (system size 5 cm) with a temperature less than 5 eV requires about 1010 positrons to have more than 10 Debye lengths in the system. The NEPOMUC facility at the FRM II research reactor in Germany is one of the world's most intense positron sources. We report on characterization (using a retarding field energy analyzer with magnetic field gradient) of the NEPOMUC beam as delivered to the open beam port at various beam energies and in both the re-moderated and primary beam configurations in order to design optimal trapping (and accumulation) schemes for production of electron-positron plasma. The intensity of the re-moderated (primary) beam is in the range 2 -3 x 107 /s (1 - 5 x 108 /s). The re-moderated beam is currently the most promising for direct injection and confinement experiments; it has a parallel energy spread of 15 - 35% and the transverse energy spread is 6 - 15% of the parallel energy. We report on the implications for injection and trapping in a dipole magnetic field as well as plans for beam development, in situ re-moderation, and accumulation. We also report results demonstrating a difference in phosphor luminescent response to low energy positrons versus electrons.

  12. Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects.

    PubMed

    Balashov, Victor; Cherkasova, Maria; Kruglov, Kirill; Kudriavtsev, Arseny; Masherov, Pavel; Mogulkin, Andrey; Obukhov, Vladimir; Riaby, Valentin; Svotina, Victoria

    2017-08-01

    A theoretical-experimental research has been carried out to determine the characteristics of a radio frequency (RF) ion source for the generation of a weakly expanding wedge-shaped xenon ion beam. Such ion beam geometry is of interest as a prototype of an on-board ion injector for contactless "ion shepherding" by service spacecraft to remove large space debris objects from geostationary orbits. The wedge shape of the ion beam increases its range. The device described herein comprises an inductive gas discharge chamber and a slit-type three-electrode ion extraction grid (IEG) unit. Calculations of accelerating cell geometries and ion trajectories determined the dependence of beam expansion half-angle on normalized perveance based on the measurements of the spatial distributions of the xenon plasma parameters at the IEG entrance for a xenon flow rate q ≈ 0.2 mg/s and an incident RF power P in ≤ 250 W at a driving frequency f = 2 MHz. Experimental studies showed that the ion beam, circular at the IEG exit, accepted the elliptical form at the distance of 580 mm with half-angle of beam expansion across IEG slits about 2°-3° and close to 0° along them. Thus, the obtained result proved the possibility of creating a new-generation on-board ion injector that could be used in spacecrafts for removal of debris.

  13. Generation of helical Ince-Gaussian beams: beam-shaping with a liquid crystal display

    NASA Astrophysics Data System (ADS)

    Davis, Jeffrey A.; Bentley, Joel B.; Bandres, Miguel A.; Gutiérrez-Vega, Julio C.

    2006-08-01

    We review the three types of laser beams - Hermite-Gaussian (HG), Laguerre-Gaussian (LG) and the newly discovered Ince-Gaussian (IG) beams. We discuss the helical forms of the LG and IG beams that consist of linear combinations of the even and odd solutions and form a number of vortices that are useful for optical trapping applications. We discuss how to generate these beams by encoding the desired amplitude and phase onto a single parallel-aligned liquid crystal display (LCD). We introduce a novel interference technique where we generate both the object and reference beams using a single LCD and show the vortex interference patterns.

  14. ALEX neutral beam probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourrezaei, K.

    1982-01-01

    A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade wasmore » designed.« less

  15. An integrated charge exchange recombination spectroscopy/beam emission spectroscopy diagnostic for Alcator C-Mod tokamak.

    PubMed

    Bespamyatnov, I O; Rowan, W L; Liao, K T; Granetz, R S

    2010-10-01

    A novel integrated charge exchange recombination spectroscopy (CXRS)/beam emission spectroscopy (BES) system is proposed for C-Mod, in which both measurements are taken from a shared viewing geometry. The supplementary BES system serves to quantify local beam densities and supplants the common calculation of beam attenuation. The new system employs two optical viewing arrays, 20 poloidal and 22 toroidal channels. A dichroic filter splits the light between two spectrometers operating at different wavelengths for impurity ion and beam neutrals emission. In this arrangement, the impurity density is inferred from the electron density, measured BES and CXRS spectral radiances, and atomic emission rates.

  16. Monte Carlo simulations of secondary electron emission due to ion beam milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahady, Kyle; Tan, Shida; Greenzweig, Yuval

    We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes thismore » study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.« less

  17. Precise optical dosimetry in low-level laser therapy of soft tissues in oral cavity

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena V.; Sabotinov, O.

    2004-06-01

    The new low level laser therapy (LLLT) is widely applied for treatment of diseases of the oral mucosa and parodont. Depending on indication, different optical tips and light-guides are used to create beams with a required shape. However, to the best of our knowledge, the developed irradiation geometries are usually proposed assuming validity of Bouger-Lambert law. This hardly corresponds to the real situation because of the dominating multiple scattering within 600-1200 nm range that destroys correlation between the emitted laser beam and the spatial distribution of the absorbed dose inside the tissue. The aim of this work is to base the dosimetry of the LLLT procedures of periodontal tissues on radiation transfer theory using a flexible Monte-Carlo code. We studied quantitatively the influence of tissue optical parameters (absorption and scattering coefficients, tissue refraction index, anisotropy factor) on decreasing of correlation between the emitted beam and the energy deposition for converging or diverging beams. We evaluated energy deposition for the developed by us LLLT system in a 3-D model of periodontal tissues created using a cross-sectional image of this region with internal structural information on the gingival and the tooth. The laser source is a CW diode laser emitting elliptical beam within 650-675 nm at output power 5-30 mW. To determine the geometry of the irradiating beam we used CCD camera Spiricon LBA 300.

  18. One-step microlithography

    NASA Astrophysics Data System (ADS)

    Kahlen, Franz-Josef; Sankaranarayanan, Srikanth; Kar, Aravinda

    1997-09-01

    Subject of this investigation is a one-step rapid machining process to create miniaturized 3D parts, using the original sample material. An experimental setup where metal powder is fed to the laser beam-material interaction region has been built. The powder is melted and forms planar, 2D geometries as the substrate is moved under the laser beam in XY- direction. After completing the geometry in the plane, the substrate is displaced in Z-direction, and a new layer of material is placed on top of the just completed deposit. By continuous repetition of this process, 3D parts wee created. In particular, the impact of the focal spot size of the high power laser beam on the smallest achievable structures was investigated. At a translation speed of 51 mm/s a minimum material thickness of 590 micrometers was achieved. Also, it was shown that a small Z-displacement has a negligible influence on the continuity of the material deposition over this power range. A high power CO2 laser was used as energy source, the material powder under investigation was stainless steel SS304L. Helium was used as shield gas at a flow rate of 15 1/min. The incident CO2 laser beam power was varied between 300 W and 400 W, with the laser beam intensity distribute in a donut mode. The laser beam was focused to a focal diameter of 600 (Mu) m.

  19. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Lomonosov, I. V.; Borm, B.; Piriz, A. R.; Shutov, A.; Neumayer, P.; Bagnoud, V.; Piriz, S. A.

    2017-09-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  20. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V.

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will becomemore » operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.« less

  1. Negative tunnel magnetoresistance and differential conductance in transport through double quantum dots

    NASA Astrophysics Data System (ADS)

    Trocha, Piotr; Weymann, Ireneusz; Barnaś, Józef

    2009-10-01

    Spin-dependent transport through two coupled single-level quantum dots weakly connected to ferromagnetic leads with collinear magnetizations is considered theoretically. Transport characteristics, including the current, linear and nonlinear conductances, and tunnel magnetoresistance are calculated using the real-time diagrammatic technique in the parallel, serial, and intermediate geometries. The effects due to virtual tunneling processes between the two dots via the leads, associated with off-diagonal coupling matrix elements, are also considered. Negative differential conductance and negative tunnel magnetoresistance have been found in the case of serial and intermediate geometries, while no such behavior has been observed for double quantum dots coupled in parallel. It is also shown that transport characteristics strongly depend on the magnitude of the off-diagonal coupling matrix elements.

  2. A tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Lamba, R. P.; Hossain, A. M.; Pal, U. N.; Phelps, A. D. R.; Prakash, R.

    2017-11-01

    The experimental study of a tapered, multi-gap, multi-aperture pseudospark-sourced electron gun based X-band plasma assisted slow wave oscillator is presented. The designed electron gun is based on the pseudospark discharge concept and has been used to generate a high current density and high energy electron beam simultaneously. The distribution of apertures has been arranged such that the field penetration potency inside the backspace of the hollow-cathode is different while passing through the tapered gap region. This leads to non-concurrent ignition of the discharge through all the channels which is, in general, quite challenging in the case of multi-aperture plasma cathode electron gun geometries. Multiple and successive hollow cathode phases are reported from this electron gun geometry, which have been confirmed using simulations. This geometry also has led to the achievement of ˜71% fill factor inside the slow wave oscillator for an electron beam of energy of 20 keV and a beam current density in the range of 115-190 A/cm2 at a working argon gas pressure of 18 Pa. The oscillator has generated broadband microwave output in the frequency range of 10-11.7 GHz with a peak power of ˜10 kW for ˜50 ns.

  3. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  4. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, A.W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  5. Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)

    DTIC Science & Technology

    2016-09-17

    test machine. Experimental data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain...data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain conditions. Optimization methods...be used directly in finite element simulations of more complex geometries. Keywords Axial/torsional experimentation • Plasticity • Constitutive model

  6. One-dimensional models of quasi-neutral parallel electric fields

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1981-01-01

    Parallel electric fields can exist in the magnetic mirror geometry of auroral field lines if they conform to the quasineutral equilibrium solutions. Results on quasi-neutral equilibria and on double layer discontinuities were reviewed and the effects on such equilibria due to non-unique solutions, potential barriers and field aligned current flows using as inputs monoenergetic isotropic distribution functions were examined.

  7. Son of IXION: A Steady State Centrifugally Confined Plasma for Fusion*

    NASA Astrophysics Data System (ADS)

    Hassam, Adil

    1996-11-01

    A magnetic confinement scheme in which the inertial, u.grad(u), forces effect parallel confinement is proposed. The basic geometry is mirror-like as far as the poloidal field goes or, more simply, multipole (FM-1) type. The rotation is toroidal in this geometry. A supersonic rotation can effect complete parallel confinement, with the usual magnetic mirror force rendered irrelevant. The rotation shear, in addition, aids in the suppression of the flute mode. This suppression is not complete which indicates the addition of a toroidal field, at maximum of the order of the poloidal field. We show that at rotation in excess of Mach 3, the parallel particle and heat losses can be minimized to below the Lawson breakeven point. The crossfield transport can be expected to be better than tokamaks on account of the large velocity shear. Other advantages of the scheme are that it is steady state and disruption free. An exploratory experiment that tests equilibrium, parallel detachment, and MHD stability is proposed. The concept resembles earlier (Geneva, 1958) experiments on "homopolar generators" and a mirror configuration called IXION. Ixion, Greek mythological king, was forever strapped to a rotating, flaming wheel. *Work supported by DOE

  8. Method for fabricating high aspect ratio structures in perovskite material

    DOEpatents

    Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria

    2003-10-28

    A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.

  9. Design Sketches For Optical Crossbar Switches Intended For Large-Scale Parallel Processing Applications

    NASA Astrophysics Data System (ADS)

    Hartmann, Alfred; Redfield, Steve

    1989-04-01

    This paper discusses design of large-scale (1000x 1000) optical crossbar switching networks for use in parallel processing supercom-puters. Alternative design sketches for an optical crossbar switching network are presented using free-space optical transmission with either a beam spreading/masking model or a beam steering model for internodal communications. The performances of alternative multiple access channel communications protocol-unslotted and slotted ALOHA and carrier sense multiple access (CSMA)-are compared with the performance of the classic arbitrated bus crossbar of conventional electronic parallel computing. These comparisons indicate an almost inverse relationship between ease of implementation and speed of operation. Practical issues of optical system design are addressed, and an optically addressed, composite spatial light modulator design is presented for fabrication to arbitrarily large scale. The wide range of switch architecture, communications protocol, optical systems design, device fabrication, and system performance problems presented by these design sketches poses a serious challenge to practical exploitation of highly parallel optical interconnects in advanced computer designs.

  10. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-09-02

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  11. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-06-24

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  12. Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Lu, G.; Goertz, C. K.; Nishikawa, K. - I.

    1994-01-01

    The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which establishes a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L (sub parallel), restricts the growth of the fastest growing mode, with a wavelength lambda (sub m parallel), of the MBPI. The parallel electron heating at wave saturation scales approximately as (L (sub parallel)/lambda (sub m parallel)) (exp 1/2); (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. This reduces exponentially with time the relative drift between the ambient plasma and the neutrals. The timescale is inversely proportional to the Alfven velocity. (3) The transvers e charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. The loss of energetic electrons from the cloud seems to be larger in the direction of plasma drift relative to the neutrals, where the loss rate is characterized by the neutral drift velocity. It is also shown that a factor of 4 increase in the ambient plasma density, increases the CIV ionization yield by almost 2 orders of magnitude at the end of a typical run. It is concluded that a larger ambient plasma density can result in a larger CIV yield because of (1) larger seed ion production by non-CIV mechanisms, (2) smaller Alfven velocity and hence weak momentum coupling, and (3) smaller ratio of the ion beam density to the ambient ion density, and therefore a weaker modulation of the beam velocity. The simulation results are used to interpret various chemical release experiments in space.

  13. Why diamond dimensions and electrode geometry are crucial for small photon beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsolat, F.; Tromson, D.; Tranchant, N.

    2015-12-21

    Recent use of very small photon beams (down to 4 mm) in stereotactic radiotherapy requires new detectors to accurately determine the delivered dose. Diamond detectors have been presented in the literature as an attractive candidate for this application, due to their small detection volume and the diamond atomic number (Z = 6) which is close to water effective atomic number (Zeff ∼ 7.42). However, diamond exhibits a density 3.51 times greater than that of water and recent studies using Monte Carlo simulations have demonstrated the drawback of a high-density detector on small beam output factors. The current study focuses on geometrical parameters of diamond detector,more » namely, the diamond dimensions and the electrode geometry, in order to solve the dosimetric issues still observed in small photon beams with diamond detectors. To give better insights to these open questions, we have used both computational method and experimental analysis. This study highlighted that reducing diamond dimensions is crucial for small beam output factor measurements and to limit the influence of its high density. Furthermore, electrodes covering the whole diamond surface were essential for a dose rate independence of the diamond detector. The optimal dosimeter derived from this work presented small diamond dimensions of approximately 1 × 1 × 0.15 mm{sup 3}, with diamond-like-carbon electrodes covering the whole diamond surface. A dose rate independence of this diamond detector (better than 0.5% over a wide range of dose rates available on a stereotactic dedicated facility) was obtained due to the electrode geometry. Concerning the output factor measurements, a good agreement (better than 1.1%) was observed between this carbon material detector and two types of passive dosimeters (LiF microcubes and EBT2 radiochromic films) for all beam sizes except the smallest field of 0.6 × 0.6 cm{sup 2} with a deviation of 2.6%. This new study showed the high performance of this diamond detector in small photon beams, in comparison with various commercially available passive and active dosimeters.« less

  14. SU-F-J-192: A Quick and Effective Method to Validate Patient’s Daily Setup and Geometry Changes Prior to Proton Treatment Delivery Based On Water Equivalent Thickness Projection Imaging (WETPI) for Head Neck Cancer (HNC) Patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, G; Qin, A; Zhang, J

    Purpose: With the implementation of Cone-beam Computed-Tomography (CBCT) in proton treatment, we introduces a quick and effective tool to verify the patient’s daily setup and geometry changes based on the Water-Equivalent-Thickness Projection-Image(WETPI) from individual beam angle. Methods: A bilateral head neck cancer(HNC) patient previously treated via VMAT was used in this study. The patient received 35 daily CBCT during the whole treatment and there is no significant weight change. The CT numbers of daily CBCTs were corrected by mapping the CT numbers from simulation CT via Deformable Image Registration(DIR). IMPT plan was generated using 4-field IMPT robust optimization (3.5% rangemore » and 3mm setup uncertainties) with beam angle 60, 135, 300, 225 degree. WETPI within CTV through all beam directions were calculated. 3%/3mm gamma index(GI) were used to provide a quantitative comparison between initial sim-CT and mapped daily CBCT. To simulate an extreme case where human error is involved, a couch bar was manually inserted in front of beam angle 225 degree of one CBCT. WETPI was compared in this scenario. Results: The average of GI passing rate of this patient from different beam angles throughout the treatment course is 91.5 ± 8.6. In the cases with low passing rate, it was found that the difference between shoulder and neck angle as well as the head rest often causes major deviation. This indicates that the most challenge in treating HNC is the setup around neck area. In the extreme case where a couch bar is accidently inserted in the beam line, GI passing rate drops to 52 from 95. Conclusion: WETPI and quantitative gamma analysis give clinicians, therapists and physicists a quick feedback of the patient’s setup accuracy or geometry changes. The tool could effectively avoid some human errors. Furthermore, this tool could be used potentially as an initial signal to trigger plan adaptation.« less

  15. Stability of an emittance-dominated sheet-electron beam in planar wiggler and periodic permanent magnet structures with natural focusing

    NASA Astrophysics Data System (ADS)

    Carlsten, B. E.; Earley, L. M.; Krawczyk, F. L.; Russell, S. J.; Potter, J. M.; Ferguson, P.; Humphries, S.

    2005-06-01

    A sheet-beam traveling-wave amplifier has been proposed as a high-power generator of rf from 95 to 300 GHz, using a microfabricated rf slow-wave structure [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005), ITPSBD, 0093-3813, 10.1109/TPS.2004.841172], for emerging radar and communications applications. The planar geometry of microfabrication technologies matches well with the nearly planar geometry of a sheet beam, and the greater allowable beam current leads to high-peak power, high-average power, and wide bandwidths. Simulations of nominal designs using a vane-loaded waveguide as the slow-wave structure have indicated gains in excess of 1 dB/mm, with extraction efficiencies greater than 20% at 95 GHz with a 120-kV, 20-A electron beam. We have identified stable sheet-beam formation and transport as the key enabling technology for this type of device. In this paper, we describe sheet-beam transport, for both wiggler and periodic permanent magnet (PPM) magnetic field configurations, with natural (or single-plane) focusing. For emittance-dominated transport, the transverse equation of motion reduces to a Mathieu equation, and to a modified Mathieu equation for a space-charge dominated beam. The space-charge dominated beam has less beam envelope ripple than an emittance-dominated beam, but they have similar stability thresholds (defined by where the beam ripple continues to grow without bound along the transport line), consistent with the threshold predicted by the Mathieu equation. Design limits are derived for an emittance-dominated beam based on the Mathieu stability threshold. The increased beam envelope ripple for emittance-dominated transport may impact these design limits, for some transport requirements. The stability of transport in a wiggler field is additionally compromised by the beam’s increased transverse motion. Stable sheet-beam transport with natural focusing is shown to be achievable for a 120-kV, 20-A, elliptical beam with a cross section of 1 cm by 0.5 mm, with both a PPM and a wiggler field, with magnetic field amplitude of about 2.5 kG.

  16. SU-E-T-130: Are Proton Gantries Needed? An Analysis of 4332 Patient Proton Gantry Treatment Plans From the Past 10 Years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S; Lu, H; Flanz, J

    2015-06-15

    Purpose: To ascertain the necessity of a proton gantry, as compared to the feasibility of using a horizontal fixed proton beam-line for treatment with advanced technology. Methods: To calculate the percentage of patients that can be treated with a horizontal fixed beam-line instead of a gantry, we analyze the distributions of beam orientations of our proton gantry patients treated over the past 10 years. We identify three horizontal fixed beam geometries (FIXED, BEND and MOVE) with the patient in lying and/or sitting positions. The FIXED geometry includes only table/chair rotations and translations. In BEND, the beam can be bent up/downmore » for up to 20 degrees. MOVE allows for patient head/body angle adjustment. Based on the analysis, we select eight patients whose plan involves beams which are still challenging to achieve with a horizontal fixed beam. These beams are removed in the pencil beam scanning (PBS) plan optimized for the fixed beam-line (PBS-fix). We generate non-coplanar PBS-gantry plans for comparison, and perform a robustness analysis. Results: The percentage of patients with head-and-neck/brain tumors that can be treated with horizontal fixed beam is 44% in FIXED, 70% in 20-degrees BEND, and 100% in 90-degrees MOVE. For torso regions, 99% of the patients can be treated in 20-degree BEND. The target coverage is more homogeneous with PBS-fix plans compared to the clinical scattering treatment plans. The PBS-fix plans reduce the mean dose to organs-at-risk by a factor of 1.1–28.5. PBS-gantry plans are as good as PBS-fix plans, sometimes marginally better. Conclusion: The majority of the beam orientations can be realized with a horizontal fixed beam-line. Challenging non-coplanar beams can be eliminated with PBS delivery. Clinical implementation of the proposed fixed beam-line requires use of robotic patient positioning, further developments in immobilization, and image guidance. However, our results suggest that fixed beam-lines can be as effective as gantries.« less

  17. Suppression of Space Charge Induced Beam Halo in Nonlinear Focusing Channel

    DOE PAGES

    Batygin, Yuri Konstantinovich; Scheinker, Alexander; Kurennoy, Sergey; ...

    2016-01-29

    An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. We discuss a new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry. The resulting solution is applied to the problemmore » of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.« less

  18. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  19. A maximum likelihood method for high resolution proton radiography/proton CT

    NASA Astrophysics Data System (ADS)

    Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K. N.; Beaulieu, Luc; Seco, Joao

    2016-12-01

    Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography’s spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm-1 to 4.53 lp cm-1 in the 200 MeV beam and from 3.49 lp cm-1 to 5.76 lp cm-1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm-1 to 5.76 lp cm-1) or conical beam (from 3.49 lp cm-1 to 5.56 lp cm-1). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm-1 for the parallel beam and from 3.03 to 5.15 lp cm-1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65 % ) in proton radiography and greatly accelerate proton computed tomography reconstruction.

  20. A maximum likelihood method for high resolution proton radiography/proton CT.

    PubMed

    Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Portillo, Stephen K N; Beaulieu, Luc; Seco, Joao

    2016-12-07

    Multiple Coulomb scattering (MCS) is the largest contributor to blurring in proton imaging. In this work, we developed a maximum likelihood least squares estimator that improves proton radiography's spatial resolution. The water equivalent thickness (WET) through projections defined from the source to the detector pixels were estimated such that they maximizes the likelihood of the energy loss of every proton crossing the volume. The length spent in each projection was calculated through the optimized cubic spline path estimate. The proton radiographies were produced using Geant4 simulations. Three phantoms were studied here: a slanted cube in a tank of water to measure 2D spatial resolution, a voxelized head phantom for clinical performance evaluation as well as a parametric Catphan phantom (CTP528) for 3D spatial resolution. Two proton beam configurations were used: a parallel and a conical beam. Proton beams of 200 and 330 MeV were simulated to acquire the radiography. Spatial resolution is increased from 2.44 lp cm -1 to 4.53 lp cm -1 in the 200 MeV beam and from 3.49 lp cm -1 to 5.76 lp cm -1 in the 330 MeV beam. Beam configurations do not affect the reconstructed spatial resolution as investigated between a radiography acquired with the parallel (3.49 lp cm -1 to 5.76 lp cm -1 ) or conical beam (from 3.49 lp cm -1 to 5.56 lp cm -1 ). The improved images were then used as input in a photon tomography algorithm. The proton CT reconstruction of the Catphan phantom shows high spatial resolution (from 2.79 to 5.55 lp cm -1 for the parallel beam and from 3.03 to 5.15 lp cm -1 for the conical beam) and the reconstruction of the head phantom, although qualitative, shows high contrast in the gradient region. The proposed formulation of the optimization demonstrates serious potential to increase the spatial resolution (up by 65[Formula: see text]) in proton radiography and greatly accelerate proton computed tomography reconstruction.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, A.; Davis, A.; University of Wisconsin-Madison, Madison, WI 53706

    CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise tomore » extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)« less

  2. Direct-current polarization characteristics of various AlGaAs laser diodes

    NASA Technical Reports Server (NTRS)

    Fuhr, P. L.

    1984-01-01

    Polarization characteristics of AlGaAs laser diodes having various device geometries have been measured. Measurements were performed with the laser diodes operating under dc conditions. Results show that laser diodes having different device geometries have optical outputs that exhibit varying degrees of polarization purity. Implications of this result, with respect to incoherent polarization-beam combining, are addressed.

  3. Dose conversion coefficients for electron exposure of the human eye lens: calculations including a whole body phantom.

    PubMed

    Behrens, R

    2013-07-01

    In this work, conversion coefficients from electron fluence to absorbed dose to the eye lens were calculated using Monte Carlo simulations based on a detailed stylised eye model and a very simple but whole body phantom. These data supersede and complement data published earlier based on the simulation of only a single stylised eye. The new data differ from the old ones by not more than 3, 4, 7 and 16 % for angles of radiation incidence of α=0°, 15°, 30° and 45°, respectively, due to the inclusion of the whole body phantom. The data presented in the present work also complement those of a recent report of the International Commission on Radiological Protection (ICRP) (ICRP Publication 116), where conversion coefficients from electron fluence to absorbed dose to the lens of the eye are shown for solely 0°, 180° and isotropic radiation incidence (but for a much broader range of energies). In this article, values are provided for angles of incidence of 0° up to 180° in steps of 15° and for rotational geometry; no systematic deviation was observed from the values given in ICRP Publication 116 for 0° (based on the application of a bare eye) and 180° (based on the application of a voxel whole body phantom). Data are given for monoenergetic electrons from 0.1 up to 10 MeV and for a broad parallel beam geometry in vacuum.

  4. Numerical Modeling of Internal Flow Aerodynamics. Part 2: Unsteady Flows

    DTIC Science & Technology

    2004-01-01

    fluid- structure coupling, ...). • • • • • Prediction: in this simulation, we want to assess the effect of a change in SRM geometry, propellant...surface reaches the structure ). The third characteristic time describes the slow evolution of the internal geometry. The last characteristic time...incorporates fluid- structure coupling facility, and is parallel. MOPTI® manages exchanges between two principal computational modules: • • A varying

  5. Optimization of the K-edge imaging for vulnerable plaques using gold nanoparticles and energy-resolved photon counting detectors: a simulation study

    PubMed Central

    Alivov, Yahya; Baturin, Pavlo; Le, Huy Q.; Ducote, Justin; Molloi, Sabee

    2014-01-01

    We investigated the effect of different imaging parameters such as dose, beam energy, energy resolution, and number of energy bins on image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. Maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of plaque's inflammation. The simulations studies used a single slice parallel beam CT geometry with an X-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33x24 cm2) phantom, where both phantoms contained tissue, calcium, and gold. In the simulation studies GNP quantification and background (calcium and tissue) suppression task were pursued. The X-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% FWHM energy resolution) implementations of photon counting detector were simulated. The simulations were performed for the CdZnTe detector with pixel pitch of 0.5-1 mm, which corresponds to the performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the X-ray beam energy (kVp) to achieve the highest signal-to-noise ratio (SNR) with respect to patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at 125 kVp X-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 μmol/mL (0.21 mg/mL) for an ideal detector and about 2.5 μmol/mL (0.49 mg/mL) for more realistic (12% FWHM) detector. The studies show the optimal imaging parameters at lowest patient dose using an energy resolved photon counting detector to image GNP in an atherosclerotic plaque. PMID:24334301

  6. TU-AB-BRC-10: Modeling of Radiotherapy Linac Source Terms Using ARCHER Monte Carlo Code: Performance Comparison of GPU and MIC Computing Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Lin, H; Xu, X

    Purpose: (1) To perform phase space (PS) based source modeling for Tomotherapy and Varian TrueBeam 6 MV Linacs, (2) to examine the accuracy and performance of the ARCHER Monte Carlo code on a heterogeneous computing platform with Many Integrated Core coprocessors (MIC, aka Xeon Phi) and GPUs, and (3) to explore the software micro-optimization methods. Methods: The patient-specific source of Tomotherapy and Varian TrueBeam Linacs was modeled using the PS approach. For the helical Tomotherapy case, the PS data were calculated in our previous study (Su et al. 2014 41(7) Medical Physics). For the single-view Varian TrueBeam case, we analyticallymore » derived them from the raw patient-independent PS data in IAEA’s database, partial geometry information of the jaw and MLC as well as the fluence map. The phantom was generated from DICOM images. The Monte Carlo simulation was performed by ARCHER-MIC and GPU codes, which were benchmarked against a modified parallel DPM code. Software micro-optimization was systematically conducted, and was focused on SIMD vectorization of tight for-loops and data prefetch, with the ultimate goal of increasing 512-bit register utilization and reducing memory access latency. Results: Dose calculation was performed for two clinical cases, a Tomotherapy-based prostate cancer treatment and a TrueBeam-based left breast treatment. ARCHER was verified against the DPM code. The statistical uncertainty of the dose to the PTV was less than 1%. Using double-precision, the total wall time of the multithreaded CPU code on a X5650 CPU was 339 seconds for the Tomotherapy case and 131 seconds for the TrueBeam, while on 3 5110P MICs it was reduced to 79 and 59 seconds, respectively. The single-precision GPU code on a K40 GPU took 45 seconds for the Tomotherapy dose calculation. Conclusion: We have extended ARCHER, the MIC and GPU-based Monte Carlo dose engine to Tomotherapy and Truebeam dose calculations.« less

  7. Dose masking feature for BNCT radiotherapy planning

    DOEpatents

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  8. Efficient two-stage dual-beam noncollinear optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Hsiang; Gao, Frank Y.; Poulin, Peter R.; Nelson, Keith A.

    2018-06-01

    We have constructed a noncollinear optical parametric amplifier with two signal beams amplified in the same nonlinear crystal. This dual-beam design is more energy-efficient than operating two amplifiers in parallel. The cross-talk between two beams has been characterized and discussed. We have also added a second amplification stage to enhance the output of one of the arms, which is then frequency-doubled for ultraviolet generation. This single device provides two tunable sources for ultrafast spectroscopy in the ultraviolet and visible region.

  9. The elusive S{sub 2} state, the S{sub 1}/S{sub 2} splitting, and the excimer states of the benzene dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmer, Franziska A.; Trachsel, Maria A.; Leutwyler, Samuel

    We observe the weak S{sub 0} → S{sub 2} transitions of the T-shaped benzene dimers (Bz){sub 2} and (Bz-d{sub 6}){sub 2} about 250 cm{sup −1} and 220 cm{sup −1} above their respective S{sub 0} → S{sub 1} electronic origins using two-color resonant two-photon ionization spectroscopy. Spin-component scaled (SCS) second-order approximate coupled-cluster (CC2) calculations predict that for the tipped T-shaped geometry, the S{sub 0} → S{sub 2} electronic oscillator strength f{sub el}(S{sub 2}) is ∼10 times smaller than f{sub el}(S{sub 1}) and the S{sub 2} state lies ∼240 cm{sup −1} above S{sub 1}, in excellent agreement with experiment. The S{sub 0}more » → S{sub 1} (ππ{sup ∗}) transition is mainly localized on the “stem” benzene, with a minor stem → cap charge-transfer contribution; the S{sub 0} → S{sub 2} transition is mainly localized on the “cap” benzene. The orbitals, electronic oscillator strengths f{sub el}(S{sub 1}) and f{sub el}(S{sub 2}), and transition frequencies depend strongly on the tipping angle ω between the two Bz moieties. The SCS-CC2 calculated S{sub 1} and S{sub 2} excitation energies at different T-shaped, stacked-parallel and parallel-displaced stationary points of the (Bz){sub 2} ground-state surface allow to construct approximate S{sub 1} and S{sub 2} potential energy surfaces and reveal their relation to the “excimer” states at the stacked-parallel geometry. The f{sub el}(S{sub 1}) and f{sub el}(S{sub 2}) transition dipole moments at the C{sub 2v}-symmetric T-shape, parallel-displaced and stacked-parallel geometries are either zero or ∼10 times smaller than at the tipped T-shaped geometry. This unusual property of the S{sub 0} → S{sub 1} and S{sub 0} → S{sub 2} transition-dipole moment surfaces of (Bz){sub 2} restricts its observation by electronic spectroscopy to the tipped and tilted T-shaped geometries; the other ground-state geometries are impossible or extremely difficult to observe. The S{sub 0} → S{sub 1}/S{sub 2} spectra of (Bz){sub 2} are compared to those of imidazole ⋅ (Bz){sub 2}, which has a rigid triangular structure with a tilted (Bz){sub 2} subunit. The S{sub 0} → S{sub 1}/ S{sub 2} transitions of imidazole-(benzene){sub 2} lie at similar energies as those of (Bz){sub 2}, confirming our assignment of the (Bz){sub 2} S{sub 0} → S{sub 2} transition.« less

  10. Effect of transverse nonuniformity of the rf field on the efficiency of microwave sources driven by linear electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, G.S.; Sinitsyn, O.V.

    This paper contains a simple analytical theory that allows one to evaluate the effect of transverse nonuniformity of the rf field on the interaction efficiency in various microwave sources driven by linear electron beams. The theory is, first, applied to the systems where the beams of cylindrical symmetry interact with rf fields of microwave circuits having Cartesian geometry. Also, various kinds of microwave devices driven by sheet electron beams (orotrons, clinotrons) are considered. The theory can be used for evaluating the efficiency of novel sources of coherent terahertz radiation.

  11. Controlling large-scale film morphology by phase manipulation in interference lithography

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Hu, X. K.; Dimov, S. S.; Lipson, R. H.

    2007-10-01

    An experimental arrangement is described where a Babinet-Soleil compensator is inserted into the path of one of the three beams used for noncoplanar beam interference lithography. This birefringent element can change the phase of the beam so that either a positive two-dimensional pattern or an inverselike structure is generated in a photoresist without disturbing the mechanical geometry of the setup. Simulations are presented that confirm the validity of this approach. Large defect-free sample areas (>1 cm2) with submicrometer periodic patterns were obtained by expanding the laser beams used in the lithography experiment.

  12. Mechanical beam isolator for high-power laser systems

    DOEpatents

    Post, Richard F.; Vann, Charles S.

    1998-01-01

    A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape.

  13. Chip-Scale Controlled Storage All-Optical Memory

    DTIC Science & Technology

    2007-02-01

    half width at half maximum KHZ kilo Hertz KK Kramers-Kronig LH light hole MBE molecular beam epitaxy MHz mega Hertz MZI Mach-Zehnder...waveguide geometry. The sample used in experiments 1 and 2 consists of 15 GaAs (135Å)/Al0.3Ga0.7As(150 Å) QWs grown by molecular beam epitaxy (MBE...We developed the capability to grow GaAs QWs on (110)-oriented substrates using molecular beam epitaxy in a very short amount of time. The very

  14. High-Temperature Spintronic Devices and Circuits in Absence of Magnetic Field

    DTIC Science & Technology

    2012-04-23

    non-equilibrium Green’s function (NEGF) formalism. • Molecular beam epitaxy (MBE) growth of ferromagnetic metals (Fe, MnAs) and...measured for two diode injection currents in the Faraday geometry. The quantum dot microcavity device was grown by molecular beam epitaxy with a low...channel (10 nm, lxlOl9j Mn-doped) / undoped-AlAs (1 nm) tunnel barrier / undoped-GaAs (0.5 nm) / MnAs (25 nm) were grown by molecular beam epitaxy (MBE

  15. Parallel momentum input by tangential neutral beam injections in stellarator and heliotron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, S., E-mail: nishimura.shin@lhd.nifs.ac.jp; Nakamura, Y.; Nishioka, K.

    The configuration dependence of parallel momentum inputs to target plasma particle species by tangentially injected neutral beams is investigated in non-axisymmetric stellarator/heliotron model magnetic fields by assuming the existence of magnetic flux-surfaces. In parallel friction integrals of the full Rosenbluth-MacDonald-Judd collision operator in thermal particles' kinetic equations, numerically obtained eigenfunctions are used for excluding trapped fast ions that cannot contribute to the friction integrals. It is found that the momentum inputs to thermal ions strongly depend on magnetic field strength modulations on the flux-surfaces, while the input to electrons is insensitive to the modulation. In future plasma flow studies requiringmore » flow calculations of all particle species in more general non-symmetric toroidal configurations, the eigenfunction method investigated here will be useful.« less

  16. A novel collinear optical system with annulus mirrors for holographic disc driver

    NASA Astrophysics Data System (ADS)

    Wang, Ye

    2008-12-01

    This paper focus on a novel collinear lens system with annulus mirrors for holographic disc driver, both information beam and reference beam are use same laser beam. The expanded and parallel laser beam, center part of it as the information beam then through Fourier transform lens, the beam around center part as a reference beam. On this axis, the ring reference beam reflected by two annulus shaped mirrors, then became a convergent beam, together with the information beam which through the first Fourier transform lens then produce holographic pattern to be write into the holographic disc behind of them, this lens system with two mirrors made the angle between information beam and reference beam more wide, can improved the multiplex level of holographic storage. Pair of Fourier transform lens with advance performance is designed in this paper.

  17. Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke

    Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge density is increased by a higher dose rate and/or lower beam size.« less

  18. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods

    DOE PAGES

    Jalas, S.; Dornmair, I.; Lehe, R.; ...

    2017-03-20

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR - or even suppress it - and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be pronemore » to NCR. Here in this paper, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.« less

  19. Parallel detecting, spectroscopic ellipsometers/polarimeters

    DOEpatents

    Furtak, Thomas E.

    2002-01-01

    The parallel detecting spectroscopic ellipsometer/polarimeter sensor has no moving parts and operates in real-time for in-situ monitoring of the thin film surface properties of a sample within a processing chamber. It includes a multi-spectral source of radiation for producing a collimated beam of radiation directed towards the surface of the sample through a polarizer. The thus polarized collimated beam of radiation impacts and is reflected from the surface of the sample, thereby changing its polarization state due to the intrinsic material properties of the sample. The light reflected from the sample is separated into four separate polarized filtered beams, each having individual spectral intensities. Data about said four individual spectral intensities is collected within the processing chamber, and is transmitted into one or more spectrometers. The data of all four individual spectral intensities is then analyzed using transformation algorithms, in real-time.

  20. PLASMA EFFECTS ON EXTRAGALACTIC ULTRAHIGH-ENERGY COSMIC-RAY HADRON BEAMS IN COSMIC VOIDS. II. KINETIC INSTABILITY OF PARALLEL ELECTROSTATIC WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakau, S.; Schlickeiser, R., E-mail: steffen.krakau@rub.de, E-mail: rsch@tp4.rub.de

    2016-02-20

    The linear instability of an ultrarelativistic hadron beam in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of parallel electrostatic and electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays from their distant sources to Earth. As opposed to the previous paper, we calculate the minimum instability growth time for Lorentz-distributed cosmic rays which traverse the hot IGM. The growth times are orders of magnitude higher than the cosmic-ray propagation time in the IGM. Since the backreaction of the generated plasma fluctuations (plateauing) lasts longer than the propagation time, the cosmic-raymore » hadron beam can propagate to the Earth without losing a significant amount of energy to electrostatic turbulence.« less

  1. Adaptation of the chevron-notch beam fracture toughness method to specimens harvested from diesel particulate filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew; Jadaan, Osama; Modugno, Max

    In this paper, the apparent fracture toughness of a porous cordierite ceramic was estimated using a large specimen whose geometry was inspired by the ASTM-C1421-standardized chevron-notch beam. In this paper, using the same combination of experiment and analysis used to develop the standardized chevron-notch test for small, monolithic ceramic bend bars, an apparent fracture toughness of 0.6 and 0.9 MPa√m were estimated for an unaged and aged cordierite diesel particulate filter structure, respectively. Finally, the effectiveness and simplicity of this adapted specimen geometry and test method lends itself to the evaluation of (macroscopic) apparent fracture toughness of an entire porous-ceramic,more » diesel particulate filter structure.« less

  2. Adaptation of the chevron-notch beam fracture toughness method to specimens harvested from diesel particulate filters

    DOE PAGES

    Wereszczak, Andrew; Jadaan, Osama; Modugno, Max; ...

    2017-01-18

    In this paper, the apparent fracture toughness of a porous cordierite ceramic was estimated using a large specimen whose geometry was inspired by the ASTM-C1421-standardized chevron-notch beam. In this paper, using the same combination of experiment and analysis used to develop the standardized chevron-notch test for small, monolithic ceramic bend bars, an apparent fracture toughness of 0.6 and 0.9 MPa√m were estimated for an unaged and aged cordierite diesel particulate filter structure, respectively. Finally, the effectiveness and simplicity of this adapted specimen geometry and test method lends itself to the evaluation of (macroscopic) apparent fracture toughness of an entire porous-ceramic,more » diesel particulate filter structure.« less

  3. Parallel CARLOS-3D code development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, J.M.; Kotulski, J.D.

    1996-02-01

    CARLOS-3D is a three-dimensional scattering code which was developed under the sponsorship of the Electromagnetic Code Consortium, and is currently used by over 80 aerospace companies and government agencies. The code has been extensively validated and runs on both serial workstations and parallel super computers such as the Intel Paragon. CARLOS-3D is a three-dimensional surface integral equation scattering code based on a Galerkin method of moments formulation employing Rao- Wilton-Glisson roof-top basis for triangular faceted surfaces. Fully arbitrary 3D geometries composed of multiple conducting and homogeneous bulk dielectric materials can be modeled. This presentation describes some of the extensions tomore » the CARLOS-3D code, and how the operator structure of the code facilitated these improvements. Body of revolution (BOR) and two-dimensional geometries were incorporated by simply including new input routines, and the appropriate Galerkin matrix operator routines. Some additional modifications were required in the combined field integral equation matrix generation routine due to the symmetric nature of the BOR and 2D operators. Quadrilateral patched surfaces with linear roof-top basis functions were also implemented in the same manner. Quadrilateral facets and triangular facets can be used in combination to more efficiently model geometries with both large smooth surfaces and surfaces with fine detail such as gaps and cracks. Since the parallel implementation in CARLOS-3D is at high level, these changes were independent of the computer platform being used. This approach minimizes code maintenance, while providing capabilities with little additional effort. Results are presented showing the performance and accuracy of the code for some large scattering problems. Comparisons between triangular faceted and quadrilateral faceted geometry representations will be shown for some complex scatterers.« less

  4. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs.

  5. A 4 Tesla Superconducting Magnet Developed for a 6 Circle Huber Diffractometer at the XMaS Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, P. B. J.; Brown, S. D.; Bouchenoire, L.

    2007-01-19

    We report here on the development and testing of a 4 Tesla cryogen free superconducting magnet designed to fit within the Euler cradle of a 6 circle Huber diffractometer, allowing scattering in both the vertical and horizontal planes. The geometry of this magnet allows the field to be applied in three orientations. The first being along the beam direction, the second with the field transverse to the beam direction a horizontal plane and finally the field can be applied vertically with respect to the beam. The magnet has a warm bore and an open geometry of 180 deg. , allowingmore » large access to reciprocal space. A variable temperature insert has been developed, which is capable of working down to a temperature of 1.7 K and operating over a wide range of angles whilst maintaining a temperature stability of a few mK. Initial ferromagnetic diffraction measurements have been carried out on single crystal Tb and Dy samples.« less

  6. Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow

    NASA Astrophysics Data System (ADS)

    Elashnikov, Roman; Fitl, Premysl; Svorcik, Vaclav; Lyutakov, Oleksiy

    2017-02-01

    Laser heating and Marangoni flow result in the formation of surface structures with different geometries and shape on thin polymer films. By laser beam irradiation combined with a sample movement the solid polymethylmethacrylate (PMMA) films are heated and undergo phase transition which leads to a material flow. Since the laser beam has a non-linear distribution of energy, the PMMA film is heated inhomogeneously and a surface tension gradient in a lateral direction is introduced. During this procedure additional phenomena such as "reversible" or cyclic polymer flow also take place. The careful choice of experimental conditions enables the preparation of patterns with sophisticated geometries and with hierarchical pattern organization. Depending on initial PMMA film thickness and speed of the sample movement line arrays are created, which can subsequently be transformed into the crimped lines or system of circular holes. In addition, the introduction of a constant acceleration in the sample movement or a laser beam distortion enables the preparation of regularly crimped lines, ordered hexagonal holes or overlapped plates.

  7. Micromirror-based manipulation of synchrotron x-ray beams

    NASA Astrophysics Data System (ADS)

    Walko, D. A.; Chen, Pice; Jung, I. W.; Lopez, D.; Schwartz, C. P.; Shenoy, G. K.; Wang, Jin

    2017-08-01

    Synchrotron beamlines typically use macroscopic, quasi-static optics to manipulate x-ray beams. We present the use of dynamic microelectromechanical systems-based optics (MEMS) to temporally modulate synchrotron x-ray beams. We demonstrate this concept using single-crystal torsional MEMS micromirrors oscillating at frequencies of 75 kHz. Such a MEMS micromirror, with lateral dimensions of a few hundred micrometers, can interact with x rays by operating in grazing-incidence reflection geometry; x rays are deflected only when an x-ray pulse is incident on the rotating micromirror under appropriate conditions, i.e., at an angle less than the critical angle for reflectivity. The time window for such deflections depends on the frequency and amplitude of the MEMS rotation. We demonstrate that reflection geometry can produce a time window of a few microseconds. We further demonstrate that MEMS optics can isolate x rays from a selected synchrotron bunch or group of bunches. With ray-trace simulations we explain the currently achievable time windows and suggest a path toward improvements.

  8. Interactions between flames on parallel solid surfaces

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1995-01-01

    The interactions between flames spreading over parallel solid sheets of paper are being studied in normal gravity and in microgravity. This geometry is of practical importance since in most heterogeneous combustion systems, the condensed phase is non-continuous and spatially distributed. This spatial distribution can strongly affect burning and/or spread rate. This is due to radiant and diffusive interactions between the surface and the flames above the surfaces. Tests were conducted over a variety of pressures and separation distances to expose the influence of the parallel sheets on oxidizer transport and on radiative feedback.

  9. Using a constraint on the parallel velocity when determining electric fields with EISCAT

    NASA Technical Reports Server (NTRS)

    Caudal, G.; Blanc, M.

    1988-01-01

    A method is proposed to determine the perpendicular components of the ion velocity vector (and hence the perpendicular electric field) from EISCAT tristatic measurements, in which one introduces an additional constraint on the parallel velocity, in order to take account of our knowledge that the parallel velocity of ions is small. This procedure removes some artificial features introduced when the tristatic geometry becomes too unfavorable. It is particularly well suited for the southernmost or northernmost positions of the tristatic measurements performed by meridian scan experiments (CP3 mode).

  10. Means for the focusing and acceleration of parallel beams of charged particles. [Patent application

    DOEpatents

    Maschke, A.W.

    1980-09-23

    Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

  11. Three-beam aerosol backscatter correlation lidar for wind profiling

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  12. Evolution of beams in a plasma channel due to beam break up

    NASA Astrophysics Data System (ADS)

    Penn, Gregory; Lehe, Remi; Vay, Jean-Luc; Schroeder, Carl; Esarey, Eric

    2016-10-01

    We study the dynamics of beam break-up (BBU) of an accelerated electron beam in a plasma channel. Particle-in-cell simulations using the codes WARP and FBPIC are presented and interpreted in terms of theoretical calculations for the plasma-induced fields and the evolution of the instability. We focus on cylindrical channels for simplicity, and other geometries are considered to better understand the impact of BBU on electron beams undergoing laser-plasma wake field acceleration. We compare our findings with other published results. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  13. Active spectroscopic measurements of the bulk deuterium properties in the DIII-D tokamak (invited).

    PubMed

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Heidbrink, W W; Muñoz Burgos, J M; Pablant, N A; Solomon, W M; Van Zeeland, M A

    2012-10-01

    The neutral-beam induced D(α) emission spectrum contains a wealth of information such as deuterium ion temperature, toroidal rotation, density, beam emission intensity, beam neutral density, and local magnetic field strength magnitude |B| from the Stark-split beam emission spectrum, and fast-ion D(α) emission (FIDA) proportional to the beam-injected fast ion density. A comprehensive spectral fitting routine which accounts for all photoemission processes is employed for the spectral analysis. Interpretation of the measurements to determine physically relevant plasma parameters is assisted by the use of an optimized viewing geometry and forward modeling of the emission spectra using a Monte-Carlo 3D simulation code.

  14. Modeling of the energy resolution of a 1 meter and a 3 meter time of flight positron annihilation induced Auger electron spectrometers

    NASA Astrophysics Data System (ADS)

    Fairchild, A.; Chirayath, V.; Gladen, R.; McDonald, A.; Lim, Z.; Chrysler, M.; Koymen, A.; Weiss, A.

    Simion 8.1®simulations were used to determine the energy resolution of a 1 meter long Time of Flight Positron annihilation induced Auger Electron Spectrometer (TOF-PAES). The spectrometer consists of: 1. a magnetic gradient section used to parallelize the electrons leaving the sample along the beam axis, 2. an electric field free time of flight tube and 3. a detection section with a set of ExB plates that deflect electrons exiting the TOF tube into a Micro-Channel Plate (MCP). Simulations of the time of flight distribution of electrons emitted according to a known secondary electron emission distribution, for various sample biases, were compared to experimental energy calibration peaks and found to be in excellent agreement. The TOF spectra at the highest sample bias was used to determine the timing resolution function describing the timing spread due to the electronics. Simulations were then performed to calculate the energy resolution at various electron energies in order to deconvolute the combined influence of the magnetic field parallelizer, the timing resolution, and the voltage gradient at the ExB plates. The energy resolution of the 1m TOF-PAES was compared to a newly constructed 3 meter long system. The results were used to optimize the geometry and the potentials of the ExB plates for obtaining the best energy resolution. This work was supported by NSF Grant NSF Grant No. DMR 1508719 and DMR 1338130.

  15. LiNbO{sub 3}: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrascosa, M.; García-Cabañes, A.; Jubera, M.

    The application of evanescent photovoltaic (PV) fields, generated by visible illumination of Fe:LiNbO{sub 3} substrates, for parallel massive trapping and manipulation of micro- and nano-objects is critically reviewed. The technique has been often referred to as photovoltaic or photorefractive tweezers. The main advantage of the new method is that the involved electrophoretic and/or dielectrophoretic forces do not require any electrodes and large scale manipulation of nano-objects can be easily achieved using the patterning capabilities of light. The paper describes the experimental techniques for particle trapping and the main reported experimental results obtained with a variety of micro- and nano-particles (dielectricmore » and conductive) and different illumination configurations (single beam, holographic geometry, and spatial light modulator projection). The report also pays attention to the physical basis of the method, namely, the coupling of the evanescent photorefractive fields to the dielectric response of the nano-particles. The role of a number of physical parameters such as the contrast and spatial periodicities of the illumination pattern or the particle deposition method is discussed. Moreover, the main properties of the obtained particle patterns in relation to potential applications are summarized, and first demonstrations reviewed. Finally, the PV method is discussed in comparison to other patterning strategies, such as those based on the pyroelectric response and the electric fields associated to domain poling of ferroelectric materials.« less

  16. Beam splitter and method for generating equal optical path length beams

    DOEpatents

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  17. Vertical-cavity surface-emitting lasers - Design, growth, fabrication, characterization

    NASA Astrophysics Data System (ADS)

    Jewell, Jack L.; Lee, Y. H.; Harbison, J. P.; Scherer, A.; Florez, L. T.

    1991-06-01

    The authors have designed, fabricated, and tested vertical-cavity surface-emitting lasers (VCSEL) with diameters ranging from 0.5 microns to above 50 microns. Design issues, molecular beam epitaxial growth, fabrication, and lasing characteristics are discussed. The topics considered in fabrication of VCSELs are microlaser geometries; ion implementation and masks; ion beam etching; packaging and arrays; and ultrasmall devices.

  18. [Determination of absorbed dose to water for high energy photon and electron beams--comparison of different dosimetry protocols].

    PubMed

    Zakaria, Golam Abu; Schütte, Wilhelm

    2003-01-01

    The determination of absorbed dose to water for high-energy photon and electron beams is performed in Germany according to the dosimetry protocol DIN 6800-2 (1997). At an international level, the main protocols used are the AAPM dosimetry protocol TG-51 (1999) and the IAEA Code of Practice TRS-398 (2000). The present paper systematically compares these three dosimetry protocols, and identifies similarities and differences. The investigations were performed using 4 and 10 MV photon beams, as well as 6, 8, 9, 10, 12 and 14 MeV electron beams. Two cylindrical and two plane-parallel type chambers were used for measurements. In general, the discrepancies among the three protocols were 1.0% for photon beams and 1.6% for electron beams. Comparative measurements in the context of measurement technical control (MTK) with TLD showed a deviation of less than 1.3% between the measurements obtained according to protocols DIN 6800-2 and MTK (exceptions: 4 MV photons with 2.9% and 6 MeV electrons with 2.4%). While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using both cylindrical and plane-parallel chambers (the latter used after a cross-calibration to a cylindrical chamber, as required by the respective dosimetry protocols). Notably, unlike recommended in the corresponding protocols, we found out that cylindrical chambers can be used also for energies from 6 to 10 MeV.

  19. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  20. Multi-mounted X-ray cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Wang, Jingzheng; Guo, Wei; Peng, Peng

    2018-04-01

    As a powerful nondestructive inspection technique, X-ray computed tomography (X-CT) has been widely applied to clinical diagnosis, industrial production and cutting-edge research. Imaging efficiency is currently one of the major obstacles for the applications of X-CT. In this paper, a multi-mounted three dimensional cone-beam X-CT (MM-CBCT) method is reported. It consists of a novel multi-mounted cone-beam scanning geometry and the corresponding three dimensional statistical iterative reconstruction algorithm. The scanning geometry is the most iconic design and significantly different from the current CBCT systems. Permitting the cone-beam scanning of multiple objects simultaneously, the proposed approach has the potential to achieve an imaging efficiency orders of magnitude greater than the conventional methods. Although multiple objects can be also bundled together and scanned simultaneously by the conventional CBCT methods, it will lead to the increased penetration thickness and signal crosstalk. In contrast, MM-CBCT avoids substantially these problems. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed MM-CBCT prototype system. This technique will provide a possible solution for the CT inspection in a large scale.

  1. Proposed Standards for Ladar Signatures

    DTIC Science & Technology

    1977-04-01

    BDR and LRCS geometricas . parometers --------------------- 5 Figure 2. Geometry for sphere LRC:-------------------------------- 18 Figure 3. Mirror...take in the followinig LRCS definitions. Strictly speaking it is not correct to associate the LRCS of a specular spnere (a = la 2) with the "effective... Corrections due to near- field geometry or a radius of curvature on the impin ging beam have been mentioned before (36]. Also, errors due to surface

  2. Photon escape probabilities in a semi-infinite plane-parallel medium. [from electron plasma surrounding galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Elsner, R. F.; Weisskopf, M. C.; Darbro, W.

    1984-01-01

    It is shown in this work how to obtain the probabilities of photons escaping from a cold electron plasma environment after having undergone an arbitrary number of scatterings. This is done by retaining the exact differential cross section for Thomson scattering as opposed to using its polarization and angle averaged form. The results are given in the form of recursion relations. The geometry used is the semi-infinite plane-parallel geometry witlh a photon source located on a plane at an arbitrary optical depth below the surface. Analytical expressions are given for the probabilities which are accurate over a wide range of initial optical depth. These results can be used to model compact X-ray galactic sources which are surrounded by an electron-rich plasma.

  3. Extraction electrode geometry for a calutron

    DOEpatents

    Veach, A.M.; Bell, W.A. Jr.

    1975-09-23

    This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source. (auth)

  4. The Role of Coseismic Coulomb Stress Changes in Shaping the Hard Link Between Normal Fault Segments

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, Å.; Biggs, J.

    2018-01-01

    The mechanism and evolution of fault linkage is important in the growth and development of large faults. Here we investigate the role of coseismic stress changes in shaping the hard links between parallel normal fault segments (or faults), by comparing numerical models of the Coulomb stress change from simulated earthquakes on two en echelon fault segments to natural observations of hard-linked fault geometry. We consider three simplified linking fault geometries: (1) fault bend, (2) breached relay ramp, and (3) strike-slip transform fault. We consider scenarios where either one or both segments rupture and vary the distance between segment tips. Fault bends and breached relay ramps are favored where segments underlap or when the strike-perpendicular distance between overlapping segments is less than 20% of their total length, matching all 14 documented examples. Transform fault linkage geometries are preferred when overlapping segments are laterally offset at larger distances. Few transform faults exist in continental extensional settings, and our model suggests that propagating faults or fault segments may first link through fault bends or breached ramps before reaching sufficient overlap for a transform fault to develop. Our results suggest that Coulomb stresses arising from multisegment ruptures or repeated earthquakes are consistent with natural observations of the geometry of hard links between parallel normal fault segments.

  5. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    NASA Astrophysics Data System (ADS)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  6. An MCNPX2.7.0 study of Bragg peak degradation owing to density heterogeneity patterns for a CGMH therapeutic proton beam

    NASA Astrophysics Data System (ADS)

    Chao, Tsi-Chian; Tsai, Yi-Chun; Chen, Shih-Kuan; Wu, Shu-Wei; Tung, Chuan-Jong; Hong, Ji-Hong; Wang, Chun-Chieh; Lee, Chung-Chi

    2017-08-01

    The purpose of this study was to investigate the density heterogeneity pattern as a factor affecting Bragg peak degradation, including shifts in Bragg peak depth (ZBP), distal range (R80 and R20), and distal fall-off (R80-R20) using Monte Carlo N-Particles, eXtension (MCNPX). Density heterogeneities of different patterns with increasing complexity were placed downstream of commissioned proton beams at the Proton and Radiation Therapy Centre of Chang Gung Memorial Hospital, including one 150 MeV wobbling broad beam (10×10 cm2) and one 150 MeV proton pencil beam (FWHM of cross-plane=2.449 cm, FWHM of in-plane=2.256 cm). MCNPX 2.7.0 was used to model the transport and interactions of protons and secondary particles in density heterogeneity patterns and water using its repeated structure geometry. Different heterogeneity patterns were inserted into a 21×21×20 cm3 phantom. Mesh tally was used to track the dose distribution when the proton beam passed through the different density heterogeneity patterns. The results show that different heterogeneity patterns do cause different Bragg peak degradations owing to multiple Coulomb scattering (MCS) occurring in the density heterogeneities. A trend of increasing R20 and R80-R20 with increasing geometry complexity was observed. This means that Bragg peak degradation is mainly caused by the changes to the proton spectrum owing to MCS in the density heterogeneities. In contrast, R80 did not change considerably with different heterogeneity patterns, which indicated that the energy spectrum has only minimum effects on R80. Bragg peak degradation can occur both for a broad proton beam and a pencil beam, but is less significant for the broad beam.

  7. Micromagnetic Modeling: a Tool for Studying Remanence in Magnetite

    NASA Astrophysics Data System (ADS)

    ter Maat, G. W.; Fabian, K.; Church, N. S.; McEnroe, S. A.

    2017-12-01

    Micromagnetic modeling is a useful tool in understanding magnetic particle behavior. The domain state of, and interaction between, particles is influenced by their shape, size and spacing. Rocks contain a collection of grains with varying geometries. This study presents models of true geometries obtained by dual-beam focused ion beam scanning electron microscopy (FIB-SEM). Using focused ion beam nanotomography (FIB-nT) the shape and size of individual grains and their spacing are accurately determined. The particle assemblages discussed here are basalts from the Stardalur volcano in Iceland. The main carrier of the magnetization is oxy-exsolved magnetite which contains extensive microstructures from the micron to nanometer scale. The complex morphologies vary in shape from spherical to elongated to sheet-like shapes with SD to PSD domain states. We investigate large oxy-exsolved magnetite grains as well as smaller oxy-exsolved dendritic grains. The obtained 3D volumes are modeled using finite element micromagnetics software MERRILL, to calculate magnetization structures. By modeling a full hysteresis loop we can observe the complete switching process and visualize the mechanism of the reversal of the magnetization. Micromagnetic simulation of hysteresis loops of grains with varying geometry and spacing shows the magnetization state of, and magnetostatic interaction between, different grains. From the simulations the remanence state of the modeled reconstructed geometry is obtained. Modeling the behavior of separate individual grains is compared with modeling assemblages of grains with varying spacing to study the effect of interaction. The use of realistic geometries of oxy-exsolved magnetite in micromagnetic models allows the examination of the influence of shape, size and spacing on the magnetic properties of single particles, and magnetostatic interactions between them.These parameters are varied and tested to find if there is an increase in remanence-carrying capacity. The use of modeling of the realistic representation of the widespread microstructures allow us to test proposed enhancement of remanence, and more stable paleomagnetic recorders.

  8. Comparison of a 3-D GPU-Assisted Maxwell Code and Ray Tracing for Reflectometry on ITER

    NASA Astrophysics Data System (ADS)

    Gady, Sarah; Kubota, Shigeyuki; Johnson, Irena

    2015-11-01

    Electromagnetic wave propagation and scattering in magnetized plasmas are important diagnostics for high temperature plasmas. 1-D and 2-D full-wave codes are standard tools for measurements of the electron density profile and fluctuations; however, ray tracing results have shown that beam propagation in tokamak plasmas is inherently a 3-D problem. The GPU-Assisted Maxwell Code utilizes the FDTD (Finite-Difference Time-Domain) method for solving the Maxwell equations with the cold plasma approximation in a 3-D geometry. Parallel processing with GPGPU (General-Purpose computing on Graphics Processing Units) is used to accelerate the computation. Previously, we reported on initial comparisons of the code results to 1-D numerical and analytical solutions, where the size of the computational grid was limited by the on-board memory of the GPU. In the current study, this limitation is overcome by using domain decomposition and an additional GPU. As a practical application, this code is used to study the current design of the ITER Low Field Side Reflectometer (LSFR) for the Equatorial Port Plug 11 (EPP11). A detailed examination of Gaussian beam propagation in the ITER edge plasma will be presented, as well as comparisons with ray tracing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-FG02-99-ER54527.

  9. Neutron Energy Spectra and Yields from the 7Li(p,n) Reaction for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Tessler, M.; Friedman, M.; Schmidt, S.; Shor, A.; Berkovits, D.; Cohen, D.; Feinberg, G.; Fiebiger, S.; Krása, A.; Paul, M.; Plag, R.; Plompen, A.; Reifarth, R.

    2016-01-01

    Neutrons produced by the 7Li(p, n)7Be reaction close to threshold are widely used to measure the cross section of s-process nucleosynthesis reactions. While experiments have been performed so far with Van de Graaff accelerators, the use of RF accelerators with higher intensities is planned to enable investigations on radioactive isotopes. In parallel, high-power Li targets for the production of high-intensity neutrons at stellar energies are developed at Goethe University (Frankfurt, Germany) and SARAF (Soreq NRC, Israel). However, such setups pose severe challenges for the measurement of the proton beam intensity or the neutron fluence. In order to develop appropriate methods, we studied in detail the neutron energy distribution and intensity produced by the thick-target 7Li(p,n)7Be reaction and compared them to state-of- the-art simulation codes. Measurements were performed with the bunched and chopped proton beam at the Van de Graaff facility of the Institute for Reference Materials and Measurements (IRMM) using the time-of-flight (TOF) technique with thin (1/8") and thick (1") detectors. The importance of detailed simulations of the detector structure and geometry for the conversion of TOF to a neutron energy is stressed. The measured neutron spectra are consistent with those previously reported and agree well with Monte Carlo simulations that include experimentally determined 7Li(p,n) cross sections, two-body kinematics and proton energy loss in the Li-target.

  10. Synthesis of full Poincaré beams by means of uniaxial crystals

    NASA Astrophysics Data System (ADS)

    Piquero, G.; Monroy, L.; Santarsiero, M.; Alonzo, M.; de Sande, J. C. G.

    2018-06-01

    A simple optical system is proposed to generate full-Poincaré beams (FPBs), i.e. beams presenting all possible states of (total) polarization across their transverse section. The method consists in focusing a uniformly polarized laser beam onto a uniaxial crystal having its optic axis parallel to the propagation axis of the impinging beam. A simple approximated model is used to obtain the analytical expression of the beam polarization at the output of the crystal. The output beam is then proved to be a FPB. By changing the polarization state of the input field, full-Poincaré beams are still obtained, but presenting different distributions of the polarization state across the beam section. Experimental results are reported, showing an excellent agreement with the theoretical predictions.

  11. Interaction of a finite-length ion beam with a background plasma - Reflected ions at the quasi-parallel bow shock

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Winske, D.; Thomsen, M. F.

    1991-01-01

    The coupling of a finite-length, field-aligned, ion beam with a uniform background plasma is investigated using one-dimensional hybrid computer simulations. The finite-length beam is used to study the interaction between the incident solar wind and ions reflected from the earth's quasi-parallel bow shock, where the reflection process may vary with time. The coupling between the reflected ions and the solar wind is relevant to ion heating at the bow shock and possibly to the formation of hot, flow anomalies and re-formation of the shock itself. Consistent with linear theory, the waves which dominate the interaction are the electromagnetic right-hand polarized resonant and nonresonant modes. However, in addition to the instability growth rates, the length of time that the waves are in contact with the beam is also an important factor in determining which wave mode will dominate the interaction. It is found that interaction will result in strong coupling, where a significant fraction of the available free energy is converted into thermal energy in a short time, provided the beam is sufficiently dense or sufficiently long.

  12. Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters.

    PubMed

    Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H

    2013-06-21

    Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4-167.1 cc) and motion amplitude (2.9-30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior motion amplitude alone. Larger spot sizes (σ ~ 9-16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ~ 2-4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The interplay effect is highly patient specific, depending on the motion amplitude, tumor location and the delivery parameters. Large degradations of the dose distribution in a single fraction were observed, but improved significantly using conventional fractionation.

  13. Interplay effects in proton scanning for lung: A 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters

    PubMed Central

    Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H

    2013-01-01

    Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of 5 lung cancer patients of varying tumor size (50.4–167.1cc) and motion amplitude (2.9–30.1mm). Treatments were planned assuming delivery in 35×2.5Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the 5 patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior (SI) motion amplitude alone. Larger spot sizes (σ ~9–16mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0±4.4% (1 standard deviation) in a single fraction compared to 86.1±13.1% for smaller spots (σ ~2–4mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The interplay effect is highly patient specific, depending on the motion amplitude, tumor location and the delivery parameters. Large degradations of the dose distribution in a single fraction were observed, but improved significantly using conventional fractionation. PMID:23689035

  14. Tomographic diagnostic of the hydrogen beam from a negative ion source

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Brombin, M.; Serianni, G.; Pasqualotto, R.

    2011-10-01

    In this paper the tomographic diagnostic developed to characterize the 2D density distribution of a particle beam from a negative ion source is described. In particular, the reliability of this diagnostic has been tested by considering the geometry of the source for the production of ions of deuterium extracted from an rf plasma (SPIDER). SPIDER is a low energy prototype negative ion source for the international thermonuclear experimental reactor (ITER) neutral beam injector, aimed at demonstrating the capability to create and extract a current of D- (H-) ions up to 50 A (60 A) accelerated at 100 kV. The ions are extracted over a wide surface (1.52×0.56m2) with a uniform plasma density which is prescribed to remain within 10% of the mean value. The main target of the tomographic diagnostic is the measurement of the beam uniformity with sufficient spatial resolution and of its evolution throughout the pulse duration. To reach this target, a tomographic algorithm based on the simultaneous algebraic reconstruction technique is developed and the geometry of the lines of sight is optimized so as to cover the whole area of the beam. Phantoms that reproduce different experimental beam configurations are simulated and reconstructed, and the role of the noise in the signals is studied. The simulated phantoms are correctly reconstructed and their two-dimensional spatial nonuniformity is correctly estimated, up to a noise level of 10% with respect to the signal.

  15. Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy

    NASA Astrophysics Data System (ADS)

    Kim, H.-I.; An, S. Jung; Lee, C. Y.; Jo, W. J.; Min, E.; Lee, K.; Kim, Y.; Joung, J.; Chung, Y. H.

    2014-05-01

    PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image.

  16. User's and test case manual for FEMATS

    NASA Technical Reports Server (NTRS)

    Chatterjee, Arindam; Volakis, John; Nurnberger, Mike; Natzke, John

    1995-01-01

    The FEMATS program incorporates first-order edge-based finite elements and vector absorbing boundary conditions into the scattered field formulation for computation of the scattering from three-dimensional geometries. The code has been validated extensively for a large class of geometries containing inhomogeneities and satisfying transition conditions. For geometries that are too large for the workstation environment, the FEMATS code has been optimized to run on various supercomputers. Currently, FEMATS has been configured to run on the HP 9000 workstation, vectorized for the Cray Y-MP, and parallelized to run on the Kendall Square Research (KSR) architecture and the Intel Paragon.

  17. Linearly exact parallel closures for slab geometry

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-01

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).

  18. Neutral Beam Injection System for the SHIP Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdrashitov, G.F.; Abdrashitov, A.G.; Anikeev, A.V.

    2005-01-15

    The injector ion source is based on an arcdischarge plasma box. The plasma emitter is produced by a 1 kA arc discharge in deuterium. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found by means of numerical simulation tomore » provide precise beam formation. The measured angular divergence of the beam is 0.025 rad, which corresponds to a 4.7 cm Gaussian radius of the beam profile measured at focal point.« less

  19. Failure of wooden sandwich beam reinforced with glass/epoxy faces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papakaliatakis, G. E.; Zacharopoulos, D. A.

    2015-12-31

    The mechanical properties and the failure of wooden beam strengthened with two faces from glass/epoxy composite and a wooden beam without strengthening was studied. Stresses and deflections on both beams, which are imposed in three point bending loading. On the idealized geometry of the specimens with detailed nonlinear orthotropic analysis was performed with a finite elements program. The failure study of the wooden beams was performed, applying the criterion of Tsai-Hill. The shear strength of the adhesive was taken into account. All the specimens were tested with three point bending loading and the experimental results were compared to those ofmore » the theoretical approach with the finite elements analysis. Comparing the results, the advantage of strengthened wooden beam against the simple wooden beam becomes obvious. Theoretical predictions were in good agreement with experimental results.« less

  20. The X-beam as a deployable boom for the space station

    NASA Technical Reports Server (NTRS)

    Adams, Louis R.

    1988-01-01

    Extension of antennas and thrust modules from the primary structure of the space station will require deployable beams of high stiffness and strength, as well as low mass and package volume. A square boom cross section is desirable for interface reasons. These requirements and others are satisfied by the X-beam. The X-beam folds by simple geometry, using single-degree-of-freedom hinges at simple angles, with no strain during deployment. Strut members are of large diameter with unidirectional graphite fibers for maximum beam performance. Fittings are aluminum with phosphor bronze bushings so that compliance is low and joint lifetime is high. The several beam types required for different applications on the space station will use the same basic design, with changes in strut cross section where necessary. Deployment is by a BI-STEM which pushes the beam out; retraction is by cables which cause initial folding and pull the beam in.

  1. A fast parallel 3D Poisson solver with longitudinal periodic and transverse open boundary conditions for space-charge simulations

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2017-10-01

    A three-dimensional (3D) Poisson solver with longitudinal periodic and transverse open boundary conditions can have important applications in beam physics of particle accelerators. In this paper, we present a fast efficient method to solve the Poisson equation using a spectral finite-difference method. This method uses a computational domain that contains the charged particle beam only and has a computational complexity of O(Nu(logNmode)) , where Nu is the total number of unknowns and Nmode is the maximum number of longitudinal or azimuthal modes. This saves both the computational time and the memory usage of using an artificial boundary condition in a large extended computational domain. The new 3D Poisson solver is parallelized using a message passing interface (MPI) on multi-processor computers and shows a reasonable parallel performance up to hundreds of processor cores.

  2. Studying Electromagnetic Beam Instabilities in Laser Plasmas for Alfvénic Parallel Shock Formation

    NASA Astrophysics Data System (ADS)

    Dorst, R. S.; Heuer, P. V.; Weidl, M. S.; Schaeffer, D. B.; Constantin, C. G.; Vincena, S.; Tripathi, S.; Gekelman, W.; Winske, D.; Niemann, C.

    2017-10-01

    We present measurements of the collisionless interaction between an exploding laser-produced plasma (LPP) and a large, magnetized ambient plasma. The LPP is created by focusing a high energy laser on a target embedded in the ambient Large Plasma Device (LAPD) plasma at the University of California, Los Angeles. The resulting super-Alfvénic (MA = 5) ablated material moves parallel to the background magnetic field (300 G) through 12m (80 δ i) of the LAPD, interacting with the ambient Helium plasma (ni = 9 ×1012 cm-3) through electromagnetic beam instabilities. The debris is characterized by Langmuir probes and a time-resolved fluorescence monochromator. Waves in the magnetic field produced by the instabilities are diagnosed by an array of 3-axis `bdot' magnetic field probes. Measurements are compared to hybrid simulations of both the experiment and of parallel shocks.

  3. Effect of Electron Beam Freeform Fabrication (EBF3) Processing Parameters on Composition of Ti-6-4

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Taminger, Karen; Schuszler, A. Bud, II; Sankaran, Sankara; Ehlers, Helen; Nasserrafi, Rahbar; Woods, Bryan

    2007-01-01

    The Electron Beam Freeform Fabrication (EBF3) process developed at NASA Langley Research Center was evaluated using a design of experiments approach to determine the effect of processing parameters on the composition and geometry of Ti-6-4 deposits. The effects of three processing parameters: beam power, translation speed, and wire feed rate, were investigated by varying one while keeping the remaining parameters constant. A three-factorial, three-level, fully balanced mutually orthogonal array (L27) design of experiments approach was used to examine the effects of low, medium, and high settings for the processing parameters on the chemistry, geometry, and quality of the resulting deposits. Single bead high deposits were fabricated and evaluated for 27 experimental conditions. Loss of aluminum in Ti-6-4 was observed in EBF3 processing due to selective vaporization of the aluminum from the sustained molten pool in the vacuum environment; therefore, the chemistries of the deposits were measured and compared with the composition of the initial wire and base plate to determine if the loss of aluminum could be minimized through careful selection of processing parameters. The influence of processing parameters and coupling between these parameters on bulk composition, measured by Direct Current Plasma (DCP), local microchemistries determined by Wavelength Dispersive Spectrometry (WDS), and deposit geometry will also be discussed.

  4. Total internal reflection-based side-pumping configuration for terawatt ultraviolet amplifier and laser oscillator development

    NASA Astrophysics Data System (ADS)

    Cadatal-Raduban, Marilou; Pham, Minh Hong; Pham, Duong Van; Bui, Duong Thi Thuy; Yamanoi, Kohei; Takeda, Kohei; Empizo, Melvin John F.; Mui, Luong Viet; Shimizu, Toshihiko; Nguyen, Hung Dai; Sarukura, Nobuhiko; Fukuda, Tsuguo

    2018-06-01

    A two-side-pumping scheme that is based on total internal reflection in a diamond-cut Ce3+:LiCaAlF6 crystal suitable for the development of an ultraviolet laser and femtosecond amplifier system is proposed. Experimental fluorescence images and lasing results that demonstrate total internal reflection of the excitation beam using this diamond-cut crystal are presented. Calculations for the optimized crystal geometry that facilitate high extraction efficiency and homogeneity of the absorbed excitation beam are also discussed. About 50% increase in extraction efficiency compared to previously reported chirped-pulse femtosecond ultraviolet amplifier operating at 50-GW peak power is expected using this total internal reflection-based two-side-pumping configuration and a diamond-cut Ce3+:LiCaAlF6 crystal with a geometry of {φ _1} = 103°, {φ _2} = {φ _4} = 82°, {φ _3} = 93°, a length of 1.23 cm, a height of 2 cm, and an absorption coefficient of 1.5 cm-1. Our results can be used as a guide during the crystal growth process by providing the appropriate crystal geometry and size for a particular absorption coefficient to achieve high extraction efficiency. With the appropriate crystal combined with multiple-beam pumping afforded by the side-pumping scheme, the development of an all-solid-state ultraviolet laser operating at terawatt level would be within reach.

  5. Reevaluation of the Beam and Radial Hypotheses of Parallel Fiber Action in the Cerebellar Cortex

    PubMed Central

    Cramer, Samuel W.; Gao, Wangcai; Chen, Gang

    2013-01-01

    The role of parallel fibers (PFs) in cerebellar physiology remains controversial. Early studies inspired the “beam” hypothesis whereby granule cell (GC) activation results in PF-driven, postsynaptic excitation of beams of Purkinje cells (PCs). However, the “radial” hypothesis postulates that the ascending limb of the GC axon provides the dominant input to PCs and generates patch-like responses. Using optical imaging and single-cell recordings in the mouse cerebellar cortex in vivo, this study reexamines the beam versus radial controversy. Electrical stimulation of mossy fibers (MFs) as well as microinjection of NMDA in the granular layer generates beam-like responses with a centrally located patch-like response. Remarkably, ipsilateral forepaw stimulation evokes a beam-like response in Crus I. Discrete molecular layer lesions demonstrate that PFs contribute to the peripherally generated responses in Crus I. In contrast, vibrissal stimulation induces patch-like activation of Crus II and GABAA antagonists fail to convert this patch-like activity into a beam-like response, implying that molecular layer inhibition does not prevent beam-like responses. However, blocking excitatory amino acid transporters (EAATs) generates beam-like responses in Crus II. These beam-like responses are suppressed by focal inhibition of MF-GC synaptic transmission. Using EAAT4 reporter transgenic mice, we show that peripherally evoked patch-like responses in Crus II are aligned between parasagittal bands of EAAT4. This is the first study to demonstrate beam-like responses in the cerebellar cortex to peripheral, MF, and GC stimulation in vivo. Furthermore, the spatial pattern of the responses depends on extracellular glutamate and its local regulation by EAATs. PMID:23843513

  6. A MEMS Multi-Cantilever Variable Capacitor On Metamaterial

    DTIC Science & Technology

    2009-03-26

    tuning range [38]. 21 Bakri- Kassem and Mansour [39] have developed a parallel-plate variable capac- itor with carrier beams between the plates to...downwards, however, the carrier beams slightly bend down with the movable plate, still prevent- ing it from pulling-in. Bakri- Kassem and Mansour’s... Kassem and R. R. Mansour, “A high-tuning-range mems variable ca- pacitor using carrier beams,” Canadian Journal of Electrical and Computer En- gineering

  7. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase I is complete for the development of a Computational Fluid Dynamics parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  8. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase 1 is complete for the development of a computational fluid dynamics CFD) parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  9. Focused terahertz waves generated by a phase velocity gradient in a parallel-plate waveguide.

    PubMed

    McKinney, Robert W; Monnai, Yasuaki; Mendis, Rajind; Mittleman, Daniel

    2015-10-19

    We demonstrate the focusing of a free-space THz beam emerging from a leaky parallel-plate waveguide (PPWG). Focusing is accomplished by grading the launch angle of the leaky wave using a PPWG with gradient plate separation. Inside the PPWG, the phase velocity of the guided TE1 mode exceeds the vacuum light speed, allowing the wave to leak into free space from a slit cut along the top plate. Since the leaky wave angle changes as the plate separation decreases, the beam divergence can be controlled by grading the plate separation along the propagation axis. We experimentally demonstrate focusing of the leaky wave at a selected location at frequencies of 100 GHz and 170 GHz, and compare our measurements with numerical simulations. The proposed concept can be valuable for implementing a flat and wide-aperture beam-former for THz communications systems.

  10. Experimental Study on the Flexural Performance of Parallel Strand Bamboo Beams

    PubMed Central

    Zhou, Aiping; Bian, Yuling

    2014-01-01

    Searching for materials to provide proper housing with less emission and low energy becomes an urgent demand with the ever-growing population. Bamboo has gained a reputation as an ecofriendly, highly renewable source of material. Parallel Strand Bamboo (PSB) is a new biocomposite made of bamboo strips which has superiority performances than wood products. It has attracted considerable interests as a sustainable alternative for more traditional building materials. But the mechanical performance study of PSB as construction materials is still inadequate. Also, the structural behavior of PSB is not quite understood as conventional construction materials, which results in the difficulties to predict the performances of PSB structural members. To achieve this purpose, 4-point bending experiments for PSB beams were carried out. The flexural performances, mode of failure in bending, and the damage mechanism of PSB beams were investigated in this paper. PMID:24701141

  11. Ion streaming instabilities with application to collisionless shock wave structure

    NASA Technical Reports Server (NTRS)

    Golden, K. I.; Linson, L. M.; Mani, S. A.

    1973-01-01

    The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. The parameters are then chosen to be applicable for parallel shocks. It was found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5. It is suggested that this mechanism could generate sufficient turbulence within the shock layer to scatter the incoming ions and create the required dissipation for intermediate strength shocks.

  12. AlGaAs growth by OMCVD using an excimer laser

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Wilt, David M.; Pouch, John J.; Aron, Paul R.

    1986-01-01

    AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H2, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.

  13. Parallel computing and first-principles calculations: Applications to complex ceramics and Vitamin B12

    NASA Astrophysics Data System (ADS)

    Ouyang, Lizhi

    A systematic improvement and extension of the orthogonalized linear combinations of atomic orbitals method was carried out using a combined computational and theoretical approach. For high performance parallel computing, a Beowulf class personal computer cluster was constructed. It also served as a parallel program development platform that helped us to port the programs of the method to the national supercomputer facilities. The program, received a language upgrade from Fortran 77 to Fortran 90, and a dynamic memory allocation feature. A preliminary parallel High Performance Fortran version of the program has been developed as well. To be of more benefit though, scalability improvements are needed. In order to circumvent the difficulties of the analytical force calculation in the method, we developed a geometry optimization scheme using the finite difference approximation based on the total energy calculation. The implementation of this scheme was facilitated by the powerful general utility lattice program, which offers many desired features such as multiple optimization schemes and usage of space group symmetry. So far, many ceramic oxides have been tested with the geometry optimization program. Their optimized geometries were in excellent agreement with the experimental data. For nine ceramic oxide crystals, the optimized cell parameters differ from the experimental ones within 0.5%. Moreover, the geometry optimization was recently used to predict a new phase of TiNx. The method has also been used to investigate a complex Vitamin B12-derivative, the OHCbl crystals. In order to overcome the prohibitive disk I/O demand, an on-demand version of the method was developed. Based on the electronic structure calculation of the OHCbl crystal, a partial density of states analysis and a bond order analysis were carried out. The calculated bonding of the corrin ring of OHCbl model was coincident with the big open-ring pi bond. One interesting find of the calculation was that the Co-OH bond was weak. This, together with the ongoing projects studying different Vitamin B12 derivatives, might help us to answer questions about the Co-C cleavage of the B12 coenzyme, which is involved in many important B12 enzymatic reactions.

  14. Broad beam transmission properties of some common shielding materials for use in diagnostic radiology.

    PubMed

    Rossi, R P; Ritenour, R; Christodoulou, E

    1991-11-01

    Broad beam geometry was used to measure the x-ray transmission properties of gypsum wallboard, steel, plate glass, and concrete for x-ray tube potentials of 50-125 kVp using an x-ray generator having a three-phase, twelve-pulse waveform and total initial beam filtration sufficient to provide half-value layers representative of those found in common practice and required by regulatory agencies. Measurement results are presented graphically and as numerical fits to a mathematical model of broad beam transmission to permit their use in the design of protective barriers for medical diagnostic x-ray facilities.

  15. Three-dimensional propagation and absorption of high frequency Gaussian beams in magnetoactive plasmas

    NASA Astrophysics Data System (ADS)

    Nowak, S.; Orefice, A.

    1994-05-01

    In today's high frequency systems employed for plasma diagnostics, power heating, and current drive the behavior of the wave beams is appreciably affected by the self-diffraction phenomena due to their narrow collimation. In the present article the three-dimensional propagation of Gaussian beams in inhomogeneous and anisotropic media is analyzed, starting from a properly formulated dispersion relation. Particular attention is paid, in the case of electromagnetic electron cyclotron (EC) waves, to the toroidal geometry characterizing tokamak plasmas, to the power density evolution on the advancing wave fronts, and to the absorption features occurring when a beam crosses an EC resonant layer.

  16. Reduced complexity structural modeling for automated airframe synthesis

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1987-01-01

    A procedure is developed for the optimum sizing of wing structures based on representing the built-up finite element assembly of the structure by equivalent beam models. The reduced-order beam models are computationally less demanding in an optimum design environment which dictates repetitive analysis of several trial designs. The design procedure is implemented in a computer program requiring geometry and loading information to create the wing finite element model and its equivalent beam model, and providing a rapid estimate of the optimum weight obtained from a fully stressed design approach applied to the beam. The synthesis procedure is demonstrated for representative conventional-cantilever and joined wing configurations.

  17. Analogies between Kirchhoff plates and functionally graded Saint-Venant beams under torsion

    NASA Astrophysics Data System (ADS)

    Barretta, Raffaele; Luciano, Raimondo

    2015-05-01

    Exact solutions of elastic Kirchhoff plates are available only for special geometries, loadings and kinematic boundary constraints. An effective solution procedure, based on an analogy between functionally graded orthotropic Saint-Venant beams under torsion and inhomogeneous isotropic Kirchhoff plates, with no kinematic boundary constraints, is proposed. The result extends the one contributed in Barretta (Acta Mech 224(12):2955-2964, 2013) for the special case of homogeneous Saint-Venant beams under torsion. Closed-form solutions for displacement, bending-twisting moment and curvature fields of an elliptic plate, corresponding to a functionally graded orthotropic beam, are evaluated. A new benchmark for computational mechanics is thus provided.

  18. Topography Modeling in Atmospheric Flows Using the Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Senocak, I.; Mansour, N. N.; Stevens, D. E.

    2004-01-01

    Numerical simulation of flow over complex geometry needs accurate and efficient computational methods. Different techniques are available to handle complex geometry. The unstructured grid and multi-block body-fitted grid techniques have been widely adopted for complex geometry in engineering applications. In atmospheric applications, terrain fitted single grid techniques have found common use. Although these are very effective techniques, their implementation, coupling with the flow algorithm, and efficient parallelization of the complete method are more involved than a Cartesian grid method. The grid generation can be tedious and one needs to pay special attention in numerics to handle skewed cells for conservation purposes. Researchers have long sought for alternative methods to ease the effort involved in simulating flow over complex geometry.

  19. A prototype table-top inverse-geometry volumetric CT system.

    PubMed

    Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N Robert; Mazin, Samuel R; Solomon, Edward G; Fahrig, Rebecca; Pelc, Norbert J

    2006-06-01

    A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a "Defrise" phantom was scanned on both the prototype IGCT scanner and a micro CT system with a +/-5 cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for single-rotation volumetric scanning free from cone-beam artifacts.

  20. Design and fabrication of a high-precision cylinder beam expander

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-hong; Yan, Hong; Xie, Bing; Li, Jian-ming; Luo, Zhong-xiang

    2018-03-01

    In order to compress the beam divergence angle and reduce the energy density, beam expansion system is widely used to expand the beam in laser system. Cylinder beam expander belongs to one-dimension expander, which expands the laser beam in only one direction (X direction or Y direction), a refraction cylinder expander whose beam diameter is 180mm×120mm and magnitude ratio is 12 is designed in this paper, the working wavelength is 1058nm. To solve the problem of inequality of the working wavelength and the testing wavelength, compensation method of using parallel plate to test the system aberration is proposed. By rough grinding (precision grinding) polish and the system grinding, the final system aberration is 0.24λ(peak-valley value)

Top