Sample records for parallel blade-vortex interaction

  1. An analysis of blade vortex interaction aerodynamics and acoustics

    NASA Technical Reports Server (NTRS)

    Lee, D. J.

    1985-01-01

    The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.

  2. Helicopter Blade-Vortex Interaction Noise with Comparisons to CFD Calculations

    NASA Technical Reports Server (NTRS)

    McCluer, Megan S.

    1996-01-01

    A comparison of experimental acoustics data and computational predictions was performed for a helicopter rotor blade interacting with a parallel vortex. The experiment was designed to examine the aerodynamics and acoustics of parallel Blade-Vortex Interaction (BVI) and was performed in the Ames Research Center (ARC) 80- by 120-Foot Subsonic Wind Tunnel. An independently generated vortex interacted with a small-scale, nonlifting helicopter rotor at the 180 deg azimuth angle to create the interaction in a controlled environment. Computational Fluid Dynamics (CFD) was used to calculate near-field pressure time histories. The CFD code, called Transonic Unsteady Rotor Navier-Stokes (TURNS), was used to make comparisons with the acoustic pressure measurement at two microphone locations and several test conditions. The test conditions examined included hover tip Mach numbers of 0.6 and 0.7, advance ratio of 0.2, positive and negative vortex rotation, and the vortex passing above and below the rotor blade by 0.25 rotor chords. The results show that the CFD qualitatively predicts the acoustic characteristics very well, but quantitatively overpredicts the peak-to-peak sound pressure level by 15 percent in most cases. There also exists a discrepancy in the phasing (about 4 deg) of the BVI event in some cases. Additional calculations were performed to examine the effects of vortex strength, thickness, time accuracy, and directionality. This study validates the TURNS code for prediction of near-field acoustic pressures of controlled parallel BVI.

  3. Vortex dynamics during blade-vortex interactions

    NASA Astrophysics Data System (ADS)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  4. Full-Potential Modeling of Blade-Vortex Interactions. Degree awarded by George Washington Univ., Feb. 1987

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.

    1997-01-01

    A study of the full-potential modeling of a blade-vortex interaction was made. A primary goal of this study was to investigate the effectiveness of the various methods of modeling the vortex. The model problem restricts the interaction to that of an infinite wing with an infinite line vortex moving parallel to its leading edge. This problem provides a convenient testing ground for the various methods of modeling the vortex while retaining the essential physics of the full three-dimensional interaction. A full-potential algorithm specifically tailored to solve the blade-vortex interaction (BVI) was developed to solve this problem. The basic algorithm was modified to include the effect of a vortex passing near the airfoil. Four different methods of modeling the vortex were used: (1) the angle-of-attack method, (2) the lifting-surface method, (3) the branch-cut method, and (4) the split-potential method. A side-by-side comparison of the four models was conducted. These comparisons included comparing generated velocity fields, a subcritical interaction, and a critical interaction. The subcritical and critical interactions are compared with experimentally generated results. The split-potential model was used to make a survey of some of the more critical parameters which affect the BVI.

  5. Rotating hot-wire investigation of the vortex responsible for blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Fontana, Richard Remo

    1988-01-01

    This distribution of the circumferential velocity of the vortex responsible for blade-vortex interaction noise was measured using a rotating hot-wire rake synchronously meshed with a model helicopter rotor at the blade passage frequency. Simultaneous far-field acoustic data and blade differential pressure measurements were obtained. Results show that the shape of the measured far-field acoustic blade-vortex interaction signature depends on the blade-vortex interaction geometry. The experimental results are compared with the Widnall-Wolf model for blade-vortex interaction noise.

  6. The effect of tip vortex structure on helicopter noise due to blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Wolf, T. L.; Widnall, S. E.

    1978-01-01

    A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure.

  7. Blade-mounted trailing edge flap control for BVI noise reduction

    NASA Technical Reports Server (NTRS)

    Hassan, A. A.; Charles, B. D.; Tadghighi, H.; Sankar, L. N.

    1992-01-01

    Numerical procedures based on the 2-D and 3-D full potential equations and the 2-D Navier-Stokes equations were developed to study the effects of leading and trailing edge flap motions on the aerodynamics of parallel airfoil-vortex interactions and on the aerodynamics and acoustics of the more general self-generated rotor blade vortex interactions (BVI). For subcritical interactions, the 2-D results indicate that the trailing edge flap can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, the results show the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented. For the OLS model rotor, contours of a BVI noise metric were used to quantify the effects of the trailing edge flap on the size and directivity of the high/low intensity noise region(s). Average reductions in the BVI noise levels on the order of 5 dB with moderate power penalties on the order of 18 pct. for a four bladed rotor and 58 pct. for a two bladed rotor were obtained.

  8. Flow structure generated by perpendicular blade-vortex interaction and implications for helicopter noise prediction. Volume 1: Measurements

    NASA Technical Reports Server (NTRS)

    Wittmer, Kenneth S.; Devenport, William J.

    1996-01-01

    The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.

  9. Flow visualizations of perpendicular blade vortex interactions

    NASA Technical Reports Server (NTRS)

    Rife, Michael C.; Davenport, William J.

    1992-01-01

    Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect.

  10. A comparison with theory of peak to peak sound level for a model helicopter rotor generating blade slap at low tip speeds

    NASA Technical Reports Server (NTRS)

    Fontana, R. R.; Hubbard, J. E., Jr.

    1983-01-01

    Mini-tuft and smoke flow visualization techniques have been developed for the investigation of model helicopter rotor blade vortex interaction noise at low tip speeds. These techniques allow the parameters required for calculation of the blade vortex interaction noise using the Widnall/Wolf model to be determined. The measured acoustics are compared with the predicted acoustics for each test condition. Under the conditions tested it is determined that the dominating acoustic pulse results from the interaction of the blade with a vortex 1-1/4 revolutions old at an interaction angle of less than 8 deg. The Widnall/Wolf model predicts the peak sound pressure level within 3 dB for blade vortex separation distances greater than 1 semichord, but it generally over predicts the peak S.P.L. by over 10 dB for blade vortex separation distances of less than 1/4 semichord.

  11. Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean

    1997-01-01

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

  12. Fundamental Characterization of Spanwise Loading and Trailed Wake Vortices

    DTIC Science & Technology

    2016-07-01

    the close interaction of the tip vortex with a following blade . Such vortex interactions are fundamental determinants of rotor performance, loads, and...wing loading distribution differs from a typical loading on a hovering rotor blade in that the maximum bound circulation occurs at the blade root...and not close to the tip; this is similar to a very highly twisted rotor blade , like a tilt-rotor, in hover. The wing-vortex interaction alters the

  13. Perpendicular blade vortex interaction and its implications for helicopter noise prediction: Wave-number frequency spectra in a trailing vortex for BWI noise prediction

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Glegg, Stewart A. L.

    1993-01-01

    Perpendicular blade vortex interactions are a common occurrence in helicopter rotor flows. Under certain conditions they produce a substantial proportion of the acoustic noise. However, the mechanism of noise generation is not well understood. Specifically, turbulence associated with the trailing vortices shed from the blade tips appears insufficient to account for the noise generated. The hypothesis that the first perpendicular interaction experienced by a trailing vortex alters its turbulence structure in such a way as to increase the acoustic noise generated by subsequent interactions is examined. To investigate this hypothesis a two-part investigation was carried out. In the first part, experiments were performed to examine the behavior of a streamwise vortex as it passed over and downstream of a spanwise blade in incompressible flow. Blade vortex separations between +/- one eighth chord were studied for at a chord Reynolds number of 200,000. Three-component velocity and turbulence measurements were made in the flow from 4 chord lengths upstream to 15 chordlengths downstream of the blade using miniature 4-sensor hot wire probes. These measurements show that the interaction of the vortex with the blade and its wake causes the vortex core to loose circulation and diffuse much more rapidly than it otherwise would. Core radius increases and peak tangential velocity decreases with distance downstream of the blade. True turbulence levels within the core are much larger downstream than upstream of the blade. The net result is a much larger and more intense region of turbulent flow than that presented by the original vortex and thus, by implication, a greater potential for generating acoustic noise. In the second part, the turbulence measurements described above were used to derive the necessary inputs to a Blade Wake Interaction (BWI) noise prediction scheme. This resulted in significantly improved agreement between measurements and calculations of the BWI noise spectrum especially for the spectral peak at low frequencies, which previously was poorly predicted.

  14. Rotor blade system with reduced blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Leishman, John G. (Inventor); Han, Yong Oun (Inventor)

    2005-01-01

    A rotor blade system with reduced blade-vortex interaction noise includes a plurality of tube members embedded in proximity to a tip of each rotor blade. The inlets of the tube members are arrayed at the leading edge of the blade slightly above the chord plane, while the outlets are arrayed at the blade tip face. Such a design rapidly diffuses the vorticity contained within the concentrated tip vortex because of enhanced flow mixing in the inner core, which prevents the development of a laminar core region.

  15. Tracking Blade Tip Vortices for Numerical Flow Simulations of Hovering Rotorcraft

    NASA Technical Reports Server (NTRS)

    Kao, David L.

    2016-01-01

    Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization

  16. The Spectral and Statistical Properties of Turbulence Generated by a Vortex/Blade-Tip Interaction

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Wittmer, Kenneth S.; Wenger, Christian W.

    1997-01-01

    The perpendicular interaction of a streamwise vortex with the tip of a lifting blade was studied in incompressible flow to provide information useful to the accurate prediction of helicopter rotor noise and the understanding of vortex dominated turbulent flows. The vortex passed 0.3 chord lengths to the suction side of the blade tip, providing a weak interaction. Single and two-point turbulence measurements were made using sub-miniature four sensor hot-wire probes 15 chord lengths downstream of the blade trailing edge; revealing the mean velocity and Reynolds stress tensor distributions of the turbulence, as well as its spanwise length scales as a function of frequency. The single point measurements show the flow downstream of the blade to be dominated by the interaction of the original tip vortex and the vortex shed by the blade. These vortices rotate about each other under their mutual induction, winding up the turbulent wakes of the blades. This interaction between the vortices appears to be the source of new turbulence in their cores and in the region between them. This turbulence appears to be responsible for some decay in the core of the original vortex, not seen when the blade is removed. The region between the vortices is not only a region of comparatively large stresses, but also one of intense turbulence production. Velocity autospectra measured near its center suggests the presence quasi-periodic large eddies with axes roughly parallel to a line joining the vortex cores. Detailed two-point measurements were made on a series of spanwise cuts through the flow so as to reveal the turbulence scales as they would be seen along the span of an intersecting airfoil. The measurements were made over a range of probe separations that enabled them to be analyzed not only in terms of coherence and phase spectra but also in terms of wave-number frequency (kappa-omega) spectra, computed by transforming the measured cross-spectra with respect to the spanwise separation of the probes. These data clearly show the influence of the coherent eddies in the spiral wake and the turbulent region between the cores. These eddies produce distinct peaks in the upwash velocity kappa-omega spectra, and strong anisotropy manifested both in the decay of the kappa-omega spectrum at larger wave-numbers and in differences between the kappa-omega spectra of different components. None of these features are represented in the von Karman spectrum for isotropic turbulence that is often used in broadband noise computations. Wave-number frequency spectra measured in the cores appear to show some evidence that the turbulence outside sets tip core waves, as has previously been hypothesized. These spectra also provide for the first time a truly objective method for distinguishing velocity fluctuations produced by core wandering from other motions.

  17. Lift distribution and velocity field measurements for a three-dimensional, steady blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Norman, Thomas R.

    1987-01-01

    A wind tunnel experiment simulating a steady three-dimensional helicopter rotor blade/vortex interaction is reported. The experimental configuration consisted of a vertical semispan vortex-generating wing, mounted upstream of a horizontal semispan rotor blade airfoil. A three-dimensional laser velocimeter was used to measure the velocity field in the region of the blade. Sectional lift coefficients were calculated by integrating the velocity field to obtain the bound vorticity. Total lift values, obtained by using an internal strain-gauge balance, verified the laser velocimeter data. Parametric variations of vortex strength, rotor blade angle of attack, and vortex position relative to the rotor blade were explored. These data are reported (with attention to experimental limitations) to provide a dataset for the validation of analytical work.

  18. Interaction of a turbulent vortex with a lifting surface

    NASA Technical Reports Server (NTRS)

    Lee, D. J.; Roberts, L.

    1985-01-01

    The impulsive noise due to blade-vortex-interaction is analyzing in the time domain for the extreme case when the blade cuts through the center of the vortex core with the assumptions of no distortion of the vortex path or of the vortex core. An analytical turbulent vortex core model, described in terms of the tip aerodynamic parameters, is used and its effects on the unsteady loading and maximum acoustic pressure during the interaction are determined.

  19. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  20. Rotorcraft Blade-Vortex Interaction Controller

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H. (Inventor)

    1995-01-01

    Blade-vortex interaction noises, sometimes referred to as 'blade slap', are avoided by increasing the absolute value of inflow to the rotor system of a rotorcraft. This is accomplished by creating a drag force which causes the angle of the tip-path plane of the rotor system to become more negative or more positive.

  1. Manipulation of upstream rotor leading edge vortex and its effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Squires, Becky

    1993-01-01

    The leading edge vortex of a counter rotating propeller (CRP) model was altered by using shrouds and by turning the upstream rotors to a forward sweep configuration. Performance, flow, and acoustic data were used to determine the effect of vortex impingement on the noise signature of the CRP system. Forward sweep was found to eliminate the leading edge vortex of the upstream blades. Removal of the vortex had little effect on the tone noise at the forward and rear blade passing frequencies (BPF's) but significantly altered both the sound pressure level and directivity of the interaction tone which occurs at the sum of the two BPF's. A separate manipulation of the leading edge vortex performed by installing shrouds of various inlet length on the CRP verified that diverting the vortex path increases the noise level of the interaction tone. An unexpected link has been established between the interaction tone and the leading edge vortex-blade interaction phenomenon.

  2. A study of the rotor wake of a small-scale rotor model in forward flight using laser light sheet flow visualization with comparisons to analytical models

    NASA Technical Reports Server (NTRS)

    Ghee, Terence A.; Elliott, Joe W.

    1992-01-01

    An experimental investigation was conducted in the 14 by 22 ft subsonic tunnel at NASA Langley Research Center to quantify the rotor wake behind a scale model helicopter rotor in forward flight (mu = 0.15 and 0.23) at one thrust level (C sub T = 0.0064). The rotor system used in the present test consisted of a four-bladed, fully articulated hub and utilized blades of rectangular planform with a NACA-0012 airfoil section. A laser light sheet, seeded with propylene glycol smoke, was used to visualize the flow in planes parallel and perpendicular to the freestream flow. Quantitative measurements of vortex location, vertical skew angle, and vortex particle void radius were obtained for vortices in the flow; convective velocities were obtained for blade tip vortices. Comparisons were made between the experimental results and the wake geometry generated by computational predictions. The results of these comparisons show that the interaction between wake vortex structures is an important consideration for correctly predicting the wake geometry.

  3. Forward rotor vortex effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Laur, Michele; Squires, Becky; Nagel, Robert T.

    1992-01-01

    Three configurations of a model counter rotating propeller manipulate the blade tip flow by: placing the CRP at angle of attack, installing shrouds, and turning the upstream blades to provide forward sweep. Flow visualization and flow measurements with thermal anemometry show no evidence of a tip vortex; however, a leading edge vortex was detected on aft swept blades. The modifications served to alter the strength and/or path of the leading edge vortex. The vortical flow is eliminated by forward sweep on the upstream propeller blades. Far field acoustic data from each test indicate only small influences on the level and directivity of the BPFs. The interaction tone at the sum of the two BPF's was significantly altered in a consistent manner. As the vortex system varied, the interaction tone was affected: far field noise levels in the forward quandrant increased and the characteristic noise minimum near the plane of rotation became less pronounced and in some cases were eliminated. If the forward propeller leading edge vortex system does not impact the rear propeller in the standard manner, a net increase in the primary interaction tone occurs for the model tested. If the leading edge vortex is removed, the interaction tone increases.

  4. Advancing-side directivity and retreating-side interactions of model rotor blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.

    1988-01-01

    Acoustic data are presented from a 40 percent scale model of the four-bladed BO-105 helicopter main rotor, tested in a large aerodynamic wind tunnel. Rotor blade-vortex interaction (BVI) noise data in the low-speed flight range were acquired using a traversing in-flow microphone array. Acoustic results presented are used to assess the acoustic far field of BVI noise, to map the directivity and temporal characteristics of BVI impulsive noise, and to show the existence of retreating-side BVI signals. The characterics of the acoustic radiation patterns, which can often be strongly focused, are found to be very dependent on rotor operating condition. The acoustic signals exhibit multiple blade-vortex interactions per blade with broad impulsive content at lower speeds, while at higher speeds, they exhibit fewer interactions per blade, with much sharper, higher amplitude acoustic signals. Moderate-amplitude BVI acoustic signals measured under the aft retreating quadrant of the rotor are shown to originate from the retreating side of the rotor.

  5. Investigation of helicopter rotor blade/wake interactive impulsive noise

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Hall, G. F.; Vonlavante, E.

    1987-01-01

    An analysis of the Tip Aerodynamic/Aeroacoustic Test (TAAT) data was performed to identify possible aerodynamic sources of blade/vortex interaction (BVI) impulsive noise. The identification is based on correlation of measured blade pressure time histories with predicted blade/vortex intersections for the flight condition(s) where impulsive noise was detected. Due to the location of the recording microphones, only noise signatures associated with the advancing blade were available, and the analysis was accordingly restricted to the first and second azimuthal quadrants. The results show that the blade tip region is operating transonically in the azimuthal range where previous BVI experiments indicated the impulsive noise to be. No individual blade/vortex encounter is identifiable in the pressure data; however, there is indication of multiple intersections in the roll-up region which could be the origin of the noise. Discrete blade/vortex encounters are indicated in the second quadrant; however, if impulsive noise were produced here, the directivity pattern would be such that it was not recorded by the microphones. It is demonstrated that the TAAT data base is a valuable resource in the investigation of rotor aerodynamic/aeroacoustic behavior.

  6. Blade vortex interaction noise reduction techniques for a rotorcraft

    NASA Technical Reports Server (NTRS)

    Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)

    1996-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  7. Blade vortex interaction noise reduction techniques for a rotorcraft

    NASA Technical Reports Server (NTRS)

    Charles, Bruce D. (Inventor); JanakiRam, Ram D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); Sankar, Lakshmi N. (Inventor)

    1998-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  8. The Vortex Lattice Method for the Rotor-Vortex Interaction Problem

    NASA Technical Reports Server (NTRS)

    Padakannaya, R.

    1974-01-01

    The rotor blade-vortex interaction problem and the resulting impulsive airloads which generate undesirable noise levels are discussed. A numerical lifting surface method to predict unsteady aerodynamic forces induced on a finite aspect ratio rectangular wing by a straight, free vortex placed at an arbitrary angle in a subsonic incompressible free stream is developed first. Using a rigid wake assumption, the wake vortices are assumed to move downsteam with the free steam velocity. Unsteady load distributions are obtained which compare favorably with the results of planar lifting surface theory. The vortex lattice method has been extended to a single bladed rotor operating at high advance ratios and encountering a free vortex from a fixed wing upstream of the rotor. The predicted unsteady load distributions on the model rotor blade are generally in agreement with the experimental results. This method has also been extended to full scale rotor flight cases in which vortex induced loads near the tip of a rotor blade were indicated. In both the model and the full scale rotor blade airload calculations a flat planar wake was assumed which is a good approximation at large advance ratios because the downwash is small in comparison to the free stream at large advance ratios. The large fluctuations in the measured airloads near the tip of the rotor blade on the advance side is predicted closely by the vortex lattice method.

  9. Flow structure generated by perpendicular blade vortex interaction and implications for helicopter noise predictions

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Glegg, Stewart A. L.

    1995-01-01

    This report summarizes accomplishments and progress for the period ending April 1995. Much of the work during this period has concentrated on preparation for an analysis of data produced by an extensive wind tunnel test. Time has also been spent further developing an empirical theory to account for the effects of blade-vortex interaction upon the circulation distribution of the vortex and on preliminary measurements aimed at controlling the vortex core size.

  10. Wake Geometry Measurements and Analytical Calculations on a Small-Scale Rotor Model

    NASA Technical Reports Server (NTRS)

    Ghee, Terence A.; Berry, John D.; Zori, Laith A. J.; Elliott, Joe W.

    1996-01-01

    An experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to quantify the rotor wake behind a scale model helicopter rotor in forward level flight at one thrust level. The rotor system in this test consisted of a four-bladed fully articulated hub with blades of rectangular planform and an NACA 0012 airfoil section. A laser light sheet, seeded with propylene glycol smoke, was used to visualize the vortex geometry in the flow in planes parallel and perpendicular to the free-stream flow. Quantitative measurements of wake geometric proper- ties, such as vortex location, vertical skew angle, and vortex particle void radius, were obtained as well as convective velocities for blade tip vortices. Comparisons were made between experimental data and four computational method predictions of experimental tip vortex locations, vortex vertical skew angles, and wake geometries. The results of these comparisons highlight difficulties of accurate wake geometry predictions.

  11. Synchronized Schlieren method for vortex shedding in cascade during acoustic resonance

    NASA Astrophysics Data System (ADS)

    Nagashima, T.; Tanida, Y.

    1986-10-01

    An evaluation is made of synchronized schlieren optical system methods for the simultaneous visualization of both the acoustic wave and vortex shedding phenomena encountered during acoustic resonance excited by vortex shedding from the trailing edges of cascade blades. Attention is given to the case of parallel flat plate blades in throughflow velocities of up to 100 m/s. The acoustic wavefront is found to appear in the trailing edge region and travel upstream when a pair of vortices of opposite sign are fully developed at the trailing edge.

  12. A new look at sound generation by blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Mason, J. P.

    1985-01-01

    As a preliminary attempt to understand the dynamics of blade/vortex interaction, the two-dimensional problem of a rectilinear vortex filament interacting with a Joukowski airfoil is analyzed in both the lifting and nonlifting cases. The vortex velocity components could be obtained analytically and integrated to determine the vortex trajectory. With this information, the aeroacoustic low-frequency Green's function approach could then be employed to calculate the sound produced during the encounter. The results indicate that the vortex path deviates considerably from simple convection due to the presence of the airfoil and that a reasonably sharp sound pulse is radiated during the interaction whose fundamental frequency is critically dependent upon whether the vortex passes above or below the airfoil. Determination of this gross parameter of the interaction is shown to be highly nonlinearly dependent upon airfoil circulation, vortex circulation, and initial position.

  13. A flight investigation of blade section aerodynamics for a helicopter main rotor having NLR-1T airfoil sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.; Stevens, D. D.; Tomaine, R. L.

    1980-01-01

    A flight investigation was conducted using a teetering-rotor AH-1G helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-1T blade section. The data system recorded blade-section aerodynamic pressures at 90 percent rotor radius as well as vehicle flight state, performance, and loads. The test envelope included hover, forward flight, and collective-fixed maneuvers. Data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed flight and wake interactions in hover. In many cases, good agreement was achieved between chordwise pressure distributions predicted by airfoil theory and flight data with no apparent indications of blade-vortex interactions.

  14. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods

    NASA Technical Reports Server (NTRS)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)

    1997-01-01

    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  15. Studies of blade-vortex interaction noise reduction by rotor blade modification

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    1993-01-01

    Blade-vortex interaction (BVI) noise is one of the most objectionable types of helicopter noise. This impulsive blade-slap noise can be particularly intense during low-speed landing approach and maneuvers. Over the years, a number of flight and model rotor tests have examined blade tip modification and other blade design changes to reduce this noise. Many times these tests have produced conflicting results. In the present paper, a number of these studies are reviewed in light of the current understanding of the BVI noise problem. Results from one study in particular are used to help establish the noise reduction potential and to shed light on the role of blade design. Current blade studies and some new concepts under development are also described.

  16. Helicopter rotor wake geometry and its influence in forward flight. Volume 1: Generalized wake geometry and wake effect on rotor airloads and performance

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging.

  17. Mach number scaling of helicopter rotor blade/vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  18. Evaluation of a doubly-swept blade tip for rotorcraft noise reduction

    NASA Technical Reports Server (NTRS)

    Wake, Brian E.; Egolf, T. Alan

    1992-01-01

    A computational study was performed for a doubly-swept rotor blade tip to determine its benefit for high-speed impulsive (HSI) and blade-vortex interaction (BVI) noise. This design consists of aft and forward sweep. For the HSI-noise computations, unsteady Euler calculations were performed for several variations to a rotor blade geometry. A doubly-swept planform was predicted to increase the delocalizing Mach number to 0.94 (representative of a 200+ kt helicopter). For the BVI-noise problem, it had been hypothesized that the doubly-swept blade tip, by producing a leading-edge vortex, would reduce the tip-vortex effect on BVI noise. A procedure was used in which the tip vortex velocity profile computed by a Navier-Stokes solver was used to compute the inflow associated with BVI. This inflow was used by a Euler solver to compute the unsteady pressures for an acoustic analysis. The results of this study were inconclusive due to the difficulty in accurately predicting the viscous tip vortex downstream of the blade. Also, for the condition studied, no leading-edge vortex formed at the tip.

  19. Numerical investigation of influence of tip leakage flow on secondary flow in transonic centrifugal compressor at design condition

    NASA Astrophysics Data System (ADS)

    Kaneko, Masanao; Tsujita, Hoshio

    2015-04-01

    In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the interaction with the main flow, and consequently makes the flow in the impeller passage more complex by the interaction with the passage vortex. In addition, the tip leakage vortex interacts with the shock wave on the suction surface near the blade tip in the transonic centrifugal compressor impeller. Therefore, the detailed examination for the influence of the tip leakage vortex becomes seriously important to improve the aerodynamic performance especially for the transonic centrifugal compressor. In this study, the flows in the transonic centrifugal compressor with and without the tip clearance at the design condition were analyzed numerically by using the commercial CFD code. The computed results revealed that the tip leakage vortex induced by the high loading at the blade tip around the leading edge affected the loss generation by the reduction or the suppression of the shock wave on the suction surface of the blade.

  20. Acoustic measurements from a rotor blade-vortex interaction noise experiment in the German-Dutch Wind Tunnel (DNW)

    NASA Technical Reports Server (NTRS)

    Martin, Ruth M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.

    1988-01-01

    Acoustic data are presented from a 40 percent scale model of the 4-bladed BO-105 helicopter main rotor, measured in the large European aeroacoustic wind tunnel, the DNW. Rotor blade-vortex interaction (BVI) noise data in the low speed flight range were acquired using a traversing in-flow microphone array. The experimental apparatus, testing procedures, calibration results, and experimental objectives are fully described. A large representative set of averaged acoustic signals is presented.

  1. Analysis of helicopter blade vortex structure by laser velocimetry

    NASA Astrophysics Data System (ADS)

    Boutier, A.; Lefèvre, J.; Micheli, F.

    1996-05-01

    In descent flight, helicopter external noise is mainly generated by the Blade Vortex Interaction (BVI). To under-stand the dynamics of this phenomenon, the vortex must be characterized before its interaction with the blade, which means that its viscous core radius, its strength and its distance to the blade have to be determined by non-intrusive measurement techniques. As part of the HART program (Higher Harmonic Control Aeroacoustic Rotor Test, jointly conducted by US Army, NASA, DLR, DNW and ONERA), a series of tests have been made in the German Dutch Wind Tunnel (DNW) on a helicopter rotor with 2 m long blades, rotating at 1040 rpm; several flight configurations, with an advance ratio of 0.15 and a shaft angle of 5.3°, have been studied with different higher harmonic blade pitch angles superposed on the conventional one (corresponding to the baseline case). The flow on the retreating side has been analyzed with an especially designed 3D laser velocimeter, and, simultaneously, the blade tip attitude has been determined in order to get the blade-vortex miss distance, which is a crucial parameter in the noise reduction. A 3D laser velocimeter, in backscatter mode with a working distance of 5 m, was installed on a platform 9 m high, and flow seeding with submicron incense smoke was achieved in the settling chamber using a remotely controlled displacement device. Acquisition of instantaneous velocity vectors by an IFA 750 yielded mean velocity and turbulence maps across the vortex as well as the vortex position, intensity and viscous radius. The blade tip attitude (altitude, jitter, angle of incidence) was recorded by the TART method (Target Attitude in Real Time) which makes use of a CCD camera on which is formed the image of two retroreflecting targets attached to the blade tip and lighted by a flash lamp. In addition to the mean values of the aforementioned quantities, spectra of their fluctuations have been established up to 8 Hz.

  2. Large Eddy Simulation of Crashback in Marine Propulsors

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul

    Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.

  3. Evaluation of helicopter noise due to b blade-vortex interaction for five tip configurations. [conducted in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.

    1979-01-01

    The effect of tip shape modification on blade vortex interaction induced helicopter blade slap noise was investigated. Simulated flight and descent velocities which have been shown to produce blade slap were tested. Aerodynamic performance parameters of the rotor system were monitored to ensure properly matched flight conditions among the tip shapes. The tunnel was operated in the open throat configuration with treatment to improve the acoustic characteristics of the test chamber. Four promising tips were used along with a standard square tip as a baseline configuration. A detailed acoustic evaluation on the same rotor system of the relative applicability of the various tip configurations for blade slap noise reduction is provided.

  4. On vortex-airfoil interaction noise including span-end effects, with application to open-rotor aeroacoustics

    NASA Astrophysics Data System (ADS)

    Roger, Michel; Schram, Christophe; Moreau, Stéphane

    2014-01-01

    A linear analytical model is developed for the chopping of a cylindrical vortex by a flat-plate airfoil, with or without a span-end effect. The major interest is the contribution of the tip-vortex produced by an upstream rotating blade in the rotor-rotor interaction noise mechanism of counter-rotating open rotors. Therefore the interaction is primarily addressed in an annular strip of limited spanwise extent bounding the impinged blade segment, and the unwrapped strip is described in Cartesian coordinates. The study also addresses the interaction of a propeller wake with a downstream wing or empennage. Cylindrical vortices are considered, for which the velocity field is expanded in two-dimensional gusts in the reference frame of the airfoil. For each gust the response of the airfoil is derived, first ignoring the effect of the span end, assimilating the airfoil to a rigid flat plate, with or without sweep. The corresponding unsteady lift acts as a distribution of acoustic dipoles, and the radiated sound is obtained from a radiation integral over the actual extent of the airfoil. In the case of tip-vortex interaction noise in CRORs the acoustic signature is determined for vortex trajectories passing beyond, exactly at and below the tip radius of the impinged blade segment, in a reference frame attached to the segment. In a second step the same problem is readdressed accounting for the effect of span end on the aerodynamic response of a blade tip. This is achieved through a composite two-directional Schwarzschild's technique. The modifications of the distributed unsteady lift and of the radiated sound are discussed. The chained source and radiation models provide physical insight into the mechanism of vortex chopping by a blade tip in free field. They allow assessing the acoustic benefit of clipping the rear rotor in a counter-rotating open-rotor architecture.

  5. Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction

    DTIC Science & Technology

    2016-01-22

    levels of harmonic rotor noise are one of the key technical barriers preventing the widespread public acceptance of helicopters for commercial...transportation. Blade-Vortex Interaction (BVI) is one such mechanism of rotor noise. BVI noise is a problem for civilian helicopter terminal area...non-rotating frame) on the vehicle trim which in turn affects noise generation. For example, conventional single main rotor helicopters commonly

  6. Rotorcraft acoustic radiation prediction based on a refined blade-vortex interaction model

    NASA Astrophysics Data System (ADS)

    Rule, John Allen

    1997-08-01

    The analysis of rotorcraft aerodynamics and acoustics is a challenging problem, primarily due to the fact that a rotorcraft continually flies through its own wake. The generation mechanism for a rotorcraft wake, which is dominated by strong, concentrated blade-tip trailing vortices, is similar to that in fixed wing aerodynamics. However, following blades encounter shed vortices from previous blades before they are swept downstream, resulting in sharp, impulsive loading on the blades. The blade/wake encounter, known as Blade-Vortex Interaction, or BVI, is responsible for a significant amount of vibratory loading and the characteristic rotorcraft acoustic signature in certain flight regimes. The present work addressed three different aspects of this interaction at a fundamental level. First, an analytical model for the prediction of trailing vortex structure is discussed. The model as presented is the culmination of a lengthy research effort to isolate the key physical mechanisms which govern vortex sheet rollup. Based on the Betz model, properties of the flow such as mass flux, axial momentum flux, and axial flux of angular momentum are conserved on either a differential or integral basis during the rollup process. The formation of a viscous central core was facilitated by the assumption of a turbulent mixing process with final vortex velocity profiles chosen to be consistent with a rotational flow mixing model and experimental observation. A general derivation of the method is outlined, followed by a comparison of model predictions with experimental vortex measurements, and finally a viscous blade drag model to account for additional effects of aerodynamic drag on vortex structure. The second phase of this program involved the development of a new formulation of lifting surface theory with the ultimate goal of an accurate, reduced order hybrid analytical/numerical model for fast rotorcraft load calculations. Currently, accurate rotorcraft airload analyses are limited by the massive computational power required to capture the small time scale events associated with BVI. This problem has two primary facets: accurate knowledge of the wake geometry, and accurate resolution of the impulsive loading imposed by a tip vortex on a blade. The present work addressed the second facet, providing a mathematical framework for solving the impulsive loading problem analytically, then asymptotically matching this solution to a low-resolution numerical calculation. A method was developed which uses continuous sheets of integrated boundary elements to model the lifting surface and wake. Special elements were developed to capture local behavior in high-gradient regions of the flow, thereby reducing the burden placed on the surrounding numerical method. Unsteady calculations for several classical cases were made in both frequency and time domain to demonstrate the performance of the method. Finally, a new unsteady, compressible boundary element method was applied to the problem of BVI acoustic radiation prediction. This numerical method, combined with the viscous core trailing vortex model, was used to duplicate the geometry and flight configuration of a detailed experimental BVI study carried out at NASA Ames Research Center. Blade surface pressure and near- and far-field acoustic radiation calculations were made. All calculations were shown to compare favorably with experimentally measured values. The linear boundary element method with non-linear corrections proved sufficient over most of the rotor azimuth, and particular in the region of the blade vortex interaction, suggesting that full non-linear CFD schemes are not necessary for rotorcraft noise prediction.

  7. Effects of Double-Leakage Tip Clearance Flow on the Performance of a Compressor Stage with a Large Rotor Tip Gap

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2016-01-01

    Effects of a large rotor tip gap on the performance of a one and half stage axial compressor are investigated in detail with a numerical simulation based on LES and available PIV data. The current paper studies the main flow physics, including why and how the loss generation is increased with the large rotor tip gap. The present study reveals that when the tip gap becomes large, tip clearance fluid goes over the tip clearance core vortex and enters into the next blade's tip gap, which is called double-leakage tip clearance flow. As the tip clearance flow enters into the adjacent blade's tip gap, a vortex rope with a lower pressure core is generated. This vortex rope breaks up the tip clearance core vortex of the adjacent blade, resulting in a large additional mixing. This double-leakage tip clearance flow occurs at all operating conditions, from design flow to near stall condition, with the large tip gap for the current compressor stage. The double-leakage tip clearance flow, its interaction with the tip clearance core vortex of the adjacent blade, and the resulting large mixing loss are the main flow mechanism of the large rotor tip gap in the compressor. When the tip clearance is smaller, flow near the end wall follows more closely with the main passage flow and this double-leakage tip clearance flow does not happen near the design flow condition for the current compressor stage. When the compressor with a large tip gap operates at near stall operation, a strong vortex rope is generated near the leading edge due to the double-leakage flow. Part of this vortex separates from the path of the tip clearance core vortex and travels from the suction side of the blade toward the pressure side of the blade. This vortex is generated periodically at near stall operation with a large tip gap. As the vortex travels from the suction side to the pressure side of the blade, a large fluctuation of local pressure forces blade vibration. Nonsynchronous blade vibration occurs due to this vortex as the frequency of this vortex generation is not the same as the rotor. The present investigation confirms that this vortex is a part of separated tip clearance vortex, which is caused by the double-leakage tip clearance flow.

  8. A parametric study of transonic blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Lyrintzis, A. S.

    1991-01-01

    Several parameters of transonic blade-vortex interactions (BVI) are being studied and some ideas for noise reduction are introduced and tested using numerical simulation. The model used is the two-dimensional high frequency transonic small disturbance equation with regions of distributed vorticity (VTRAN2 code). The far-field noise signals are obtained by using the Kirchhoff method with extends the numerical 2-D near-field aerodynamic results to the linear acoustic 3-D far-field. The BVI noise mechanisms are explained and the effects of vortex type and strength, and angle of attack are studied. Particularly, airfoil shape modifications which lead to noise reduction are investigated. The results presented are expected to be helpful for better understanding of the nature of the BVI noise and better blade design.

  9. Effect of wake structure on blade-vortex interaction phenomena: Acoustic prediction and validation

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Tung, Chee; Schultz, Klaus J.; Splettstoesser, Wolf; Buchholz, Heino

    1995-01-01

    During the Higher Harmonic Control Aeroacoustic Rotor Test, extensive measurements of the rotor aerodynamics, the far-field acoustics, the wake geometry, and the blade motion for powered, descent, flight conditions were made. These measurements have been used to validate and improve the prediction of blade-vortex interaction (BVI) noise. The improvements made to the BVI modeling after the evaluation of the test data are discussed. The effects of these improvements on the acoustic-pressure predictions are shown. These improvements include restructuring the wake, modifying the core size, incorporating the measured blade motion into the calculations, and attempting to improve the dynamic blade response. A comparison of four different implementations of the Ffowcs Williams and Hawkings equation is presented. A common set of aerodynamic input has been used for this comparison.

  10. Implementation and validation of a wake model for vortex-surface interactions in low speed forward flight

    NASA Technical Reports Server (NTRS)

    Komerath, Narayanan M.; Schreiber, Olivier A.

    1987-01-01

    The wake model was implemented using a VAX 750 and a Microvax II workstation. Online graphics capability using a DISSPLA graphics package. The rotor model used by Beddoes was significantly extended to include azimuthal variations due to forward flight and a simplified scheme for locating critical points where vortex elements are placed. A test case was obtained for validation of the predictions of induced velocity. Comparison of the results indicates that the code requires some more features before satisfactory predictions can be made over the whole rotor disk. Specifically, shed vorticity due to the azimuthal variation of blade loading must be incorporated into the model. Interactions between vortices shed from the four blades of the model rotor must be included. The Scully code for calculating the velocity field is being modified in parallel with these efforts to enable comparison with experimental data. To date, some comparisons with flow visualization data obtained at Georgia Tech were performed and show good agreement for the isolated rotor case. Comparison of time-resolved velocity data obtained at Georgia Tech also shows good agreement. Modifications are being implemented to enable generation of time-averaged results for comparison with NASA data.

  11. The application of experimental data to blade wake interaction noise prediction

    NASA Technical Reports Server (NTRS)

    Glegg, Stewart A. L.; Devenport, William J.

    1991-01-01

    Blade wake interaction noise (BWI) has been defined as the broadband noise generated by the ingestion of turbulent trailing tip vortices by helicopter rotors. This has been shown to be the dominant contributor to the subjectively important part of the acoustic spectrum for the approach stage of a helicopter flyover. A prediction method for BWI noise based on the calculated trailing vortex trajectories has been developed and estimates of the vortex turbulence have been made. These measurements were made on a trailing vortex from a split wing arrangement and did not give the spectrum of the velocity fluctuations. A recent experiment carried out to measure the turbulence associated with a trailing vortex and the application of the results to BWI noise prediction is described.

  12. Large eddy simulation of tip-leakage flow in an axial flow fan

    NASA Astrophysics Data System (ADS)

    Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol; Kwon, Oh-Kyoung

    2016-11-01

    An axial flow fan with a shroud generates a complicated tip-leakage flow by the interaction of the axial flow with the fan blades and shroud near the blade tips. In this study, large eddy simulation is performed for tip-leakage flow in a forward-swept axial flow fan inside an outdoor unit of an air-conditioner, operating at the design condition of the Reynolds number of 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame is adopted. The present simulation clearly reveals the generation and evolution of tip-leakage vortex near the blade tip by the leakage flow. At the inception of the leakage vortex near the leading edge of the suction-side of the blade tip, the leakage vortex is composed of unsteady multiple vortices containing high-frequency fluctuations. As the leakage vortex develops downstream along a slant line toward the following blade, large and meandering movements of the leakage vortex are observed. Thus low-frequency broad peaks of velocity and pressure occur near the pressure surface. Supported by the KISTI Supercomputing Center (KSC-2016-C3-0027).

  13. Parametric Investigation of the Effect of Hub Pitching Moment on Blade Vortex Interaction (BVI) Noise of an Isolated Rotor

    DTIC Science & Technology

    2016-05-19

    1 Parametric Investigation of the Effect of Hub Pitching Moment on Blade Vortex Interaction (BVI) Noise of an Isolated Rotor Carlos Malpica...changing the hub pitching moment for an isolated rotor, trimmed in nominal 80 knot, 6 and 12 deg descent, flight conditions, alters the miss distance...compensate for the uncomfortable change in fuselage pitch attitude introduced by a fuselage-mounted X-force controller. NOMENCLATURE xM C rolling

  14. A Novel Method for Reducing Rotor Blade-Vortex Interaction

    NASA Technical Reports Server (NTRS)

    Glinka, A. T.

    2000-01-01

    One of the major hindrances to expansion of the rotorcraft market is the high-amplitude noise they produce, especially during low-speed descent, where blade-vortex interactions frequently occur. In an attempt to reduce the noise levels caused by blade-vortex interactions, the flip-tip rotor blade concept was devised. The flip-tip rotor increases the miss distance between the shed vortices and the rotor blades, reducing BVI noise. The distance is increased by rotating an outboard portion of the rotor tip either up or down depending on the flight condition. The proposed plan for the grant consisted of a computational simulation of the rotor aerodynamics and its wake geometry to determine the effectiveness of the concept, coupled with a series of wind tunnel experiments exploring the value of the device and validating the computer model. The computational model did in fact show that the miss distance could be increased, giving a measure of the effectiveness of the flip-tip rotor. However, the wind experiments were not able to be conducted. Increased outside demand for the 7'x lO' wind tunnel at NASA Ames and low priority at Ames for this project forced numerous postponements of the tests, eventually pushing the tests beyond the life of the grant. A design for the rotor blades to be tested in the wind tunnel was completed and an analysis of the strength of the model blades based on predicted loads, including dynamic forces, was done.

  15. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    NASA Astrophysics Data System (ADS)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-07-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  16. HART-II: Prediction of Blade-Vortex Interaction Loading

    NASA Technical Reports Server (NTRS)

    Lim, Joon W.; Tung, Chee; Yu, Yung H.; Burley, Casey L.; Brooks, Thomas; Boyd, Doug; vanderWall, Berend; Schneider, Oliver; Richard, Hugues; Raffel, Markus

    2003-01-01

    During the HART-I data analysis, the need for comprehensive wake data was found including vortex creation and aging, and its re-development after blade-vortex interaction. In October 2001, US Army AFDD, NASA Langley, German DLR, French ONERA and Dutch DNW performed the HART-II test as an international joint effort. The main objective was to focus on rotor wake measurement using a PIV technique along with the comprehensive data of blade deflections, airloads, and acoustics. Three prediction teams made preliminary correlation efforts with HART-II data: a joint US team of US Army AFDD and NASA Langley, German DLR, and French ONERA. The predicted results showed significant improvements over the HART-I predicted results, computed about several years ago, which indicated that there has been better understanding of complicated wake modeling in the comprehensive rotorcraft analysis. All three teams demonstrated satisfactory prediction capabilities, in general, though there were slight deviations of prediction accuracies for various disciplines.

  17. Transonic blade-vortex interactions - The far field

    NASA Astrophysics Data System (ADS)

    Lyrintzis, A. S.; George, A. R.

    Numerical techniques are developed to predict midfield and far-field helicopter noise due to main-rotor blade-vortex interaction (BVI). The extension of the two-dimensional small-disturbance transonic flow code VTRAN2 (George and Chang, 1983) to the three-dimensional far field (via the Green-function approach of Kirchhoff) is described, and the treatment of oblique BVIs is discussed. Numerical results for a NACA 64A006 airfoil at Mach 0.82 are presented in extensive graphs and characterized in detail. The far-field BVI signature is shown to begin with a strongly forward-directed primary wave (from the original BVI), with an additional downward-directed wave in the case of type C shock motion on the blade.

  18. Full-Potential Modeling of Blade-Vortex Interactions

    DTIC Science & Technology

    1997-12-01

    modeled by any arbitrary distribution. Stremel (ref. 23) uses a method in which the vortex is modeled with an area-weighted distribution of vorticity. A...Helicopter Rotor. Ph.D. Thesis, StanfordUniv., 1978. 23. Stremel , P. M.: Computational Methods for Non-Planar Vortex Wake Flow Fields. M.S. Thesis

  19. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a flexible UH-60A rotor in forward flight, where the rotor wake interacts with the rotor blades. These flow conditions involved blade vortex interaction and dynamic stall, two common conditions that occur as modern helicopter designs strive to achieve greater flight speeds and payload capacity. These numerical simulations utilized high-order spatial accuracy and delayed detached eddy simulation. Emphasis was placed on understanding how improved rotor wake resolution affects the prediction of the normal force, pitching moment, and chord force of the rotor. Adaptive mesh refinement was used to highly resolve the turbulent rotor wake in a computationally efficient manner. Moreover, blade vortex interaction was found to trigger dynamic stall. Time-dependent flow visualization was utilized to provide an improved understanding of the numerical and physical mechanisms involved with three-dimensional dynamic stall.

  20. Numerical Investigation of Compressor Non-Synchronous Vibration with Full Annulus Rotor-Stator Interaction

    NASA Astrophysics Data System (ADS)

    Espinal, Daniel

    The objective of this research is to investigate and confirm the periodicity of the Non-Synchronous Vibration (NSV) mechanism of a GE axial compressor with a full-annulus simulation. A second objective is to develop a high fidelity single-passage tool with time-accurate unsteady capabilities able to capture rotor-stator interactions and NSV excitation response. A high fidelity methodology for axial turbomachinery simulation is developed using the low diffusion shock-capturing Riemann solver with high order schemes, the Spalart-Allmaras turbulence closure model, the fully conservative unsteady sliding BC for rotor-stator interaction with extension to full-annulus and single-passage configurations, and the phase lag boundary conditions applied to rotor-stator interface and circumferential BC. A URANS solver is used and captures the NSV flow excitation frequency of 2439 Hz, which agrees reasonably well with the measured NSV frequency of 2600 Hz from strain gage test data. It is observed that the circumferentially traveling vortex formed in the vicinity of the rotor tip propagates at the speed of a non-engine order frequency and causes the NSV. The vortex travels along the suction surface of the blade and crosses the passage outlet near blade trailing edge. Such a vortex motion trajectory repeats in each blade passage and generates two low pressure regions due to the vortex core positions, one at the leading edge and one at the trailing edge, both are oscillating due to the vortex coming and leaving. These two low pressure regions create a pair of coupling forces that generates a torsion moment causing NSV. The full-annulus simulation shows that the circumferentially traveling vortex has fairly periodical behavior and is a full annulus structure. Also, frequencies below the NSV excitation frequency of 2439 Hz with large amplitudes in response to flow-separation related phenomena are present. This behavior is consistent with experimental measurements. For circumferentially averaged parameters like total pressure ratio, NSV is observed to have an effect, particularly at radial locations above 70% span. Therefore, to achieve similar or better total pressure ratio a design with a smaller loading of the upper blade span and a higher loading of the mid blade spans should be considered. A fully-conservative sliding interface boundary condition (BC) is implemented with phase-lag capabilities using the Direct Store method for single-passage simulations. Also Direct Store phase-lag was applied to the circumferential BCs to enforce longer disturbance wavelengths. The unsteady simulation using single-blade-passage with periodic BC for an inlet guide vane (IGV)-rotor configuration captures a 2291 Hz NSV excitation frequency and an IGV-rotor-stator configuration predicts a 2365 Hz NSV excitation frequency with a significantly higher amplitude above 90% span. This correlates closely to the predicted NSV excitation frequency of 2439 Hz for the full-annulus configuration. The two-blade-row configuration exhibits the same vortex structures captured in the full-annulus study. The three-blade-row configuration only captures a tip vortex shedding at the leading edge, which can be attributed to the reflective nature of the BCs causing IGV-rotor-stator interactions to be augmented, becoming dominant and shifting NSV excitation response to engine order regime. Phase-lag simulations with a Nodal Diameter (ND) of 5 is enforced for the circumferential BCs for the three-blade-row configuration, and the results exactly matched the frequency response and flow structures of the periodic simulation, illustrating the small effect that phase-lag has on strongly periodic flow disturbances. A ND of 7 is enforced at the sliding interface, however the NSV excitation completely disappears and only the wake propagation from IGV-Rotor-Stator interactions are captured. Rotor blade passage exhibits a circumferentially travelling vortex similar to those observed in the full-annulus and two-blade-row simulations. This can occur when the rotating instability responsible for the NSV no longer maintains a pressure variation with a characteristic frequency signature as it rotates relative to the rotor rotation, and now has become the beginning of a spike-type stall cell. In this scenario the travelling vortex has become evidence of part-stall of the upper spans of the rotor blade, but stalling is contained maintaining stable operation. In conclusion, an efficient method of capturing NSV excitation has been proposed in a high-fidelity manner, where only 2% of the computational resources used in a full-annulus simulation are required for an accurate single-blade-passage multi-stage simulation.

  1. Further studies of turbulence structure resulting from interactions between embedded vortices and wall jets at high blowing ratios

    NASA Astrophysics Data System (ADS)

    Doner, William D.

    1989-12-01

    Interactions of wall jets and vortices embedded in turbulent layers commonly occur near gas turbine blades and endwalls where film cooling is employed. These interactions frequently result in undesirable heat transfer effects at blade and endwall surfaces. In this thesis, a crossed hot-wire probe is used to measure the turbulence structure resulting from this type of interaction. The vortex is generated using a half delta-wing vortex generator mounted 12 deg with respect to a 10 m/s mean velocity flow over a flat plate. A single injection hole, 0.95 cm in diameter, inclined 30 deg to the horizontal, is positioned 59.3 cm downstream of the vortex generator. The vortex generator is positioned so that vortex upwash and downwash could be located over the injection hole. Streamwise development of the turbulent boundary layer was investigated for the following cases: (1) boundary layer with jet only (m = 1.5), and (2) boundary layer with vortex only. Measurement of interaction between the boundary layer, vortex upwash, and the wall jet was made at one station with various blowing ratios. At low blowing ratios (m = 0.5 and 1.5) the vortex dominates the flow. Significant alterations to the turbulent structure are seen in the Reynolds stress components, vorticity distributions and mean velocities. At higher blowing ratios (m = 2.5 and 3.5) the jet dominates the flow, the vortex is blown away from the wall, and its turbulence effects are dispersed over a larger area.

  2. Cut-cell method based large-eddy simulation of tip-leakage flow

    NASA Astrophysics Data System (ADS)

    Pogorelov, Alexej; Meinke, Matthias; Schröder, Wolfgang

    2015-07-01

    The turbulent low Mach number flow through an axial fan at a Reynolds number of 9.36 × 105 based on the outer casing diameter is investigated by large-eddy simulation. A finite-volume flow solver in an unstructured hierarchical Cartesian setup for the compressible Navier-Stokes equations is used. To account for sharp edges, a fully conservative cut-cell approach is applied. A newly developed rotational periodic boundary condition for Cartesian meshes is introduced such that the simulations are performed just for a 72° segment, i.e., the flow field over one out of five axial blades is resolved. The focus of this numerical analysis is on the development of the vortical flow structures in the tip-gap region. A detailed grid convergence study is performed on four computational grids with 50 × 106, 250 × 106, 1 × 109, and 1.6 × 109 cells. Results of the instantaneous and the mean fan flow field are thoroughly analyzed based on the solution with 1 × 109 cells. High levels of turbulent kinetic energy and pressure fluctuations are generated by a tip-gap vortex upstream of the blade, the separating vortices inside the tip gap, and a counter-rotating vortex on the outer casing wall. An intermittent interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, leads to a cyclic transition with high pressure fluctuations on the suction side of the blade and a decay of the tip-gap vortex. The disturbance of the tip-gap vortex results in an unsteady behavior of the turbulent wake causing the intermittent interaction. For this interaction and the cyclic transition, two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level and therefore explain their physical origin.

  3. Experimental evidence of inter-blade cavitation vortex development in Francis turbines at deep part load condition

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Avellan, F.

    2017-10-01

    Francis turbines are subject to various types of cavitation flow depending on the operating condition. To enable a smooth integration of the renewable energy sources, hydraulic machines are now increasingly required to extend their operating range, especially down to extremely low discharge conditions called deep part load operation. The inter-blade cavitation vortex is a typical cavitation phenomenon observed at deep part load operation. However, its dynamic characteristics are insufficiently understood today. In an objective of revealing its characteristics, the present study introduces a novel visualization technique with instrumented guide vanes embedding the visualization devices, providing unprecedented views on the inter-blade cavitation vortex. The binary image processing technique enables the successful evaluation of the inter-blade cavitation vortex in the images. As a result, it is shown that the probability of the inter-blade cavitation development is significantly high close to the runner hub. Furthermore, the mean vortex line is calculated and the vortex region is estimated in the three-dimensional domain for the comparison with numerical simulation results. In addition, the on-board pressure measurements on a runner blade is conducted, and the influence of the inter-blade vortex on the pressure field is investigated. The analysis suggests that the presence of the inter-blade vortex can magnify the amplitude of pressure fluctuations especially on the blade suction side. Furthermore, the wall pressure difference between pressure and suction sides of the blade features partially low or negative values near the hub at the discharge region where the inter-blade vortex develops. This negative pressure difference on the blade wall suggests the development of a backflow region caused by the flow separation near the hub, which is closely related to the development of the inter-blade vortex. The development of the backflow region is confirmed by the numerical simulation, and the physical mechanisms of the inter-blade vortex development is, furthermore, discussed.

  4. Some design philosophy for reducing the community noise of advanced counter-rotation propellers

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    Advanced counter-rotation propellers have been indicated as possibly generating an unacceptable amount of noise for the people living near an airport. This report has explored ways to reduce this noise level, which is treated as being caused by the interaction of the upstream propeller wakes and vortices with the downstream propeller. The noise reduction techniques fall into two categories: (1) reducing the strength of the wakes and vortices, and (2) reducing the response of the downstream blades to them. The noise from the wake interaction was indicated as being reduced by increased propeller spacing and decreased blade drag coefficient. The vortex-interaction noise could be eliminated by having the vortex pass over the tips of the downstream blade, and it could be reduced by increased spacing or decreased initial circulation. The downstream blade response could be lessened by increasing the reduced frequency parameter omega or by phasing of the response from different sections to have a mutual cancellation effect. Uneven blade to blade spacing for the downstream blading was indicated as having a possible effect on the annoyance of counter-rotation propeller noise. Although there are undoubtedly additional methods of noise reduction not covered in this report, the inclusion of the design methods discussed would potentially result in a counter-rotation propeller that is acceptably quiet.

  5. A comprehensive PIV measurement campaign on a fully equipped helicopter model

    NASA Astrophysics Data System (ADS)

    De Gregorio, Fabrizio; Pengel, Kurt; Kindler, Kolja

    2012-07-01

    The flow field around a helicopter is characterised by its inherent complexity including effects of fluid-structure interference, shock-boundary layer interaction, and dynamic stall. Since the advancement of computational fluid dynamics and computing capabilities has led to an increasing demand for experimental validation data, a comprehensive wind tunnel test campaign of a fully equipped and motorised generic medium transport helicopter was conducted in the framework of the GOAHEAD project. Different model configurations (with or without main/tail rotor blades) and several flight conditions were investigated. In this paper, the results of the three-component velocity field measurements around the model are surveyed. The effect of the interaction between the main rotor wake and the fuselage for cruise/tail shake flight conditions was analysed based on the flow characteristics downstream from the rotor hub and the rear fuselage hatch. The results indicated a sensible increment of the intensity of the vortex shedding from the lower part of the fuselage and a strong interaction between the blade vortex filaments and the wakes shed by the rotor hub and by the engine exhaust areas. The pitch-up phenomenon was addressed, detecting the blade tip vortices impacting on the horizontal tail plane. For high-speed forward flight, the shock wave formation on the advancing blade was detected, measuring the location on the blade chord and the intensity. Furthermore, dynamic stall on the retreating main rotor blade in high-speed forward flight was observed at r/ R = 0.5 and 0.6. The analysis of the substructures forming the dynamic stall vortex revealed an unexpected spatial concentration suggesting a rotational stabilisation of large-scale structures on the blade.

  6. Flowfield analysis of modern helicopter rotors in hover by Navier-Stokes method

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Raghavan, V.; Duque, E. P. N.

    1991-01-01

    The viscous, three-dimensional, flowfields of UH60 and BERP rotors are calculated for lifting hover configurations using a Navier-Stokes computational fluid dynamics method with a view to understand the importance of planform effects on the airloads. In this method, the induced effects of the wake, including the interaction of tip vortices with successive blades, are captured as a part of the overall flowfield solution without prescribing any wake models. Numerical results in the form of surface pressures, hover performance parameters, surface skin friction and tip vortex patterns, and vortex wake trajectory are presented at two thrust conditions for UH60 and BERP rotors. Comparison of results for the UH60 model rotor show good agreement with experiments at moderate thrust conditions. Comparison of results with equivalent rectangular UH60 blade and BERP blade indicates that the BERP blade, with an unconventional planform, gives more thrust at the cost of more power and a reduced figure of merit. The high thrust conditions considered produce severe shock-induced flow separation for UH60 blade, while the BERP blade develops more thrust and minimal separation. The BERP blade produces a tighter tip vortex structure compared with the UH60 blade. These results and the discussion presented bring out the similarities and differences between the two rotors.

  7. Darrieus rotor aerodynamics

    NASA Astrophysics Data System (ADS)

    Klimas, P. C.

    1982-05-01

    A summary of the progress of modeling the aerodynamic effects on the blades of a Darrieus wind turbine is presented. Interference is discussed in terms of blade/blade wake interaction and improvements in single and multiple stream tube models, of vortex simulations of blades and their wakes, and a hybrid momentum/vortex code to combine fast computation time with interference-describing capabilities. An empirical model has been developed for treating the properties of dynamic stall such as airfoil geometry, Reynolds number, reduced frequency, angle-of-attack, and Mach number. Pitching circulation has been subjected to simulation as potential flow about a two-dimensional flat plate, along with applications of the concepts of virtual camber and virtual incidence, with a cambered airfoil operating in a rectilinear flowfield. Finally, a need to develop a loading model suitable for nonsymmetrical blade sections is indicated, as well as blade behavior in a dynamic, curvilinear regime.

  8. CERT: Center of Excellence in Rotorcraft Technology

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The research objectives of this effort are to understand the physical processes that influence the formation of the tip vortex of a rotor in advancing flight, and to develop active and passive means of weakening the tip vortex during conditions when strong blade-vortex-interaction effects are expected. A combined experimental, analytical, and computational effort is being employed. Specifically, the following efforts are being pursued: 1. Analytical evaluation and design of combined elastic tailoring and active material actuators applicable to rotor blade tips. 2. Numerical simulations of active and passive tip devices. 3. LDV Measurement of the near and far wake behind rotors in forward flight.

  9. Tailoring optical complex field with spiral blade plasmonic vortex lens

    PubMed Central

    Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2015-01-01

    Optical complex fields have attracted increasing interests because of the novel effects and phenomena arising from the spatially inhomogeneous state of polarizations and optical singularities of the light beam. In this work, we propose a spiral blade plasmonic vortex lens (SBPVL) that offers unique opportunities to manipulate these novel fields. The strong interaction between the SBPVL and the optical complex fields enable the synthesis of highly tunable plasmonic vortex. Through theoretical derivations and numerical simulations we demonstrated that the characteristics of the plasmonic vortex are determined by the angular momentum (AM) of the light, and the geometrical topological charge of the SBPVL, which is govern by the nonlinear superposition of the pitch and the number of blade element. In addition, it is also shown that by adjusting the geometric parameters, SBPVL can be utilized to focus and manipulate optical complex field with fractional AM. This miniature plasmonic device may find potential applications in optical trapping, optical data storage and many other related fields. PMID:26335894

  10. Wake Geometry Effects on Rotor Blade-Vortex Interaction Noise Directivity

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Marcolini, Michael A.; Splettstoesser, W. R.; Schultz, K.-J.

    1990-01-01

    Acoustic measurements from a model rotor wind tunnel test are presented which show that the directionality of rotor blade vortex interaction (BVI) noise is strongly dependent on the rotor advance ratio and disk attitude. A rotor free wake analysis is used to show that the general locus of interactions on the rotor disk is also strongly dependent on advance ratio and disk attitude. A comparison of the changing directionality of the BVI noise with changes in the interaction locations shows that the strongest noise radiation occurs in the direction of motion normal to the blade span at the time of interaction, for both advancing and retreating side BVI. For advancing side interactions, the BVI radiation angle down from the tip-path plane appears relatively insensitive to rotor operating condition and is typically between 40 and 55 deg below the disk. However, the azimuthal radiation direction shows a clear trend with descent speed, moving towards the right of the flight path with increasing descent speed. The movement of the strongest radiation direction is attributed to the movement of the interaction locations on the rotor disk with increasing descent speed.

  11. Hub vortex instability within wind turbine wakes: Effects of wind turbulence, loading conditions, and blade aerodynamics

    NASA Astrophysics Data System (ADS)

    Ashton, Ryan; Viola, Francesco; Camarri, Simone; Gallaire, Francois; Iungo, Giacomo Valerio

    2016-11-01

    The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability of the hub vortex instability is expected for wind energy applications with consequent effects on wake downstream evolution, wake interactions within a wind farm, power production, and fatigue loads on turbines invested by wakes generated upstream. In order to predict characteristics of the hub vortex instability for different operating conditions, linear stability analysis is carried out by considering different statistics of the incoming wind turbulence, thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disk model. The linear stability analysis shows that hub vortex instability is strongly affected by the wind turbine loading conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the radial direction of the streamwise velocity. The axial velocity shear within the turbine wake is also the main physical mechanism promoting the hub vortex instability when varying the lift distribution over the blade span for a specific loading condition. Cases with a larger velocity deficit in proximity of the wake center and less aerodynamic load towards the blade tip result to be more unstable. Moreover, wake swirl promotes hub vortex instability, and it can also affect the azimuthal wave number of the most unstable mode. Finally, higher Reynolds stresses and turbulent eddy viscosity decrease both growth rate and azimuthal wave number of the most unstable mode.

  12. The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1987-01-01

    This paper is theoretical in nature and addresses applications of the acoustic analogy in helicopter rotor noise prediction. It is argued that in many instances the acoustic analogy has not been used with care in rotor noise studies. By this it is meant that approximate or inappropriate formulations have been used. By considering various mechanisms of noise generation, such abuses are identified and the remedy is suggested. The mechanisms discussed are thickness, loading, quadrupole, and blade-vortex interaction noise. The quadrupole term of the Ffowcs Williams-Hawkings equation is written in a new form which separates the contributions of regions of high gradients such as shock surfaces. It is shown by order of magnitude studies that such regions are capable of producing noise with the same directivity as the thickness noise. The inclusion of this part of quadrupole sources in current acoustic codes is quite practical. Some of the difficulties with the use of loading noise formulations of the first author in predictions of blade-vortex interaction noise are discussed. It appears that there is a need for development of new theoretical results based on the acoustic analogy in this area. Because of the impulsive character of the blade surface pressure, a time scale of integration different from that used in loading and thickness computations must he used in a computer code for prediction of blade-vortex interaction noise.

  13. Experimental analysis of the aerodynamic performance of an innovative low pressure turbine rotor

    NASA Astrophysics Data System (ADS)

    Infantino, Daniele; Satta, Francesca; Simoni, Daniele; Ubaldi, Marina; Zunino, Pietro; Bertini, Francesco

    2016-02-01

    In the present work the aerodynamic performances of an innovative rotor blade row have been experimentally investigated. Measurements have been carried out in a large scale low speed single stage cold flow facility at a Reynolds number typical of aeroengine cruise, under nominal and off-design conditions. The time-mean blade aerodynamic loadings have been measured at three radial positions along the blade height through a pressure transducer installed inside the hollow shaft, by delivering the signal to the stationary frame with a slip ring. The time mean aerodynamic flow fields upstream and downstream of the rotor have been measured by means of a five-hole probe to investigate the losses associated with the rotor. The investigations in the single stage research turbine allow the reproduction of both wake-boundary layer interaction as well as vortex-vortex interaction. The detail of the present results clearly highlights the strong dissipative effects induced by the blade tip vortex and by the momentum defect as well as the turbulence production, which is generated during the migration of the stator wake in the rotor passage. Phase-locked hot-wire investigations have been also performed to analyze the time-varying flow during the wake passing period. In particular the interaction between stator and rotor structures has been investigated also under off-design conditions to further explain the mechanisms contributing to the loss generation for the different conditions.

  14. Parallel computation of three-dimensional aeroelastic fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mani

    This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.

  15. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  16. Time frequency analysis of sound from a maneuvering rotorcraft

    NASA Astrophysics Data System (ADS)

    Stephenson, James H.; Tinney, Charles E.; Greenwood, Eric; Watts, Michael E.

    2014-10-01

    The acoustic signatures produced by a full-scale, Bell 430 helicopter during steady-level-flight and transient roll-right maneuvers are analyzed by way of time-frequency analysis. The roll-right maneuvers comprise both a medium and a fast roll rate. Data are acquired using a single ground based microphone that are analyzed by way of the Morlet wavelet transform to extract the spectral properties and sound pressure levels as functions of time. The findings show that during maneuvering operations of the helicopter, both the overall sound pressure level and the blade-vortex interaction sound pressure level are greatest when the roll rate of the vehicle is at its maximum. The reduced inflow in the region of the rotor disk where blade-vortex interaction noise originates is determined to be the cause of the increase in noise. A local decrease in inflow reduces the miss distance of the tip vortex and thereby increases the BVI noise signature. Blade loading and advance ratios are also investigated as possible mechanisms for increased sound production, but are shown to be fairly constant throughout the maneuvers.

  17. Experimental study to the influences of rotational speed and blade shape on water vortex turbine performance

    NASA Astrophysics Data System (ADS)

    Kueh, T. C.; Beh, S. L.; Ooi, Y. S.; Rilling, D. G.

    2017-04-01

    Water vortex turbine utilizes the natural behaviour of water to form free surface vortex for energy extraction. This allows simple construction and ease of management on the whole water vortex power plant system. To our findings, the literature study specifically on water vortex turbine is inadequate and low efficiency was reported. Influences of operating speed and blade shape on turbine performance are the two parameters investigated in this study. Euler Turbomachinery Equation and velocity triangle are used in the improvement analysis. Two turbines with flat blades and curved blades are tested and compared. Both turbines show similar rotational speed at no load condition. This suggested that the circulation force of the water vortex has more dominant effect on the turbine rotational speed, compared to the turbine’s geometry. Flat-blades turbine showed maximum efficiency of 21.63% at 3.27 rad/s whereas curved-blades turbine showed 22.24% at 3.56 rad/s. When operating load is applied, the backward-leaning curve helps the turbine blades to reduce the disturbance on the water vortex, and hence provide a better performance.

  18. Aeroacoustic interaction of a distributed vortex with a lifting Joukowski airfoil

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Lamkin, S. L.

    1984-01-01

    A first principles computational aeroacoustics calculation of the flow and noise fields produced by the interaction of a distributed vortex with a lifting Joukowski airfoil is accomplished at the Reynolds number of 200. The case considered is that where the circulations of the vortex and the airfoil are of opposite sign, corresponding to blade vortex interaction on the retreating side of a single helicopter rotor. The results show that the flow is unsteady, even in the absence of the incoming vortex, resulting in trailing edge noise generation. After the vortex is input, it initially experiences a quite rapid apparent diffusion rate produced by stretching in the airfoil velocity gradients. Consideration of the effects of finite vortex size and viscosity causes the noise radiation during the encounter to be much less impulsive than predicted by previous analyses.

  19. A Numerical Study of Cavitation Inception in Complex Flow Fields

    DTIC Science & Technology

    2007-12-01

    field in a tip vortex flow of an open propeller to better describe the interaction between the blade wake and the tip vortex (i.e. the roll-up... WAKE INTERACTION ON CAVITATION INCEPTION IN AN OPEN PROPELLER ................15 2.5 NON-SPHERICAL BUBBLE EFFECTS ON CAVITATION INCEPTION [14,15...18 2.6 STUDY OF CAVITATION INCEPTION NOISE [16,17,18

  20. Trailing Vortex Measurements in the Wake of a Hovering Rotor Blade with Various Tip Shapes

    NASA Technical Reports Server (NTRS)

    Martin, Preston B.; Leishman, J. Gordon

    2003-01-01

    This work examined the wake aerodynamics of a single helicopter rotor blade with several tip shapes operating on a hover test stand. Velocity field measurements were conducted using three-component laser Doppler velocimetry (LDV). The objective of these measurements was to document the vortex velocity profiles and then extract the core properties, such as the core radius, peak swirl velocity, and axial velocity. The measured test cases covered a wide range of wake-ages and several tip shapes, including rectangular, tapered, swept, and a subwing tip. One of the primary differences shown by the change in tip shape was the wake geometry. The effect of blade taper reduced the initial peak swirl velocity by a significant fraction. It appears that this is accomplished by decreasing the vortex strength for a given blade loading. The subwing measurements showed that the interaction and merging of the subwing and primary vortices created a less coherent vortical structure. A source of vortex core instability is shown to be the ratio of the peak swirl velocity to the axial velocity deficit. The results show that if there is a turbulence producing region of the vortex structure, it will be outside of the core boundary. The LDV measurements were supported by laser light-sheet flow visualization. The results provide several benchmark test cases for future validation of theoretical vortex models, numerical free-wake models, and computational fluid dynamics results.

  1. Aeroacoustic flowfield and acoustics of a model helicopter tail rotor at high advance ratio

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.

    1989-01-01

    Some results, relevant to rotorcraft noise generation process at high advance ratio, are presented in this paper from schlieren flow visualization and acoustic tests of a model tail rotor. The measured in-plane noise trends are consistent with the growth of the tip supersonic region seen in the schlieren visuals. Schlieren flow visuals reveal a propagating pressure wave in the second quadrant. Simultaneously measured acoustic data and the results of two-dimensional transonic Blade-Vortex Interaction analysis code ATRAN-2 indicate that this pressure wave is attributable to BVI activity in the first quadrant. This paper establishes that the transonic Blade-Vortex Interactions contribute to noise at high advance ratio level flight conditions.

  2. Tip-path-plane angle effects on rotor blade-vortex interaction noise levels and directivity

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Martin, Ruth M.

    1988-01-01

    Acoustic data of a scale model BO-105 main rotor acquired in a large aeroacoustic wind tunnel are presented to investigate the parametric effects of rotor operating conditions on blade-vortex interaction (BVI) impulsive noise. Contours of a BVI noise metric are employed to quantify the effects of rotor advance ratio and tip-path-plane angle on BVI noise directivity and amplitude. Acoustic time history data are presented to illustrate the variations in impulsive characteristics. The directionality, noise levels and impulsive content of both advancing and retreating side BVI are shown to vary significantly with tip-path-plane angle and advance ratio over the range of low and moderate flight speeds considered.

  3. Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos; Greenwood, Eric; Sim, Ben W.

    2016-01-01

    An acoustics parametric analysis of the effect of fuselage drag and pitching moment on the Blade-Vortex Interaction (BVI) noise radiated by a medium lift helicopter (S-70UH-60) in a descending flight condition was conducted. The comprehensive analysis CAMRAD II was used for the calculation of vehicle trim, wake geometry and integrated air loads on the blade. The acoustics prediction code PSU-WOPWOP was used for calculating acoustic pressure signatures for a hemispherical grid centered at the hub. This paper revisits the concept of the X-force controller for BVI noise reduction, and investigates its effectiveness on an S-70 helicopter. The analysis showed that further BVI noise reductions were achievable by controlling the fuselage pitching moment. Reductions in excess of 6 dB of the peak BVI noise radiated towards the ground were demonstrated by compounding the effect of airframe drag and pitching moment simultaneously.

  4. Active Control of Blade Tonals in Underwater Vehicles

    DTIC Science & Technology

    2006-12-01

    Because the stator is a streamlined shape the wake deficit responsible for blade tonal noise is due mainly to surface drag, which can be thought of as a... wake deficit , the vortex rollup at this stage is not very repeatable. Therefore, this type of wake may not be the best suited for controlling blade ...sinusoidal and non-sinusoidal move profiles. This model was also able to capture the baseline wake deficit measured. 2-dimensional blade interaction was

  5. Aeroacoustic Codes for Rotor Harmonic and BVI Noise. CAMRAD.Mod1/HIRES: Methodology and Users' Manual

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Brooks, Thomas F.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1998-01-01

    This document details the methodology and use of the CAMRAD.Mod1/HIRES codes, which were developed at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. CANMAD.Mod1 is a substantially modified version of the performance/trim/wake code CANMAD. High resolution blade loading is determined in post-processing by HIRES and an associated indicial aerodynamics code. Extensive capabilities of importance to noise prediction accuracy are documented, including a new multi-core tip vortex roll-up wake model, higher harmonic and individual blade control, tunnel and fuselage correction input, diagnostic blade motion input, and interfaces for acoustic and CFD aerodynamics codes. Modifications and new code capabilities are documented with examples. A users' job preparation guide and listings of variables and namelists are given.

  6. Mind the gap - tip leakage vortex in axial turbines

    NASA Astrophysics Data System (ADS)

    Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M.

    2014-03-01

    The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex.

  7. Unsteady flows in rotor-stator cascades

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Tai; Bein, Thomas W.; Feng, Jin Z.; Merkle, Charles L.

    1991-03-01

    A time-accurate potential-flow calculation method has been developed for unsteady incompressible flows through two-dimensional multi-blade-row linear cascades. The method represents the boundary surfaces by distributing piecewise linear-vortex and constant-source singularities on discrete panels. A local coordinate is assigned to each independently moving object. Blade-shed vorticity is traced at each time step. The unsteady Kutta condition applied is nonlinear and requires zero blade trailing-edge loading at each time. Its influence on the solutions depends on the blade trailing-edge shapes. Steady biplane and cascade solutions are presented and compared to exact solutions and experimental data. Unsteady solutions are validated with the Wagner function for an airfoil moving impulsively from rest and the Theodorsen function for an oscillating airfoil. The shed vortex motion and its interaction with blades are calculated and compared to an analytic solution. For multi-blade-row cascade, the potential effect between blade rows is predicted using steady and quasi unsteady calculations. The accuracy of the predictions is demonstrated using experimental results for a one-stage turbine stator-rotor.

  8. Visualization and analysis of vortex-turbine intersections in wind farms.

    PubMed

    Shafii, Sohail; Obermaier, Herald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth I

    2013-09-01

    Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. This paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life expectancy. Our methods have the potential to improve turbine design to save costs related to turbine operation and maintenance.

  9. Dynamic stall - The case of the vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Laneville, A.; Vittecoq, P.

    1986-05-01

    This paper presents the results of an experimental investigation on a driven Darrieus turbine rotating at different tip speed ratios. For a Reynolds number of 3.8 x 10 to the 4th, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon. It was observed that in deep stall conditions, a vortex is formed at the leading edge; this vortex moves over the airfoil surface with 1/3 of the airfoil speed and then is shed at the trailing edge. After its shedding, the vortex can interact with the airfoil surface as the blade passes downstream.

  10. Development and Hover Testing of the Active Elevon Rotor

    DTIC Science & Technology

    2012-05-01

    typically aimed at reducing vibration, improving rotor performance, and/or reducing blade -vortex interaction (BVI) or in-plane noise . These efforts...will become unstable, either through a 1-DOF (degree of freedom) flutter or some kind of aeroservoelastic coupling with the rotor blade and/or wake ... blade CAEAs did exhibit electrical arcing (audible noise ), even at oscillatory voltages below ±200 V. This arcing/ noise suggests a latent deficiency

  11. Parametric Investigation of the Effect of Hub Pitching Moment on Blade Vortex Interaction (BVI) Noise of an Isolated Rotor

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos; Greenwood, Eric; Sim, Ben

    2016-01-01

    At the most fundamental level, main rotor loading noise is caused by the harmonically-varying aerodynamic loads (acoustic pressures) exerted by the rotating blades on the air. Rotorcraft main rotor noise is therefore, in principle, a function of rotor control inputs, and thus the forces and moments required to achieve steady, or "trim", flight equilibrium. In certain flight conditions, the ensuing aerodynamic loading on the rotor(s) can result in highly obtrusive harmonic noise. The effect of the propulsive force, or X-force, on Blade-Vortex Interaction (BVI) noise is well documented. This paper presents an acoustics parametric sensitivity analysis of the effect of varying rotor aerodynamic pitch hub trim moments on BVI noise radiated by an S-70 helicopter main rotor. Results show that changing the hub pitching moment for an isolated rotor, trimmed in nominal 80 knot, 6 and 12 deg descent, flight conditions, alters the miss distance between the blades and the vortex in ways that have varied and noticeable effects on the BVI radiated-noise directionality. Peak BVI noise level is however not significantly altered. The application of hub pitching moment allows the attitude of the fuselage to be controlled; for example, to compensate for the uncomfortable change in fuselage pitch attitude introduced by a fuselage-mounted X-force controller.

  12. DoD High Performance Computing Modernization Program FY16 Annual Report

    DTIC Science & Technology

    2018-05-02

    vortex shedding from rotor blade tips using adaptive mesh refinement gives Helios the unique capability to assess the interaction of these vortices...with the fuselage and nearby rotor blades . Helios provides all the benefits for rotary-winged aircraft that Kestrel does for fixed-wing aircraft...rotor blade upgrade of the CH-47F Chinook helicopter to achieve up to an estimated 2,000 pounds increase in hover thrust (~10%) with limited

  13. Full scale wind turbine test of vortex generators mounted on the entire blade

    NASA Astrophysics Data System (ADS)

    Bak, Christian; Skrzypiński, Witold; Gaunaa, Mac; Villanueva, Hector; Brønnum, Niels F.; Kruse, Emil K.

    2016-09-01

    Measurements on a heavily instrumented pitch regulated variable speed Vestas V52 850 kW wind turbine situated at the DTU Risø Campus are carried out, where the effect of vortex generators mounted on almost the entire blade is tested with and without leading edge roughness. The measurements are compared to the predictions carried out by a developed design tool, where the effect of vortex generators and leading edge roughness is simulated using engineering models. The measurements showed that if vortex generators are mounted there is an increase in flapwise blade moments if the blades are clean, but also that the loads are almost neutral when vortex generators are installed if there is leading edge roughness on the blades. Finally, it was shown that there was a good agreement between the measurements and the predictions from the design tool.

  14. Wavy-Planform Helicopter Blades Make Less Noise

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    2004-01-01

    Wavy-planform rotor blades for helicopters have been investigated for the first time in an effort to reduce noise. Two of the main sources of helicopter noise are blade/vortex interaction (BVI) and volume displacement. (The noise contributed by volume displacement is termed thickness noise.) The reduction in noise generated by a wavyplanform blade, relative to that generated by an otherwise equivalent straight-planform blade, affects both main sources: (1) the BVI noise is reduced through smoothing and defocusing of the aerodynamic loading on the blade and (2) the thickness noise is reduced by reducing gradients of thickness with respect to listeners on the ground.

  15. New Computational Methods for the Prediction and Analysis of Helicopter Noise

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    This paper describes several new methods to predict and analyze rotorcraft noise. These methods are: 1) a combined computational fluid dynamics and Kirchhoff scheme for far-field noise predictions, 2) parallel computer implementation of the Kirchhoff integrations, 3) audio and visual rendering of the computed acoustic predictions over large far-field regions, and 4) acoustic tracebacks to the Kirchhoff surface to pinpoint the sources of the rotor noise. The paper describes each method and presents sample results for three test cases. The first case consists of in-plane high-speed impulsive noise and the other two cases show idealized parallel and oblique blade-vortex interactions. The computed results show good agreement with available experimental data but convey much more information about the far-field noise propagation. When taken together, these new analysis methods exploit the power of new computer technologies and offer the potential to significantly improve our prediction and understanding of rotorcraft noise.

  16. Visualization and Analysis of Vortex-Turbine Intersections in Wind Farms.

    PubMed

    Shafii, Sohail; Obermaier, Harald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth

    2013-02-13

    Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. The paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life-expectancy. Our methods have the potential to improve turbine design in order to save costs related to turbine operation and maintenance.

  17. Investigation of rotor blade tip-vortex aerodynamics

    NASA Technical Reports Server (NTRS)

    Lewellen, W. S.

    1971-01-01

    Several aspects of the aerodynamics of rotor blade tip vortices are examined. Two particular categories are dealt with; (1) dynamic loads on a blade passing close to or intersecting a trailing vortex, and (2) the response of the trailing vortex core to changes in the flow. Results for both categories are in reasonable agreement with existing data, although lower pressure gradients were obtained than anticipated for category one. A correlation between trailing edge sweep angle at the tip and vortex core size was noted for category two.

  18. Aerodynamic loads on a Darrieus rotor blade

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.; McKie, W. R.; Lissaman, P. B. S.; James, M.

    1983-03-01

    A method is presented for the free vortex analysis of a Darrieus rotor blade in nonsteady motion, which employs the circle theorem to map the moving rotor airfoil into the circle plane and models the wake generated in terms of point vortices. Nascent vortex strength and position are taken from the Kutta condition, so that the nascent vortex has the same strength as a vortex sheet of uniform strength. Pressure integration over the plate and wake vortex impulse methods yields the same numerical results. The numerical results presented for a one-bladed Darrieus rotor at a tip/speed ratio of three, and two different chord sizes, indicate that the moment on the blade can be adequately approximated by quasi-steady relationships, although the accurate determination of local velocity and circulation are still required.

  19. Cascade Analysis of a Floating Wind Turbine Rotor

    NASA Astrophysics Data System (ADS)

    Eliassen, Lene; Jakobsen, Jasna B.; Knauer, Andreas; Nielsen, Finn Gunnar

    2014-12-01

    Mounting a wind turbine on a floating foundation introduces more complexity to the aerodynamic loading. The floater motion contains a wide range of frequencies. To study some of the basic dynamic load effect on the blades due to these motions, a two-dimensional cascade approach, combined with a potential vortex method, is used. This is an alternative method to study the aeroelastic behavior of wind turbines that is different from the traditional blade element momentum method. The analysis tool demands little computational power relative to a full three dimensional vortex method, and can handle unsteady flows. When using the cascade plane, a "cut" is made at a section of the wind turbine blade. The flow is viewed parallel to the blade axis at this cut. The cascade model is commonly used for analysis of turbo machineries. Due to the simplicity of the code it requires little computational resources, however it has limitations in its validity. It can only handle two-dimensional potential flow, i.e. including neither three-dimensional effects, such as the tip loss effect, nor boundary layers and stall effects are modeled. The computational tool can however be valuable in the overall analysis of floating wind turbines, and evaluation of the rotor control system. A check of the validity of the vortex panel code using an airfoil profile is performed, comparing the variation of the lift force, to the theoretically derived Wagner function. To analyse the floating wind turbine, a floating structure with hub height 90 m is chosen. An axial motion of the rotor is considered.

  20. Numerical and experimental evidence of the inter-blade cavitation vortex development at deep part load operation of a Francis turbine

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.

    2016-11-01

    Francis turbines are subject to various types of the cavitation flow depending on the operating conditions. In order to compensate for the stochastic nature of renewable energy sources, it is more and more required to extend the operating range of the generating units, from deep part load to full load conditions. In the deep part load condition, the formation of cavitation vortices in the turbine blade to blade channels called inter-blade cavitation vortex is often observed. The understanding of the dynamic characteristics of these inter-blade vortices and their formation mechanisms is of key importance in an effort of developing reliable flow simulation tools. This paper reports the numerical and experimental investigations carried out in order to establish the vortex characteristics, especially the inception and the development of the vortex structure. The unsteady RANS simulation for the multiphase flow is performed with the SST- SAS turbulence model by using the commercial flow solver ANSYS CFX. The simulation results in terms of the vortex structure and the cavitation volume are evaluated by comparing them to the flow visualizations of the blade channel acquired through a specially instrumented guide vane as well as from the downstream of the runner across the draft tube cone. The inter-blade cavitation vortex is successfully captured by the simulation and both numerical and experimental results evidence that the inter-blade vortices are attached to the runner hub.

  1. Parallel computation of fluid-structural interactions using high resolution upwind schemes

    NASA Astrophysics Data System (ADS)

    Hu, Zongjun

    An efficient and accurate solver is developed to simulate the non-linear fluid-structural interactions in turbomachinery flutter flows. A new low diffusion E-CUSP scheme, Zha CUSP scheme, is developed to improve the efficiency and accuracy of the inviscid flux computation. The 3D unsteady Navier-Stokes equations with the Baldwin-Lomax turbulence model are solved using the finite volume method with the dual-time stepping scheme. The linearized equations are solved with Gauss-Seidel line iterations. The parallel computation is implemented using MPI protocol. The solver is validated with 2D cases for its turbulence modeling, parallel computation and unsteady calculation. The Zha CUSP scheme is validated with 2D cases, including a supersonic flat plate boundary layer, a transonic converging-diverging nozzle and a transonic inlet diffuser. The Zha CUSP2 scheme is tested with 3D cases, including a circular-to-rectangular nozzle, a subsonic compressor cascade and a transonic channel. The Zha CUSP schemes are proved to be accurate, robust and efficient in these tests. The steady and unsteady separation flows in a 3D stationary cascade under high incidence and three inlet Mach numbers are calculated to study the steady state separation flow patterns and their unsteady oscillation characteristics. The leading edge vortex shedding is the mechanism behind the unsteady characteristics of the high incidence separated flows. The separation flow characteristics is affected by the inlet Mach number. The blade aeroelasticity of a linear cascade with forced oscillating blades is studied using parallel computation. A simplified two-passage cascade with periodic boundary condition is first calculated under a medium frequency and a low incidence. The full scale cascade with 9 blades and two end walls is then studied more extensively under three oscillation frequencies and two incidence angles. The end wall influence and the blade stability are studied and compared under different frequencies and incidence angles. The Zha CUSP schemes are the first time to be applied in moving grid systems and 2D and 3D calculations. The implicit Gauss-Seidel iteration with dual time stepping is the first time to be used for moving grid systems. The NASA flutter cascade is the first time to be calculated in full scale.

  2. Preliminary Investigation of the Shock-Boundary Layer Interaction in a Simulated Fan Passage

    DTIC Science & Technology

    1991-03-01

    unlimited 2b DECLASSIFICATION/DOWNGRADING SCHEDULE 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) 6a NAME OF...Figure 4. Vortex Generator Jets Configuration [Ref. 2] 27 Figure 5 . Cascade Geometry 28 Figure 6. Schematic of Transonic Cascade Wind Tunnel 29 Figure 7... 65 Figure A9. Test Section Top Blade 66 Figure A1O. Test Section Middle Blade 67 Figure A 11. Test Section Lower Blade 68 Figure A12. Pressure Tap

  3. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1994-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section, and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration, and loading noise.

  4. A Semi-Empirical Noise Modeling Method for Helicopter Maneuvering Flight Operations

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Schmitz, Fredric; Sickenberger, Richard D.

    2012-01-01

    A new model for Blade-Vortex Interaction noise generation during maneuvering flight is developed in this paper. Acoustic and performance data from both flight and wind tunnels are used to derive a non-dimensional and analytical performance/acoustic model that describes BVI noise in steady flight. The model is extended to transient maneuvering flight (pure pitch and roll transients) by using quasisteady assumptions throughout the prescribed maneuvers. Ground noise measurements, taken during maneuvering flight of a Bell 206B helicopter, show that many of the noise radiation details are captured. The result is a computationally efficient Blade-Vortex Interaction noise model with sufficient accuracy to account for transient maneuvering flight. The code can be run in real time to predict transient maneuver noise and is suitable for use in an acoustic mission-planning tool.

  5. Computation of the tip vortex flowfield for advanced aircraft propellers

    NASA Technical Reports Server (NTRS)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).

  6. Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

    2011-01-01

    A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

  7. Wind Tunnel Measurements of the Wake of a Full-Scale UH-60A Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Wadcock, Alan J.; Yamauchi, Gloria K.; Schairer, Edward T.

    2013-01-01

    A full-scale UH-60A rotor was tested in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel in May 2010. The test was designed to acquire a suite of measurements to validate state-of-the-art modeling tools. Measurements include blade airloads (from a single pressure-instrumented blade), blade structural loads (strain gages), rotor performance (rotor balance and torque measurements), blade deformation (stereo-photogrammetry), and rotor wake measurements (Particle Image Velocimetry (PIV) and Retro-reflective Backward Oriented Schlieren (RBOS)). During the test, PIV measurements of flow field velocities were acquired in a stationary cross-flow plane located on the advancing side of the rotor disk at approximately 90 deg rotor azimuth. At each test condition, blade position relative to the measurement plane was varied. The region of interest (ROI) was 4-ft high by 14-ft wide and covered the outer half of the blade radius. Although PIV measurements were acquired in only one plane, much information can be gleaned by studying the rotor wake trajectory in this plane, especially when such measurements are augmented by blade airloads and RBOS data. This paper will provide a comparison between PIV and RBOS measurements of tip vortex position and vortex filament orientation for multiple rotor test conditions. Blade displacement measurements over the complete rotor disk will also be presented documenting blade-to-blade differences in tip-path-plane and providing additional information for correlation with PIV and RBOS measurements of tip vortex location. In addition, PIV measurements of tip vortex core diameter and strength will be presented. Vortex strength will be compared with measurements of maximum bound circulation on the rotor blade determined from pressure distributions obtained from 235 pressure sensors distributed over 9 radial stations.

  8. Helicopter rotor wake geometry and its influence in forward flight. Volume 2: Wake geometry charts

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    Isometric and projection view plots, inflow ratio nomographs, undistorted axial displacement nomographs, undistorted longitudinal and lateral coordinates, generalized axial distortion nomographs, blade/vortex passage charts, blade/vortex intersection angle nomographs, and fore and aft wake boundary charts are discussed. Example condition, in flow ratio, undistorted axial location, longitudinal and lateral coordinates, axial coordinates distortions, blade/tip vortex intersections, angle of intersection, and fore and aft wake boundaries are also discussed.

  9. Wingtip vortex turbine investigation for vortex energy recovery

    NASA Technical Reports Server (NTRS)

    Abeyounis, William K.; Patterson, James C., Jr.; Stough, H. P., III; Wunschel, Alfred J.; Curran, Patrick D.

    1990-01-01

    A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15' twist (washin) and one with no twist. Th power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.

  10. Prediction of the Aero-Acoustic Performance of Open Rotors

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2014-01-01

    The rising cost of jet fuel has renewed interest in contrarotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980's designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.

  11. Effect of individual blade control on noise radiation

    NASA Technical Reports Server (NTRS)

    Swanson, S. M.; Jacklin, Stephen A.; Niesl, G.; Blaas, Achim; Kube, R.

    1995-01-01

    In a joint research program of NASA Ames Research Center, ZF Luftfahrttechnik, the German Aerospace Research Establishment (DLR), and EUROCOPTER Deutschland, a wind tunnel test was performed to evaluate the effects of Individual Blade Control (IBC) on rotor noise. This test was conducted in the 40x80 ft wind tunnel at NASA Ames Research Center, utilizing a full scale MBB-BO 105 four-bladed rotor system. Three microphones were installed for determination of the radiated noise, two of them on a moveable traverse below the advancing blade side and one in a fixed location below the retreating side. Acoustic results are presented for flight conditions with Blade-Vortex-Interaction (BVI) noise radiation. High noise level reductions were measured for single harmonic control inputs. In addition to the single harmonic inputs, multi-harmonic inputs were evaluated by superimposing 2/rev to 6/rev harmonics. For the first time the efficiency of sharp wavelets (60 deg and 90 deg width) on acoustic noise were measured. In order to achieve an adequate wavelet shape at the blade tip, corrections were made to account for the blade torsional behavior. In parallel with the acoustic measurements, vibratory loads were measured during the BVI flight condition to correlate the effects of IBC on noise and vibrations. It is shown how noise levels and vibrations are affected by specific IBC control inputs. In addition, correlations are made between noise levels and acoustic time histories with IBC phase and amplitude variations. For one IBC input mode with high noise reducing efficiency, a sweep of the moveable microphone traverse below the advancing side shows the effect on BVI noise directivity.

  12. Sound transmission through the walls of light aircraft: An investigation of structure-borne noise in a Handley Page 137 Jetstream 3 aircraft

    NASA Technical Reports Server (NTRS)

    Bernhard, R. J.; Wohlever, C.

    1988-01-01

    This study indicates that the structureborne noise due to wing/vortex interation for the Handley Page-137 Jetstream may be significant at frequencies above 500 Hz. It was found that by preventing such interaction, noise reductions between 1 to 3 dB were attainable. However, this study did not show any significant contribution due to this phenomena at the first blade passage tone. It is suspected that the wing/vortex interaction effect varies from plane to plane.

  13. Extended Glauert tip correction to include vortex rollup effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maniaci, David; Schmitz, Sven

    Wind turbine loads predictions by blade-element momentum theory using the standard tip-loss correction have been shown to over-predict loading near the blade tip in comparison to experimental data. This over-prediction is theorized to be due to the assumption of light rotor loading, inherent in the standard tip-loss correction model of Glauert. A higher- order free-wake method, WindDVE, is used to compute the rollup process of the trailing vortex sheets downstream of wind turbine blades. Results obtained serve an exact correction function to the Glauert tip correction used in blade-element momentum methods. Lastly, it is found that accounting for the effectsmore » of tip vortex rollup within the Glauert tip correction indeed results in improved prediction of blade tip loads computed by blade-element momentum methods.« less

  14. Extended Glauert tip correction to include vortex rollup effects

    DOE PAGES

    Maniaci, David; Schmitz, Sven

    2016-10-03

    Wind turbine loads predictions by blade-element momentum theory using the standard tip-loss correction have been shown to over-predict loading near the blade tip in comparison to experimental data. This over-prediction is theorized to be due to the assumption of light rotor loading, inherent in the standard tip-loss correction model of Glauert. A higher- order free-wake method, WindDVE, is used to compute the rollup process of the trailing vortex sheets downstream of wind turbine blades. Results obtained serve an exact correction function to the Glauert tip correction used in blade-element momentum methods. Lastly, it is found that accounting for the effectsmore » of tip vortex rollup within the Glauert tip correction indeed results in improved prediction of blade tip loads computed by blade-element momentum methods.« less

  15. Numerical investigation of the self-starting of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Chen; Colonius, Tim

    2014-11-01

    The immersed boundary method is used to simulate the incompressible flow around two-dimensional airfoils at sub-scale Reynolds number in order to investigate the self-starting capability of a vertical-axis wind turbine (VAWT). By investigating a single blade fixed at various angle of attacks, the leading edge vortex (LEV) is shown to play an important role in the starting mechanism for both flat-plate and NACA 0018 blades. Depending on the angle of attack of the blade, as the LEV grows, the corresponding low pressure region results in a thrust in the tangential direction, which produces a positive torque to VAWT. Due to the characteristics of the blades, a NACA 0018 blade produces a larger thrust over a wider range of angle of attacks than a flat-plate blade. Therefore, a VAWT with NACA 0018 blades can self-start more easily than one with flat-plate blades. Moreover, by investigating the starting torque of three-bladed VAWTs fixed at various orientations, the optimal orientation that produces the largest torque to start both VAWTs is with a blade parallel to the flow and facing downstream. The simulations are also compared to results from companion water-tunnel experiments at Caltech. This project is supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  16. Kaplan turbine tip vortex cavitation - analysis and prevention

    NASA Astrophysics Data System (ADS)

    Motycak, L.; Skotak, A.; Kupcik, R.

    2012-11-01

    The work is focused on one type of Kaplan turbine runner cavitation - a tip vortex cavitation. For detailed description of the tip vortex, the CFD analysis is used. On the basis of this analysis it is possible to estimate the intensity of cavitating vortex core, danger of possible blade surface and runner chamber cavitation pitting. In the paper, the ways how to avoid the pitting effect of the tip vortex are described. In order to prevent the blade surface against pitting, the following possibilities as the change of geometry of the runner blade, dimension of tip clearance and finally the installation of the anti-cavitation lips are discussed. The knowledge of the shape and intensity of the tip vortex helps to design the anti-cavitation lips more sophistically. After all, the results of the model tests of the Kaplan runner with or without anti-cavitation lips and the results of the CFD analysis are compared.

  17. Devices that Alter the Tip Vortex of a Rotor

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.; Tung, Chee; Heineck, James T.

    2001-01-01

    Small devices were attached near the tip of a hovering rotor blade 'in order to alter the structure and trajectory of the trailing vortex. Stereo particle image velocimetry (PIV) images were used to quantify the wake behind the rotor blade during the first revolution. A procedure for analyzing the 3D-velocity field is presented that includes a method for accounting for vortex wander. The results show that a vortex generator can alter the trajectory of the trailing vortex and that a major change in the size and intensity of the trailing vortex can be achieved by introducing a high level of turbulence into the core of the vortex.

  18. Simulation of unsteady flows through stator and rotor blades of a gas turbine using the Chimera method

    NASA Technical Reports Server (NTRS)

    Nakamura, S.; Scott, J. N.

    1993-01-01

    A two-dimensional model to solve compressible Navier-Stokes equations for the flow through stator and rotor blades of a turbine is developed. The flow domains for the stator and rotor blades are coupled by the Chimera method that makes grid generation easy and enhances accuracy because the area of the grid that have high turning of grid lines or high skewness can be eliminated from the computational domain after the grids are generated. The results of flow computations show various important features of unsteady flows including the acoustic waves interacting with boundary layers, Karman vortex shedding from the trailing edge of the stator blades, pulsating incoming flow to a rotor blade from passing stator blades, and flow separation from both suction and pressure sides of the rotor blades.

  19. An Eulerian/Lagrangian method for computing blade/vortex impingement

    NASA Technical Reports Server (NTRS)

    Steinhoff, John; Senge, Heinrich; Yonghu, Wenren

    1991-01-01

    A combined Eulerian/Lagrangian approach to calculating helicopter rotor flows with concentrated vortices is described. The method computes a general evolving vorticity distribution without any significant numerical diffusion. Concentrated vortices can be accurately propagated over long distances on relatively coarse grids with cores only several grid cells wide. The method is demonstrated for a blade/vortex impingement case in 2D and 3D where a vortex is cut by a rotor blade, and the results are compared to previous 2D calculations involving a fifth-order Navier-Stokes solver on a finer grid.

  20. A Visualization Study of Secondary Flows in Cascades

    NASA Technical Reports Server (NTRS)

    Herzig, Howard Z; Hansen, Arthur G; Costello, George R

    1954-01-01

    Flow-visualization techniques are employed to ascertain the streamline patterns of the nonpotential secondary flows in the boundary layers of cascades, and thereby to provide a basis for more extended analyses in turbomachines. The three-dimensional deflection of the end-wall boundary layer results in the formation of a vortex within each cascade passage. The size and tightness of the vortex generated depend upon the main-flow turning in the cascade passage. Once formed, a vortex resists turning in subsequent blade rows, with consequent unfavorable angles of attack and possible flow disturbances on the pressure surfaces of subsequent blade rows when the vortices impinge on these surfaces. Two major tip-clearance effects are observed, the formation of a tip-clearance vortex and the scraping effect of a blade with relative motion past the wall boundary layer. The flow patterns indicate methods for improving the blade tip-loading characteristics of compressors and of low- and high-speed turbulence.

  1. Dynamics of Isolated Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Pennings, Pepijn; Bosschers, Johan; van Terwisga, Tom

    2014-11-01

    Performance of ship propellers and comfort levels in the surroundings are limited by various forms of cavitation. Amongst these forms tip vortex cavitation is one of the first appearing forms and is expected to be mainly responsible for the emission of broadband pressure fluctuations typically occurring between the 4th to the 7th blade passing frequency (approx. 40--70 Hz). These radiated pressure pulses are likely to excite parts of the hull structure resulting in a design compromise between efficiency and comfort. Insight is needed in the mechanism of acoustic emission from the oscillations by a tip vortex cavity. In the current experimental study the tip vortex cavity from a blade with an elliptic planform and sections based on NACA 662 - 415 with meanline a = 0 . 8 is observed using high speed shadowgraphy in combination with blade force and acoustic measurements. An analytic model describing three main cavity deformation modes is verified and used to explain the origin of a cavity eigenfrequency or ``vortex singing'' phenomenon observed by Maines and Arndt (1997) on the tip vortex cavity originating from the same blade. As no hydrodynamic sound originating from the tip vortex cavity was observed it is posed that a tip flow instability is essential for ``vortex singing.'' This research was funded by the Lloyd's Register Foundation as part of the International Institute for Cavitation Research.

  2. Effects of Vehicle Weight and True Versus Indicated Airspeed on BVI Noise During Steady Descending Flight

    NASA Technical Reports Server (NTRS)

    Stephenson, James H.; Greenwood, Eric

    2015-01-01

    Blade-vortex interaction noise measurements are analyzed for an AS350B helicopter operated at 7000 ft elevation above sea level. Blade-vortex interaction (BVI) noise from four, 6 degree descent conditions are investigated with descents flown at 80 knot true and indicated airspeed, as well as 4400 and 3915 pound take-off weights. BVI noise is extracted from the acquired acoustic signals by way of a previously developed time-frequency analysis technique. The BVI extraction technique is shown to provide a better localization of BVI noise, compared to the standard Fourier transform integration method. Using this technique, it was discovered that large changes in BVI noise amplitude occurred due to changes in vehicle gross weight. Changes in BVI noise amplitude were too large to be due solely to changes in the vortex strength caused by varying vehicle weight. Instead, it is suggested that vehicle weight modifies the tip-path-plane angle of attack, as well as induced inflow, resulting in large variations of BVI noise. It was also shown that defining flight conditions by true airspeed, rather than indicated airspeed, provides more consistent BVI noise signals.

  3. HHC study in the DNW to reduce BVI noise - An analysis

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Booth, Earl R., Jr.; Boyd, D. D., Jr.; Splettstoesser, Wolf R.; Schultz, Klaus -J.; Kube, Roland; Niesl, Georg H.; Streby, Olivier

    1991-01-01

    The noise of an aeroelastically scaled helicopter rotor has been studied in the German-Dutch wind tunnel in order to assess the utility of higher-harmonic control (HHC) in reducing blade-vortex interaction (BVI) noise. Acoustic data are presented for 3/rev, 4/rev, and 5/rev HHC, as applied to a typical landing approach rotor operating condition; noise reduction of up to 6 dB were found for advancing-blade BVI noise radiating upstream of the rotor, as well as for retreating blade BVI noise radiating below and downstream of the rotor.

  4. High Cycle Fatigue Prediction for Mistuned Bladed Disks with Fully Coupled Fluid-Structural Interaction

    DTIC Science & Technology

    2006-06-01

    response (time domain) structural vibration model for mistuned rotor bladed disk based on the efficient SNM model has been developed. The vi- bration...airfoil and 3D wing, unsteady vortex shedding of a stationary cylinder, induced vibration of a cylinder, forced vibration of a pitching airfoil, induced... vibration and flutter boundary of 2D NACA 64A010 transonic airfoil, 3D plate wing structural response. The predicted results agree well with benchmark

  5. Effect of higher harmonic control on helicopter rotor blade-vortex interaction noise: Prediction and initial validation

    NASA Technical Reports Server (NTRS)

    Beaumier, P.; Prieur, J.; Rahier, G.; Spiegel, P.; Demargne, A.; Tung, C.; Gallman, J. M.; Yu, Y. H.; Kube, R.; Vanderwall, B. G.

    1995-01-01

    The paper presents a status of theoretical tools of AFDD, DLR, NASA and ONERA for prediction of the effect of HHC on helicopter main rotor BVI noise. Aeroacoustic predictions from the four research centers, concerning a wind tunnel simulation of a typical descent flight case without and with HHC are presented and compared. The results include blade deformation, geometry of interacting vortices, sectional loads and noise. Acoustic predictions are compared to experimental data. An analysis of the results provides a first insight of the mechanisms by which HHC may affect BVI noise.

  6. Development and application of a method for predicting rotor free wake positions and resulting rotor blade air loads. Volume 1: Model and results

    NASA Technical Reports Server (NTRS)

    Sadler, S. G.

    1971-01-01

    Rotor wake geometries are predicted by a process similar to the startup of a rotor in a free stream. An array of discrete trailing and shed vortices is generated with vortex strengths corresponding to stepwise radial and azimuthal blade circulations. The array of shed and trailing vortices is limited to an arbitrary number of azimuthal steps behind each blade. The remainder of the wake model of each blade is an arbitrary number of trailing vortices. Vortex element end points were allowed to be transported by the resultant velocity of the free stream and vortex-induced velocities. Wake geometry, wake flow, and wake-induced velocity influence coefficients are generated by this program for use in the blade loads portion of the calculations. Blade loads computations include the effects of nonuniform inflow due to a free wake, nonlinear airfoil characteristics, and response of flexible blades to the applied loads. Computed wake flows and blade loads are compared with experimentally measured data. Predicted blade loads, response and shears and moments are obtained for a model rotor system having two independent rotors. The effects of advance ratio, vertical separation of rotors, different blade radius ratios, and different azimuthal spacing of the blades of one rotor with respect to the other are investigated.

  7. Hover and Wind-Tunnel Testing of Shrouded Rotors for Improved Micro Air Vehicle Design

    DTIC Science & Technology

    2008-01-01

    and the shroud surface pressure distributions. The uniformity of the wake was improved by the presence of the shrouds and by decreasing the blade tip...213 3.35 Effect of blade tip clearance on shrouded-rotor exit-plane wake profiles215 3.36 Effects of changing blade tip clearance on induced...Wright [139] developed a vortex wake model for heavily loaded ducted fans, in which the “inner vortex sheets [shed from the blades ] move at a different

  8. Generating A Strobed Laser Light Sheet

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Franke, John M.; Rhodes, David B.; Jones, Stephen B.

    1994-01-01

    An optoelectronic system generating synchronous, strobed sheet of laser light developed for use in making visible flow of air about model helicopter rotor. Used in wind-tunnel tests to determine actual locations of vortices for comparison with locations predicted by mathematical models to validate models. Each blade tip produces vortex. By establishing successive vortex locations, researcher determines trajectory of vortex pattern. Light-sheet strobe circuits provide selection of blade positions, strobe-pulse durations, and multiple pulses per revolution for rotors having two to nine blades. To make flow visible, vaporizing propylene glycol injected upstream of model. System also provides calibrated trigger delay of strobe pulses, adjustable strobe-pulse durations, selectable number of blades, and slip-sync mode to make flow visible as though in slow motion.

  9. Full-potential modeling of blade-vortex interactions

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Caradonna, F. X.

    1986-01-01

    A comparison is made of four different models for predicting the unsteady loading induced by a vortex passing close to an airfoil. (1) The first model approximates the vortex effect as a change in the airfoil angle of attack. (2) The second model is related to the first but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the vortex is computed and used. This is analogous to a lifting surface method. (3) The third model is to specify a branch cut discontinuity in the potential field. The vortex is modeled as a jump in potential across the branch cut, the edge of which represents the center of the vortex. (4) The fourth method models the vortex expressing the potential as the sum of a known potential due to the vortex and an unknown perturbation due to the airfoil. The purpose of the current study is to investigate the four vortex models described above and to determine their relative merits and suitability for use in large three-dimensional codes.

  10. Single-stage experimental evaluation of compressor blading with slots and vortex generators, part 5

    NASA Technical Reports Server (NTRS)

    Brent, J. A.

    1972-01-01

    An experimental investigation was conducted to determine the extent that slots and vortex generators can increase the efficiency and stable operating range of highly loaded compressor stages. With slots in the rotor and stator, the stage performance both with and without vortex generators was inferior to that achieved with the unslotted blading. However, with vortex generators, stator slots, and an unslotted rotor, the stable operating range increased 25% and the stage peak efficiency increased 2.1% over the values achieved with the unslotted rotor and stator without vortex generators, at design equivalent rotor speed.

  11. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations

    NASA Technical Reports Server (NTRS)

    Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.

    1984-01-01

    Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.

  12. Wingtip vortex turbine

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr. (Inventor)

    1990-01-01

    A means for extracting rotational energy from the vortex created at aircraft wing tips which consists of a turbine with blades located in the crossflow of the vortex and attached downstream of the wingtip. The turbine has blades attached to a core. When the aircraft is in motion, rotation of a core transmits energy to a centrally attached shaft. The rotational energy thus generated may be put to use within the airfoil or aircraft fuselage.

  13. Rotor Broadband Noise Prediction with Comparison to Model Data

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Burley, Casey L.

    2001-01-01

    This paper reports an analysis and prediction development of rotor broadband noise. The two primary components of this noise are Blade-Wake Interaction (BWI) noise, due to the blades' interaction with the turbulent wakes of the preceding blades, and "Self" noise, due to the development and shedding of turbulence within the blades' boundary layers. Emphasized in this report is the new code development for Self noise. The analysis and validation employs data from the HART program, a model BO-105 rotor wind tunnel test conducted in the German-Dutch Wind Tunnel (DNW). The BWI noise predictions are based on measured pressure response coherence functions using cross-spectral methods. The Self noise predictions are based on previously reported semiempirical modeling of Self noise obtained from isolated airfoil sections and the use of CAMRAD.Modl to define rotor performance and local blade segment flow conditions. Both BWI and Self noise from individual blade segments are Doppler shifted and summed at the observer positions. Prediction comparisons with measurements show good agreement for a range of rotor operating conditions from climb to steep descent. The broadband noise predictions, along with those of harmonic and impulsive Blade-Vortex Interaction (BVI) noise predictions, demonstrate a significant advance in predictive capability for main rotor noise.

  14. Detailed Aerodynamic Analysis of a Shrouded Tail Rotor Using an Unstructured Mesh Flow Solver

    NASA Astrophysics Data System (ADS)

    Lee, Hee Dong; Kwon, Oh Joon

    The detailed aerodynamics of a shrouded tail rotor in hover has been numerically studied using a parallel inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. The calculation was made for a single blade by imposing a periodic boundary condition between adjacent rotor blades. The grid periodicity was also imposed at the periodic boundary planes to avoid numerical inaccuracy resulting from solution interpolation. The results were compared with available experimental data and those from a disk vortex theory for validation. It was found that realistic three-dimensional modeling is important for the prediction of detailed aerodynamics of shrouded rotors including the tip clearance gap flow.

  15. Unsteady design-point flow phenomena in transonic compressors

    NASA Technical Reports Server (NTRS)

    Gertz, J. B.; Epstein, A. H.

    1986-01-01

    High-frequency response probes which had previously been used exclusively in the MIT Blowndown Facility were successfully employed in two conventional steady state axial flow compressor facilities to investigate the unsteady flowfields of highly loaded transonic compressors at design point operation. Laser anemometry measurements taken simultaneously with the high response data were also analyzed. The time averaged high response data of static and total pressure agreed quite well with the conventional steady state instrumentation except for flow angle which showed a large spread in values at all radii regardless of the type of instrumentation used. In addition, the time resolved measurements confirmed earlier test results obtained in the MIT Blowdown Facility for the same compressor. The results of these tests have further revealed that the flowfields of highly loaded transonic compressors are heavily influenced by unsteady flow phenomena. The high response measurements exhibited large variations in the blade to blade flow and in the blade passage flow. The observed unsteadiness in the blade wakes is explained in terms of the rotor blades' shed vorticity in periodic vortex streets. The wakes were modeled as two-dimensional vortex streets with finite size cores. The model fit the data quite well as it was able to reproduce the average wake shape and bi-modal probability density distributions seen in the laser anemometry data. The presence of vortex streets in the blade wakes also explains the large blade to blade fluctuations seen by the high response probes which is simply due to the intermittent sampling of the vortex street as it is swept past a stationary probe.

  16. The HART II International Workshop: An Assessment of the State-of-the-Art in Comprehensive Code Prediction

    NASA Technical Reports Server (NTRS)

    vanderWall, Berend G.; Lim, Joon W.; Smith, Marilyn J.; Jung, Sung N.; Bailly, Joelle; Baeder, James D.; Boyd, D. Douglas, Jr.

    2013-01-01

    Significant advancements in computational fluid dynamics (CFD) and their coupling with computational structural dynamics (CSD, or comprehensive codes) for rotorcraft applications have been achieved recently. Despite this, CSD codes with their engineering level of modeling the rotor blade dynamics, the unsteady sectional aerodynamics and the vortical wake are still the workhorse for the majority of applications. This is especially true when a large number of parameter variations is to be performed and their impact on performance, structural loads, vibration and noise is to be judged in an approximate yet reliable and as accurate as possible manner. In this article, the capabilities of such codes are evaluated using the HART II International Workshop database, focusing on a typical descent operating condition which includes strong blade-vortex interactions. A companion article addresses the CFD/CSD coupled approach. Three cases are of interest: the baseline case and two cases with 3/rev higher harmonic blade root pitch control (HHC) with different control phases employed. One setting is for minimum blade-vortex interaction noise radiation and the other one for minimum vibration generation. The challenge is to correctly predict the wake physics-especially for the cases with HHC-and all the dynamics, aerodynamics, modifications of the wake structure and the aero-acoustics coming with it. It is observed that the comprehensive codes used today have a surprisingly good predictive capability when they appropriately account for all of the physics involved. The minimum requirements to obtain these results are outlined.

  17. An Assessment of Comprehensive Code Prediction State-of-the-Art Using the HART II International Workshop Data

    NASA Technical Reports Server (NTRS)

    vanderWall, Berend G.; Lim, Joon W.; Smith, Marilyn J.; Jung, Sung N.; Bailly, Joelle; Baeder, James D.; Boyd, D. Douglas, Jr.

    2012-01-01

    Despite significant advancements in computational fluid dynamics and their coupling with computational structural dynamics (= CSD, or comprehensive codes) for rotorcraft applications, CSD codes with their engineering level of modeling the rotor blade dynamics, the unsteady sectional aerodynamics and the vortical wake are still the workhorse for the majority of applications. This is especially true when a large number of parameter variations is to be performed and their impact on performance, structural loads, vibration and noise is to be judged in an approximate yet reliable and as accurate as possible manner. In this paper, the capabilities of such codes are evaluated using the HART II Inter- national Workshop data base, focusing on a typical descent operating condition which includes strong blade-vortex interactions. Three cases are of interest: the baseline case and two cases with 3/rev higher harmonic blade root pitch control (HHC) with different control phases employed. One setting is for minimum blade-vortex interaction noise radiation and the other one for minimum vibration generation. The challenge is to correctly predict the wake physics - especially for the cases with HHC - and all the dynamics, aerodynamics, modifications of the wake structure and the aero-acoustics coming with it. It is observed that the comprehensive codes used today have a surprisingly good predictive capability when they appropriately account for all of the physics involved. The minimum requirements to obtain these results are outlined.

  18. Effects of a Forward-swept Front Rotor on the Flowfield of a Counterrotation Propeller

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Podboy, Gary G.

    1994-01-01

    The effects of a forward-swept front rotor on the flowfield of a counterrotation model propeller at takeoff conditions at zero degree angle of attack are studied by solving the unsteady three-dimensional Euler equations. The configuration considered is an uneven blade count counterrotation model with twelve forward-swept blades on the fore rotor and ten aft-swept blades on the aft rotor. The flowfield is compared with that of a reference aft-swept counterrotation geometry and Laser Doppler Velocimeter (LDV) measurements. At the operating conditions considered, the forward-swept blade experiences a higher tip loading and produces a stronger tip vortex compared to the aft-swept blade, consistent with the LDV and acoustic measurements. Neither the solution nor the LDV data indicated the formation of a leading edge vortex. The predicted radial distribution of the circumferentially averaged axial velocity at the measurement station agreed very closely with LDV data, while crossflow velocities showed poor agreement. The discrepancy between prediction and LDV data of tangential and radial velocities is due in part to the insufficient mesh resolution in the region between the rotors and in the tip region to track the tip vortex. The vortex is diffused by the time it arrives at the measurement station. The uneven blade count configuration requires the solution to be carried out for six blade passages of the fore rotor and five passages of the aft rotor, thus making grid refinement prohibitive.

  19. RANS computations of tip vortex cavitation

    NASA Astrophysics Data System (ADS)

    Decaix, Jean; Balarac, Guillaume; Dreyer, Matthieu; Farhat, Mohamed; Münch, Cécile

    2015-12-01

    The present study is related to the development of the tip vortex cavitation in Kaplan turbines. The investigation is carried out on a simplified test case consisting of a NACA0009 blade with a gap between the blade tip and the side wall. Computations with and without cavitation are performed using a R ANS modelling and a transport equation for the liquid volume fraction. Compared with experimental data, the R ANS computations turn out to be able to capture accurately the development of the tip vortex. The simulations have also highlighted the influence of cavitation on the tip vortex trajectory.

  20. The validation and application of a rotor acoustic prediction computer program

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.

    1990-01-01

    An essential prerequisite to reducing the acoustic detectability of military rotorcraft is a better understanding of main rotor noise which is the major contributor to the overall noise. A simple, yet accurate, Rotor Acoustic Prediction Program (RAPP) was developed to advance the understanding of main rotor noise. This prediction program uses the Ffowcs Williams and Hawkings (FW-H) equation. The particular form of the FW-H equation used is well suited for the coupling of the measured blade surface pressure to the prediction of acoustic pressure. The FW-H equation is an inhomogeneous wave equation that is valid in all space and governs acoustic pressure generated by thin moving bodies. The nonhomogeneous terms describe mass displacement due to surface motion and forces due to local surface stresses, such as viscous stress and pressure distribution on the surface. This paper examines two of the four types of main rotor noise: BVI noise and low-frequency noise. Blade-vortex interaction noise occurs when a tip vortex, previously shed by a rotor blade, passes close enough to a rotor blade to cause large variations in the blade surface pressures. This event is most disturbing when it happens on the advancing side of the rotor disk. Low-frequency noise includes hover and low to moderate speed forward flight. For these flight conditions, the low frequency components of the acoustic signal dominate.

  1. The singing vortex.

    PubMed

    Arndt, R; Pennings, P; Bosschers, J; van Terwisga, T

    2015-10-06

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures.

  2. The singing vortex

    PubMed Central

    Arndt, R.; Pennings, P.; Bosschers, J.; van Terwisga, T.

    2015-01-01

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147

  3. DNS investigation of the dynamical behaviour of trailing vortices in unbaffled stirred vessels at transitional Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Başbuǧ, S.; Papadakis, G.; Vassilicos, J. C.

    2017-06-01

    Flow in an unbaffled stirred vessel agitated by a four-bladed radial impeller is investigated by using direct numerical simulations at Re = 320 and 1600. We observe fluctuations in the power consumption with a peak frequency at ca. three times the impeller rotational speed for both Reynolds numbers. It is discovered that these fluctuations are associated with a periodic event in the wake of the blades, which involves alternating growth and decay of the upper and lower cores of the trailing vortex pair as well as up-and-down swinging motion of the radial jet. Moreover, the phase relation between the wakes of the different blades is examined in detail. Further studies using fractal-shaped blades show that the exact blade shape does not have a strong influence on this phenomenon. However, the wake interaction between the blades, hence the number of blades, has a direct influence on the unsteadiness of trailing vortices.

  4. Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim; Duque, Earl P. N.

    1996-01-01

    An overset grid thin-layer Navier-Stokes code has been extended to include dynamic motion of helicopter rotor blades through relative grid motion. The unsteady flowfield and airloads on an AH-IG rotor in forward flight were computed to verify the methodology and to demonstrate the method's potential usefulness towards comprehensive helicopter codes. In addition, the method uses the blade's first harmonics measured in the flight test to prescribe the blade motion. The solution was impulsively started and became periodic in less than three rotor revolutions. Detailed unsteady numerical flow visualization techniques were applied to the entire unsteady data set of five rotor revolutions and exhibited flowfield features such as blade vortex interaction and wake roll-up. The unsteady blade loads and surface pressures compare well against those from flight measurements. Details of the method, a discussion of the resulting predicted flowfield, and requirements for future work are presented. Overall, given the proper blade dynamics, this method can compute the unsteady flowfield of a general helicopter rotor in forward flight.

  5. Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise. Volume 1; Development of Theory for Blade Loading, Wakes, and Noise

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1991-01-01

    A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.

  6. Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes

    NASA Astrophysics Data System (ADS)

    Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.

    2018-05-01

    We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.

  7. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage. [aircraft engine blade cooling

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  8. Observations of tip vortex cavitation inception from a model marine propeller

    NASA Astrophysics Data System (ADS)

    Lodha, R. K.; Arakeri, V. H.

    1984-01-01

    Cavitation inception characteristics of a model marine propeller having three blades, developed area ratio of 0.34 and at three different pitch to diameter ratios of 0.62, 0.83 and 1.0 are reported. The dominant type of cavitation observed at inception was the tip vortex type. The measured magnitude of inception index is found to agree well with a proposed correlation due to Strasberg. Performance calculations of the propeller based on combined vortex and blade element theory are also presented.

  9. Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter

    2009-01-01

    In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.

  10. Review and analysis of the DNW/Model 360 rotor acoustic data base

    NASA Technical Reports Server (NTRS)

    Zinner, R. A.; Boxwell, D. A.; Spencer, R. H.

    1989-01-01

    A comprehensive model rotor aeroacoustic data base was collected in a large anechoic wind tunnel in 1986. Twenty-six microphones were positioned around the azimuth to collect acoustic data for approximately 150 different test conditions. A dynamically scaled, blade-pressure-instrumented model of the forward rotor of the BH360 helicopter simultaneously provided blade pressures for correlation with the acoustic data. High-speed impulsive noise, blade-vortex interaction noise, low-frequency noise, and broadband noise were all captured in this extensive data base. Trends are presentes for each noise source, with important parametric variations. The purpose of this paper is to introduce this data base and illustrate its potential for predictive code validation.

  11. Simulations of wind turbine rotor with vortex generators

    NASA Astrophysics Data System (ADS)

    Troldborg, Niels; Zahle, Frederik; Sørensen, Niels N.

    2016-09-01

    This work presents simulations of the DTU 10MW wind turbine rotor equipped with vortex generators (VGs) on the inner part of the blades. The objective is to study the influence of different VG configurations on rotor performance and in particular to investigate the radial dependence of VGs, i.e. how VGs at one section of the blade may affect the aerodynamic characteristics at other radial positions. Furthermore, the performance of different sections on the blade is compared to their corresponding performance in 2D flow.

  12. The structure and development of streamwise vortex arrays embedded in a turbulent boundary layer. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.

    1991-01-01

    An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.

  13. Rotorcraft noise: Status and recent developments

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Sim, Ben WEL-C.; Polak, David R.

    1993-01-01

    This paper briefly reviews rotorcraft noise mechanisms and their approximate importance for different types of rotorcraft in different flight regimes. Discrete noise is due to periodic flow disturbances and includes impulsive noise produced by phenomena which occur during a limited segment of a blade's rotation. Broadband noise results when rotors interact with random disturbances, such as turbulence, which can originate in a variety of sources. The status of analysis techniques for these mechanisms are reviewed. Also, some recent progress is presented on the understanding and analysis of tilt rotor aircraft noise due to: (1) recirculation and blockage effects of the rotor flow in hover; and (2) blade-vortex interactions in forward and descending flight.

  14. Takeoff/approach noise for a model counterrotation propeller with a forward-swept upstream rotor

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hall, David G.; Podboy, Gary G.; Jeracki, Robert J.

    1993-01-01

    A scale model of a counterrotating propeller with forward-swept blades in the forward rotor and aft-swept blades in the aft rotor (designated F39/A31) has been tested in the NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel. This paper presents aeroacoustic results at a takeoff/approach condition of Mach 0.20. Laser Doppler Velocimeter results taken in a plane between the two rotors are also included to quantify the interaction flow field. The intention of the forward-swept design is to reduce the magnitude of the forward rotor tip vortex and/or wakes which impinge on the aft rotor, thus lowering the interaction tone levels.

  15. Parallel Vortex Body Interaction Enabled by Active Flow Control

    NASA Astrophysics Data System (ADS)

    Weingaertner, Andre; Tewes, Philipp; Little, Jesse

    2017-11-01

    An experimental study was conducted to explore the flow physics of parallel vortex body interaction between two NACA 0012 airfoils. Experiments were carried out at chord Reynolds numbers of 740,000. Initially, the leading airfoil was characterized without the target one being installed. Results are in good agreement with thin airfoil theory and data provided in the literature. Afterward, the leading airfoil was fixed at 18° incidence and the target airfoil was installed 6 chord lengths downstream. Plasma actuation (ns-DBD), originating close to the leading edge, was used to control vortex shedding from the leading airfoil at various frequencies (0.04

  16. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  17. Descriptive Summaries of the Research, Development, Test and Evaluation, Army Appropriation. Supporting Data FY 1994, Budget Estimates Submitted to Congress, April 1993

    DTIC Science & Technology

    1993-04-01

    determining effective group functioning, leader-group interaction , and decision making; (2) factors that determine effective, low error human performance...infectious disease and biological defense vaccines and drugs , vision, neurotxins, neurochemistry, molecular neurobiology, neurodegenrative diseases...Potential Rotor/Comprehensive Analysis Model for Rotor Aerodynamics-Johnson Aeronautics (FPR/CAMRAD-JA) code to predict Blade Vortex Interaction (BVI

  18. Deterministic blade row interactions in a centrifugal compressor stage

    NASA Technical Reports Server (NTRS)

    Kirtley, K. R.; Beach, T. A.

    1991-01-01

    The three-dimensional viscous flow in a low speed centrifugal compressor stage is simulated using an average passage Navier-Stokes analysis. The impeller discharge flow is of the jet/wake type with low momentum fluid in the shroud-pressure side corner coincident with the tip leakage vortex. This nonuniformity introduces periodic unsteadiness in the vane frame of reference. The effect of such deterministic unsteadiness on the time-mean is included in the analysis through the average passage stress, which allows the analysis of blade row interactions. The magnitude of the divergence of the deterministic unsteady stress is of the order of the divergence of the Reynolds stress over most of the span, from the impeller trailing edge to the vane throat. Although the potential effects on the blade trailing edge from the diffuser vane are small, strong secondary flows generated by the impeller degrade the performance of the diffuser vanes.

  19. Helicopter external noise prediction and reduction

    NASA Astrophysics Data System (ADS)

    Lewy, Serge

    Helicopter external noise is a major challenge for the manufacturers, both in the civil domain and in the military domain. The strongest acoustic sources are due to the main rotor. Two flight conditions are analyzed in detail because radiated sound is then very loud and very impulsive: (1) high-speed flight, with large thickness and shear terms on the advancing blade side; and (2) descent flight, with blade-vortex interaction for certain rates of descent. In both cases, computational results were obtained and tests on new blade designs have been conducted in wind tunnels. These studies prove that large noise reduction can be achieved. It is shown in conclusion, however, that the other acoustic sources (tail rotor, turboshaft engines) must not be neglected to define a quiet helicopter.

  20. LES of a ducted propeller with rotor and stator in crashback

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Mahesh, Krishnan

    2012-11-01

    A sliding interface method is developed for large eddy simulation (LES) of flow past ducted propellers with both rotor and stator. The method is developed for arbitrarily shaped unstructured elements on massively parallel computing platforms. Novel algorithms for searching sliding elements, interpolation at the sliding interface, and data structures for message passing are developed. We perform LES of flow past a ducted propeller with stator blades in the crashback mode of operation, where a marine vessel is quickly decelerated by rotating the propeller in reverse. The unsteady loads predicted by LES are in good agreement with experiments. A highly unsteady vortex ring is observed outside the duct. High pressure fluctuations are observed near the blade tips, which significantly contribute to the side-force. This work is supported by the United States Office of Naval Research.

  1. Velocity measurements in a turbulent trailing vortex and their application to BWI noise prediction

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Glegg, Stewart A. L.

    1991-01-01

    The objectives were to observe the turbulence structure and spectral characteristics of the trailing vortex shed by a rectangular NACA 0012 wing over a range of conditions and to incorporate these observations into the blade-wake interaction (BWI) noise-prediction method of Glegg (1989). The following sections are presented: (1) measurements performed during the first year of this two year investigation; (2) presentation and discussion of a representative sample of the results; (3) implications for the BWI noise prediction method; and (4) re-evaluation of work planned for the second year.

  2. An analytical parametric study of the broadband noise from axial-flow fans

    NASA Technical Reports Server (NTRS)

    Chou, Shau-Tak; George, Albert R.

    1987-01-01

    The rotating dipole analysis of Ffowcs Williams and Hawkings (1969) is used to predict the far field noise radiation due to various rotor broadband noise mechanisms. Consideration is given to inflow turbulence noise, attached boundary layer/trailing-edge interaction noise, tip-vortex formation noise, and trailing-edge thickness noise. The parametric dependence of broadband noise from unducted axial-flow fans on several critical variables is studied theoretically. The angle of attack of the rotor blades, which is related to the rotor performance, is shown to be important to the trailing-edge noise and to the tip-vortex formation noise.

  3. Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method

    NASA Astrophysics Data System (ADS)

    Lawton, Stephen; Crawford, Curran

    2014-06-01

    Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade.

  4. Local measurement and numerical modeling of mass/heat transfer from a turbine blade in a linear cascade with tip clearance

    NASA Astrophysics Data System (ADS)

    Jin, Peitong

    2000-11-01

    Local mass/heat transfer measurements from the turbine blade near-tip and the tip surfaces are performed using the naphthalene sublimation technique. The experiments are conducted in a linear cascade consisting of five high-pressure blades with a central test-blade configuration. The incoming flow conditions are close to those of the gas turbine engine environment (boundary layer displacement thickness is about 0.01 of chord) with an exit Reynolds number of 6.2 x 105. The effects of tip clearance level (0.86%--6.90% of chord), mainstream Reynolds number and turbulence intensity (0.2 and 12.0%) are investigated. Two methods of flow visualization---oil and lampblack, laser light sheet smoke wire---as well as static pressure measurement on the blade surface are used to study the tip leakage flow and vortex in the cascade. In addition, numerical modeling of the flow and heat transfer processes in the linear cascade with different tip clearances is conducted using commercial software incorporating advanced turbulence models. The present study confirms many important results on the tip leakage flow and vortex from the literature, contributes to the current understanding in the effects of tip leakage flow and vortex on local heat transfer from the blade near-tip and the tip surfaces, and provides detailed local and average heat/mass transfer data applicable to turbine blade tip cooling design.

  5. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor

    NASA Astrophysics Data System (ADS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-06-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  6. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-01-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  7. Propeller noise caused by blade tip radial forces

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1986-01-01

    New experimental evidence which indicates the presence of leading edge and tip edge vortex flow on Prop-Fans is examined, and performance and noise consequences are addressed. It was shown that the tip edge vortex is a significant noise source, particularly for unswept Prop-Fan blades. Preliminary calculations revealed that the addition of the tip side edge source to single rotation Prop-Fans during take off conditions improved the agreement between experiment and theory at blade passing frequency. At high-speed conditions such as the Prop-Fan cruise point, the tip loading effect tends to cancel thickness noise.

  8. Vortex conception of rotor and mutual effect of screw/propellers

    NASA Technical Reports Server (NTRS)

    Lepilkin, A. M.

    1986-01-01

    A vortex theory of screw/propellers with variable circulation according to the blade and its azimuth is proposed, the problem is formulated and circulation is expanded in a Fourier series. Equations are given for inductive velocities in space for crews, including those with an infinitely large number of blades and expansion of the inductive velocity by blade azimuth of a second screw. Multiparameter improper integrals are given as a combination of elliptical integrals and elementary functions, and it is shown how to reduce elliptical integrals of the third kind with a complex parameter to integrals with a real parameter.

  9. A generalized vortex theory of the screw propeller and its application

    NASA Technical Reports Server (NTRS)

    Reissner, Hans

    1940-01-01

    The vortex theory as presented by the author in earlier papers has been extended to permit the solution of the following problems: (1) the investigation of the relation between thrusts and torque distribution and energy loss as given by the induction of helical vortex sheets and by the parasite drag; (2) the checking of the theorem of Betz of the rigidly behaving helical vortex sheet of minimum induced energy loss; (3) the extension of the theory of the screw propeller of minimum energy loss for the inclusion of parasite-drag distribution along the blades. A simple system of diagrams has been developed to systematize the design of airplane propellers for a wide range of parasite-drag distribution along the blades.

  10. Signal Analysis of Helicopter Blade-Vortex-Interaction Acoustic Noise Data

    NASA Technical Reports Server (NTRS)

    Rogers, James C.; Dai, Renshou

    1998-01-01

    Blade-Vortex-Interaction (BVI) produces annoying high-intensity impulsive noise. NASA Ames collected several sets of BVI noise data during in-flight and wind tunnel tests. The goal of this work is to extract the essential features of the BVI signals from the in-flight data and examine the feasibility of extracting those features from BVI noise recorded inside a large wind tunnel. BVI noise generating mechanisms and BVI radiation patterns an are considered and a simple mathematical-physical model is presented. It allows the construction of simple synthetic BVI events that are comparable to free flight data. The boundary effects of the wind tunnel floor and ceiling are identified and more complex synthetic BVI events are constructed to account for features observed in the wind tunnel data. It is demonstrated that improved recording of BVI events can be attained by changing the geometry of the rotor hub, floor, ceiling and microphone. The Euclidean distance measure is used to align BVI events from each blade and improved BVI signals are obtained by time-domain averaging the aligned data. The differences between BVI events for individual blades are then apparent. Removal of wind tunnel background noise by optimal Wiener-filtering is shown to be effective provided representative noise-only data have been recorded. Elimination of wind tunnel reflections by cepstral and optimal filtering deconvolution is examined. It is seen that the cepstral method is not applicable but that a pragmatic optimal filtering approach gives encouraging results. Recommendations for further work include: altering measurement geometry, real-time data observation and evaluation, examining reflection signals (particularly those from the ceiling) and performing further analysis of expected BVI signals for flight conditions of interest so that microphone placement can be optimized for each condition.

  11. Rotor Wake Vortex Definition: Initial Evaluation of 3-C PIV Results of the Hart-II Study

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughes; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2002-01-01

    An initial evaluation is made of extensive three-component (3C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity 'disk' integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.

  12. Vortex-induced vibration of two parallel risers: Experimental test and numerical simulation

    NASA Astrophysics Data System (ADS)

    Huang, Weiping; Zhou, Yang; Chen, Haiming

    2016-04-01

    The vortex-induced vibration of two identical rigidly mounted risers in a parallel arrangement was studied using Ansys- CFX and model tests. The vortex shedding and force were recorded to determine the effect of spacing on the two-degree-of-freedom oscillation of the risers. CFX was used to study the single riser and two parallel risers in 2-8 D spacing considering the coupling effect. Because of the limited width of water channel, only three different riser spacings, 2 D, 3 D, and 4 D, were tested to validate the characteristics of the two parallel risers by comparing to the numerical simulation. The results indicate that the lift force changes significantly with the increase in spacing, and in the case of 3 D spacing, the lift force of the two parallel risers reaches the maximum. The vortex shedding of the risers in 3 D spacing shows that a variable velocity field with the same frequency as the vortex shedding is generated in the overlapped area, thus equalizing the period of drag force to that of lift force. It can be concluded that the interaction between the two parallel risers is significant when the risers are brought to a small distance between them because the trajectory of riser changes from oval to curve 8 as the spacing is increased. The phase difference of lift force between the two risers is also different as the spacing changes.

  13. Chirality-dependent flutter of Typha blades in wind

    PubMed Central

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-01-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles. PMID:27432079

  14. Chirality-dependent flutter of Typha blades in wind.

    PubMed

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-07-19

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles.

  15. Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight

    DTIC Science & Technology

    2014-08-06

    dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex

  16. Rotor Wake Vortex Definition Using 3C-PIV Measurements: Corrected for Vortex Orientation

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughues Richard; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2003-01-01

    Three-component (3-C) particle image velocimetry (PIV) measurements, within the wake across a rotor disk plane, are used to determine wake vortex definitions important for BVI (Blade Vortex Interaction) and broadband noise prediction. This study is part of the HART II test program conducted using a 40 percent scale BO-105 helicopter main rotor in the German-Dutch Wind Tunnel (DNW). In this paper, measurements are presented of the wake vortex field over the advancing side of the rotor operating at a typical descent landing condition. The orientations of the vortex (tube) axes are found to have non-zero tilt angles with respect to the chosen PIV measurement cut planes, often on the order of 45 degrees. Methods for determining the orientation of the vortex axis and reorienting the measured PIV velocity maps (by rotation/projection) are presented. One method utilizes the vortex core axial velocity component, the other utilizes the swirl velocity components. Key vortex parameters such as vortex core size, strength, and core velocity distribution characteristics are determined from the reoriented PIV velocity maps. The results are compared with those determined from velocity maps that are not corrected for orientation. Knowledge of magnitudes and directions of the vortex axial and swirl velocity components as a function of streamwise location provide a basis for insight into the vortex evolution.

  17. High fidelity simulation of non-synchronous vibration for aircraft engine fan/compressor

    NASA Astrophysics Data System (ADS)

    Im, Hong-Sik

    The objectives of this research are to develop a high fidelity simulation methodology for turbomachinery aeromechanical problems and to investigate the mechanism of non-synchronous vibration (NSV) of an aircraft engine axial compressor. A fully conservative rotor/stator sliding technique is developed to accurately capture the unsteadiness and interaction between adjacent blade rows. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are implemented to take into account the effect of phase difference for a sector of annulus simulation. To resolve the nonlinear interaction between flow and vibrating blade structure, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. An advanced mesh deformation method that generates the blade tip block mesh moving with the blade displacement is developed to ensure the mesh quality. An efficient and low diffusion E-CUSP (LDE) scheme as a Riemann solver designed to minimize numerical dissipation is used with an improved hybrid RANS/LES turbulence strategy, delayed detached eddy simulation (DDES). High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI simulation methodology. The validated cases include: (1) DDES of NACA 0012 airfoil at high angle of attack with massive separation. The DDES accurately predicts the drag whereas the URANS model significantly over predicts the drag. (2) The AGARD Wing 445.6 flutter boundary is accurately predicted including the point at supersonic incoming flow. (3) NASA Rotor 67 validation for steady state speed line and radial profiles at peak efficiency point and near stall point. The calculated results agree excellently with the experiment. (4) NASA Stage 35 speed line and radial profiles to validate the steady state mixing plane BC for multistage computation. Excellent agreement is obtained between the computation and experiment. (5) NASA Rotor 67 full annulus and single passage FSI simulation at near peak condition to validate phase lag BC. The time shifted phase lag BC accurately predicts blade vibration responses that agrees better with the full annulus FSI simulation. The DDES methodology is used to investigate the stall inception of NASA Rotor 67. The stall process begins with spike inception and develops to full stall. The whole process is simulated with full annulus of the rotor. The fully coupled FSI is then used to simulate the stall flutter of NASA Rotor 67. The multistage simulations of a GE aircraft engine high pressure compressor (HPC) reveal for the first time that the travelling tornado vortex formed on the rotor blade tip region is the root cause for the NSV of the compressor. The rotor blades under NSV have large torsional vibration due to the tornado vortex propagation in the opposite to the rotor rotation. The tornado vortex frequency passing the suction surface of each blade in the tip region agrees with the NSV frequency. The predicted NSV frequency based on URANS model with rigid blades agrees very well with the experimental measurement with only 3.3% under-predicted. The NSV prediction using FSI with vibrating blades also obtain the same frequency as the rigid blades. This is because that the NSV is primarily caused by the flow vortex instability and the no resonance occurs. The blade structures respond passively and the small amplitudes of the blade vibration do not have significant effect on the flow. The predicted frequency using DDES with rigid blades is more deviated from the experiment and is 14.7% lower. The reason is that the DDES tends to predict the rotor stall earlier than the URANS and the NSV can be achieved only at higher mass flow rate, which generates a lower frequency. The possible reason for the DDES to predict the rotor stall early may be because DDES is more sensitive to wave reflection and a non-reflective boundary condition may be necessary. Overall, the high fidelity FSI methodology developed in this thesis for aircraft engine fan/compressor aeromechanics simulation is demonstrated to be very successful and has advanced the forefront of the state of the art. Future work to continue to improve the accuracy and efficiency is discussed at the end of the thesis.

  18. Prediction of XV-15 tilt rotor discrete frequency aeroacoustic noise with WOPWOP

    NASA Technical Reports Server (NTRS)

    Coffen, Charles D.; George, Albert R.

    1990-01-01

    The results, methodology, and conclusions of noise prediction calculations carried out to study several possible discrete frequency harmonic noise mechanisms of the XV-15 Tilt Rotor Aircraft in hover and helicopter mode forward flight are presented. The mechanisms studied were thickness and loading noise. In particular, the loading noise caused by flow separation and the fountain/ground plane effect were predicted with calculations made using WOPWOP, a noise prediction program developed by NASA Langley. The methodology was to model the geometry and aerodynamics of the XV-15 rotor blades in hover and steady level flight and then create corresponding FORTRAN subroutines which were used an input for WOPWOP. The models are described and the simplifying assumptions made in creating them are evaluated, and the results of the computations are presented. The computations lead to the following conclusions: The fountain/ground plane effect is an important source of aerodynamic noise for the XV-15 in hover. Unsteady flow separation from the airfoil passing through the fountain at high angles of attack significantly affects the predicted sound spectra and may be an important noise mechanism for the XV-15 in hover mode. The various models developed did not predict the sound spectra in helicopter forward flight. The experimental spectra indicate the presence of blade vortex interactions which were not modeled in these calculations. A need for further study and development of more accurate aerodynamic models, including unsteady stall in hover and blade vortex interactions in forward flight.

  19. Characteristics of tip-leakage flow in an axial fan

    NASA Astrophysics Data System (ADS)

    Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol

    2014-11-01

    An axial fan with a shroud generates complicated vortical structures by the interaction of the axial flow with the fan blades and shroud near the blade tips. Large eddy simulation (LES) is performed for flow through a forward-swept axial fan, operating at the design condition of Re = 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model (Lee et al. 2010) is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame (Kim & Choi 2006) is adopted for the present simulation. It is found that two vortical structures are formed near the blade tip: the main tip leakage vortex (TLV) and the auxiliary TLV. The main TLV is initiated near the leading edge, develops downstream, and impinges on the pressure surface of the next blade, where the pressure fluctuations and turbulence intensity become high. On the other hand, the auxiliary TLV is initiated at the aft part of the blade but is relatively weak such that it merges with the main TLV. Supported by the KISTI Supercomputing Center (KSC-2014-C2-014).

  20. A new methodology for free wake analysis using curved vortex elements

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.

    1987-01-01

    A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.

  1. Measurements of Tip Vortices from a Full-Scale UH-60A Rotor by Retro- Reflective Background Oriented Schlieren and Stereo Photogrammetry

    NASA Technical Reports Server (NTRS)

    Schairer, Edward; Kushner, Laura K.; Heineck, James T.

    2013-01-01

    Positions of vortices shed by a full-scale UH-60A rotor in forward flight were measured during a test in the National Full- Scale Aerodynamics Complex at NASA Ames Research Center. Vortices in a region near the tip of the advancing blade were visualized from two directions by Retro-Reflective Background-Oriented Schlieren (RBOS). Correspondence of points on the vortex in the RBOS images from both cameras was established using epipolar geometry. The object-space coordinates of the vortices were then calculated from the image-plane coordinates using stereo photogrammetry. One vortex from the tip of the blade that had most recently passed was visible in most of the data. The visibility of the vortices was greatest at high thrust and low advance ratios. At these favorable conditions, vortices from the most recent passages of all four blades were detected. The vortex positions were in good agreement with PIV data for a case where PIV measurements were also made. RBOS and photogrammetry provided measurements of the angle at which each vortex passed through the PIV plane.

  2. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    NASA Astrophysics Data System (ADS)

    Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.

    2016-09-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.

  3. Airfoil self-noise and prediction

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Pope, D. Stuart; Marcolini, Michael A.

    1989-01-01

    A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.

  4. Recent Langley helicopter acoustics contributions

    NASA Technical Reports Server (NTRS)

    Morgan, Homer G.; Pao, S. P.; Powell, C. A.

    1988-01-01

    The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included.

  5. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    High-resolution simulations of rotor/vortex-wake interaction for a UH60-A rotor under BVI and dynamic stallconditions were carried out with the OVERFLOW Navier-Stokes code.a. The normal force and pitching moment variation with azimuth angle were in good overall agreementwith flight-test data, similar to other CFD results reported in the literature.b. The wake-grid resolution did not have a significant effect on the rotor-blade airloads. This surprisingresult indicates that a wake grid spacing of (Delta)S=10% ctip is sufficient for engineering airloads predictionfor hover and forward flight. This assumes high-resolution body grids, high-order spatial accuracy, anda hybrid RANS/DDES turbulence model.c. Three-dimensional dynamic stall was found to occur due the presence of blade-tip vortices passing overa rotor blade on the retreating side. This changed the local airfoil angle of attack, causing stall, unlikethe 2D perspective of pure pitch oscillation of the local airfoil section.

  6. Pressure fluctuation generated by the interaction of blade and tongue

    NASA Astrophysics Data System (ADS)

    Zheng, Lulu; Dou, Hua-Shu; Chen, Xiaoping; Zhu, Zuchao; Cui, Baoling

    2018-02-01

    Pressure fluctuation around the tongue has large effect on the stable operation of a centrifugal pump. In this paper, the Reynolds averaged Navier-Stokes equations (RANS) and the RNG k-epsilon turbulence model is employed to simulate the flow in a pump. The flow field in the centrifugal pump is computed for a range of flow rate. The simulation results have been compared with the experimental data and good agreement has been achieved. In order to study the interaction of the tongue with the impeller, fifteen monitor probes are evenly distributed circumferentially at three radii around the tongue. Pressure distribution is investigated at various blade positions while the blade approaches to and leaves the tongue region. Results show that pressure signal fluctuates largely around the tongue, and it is more intense near the tongue surface. At design condition, standard deviation of pressure fluctuation is the minimum. At large flow rate, the increased low pressure region at the blade trailing edge results in the increases of pressure fluctuation amplitude and pressure spectra at the monitor probes. Minimum pressure is obtained when the blade is facing to the tongue. It is found that the amplitude of pressure fluctuation strongly depends on the blade positions at large flow rate, and pressure fluctuation is caused by the relative movement between blades and tongue. At small flow rate, the rule of pressure fluctuation is mainly depending on the structure of vortex flow at blade passage exit besides the influence from the relative position between the blade and the tongue.

  7. Interaction of Vortex Rings and Steady Jets with Permeable Screens of Varied Porosity

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2013-11-01

    Vortex ring and steady jet interaction with a porous matrix formed from several parallel, transparent permeable screens with the same grid geometry for open area ratios (φ) 49.5% - 83.8% was studied previously using digital particle image velocimetry (DPIV) at jet Reynolds number (Re) of 1000-3000. Vortex ring results showed that unlike the experiments with thin screens, a transmitted vortex ring, which has a similar diameter to the primary one, wasn't formed. Instead a centerline vortex ring like structure formed and its diameter, circulation, and dissipation time decreased as φ decreased. However, for the case of screens φ = 55.7% with large screen spacing, reformation of large scale weak vortex rings was observed downstream of the first screen. The present work experimentally investigates the interaction of vortex rings and steady jets with screens of decreasing φ (83.8%-49.5%) in the flow direction. A piston type vortex ring generator was used and measurements were made using DPIV. The vortex ring results show that the size and circulation of the vortex ring like flow structure was changed based on the screen φ within the permeable screen matrix. Similarly, steady jet flow structure and the local turbulent kinetic energy was changed based on the local screen φ.

  8. Airloads, wakes, and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    1990-01-01

    Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.

  9. Nonlinear Tollmien-Schlichting/vortex interaction in boundary layers

    NASA Technical Reports Server (NTRS)

    Hall, P.; Smith, F. T.

    1988-01-01

    The nonlinear reaction between two oblique 3-D Tollmein-Schlichting (TS) waves and their induced streamwise-vortex flow is considered theoretically for an imcompressible boundary layer. The same theory applies to the destabilization of an incident vortex motion by subharmonic TS waves, followed by interaction. The scales and flow structure involved are addressed for high Reynolds numbers. The nonlionear interaction is powerful, starting at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale structure for the induced vortex, after which strong nonlinear amplification occurs. This includes nonparallel-flow effects. The nonlinear interaction is governed by a partial differential system for the vortex flow coupled with an ordinary-differential one for the TS pressure. The solution properties found sometimes produce a breakup within a finite distance and sometimes further downstream, depending on the input amplitudes upstream and on the wave angles, and that then leads to the second stages of interaction associated with higher amplitudes, the main second stages giving either long-scale phenomena significantly affected by nonparallelism or shorter quasi-parallel ones governed by the full nonlinear triple-deck response.

  10. Dynamics and control of hydrofoil wakes

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Morten; Wosnik, Martin; Arndt, Roger

    2008-11-01

    The problem of rotor-stator interaction (RSI) is an issue within the field of turbomachinery. The flow field entering the rotor cascade will depend on the stator blade to blade velocity distributions, and the viscous wake trailing cascade blades. This flow field is also dependent on the mode of operation, e.g by changing the angle of each blade in hydroturbines. Manipulating the stator viscous wakes is one method to minimize the problems associated RSI; i.e. noise and vibration. In order to explore this concept, a comprehensive experimental program was carried out in a high-speed water tunnel utilizing a series of NACA 0015 hydrofoils. Baseline wake data were collected with a hydraulically smooth foil and compared with two foils modified with two sizes of vortex generators (VG) positioned close to the leading edge of the foil. Not only was the effect of the modifications on wake spreading investigated but also the effect on wake dynamics such as vortex shedding was studied. A high frame-rate PIV system was used at recording rates of 1 and 10 kHz to map the near wake region, extending roughly 1 chord-length downstream the trailing edge, over a range of angles of attack and velocities. The results show that wake dynamics and wake characteristics, i.e. velocity deficit and width, scale with average drag. It was demonstrated that the use of VGs can improve both the dynamics and spreading characteristics of the wake.

  11. Study of secondary-flow patterns in an annular cascade of turbine nozzle blades with vortex design

    NASA Technical Reports Server (NTRS)

    Rohlik, Harold E; Allen, Hubert W; Herzig, Howard Z

    1953-01-01

    In order to increase understanding of the origin of losses in a turbine, the secondary-flow components in the boundary layers and the blade wakes of an annular cascade of turbine nozzle blades (vortex design) was investigated. A detailed study was made of the total-pressure contours and, particularly, of the inner-wall loss cores downstream of the blades. The inner-wall loss core associated with a blade of the turbine-nozzle cascade is largely the accumulation of low-momentum fluids originating elsewhere in the cascade. This accumulation is effected by a secondary-flow mechanism which acts to transport the low-momentum fluids across the channels on the walls and radially in the blade wakes and boundary layers. The patterns of secondary flow were determined by use of hydrogen sulfide traces, paint, flow fences, and total pressure surveys. At one flow condition investigated, the radial transport of low-momentum fluid in the blade wake and on the suction surface near the trailing edge accounted for 65 percent of the loss core; 30 percent resulted from flow in the thickened boundary layer on the suction surface and 35 percent from flow in the blade wake.

  12. Three-dimensional analysis of the Pratt and Whitney alternate design SSME fuel turbine

    NASA Technical Reports Server (NTRS)

    Kirtley, K. R.; Beach, T. A.; Adamczyk, J. J.

    1991-01-01

    The three dimensional viscous time-mean flow in the Pratt and Whitney alternate design space shuttle main engine fuel turbine is simulated using the average passage Navier-Stokes equations. The migration of secondary flows generated by upstream blade rows and their effect on the performance of downstream blade rows is studied. The present simulation confirms that the flow in this two stage turbine is highly three dimensional and dominated by the tip leakage flow. The tip leakage vortex generated by the first blade persists through the second blade and adversely affects its performance. The greatest mixing of the inlet total temperature distortion occurs in the second vane and is due to the large leakage vortex generated by the upstream rotor. It is assumed that the predominant spanwise mixing mechanism in this low aspect ratio turbine is the radial transport due to the deterministically unsteady vortical flow generated by upstream blade rows. A by-product of the analysis is accurate pressure and heat loads for all blade rows under the influence of neighboring blade rows. These aero loads are useful for advanced structural analysis of the vanes and blades.

  13. Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2015-12-01

    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.

  14. Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor with LES And PIV

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David

    2015-01-01

    The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow fields inside the tip gap agree fairly well. Instantaneous velocity vectors inside the tip gap from both the PIV and LES do show flow separation and reattachment at the entrance of tip gap as some earlier studies suggested. This area at the entrance of tip gap flow (the pressure side of the blade) is confined very close to the rotor tip section. With a small tip gap (0.5mm), the gap flow looks like a simple two-dimensional channel flow with larger velocity near the casing for both flow rates. A small area with a sharp velocity gradient is observed just above the rotor tip. This strong shear layer is turned radially inward when it collides with the incoming flow and forms the core structure of the tip clearance vortex. When tip gap size is increased to 2.4 mm at the design operation, the radial profile of the tip gap flow changes drastically. With the large tip gap, the gap flow looks like a two-dimensional channel flow only near the casing. Near the rotor top section, a bigger region with very large shear and reversed flow is observed.

  15. Experimental and analytical studies of a model helicopter rotor in hover

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1981-01-01

    A benchmark test to aid the development of various rotor performance codes was conducted. Simultaneous blade pressure measurements and tip vortex surveys were made for a wide range of tip Mach numbers including the transonic flow regime. The measured tip vortex strength and geometry permit effective blade loading predictions when used as input to a prescribed wake lifting surface code. It is also shown that with proper inflow and boundary layer modeling, the supercritical flow regime can be accurately predicted.

  16. Investigation of Positively Curved Blade in Compressor Cascade Based on Transition Model

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen; Lan, Yunhe; Zhou, Zhihua; Wang, Songtao

    2016-06-01

    Experiment and numerical simulation of flow transition in a compressor cascade with positively curved blade is carried out in a low speed. In the experimental investigation, the outlet aerodynamic parameters are measured using a five-hole aerodynamic probe, and an ink-trace flow visualization is applied to the cascade surface. The effects of transition flow on the boundary layer development, three-dimensional flow separation and aerodynamic performance are studied. The feasibility of a commercial computational fluid dynamic code is validated and the numerical results show a good agreement with experimental data. The blade-positive curving intensifies the radial force from the endwalls to the mid-span near the suction surface, which leads to the smaller scope of the intermittent region, the lesser extents of turbulence intensity and the shorter radial height of the separation bubble near the endwalls, but has little influence on the flow near the mid-span. The large passage vortex is divided into two smaller shedding vortexes under the impact of the radial pressure gradient due to the positively curved blade. The new concentrated shedding vortex results in an increase in the turbulence intensity and secondary flow loss of the corresponding region.

  17. Enhanced Actuator Line Simulation of a Wind Turbine by including the Conservative Load at the Blade Tip

    NASA Astrophysics Data System (ADS)

    Herraez, Ivan; Micallef, Daniel; van Kuik, Gijs A. M.; Peinke, Joachim

    2015-11-01

    At the tip of wind turbine blades, the radial bound circulation is transformed into chordwise circulation just before being released as trailing vorticity, giving rise to the tip vortex. The force acting on the chordwise circulation contains a radial and a normal component with respect to the blade axis. This load does not contribute to the torque, so it is a conservative load. Due to this, it is disregarded in the engineering tools used for the design of wind turbines. However, as we demonstrated in a previous work, the conservative load might influence the trajectory of the tip vortex. In order to see how this affects the blade loads, in this research we perform large eddy simulations with an actuator line model where the conservative load has been included. The conservative load reduces the angle of attack in the tip region as a consequence of the modified tip vortex trajectory. This has a negative influence on the lift and the power output. We conclude that the accuracy of engineering design tools of wind turbines can be improved if the conservative load acting at the tip is considered.

  18. Free-wake computation of helicopter rotor flowfields in forward flight

    NASA Technical Reports Server (NTRS)

    Ramachandran, K.; Schlechtriem, S.; Caradonna, F. X.; Steinhoff, John

    1993-01-01

    A new method has been developed for computing advancing rotor flows. This method uses the Vorticity Embedding technique, which has been developed and validated over the last several years for hovering rotor problems. In this work, the unsteady full potential equation is solved on an Eulerian grid with an embedded vortical velocity field. This vortical velocity accounts for the influence of the wake. Dynamic grid changes that are required to accommodate prescribed blade motion and deformation are included using a novel grid blending method. Free wake computations have been performed on a two-bladed AH-1G rotor at low advance ratios including blade motion. Computed results are compared with experimental data. The sudden variations in airloads due to blade-vortex interactions on the advancing and retreating sides are well captured. The sensitivity of the computed solution to various factors like core size, time step and grids has been investigated. Computed wake geometries and their influence on the aerodynamic loads at these advance ratios are also discussed.

  19. HART-II: Prediction of Blade-Vortex Interaction Loading

    DTIC Science & Technology

    2003-09-01

    14:30 (2) Improvement of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5...of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5) Aeroelastic Stability Analysis of...of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5) Aeroelastic Stability Analysis of

  20. Modeling Helicopter Near-Horizon Harmonic Noise Due to Transient Maneuvers

    DTIC Science & Technology

    2013-01-01

    heading. The PPDG system also 23 includes an Apollo /Garmin CNX80 GPS receiver and an Ashtech Z-Sensor GPS receiver with a Radio Technical Commission...contributions of main rotor thickness noise, low frequency loading noise, and blade-vortex interaction (BVI) noise during maneuvering flight for the...PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11 . SPONSOR

  1. Takeoff/approach noise for a model counterrotation propeller with a forward-swept upstream rotor

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hall, David G.; Podboy, Gary G.; Jeracki, Robert J.

    1993-01-01

    A scale model of a counterrotating propeller with forward-swept blades in the forward rotor and aft-swept blades in the aft rotor (designated F39/A31) has been tested in the NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel. This paper presents aeroacoustic results at a takeoff/approach condition of Mach 0.20. Laser Doppler velocimeter results taken in a plane between the two rotors are also included to quantify the interaction flow field. The intention of the forward-swept design is to reduce the magnitude of the forward rotor tip vortex and/or wakes which impinge on the aft rotor, thus lowering the interaction tone levels. A reference model propeller (designated F31/A31), having aft-swept blades in both rotors, was also tested. Aeroelastic performance of the F39/A31 propeller was disappointing. The forward rotor tip region tended to untwist toward higher effective blade angles under load. The forward rotor also exhibited steady state blade flutter at speeds and loadings well below the design condition. The noise results, based on sideline acoustic data, show that the interaction tone levels were up to 8 dB higher with the forward-swept design compared to those for the reference propeller at similar operating conditions, with these tone level differences extending down to lower propeller speeds where flutter did not occur. These acoustic results are for a poorly-performing forward-swept propeller. It is quite possible that a properly-designed forward-swept propeller would exhibit substantial interaction tone level reductions.

  2. Influence of blade tip rounding on tip leakage vortex cavitation of axial flow pump

    NASA Astrophysics Data System (ADS)

    Wu, S. Q.; Shi, W. D.; Zhang, D. S.; Yao, J.; Cheng, C.

    2013-12-01

    Tip leakage flow in axial flow pumps is mainly caused by the tip clearance, which is the main cause of tip leakage vortex cavitation and blade tip cavitation erosion. In order to improve tip clearance flow and reduce TLV cavitation, four schemes were adopted to the round blade tip. These are: no tip rounding, one time tip clearance tip rounding, two times tip clearance tip rounding, four times tip clearance tip rounding. Using SST k-ω turbulence model and Zwart cavitation model in CFX software, this simulation obtained four kinds of inner flow field results. The numerical results indicated that with the increase of r*, NPSHc gradually increased and the cavitation performance reduced. However, corner vortex was eliminated so that cavitation in gap was restrained. But TLV vorticity increased and cavitation's range here had a little expansion. Combined with the research of this paper and the different analyses of four schemes, we recommend adopting the two times of the tip clearance rounding.

  3. Noise of two high-speed model counter-rotation propellers at takeoff/approach conditions

    NASA Astrophysics Data System (ADS)

    Woodward, Richard P.

    1992-08-01

    This paper presents acoustic results for two model counter-rotation propellers which were tested in the NASA Lewis 9- x 15-ft Anechoic Wind Tunnel. The propellers had a common forward rotor, but the diameter of the aft rotor of the second propeller was reduced in an effort to reduce its interaction with the forward rotor tip vortex. The propellers were tested at Mach 0.20, which is representative of takeoff/approach operation. Acoustic results are presented for these propellers which show the effect of rotor spacing, reduced aft rotor diameter, operation at angle-of-attack, blade loading, and blade number. Limited aerodynamic results are also presented to establish the propeller operating conditions.

  4. Noise of two high-speed model counter-rotation propellers at takeoff/approach conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    1992-01-01

    This paper presents acoustic results for two model counter-rotation propellers which were tested in the NASA Lewis 9- x 15-ft Anechoic Wind Tunnel. The propellers had a common forward rotor, but the diameter of the aft rotor of the second propeller was reduced in an effort to reduce its interaction with the forward rotor tip vortex. The propellers were tested at Mach 0.20, which is representative of takeoff/approach operation. Acoustic results are presented for these propellers which show the effect of rotor spacing, reduced aft rotor diameter, operation at angle-of-attack, blade loading, and blade number. Limited aerodynamic results are also presented to establish the propeller operating conditions.

  5. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  6. An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability

    NASA Astrophysics Data System (ADS)

    Rodriguez, Steven N.; Jaworski, Justin W.

    2015-11-01

    The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.

  7. Flame-vortex interactions imaged in microgravity

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.; Dahm, Werner J. A.; Sichel, Martin

    1995-01-01

    The scientific objective is to obtain high quality color-enhanced digital images of a vortex exerting aerodynamic strain on premixed and nonpremixed flames with the complicating effects of buoyancy removed. The images will provide universal (buoyancy free) scaling relations that are required to improve several types of models of turbulent combustion, including KIVA-3, discrete vortex, and large-eddy simulations. The images will be used to help quantify several source terms in the models, including those due to flame stretch, flame-generated vorticity, flame curvature, and preferential diffusion, for a range of vortex sizes and flame conditions. The experiment is an ideal way to study turbulence-chemistry interactions and isolate the effect of vortices of different sizes and strengths in a repeatable manner. A parallel computational effort is being conducted which considers full chemistry and preferential diffusion.

  8. Investigation of Unsteady Flow Field in a Low-Speed One and a Half Stage Axial Compressor. Part 2; Effects of Tip Gap Size On the Tip Clearance Flow Structure at Near Stall Operation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph

    2014-01-01

    The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.

  9. Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines

    NASA Astrophysics Data System (ADS)

    Luhmann, B.; Cheng, P. W.

    2014-06-01

    A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body simulation software SIMPACK. The aerodynamic loads are calculated using ECN's AeroModule and NREL's BEM code Aerodynl3.

  10. Tip vortices in the actuator line model

    NASA Astrophysics Data System (ADS)

    Martinez, Luis; Meneveau, Charles

    2017-11-01

    The actuator line model (ALM) is a widely used tool to represent the wind turbine blades in computational fluid dynamics without the need to resolve the full geometry of the blades. The ALM can be optimized to represent the `correct' aerodynamics of the blades by choosing an appropriate smearing length scale ɛ. This appropriate length scale creates a tip vortex which induces a downwash near the tip of the blade. A theoretical frame-work is used to establish a solution to the induced velocity created by a tip vortex as a function of the smearing length scale ɛ. A correction is presented which allows the use of a non-optimal smearing length scale but still provides the downwash which would be induced using the optimal length scale. Thanks to the National Science Foundation (NSF) who provided financial support for this research via Grants IGERT 0801471, IIA-1243482 (the WINDINSPIRE project) and ECCS-1230788.

  11. Effect of vortex generators on the power conversion performance and structural dynamic loads of the Mod-2 wind turbine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1984-01-01

    Applying vortex generators from 20 to 100 percent span of the Mod-2 rotor resulted in a projected increase in annual energy capture of 20 percent and reduced the wind speed at which rated power is reached by nearly 3 m/sec. Application of vortex generators from 20 to 70 percent span, the fixed portion of the Mod-2 rotor, resulted in a projected increase in annual energy capture of about half this. This improved performance came at the cost of a small increase in cyclic blade loads in below rated power conditions. Cyclic blade loads were found to correlate well with the change in wind speed during one rotor revolution.

  12. Rotor Wake Development During the First Revolution

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.

    2003-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.

  13. Unsteady loading on an airfoil of arbitrary thickness

    NASA Astrophysics Data System (ADS)

    Glegg, Stewart A. L.; Devenport, William

    2009-01-01

    The unsteady loading on an airfoil of arbitrary thickness is evaluated by using the generalized form of Blasius theorem and a conformal mapping that maps the airfoil surface onto a circle. For a blade vortex interaction the results show that the time history of the unsteady loading is determined by the passage of the vortex relative to the leading edge singularity in the circle plane. The singularity lies inside the circle and moves to a smaller radius as the thickness is increased, causing the unsteady loading pulse to be smoothed. The effect of angle of attack is to move the stagnation point relative to the leading edge singularity and this significantly increases the unsteady lift if the vortex passes on the suction side of the airfoil. These characteristics are different for a step upwash gust, which is considered as a simplified model of a large scale turbulent gust. It is shown that the time history of the magnitude of the unsteady loading is almost completely unaltered by angle of attack for the step gust, but it's direction of action rotates forward by an angle equal to the angle of attack, extending an earlier result by Howe for a flat plate in a turbulent flow to airfoils of arbitrary thickness. However spectral analysis of the gust shows that the high frequency blade response is reduced as the thickness of the airfoil is increased.

  14. Research on the statically thrusting propeller

    NASA Technical Reports Server (NTRS)

    Eisenhuth, J. J.

    1978-01-01

    Methods for calculating the induced flow at propeller blades were analyzed by treating the wake formation as an initial problem in time. An unsteady vortex lattice technique was applied to the wake formation and the vortex core size was studied.

  15. Turbomachinery noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.

    1991-08-01

    Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.

  16. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  17. Rotorcraft Aeromechanics Branch Home Page on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; Warmbrodt, William (Technical Monitor)

    1996-01-01

    The tilt rotor aircraft holds great promise for improving air travel in the future. It's benefits include vertical take off and landing combined with airspeeds comparable to propeller driven aircraft. However, the noise from a tilt rotor during approach to a landing is potentially a significant barrier to widespread acceptance of these aircraft. This approach noise is primarily caused by Blade Vortex Interactions (BVI), which are created when the blade passes near or through the vortex trailed by preceding blades. The XV- 15 Aeroacoustic test will measure the noise from a tilt rotor during descent conditions and demonstrate several possible techniques to reduce the noise. The XV- 15 Aeroacoustic test at NASA Ames Research Center will measure acoustics and performance for a full-scale XV-15 rotor. A single XV-15 rotor will be mounted on the Ames Rotor Test Apparatus (RTA) in the 80- by 120-Foot Wind Tunnel. The test will be conducted in helicopter mode with forward flight speeds up to 100 knots and tip path plane angles up to +/- 15 degrees. These operating conditions correspond to a wide range of tilt rotor descent and transition to forward flight cases. Rotor performance measurements will be made with the RTA rotor balance, while acoustic measurements will be made using an acoustic traverse and four fixed microphones. The acoustic traverse will provide limited directionality measurements on the advancing side of the rotor, where BVI noise is expected to be the highest. Baseline acoustics and performance measurements for the three-bladed rotor will be obtained over the entire test envelope. Acoustic measurements will also be obtained for correlation with the XV-15 aircraft Inflight Rotor Aeroacoustic Program (IRAP) recently conducted by Ames. Several techniques will be studied in an attempt to reduce the highest measured BVI noise conditions. The first of these techniques will use sub-wings mounted on the blade tips. These subwings are expected to alter the size, strength, and location of the tip vortex, therefore changing the BVI acoustics of the rotor. The subwings are approximately 20% of the blade chord and increase the rotor radius by about 3 percent. Four different subwing configurations will be tested, including square tipped subwings with different angles of incidence. The ability of active controls to reduce BVI acoustics will also be assessed. The dynamic control system of the RTA will be used to implement open- and closed-loop active control techniques, including individual blade control. Open-loop testing will be conducted using a personal computer based, automated, real-time data acquisition system. This system features combined automated output of open loop control signals and automated data acquisition of the resulting test data. A final technique to alter the noise of the rotor will be examined. This will involve changing the number of blades from three to four. A four-bladed rotor hub has been fabricated on which the XV-15 blades will be mounted. While the solidity of the rotor will increase, much useful information can be gained by examining the changes in the thrust and RPM with four blades.

  18. Advancements in Theoretical Models of Confined Vortex Flowfields

    DTIC Science & Technology

    2007-03-29

    blades, curved vanes, vortex generators, twisted tape inserts, triangular winglets , propellers, coiled wires, tangential injectors, and other...Corresponding boundary conditions consist of the no slip at the wall and blending with the composite inner solution in the outer domain. Following similar

  19. Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial water-jet pump

    NASA Astrophysics Data System (ADS)

    Wu, Huixuan; Miorini, Rinaldo L.; Katz, Joseph

    2011-04-01

    Particle image velocimetry (PIV) measurements at varying resolutions focus on the flow structures in the tip region of a water-jet pump rotor, including the tip-clearance flow and the rollup process of a tip leakage vortex (TLV). Unobstructed views of these regions are facilitated by matching the optical refractive index of the transparent pump with that of the fluid. High-magnification data reveal the flow non-uniformities and associated turbulence within the tip gap. Instantaneous data and statistics of spatial distributions and strength of vortices in the rotor passage reveal that the leakage flow emerges as a wall jet with a shear layer containing a train of vortex filaments extending from the tip of the blade. These vortices are entrained into the TLV, but do not have time to merge. TLV breakdown in the aft part of the blade passage further fragments these structures, increasing their number and reducing their size. Analogy is made between the circumferential development of the TLV in the blade passage and that of the starting jet vortex ring rollup. Subject to several assumptions, these flows display similar trends, including conditions for TLV separation from the shear layer feeding vorticity into it.

  20. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2014-03-01

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.

  1. Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.

    1985-01-01

    The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories.

  2. Analysis of the sweeped actuator line method

    DOE PAGES

    Nathan, Jörn; Masson, Christian; Dufresne, Louis; ...

    2015-10-16

    The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less

  3. Analysis of the sweeped actuator line method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan, Jörn; Masson, Christian; Dufresne, Louis

    The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution andmore » the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behavior, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. As a result, the main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.« less

  4. The effects of free stream turbulence on the flow field through a compressor cascade

    NASA Astrophysics Data System (ADS)

    Muthanna Kolera, Chittiappa

    The flow through a compressor cascade with tip leakage has been studied experimentally. The cascade of GE rotor B section blades had an inlet angle of 65.1°, a stagger angle of 56.9°, and a solidity of 1.08. The final turning angle of the cascade was 11.8°. This compressor configuration was representative of the core compressor of an aircraft engine. The cascade was operated with a tip gap of 1.65%, and operated at a Reynolds number based on the chord length (0.254 m) of 388,000. Measurements were made at 8 axial locations to reveal the structure of the flow as it evolved through the cascade. Measurements were also made to reveal the effects of grid generated turbulence on this flow. The data set is unique in that not only does it give a comparison of elevated free stream turbulence effects, but also documents the developing flow through the blade row of a compressor cascade with tip leakage. Measurements were made at a total of 8 locations 0.8, 0.23 axial chords upstream and 0, 0.27, 0.48, 0.77, 0.98, and 1.26 axial chords downstream of the leading edge of the blade row for both inflow turbulence cases. The measurements revealed the formation and development of the tip leakage vortex within the passage. The tip leakage vortex becomes apparent at approximately X/ca = 0.27 and dominated much of the endwall flow. The tip leakage vortex is characterized by high streamwise velocity deficits, high vorticity and high turbulence kinetic energy levels. The result showed that between 0.77 and 0.98 axial chords downstream of the leading edge, the vortex structure and behavior changes. The effects of grid generated turbulence were also documented. The results revealed significant effects on the flow field. The results showed a 4% decrease in the blade loading and a 20% reduction in the vorticity levels within tip leakage vortex. There was also a shift in the vortex path, showing a shift close to the suction side with grid generated turbulence, indicating the strength of the vortex was decreased. Circulation calculations showed this reduction, and also indicated that the tip leakage vortex increased in size by about 30%. The results revealed that overall, the turbulence kinetic energy levels in the tip leakage vortex were increased, with the most drastic change occurring at X/ca = 0.77.

  5. A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Levy, Ralph

    1991-01-01

    A reduced Navier-Stokes solution technique was successfully used to design vortex generator installations for the purpose of minimizing engine face distortion by restructuring the development of secondary flow that is induced in typical 3-D curved inlet ducts. The results indicate that there exists an optimum axial location for this installation of corotating vortex generators, and within this configuration, there exists a maximum spacing between generator blades above which the engine face distortion increases rapidly. Installed vortex generator performance, as measured by engine face circumferential distortion descriptors, is sensitive to Reynolds number and thereby the generator scale, i.e., the ratio of generator blade height to local boundary layer thickness. Installations of corotating vortex generators work well in terms of minimizing engine face distortion within a limited range of generator scales. Hence, the design of vortex generator installations is a point design, and all other conditions are off design. In general, the loss levels associated with a properly designed vortex generator installation are very small; thus, they represent a very good method to manage engine face distortion. This study also showed that the vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence over engine face distortion, over and above the influence of the initial arrangement of generators.

  6. Helicopter noise prediction - The current status and future direction

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Farassat, F.

    1992-01-01

    The paper takes stock of the progress, assesses the current prediction capabilities, and forecasts the direction of future helicopter noise prediction research. The acoustic analogy approach, specifically, theories based on the Ffowcs Williams-Hawkings equations, are the most widely used for deterministic noise sources. Thickness and loading noise can be routinely predicted given good plane motion and blade loading inputs. Blade-vortex interaction noise can also be predicted well with measured input data, but prediction of airloads with the high spatial and temporal resolution required for BVI is still difficult. Current semiempirical broadband noise predictions are useful and reasonably accurate. New prediction methods based on a Kirchhoff formula and direct computation appear to be very promising, but are currently very demanding computationally.

  7. Two-Equation Turbulence Models for Prediction of Heat Transfer on a Transonic Turbine Blade

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Ameri, Ali A.; Gaugler, R. E. (Technical Monitor)

    2001-01-01

    Two versions of the two-equation k-omega model and a shear stress transport (SST) model are used in a three-dimensional, multi-block, Navier-Stokes code to compare the detailed heat transfer measurements on a transonic turbine blade. It is found that the SST model resolves the passage vortex better on the suction side of the blade, thus yielding a better comparison with the experimental data than either of the k-w models. However, the comparison is still deficient on the suction side of the blade. Use of the SST model does require the computation of distance from a wall, which for a multiblock grid, such as in the present case, can be complicated. However, a relatively easy fix for this problem was devised. Also addressed are issues such as (1) computation of the production term in the turbulence equations for aerodynamic applications, and (2) the relation between the computational and experimental values for the turbulence length scale, and its influence on the passage vortex on the suction side of the turbine blade.

  8. Reynolds-averaged Navier-Stokes computation on tip clearance flow in a compressor cascade using an unstructured grid

    NASA Astrophysics Data System (ADS)

    Shin, Sangmook

    2001-07-01

    A three-dimensional unstructured incompressible RANS code has been developed using artificial compressibility and Spalart-Allmaras eddy viscosity model. A node-based finite volume method is used in which all flow variables are defined at the vertices of tetrahedrons in an unstructured grid. The inviscid fluxes are computed by using the Roe's flux difference splitting method, and higher order accuracy is attained by data reconstruction based on Taylor series expansion. Gauss theorem is used to formulate necessary gradients. For time integration, an implicit scheme based on linearized Euler backward method is used. A tetrahedral unstructured grid generation code has been also developed and applied to the tip clearance flow in a highly staggered cascade. Surface grids are first generated in the flow passage and blade tip by using several triangulation methods including Delaunay triangulation, advancing front method and advancing layer method. Then the whole computational domain including tip gap region is filled with prisms using the surface grids. The code has been validated by comparisons with available computational and experimental results for several test cases: inviscid flow around NACA section, laminar and turbulent flow over a flat plate, turbulent flow through double-circular arc cascade and laminar flow through a square duct with 90° bend. Finally the code is applied to a linear cascade that has GE rotor B section with tip clearance and a high stagger angle of 56.9°. The overall structure of the tip clearance flow is well predicted. Loss of loading due to tip leakage flow and reloading due to tip leakage vortex are presented. On the end wall, separation line of the tip leakage vortex and reattachment line of passage vortex are identified. Prediction of such an interaction presents a challenge to RANS computations. The effects of blade span on the flow structure have been also investigated. Two cascades with blades of aspect ratios of 0.5 and 1.0 are considered. By comparing pressure distributions on the blade, it is shown that the aspect ratio has strong effects on loading distribution on the blade although the tip gap height is very small (0.016 chord). Grid convergence study has been carried out with three different grids for pressure distributions and limiting streamlines on the end wall. (Abstract shortened by UMI.)

  9. Applying Dynamic Wake Models to Induced Power Calculations for an Optimum Rotor

    DTIC Science & Technology

    2009-08-01

    versions being special cases of the general one. Although the rotor blade may be moving at transonic speeds near the tip, the rotor wake is...The effect of a finite number of blades incurs an additional loss in wake energy due to the individual vortex sheets from each blade . In 1929... blades . Up to this point, previous developments have been able to achieve the full description of the wake in all ranges of flight regime

  10. The turbomachine blading design using S2-S1 approach

    NASA Technical Reports Server (NTRS)

    Luu, T. S.; Bencherif, L.; Viney, B.; Duc, J. M. Nguyen

    1991-01-01

    The boundary conditions corresponding to the design problem when the blades being simulated by the bound vorticity distribution are presented. The 3D flow is analyzed by the two steps S2 - S1 approach. In the first step, the number of blades is supposed to be infinite, the vortex distribution is transformed into an axisymmetric one, so that the flow field can be analyzed in a meridional plane. The thickness distribution of the blade producing the flow channel striction is taken into account by the modification of metric tensor in the continuity equation. Using the meridional stream function to define the flow field, the mass conservation is satisfied automatically. The governing equation is deduced from the relation between the azimuthal component of the vorticity and the meridional velocity. The value of the azimuthal component of the vorticity is provided by the hub to shroud equilibrium condition. This step leads to the determination of the axisymmetric stream sheets as well as the approximate camber surface of the blade. In the second step, the finite number of blades is taken into account, the inverse problem corresponding to the blade to blade flow confined in each stream sheet is analyzed. The momentum equation implies that the free vortex of the absolute velocity must be tangential to the stream sheet. The governing equation for the blade to blade flow stream function is deduced from this condition. At the beginning, the upper and the lower surfaces of the blades are created from the camber surface obtained from the first step with the assigned thickness distribution. The bound vorticity distribution and the penetrating flux conservation applied on the presumed blade surface constitute the boundary conditions of the inverse problem. The detection of this flux leads to the rectification of the geometry of the blades.

  11. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  12. Numerical Investigation of Cavity-Vane Interactions within the Ultra Combat Combustor

    DTIC Science & Technology

    2006-03-01

    nozzle guide vane and the turbine blades are highly dependent on the temperature distribution of the combustor exit. 20 PatternFactor = T4max − T4avg...Procedure for the Calculation of Gaseous Emissions from Aircraft Turbine Engines ”. Society of Automotive Engineers , June 1996. 5. Bernard, Peter S. and...Whipkey. “Locked Vortex Afterbodies”. Journal of Aircraft , Volume 16, No. 5, May 1979. 17. Liu, Feng and William Sirignano. “ Turbojet and Turbofan

  13. The effect of front-to-rear propeller spacing on the interaction noise of a model counterrotation propeller at cruise conditions

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1987-01-01

    The effect of front-to-rear propeller spacing on the interaction noise of a counterrotation propeller model was measured at cruise conditions. The data taken at an axial Mach number of 0.80 behaved as expected: interaction noise was reduced with increased spacing. The data taken at M=0.76 and M=0.72 did not behave as expected. At some of the test conditions the noise was unchanged; others even showed noise increases with increased spacing. A possible explanation, involving the amount of downstream blade area impacted by the tip vortex, is presented.

  14. Aeroacoustic Codes For Rotor Harmonic and BVI Noise--CAMRAD.Mod1/HIRES

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Boyd, D. Douglas, Jr.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1996-01-01

    This paper presents a status of non-CFD aeroacoustic codes at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. The prediction approach incorporates three primary components: CAMRAD.Mod1 - a substantially modified version of the performance/trim/wake code CAMRAD; HIRES - a high resolution blade loads post-processor; and WOPWOP - an acoustic code. The functional capabilities and physical modeling in CAMRAD.Mod1/HIRES will be summarized and illustrated. A new multi-core roll-up wake modeling approach is introduced and validated. Predictions of rotor wake and radiated noise are compared with to the results of the HART program, a model BO-105 windtunnel test at the DNW in Europe. Additional comparisons are made to results from a DNW test of a contemporary design four-bladed rotor, as well as from a Langley test of a single proprotor (tiltrotor) three-bladed model configuration. Because the method is shown to help eliminate the necessity of guesswork in setting code parameters between different rotor configurations, it should prove useful as a rotor noise design tool.

  15. Investigation of an Axial Fan—Blade Stress and Vibration Due to Aerodynamic Pressure Field and Centrifugal Effects

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Amano, Ryoichi Samuel; Lee, Eng Kwong

    A 1.829m (6ft) diameter industrial large flow-rate axial fan operated at 1770rpm was studied experimentally in laboratory conditions. The flow characteristics on the fan blade surfaces were investigated by measuring the pressure distributions on the blade suction and pressure surfaces and the results were discussed by comparing with analytical formulations and CFD. Flow visualizations were also performed to validate the flow characteristics near the blade surface and it was demonstrated that the flow characteristics near the fan blade surface were dominated by the centrifugal force of the fan rotation which resulted in strong three-dimensional flows. The time-dependent pressure measurement showed that the pressure oscillations on the fan blade were significantly dominated by vortex shedding from the fan blades. It was further demonstrated that the pressure distributions during the fan start-up were highly unsteady, and the main frequency variation of the static pressure was much smaller than the fan rotational frequency. The time-dependent pressure measurement when the fan operated at a constant speed showed that the magnitude of the blade pressure variation with time and the main variation frequency was much smaller than the fan rotational frequency. The pressure variations that were related to the vortex shedding were slightly smaller than the fan rotational frequency. The strain gages were used to measure the blade stress and the results were compared with FEA results.

  16. Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.

    2015-01-01

    This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.

  17. The interaction between a propagating coastal vortex and topographic waves

    NASA Astrophysics Data System (ADS)

    Parry, Simon Wyn

    This thesis investigates the motion of a point vortex near coastal topography in a rotating frame of reference at constant latitude (f-plane) in the linear and weakly nonlinear limits. Topography is considered in the form of an infinitely long escarpment running parallel to a wall. The vortex motion and topographic waves are governed by the conservation of quasi-geostrophic potential vorticity in shallow water, from which a nonlinear system of equations is derived. First the linear limit is studied for three cases; a weak vortex on- and off-shelf and a weak vortex close to the wall. For the first two cases it is shown that to leading order the vortex motion is stationary and a solution for the topographic waves at the escarpment can be found in terms of Fourier integrals. For a weak vortex close to a wall, the leading order solution is a steadily propagating vortex with a topographic wavetrain at the step. Numerical results for the higher order interactions are also presented and explained in terms of conservation of momentum in the along-shore direction. For the second case a resonant interaction between the vortex and the waves occurs when the vortex speed is equal to the maximum group velocity of the waves and the linear response becomes unbounded at large times. Thus it becomes necessary to examine the weakly nonlinear near-resonant case. Using a long wave approximation a nonlinear evolution equation for the interface separating the two regions of differing relative potential vorticity is derived and has similar form to the BDA (Benjamin, Davies, Acrivos 1967) equation. Results for the leading order steadily propagating vortex and for the vortex-wave feedback problem are calculated numerically using spectral multi-step Adams methods.

  18. Noise reduction for model counterrotation propeller at cruise by reducing aft-propeller diameter

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Stang, David B.

    1987-01-01

    The forward propeller of a model counterrotation propeller was tested with its original aft propeller and with a reduced diameter aft propeller. Noise reductions with the reduced diameter aft propeller were measured at simulated cruise conditions. Reductions were as large as 7.5 dB for the aft-propeller passing tone and 15 dB in the harmonics at specific angles. The interaction tones, mostly the first, were reduced probably because the reduced-diameter aft-propeller blades no longer interacted with the forward propeller tip vortex. The total noise (sum of primary and interaction noise) at each harmonic was significantly reduced. The chief noise reduction at each harmonic came from reduced aft-propeller-alone noise, with the interaction tones contributing little to the totals at cruise. Total cruise noise reductions were as much as 3 dB at given angles for the blade passing tone and 10 dB for some of the harmonics. These reductions would measurably improve the fuselage interior noise levels and represent a definite cruise noise benefit from using a reduced diameter aft propeller.

  19. Experimental Smoke and Electromagnetic Analog Study of Induced Flow Field About a Model Rotor in Steady Flight Within Ground Effect

    NASA Technical Reports Server (NTRS)

    Gray, Robin B.

    1960-01-01

    Hovering and steady low-speed forward-flight tests were run on a 4-foot-diameter rotor at a ground height of 1 rotor radius. The two blades had a 2 to 1 taper ratio and were mounted in a see-saw hub. The solidity ratio was 0.05. Measurements were made of the rotor rpm, collective pitch, and forward-flight velocity. Smoke was introduced into the tip vortex and the resulting vortex pattern was photographed from two positions. Using the data obtained from these photographs, wire models of the tip vortex configurations were constructed and the distribution of the normal component of induced velocity at the blade feathering axis that is associated with these tip vortex configurations was experimentally determined at 450 increments in azimuth position from this electromagnetic analog. Three steady-state conditions were analyzed. The first was hovering flight; the second, a flight velocity just under the wake "tuck under" speed; and the third, a flight velocity just above this speed. These corresponded to advance ratios of 0, 0.022, and 0.030 (or ratios of forward velocity to calculated hovering induced velocity of approximately 0, 0.48, and 0.65), respectively, for the model test rotor. Cross sections of the wake at 450 intervals in azimuth angle as determined from the path of the tip vortex are presented graphically for all three cases. The nondimensional normal component of the induced velocity that is associated with the tip vortex as determined by an electromagnetic analog at 450 increments in azimuth position and at the blade feathering axis is presented graphically. It is shown that the mean value of this component of the induced velocity is appreciably less after tuck-under than before. It is concluded that this method yields results of engineering accuracy and is a very useful means of studying vortex fields.

  20. BVI induced vibration and noise alleviation by active and passive approaches

    NASA Astrophysics Data System (ADS)

    Liu, Li

    This dissertation describes the development of a comprehensive aeroelastic/aeroacoustic simulation capability for the modeling of vibration and noise in rotorcraft induced by blade-vortex interaction (BVI). Subsequently this capability is applied to study vibration and noise reduction, using active and passive control approaches. The active approach employed is the actively controlled partial span trailing edge flaps (ACF), implemented in single and dual, servo and plain flap configurations. The passive approach is based on varying the sweep and anhedral on the tip of the rotor. Two different modern helicopters are chosen as the baseline for the implementation of ACF approach, one resembling a four-bladed MBB BO-105 hingeless rotor and the other similar to a five-bladed MD-900 bearingless rotor. The structural model is based on a finite element approach capable of simulating composite helicopter blades with swept tips, and representing multiple load paths at the blade root which is a characteristic of bearingless rotors. An unsteady compressible aerodynamic model based on a rational function approximation (RFA) approach is combined with a free wake analysis which has been enhanced by improving the wake analysis resolution and modeling a dual vortex structure. These enhancements are important for capturing BVI effects. A method for predicting compressible unsteady blade surface pressure distribution on rotor blades has been developed, which is required by the acoustic analysis. A modified version of helicopter noise code WOPWOP with provisions for blade flexibility has been combined with the aeroelastic analysis to predict the BVI noise. Several variants of the higher harmonic control (HHC) algorithm have been applied for the active noise control, as well as the simultaneous vibration and noise control. Active control of BVI noise is accomplished using feedback from an onboard microphone. The simulation has been extensively validated against experimental data and other comprehensive rotorcraft codes, and overall good correlation is obtained. Subsequently, the effectiveness of the ACF approach for vibration and BVI noise reduction has been explored, using the two different helicopter configurations. Vibration reductions of up to 86% and 60% are shown for the hingeless and bearingless rotor, respectively. Noise reductions of up to 6dB and 3dB are also demonstrated for these two configurations. (Abstract shortened by UMI.)

  1. Numerical Capture of Wing-tip Vortex Using Vorticity Confinement

    NASA Astrophysics Data System (ADS)

    Zhang, Baili; Lou, Jing; Kang, Chang Wei; Wilson, Alexander; Lundberg, Johan; Bensow, Rickard

    2012-11-01

    Tracking vortices accurately over large distances is very important in many areas of engineering, for instance flow over rotating helicopter blades, ship propeller blades and aircraft wings. However, due to the inherent numerical dissipation in the advection step of flow simulation, current Euler and RANS field solvers tend to damp these vortices too fast. One possible solution to reduce the unphysical decay of these vortices is the application of vorticity confinement methods. In this study, a vorticity confinement term is added to the momentum conservation equations which is a function of the local element size, the vorticity and the gradient of the absolute value of vorticity. The approach has been evaluated by a systematic numerical study on the tip vortex trailing from a rectangular NACA0012 half-wing. The simulated structure and development of the wing-tip vortex agree well with experiments both qualitatively and quantitatively without any adverse effects on the global flow field. It is shown that vorticity confinement can negate the effect of numerical dissipation, leading to a more or less constant vortex strength. This is an approximate method in that genuine viscous diffusion of the vortex is not modeled, but it can be appropriate for vortex dominant flows over short to medium length scales where viscous diffusion can be neglected.

  2. Comparative performance tests on the Mod-2, 2.5-mW wind turbine with and without vortex generators

    NASA Technical Reports Server (NTRS)

    Miller, G. E.

    1995-01-01

    A test program was conducted on the third Mod-2 unit at Goldendale, Washington, to systematically study the effect of vortex generators (VG's) on power performance. The subject unit was first tested without VG's to obtain baseline data. Vortex generators were then installed on the mid-blade assemblies, and the resulting 70% VG configuration was tested. Finally, vortex generators were mounted on the tip assemblies, and data was recorded for the 100% VG configuration. This test program and its results are discussed in this paper. The development of vortex generators is also presented.

  3. An integrated Navier-Stokes - full potential - free wake method for rotor flows

    NASA Astrophysics Data System (ADS)

    Berkman, Mert Enis

    1998-12-01

    The strong wake shed from rotary wings interacts with almost all components of the aircraft, and alters the flow field thus causing performance and noise problems. Understanding and modeling the behavior of this wake, and its effect on the aerodynamics and acoustics of helicopters have remained as challenges. This vortex wake and its effect should be accurately accounted for in any technique that aims to predict rotor flow field and performance. In this study, an advanced and efficient computational technique for predicting three-dimensional unsteady viscous flows over isolated helicopter rotors in hover and in forward flight is developed. In this hybrid technique, the advantages of various existing methods have been combined to accurately and efficiently study rotor flows with a single numerical method. The flow field is viewed in three parts: (i) an inner zone surrounding each blade where the wake and viscous effects are numerically captured, (ii) an outer zone away from the blades where wake is modeled, and (iii) a Lagrangean wake which induces wake effects in the outer zone. This technique was coded in a flow solver and compared with experimental data for hovering and advancing rotors including a two-bladed rotor, the UH-60A rotor and a tapered tip rotor. Detailed surface pressure, integrated thrust and torque, sectional thrust, and tip vortex position predictions compared favorably against experimental data. Results indicated that the hybrid solver provided accurate flow details and performance information typically in one-half to one-eighth cost of complete Navier-Stokes methods.

  4. A new blade element method for calculating the performance of high and intermediate solidity axial flow fans

    NASA Technical Reports Server (NTRS)

    Borst, H. V.

    1978-01-01

    A method is presented to design and predict the performance of axial flow rotors operating in a duct. The same method is suitable for the design of ducted fans and open propellers. The unified method is based on the blade element approach and the vortex theory for determining the three dimensional effects, so that two dimensional airfoil data can be used for determining the resultant force on each blade element. Resolution of this force in the thrust and torque planes and integration allows the total performance of the rotor, fan or propeller to be predicted. Three different methods of analysis, one based on a momentum flow theory; another on the vortex theory of propellers; and a third based on the theory of ducted fans, agree and reduce cascade airfoil data to single line as a function of the loading and induced angle of attack at values of constant inflow angle. The theory applies for any solidity from .01 to over 1 and any blade section camber. The effects of the duct and blade number can be determined so that the procedure applies over the entire range from two blade open propellers, to ducted helicopter tail rotors, to axial flow compressors with or without guide vanes, and to wind tunnel drive fans.

  5. Special opportunities in helicopter aerodynamics

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1983-01-01

    Aerodynamic research relating to modern helicopters includes the study of three dimensional, unsteady, nonlinear flow fields. A selective review is made of some of the phenomenon that hamper the development of satisfactory engineering prediction techniques, but which provides a rich source of research opportunities: flow separations, compressibility effects, complex vortical wakes, and aerodynamic interference between components. Several examples of work in progress are given, including dynamic stall alleviation, the development of computational methods for transonic flow, rotor-wake predictions, and blade-vortex interactions.

  6. Effect of centerbody scattering on propeller noise

    NASA Technical Reports Server (NTRS)

    Glegg, Stewart A. L.

    1991-01-01

    This paper describes how the effect of acoustic scattering from the hub or centerbody of a propeller will affect the far-field noise levels. A simple correction to Gutin's formula for steady loading noise is given. This is a maximum for the lower harmonics but has a negligible effect on the higher frequency components that are important subjectively. The case of a blade vortex interaction is also considered, and centerbody scattering is shown to have a significant effect on the acoustic far field.

  7. Computer program for design of two-dimensional supersonic turbine rotor blades with boundary-layer correction

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Scullin, V. J.

    1971-01-01

    A FORTRAN 4 computer program for the design of two-dimensional supersonic rotor blade sections corrected for boundary-layer displacement thickness is presented. The ideal rotor is designed by the method of characteristics to produce vortex flow within the blade passage. The boundary-layer parameters are calculated by Cohen and Reshotoko's method for laminar flow and Sasman and Cresci's method for turbulent flow. The program input consists essentially of the blade surface Mach number distribution and total flow conditions. The primary output is the corrected blade profile and the boundary-layer parameters.

  8. Investigation of rotor blade element airloads for a teetering rotor in the blade stall regime

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.; Fukushima, T.

    1974-01-01

    A model of a teetering rotor was tested in a low speed wind tunnel. Blade element airloads measured on an articulated model rotor were compared with the teetering rotor and showed that the teetering rotor is subjected to less extensive flow separation. Retreating blade stall was studied. Results show that stall, under the influence of unsteady aerodynamic effects, consists of four separate stall events, each associated with a vortex shed from the leading edge and sweeping over the upper surface of the rotor blade. Current rotor performance prediction methodology was evaluated through computer simulation.

  9. An investigation of the flow characteristics in the blade endwall corner region

    NASA Technical Reports Server (NTRS)

    Hazarika, Birinchi K.; Raj, Rishi S.

    1987-01-01

    Studies were undertaken to determine the structure of the flow in the blade end wall corner region simulated by attaching two uncambered airfoils on either side of a flat plate with a semicircular leading edge. Detailed measurements of the corner flow were obtained with conventional pressure probes, hot wire anemometry, and flow visualization. The mean velocity profiles and six components of the Reynolds stress tensor were obtained with an inclined single sensor hot wire probe whereas power spectra were obtained with a single sensor oriented normal to the flow. Three streamwise vortices were identified based on the surface streamlines, distortion of total pressure profiles, and variation of mean velocity components in the corner. A horseshoe vortex formed near the leading edge of the airfoil. Within a short distance downstream, a corner vortex was detected between the horseshoe vortex and the surfaces forming the corner. A third vortex was formed at the rear portion of the corner between the corner vortex and the surface of the flat plate. Turbulent shear stress and production of turbulence are negligibly small. A region of negative turbulent shear stress was also observed near the region of low turbulence intensity from the vicinity of the flat plate.

  10. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines

    NASA Astrophysics Data System (ADS)

    Hauptmann, S.; Bülk, M.; Schön, L.; Erbslöh, S.; Boorsma, K.; Grasso, F.; Kühn, M.; Cheng, P. W.

    2014-12-01

    Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK.

  11. Heat transfer simulation of unsteady swirling flow in a vortex tube

    NASA Astrophysics Data System (ADS)

    Veretennikov, S. V.; Piralishvili, Sh A.; Evdokimov, O. A.; Guryanov, A. I.

    2018-03-01

    Effectiveness of not-adiabatic vortex tube application in the cooling systems of gas turbine blades depends on characteristics of swirling flows formed in the energy separation chamber. An analysis of the flow structure in the vortex tube channels has shown a presence of a complex three-dimensional spiral vortex, formed under relatively high turbulence intensity and vortex core precession. This indicates the presence of a significant unsteady flow in the energy separation chamber of the vortex tube that has a great influence on convective heat transfer of the swirling flow to the inner surface of tube. The paper contains the results of investigation of gas dynamics and heat transfer in the vortex tube taking into account the flow unsteadiness.

  12. Tip Vortices of Isolated Wings and Helicopter Rotor Blades.

    DTIC Science & Technology

    1987-12-01

    root to tip, as expected due to the induced downwash of the tip vor- tex and wake vortex sheet. Although the three different tip-caps produce very...the inherent limitation of not being able to model the vortex wake with these equations, although the Euler formulation has in it the necessary...physics to model vorticity transport correctly. These equations basically lack the physical mecha- nism needed to generate the vortex wake . However, in

  13. Rotary-wing aerodynamics. Volume 1: Basic theories of rotor aerodynamics with application to helicopters. [momentum, vortices, and potential theory

    NASA Technical Reports Server (NTRS)

    Stepniewski, W. Z.

    1979-01-01

    The concept of rotary-wing aircraft in general is defined. The energy effectiveness of helicopters is compared with that of other static thrust generators in hover, as well as with various air and ground vehicles in forward translation. The most important aspects of rotor-blade dynamics and rotor control are reviewed. The simple physicomathematical model of the rotor offered by the momentum theory is introduced and its usefulness and limitations are assessed. The combined blade-element and momentum theory approach, which provides greater accuracy in performance predictions, is described as well as the vortex theory which models a rotor blade by means of a vortex filament or vorticity surface. The application of the velocity and acceleration potential theory to the determination of flow fields around three dimensional, non-rotating bodies as well as to rotor aerodynamic problems is described. Airfoil sections suitable for rotors are also considered.

  14. Numerical simulation and validation of helicopter blade-vortex interaction using coupled CFD/CSD and three levels of aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Amiraux, Mathieu

    Rotorcraft Blade-Vortex Interaction (BVI) remains one of the most challenging flow phenomenon to simulate numerically. Over the past decade, the HART-II rotor test and its extensive experimental dataset has been a major database for validation of CFD codes. Its strong BVI signature, with high levels of intrusive noise and vibrations, makes it a difficult test for computational methods. The main challenge is to accurately capture and preserve the vortices which interact with the rotor, while predicting correct blade deformations and loading. This doctoral dissertation presents the application of a coupled CFD/CSD methodology to the problem of helicopter BVI and compares three levels of fidelity for aerodynamic modeling: a hybrid lifting-line/free-wake (wake coupling) method, with modified compressible unsteady model; a hybrid URANS/free-wake method; and a URANS-based wake capturing method, using multiple overset meshes to capture the entire flow field. To further increase numerical correlation, three helicopter fuselage models are implemented in the framework. The first is a high resolution 3D GPU panel code; the second is an immersed boundary based method, with 3D elliptic grid adaption; the last one uses a body-fitted, curvilinear fuselage mesh. The main contribution of this work is the implementation and systematic comparison of multiple numerical methods to perform BVI modeling. The trade-offs between solution accuracy and computational cost are highlighted for the different approaches. Various improvements have been made to each code to enhance physical fidelity, while advanced technologies, such as GPU computing, have been employed to increase efficiency. The resulting numerical setup covers all aspects of the simulation creating a truly multi-fidelity and multi-physics framework. Overall, the wake capturing approach showed the best BVI phasing correlation and good blade deflection predictions, with slightly under-predicted aerodynamic loading magnitudes. However, it proved to be much more expensive than the other two methods. Wake coupling with RANS solver had very good loading magnitude predictions, and therefore good acoustic intensities, with acceptable computational cost. The lifting-line based technique often had over-predicted aerodynamic levels, due to the degree of empiricism of the model, but its very short run-times, thanks to GPU technology, makes it a very attractive approach.

  15. Magneto-optical observation of twisted vortices in type-II superconductors

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Benoit, W.; D'Anna, G.; Erb, A.; Walker, E.; Flükiger, R.

    1997-02-01

    When magnetic flux penetrates a type-II superconductor, it does so as quantized flux lines or vortex lines, so called because each is surrounded by a supercurrent vortex. Interactions between such vortices lead to a very rich and well characterized phenomenology for this 'mixed state'. But an outstanding question remains: are individual vortex lines 'strong', or can they easily be cut and made to pass through one another? The concept of vortex cutting was originally proposed to account for dissipation observed in superconducting wires oriented parallel to an applied magnetic field, where the vortex lines and transport current should be in a force-free configuration1-6. Previous experiments, however, have been unable to establish the vortex topology in the force-free configuration or the size of the energy barrier for vortex cutting. Here we report magneto-optical images of YBa2Cu3O7-δ samples in the force-free configuration which show that thousands of vortex lines can twist together to form highly stable structures. In some cases, these 'vortex twisters' interact with one another to produce wave-like dynamics. Our measurements also determine directly the current required to initiate vortex cutting, and show that it is much higher than that needed to overcome the pinning of vortices by material defects. This implies that thermodynamic phases of entangled vortices7-10 are intrinsically stable and may occupy a significant portion of the mixed-state phase diagram for type-II superconductors.

  16. Aeroacoustic theory for noncompact wing-gust interaction

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Widnall, S. E.

    1981-01-01

    Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.

  17. Examination of propeller sound production using large eddy simulation

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Kumar, Praveen; Mahesh, Krishnan

    2018-06-01

    The flow field of a five-bladed marine propeller operating at design condition, obtained using large eddy simulation, is used to calculate the resulting far-field sound. The results of three acoustic formulations are compared, and the effects of the underlying assumptions are quantified. The integral form of the Ffowcs-Williams and Hawkings (FW-H) equation is solved on the propeller surface, which is discretized into a collection of N radial strips. Further assumptions are made to reduce FW-H to a Curle acoustic analogy and a point-force dipole model. Results show that although the individual blades are strongly tonal in the rotor plane, the propeller is acoustically compact at low frequency and the tonal sound interferes destructively in the far field. The propeller is found to be acoustically compact for frequencies up to 100 times the rotation rate. The overall far-field acoustic signature is broadband. Locations of maximum sound of the propeller occur along the axis of rotation both up and downstream. The propeller hub is found to be a source of significant sound to observers in the rotor plane, due to flow separation and interaction with the blade-root wakes. The majority of the propeller sound is generated by localized unsteadiness at the blade tip, which is caused by shedding of the tip vortex. Tonal blade sound is found to be caused by the periodic motion of the loaded blades. Turbulence created in the blade boundary layer is convected past the blade trailing edge leading to generation of broadband noise along the blade. Acoustic energy is distributed among higher frequencies as local Reynolds number increases radially along the blades. Sound source correlation and spectra are examined in the context of noise modeling.

  18. Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Blaas, Achim; Teves, Dietrich; Kube, Roland; Warmbrodt, William (Technical Monitor)

    1994-01-01

    A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.

  19. Fluid-Structure Interactions as Flow Propagates Tangentially Over a Flexible Plate with Application to Voiced Speech Production

    NASA Astrophysics Data System (ADS)

    Westervelt, Andrea; Erath, Byron

    2013-11-01

    Voiced speech is produced by fluid-structure interactions that drive vocal fold motion. Viscous flow features influence the pressure in the gap between the vocal folds (i.e. glottis), thereby altering vocal fold dynamics and the sound that is produced. During the closing phases of the phonatory cycle, vortices form as a result of flow separation as air passes through the divergent glottis. It is hypothesized that the reduced pressure within a vortex core will alter the pressure distribution along the vocal fold surface, thereby aiding in vocal fold closure. The objective of this study is to determine the impact of intraglottal vortices on the fluid-structure interactions of voiced speech by investigating how the dynamics of a flexible plate are influenced by a vortex ring passing tangentially over it. A flexible plate, which models the medial vocal fold surface, is placed in a water-filled tank and positioned parallel to the exit of a vortex generator. The physical parameters of plate stiffness and vortex circulation are scaled with physiological values. As vortices propagate over the plate, particle image velocimetry measurements are captured to analyze the energy exchange between the fluid and flexible plate. The investigations are performed over a range of vortex formation numbers, and lateral displacements of the plate from the centerline of the vortex trajectory. Observations show plate oscillations with displacements directly correlated with the vortex core location.

  20. Wake vortex effects on parallel runway operations

    DOT National Transportation Integrated Search

    2003-01-06

    Aircraft wake vortex behavior in ground effect between two parallel runways at Frankfurt/Main International Airport was studied. The distance and time of vortex demise were examined as a function of crosswind, aircraft type, and a measure of atmosphe...

  1. Numerical investigation of the unsteady tip leakage flow and rotating stall inception in a transonic compressor

    NASA Astrophysics Data System (ADS)

    Zhang, Yanfeng; Lu, Xingen; Chu, Wuli; Zhu, Junqiang

    2010-08-01

    It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception. Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor. For steady analysis, the predicted results agree well with the experimental data for the estimation of compressor rotor global performance. For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage. On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale — spike type rotating stall inception at blade tip region. It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased, the rotating stall cell was further developed in the blade passage.

  2. Aerodynamic Inner Workings of Circumferential Grooves in a Transonic Axial Compressor

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Mueller, Martin; Schiffer, Heinz-Peter

    2007-01-01

    The current paper reports on investigations of the fundamental flow mechanisms of circumferential grooves applied to a transonic axial compressor. Experimental results show that the compressor stall margin is significantly improved with the current set of circumferential grooves. The primary focus of the current investigation is to advance understanding of basic flow mechanics behind the observed improvement of stall margin. Experimental data and numerical simulations of a circumferential groove were analyzed in detail to unlock the inner workings of the circumferential grooves in the current transonic compressor rotor. A short length scale stall inception occurs when a large flow blockage is built on the pressure side of the blade near the leading edge and incoming flow spills over to the adjacent blade passage due to this blockage. The current study reveals that a large portion of this blockage is created by the tip clearance flow originating from 20% to 50% chord of the blade from the leading edge. Tip clearance flows originating from the leading edge up to 20% chord form a tip clearance core vortex and this tip clearance core vortex travels radially inward. The tip clearance flows originating from 20% to 50% chord travels over this tip clearance core vortex and reaches to the pressure side. This part of tip clearance flow is of low momentum as it is coming from the casing boundary layer and the blade suction surface boundary layer. The circumferential grooves disturb this part of the tip clearance flow close to the casing. Consequently the buildup of the induced vortex and the blockage near the pressure side of the passage is reduced. This is the main mechanism of the circumferential grooves that delays the formation of blockage near the pressure side of the passage and delays the onset of short length scale stall inception. The primary effect of the circumferential grooves is preventing local blockage near the pressure side of the blade leading edge that directly determines flow spillage around the leading edge. The circumferential grooves do not necessarily reduce the over all blockage built up at the rotor tip section.

  3. Operation of Darrieus turbines in constant circulation framework

    NASA Astrophysics Data System (ADS)

    Gorle, J. M. R.; Chatellier, L.; Pons, F.; Ba, M.

    2017-07-01

    Analytical and computational studies of flow across a low-speed marine turbine of Darrieus type with pitching blades have been carried out for flowfield and performance evaluation. The objective of this study is to develop efficient blade pitching laws to arrest or control the vortex shedding from the blades during turbine's operation. This is achieved by imparting an arbitrary constant amount of circulation to the blades, where Kelvin's theorem is respected. This paper presents the extension of the application of conformal mapping to produce the time-dependent flow over a rotating turbine blade in order to develop a quantified relationship between the blade's orientation with respect to the rotor's tangent and its rotational motion. The flow development is based on the analytical treatment given to potential flow formulation through Laurent series decomposition, where the Kutta condition is satisfied. The pitch control law and the analytical modeling of the hydrodynamic forces acting on the blade are derived based on Kelvin's theorem for the conservation of circulation. The application of this pitch control law in the real flow conditions is however limited due to viscous losses and rotational effects. Therefore, a 2D computational fluid dynamics (CFD) study with the shear stress transport (SST) k -ω turbulence model has been performed to examine the flow across a 4-bladed turbine model. While validating the analytical work, the numerical investigation reveals the applicability and limitations of circulation-controlled blade pitching laws in real flow conditions. In particular, a reference equivalent angle of attack is defined, which must be contained in a tight range in order to effectively prevent vortex shedding at a given tip-speed ratio.

  4. Study of mean- and turbulent-velocity fields in a large-scale turbine-vane passage

    NASA Technical Reports Server (NTRS)

    Bailey, D. A.

    1979-01-01

    Laser-Doppler velocimetry, and to a lesser extent hot-wire anemometry, were employed to measure three components of the mean velocity and the six turbulent stresses at four planes within the turbine inlet-guide-vane passage. One variation in the turbulent inlet boundary layer thickness and one variation in the blade aspect ratio (span/axial chord) were studied. A longitudinal vortex (passage vortex) was clearly identified in the exit plane of the passage for the three test cases. The maximum turbulence intensities within the longitudinal vortex were found to be on the order of 2 to 4 percent, with large regions appearing nonturbulent. Because a turbulent wall boundary layer was the source of vorticity that produced the passage vortex, these low turbulence levels were not anticipated. For the three test cases studied, the lateral velocity field extended significantly beyond the region of the longitudinal velocity defect. Changing the inlet boundary layer thickness produced a difference in the location, the strength, and the extent of the passage vortex. Changing the aspect ratio of the blade passage had a measurable but less significant effect. The experiment was performed in a 210 mm pitch, 272 mm axial chord model in low speed wind tunnel at an inlet Mach number of 0.07.

  5. Helicopters for the future

    NASA Technical Reports Server (NTRS)

    Ward, J. F.

    1984-01-01

    Technology needed to provide the basis for creating a widening rotary wing market include: well defined and proven design; reductions in noise, vibration, and fuel consumption; improvement of flying and ride quality; better safety; reliability; maintainability; and productivity. Unsteady transonic flow, yawed flow, dynamic stall, and blade vortex interaction are some of the problems faced by scientists and engineers in the helicopter industry with rotorcraft technology seen as an important development for future advanced high speed vehicle configurations. Such aircraft as the Boeing Vertol medium lift Model 360 composite aircraft, the Sikorsky Advancing Blade Concept (ABC) aircraft, the Bell Textron XV-15 Tilt Rotor Aircraft, and the X-wing rotor aircraft are discussed in detail. Even though rotorcraft technology has become an integral part of the military scene, the potential market for its civil applications has not been fully developed.

  6. Wake meandering of a model wind turbine operating in two different regimes

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Campagnolo, Filippo; Maniaci, David; Sotiropoulos, Fotis

    2018-05-01

    The flow behind a model wind turbine under two different turbine operating regimes (region 2 for turbine operating at optimal condition with the maximum power coefficient and 1.4-deg pitch angle and region 3 for turbine operating at suboptimal condition with a lower power coefficient and 7-deg pitch angle) is investigated using wind tunnel experiments and numerical experiments using large-eddy simulation (LES) with actuator surface models for turbine blades and nacelle. Measurements from the model wind turbine experiment reveal that the power coefficient and turbine wake are affected by the operating regime. Simulations with and without a nacelle model are carried out for each operating condition to study the influence of the operating regime and nacelle on the formation of the hub vortex and wake meandering. Statistics and energy spectra of the simulated wakes are in good agreement with the measurements. For simulations with a nacelle model, the mean flow field is composed of an outer wake, caused by energy extraction by turbine blades, and an inner wake directly behind the nacelle, while for the simulations without a nacelle model, the central region of the wake is occupied by a jet. The simulations with the nacelle model reveal an unstable helical hub vortex expanding outward toward the outer wake, while the simulations without a nacelle model show a stable and columnar hub vortex. Because of the different interactions of the inner region of the wake with the outer region of the wake, a region with higher turbulence intensity is observed in the tip shear layer for the simulation with a nacelle model. The hub vortex for the turbine operating in region 3 remains in a tight helical spiral and intercepts the outer wake a few diameters further downstream than for the turbine operating in region 2. Wake meandering, a low-frequency large-scale motion of the wake, commences in the region of high turbulence intensity for all simulations with and without a nacelle model, indicating that neither a nacelle model nor an unstable hub vortex is a necessary requirement for the existence of wake meandering. However, further analysis of the wake meandering and instantaneous flow field using a filtering technique and dynamic mode decomposition show that the unstable hub vortex energizes the wake meandering. The turbine operating regime affects the shape and expansion of the hub vortex, altering the location of the onset of the wake meandering and wake meander oscillating intensity. Most important, the unstable hub vortex promotes a high-amplitude energetic meandering which cannot be predicted without a nacelle model.

  7. Helicopter flight dynamics simulation with a time-accurate free-vortex wake model

    NASA Astrophysics Data System (ADS)

    Ribera, Maria

    This dissertation describes the implementation and validation of a coupled rotor-fuselage simulation model with a time-accurate free-vortex wake model capable of capturing the response to maneuvers of arbitrary amplitude. The resulting model has been used to analyze different flight conditions, including both steady and transient maneuvers. The flight dynamics model is based on a system of coupled nonlinear rotor-fuselage differential equations in first-order, state-space form. The rotor model includes flexible blades, with coupled flap-lag-torsion dynamics and swept tips; the rigid body dynamics are modeled with the non-linear Euler equations. The free wake models the rotor flow field by tracking the vortices released at the blade tips. Their behavior is described by the equations of vorticity transport, which is approximated using finite differences, and solved using a time-accurate numerical scheme. The flight dynamics model can be solved as a system of non-linear algebraic trim equations to determine the steady state solution, or integrated in time in response to pilot-applied controls. This study also implements new approaches to reduce the prohibitive computational costs associated with such complex models without losing accuracy. The mathematical model was validated for trim conditions in level flight, turns, climbs and descents. The results obtained correlate well with flight test data, both in level flight as well as turning and climbing and descending flight. The swept tip model was also found to improve the trim predictions, particularly at high speed. The behavior of the rigid body and the rotor blade dynamics were also studied and related to the aerodynamic load distributions obtained with the free wake induced velocities. The model was also validated in a lateral maneuver from hover. The results show improvements in the on-axis prediction, and indicate a possible relation between the off-axis prediction and the lack of rotor-body interaction aerodynamics. The swept blade model improves both the on-axis and off-axis response. An axial descent though the vortex ring state was simulated. As theǒrtex ring" goes through the rotor, the unsteady loads produce large attitude changes, unsteady flapping, fluctuating thrust and an increase in power required. A roll reversal maneuver was found useful in understanding the cross-couplings effects found in rotorcraft, specifically the effect of the aerodynamic loading on the rotor orientation and the off-axis response.

  8. Pre-Stall Behavior of a Transonic Axial Compressor Stage via Time-Accurate Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Chen, Jen-Ping; Hathaway, Michael D.; Herrick, Gregory P.

    2008-01-01

    CFD calculations using high-performance parallel computing were conducted to simulate the pre-stall flow of a transonic compressor stage, NASA compressor Stage 35. The simulations were run with a full-annulus grid that models the 3D, viscous, unsteady blade row interaction without the need for an artificial inlet distortion to induce stall. The simulation demonstrates the development of the rotating stall from the growth of instabilities. Pressure-rise performance and pressure traces are compared with published experimental data before the study of flow evolution prior to the rotating stall. Spatial FFT analysis of the flow indicates a rotating long-length disturbance of one rotor circumference, which is followed by a spike-type breakdown. The analysis also links the long-length wave disturbance with the initiation of the spike inception. The spike instabilities occur when the trajectory of the tip clearance flow becomes perpendicular to the axial direction. When approaching stall, the passage shock changes from a single oblique shock to a dual-shock, which distorts the perpendicular trajectory of the tip clearance vortex but shows no evidence of flow separation that may contribute to stall.

  9. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou

    1989-01-01

    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  10. Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Wachspress, Daniel A.; Boschitsch, Alexander H.; Chua, Kiat

    1990-01-01

    The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight.

  11. Prediction of aerodynamic noise in a ring fan based on wake characteristics

    NASA Astrophysics Data System (ADS)

    Sasaki, Soichi; Fukuda, Masaharu; Tsujino, Masao; Tsubota, Haruhiro

    2011-06-01

    A ring fan is a propeller fan that applies an axial-flow impeller with a ring-shaped shroud on the blade tip side. In this study, the entire flow field of the ring fan is simulated using computational fluid dynamics (CFD); the accuracy of the CFD is verified through a comparison with the aerodynamic characteristics of a propeller fan of current model. Moreover, the aerodynamic noise generated by the fan is predicted on the basis of the wake characteristics. The aerodynamic characteristic of the ring fan based on CFD can represent qualitatively the variation in the measured value. The main flow domain of the ring fan is formed at the tip side of the blade because blade tip vortex is not formed at that location. Therefore, the relative velocity of the ring fan is increased by the circumferential velocity. The sound pressure levels of the ring fan within the frequency band of less than 200 Hz are larger than that of the propeller fan. In the analysis of the wake characteristics, it revealed that Karman vortex shedding occurred in the main flow domain in the frequency domain lower than 200 Hz; the aerodynamic noise of the ring fan in the vortex shedding frequency enlarges due to increase in the relative velocity and the velocity fluctuation.

  12. Estimation of the energy loss at the blades in rowing: common assumptions revisited.

    PubMed

    Hofmijster, Mathijs; De Koning, Jos; Van Soest, A J

    2010-08-01

    In rowing, power is inevitably lost as kinetic energy is imparted to the water during push-off with the blades. Power loss is estimated from reconstructed blade kinetics and kinematics. Traditionally, it is assumed that the oar is completely rigid and that force acts strictly perpendicular to the blade. The aim of the present study was to evaluate how reconstructed blade kinematics, kinetics, and average power loss are affected by these assumptions. A calibration experiment with instrumented oars and oarlocks was performed to establish relations between measured signals and oar deformation and blade force. Next, an on-water experiment was performed with a single female world-class rower rowing at constant racing pace in an instrumented scull. Blade kinematics, kinetics, and power loss under different assumptions (rigid versus deformable oars; absence or presence of a blade force component parallel to the oar) were reconstructed. Estimated power losses at the blades are 18% higher when parallel blade force is incorporated. Incorporating oar deformation affects reconstructed blade kinematics and instantaneous power loss, but has no effect on estimation of power losses at the blades. Assumptions on oar deformation and blade force direction have implications for the reconstructed blade kinetics and kinematics. Neglecting parallel blade forces leads to a substantial underestimation of power losses at the blades.

  13. Understanding and Mitigating Vortex-Dominated, Tip-Leakage and End-Wall Losses in a Transonic Splittered Rotor Stage

    DTIC Science & Technology

    2015-04-23

    blade geometry parameters the TPL design 9   tool was initiated by running the MATLAB script (*.m) Main_SpeedLine_Auto. Main_SpeedLine_Auto...SolidWorks for solid model generation of the blade shapes. Computational Analysis With solid models generated of the gas -path air wedge, automated...287 mm (11.3 in) Constrained by existing TCR geometry Number of Passages 12 None A blade tip-down design approach was used. The outputs of the

  14. Helicopter main-rotor noise: Determination of source contributions using scaled model data

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Jolly, J. Ralph, Jr.; Marcolini, Michael A.

    1988-01-01

    Acoustic data from a test of a 40 percent model MBB BO-105 helicopter main rotor are scaled to equivalent full-scale flyover cases. The test was conducted in the anechoic open test section of the German-Dutch Windtunnel (DNW). The measured data are in the form of acoustic pressure time histories and spectra from two out-of-flow microphones underneath and foward of the model. These are scaled to correspond to measurements made at locations 150 m below the flight path of a full-scale rotor. For the scaled data, a detailed analysis is given for the identification in the data of the noise contributions from different rotor noise sources. Key results include a component breakdown of the noise contributions, in terms of noise criteria calculations of a weighted sound pressure level (dBA) and perceived noise level (PNL), as functions of rotor advance ratio and descent angle. It is shown for the scaled rotor that, during descent, impulsive blade-vortex interaction (BVI) noise is the dominant contributor to the noise. In level flight and mild climb, broadband blade-turbulent wake interaction (BWI) noise is dominant due to the absence of BVI activity. At high climb angles, BWI is reduced and self-noise from blade boundary-layer turbulence becomes the most prominent.

  15. Investigation of tip clearance flow physics in axial flow turbine rotors

    NASA Astrophysics Data System (ADS)

    Xiao, Xinwen

    In axial turbines, the tip clearance between casing wall and rotating blades results in a tip leakage flow, which significantly affects loss production, heat protection, vibration and noise. It is important to minimize these effects for a better turbine engine performance and higher reliability. Most of previous efforts were concentrated on turbine cascades that however may not completely and correctly simulate the flow physics in practical turbine rotors. An investigation has to be performed in turbine rotors to reveal the real tip leakage flow physics in order to provide a scientific basis for minimizing its effects. This is the objective of this thesis research. The three dimensional flow field near the end wall/tip clearance region in a turbine rotor has been investigated experimentally, complemented by a numerical simulation to study the influences of inlet turbulence intensities on the development of the tip leakage flow. The experimental investigation is carried out in a modern unshrouded high pressure turbine stage. The survey region covers 20% span near the end wall, and extends axially from 10% chord upstream of the leading edge, through the rotor passage, and to 20% chord downstream of the trailing edge. It has been found that the tip leakage effects extend only to the surveyed region. The three dimensional LDV technique is used to measure the velocity and turbulence field upstream of the rotor, inside the rotor passage, and near the trailing edge. The static pressure on blade surfaces is surveyed from the rotating frame. The transient pressure on the casing wall is measured using a dynamic pressure sensor with a shaft encoder. A rotating Five Hole Probe is employed to measure the losses as well as the pressure and the three dimensional velocity field at 20% chord downstream of the rotor. The unsteady flow field is also investigated at this location by using a slanted single-element Hot Wire technique. The physics of the tip leakage flow and vortex in turbine rotors, including its inception location, development, interaction with the main stream and the passage vortex, and decay, are revealed. The rotation effects on the boundary layer flow and the turbulence structure are discussed. The effects of the relative motion between the blade and the casing wall on the flow field near the tip clearance region are also investigated. The structure of the rotor wake, the nozzle wake, and their interaction are interpreted based on the instantaneous Hot Wire data. The numerical simulation on the influence of the inlet turbulence intensity on the development of the tip leakage flow is based on previous efforts. The results indicate that the tip leakage vortex diffuses very quickly under a high inlet turbulence intensity, resulting in a very weak tip leakage vortex and less losses.

  16. Flow structure of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.

  17. Boby-Vortex Interaction, Sound Generation and Destructive Interference

    NASA Technical Reports Server (NTRS)

    Kao, Hsiao C.

    2000-01-01

    It is generally recognized that interaction of vortices with downstream blades is a major source of noise production. To analyze this problem numerically, a two-dimensional model of inviscid flow together with the method of matched asymptotic expansions is proposed. The method of matched asymptotic expansions is used to match the inner region of incompressible flow to the outer region of compressible flow. Because of incompressibility, relatively simple numerical methods are available to treat multiple vortices and multiple bodies of arbitrary shape. Disturbances from vortices and bodies propagate outward as sound waves. Due to their interactions, either constructive or destructive interference may result. When it is destructive, the combined sound intensity can be reduced, sometimes substantially. In addition, an analytical solution to sound generation by the cascade-vonex interaction is given.

  18. Active control system for a rotor blade trailing-edge flap

    NASA Astrophysics Data System (ADS)

    Duvernier, Marc; Reithler, Livier; Guerrero, Jean Y.; Rossi, Rinaldo A.

    2000-06-01

    Reducing the external noise is becoming a major issue for helicopter manufacturers. The idea beyond this goal is to reduce or even avoid the blade vortex interaction (BVI), especially during descent and flights over inhabited areas. This can be achieved by changing locally the lift of the blade. Several strategies to reach this goal are under investigation at EUROCOPTER such as the control of the local incidence of the blade by a direct lift flap. AEROSPATIALE MATRA Corporate Research Centre and AEROSPATIALE MATRA MISSILES proposed an actuator system able to answer EUROCOPTER's needs for moving a direct lift flap. The present paper describes the definition, manufacturing and testing of this new actuator system. This actuator is based on an electromagnetic patented actuation system developed by AEROSPATIALE MATRA MISSILES for missile and aeronautic applications. The particularity of this actuator is its ability to produce the desired force on its whole range of stroke. The flap is designed to be fitted on a DAUPHIN type blade produced by EUROCOPTER and the actuator system was designed to fit the room available within the blade and to produce the right amount of stroke and force within the required frequency range. Other constraints such as centrifugal loading were also taken into account. This paper describes briefly the specifications and the major characteristics of the actuating system and presents some results of its behavior on a representative composite test-bed manufactured by EUROCOPTER when subjected to realistic mechanical loads.

  19. Measurements of the Early Development of Trailing Vorticity from a Rotor

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.; Heineck, James T.

    2002-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the "void" region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44% and 12% of the rotor tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10% of the rotor-blade chord, but more than doubled its size after one revolution of the rotor.

  20. Resonant-spin-ordering of vortex cores in interacting mesomagnets

    NASA Astrophysics Data System (ADS)

    Jain, Shikha

    2013-03-01

    The magnetic system of interacting vortex-state elements have a dynamically reconfigurable ground state characterized by different relative polarities and chiralities of the individual disks; and have a corresponding dynamically controlled spectrum of collective excitation modes that determine the microwave absorption of the crystal. The development of effective methods for dynamic control of the ground state in this vortex-type magnonic crystal is of interest both from fundamental and technological viewpoints. Control of vortex chirality has been demonstrated previously using various techniques; however, control and manipulation of vortex polarities remain challenging. In this work, we present a robust and efficient way of selecting the ground state configuration of interacting magnetic elements using resonant-spin-ordering approach. This is achieved by driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency of one of the coupled modes. Subsequently reducing the excitation field to the linear regime stabilizes the system to a polarity combination whose resonant frequency is decoupled from the initialization frequency. We have utilized the resonant approach to transition between the two polarity combinations (parallel or antiparallel) in a model system of connected dot-pairs which may form the building blocks of vortex-based magnonic crystals. Taking a step further, we have extended the technique by studying many-particle system for its potential as spin-torque oscillators or logic devices. Work at Argonne was supported by the U. S. DOE, Office of BES, under Contract No. DE-AC02-06CH11357. This work was in part supported by grant DMR-1015175 from the U. S. National Science Foundation, by a Contract from the U.S. Army TARDEC and RDECOM.

  1. Utilizing Direct Numerical Simulations of Transition and Turbulence in Design Optimization

    NASA Technical Reports Server (NTRS)

    Rai, Man M.

    2015-01-01

    Design optimization methods that use the Reynolds-averaged Navier-Stokes equations with the associated turbulence and transition models, or other model-based forms of the governing equations, may result in aerodynamic designs with actual performance levels that are noticeably different from the expected values because of the complexity of modeling turbulence/transition accurately in certain flows. Flow phenomena such as wake-blade interaction and trailing edge vortex shedding in turbines and compressors (examples of such flows) may require a computational approach that is free of transition/turbulence models, such as direct numerical simulations (DNS), for the underlying physics to be computed accurately. Here we explore the possibility of utilizing DNS data in designing a turbine blade section. The ultimate objective is to substantially reduce differences between predicted performance metrics and those obtained in reality. The redesign of a typical low-pressure turbine blade section with the goal of reducing total pressure loss in the row is provided as an example. The basic ideas presented here are of course just as applicable elsewhere in aerodynamic shape optimization as long as the computational costs are not excessive.

  2. Acoustic measurements of a full-scale coaxial hingeless rotor helicopter

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Mosher, M.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept Technology Demonstrator in the 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, and noise at various forward speeds, rotor lift coefficients and rotor shaft angles of attack were investigated. The noise data were acquired over an isolated rotor lift coefficient range of 0.024 to 0.162, an advance ratio range of 0.23 to 0.45 corresponding to tunnel wind speeds of 89 to 160 knots, and angles of attack from 0 deg to 10 deg. Acoustic data are presented for seven microphone locations for all run conditions where the model noise is above the background noise. Model test configuration and performance information are also listed. Acoustic waveforms, dBA, and 1/3-octave spectra as functions of operating condition for selected data points and microphones are presented. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where significant impulsive blade/vortex interactions increase noise levels.

  3. BVI impulsive noise reduction by higher harmonic pitch control - Results of a scaled model rotor experiment in the DNW

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1991-01-01

    Results are presented of a model rotor acoustics test performed to examine the benefit of higher harmonic control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulsive noise. A dynamically scaled, four-bladed, rigid rotor model, a 40-percent replica of the B0-105 main rotor, was tested in the German Dutch Wind Tunnel. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with the HHC phase variations are found. Compared to the baseline conditions (without HHC), significant mid-frequency noise reductions of locally 6 dB are obtained for low-speed descent conditions where GVI is most intense. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. LF noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  4. Role of boundary conditions in helicoidal flow collimation: Consequences for the von Kármán sodium dynamo experiment.

    PubMed

    Varela, J; Brun, S; Dubrulle, B; Nore, C

    2015-12-01

    We present hydrodynamic and magnetohydrodynamic (MHD) simulations of liquid sodium flow with the PLUTO compressible MHD code to investigate influence of magnetic boundary conditions on the collimation of helicoidal motions. We use a simplified cartesian geometry to represent the flow dynamics in the vicinity of one cavity of a multiblades impeller inspired by those used in the Von-Kármán-sodium (VKS) experiment. We show that the impinging of the large-scale flow upon the impeller generates a coherent helicoidal vortex inside the blades, located at a distance from the upstream blade piloted by the incident angle of the flow. This vortex collimates any existing magnetic field lines leading to an enhancement of the radial magnetic field that is stronger for ferromagnetic than for conducting blades. The induced magnetic field modifies locally the velocity fluctuations, resulting in an enhanced helicity. This process possibly explains why dynamo action is more easily triggered in the VKS experiment when using soft iron impellers.

  5. Dynamics and Instabilities of Vortex Pairs

    NASA Astrophysics Data System (ADS)

    Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.

    2016-01-01

    This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.

  6. A Model Rotor in Axial Flight

    NASA Technical Reports Server (NTRS)

    McAlister, K. W.; Huang, S. S.; Abrego, A. I.

    2001-01-01

    A model rotor was mounted horizontally in the settling chamber of a wind tunnel to obtain performance and wake structure data under low climb conditions. The immediate wake of the rotor was carefully surveyed using 3-component particle image velocimetry to define the velocity and vortical content of the flow, and used in a subsequent study to validate a theory for the separate determination of induced and profile drag. Measurements were obtained for two collective pitch angles intended to render a predominately induced drag state and another with a marked increase in profile drag. A majority of the azimuthally directed vorticity in the wake was found to be concentrated in the tip vortices. However, adjacent layers of inboard vorticity with opposite sense were clearly present. At low collective, the close proximity of the tip vortex from the previous blade caused the wake from the most recent blade passage to be distorted. The deficit velocity component that was directed along the azimuth of the rotor blade was never more that 15 percent of the rotor tip speed, and except for the region of the tip vortex, appeared to have totally disappeared form the wake left by the previous blade.

  7. Development and testing of vortex generators for small horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Gyatt, G. W.

    1986-01-01

    Vortex generators (VGs) for a small (32 ft diameter) horizontal axis wind turbine, the Carter Model 25, have been developed and tested. Arrays of VGs in a counterrotating arrangement were tested on the inbound half-span, outboard half-span, and on the entire blade. VG pairs had their centerlines spaced at a distance of 15% of blade chord, with a spanwise width of 10% of blade chord. Each VG had a length/height ratio of 4, with a height of between 0.5% and 1.0% of the blade chord. Tests were made with roughness strips to determine whether VGs alleviated the sensitivity of some turbines to an accumulation of bugs and dirt on the leading edge. Field test data showed that VGs increased power output up to 20% at wind speeds above 10 m/s with only a small (less than 4%) performance penalty at lower speeds. The VGs on the outboard span of the blade were more effective than those on inner sections. For the case of full span coverage, the energy yearly output increased almost 6% at a site with a mean wind speed of 16 mph. The VGs did reduce the performance loss caused by leading edge roughness. An increase in blade pitch angle has an effect on the power curve similar to the addition of VGs. VGs alleviate the sensitivity of wind turbine rotors to leading edge roughness caused by bugs and drift.

  8. The Effect of Mounting Vortex Generators on the DTU 10MW Reference Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Skrzypiński, Witold; Gaunaa, Mac; Bak, Christian

    2014-06-01

    The aim of the current work is to analyze possible advantages of mounting Vortex Generators (VG's) on a wind turbine blade. Specifically, the project aims at investigating at which radial sections of the DTU 10 MW Reference Wind Turbine blade it is most beneficial to mount the VG's in order to increase the Annual Energy Production (AEP) under realistic conditions. The present analysis was carried out in several steps: (1) The clean two dimensional airfoil characteristics were first modified to emulate the effect of all possible combinations of VG's (1% high at suction side x/c=0.2-0.25) and two Leading Edge Roughness (LER) values along the whole blade span. (2) The combinations from Step 1, including the clean case were subsequently modified to take into account three dimensional effects. (3) BEM computations were carried out to determine the aerodynamic rotor performance using each of the datasets from Step 2 along the whole blade span for all wind speeds in the turbine control scheme. (4) Employing the assumption of radial independence between sections of the blades, and using the results of the BEM computations described in Step 3, it is possible to determine for each radial position independently whether it is beneficial to install VG's in the smooth and LER cases, respectively. The results indicated that surface roughness that corresponds to degradation of the power curve may to some extent be mitigated by installation of VG's. The present results also indicated that the optimal VG configuration in terms of maximizing AEP depends on the degree of severity of the LER. This is because, depending on the condition of blade surface, installation of VG's on an incorrect blade span or installation of VG's too far out on the blade may cause loss in AEP. The results also indicated that the worse condition of the blade surface, the more gain may be obtained from the installation of VG's.

  9. Effect of the number of blades and solidity on the performance of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Delafin, PL; Nishino, T.; Wang, L.; Kolios, A.

    2016-09-01

    Two, three and four bladed ϕ-shape Vertical Axis Wind Turbines are simulated using a free-wake vortex model. Two versions of the three and four bladed turbines are considered, one having the same chord length as the two-bladed turbine and the other having the same solidity as the two-bladed turbine. Results of the two-bladed turbine are validated against published experimental data of power coefficient and instantaneous torque. The effect of solidity on the power coefficient is presented and the instantaneous torque, thrust and lateral force of the two-, three- and four-bladed turbines are compared for the same solidity. It is found that increasing the number of blades from two to three significantly reduces the torque, thrust and lateral force ripples. Adding a fourth blade further reduces the ripples except for the torque at low tip speed ratio. This work aims to help choosing the number of blades during the design phase of a vertical axis wind turbine.

  10. Flight-test experience of a helicopter encountering an airplane trailing vortex

    NASA Technical Reports Server (NTRS)

    Dunham, R. E., Jr.; Holbrook, G. T.; Campbell, R. L.; Van Gunst, R. W.; Mantay, W. R.

    1976-01-01

    This paper presents results of a flight-test experiment of a UH-1H helicopter encountering the vortex wake of a C-54 airplane. The helicopter was instrumented to record the pilot control inputs, determine the upset experience, and measure critical loads within the rotor system. During the flight-test program 132 penetrations of the vortex wake were made by the helicopter at separation distances from 3/8 to 6-1/2 nautical miles. Test results indicated that the helicopter upsets and the vortex induced blade loads experienced were minimal and well within safe limits. The upsets were very mild when compared to a typical response of a small airplane to the vortex wake of the C-54 airplane.

  11. Numerical Investigation of the Interaction between Mainstream and Tip Shroud Leakage Flow in a 2-Stage Low Pressure Turbine

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Liu, Huoxing

    2014-06-01

    The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.

  12. 3D Lagrangian VPM: simulations of the near-wake of an actuator disc and horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berdowski, T.; Ferreira, C.; Walther, J.

    2016-09-01

    The application of a 3-dimensional Lagrangian vortex particle method has been assessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments In COntrolled conditions) experiment. The method was developed in the framework of the open- source Parallel Particle-Mesh library for handling the efficient data-parallelism on a CPU (Central Processing Unit) cluster, and utilized a O(N log N)-type fast multipole method for computational acceleration. Simulations with the actuator disc resulted in a wake expansion, velocity deficit profile, and induction factor that showed a close agreement with theoretical, numerical, and experimental results from literature. Also the shear layer expansion was present; the Kelvin-Helmholtz instability in the shear layer was triggered due to the round-off limitations of a numerical method, but this instability was delayed to beyond 1 diameter downstream due to the particle smoothing. Simulations with the 3-bladed turbine demonstrated that a purely 3-dimensional flow representation is challenging to model with particles. The manifestation of local complex flow structures of highly stretched vortices made the simulation unstable, but this was successfully counteracted by the application of a particle strength exchange scheme. The axial and radial velocity profile over the near wake have been compared to that of the original MEXICO experiment, which showed close agreement between results.

  13. Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    2003-01-01

    In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.

  14. Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading

    NASA Technical Reports Server (NTRS)

    Gostelow, Paul

    2010-01-01

    In assessing the results please recall that the Mach number regimes and model geometries differ considerably. Selection of the radius of curvature at the 10% chord location is consistent but arbitrary, although it does seem representative for most blades and gives a good fit for the results. Measured spanwise wavelengths of the periodic vortex arrays on blading are predicted well by the Kestin and Wood theory. If this behavior is at all common it could have implications for turbine aerodynamic and blade cooling design. The outcome is to establish that organized streamwise vorticity may occur more frequently on convex surfaces, such as turbine blade suction surfaces, than hitherto appreciated. Investigations and predictions of flow behavior should be extended to encompass that possibility.

  15. Impact of tip-gap size and periodicity on turbulent transition

    NASA Astrophysics Data System (ADS)

    Pogorelov, Alexej; Meinke, Matthias; Schroeder, Wolfgang

    2015-11-01

    Large-Eddy Simulations of the flow field in an axial fan are performed at a Reynolds number of 936.000 based on the diameter and the rotational speed of the casing wall. A finite-volume flow solver based on a conservative Cartesian cut-cell method is used to solve the unsteady compressible Navier-Stokes equations. Computations are performed at a flow rate coefficient of 0.165 and a tip-gap size of s/D =0.01, for a 72 degrees fan section resolving only one out of five blades and a full fan resolving all five blades to investigate the impact of the periodic boundary condition. Furthermore, a grid convergence study is performed using four computational grids. Results of the flow field are analyzed for the computational grid with 1 billion cells. An interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, is observed, which leads to a cyclic transition with high pressure fluctuations on the suction side of the blade. Two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level such that their physical origin is explained. A variation of the tip-gap size alters the transition on the suction side, i.e., no cyclic transition is observed.

  16. Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Shin, Hyoun-Woo

    2011-01-01

    Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.

  17. Vortex-Body Interactions: A Critical Assessment. Coupled Gap-Wake Instabilities/Turbulence: A Source of Noise

    NASA Technical Reports Server (NTRS)

    Rockwell, Donald

    1999-01-01

    This program has involved, first of all, a critical state-of-the-art assessment of vortex-body interactions. Then, efforts were focused on experimental investigation on coupled-wake instabilities and turbulence occurring in a two-cylinder system. An extensive review was undertaken on the effect of incident vortices on various types of bodies. These incident vortices have a length scale of the same order of magnitude as the scale of the body. The body can take on various forms, including, for example, a circular cylinder, a blade or a wing. The classes of vortex-body interaction that were critically assessed include: (1) Periodic distortion of the incident (primary) vortex and shedding of secondary vorticity from the surface of the body. (2) Modulated vortex distortion and shedding at a leading-edge or surface due to incidence of a complex system of vortices. (3) Vortex distortion and shedding in presence of body oscillation. (4) Three-dimensional vortex interaction and shedding. For all of these classes of vortex-body interaction, quantitative topologies of the vorticity distributions and streamline patterns were found to be central to a unified description of mechanisms of vortex distortion and shedding. In most cases, it was possible to define relationships between vortex interactions and unsteady loading at the body surface. This phase of the program was an experimental investigation of a two-cylinder system, which simulated a central aspect of a four-wheel bogie on a large-scale commercial aircraft. The overall aim of this experimental research program was to determine the crucial elements of the unsteadiness in the gap and near-wake regions as a function of time using cinema-based techniques. During the research program, various image evaluation techniques were employed. They involved assessment of instantaneous velocity fields, streamline topology and patterns of vorticity. Experiments were performed in a large-scale water channel using a high-resolution version of digital particle image velocimetry. The program has focused on acquisition of images of velocity and vorticity for varying gap widths between the two-cylinder system. As a result of analysis of a relatively large number of images, it is demonstrated that low frequency instabilities can occur in the gap region between the cylinder. These low frequency instabilities are hypothesized to influence the near-wake structure of the entire two-cylinder system. The nature of the unstable shear layers in the gap region involves generation of small-scale Kelvin-Helmholtz instabilities. These unsteady shear layers then impinge upon the upper and lower surfaces of the cylinders, thereby influencing both the unsteady structure and the time-averaged patterns of the near-wake. Initial efforts have focused on characterization of the patterns of instantaneous and averaged streamlines using topological concepts. The end result of this investigation is a series of documented instantaneous images. They will serve as a basis for various types of post-processing, which will lead to a fuller understanding of the instantaneous and time-averaged unstable-turbulent fields in the gap region and downstream of the two-cylinder system. This further assessment is the focus of a subsequent program.

  18. Implementation and validation of a wake model for low-speed forward flight

    NASA Technical Reports Server (NTRS)

    Komerath, Narayanan M.; Schreiber, Olivier A.

    1987-01-01

    The computer implementation and calculations of the induced velocities produced by a wake model consisting of a trailing vortex system defined from a prescribed time averaged downwash distribution are detailed. Induced velocities are computed by approximating each spiral turn by a pair of large straight vortex segments positioned at critical points relative to where the induced velocity is required. A remainder term for the rest of the spiral is added. This approach results in decreased computation time compared to classical models where each spiral turn is broken down in small straight vortex segments. The model includes features such a harmonic variation of circulation, downwash outside of the blade and/or outside the tip path plane, blade bound vorticity induced velocity with harmonic variation of circulation and time averaging. The influence of various options and parameters on the results are investigated and results are compared to experimental field measurements with which, a resonable agreement is obtained. The capabilities of the model as well as its extension possibilities are studied. The performance of the model in predicting the recently-acquired NASA Langley Inflow data base for a four-bladed rotor is compared to that of the Scully Free Wake code, a well-established program which requires much greater computational resources. It is found that the two codes predict the experimental data with essentially the same accuracy, and show the same trends.

  19. Estimation of Efficiency of the Cooling Channel of the Nozzle Blade of Gas-Turbine Engines

    NASA Astrophysics Data System (ADS)

    Vikulin, A. V.; Yaroslavtsev, N. L.; Zemlyanaya, V. A.

    2018-02-01

    The main direction of improvement of gas-turbine plants (GTP) and gas-turbine engines (GTE) is increasing the gas temperature at the turbine inlet. For the solution of this problem, promising systems of intensification of heat exchange in cooled turbine blades are developed. With this purpose, studies of the efficiency of the cooling channel of the nozzle blade in the basic modification and of the channel after constructive measures for improvement of the cooling system by the method of calorimetry in a liquid-metal thermostat were conducted. The combined system of heat-exchange intensification with the complicated scheme of branched channels is developed; it consists of a vortex matrix and three rows of inclined intermittent trip strips. The maximum value of hydraulic resistance ξ is observed at the first row of the trip strips, which is connected with the effect of dynamic impact of airflow on the channel walls, its turbulence, and rotation by 117° at the inlet to the channels formed by the trip strips. These factors explain the high value of hydraulic resistance equal to 3.7-3.4 for the first row of the trip strips. The obtained effect was also confirmed by the results of thermal tests, i.e., the unevenness of heat transfer on the back and on the trough of the blade is observed at the first row of the trip strips, which amounts 8-12%. This unevenness has a fading character; at the second row of the trip strips, it amounts to 3-7%, and it is almost absent at the third row. At the area of vortex matrix, the intensity of heat exchange on the blade back is higher as compared to the trough, which is explained by the different height of the matrix ribs on its opposite sides. The design changes in the nozzle blade of basic modification made it possible to increase the intensity of heat exchange by 20-50% in the area of the vortex matrix and by 15-30% on the section of inclined intermittent trip strips. As a result of research, new criteria dependences for the complicated systems of heat exchange intensification were obtained. The design of nozzle blades can be used when developing the promising high-temperature gas turbines.

  20. Observations of electron vortex magnetic holes and related wave-particle interactions in the turbulent magnetosheath

    NASA Astrophysics Data System (ADS)

    Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.

    2017-12-01

    Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron vortex magnetic holes by electron temperature anisotropic instability.

  1. Parallel 3D Multi-Stage Simulation of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Topp, David A.

    1998-01-01

    A 3D multistage simulation of each component of a modern GE Turbofan engine has been made. An axisymmetric view of this engine is presented in the document. This includes a fan, booster rig, high pressure compressor rig, high pressure turbine rig and a low pressure turbine rig. In the near future, all components will be run in a single calculation for a solution of 49 blade rows. The simulation exploits the use of parallel computations by using two levels of parallelism. Each blade row is run in parallel and each blade row grid is decomposed into several domains and run in parallel. 20 processors are used for the 4 blade row analysis. The average passage approach developed by John Adamczyk at NASA Lewis Research Center has been further developed and parallelized. This is APNASA Version A. It is a Navier-Stokes solver using a 4-stage explicit Runge-Kutta time marching scheme with variable time steps and residual smoothing for convergence acceleration. It has an implicit K-E turbulence model which uses an ADI solver to factor the matrix. Between 50 and 100 explicit time steps are solved before a blade row body force is calculated and exchanged with the other blade rows. This outer iteration has been coined a "flip." Efforts have been made to make the solver linearly scaleable with the number of blade rows. Enough flips are run (between 50 and 200) so the solution in the entire machine is not changing. The K-E equations are generally solved every other explicit time step. One of the key requirements in the development of the parallel code was to make the parallel solution exactly (bit for bit) match the serial solution. This has helped isolate many small parallel bugs and guarantee the parallelization was done correctly. The domain decomposition is done only in the axial direction since the number of points axially is much larger than the other two directions. This code uses MPI for message passing. The parallel speed up of the solver portion (no 1/0 or body force calculation) for a grid which has 227 points axially.

  2. Unsteady inflow effects on the wake shed from a high-lift LPT blade subjected to boundary layer laminar separation

    NASA Astrophysics Data System (ADS)

    Satta, Francesca; Ubaldi, Marina; Zunino, Pietro

    2012-04-01

    An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and unsteady inflows. Two Reynolds number conditions, representative of take-off/landing and cruise operating conditions of the real engine, have been tested. The effect of upstream wake-boundary layer interaction on the wake shed from the profile has been investigated in a three-blade large-scale linear turbine cascade. The comparison between the wakes shed under steady and unsteady inflows has been performed through the analysis of mean velocity and Reynolds stress components measured at midspan of the central blade by means of a two-component crossed miniature hot-wire probe. The wake development has been analyzed in the region between 2% and 100% of the blade chord from the central blade trailing edge, aligned with the blade exit direction. Wake integral parameters, half-width and maximum velocity defects have been evaluated from the mean velocity distributions to quantify the modifications induced on the vane wake by the upstream wake. Moreover the thicknesses of the two wake shear layers have been considered separately in order to identify the effects of Reynolds number and incoming flow on the wake shape. The self-preserving state of the wake has been looked at, taking into account the different thicknesses of the two shear layers. The evaluation of the power density spectra of the velocity fluctuations allowed the study of the wake unsteady behavior, and the detection of the effects induced by the different operating conditions on the trailing edge vortex shedding.

  3. An experimental investigation of delta wing vortex flow with and without external jet blowing

    NASA Technical Reports Server (NTRS)

    Iwanski, Kenneth P.; Ng, T. Terry; Nelson, Robert C.

    1989-01-01

    A visual and quantitative study of the vortex flow field over a 70-deg delta wing with an external jet blowing parallel to and at the leading edge was conducted. In the experiment, the vortex core was visually marked with TiCl4, and LDA was used to measure the velocity parallel and normal to the wing surface. It is found that jet blowing moved vortex breakdown farther downstream from its natural position and influenced the breakdown characteristics.

  4. Spiral inlets for steam turbines

    NASA Astrophysics Data System (ADS)

    Škach, Radek; Uher, Jan

    2017-09-01

    This paper deals with the design process of special nozzle blades for spiral inlets. Spiral inlets are used for the first stages of high pressure and intermediate pressure steam turbines with both reaction and impulse blades when throttling or sliding pressure control is applied. They improve the steam flow uniformity from the inlet pipe and thus decrease the aerodynamic losses. The proposed evaluation of the inlet angle is based on the free vortex law.

  5. On the motion of multiple helical vortices

    NASA Astrophysics Data System (ADS)

    Wood, D. H.; Boersma, J.

    2001-11-01

    The analysis of the self-induced velocity of a single helical vortex (Boersma & Wood 1999) is extended to include equally spaced multiple vortices. This arrangement approximates the tip vortices in the far wake of multi-bladed wind turbines, propellers, or rotors in ascending, descending, or hovering flight. The problem is reduced to finding, from the Biot Savart law, the additional velocity of a helix due to an identical helix displaced azimuthally. The resulting Biot Savart integral is further reduced to a Mellin Barnes integral representation which allows the asymptotic expansions to be determined for small and for large pitch. The Biot Savart integral is also evaluated numerically for a total of two, three and four vortices over a range of pitch values. The previous finding that the self-induced velocity at small pitch is dominated by a term inversely proportional to the pitch carries over to multiple vortices. It is shown that a far wake dominated by helical tip vortices is consistent with the one-dimensional representation that leads to the Betz limit on the power output of wind turbines. The small-pitch approximation then allows the determination of the blade&s bound vorticity for optimum power extraction. The present analysis is shown to give reasonable estimates for the vortex circulation in experiments using a single hovering rotor and a four-bladed propeller.

  6. Computation of the turbulent boundary layer downstream of vortex generators

    NASA Astrophysics Data System (ADS)

    Chang, Paul K.

    1987-12-01

    The approximate analysis of three-dimensional incompressible turbulent boundary layer downstream of vortex generators is presented. Extensive numerical computations are carried out to assess the effectiveness of single-row, counter-rotating vane-type vortex generators to alleviate flow separation lines. Flow separation downstream of the vortex generators on a thick airfoil are determined in terms of size, location, and arrangement of the vortex generators. These lines are compared with the separation line without the vortex generators. High efficiency is obtained with the moderately slender rectangular blade of the generator. The results indicate that separations is alleviated more effectively in the region closer to the symmetry axis of the generator than in the outer region of the symmetry axis. No optimum conditions for the alleviation of flow separation are established in this investigation, and no comparisons are made with other analytical results and experimental data.

  7. High-resolution multi-code implementation of unsteady Navier-Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemes

    NASA Astrophysics Data System (ADS)

    Li, Gaohua; Fu, Xiang; Wang, Fuxin

    2017-10-01

    The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.

  8. An extension of the local momentum theory to a distorted wake model of a hovering rotor

    NASA Technical Reports Server (NTRS)

    Kawachi, K.

    1981-01-01

    The local momentum theory is based on the instantaneous balance between the fluid momentum and the blade elemental lift at a local station in the rotor rotational plane. Therefore, the theory has the capability of evaluating time wise variations of air loading and induced velocity distributions along a helicopter blade span. Unlike a complex vortex theory, this theory was developed to analyze the instantaneous induced velocity distribution effectively. The boundaries of this theory and a computer program using this theory are discussed. A concept introduced into the theory is the effect of the rotor wake contraction in hovering flight. A comparison of this extended local momentum theory with a prescribed wake vortex theory is also presented. The results indicate that the extended local momentum theory has the capability of achieving a level of accuracy similar to that of the prescribed wake vortex theory over wide range variations of rotor geometrical parameters. It is also shown that the analytical results obtained using either theory are in reasonable agreement with experimental data.

  9. Histological observation for needle-tissue interactions.

    PubMed

    Nakagawa, Yoshiyuki; Koseki, Yoshihiko

    2013-01-01

    We histologically investigated tissue fractures and deformations caused by ex vivo needle insertions. The tissue was formalin-fixed while the needle remained in the tissue. Following removal of the needle, the tissue was microtomed, stained, and observed microscopically. This method enabled observations of cellular and tissular conditions where deformations caused by needle insertions were approximately preserved. For this study, our novel method presents preliminary findings related with tissue fractures and the orientation of needle blade relative to muscle fibers. When the needle blade was perpendicular to the muscle fiber, transfiber fractures and relatively large longitudinal deformations occurred. When the needle blade was parallel to the muscle fiber, interfiber fractures and relatively small longitudinal deformations occurred. This made a significant difference in the resistance force of the needle insertions.

  10. Wind-tunnel acoustic results of two rotor models with several tip designs

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Connor, A. B.

    1986-01-01

    A three-phase research program has been undertaken to study the acoustic signals due to the aerodynamic interaction of rotorcraft main rotors and tail rotors. During the first phase, two different rotor models with several interchangeable tips were tested in the Langley 4- by 7-Meter Tunnel on the U.S. Army rotor model system. An extensive acoustic data base was acquired, with special emphasis on blade-vortex interaction (BVI) noise. The details of the experimental procedure, acoustic data acquisition, and reduction are documented. The overall sound pressure level (OASPL) of the high-twist rotor systems is relatively insensitive to flight speed but generally increases with rotor tip-path-plane angle. The OASPL of the high-twist rotors is dominated by acoustic energy in the low-frequency harmonics. The OASPL of the low-twist rotor systems shows more dependence on flight speed than the high-twist rotors, in addition to being quite sensitive to tip-path-plane angle. An integrated band-limited sound pressure level, limited by 500 to 3000 Hz, is a useful metric to quantify the occurrence of BVI noise. The OASPL of the low-twist rotors is strongly influenced by the band-limited sound levels, indicating that the blade-vortex impulsive noise is a dominant noise source for this rotor design. The midfrequency acoustic levels for both rotors show a very strong dependence on rotor tip-path-plane angle. The tip-path-plane angle at which the maximum midfrequency sound level occurs consistently decreases with increasing flight speed. The maximum midfrequency sound level measured at a given location is constant regardless of the flight speed.

  11. Three dimensional mean flow and turbulence characteristics of the near wake of a compressor rotor blade

    NASA Technical Reports Server (NTRS)

    Ravindranath, A.; Lakshminarayana, B.

    1980-01-01

    The investigation was carried out using the rotating hot wire technique. Measurements were taken inside the end wall boundary layer to discern the effect of annulus and hub wall boundary layer, secondary flow, and tip leakage on the wake structure. Static pressure gradients across the wake were measured using a static stagnation pressure probe insensitive to flow direction changes. The axial and the tangential velocity defects, the radial component of velocity, and turbulence intensities were found to be very large as compared to the near and far wake regions. The radial velocities in the trailing edge region exhibited characteristics prevalent in a trailing vortex system. Flow near the blade tips found to be highly complex due to interaction of the end wall boundary layers, secondary flows, and tip leakage flow with the wake. The streamwise curvature was found to be appreciable near the blade trailing edge. Flow properties in the trailing edge region are quite different compared to that in the near and far wake regions with respect to their decay characteristics, similarity, etc. Fourier decomposition of the rotor wake revealed that for a normalized wake only the first three coefficients are dominant.

  12. A higher harmonic control test in the DNW to reduce impulsive BVI noise

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1994-01-01

    A model rotor acoustic test was performed to examine the benefit of higher control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulse noise. A 40-percent dynamically scaled, four-bladed model of a BO-105 main rotor was tested in the German-Dutch Wind Tunnel (DNW). Acoustic measurements were made in a large plane underneath the rotor employing a traversing in-flow microphone array in the anechoic environment of the open test section. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules (different modes, amplitudes, phases) were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with HHC phase variations are found. Compared to the baseline conditions (without HHD), significant mid-frequency noise reductions of as much as 6 dB are obtained for low speed descent conditions where BVI is most intensive. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. Low frequency loading noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  13. An experimental and numerical investigation on the formation of stall-cells on airfoils

    NASA Astrophysics Data System (ADS)

    Manolesos, M.; Papadakis, G.; Voutsinas, S.

    2014-12-01

    Stall Cells (SCs) are large scale three-dimensional structures of separated flow that have been observed on the suction side of airfoils designed for or used on wind turbine blades. SCs are unstable in nature but can be stabilised by means of a localized disturbance; here in the form of a zigzag tape covering 10% of the wing span. Based on extensive tuft flow visualisations, the resulting flow was found macroscopically similar to the undisturbed flow. Next a combined investigation was carried out including pressure recordings, Stereo-PIV measurements and CFD simulations. The investigation parameters were the aspect ratio, the angle of attack and the Re number. Tuft and pressure data were found in good agreement. The 3D CFD simulations reproduced the structure of the SCs in qualitative agreement with the experimental data but had a delay of ~3deg in capturing the first appearance of a SC. The error in Cl max prediction was 7% compared to 19% for the 2D cases. Tests show that SCs grow with Re number and angle of attack. Also analysis of the time averaged computational results indicated the presence of three types of vortices: (a) the trailing edge line vortex (TELV) in the wake, (b) the separation line vortex (SLV) over the wing and (c) the SC vortices. The TELV and SLV run parallel to the trailing edge and are of opposite sign, while the SC vortices start normal to the wing suction surface, then bend towards the SC centre and later extend downstream, with their vorticity parallel to the free stream.

  14. Exploratory wind-tunnel investigation of a wingtip-mounted vortex turbine for vortex energy recovery

    NASA Technical Reports Server (NTRS)

    Patterson, J. C., Jr.; Flechner, S. G.

    1985-01-01

    The Langley 8-foot transonic pressure tunnel was used for tests to determine the possibility of recovering, with a turbine-type device, part of the energy loss associated with the lift-induced vortex system. Tests were conducted on a semispan model with an unswept, untapered wing, with and without a wingtip-mounted vortex turbine. Three sets of turbine blades were tested to determine the effect of airfoil section shape and planform. The tests were conducted at a Mach number of 0.70 over an angle-of-attack range from 0 deg. to 4 deg. at a Reynolds number of 3.82 x 10 to the 6th power based on the wing reference chord of 13 in.

  15. Interaction of upstream flow distortions with high Mach number cascades

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1981-01-01

    Features of the interaction of flow distortions, such as gusts and wakes with blade rows of advance type fans and compressors having high tip Mach numbers are modeled. A typical disturbance was assumed to have harmonic time dependence and was described, at a far upstream location, in three orthogonal spatial coordinates by a double Fourier series. It was convected at supersonic relative to a linear cascade described as an unrolled annulus. Conditions were selected so that the component of this velocity parallel to the axis of the turbomachine was subsonic, permitting interaction between blades through the upstream as well as downstream flow media. A strong, nearly normal shock was considered in the blade passages which was allowed curvature and displacement. The flows before and after the shock were linearized relative to uniform mean velocities in their respective regions. Solution of the descriptive equations was by adaption of the Wiener-Hopf technique, enabling a determination of distortion patterns through and downstream of the cascade as well as pressure distributions on the blade and surfaces. Details of interaction of the disturbance with the in-passage shock were discussed. Infuences of amplitude, wave length, and phase of the disturbance on lifts and moments of cascade configurations are presented. Numerical results are clarified by reference to an especially orderly pattern of upstream vertical motion in relation to the cascade parameters.

  16. Volumetric three-component velocimetry measurements of the turbulent flow around a Rushton turbine

    NASA Astrophysics Data System (ADS)

    Sharp, Kendra V.; Hill, David; Troolin, Daniel; Walters, Geoffrey; Lai, Wing

    2010-01-01

    Volumetric three-component velocimetry measurements have been taken of the flow field near a Rushton turbine in a stirred tank reactor. This particular flow field is highly unsteady and three-dimensional, and is characterized by a strong radial jet, large tank-scale ring vortices, and small-scale blade tip vortices. The experimental technique uses a single camera head with three apertures to obtain approximately 15,000 three-dimensional vectors in a cubic volume. These velocity data offer the most comprehensive view to date of this flow field, especially since they are acquired at three Reynolds numbers (15,000, 107,000, and 137,000). Mean velocity fields and turbulent kinetic energy quantities are calculated. The volumetric nature of the data enables tip vortex identification, vortex trajectory analysis, and calculation of vortex strength. Three identification methods for the vortices are compared based on: the calculation of circumferential vorticity; the calculation of local pressure minima via an eigenvalue approach; and the calculation of swirling strength again via an eigenvalue approach. The use of two-dimensional data and three-dimensional data is compared for vortex identification; a `swirl strength' criterion is less sensitive to completeness of the velocity gradient tensor and overall provides clearer identification of the tip vortices. The principal components of the strain rate tensor are also calculated for one Reynolds number case as these measures of stretching and compression have recently been associated with tip vortex characterization. Vortex trajectories and strength compare favorably with those in the literature. No clear dependence of trajectory on Reynolds number is deduced. The visualization of tip vortices up to 140° past blade passage in the highest Reynolds number case is notable and has not previously been shown.

  17. Gas turbine engine

    DOEpatents

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  18. Endwall shape modification using vortex generators and fences to improve gas turbine cooling and effectiveness

    NASA Astrophysics Data System (ADS)

    Gokce, Zeki Ozgur

    The gas turbine is one of the most important parts of the air-breathing jet engine. Hence, improving its efficiency and rendering it operable under high temperatures are constant goals for the aerospace industry. Two types of flow within the gas turbine are of critical relevance: The flow around the first row of stator blades (also known as the nozzle guide vane blade - NGV) and the cooling flow inside the turbine blade cooling channel. The subject of this thesis work was to search for methods that could improve the characteristics of these two types of flows, thus enabling superior engine performance. The innovative aspect of our work was to apply an endwall shape modification previously employed by non-aerospace industries for cooling applications, to the gas turbine cooling flow which is vital to aerospace propulsion. Since the costs of investigating the possible benefits of any idea via extensive experiments could be quite high, we decided to use computational fluid dynamics (CFD) followed by experimentation as our methodology. We decided to analyze the potential benefits of using vortex generators (VGs) as well as the rectangular endwall fence. Since the pin-fins used in cooling flow are circular cylinders, and since the boundary layer flow is mainly characterized by the leading edge diameter of the NGV blade, we modeled both the pin-fins and the NGV blade as vertical circular cylinders. The baseline case consisted of the cylinder(s) being subjected to cross flow and a certain amount of freestream turbulence. The modifications we made on the endwall consisted of rectangular fences. In the case of the cooling flow, we used triangular shaped, common flow up oriented, delta winglet type vortex generators as well as rectangular endwall fences. The channel contained singular cylinders as well as staggered rows of multiple cylinders. For the NGV flow, a rectangular endwall fence and a singular cylinder were utilized. Using extensive CFD modeling and analysis, we confirmed that placing a rectangular endwall fence upstream of the cylinder created additional turbulent mixing in the domain. This led to increased mixing of the cooler flow in the freestream and the hotter flow near the endwall. As a result, we showed that adding a rectangular fence created a 10% mean heat transfer increase downstream of the cylinder. When vortex generators are used, as the flow passes over the sharp edges of the vortex generators, it separates and continues downstream in a rolling, helical pattern. Combined with the effect generated by the orientation of the vortex generators, this flow structure mixes the higher momentum fluid in the freestream with lower momentum fluid in the boundary layer. Similar turbulent mixing behavior is observed over the entire domain, near the cylinders and the side walls. As a result, the heat transfer levels over the wall surfaces are increased and improved cooling is achieved. The improvements in heat transfer are obtained at the expense of acceptable pressure losses across the cooling channel. When the vortex generators are used, the CFD modeling studies showed that overall heat transfer improvements as high as 27% compared to the baseline case are observed inside a domain containing multiple rows of cylinders. A price in the form of 13% pressure loss increase across the channel is paid for the heat transfer benefits. Experiments conducted in the open loop wind tunnel of the Turbomachinery Aero-Heat Transfer Laboratory of the Department of Aerospace Engineering of Penn State University supported the general positive trend of these findings, with a 14% overall increase in heat transfer over the constant heat flux surface when vortex generators are installed, accompanied by an 8% increase in pressure loss. (Abstract shortened by UMI.)

  19. Recent developments in rotary-wing aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  20. An unsteady aerodynamic formulation for efficient rotor tonal noise prediction

    NASA Astrophysics Data System (ADS)

    Gennaretti, M.; Testa, C.; Bernardini, G.

    2013-12-01

    An aerodynamic/aeroacoustic solution methodology for predction of tonal noise emitted by helicopter rotors and propellers is presented. It is particularly suited for configurations dominated by localized, high-frequency inflow velocity fields as those generated by blade-vortex interactions. The unsteady pressure distributions are determined by the sectional, frequency-domain Küssner-Schwarz formulation, with downwash including the wake inflow velocity predicted by a three-dimensional, unsteady, panel-method formulation suited for the analysis of rotors operating in complex aerodynamic environments. The radiated noise is predicted through solution of the Ffowcs Williams-Hawkings equation. The proposed approach yields a computationally efficient solution procedure that may be particularly useful in preliminary design/multidisciplinary optimization applications. It is validated through comparisons with solutions that apply the airloads directly evaluated by the time-marching, panel-method formulation. The results are provided in terms of blade loads, noise signatures and sound pressure level contours. An estimation of the computational efficiency of the proposed solution process is also presented.

  1. Peculiarities of field penetration in the presence of cross-flux interaction

    NASA Astrophysics Data System (ADS)

    Berseth, V.; Buzdin, A. I.; Indenbom, M. V.; Benoit, W.

    1996-02-01

    The attractive core interaction between two orthogonal vortex lattices in alayered superconductor is calculated. When one of these lattices is moving, this interaction gives rise to a drag force acting on the other one. Considering a moving in-plane flux lattice, the effect of the drag force on the perpendicular flux is modelled through a modification of the bulk critical current for this field component. The new critical current depends on the direction of motion of both parallel and perpendicular vortices. The results are derived within the critical-state model for the infinite slab and for the thin strip. For this latter geometry, computations are made with the help of a new numerical method simulating flux penetration in the critical state. The new predicted qualitative phenomena (like the formation of a vortex-free region between two zones of opposite flux in the flat geometry) can be directly verified by the magneto-optic technique.

  2. Results of the 1986 NASA/FAA/DFVLR main rotor test entry in the German-Dutch wind tunnel (DNW)

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Martin, Ruth M.

    1987-01-01

    An acoustics test of a 40%-scale MBB BO-105 helicopter main rotor was conducted in the Deutsch-Niederlandischer Windkanal (DNW). The research, directed by NASA Langley Research Center, concentrated on the generation and radiation of broadband noise and impulsive blade-vortex interaction (BVI) noise over ranges of pertinent rotor operational envelopes. Both the broadband and BVI experimental phases are reviewed, along with highlights of major technical results. For the broadband portion, significant advancement is the demonstration of the accuracy of prediction methods being developed for broadband self noise, due to boundary layer turbulence. Another key result is the discovery of rotor blade-wake interaction (BWI) as an important contributor to mid frequency noise. Also the DNW data are used to determine for full scale helicopters the relative importance of the different discrete and broadband noise sources. For the BVI test portion, a comprehensive data base documents the BVI impulsive noise character and directionality as functions of rotor flight conditions. The directional mapping of BVI noise emitted from the advancing side as well as the retreating side of the rotor constitutes a major advancement in the understanding of this dominant discrete mechanism.

  3. Numerical Investigations of Two Typical Unsteady Flows in Turbomachinery Using the Multi-Passage Model

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Lu, Zhiliang; Guo, Tongqing; Shen, Ennan

    2016-06-01

    In this paper, the research on two types of unsteady flow problems in turbomachinery including blade flutter and rotor-stator interaction is made by means of numerical simulation. For the former, the energy method is often used to predict the aeroelastic stability by calculating the aerodynamic work per vibration cycle. The inter-blade phase angle (IBPA) is an important parameter in computation and may have significant effects on aeroelastic behavior. For the latter, the numbers of blades in each row are usually not equal and the unsteady rotor-stator interactions could be strong. An effective way to perform multi-row calculations is the domain scaling method (DSM). These two cases share a common point that the computational domain has to be extended to multi passages (MP) considering their respective features. The present work is aimed at modeling these two issues with the developed MP model. Computational fluid dynamics (CFD) technique is applied to resolve the unsteady Reynolds-averaged Navier-Stokes (RANS) equations and simulate the flow fields. With the parallel technique, the additional time cost due to modeling more passages can be largely decreased. Results are presented on two test cases including a vibrating rotor blade and a turbine stage.

  4. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.

    PubMed

    Xu, B F; Wang, T G; Yuan, Y; Cao, J F

    2015-02-28

    A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions

    PubMed Central

    Xu, B. F.; Wang, T. G.; Yuan, Y.; Cao, J. F.

    2015-01-01

    A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. PMID:25583859

  6. Transient airload computer analysis for simulating wind induced impulsive noise conditions of a hovering helicopter rotor

    NASA Technical Reports Server (NTRS)

    Hall, G. F.

    1975-01-01

    A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.

  7. Fast Multipole Methods for Three-Dimensional N-body Problems

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.

    1995-01-01

    We are developing computational tools for the simulations of three-dimensional flows past bodies undergoing arbitrary motions. High resolution viscous vortex methods have been developed that allow for extended simulations of two-dimensional configurations such as vortex generators. Our objective is to extend this methodology to three dimensions and develop a robust computational scheme for the simulation of such flows. A fundamental issue in the use of vortex methods is the ability of employing efficiently large numbers of computational elements to resolve the large range of scales that exist in complex flows. The traditional cost of the method scales as Omicron (N(sup 2)) as the N computational elements/particles induce velocities at each other, making the method unacceptable for simulations involving more than a few tens of thousands of particles. In the last decade fast methods have been developed that have operation counts of Omicron (N log N) or Omicron (N) (referred to as BH and GR respectively) depending on the details of the algorithm. These methods are based on the observation that the effect of a cluster of particles at a certain distance may be approximated by a finite series expansion. In order to exploit this observation we need to decompose the element population spatially into clusters of particles and build a hierarchy of clusters (a tree data structure) - smaller neighboring clusters combine to form a cluster of the next size up in the hierarchy and so on. This hierarchy of clusters allows one to determine efficiently when the approximation is valid. This algorithm is an N-body solver that appears in many fields of engineering and science. Some examples of its diverse use are in astrophysics, molecular dynamics, micro-magnetics, boundary element simulations of electromagnetic problems, and computer animation. More recently these N-body solvers have been implemented and applied in simulations involving vortex methods. Koumoutsakos and Leonard (1995) implemented the GR scheme in two dimensions for vector computer architectures allowing for simulations of bluff body flows using millions of particles. Winckelmans presented three-dimensional, viscous simulations of interacting vortex rings, using vortons and an implementation of a BH scheme for parallel computer architectures. Bhatt presented a vortex filament method to perform inviscid vortex ring interactions, with an alternative implementation of a BH scheme for a Connection Machine parallel computer architecture.

  8. Vortex phase diagram of the layered superconductor Cu0.03TaS2 for H \\parallel c

    NASA Astrophysics Data System (ADS)

    Zhu, X. D.; Lu, J. C.; Sun, Y. P.; Pi, L.; Qu, Z.; Ling, L. S.; Yang, Z. R.; Zhang, Y. H.

    2010-12-01

    The magnetization and anisotropic electrical transport properties have been measured in high quality Cu0.03TaS2 single crystals. A pronounced peak effect has been observed, indicating that high quality and homogeneity are vital to the peak effect. A kink has been observed in the magnetic field, H, dependence of the in-plane resistivity ρab for H\\parallel c , which corresponds to a transition from activated to diffusive behavior of the vortex liquid phase. In the diffusive regime of the vortex liquid phase, the in-plane resistivity ρab is proportional to H0.3, which does not follow the Bardeen-Stephen law for free flux flow. Finally, a simplified vortex phase diagram of Cu0.03TaS2 for H \\parallel c is given.

  9. Numerical investigation of tip clearance cavitation in Kaplan runners

    NASA Astrophysics Data System (ADS)

    Nikiforova, K.; Semenov, G.; Kuznetsov, I.; Spiridonov, E.

    2016-11-01

    There is a gap between the Kaplan runner blade and the shroud that makes for a special kind of cavitation: cavitation in the tip leakage flow. Two types of cavitation caused by the presence of clearance gap are known: tip vortex cavitation that appears at the core of the rolled up vortex on the blade suction side and tip clearance cavitation that appears precisely in the gap between the blade tip edge and the shroud. In the context of this work numerical investigation of the model Kaplan runner has been performed taking into account variable tip clearance for several cavitation regimes. The focus is put on investigation of structure and origination of mechanism of cavitation in the tip leakage flow. Calculations have been performed with the help of 3-D unsteady numerical model for two-phase medium. Modeling of turbulent flow in this work has been carried out using full equations of Navier-Stokes averaged by Reynolds with correction for streamline curvature and system rotation. For description of this medium (liquid-vapor) simplification of Euler approach is used; it is based on the model of interpenetrating continuums, within the bounds of this two- phase medium considered as a quasi-homogeneous mixture with the common velocity field and continuous distribution of density for both phases. As a result, engineering techniques for calculation of cavitation conditioned by existence of tip clearance in model turbine runner have been developed. The detailed visualization of the flow was carried out and vortex structure on the suction side of the blade was reproduced. The range of frequency with maximum value of pulsation was assigned and maximum energy frequency was defined; it is based on spectral analysis of the obtained data. Comparison between numerical computation results and experimental data has been also performed. The location of cavitation zone has a good agreement with experiment for all analyzed regimes.

  10. Effects of turbulence, resistivity and boundary conditions on helicoidal flow collimation: Consequences for the Von-Kármán-Sodium dynamo experiment

    DOE PAGES

    Varela, J.; Oak Ridge National Lab.; Brun, S.; ...

    2017-05-01

    We present hydrodynamic and magneto-hydrodynamic simulations of a liquid sodium flow using the compressible MHD code PLUTO to investigate the magnetic field regeneration in the Von-Karman-Sodium dynamo experiment. The aim of the study is to analyze influence of the fluid resistivity and turbulence level on the collimation by helicoidal motions of a remnant magnetic field. We use a simplified cartesian geometry to represent the flow dynamics in the vicinity of one cavity of a multi-blades impeller inspired by those used in the Von-Karman-Sodium (VKS) experiment. We perform numerical simulations with kinetic Reynolds numbers up to 1000 for magnetic Prandtl numbersmore » between 30 and 0.1. Our study shows that perfect ferromagnetic walls favour enhanced collimation of flow and magnetic fields even if the turbulence degree of the model increases. More specifically the location of the helicoidal coherent vortex in between the blades changes with the impinging velocity. It becomes closer to the upstream blade and impeller base if the flow incident angle is analogous to the TM73 impeller configuration rotating in the unscooping direction. This result is also obtained at higher kinetic Reynolds numbers when the helicoidal vortex undergoes a precessing motion, leading to a reinforced effect in the vortex evolution and in the magnetic field collimation when using again perfect ferromagnetic boundary conditions. Configurations with different materials used for the impeller blades and impeller base confirm a larger enhancement of the magnetic field when perfect ferromagnetic boundary conditions are used compared with the perfect conductor case, although smaller than with a perfect ferromagnetic impeller, as it was observed in the VKS experiment. We further estimate the efficiency of a hypothetical dynamo loop occurring in the vicinity of the impeller and discuss the relevance of our findings in the context of mean field dynamo theory.« less

  11. Effects of turbulence, resistivity and boundary conditions on helicoidal flow collimation: Consequences for the Von-Kármán-Sodium dynamo experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, J.; Oak Ridge National Lab.; Brun, S.

    We present hydrodynamic and magneto-hydrodynamic simulations of a liquid sodium flow using the compressible MHD code PLUTO to investigate the magnetic field regeneration in the Von-Karman-Sodium dynamo experiment. The aim of the study is to analyze influence of the fluid resistivity and turbulence level on the collimation by helicoidal motions of a remnant magnetic field. We use a simplified cartesian geometry to represent the flow dynamics in the vicinity of one cavity of a multi-blades impeller inspired by those used in the Von-Karman-Sodium (VKS) experiment. We perform numerical simulations with kinetic Reynolds numbers up to 1000 for magnetic Prandtl numbersmore » between 30 and 0.1. Our study shows that perfect ferromagnetic walls favour enhanced collimation of flow and magnetic fields even if the turbulence degree of the model increases. More specifically the location of the helicoidal coherent vortex in between the blades changes with the impinging velocity. It becomes closer to the upstream blade and impeller base if the flow incident angle is analogous to the TM73 impeller configuration rotating in the unscooping direction. This result is also obtained at higher kinetic Reynolds numbers when the helicoidal vortex undergoes a precessing motion, leading to a reinforced effect in the vortex evolution and in the magnetic field collimation when using again perfect ferromagnetic boundary conditions. Configurations with different materials used for the impeller blades and impeller base confirm a larger enhancement of the magnetic field when perfect ferromagnetic boundary conditions are used compared with the perfect conductor case, although smaller than with a perfect ferromagnetic impeller, as it was observed in the VKS experiment. We further estimate the efficiency of a hypothetical dynamo loop occurring in the vicinity of the impeller and discuss the relevance of our findings in the context of mean field dynamo theory.« less

  12. Effects of turbulence, resistivity and boundary conditions on helicoidal flow collimation: Consequences for the Von-Kármán-Sodium dynamo experiment

    NASA Astrophysics Data System (ADS)

    Varela, J.; Brun, S.; Dubrulle, B.; Nore, C.

    2017-05-01

    We present hydrodynamic and magneto-hydrodynamic simulations of a liquid sodium flow using the compressible MHD code PLUTO to investigate the magnetic field regeneration in the Von-Kármán-Sodium dynamo experiment. The aim of the study is to analyze the influence of the fluid resistivity and turbulence level on the collimation by helicoidal motions of a remnant magnetic field. We use a simplified Cartesian geometry to represent the flow dynamics in the vicinity of one cavity of a multi-blades impeller inspired by those used in the Von-Kármán-Sodium (VKS) experiment. We perform numerical simulations with kinetic Reynolds numbers up to 1000 for magnetic Prandtl numbers between 30 and 0.1. Our study shows that perfect ferromagnetic walls favour enhanced collimation of flow and magnetic fields even if the turbulence degree of the model increases. More specifically, the location of the helicoidal coherent vortex in between the blades changes with the impinging velocity. It becomes closer to the upstream blade and the impeller base if the flow incident angle is analogous to the TM73 impeller configuration rotating in the unscooping direction. This result is also obtained at higher kinetic Reynolds numbers when the helicoidal vortex undergoes a precessing motion, leading to a reinforced effect in the vortex evolution and in the magnetic field collimation when using again perfect ferromagnetic boundary conditions. Configurations with different materials used for the impeller blades and the impeller base confirm a larger enhancement of the magnetic field when perfect ferromagnetic boundary conditions are used compared with the perfect conductor case, although smaller compared to a perfect ferromagnetic impeller, as it was observed in the VKS experiment. We further estimate the efficiency of a hypothetical dynamo loop occurring in the vicinity of the impeller and discuss the relevance of our findings in the context of mean field dynamo theory.

  13. Computational Study of the Effect of Slot Orientation on Synthetic Jet-Based Separation Control

    DTIC Science & Technology

    2012-01-01

    Wind Turbine Blades,” Journal of Wind Energy, Vol. 13, Issue 2-3, 2009, pp. 221 – 237. [10] Crook, A. and Wood, N. J., “Measurements and...by these hairpin structures could be desirable for separation control. Roll-up of jets into vortex ring followed by tilting and stretching occurred...at an intermediate Reynolds number and velocity ratio. By increasing these two flow parameters, rapid penetration of the tilted vortex ring up to the

  14. Vortex motion in doubly connected domains

    NASA Astrophysics Data System (ADS)

    Zannetti, L.; Gallizio, F.; Ottino, G. M.

    The unsteady two-dimensional rotational flow past doubly connected domains is analytically addressed. By concentrating the vorticity in point vortices, the flow is modelled as a potential flow with point singularities. The dependence of the complex potential on time is defined according to the Kelvin theorem. The general case of non-null circulations around the solid bodies is discussed. Vortex shedding and time evolution of the circulation past a two-element airfoil and past a two-bladed Darrieus turbine are presented as physically coherent examples.

  15. Experimental Verification of the Streamline Curvature Numerical Analysis Method Applied to the Flow through an Axial Flow Fan.

    DTIC Science & Technology

    1980-05-28

    Total Deviation Angles and Measured Inlet Axial Velocity . . . . 55 ix LIST OF FIGURES (Continued) Figure Page 19 Points Defining Blade Sections of...distance from leading edge to point of maximum camber along chord line ar tip vortex core radius AVR axial velocity ratio (Vx /V x c chord length CL tip...yaw ceoefficient d longitudinal distance from leading edge to tip vortex calculation point G distance from chord line to maximum camber point K cascade

  16. Direct Numerical Simulations of a Full Stationary Wind-Turbine Blade

    NASA Astrophysics Data System (ADS)

    Qamar, Adnan; Zhang, Wei; Gao, Wei; Samtaney, Ravi

    2014-11-01

    Direct numerical simulation of flow past a full stationary wind-turbine blade is carried out at Reynolds number, Re = 10,000 placed at 0 and 5 (degree) angle of attack. The study is targeted to create a DNS database for verification of solvers and turbulent models that are utilized in wind-turbine modeling applications. The full blade comprises of a circular cylinder base that is attached to a spanwise varying airfoil cross-section profile (without twist). An overlapping composite grid technique is utilized to perform these DNS computations, which permits block structure in the mapped computational space. Different flow shedding regimes are observed along the blade length. Von-Karman shedding is observed in the cylinder shaft region of the turbine blade. Along the airfoil cross-section of the blade, near body shear layer breakdown is observed. A long tip vortex originates from the blade tip region, which exits the computational plane without being perturbed. Laminar to turbulent flow transition is observed along the blade length. The turbulent fluctuations amplitude decreases along the blade length and the flow remains laminar regime in the vicinity of the blade tip. The Strouhal number is found to decrease monotonously along the blade length. Average lift and drag coefficients are also reported for the cases investigated. Supported by funding under a KAUST OCRF-CRG grant.

  17. The general theory of blade screws including propellers, fans, helicopter screws, helicoidal pumps, turbo-motors, and different kinds of helicoidal blades

    NASA Technical Reports Server (NTRS)

    De Bothezat, George

    1920-01-01

    Report presents a theory which gives a complete picture and an exact quantitative analysis of the whole phenomenon of the working of blade screws, but also unites in a continuous whole the entire scale of states of work conceivable for a blade screw. Chapter 1 is devoted to the establishment of the system of fundamental equations relating to the blade screw. Chapter 2 contains the general discussion of the 16 states of work which may establish themselves for a blade screw. The existence of the vortex ring state and the whirling phenomenon are established. All the fundamental functions which enter the blade-screw theory are submitted to a general analytical discussion. The general outline of the curve of the specific function is examined. Two limited cases of the work of the screw, the screw with a zero constructive pitch and the screw with an infinite constructive pitch, are pointed out. Chapter 3 is devoted to the study of the propulsive screw or propeller. (author)

  18. Simulation of an Isolated Tiltrotor in Hover with an Unstructured Overset-Grid RANS Solver

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Biedron, Robert T.

    2009-01-01

    An unstructured overset-grid Reynolds Averaged Navier-Stokes (RANS) solver, FUN3D, is used to simulate an isolated tiltrotor in hover. An overview of the computational method is presented as well as the details of the overset-grid systems. Steady-state computations within a noninertial reference frame define the performance trends of the rotor across a range of the experimental collective settings. Results are presented to show the effects of off-body grid refinement and blade grid refinement. The computed performance and blade loading trends show good agreement with experimental results and previously published structured overset-grid computations. Off-body flow features indicate a significant improvement in the resolution of the first perpendicular blade vortex interaction with background grid refinement across the collective range. Considering experimental data uncertainty and effects of transition, the prediction of figure of merit on the baseline and refined grid is reasonable at the higher collective range- within 3 percent of the measured values. At the lower collective settings, the computed figure of merit is approximately 6 percent lower than the experimental data. A comparison of steady and unsteady results show that with temporal refinement, the dynamic results closely match the steady-state noninertial results which gives confidence in the accuracy of the dynamic overset-grid approach.

  19. Modeling Tool Advances Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.

  20. Hover Acoustic Characteristics of the XV-15 with Advanced Technology Blades

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Wellman, J. Brent

    1993-01-01

    An experiment has been performed to investigate the far-field hover acoustic characteristics of the XV-15 aircraft with advanced technology blades (ATB). An extensive, high-quality, far-field acoustics data base was obtained for a rotor tip speed range of 645-771 ft/s. A 12-microphone, 500-ft radius semicircular array combined with two aircraft headings provided acoustic data over the full 360-deg azimuth about the aircraft with a resolution of 15 deg. Altitude variations provided data from near in-plane to 45 deg below the rotor tip path plane. Acoustic directivity characteristics in the lower hemisphere are explored through pressure time histories, narrow-band spectra, and contour plots. Directivity patterns were found to vary greatly with azimuth angle, especially in the forward quadrants. Sharp positive pressure pulses typical of blade-vortex interactions were found to propagate aft of the aircraft and were most intense at 45 deg below the rotor plane. Modest overall sound pressure levels were measured near in-plane indicating that thickness noise is not a major problem for this aircraft when operating in the hover mode with ATB. Rotor tip speed reductions reduced the average overall sound pressure level (dB (0.0002 dyne/cm(exp 2)) by nearly 8 dB in-plane, and 12.6 deg below the rotor plane.

  1. Vortex phase diagram of the layered superconductor Cu0.03TaS2 for H is parallel to c.

    PubMed

    Zhu, X D; Lu, J C; Sun, Y P; Pi, L; Qu, Z; Ling, L S; Yang, Z R; Zhang, Y H

    2010-12-22

    The magnetization and anisotropic electrical transport properties have been measured in high quality Cu(0.03)TaS(2) single crystals. A pronounced peak effect has been observed, indicating that high quality and homogeneity are vital to the peak effect. A kink has been observed in the magnetic field, H, dependence of the in-plane resistivity ρ(ab) for H is parallel to c, which corresponds to a transition from activated to diffusive behavior of the vortex liquid phase. In the diffusive regime of the vortex liquid phase, the in-plane resistivity ρ(ab) is proportional to H(0.3), which does not follow the Bardeen-Stephen law for free flux flow. Finally, a simplified vortex phase diagram of Cu(0.03)TaS(2) for H is parallel to c is given.

  2. Aerodynamic analysis of a horizontal axis wind turbine by use of helical vortex theory, volume 2: Computer program users manual

    NASA Technical Reports Server (NTRS)

    Keith, T. G., Jr.; Afjeh, A. A.; Jeng, D. R.; White, J. A.

    1985-01-01

    A description of a computer program entitled VORTEX that may be used to determine the aerodynamic performance of horizontal axis wind turbines is given. The computer code implements a vortex method from finite span wind theory and determines the induced velocity at the rotor disk by integrating the Biot-Savart law. It is assumed that the trailing helical vortex filaments form a wake of constant diameter (the rigid wake assumption) and travel downstream at the free stream velocity. The program can handle rotors having any number of blades which may be arbitrarily shaped and twisted. Many numerical details associated with the program are presented. A complete listing of the program is provided and all program variables are defined. An example problem illustrating input and output characteristics is solved.

  3. Impact absorbing blade mounts for variable pitch blades

    NASA Technical Reports Server (NTRS)

    Ravenhall, R.; Salemme, C. T.; Adamson, A. P. (Inventor)

    1977-01-01

    A variable pitch blade and blade mount are reported that are suitable for propellers, fans and the like and which have improved impact resistance. Composite fan blades and blade mounting arrangements permit the blades to pivot relative to a turbine hub about an axis generally parallel to the centerline of the engine upon impact of a large foreign object, such as a bird. Centrifugal force recovery becomes the principal energy absorbing mechanism and a blade having improved impact strength is obtained.

  4. Modelling of Vortex-Induced Loading on a Single-Blade Installation Setup

    NASA Astrophysics Data System (ADS)

    Skrzypiński, Witold; Gaunaa, Mac; Heinz, Joachim

    2016-09-01

    Vortex-induced integral loading fluctuations on a single suspended blade at various inflow angles were modeled in the presents work by means of stochastic modelling methods. The reference time series were obtained by 3D DES CFD computations carried out on the DTU 10MW reference wind turbine blade. In the reference time series, the flapwise force component, Fx, showed both higher absolute values and variation than the chordwise force component, Fz, for every inflow angle considered. For this reason, the present paper focused on modelling of the Fx and not the Fz whereas Fz would be modelled using exactly the same procedure. The reference time series were significantly different, depending on the inflow angle. This made the modelling of all the time series with a single and relatively simple engineering model challenging. In order to find model parameters, optimizations were carried out, based on the root-mean-square error between the Single-Sided Amplitude Spectra of the reference and modelled time series. In order to model well defined frequency peaks present at certain inflow angles, optimized sine functions were superposed on the stochastically modelled time series. The results showed that the modelling accuracy varied depending on the inflow angle. None the less, the modelled and reference time series showed a satisfactory general agreement in terms of their visual and frequency characteristics. This indicated that the proposed method is suitable to model loading fluctuations on suspended blades.

  5. Experimental and numerical study of the British Experimental Rotor Programme blade

    NASA Technical Reports Server (NTRS)

    Brocklehurst, Alan; Duque, Earl P. N.

    1990-01-01

    Wind-tunnel tests on the British Experimental Rotor Programme (BERP) tip are described, and the results are compared with computational fluid dynamics (CFD) results. The test model was molded using the Lynx-BERP blade tooling to provide a semispan, cantilever wing comprising the outboard 30 percent of the rotor blade. The tests included both surface-pressure measurements and flow visualization to obtain detailed information of the flow over the BERP tip for a range of angles of attack. It was observed that, outboard of the notch, favorable pressure gradients exist which ensure attached flow, and that the tip vortex also remains stable to large angles of attack. On the rotor, these features yield a very gradual break in control loads when the retreating-blade limit is eventually reached. Computational and experimental results were generally found to be in good agreement.

  6. JPRS report: Science and technology. Central Eurasia: Engineering and equipment

    NASA Astrophysics Data System (ADS)

    1993-10-01

    Translated articles cover the following topics: transient gas dynamic processes in ramjet engines; aerodynamic characteristics of delta wings with detached leading edge shock wave at hypersonic flight velocities; effect of atmospheric density gradient on aerodynamic stabilization; measurement of target radar scattering characteristics using frequency synthesized signals; assessing survivability and ensuring safety of large axial-flow compressor blades; procedure for experimentally determining transient aerodynamic forces caused by flat vane cascade; analysis of aerodynamic interaction of profile and vortex; laser machine for balancing dynamically adjusted gyros; use of heat pumps in solar heat supply systems; numerical simulation of deflagration transition to detonation in homogeneous combustible fuel mixture; and investigation of chemically nonequilibrium flow about bodies allowing for vibrational relaxation.

  7. Frequency-domain method for discrete frequency noise prediction of rotors in arbitrary steady motion

    NASA Astrophysics Data System (ADS)

    Gennaretti, M.; Testa, C.; Bernardini, G.

    2012-12-01

    A novel frequency-domain formulation for the prediction of the tonal noise emitted by rotors in arbitrary steady motion is presented. It is derived from Farassat's 'Formulation 1A', that is a time-domain boundary integral representation for the solution of the Ffowcs-Williams and Hawkings equation, and represents noise as harmonic response to body kinematics and aerodynamic loads via frequency-response-function matrices. The proposed frequency-domain solver is applicable to rotor configurations for which sound pressure levels of discrete tones are much higher than those of broadband noise. The numerical investigation concerns the analysis of noise produced by an advancing helicopter rotor in blade-vortex interaction conditions, as well as the examination of pressure disturbances radiated by the interaction of a marine propeller with a non-uniform inflow.

  8. Experimental investigation of the flow field and power consumption characteristics of regular and fractal blade impellers in a dynamic mixer

    NASA Astrophysics Data System (ADS)

    Steiros, K.; Bruce, P. J. K.; Buxton, O. R. H.; Vassilicos, J. C.

    2015-11-01

    Experiments have been performed in an octagonal un-baffled water tank, stirred by three radial turbines with different geometry impellers: (1) regular rectangular blades; (2) single-iteration fractal blades; (3) two-iteration fractal blades. Shaft torque was monitored and the power number calculated for each case. Both impellers with fractal geometry blades exhibited a decrease of turbine power number compared to the regular one (15% decrease for single-iteration and 19% for two iterations). Phase locked PIV in the discharge region of the blades revealed that the vortices emanating from the regular blades are more coherent, have higher kinetic energy, and advect faster towards the tank's walls where they are dissipated, compared to their fractal counterparts. This suggests a strong link between vortex production and behaviour and the energy input for the different impellers. Planar PIV measurements in the bulk of the tank showed an increase of turbulence intensity of over 20% for the fractal geometry blades, suggesting higher mixing efficiency. Experiments with pressure measurements on the different geometry blade surfaces are ongoing to investigate the distribution of forces, and calculate hydrodynamic centres of pressure. The authors would like to acknowledge the financial support given by European Union FP7 Marie Curie MULTISOLVE project (Grant Agreement No. 317269).

  9. Multiphase three-dimensional direct numerical simulation of a rotating impeller with code Blue

    NASA Astrophysics Data System (ADS)

    Kahouadji, Lyes; Shin, Seungwon; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    The flow driven by a rotating impeller inside an open fixed cylindrical cavity is simulated using code Blue, a solver for massively-parallel simulations of fully three-dimensional multiphase flows. The impeller is composed of four blades at a 45° inclination all attached to a central hub and tube stem. In Blue, solid forms are constructed through the definition of immersed objects via a distance function that accounts for the object's interaction with the flow for both single and two-phase flows. We use a moving frame technique for imposing translation and/or rotation. The variation of the Reynolds number, the clearance, and the tank aspect ratio are considered, and we highlight the importance of the confinement ratio (blade radius versus the tank radius) in the mixing process. Blue uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of a hybrid front-tracking/level-set method designed complex interfacial topological changes. Parallel GMRES and multigrid iterative solvers are applied to the linear systems arising from the implicit solution for the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across fluid phases. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  10. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  11. Experimental study of dynamic stall on Darrieus wind turbine blades

    NASA Astrophysics Data System (ADS)

    Brochier, G.; Fraunie, P.; Beguier, C.; Paraschivoiu, I.

    1985-12-01

    An experimental study of periodic vortex phenomena was performed on a model of a two straight-bladed Darrieus wind turbine under controlled-rotation conditions in the IMST water tunnel. The main focus of interest was the tip-speed ratios at which dynamic stall appears. Observations of this phenomenon from dye emission and the formation of hydrogen bubbles were made in the form of photographs, film and video recordings. Velocity measurements were obtained using the Laser-Doppler Velocimeter and components of velocity fluctuations could be determined quantitatively.

  12. Some Progress in Large-Eddy Simulation using the 3-D Vortex Particle Method

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.

    1995-01-01

    This two-month visit at CTR was devoted to investigating possibilities in LES modeling in the context of the 3-D vortex particle method (=vortex element method, VEM) for unbounded flows. A dedicated code was developed for that purpose. Although O(N(sup 2)) and thus slow, it offers the advantage that it can easily be modified to try out many ideas on problems involving up to N approx. 10(exp 4) particles. Energy spectrums (which require O(N(sup 2)) operations per wavenumber) are also computed. Progress was realized in the following areas: particle redistribution schemes, relaxation schemes to maintain the solenoidal condition on the particle vorticity field, simple LES models and their VEM extension, possible new avenues in LES. Model problems that involve strong interaction between vortex tubes were computed, together with diagnostics: total vorticity, linear and angular impulse, energy and energy spectrum, enstrophy. More work is needed, however, especially regarding relaxation schemes and further validation and development of LES models for VEM. Finally, what works well will eventually have to be incorporated into the fast parallel tree code.

  13. Blasim: A computational tool to assess ice impact damage on engine blades

    NASA Astrophysics Data System (ADS)

    Reddy, E. S.; Abumeri, G. H.; Chamis, C. C.

    1993-04-01

    A portable computer called BLASIM was developed at NASA LeRC to assess ice impact damage on aircraft engine blades. In addition to ice impact analyses, the code also contains static, dynamic, resonance margin, and supersonic flutter analysis capabilities. Solid, hollow, superhybrid, and composite blades are supported. An optional preprocessor (input generator) was also developed to interactively generate input for BLASIM. The blade geometry can be defined using a series of airfoils at discrete input stations or by a finite element grid. The code employs a coarse, fixed finite element mesh containing triangular plate finite elements to minimize program execution time. Ice piece is modeled using an equivalent spherical objective that has a high velocity opposite that of the aircraft and parallel to the engine axis. For local impact damage assessment, the impact load is considered as a distributed force acting over a region around the impact point. The average radial strain of the finite elements along the leading edge is used as a measure of the local damage. To estimate damage at the blade root, the impact is treated as an impulse and a combined stress failure criteria is employed. Parametric studies of local and root ice impact damage, and post-impact dynamics are discussed for solid and composite blades.

  14. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part I: from the airfoil performance to the very far wake

    NASA Astrophysics Data System (ADS)

    Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire

    2017-11-01

    A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  15. Comparison of Computed and Measured Vortex Evolution for a UH-60A Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim Uddin; Yamauchi, Gloria K.; Kao, David L.

    2013-01-01

    A Computational Fluid Dynamics (CFD) simulation using the Navier-Stokes equations was performed to determine the evolutionary and dynamical characteristics of the vortex flowfield for a highly flexible aeroelastic UH-60A rotor in forward flight. The experimental wake data were acquired using Particle Image Velocimetry (PIV) during a test of the fullscale UH-60A rotor in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The PIV measurements were made in a stationary cross-flow plane at 90 deg rotor azimuth. The CFD simulation was performed using the OVERFLOW CFD solver loosely coupled with the rotorcraft comprehensive code CAMRAD II. Characteristics of vortices captured in the PIV plane from different blades are compared with CFD calculations. The blade airloads were calculated using two different turbulence models. A limited spatial, temporal, and CFD/comprehensive-code coupling sensitivity analysis was performed in order to verify the unsteady helicopter simulations with a moving rotor grid system.

  16. The Effect of Non-Harmonic Active Twist Actuation on BVI Noise

    NASA Technical Reports Server (NTRS)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.

    2011-01-01

    The results of a computational study examining the effects of non-harmonic active-twist control on blade-vortex interaction (BVI) noise for the Apache Active Twist Rotor are presented. Rotor aeroelastic behavior was modeled using the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics code and the rotor noise was predicted using the acoustics code PSU-WOPWOP. The application of non-harmonic active-twist inputs to the main rotor blade system comprised three parameters: azimuthal location to start actuation, azimuthal duration of actuation, and magnitude of actuation. The acoustic analysis was conducted for a single low-speed flight condition of advance ratio mu=0.14 and shaft angle-of-attack, a(sub s)=+6deg. BVI noise levels were predicted on a flat plane of observers located 1.1 rotor diameters beneath the rotor. The results indicate significant reductions of up to 10dB in BVI noise using a starting azimuthal location for actuation of 90?, an azimuthal duration of actuation of 90deg, and an actuation magnitude of +1.5 ft-lb.

  17. Study of Hydrokinetic Turbine Arrays with Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Sale, Danny; Aliseda, Alberto

    2014-11-01

    Marine renewable energy is advancing towards commercialization, including electrical power generation from ocean, river, and tidal currents. The focus of this work is to develop numerical simulations capable of predicting the power generation potential of hydrokinetic turbine arrays-this includes analysis of unsteady and averaged flow fields, turbulence statistics, and unsteady loadings on turbine rotors and support structures due to interaction with rotor wakes and ambient turbulence. The governing equations of large-eddy-simulation (LES) are solved using a finite-volume method, and the presence of turbine blades are approximated by the actuator-line method in which hydrodynamic forces are projected to the flow field as a body force. The actuator-line approach captures helical wake formation including vortex shedding from individual blades, and the effects of drag and vorticity generation from the rough seabed surface are accounted for by wall-models. This LES framework was used to replicate a previous flume experiment consisting of three hydrokinetic turbines tested under various operating conditions and array layouts. Predictions of the power generation, velocity deficit and turbulence statistics in the wakes are compared between the LES and experimental datasets.

  18. DESIGN OF TWO-DIMENSIONAL SUPERSONIC TURBINE ROTOR BLADES WITH BOUNDARY-LAYER CORRECTION

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.

    1994-01-01

    A computer program has been developed for the design of supersonic rotor blades where losses are accounted for by correcting the ideal blade geometry for boundary layer displacement thickness. The ideal blade passage is designed by the method of characteristics and is based on establishing vortex flow within the passage. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal passage, and the final blade geometry is obtained by adding the displacement thicknesses to the ideal nozzle coordinates. The boundary-layer parameters are also used to calculate the aftermixing conditions downstream of the rotor blades assuming the flow mixes to a uniform state. The computer program input consists essentially of the rotor inlet and outlet Mach numbers, upper- and lower-surface Mach numbers, inlet flow angle, specific heat ratio, and total flow conditions. The program gas properties are set up for air. Additional gases require changes to be made to the program. The computer output consists of the corrected rotor blade coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 7094. This program was developed in 1971.

  19. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    DTIC Science & Technology

    2015-10-16

    31 May 2015 4. TITLE AND SUBTITLE VORTEX -SURFACE INTERACTIONS: VORTEX DYNAMICS AND INSTABILITIES Sa. CONTRACT NUMBER Sb. GRANT NUMBER N00014-12...new natural instabilities coming from vortex - vortex or vortex -surface interactions, but also ultimately the possibility to control these flows...design of vortex generators to modify surface pressures. We find a short wave instability of the secondary vortices that are created by the

  20. Comparison of calculated and measured model rotor loading and wake geometry

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    The calculated blade bound circulation and wake geometry are compared with measured results for a model helicopter rotor in hover and forward flight. Hover results are presented for rectangular tip and ogee tip planform blades. The correlation is quite good when the measured wake geometry characteristics are used in the analysis. Available prescribed wake geometry models are found to give fair predictions of the loading, but they do not produce a reasonable prediction of the induced power. Forward flight results are presented for twisted and untwisted blades. Fair correlation between measurements and calculations is found for the bound circulation distribution on the advancing side. The tip vortex geometry in the vicinity of the advancing blade in forward flight was predicted well by the free wake calculation used, although the wake geometry did not have a significant influence on the calculated loading and performance for the cases considered.

  1. A numerical study of fundamental shock noise mechanisms. Ph.D. Thesis - Cornell Univ.

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.

    1995-01-01

    The results of this thesis demonstrate that direct numerical simulation can predict sound generation in unsteady aerodynamic flows containing shock waves. Shock waves can be significant sources of sound in high speed jet flows, on helicopter blades, and in supersonic combustion inlets. Direct computation of sound permits the prediction of noise levels in the preliminary design stage and can be used as a tool to focus experimental studies, thereby reducing cost and increasing the probability of a successfully quiet product in less time. This thesis reveals and investigates two mechanisms fundamental to sound generation by shocked flows: shock motion and shock deformation. Shock motion is modeled by the interaction of a sound wave with a shock. During the interaction, the shock wave begins to move and the sound pressure is amplified as the wave passes through the shock. The numerical approach presented in this thesis is validated by the comparison of results obtained in a quasi-one dimensional simulation with linear theory. Analysis of the perturbation energy demonstrated for the first time that acoustic energy is generated by the interaction. Shock deformation is investigated by the numerical simulation of a ring vortex interacting with a shock. This interaction models the passage of turbulent structures through the shock wave. The simulation demonstrates that both acoustic waves and contact surfaces are generated downstream during the interaction. Analysis demonstrates that the acoustic wave spreads cylindrically, that the sound intensity is highly directional, and that the sound pressure level increases significantly with increasing shock strength. The effect of shock strength on sound pressure level is consistent with experimental observations of shock noise, indicating that the interaction of a ring vortex with a shock wave correctly models a dominant mechanism of shock noise generation.

  2. Effect of tip flange on tip leakage flow of small axial flow fans

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Jin, Yingzi; Jin, Yuzhen

    2014-02-01

    Aerodynamic performance of an axial flow fan is closely related to its tip clearance leakage flow. In this paper, the hot-wire anemometer is used to measure the three dimensional mean velocity near the blade tips. Moreover, the filtered N-S equations with finite volume method and RNG k-ɛ turbulence model are adopted to carry out the steady simulation calculation of several fans that differ only in tip flange shape and number. The large eddy simulation and the FW-H noise models are adopted to carry out the unsteady numerical calculation and aerodynamic noise prediction. The results of simulation calculation agree roughly with that of tests, which proves the numerical calculation method is feasible.The effects of tip flange shapes and numbers on the blade tip vortex structure and the characteristics are analyzed. The results show that tip flange of the fan has a certain influence on the characteristics of the fan. The maximum efficiencies for the fans with tip flanges are shifted towards partial flow with respect to the design point of the datum fan. Furthermore, the noise characteristics for the fans with tip flanges have become more deteriorated than that for the datum fan. Tip flange contributes to forming tip vortex shedding and the effect of the half-cylinder tip flange on tip vortex shedding is obvious. There is a distinct relationship between the characteristics of the fan and tip vortex shedding. The research results provide the profitable reference for the internal flow mechanism of the performance optimization of small axial flow fans.

  3. A New Joint-Blade SENSE Reconstruction for Accelerated PROPELLER MRI

    PubMed Central

    Lyu, Mengye; Liu, Yilong; Xie, Victor B.; Feng, Yanqiu; Guo, Hua; Wu, Ed X.

    2017-01-01

    PROPELLER technique is widely used in MRI examinations for being motion insensitive, but it prolongs scan time and is restricted mainly to T2 contrast. Parallel imaging can accelerate PROPELLER and enable more flexible contrasts. Here, we propose a multi-step joint-blade (MJB) SENSE reconstruction to reduce the noise amplification in parallel imaging accelerated PROPELLER. MJB SENSE utilizes the fact that PROPELLER blades contain sharable information and blade-combined images can serve as regularization references. It consists of three steps. First, conventional blade-combined images are obtained using the conventional simple single-blade (SSB) SENSE, which reconstructs each blade separately. Second, the blade-combined images are employed as regularization for blade-wise noise reduction. Last, with virtual high-frequency data resampled from the previous step, all blades are jointly reconstructed to form the final images. Simulations were performed to evaluate the proposed MJB SENSE for noise reduction and motion correction. MJB SENSE was also applied to both T2-weighted and T1-weighted in vivo brain data. Compared to SSB SENSE, MJB SENSE greatly reduced the noise amplification at various acceleration factors, leading to increased image SNR in all simulation and in vivo experiments, including T1-weighted imaging with short echo trains. Furthermore, it preserved motion correction capability and was computationally efficient. PMID:28205602

  4. A New Joint-Blade SENSE Reconstruction for Accelerated PROPELLER MRI.

    PubMed

    Lyu, Mengye; Liu, Yilong; Xie, Victor B; Feng, Yanqiu; Guo, Hua; Wu, Ed X

    2017-02-16

    PROPELLER technique is widely used in MRI examinations for being motion insensitive, but it prolongs scan time and is restricted mainly to T2 contrast. Parallel imaging can accelerate PROPELLER and enable more flexible contrasts. Here, we propose a multi-step joint-blade (MJB) SENSE reconstruction to reduce the noise amplification in parallel imaging accelerated PROPELLER. MJB SENSE utilizes the fact that PROPELLER blades contain sharable information and blade-combined images can serve as regularization references. It consists of three steps. First, conventional blade-combined images are obtained using the conventional simple single-blade (SSB) SENSE, which reconstructs each blade separately. Second, the blade-combined images are employed as regularization for blade-wise noise reduction. Last, with virtual high-frequency data resampled from the previous step, all blades are jointly reconstructed to form the final images. Simulations were performed to evaluate the proposed MJB SENSE for noise reduction and motion correction. MJB SENSE was also applied to both T2-weighted and T1-weighted in vivo brain data. Compared to SSB SENSE, MJB SENSE greatly reduced the noise amplification at various acceleration factors, leading to increased image SNR in all simulation and in vivo experiments, including T1-weighted imaging with short echo trains. Furthermore, it preserved motion correction capability and was computationally efficient.

  5. Coupled-Flow Simulation of HP-LP Turbines Has Resulted in Significant Fuel Savings

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2001-01-01

    Our objective was to create a high-fidelity Navier-Stokes computer simulation of the flow through the turbines of a modern high-bypass-ratio turbofan engine. The simulation would have to capture the aerodynamic interactions between closely coupled high- and low-pressure turbines. A computer simulation of the flow in the GE90 turbofan engine's high-pressure (HP) and low-pressure (LP) turbines was created at GE Aircraft Engines under contract with the NASA Glenn Research Center. The three-dimensional steady-state computer simulation was performed using Glenn's average-passage approach named APNASA. The areas upstream and downstream of each blade row mutually interact with each other during engine operation. The embedded blade row operating conditions are modeled since the average passage equations in APNASA actively include the effects of the adjacent blade rows. The turbine airfoils, platforms, and casing are actively cooled by compressor bleed air. Hot gas leaks around the tips of rotors through labyrinth seals. The flow exiting the high work HP turbines is partially transonic and, therefore, has a strong shock system in the transition region. The simulation was done using 121 processors of a Silicon Graphics Origin 2000 (NAS 02K) cluster at the NASA Ames Research Center, with a parallel efficiency of 87 percent in 15 hr. The typical average-passage analysis mesh size per blade row was 280 by 45 by 55, or approx.700,000 grid points. The total number of blade rows was 18 for a combined HP and LP turbine system including the struts in the transition duct and exit guide vane, which contain 12.6 million grid points. Design cycle turnaround time requirements ran typically from 24 to 48 hr of wall clock time. The number of iterations for convergence was 10,000 at 8.03x10(exp -5) sec/iteration/grid point (NAS O2K). Parallel processing by up to 40 processors is required to meet the design cycle time constraints. This is the first-ever flow simulation of an HP and LP turbine. In addition, it includes the struts in the transition duct and exit guide vanes.

  6. Flow and heat transfer experiments in the turbine airfoil/endwall region

    NASA Astrophysics Data System (ADS)

    Chung, Jin Taek

    An experimental investigation of the three-dimensional flow and heat transfer near the junction between the endwall and suction wall of a gas turbine was performed. A large-scale, two-half-blade facility which simulates a turbine cascade was introduced. The simulator consists of two large half-blade sections, one wall simulating the pressure surface and the other wall simulating the suction surface. The advantage of this configuration is that the features of the secondary flow are large, because of the relatively large test section, and the flow is easily accessible with probes. Qualification of this simulator was by comparison to a multi-blade cascade flow. Various flow visualization techniques--oil and lampblack, ink and oil of wintergeeen, a single tuft probe, and a tuft grid--were employed to confirm that the important features of the cascade flow were replicated in this simulator. The triangular region on the suction surface, which was affected by the passage vortex, and the endwall secondary crossflow were observed by shear stress visualization and the liquid crystal measurement techniques. In order to investigate the effects of the turbulence level on the secondary flow in a turbine passage, a turbulence generator, designed to reproduce the characteristics of a combustor exit flow, was built. The generator was designed not only to generate a high turbulence level but to produce three main features of a combustor exit flow. The generator produced a turbulence intensity level of about 10 percent and an integral length scale of 5 centimeters. It was observed that the endwall secondary flow, including the passage vortex, is not significantly influenced by freestream turbulence levels up to 10 percent. A flow management technique using a boundary layer fence designed to reduce some harmful effects of secondary flow in the endwall region of a turbine passage was introduced. The boundary layer fence is effective in changing the passage of the vortex and reducing the influence of the vortex near the suction wall. The fence was even more effective in reducing secondary flows for high levels of freestream turbulence (approximately 10 percent).

  7. An aerodynamic study on flexed blades for VAWT applications

    NASA Astrophysics Data System (ADS)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-12-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  8. Petascale turbulence simulation using a highly parallel fast multipole method on GPUs

    NASA Astrophysics Data System (ADS)

    Yokota, Rio; Barba, L. A.; Narumi, Tetsu; Yasuoka, Kenji

    2013-03-01

    This paper reports large-scale direct numerical simulations of homogeneous-isotropic fluid turbulence, achieving sustained performance of 1.08 petaflop/s on GPU hardware using single precision. The simulations use a vortex particle method to solve the Navier-Stokes equations, with a highly parallel fast multipole method (FMM) as numerical engine, and match the current record in mesh size for this application, a cube of 40963 computational points solved with a spectral method. The standard numerical approach used in this field is the pseudo-spectral method, relying on the FFT algorithm as the numerical engine. The particle-based simulations presented in this paper quantitatively match the kinetic energy spectrum obtained with a pseudo-spectral method, using a trusted code. In terms of parallel performance, weak scaling results show the FMM-based vortex method achieving 74% parallel efficiency on 4096 processes (one GPU per MPI process, 3 GPUs per node of the TSUBAME-2.0 system). The FFT-based spectral method is able to achieve just 14% parallel efficiency on the same number of MPI processes (using only CPU cores), due to the all-to-all communication pattern of the FFT algorithm. The calculation time for one time step was 108 s for the vortex method and 154 s for the spectral method, under these conditions. Computing with 69 billion particles, this work exceeds by an order of magnitude the largest vortex-method calculations to date.

  9. On the basically single-type excitation source of resonance in the wind tunnel and in the hydroturbine channel of a hydraulic power plant

    NASA Astrophysics Data System (ADS)

    Karavosov, R. K.; Prozorov, A. G.

    2012-01-01

    We have investigated the spectra of pressure pulsations in the near field of the open working section of the wind tunnel with a vortex flow behind the tunnel blower formed like the flow behind the hydroturbine of a hydraulic power plant. We have made a comparison between the measurement data for pressure pulsations and the air stream velocity in tunnels of the above type and in tunnels in which a large-scale vortex structure behind the blower is not formed. It has been established that the large-scale vortex formation in the incompressible medium behind the blade system in the wind tunnel is a source of narrow-band acoustic radiation capable of exciting resonance self-oscillations in the tunnel channel.

  10. Periodic acoustic radiation from a low aspect ratio propeller

    NASA Astrophysics Data System (ADS)

    Muench, John David

    An experimental program was conducted with the objective of providing high fidelity measurements of propeller inflow, unsteady blade surface pressures, and discrete acoustic radiation over a wide range of speeds. Anechoic wind tunnel experiments were preformed using the SISUP propeller. The upstream stator blades generate large wake deficits that result in periodic unsteady blade forces that acoustically radiate at blade passing frequency and higher harmonics. The experimental portion of this research successfully measured the inflow velocity, blade span unsteady pressures and directive characteristics of the blade-rate radiated noise associated with this complex propeller geometry while the propeller was operating on design. The spatial harmonic decomposition of the inflow revealed significant coefficients at 8, 16 and 24. The magnitude of the unsteady blade forces scale as U4 and linearly shift in frequency with speed. The magnitude of the discrete frequency acoustic levels associated with blade rate scale as U6 and also shift linearly with speed. At blade-rate, the far-field acoustic directivity has a dipole-like directivity oriented perpendicular to the inflow. At the first harmonic of blade-rate, the far-field directivity is not as well defined. The experimental inflow and blade surface pressure results were used to generate an acoustic prediction at blade rate based on a blade strip theory model developed by Blake (1986). The predicted acoustic levels were compared to the experimental results. The model adequately predicts the measured sound field at blade rate at 120 ft/sec. Radiated noise at blade-rate for 120 ft/s can be described by a dipole, whose orientation is perpendicular to the flow and is generated by the interaction of the rotating propeller with the 8th harmonic of the inflow. At blade-rate for 60 ft/s, the model under predicts measured levels. At the first harmonic of blade-rate, for 120 ft/s, the sound field is described as a combination of dipole sources, one generated by the 16 th harmonic, perpendicular to the inflow, and the other generated by the 12th harmonic of the inflow parallel to the inflow. At the first harmonic of blade-rate for 60 ft/s, the model under predicts measured levels.

  11. Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards

    NASA Astrophysics Data System (ADS)

    Kudela, Henryk; Kosior, Andrzej

    2014-08-01

    Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.

  12. User's manual for UCAP: Unified Counter-Rotation Aero-Acoustics Program

    NASA Technical Reports Server (NTRS)

    Culver, E. M.; Mccolgan, C. J.

    1993-01-01

    This is the user's manual for the Unified Counter-rotation Aeroacoustics Program (UCAP), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady air loading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for nonlinearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counter-rotation.

  13. A Note about Self-Induced Velocity Generated by a Lifting-Line Wing or Rotor Blade

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2006-01-01

    This report presents an elementary analysis of the induced velocity created by a field of vortices that reside in the wake of a rotor blade. Progress achieved by other researchers in the last 70 years is briefly reviewed. The present work is presented in four stages of complexity that carry a lifting-line representation of a fixed wing into a single-blade rotor. The analysis leads to the conclusion that the lifting rotor's spiraling vortex wake structure has very high induced power when compared to the ideal wing. For an advanced ratio of one-half, induced power is on the order of 10 times that of the wing when the comparison is made at wingspan equal to rotor diameter and wing and rotor having equal lift.

  14. User's manual for UCAP: Unified Counter-Rotation Aero-Acoustics Program

    NASA Astrophysics Data System (ADS)

    Culver, E. M.; McColgan, C. J.

    1993-04-01

    This is the user's manual for the Unified Counter-rotation Aeroacoustics Program (UCAP), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady air loading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for nonlinearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counter-rotation.

  15. Low-Pressure Turbine Separation Control: Comparison With Experimental Data

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    2002-01-01

    The present work details a computational study, using the Glenn HT code, that analyzes the use of vortex generator jets (VGJs) to control separation on a low-pressure turbine (LPT) blade at low Reynolds numbers. The computational results are also compared with the experimental data for steady VGJs. It is found that the code determines the proper location of the separation point on the suction surface of the baseline blade (without any VGJ) for Reynolds numbers of 50,000 or less. Also, the code finds that the separated region on the suction surface of the blade vanishes with the use of VGJs. However, the separated region and the wake characteristics are not well predicted. The wake width is generally over-predicted while the wake depth is under-predicted.

  16. Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.

    2017-12-01

    Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.

  17. Prediction of aerodynamic tonal noise from open rotors

    NASA Astrophysics Data System (ADS)

    Sharma, Anupam; Chen, Hsuan-nien

    2013-08-01

    A numerical approach for predicting tonal aerodynamic noise from "open rotors" is presented. "Open rotor" refers to an engine architecture with a pair of counter-rotating propellers. Typical noise spectra from an open rotor consist of dominant tones, which arise due to both the steady loading/thickness and the aerodynamic interaction between the two bladerows. The proposed prediction approach utilizes Reynolds Averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) simulations to obtain near-field description of the noise sources. The near-to-far-field propagation is then carried out by solving the Ffowcs Williams-Hawkings equation. Since the interest of this paper is limited to tone noise, a linearized, frequency domain approach is adopted to solve the wake/vortex-blade interaction problem.This paper focuses primarily on the speed scaling of the aerodynamic tonal noise from open rotors. Even though there is no theoretical mode cut-off due to the absence of nacelle in open rotors, the far-field noise is a strong function of the azimuthal mode order. While the steady loading/thickness noise has circumferential modes of high order, due to the relatively large number of blades (≈10-12), the interaction noise typically has modes of small orders. The high mode orders have very low radiation efficiency and exhibit very strong scaling with Mach number, while the low mode orders show a relatively weaker scaling. The prediction approach is able to capture the speed scaling (observed in experiment) of the overall aerodynamic noise very well.

  18. Analytical model of rotor wake aerodynamics in ground effect

    NASA Technical Reports Server (NTRS)

    Saberi, H. A.

    1983-01-01

    The model and the computer program developed provides the velocity, location, and circulation of the tip vortices of a two-blade helicopter in and out of the ground effect. Comparison of the theoretical results with some experimental measurements for the location of the wake indicate that there is excellent accuracy in the vicinity of the rotor and fair amount of accuracy far from it. Having the location of the wake at all times enables us to compute the history of the velocity and the location of any point in the flow. The main goal of out study, induced velocity at the rotor, can also be calculated in addition to stream lines and streak lines. Since the wake location close to the rotor is known more accurately than at other places, the calculated induced velocity over the disc should be a good estimate of the real induced velocity, with the exception of the blade location, because each blade was replaced only by a vortex line. Because no experimental measurements of the wake close to the ground were available to us, quantitative evaluation of the theoretical wake was not possible. But qualitatively we have been able to show excellent agreement. Comparison of flow visualization with out results has indicated the location of the ground vortex is estimated excellently. Also the flow field in hover is well represented.

  19. Study of tip clearance flow in a turbomachinery cascade using large eddy simulation

    NASA Astrophysics Data System (ADS)

    You, Donghyun

    In liquid handling systems like pumps and ducted propulsors, low pressure events in the vicinity and downstream of the rotor tip gap can induce tip-leakage cavitation which leads to noise, vibration, performance loss, and erosions of blade and casing wall. In order to analyze the dynamics of the tip-clearance flow and determine the underlying mechanism for the low pressure events, a newly developed large-eddy simulation (LES) solver which combines an immersed-boundary method with a generalized curvilinear structured grid has been employed. An analysis of the LES results has been performed to understand the mean flow field, turbulence characteristics, vortex dynamics, and pressure fluctuations in the turbomachinery cascade with tip gap. In the cascade passage, the tip-leakage jet, which is generated by the pressure difference between the pressure and suction sides of the blade tip, is found to produce highly enhanced vorticity magnitude and significant levels of turbulent kinetic energy. Based on the understanding of the flow field, a guideline for reducing viscous loss in the cascade is provided. Analyses of the energy spectra and space-time correlations of the velocity fluctuations suggest that the tip-leakage vortex is subject to pitchwise wandering motion. The largest pressure drop and most intense pressure fluctuations due to the formation of the tip-leakage vortex are found at the location where the strongest portion of the tip-leakage vortex is found. Present study suggests that the tip-leakage vortex needs to be controlled in its origin to reduce cavitation in the present configuration. The effects of tip-gap size on the end-wall vortical structures and on the velocity and pressure fields have been investigated. The present analysis indicates that the mechanism for the generation of the vorticity and turbulent kinetic energy is mostly unchanged by the tip-gap size variation. However, larger tip-gap sizes are found to be more inductive to tip-leakage cavitation judged by the levels of negative mean pressure and pressure fluctuations.

  20. Influence of the conservative rotor loads on the near wake of a wind turbine

    NASA Astrophysics Data System (ADS)

    Herráez, I.; Micallef, D.; van Kuik, G. A. M.

    2017-05-01

    The presence of conservative forces on rotor blades is neglected in the blade element theory and all the numerical methods derived from it (like e.g. the blade element momentum theory and the actuator line technique). This might seem a reasonable simplification of the real flow of rotor blades, since conservative loads, by definition, do not contribute to the power conversion. However, conservative loads originating from the chordwise bound vorticity might affect the tip vortex trajectory, as we discussed in a previous work. In that work we also hypothesized that this effect, in turn, could influence the wake induction and correspondingly the rotor performance. In the current work we extend a standard actuator line model in order to account for the conservative loads at the blade tip. This allows to isolate the influence of conservative forces from other effects. The comparison of numerical results with and without conservative loads enables to confirm qualitatively their relevance for the near wake and the rotor performance. However, an accurate quantitative assessment of the effect still remains out of reach due to the inherent uncertainty of the numerical model.

  1. Vortex lattice structures in YNi{sub 2}B{sub 2}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yethiraj, M.; Paul, D.M.; Tomy, C.V.

    The authors observe a flux lattice with square symmetry in the superconductor YNi{sub 2}B{sub 2}C when the applied field is parallel to the c-axis of the crystal. A square lattice observed previously in the isostructural magnetic analog ErNi{sub 2}B{sub 2}C was attributed to the interaction between magnetic order in that system and the flux lattice. Since the Y-based compound does not order magnetically, it is clear that the structure of the flux lattice is unrelated to magnetic order. In fact, they show that the flux lines have a square cross-section when the applied field is parallel to the c-axis ofmore » the crystal, since the measured penetration depth along the 100 crystal direction is larger than the penetration depth along the 110 by approximately 60%. This is the likely reason for the square symmetry of the lattice. Although they find considerable disorder in the arrangement of the flux lines at 2.5T, no melting of the vortex lattice was observed.« less

  2. Vortex lattice structures in YNi{sub 2}B{sub 2}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yethiraj, M.; Paul, D.M.; Tomy, C.V.

    We observe a flux lattice with square symmetry in the superconductor YNi{sub 2}B{sub 2}C when the applied field is parallel to the c-axis of the crystal. A square lattice observed previously in the isostructural magnetic analog ErNi{sub 2}B{sub 2}C was attributed to the interaction between magnetic order in that system and the flux lattice. Since the Y-based compound does not order magnetically, it is clear that the structure of the flux lattice is unrelated to magnetic order. In fact, we show that the flux lines have a square cross-section when the applied field is parallel to the c-axis of themore » crystal, since the measured penetration depth along the 110 crystal direction is smaller than the penetration depth along the 100 by approximately 30%. This causes the square symmetry of the lattice. Although we find considerable disorder in the arrangement of the flux lines at 2.5T, no melting of the vortex lattice was observed.« less

  3. Controlling runaway vortex via externally injected high-frequency electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Guo, Zehua; McDevitt, Chris; Tang, Xianzhu

    2017-10-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as the whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by parallel electric field. By introducing a wave that resonantly interacts with runaways at a particular range of energy that is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  4. Technical Evaluation Report on the Fluid Dynamics Panel Symposium on Aerodynamics and Acoustics of Propellers.

    DTIC Science & Technology

    1985-07-01

    vortex filaments instead of the continuous sheet of vorticity used by Goldstein the propeller-nacelle interaction analysis also represents the wake by...the US Manufacturers in parallel with the development of the experimental propeller models , illustrated on Figre 0, these analysis methods range from...still poor, the difference between the two methods being mainly due to .,ifferent approaches used for obtaining lift. The Euler analysis of swirl angle

  5. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    NASA Technical Reports Server (NTRS)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On the nozzle passage endwall surfaces the presence of strong pressure gradients and secondary flow limit the validity of the boundary layer code.

  6. PyFly: A fast, portable aerodynamics simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.

    Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less

  7. PyFly: A fast, portable aerodynamics simulator

    DOE PAGES

    Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.; ...

    2018-03-14

    Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less

  8. LES of an Advancing Helicopter Rotor, and Near to Far Wake Assessment

    NASA Astrophysics Data System (ADS)

    Caprace, Denis-Gabriel; Duponcheel, Matthieu; Chatelain, Philippe; Winckelmans, Grégoire

    2017-11-01

    Helicopter wake physics involve complex, unsteady vortical flows which have been only scarcely addressed in past studies. The present work focuses on LES of the wake flow behind an advancing rotor, to support the investigation of rotorcraft wake physics and decay mechanisms. A hybrid Vortex Particle-Mesh (VPM) method is employed to simulate the wake of an articulated four-bladed rotor in trimmed conditions, at an advance ratio of 0.41. The simulation domain extends to 30 rotor diameters downstream. The coarse scale aerodynamics of the blades are accounted for through enhanced immersed lifting lines. The vorticity generation mechanisms, the roll-up of the near wake and the resulting established far wake are described (i) qualitatively in terms of vortex dynamics using rotor polar plots and 3D visualizations; (ii) quantitatively using classical integral diagnostics. The power spectra measured by velocity probes in the wake are also presented. The analysis shows that the wake reaches a fully turbulent equilibrium state at a distance of about 30 diameters downstream. This work is supported by the Belgian french community F.R.S.-FNRS.

  9. Design of off-statistics axial-flow fans by means of vortex law optimization

    NASA Astrophysics Data System (ADS)

    Lazari, Andrea; Cattanei, Andrea

    2014-12-01

    Off-statistics input data sets are common in axial-flow fans design and may easily result in some violation of the requirements of a good aerodynamic blade design. In order to circumvent this problem, in the present paper, a solution to the radial equilibrium equation is found which minimizes the outlet kinetic energy and fulfills the aerodynamic constraints, thus ensuring that the resulting blade has acceptable aerodynamic performance. The presented method is based on the optimization of a three-parameters vortex law and of the meridional channel size. The aerodynamic quantities to be employed as constraints are individuated and their suitable ranges of variation are proposed. The method is validated by means of a design with critical input data values and CFD analysis. Then, by means of systematic computations with different input data sets, some correlations and charts are obtained which are analogous to classic correlations based on statistical investigations on existing machines. Such new correlations help size a fan of given characteristics as well as study the feasibility of a given design.

  10. Impact of current speed on mass flux to a model flexible seagrass blade

    NASA Astrophysics Data System (ADS)

    Lei, Jiarui; Nepf, Heidi

    2016-07-01

    Seagrass and other freshwater macrophytes can acquire nutrients from surrounding water through their blades. This flux may depend on the current speed (U), which can influence both the posture of flexible blades (reconfiguration) and the thickness of the flux-limiting diffusive layer. The impact of current speed (U) on mass flux to flexible blades of model seagrass was studied through a combination of laboratory flume experiments, numerical modeling and theory. Model seagrass blades were constructed from low-density polyethylene (LDPE), and 1, 2-dichlorobenzene was used as a tracer chemical. The tracer mass accumulation in the blades was measured at different unidirectional current speeds. A numerical model was used to estimate the transfer velocity (K) by fitting the measured mass uptake to a one-dimensional diffusion model. The measured transfer velocity was compared to predictions based on laminar and turbulent boundary layers developing over a flat plate parallel to flow, for which K∝U0.5 and ∝U, respectively. The degree of blade reconfiguration depended on the dimensionless Cauchy number, Ca, which is a function of both the blade stiffness and flow velocity. For large Ca, the majority of the blade was parallel to the flow, and the measured transfer velocity agreed with laminar boundary layer theory, K∝U0.5. For small Ca, the model blades remained upright, and the flux to the blade was diminished relative to the flat-plate model. A meadow-scale analysis suggests that the mass exchange at the blade scale may control the uptake at the meadow scale.

  11. Panel method for the wake effects on the aerodynamics of vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Goyal, Udit; Rempfer, Dietmar

    2011-11-01

    A formulation based on the panel method is implemented for studying the unsteady aerodynamics of straight-bladed vertical-axis wind turbines. A combination of source and vortex distributions is used to represent an airfoil in Darrieus type motion. Our approach represents a low-cost computational technique that takes into account the dynamic changes in angle of attack of the blade during a cycle. A time-stepping mechanism is introduced for the wake convection, and its effects on the aerodynamic forces on the blade are discussed. The focus of the study is to describe the effect of the trailing wakes on the upstream flow conditions and coefficient of performance of the turbines. Results show a decrease in Cp until the wake structure develops and assumes a quasi-steady behavior. A comparison with other models such as single and multiple streamtubes is discussed, and optimization of the blade pitch angle is performed to increase the instantaneous torque and hence the power output from the turbine.

  12. Simultaneous Boundary-Layer Transition, Tip Vortex, and Blade Deformation Measurements of a Rotor in Hover

    NASA Technical Reports Server (NTRS)

    Heineck, James; Schairer, Edward; Ramasamy, Manikandan; Roozeboom, Nettie

    2016-01-01

    This paper describes simultaneous optical measurements of a sub-scale helicopter rotor in the U.S. Army Hover Chamber at NASA Ames Research Center. The measurements included thermal imaging of the rotor blades to detect boundary layer transition; retro-reflective background-oriented schlieren (RBOS) to visualize vortices; and stereo photogrammetry to measure displacements of the rotor blades, to compute spatial coordinates of the vortices from the RBOS data, and to map the thermal imaging data to a three-dimensional surface grid. The test also included an exploratory effort to measure flow near the rotor tip by tomographic particle image velocimetry (tomo PIV)an effort that yielded valuable experience but little data. The thermal imaging was accomplished using an image-derotation method that allowed long integration times without image blur. By mapping the thermal image data to a surface grid it was possible to accurately locate transition in spatial coordinates along the length of the rotor blade.

  13. Vortex/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1989-01-01

    Detailed and high quality measurements with hot-wires and pressure probes are presented for two different interactions between a vortex pair with common flow down and a turbulent boundary layer. The interactions studied have larger values of the vortex circulation parameter than those studied previously. The results indicate that the boundary layer under the vortex pair is thinned by lateral divergence and that boundary layer fluid is entrained into the vortex. The effect of the interaction on the vortex core (other than the inviscid effect of the image vortices behind the surface) is small.

  14. Research investigation of helicopter main rotor/tail rotor interaction noise

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Kohlhepp, F.

    1988-01-01

    Acoustic measurements were obtained in a Langley 14 x 22 foot Subsonic Wind Tunnel to study the aeroacoustic interaction of 1/5th scale main rotor, tail rotor, and fuselage models. An extensive aeroacoustic data base was acquired for main rotor, tail rotor, fuselage aerodynamic interaction for moderate forward speed flight conditions. The details of the rotor models, experimental design and procedure, aerodynamic and acoustic data acquisition and reduction are presented. The model was initially operated in trim for selected fuselage angle of attack, main rotor tip-path-plane angle, and main rotor thrust combinations. The effects of repositioning the tail rotor in the main rotor wake and the corresponding tail rotor countertorque requirements were determined. Each rotor was subsequently tested in isolation at the thrust and angle of attack combinations for trim. The acoustic data indicated that the noise was primarily dominated by the main rotor, especially for moderate speed main rotor blade-vortex interaction conditions. The tail rotor noise increased when the main rotor was removed indicating that tail rotor inflow was improved with the main rotor present.

  15. Vortex Shedding from a Vibrating Cable with Attached Spherical Bodies in a Linear Shear Flow.

    DTIC Science & Technology

    1982-10-27

    correlation and strengthened parallel vo:tex shedding. The test model used in the present study was a flexible cable. The vortex street wake behind a vibrating...pattern, different tha. the characteristic patterns associated with either the stationary or vibrating locked-on vortex street wakes was observed... vortex shedding to the vibration of a rigid or flexible cylinder has been explored by Griffin [17]. He presents a model for a universal wake Strouhal

  16. Limitations of Phased Array Beamforming in Open Rotor Noise Source Imaging

    NASA Technical Reports Server (NTRS)

    Horvath, Csaba; Envia, Edmane; Podboy, Gary G.

    2013-01-01

    Phased array beamforming results of the F31/A31 historical baseline counter-rotating open rotor blade set were investigated for measurement data taken on the NASA Counter-Rotating Open Rotor Propulsion Rig in the 9- by 15-Foot Low-Speed Wind Tunnel of NASA Glenn Research Center as well as data produced using the LINPROP open rotor tone noise code. The planar microphone array was positioned broadside and parallel to the axis of the open rotor, roughly 2.3 rotor diameters away. The results provide insight as to why the apparent noise sources of the blade passing frequency tones and interaction tones appear at their nominal Mach radii instead of at the actual noise sources, even if those locations are not on the blades. Contour maps corresponding to the sound fields produced by the radiating sound waves, taken from the simulations, are used to illustrate how the interaction patterns of circumferential spinning modes of rotating coherent noise sources interact with the phased array, often giving misleading results, as the apparent sources do not always show where the actual noise sources are located. This suggests that a more sophisticated source model would be required to accurately locate the sources of each tone. The results of this study also have implications with regard to the shielding of open rotor sources by airframe empennages.

  17. Water-fat separation with parallel imaging based on BLADE.

    PubMed

    Weng, Dehe; Pan, Yanli; Zhong, Xiaodong; Zhuo, Yan

    2013-06-01

    Uniform suppression of fat signal is desired in clinical applications. Based on phase differences introduced by different chemical shift frequencies, Dixon method and its variations are used as alternatives of fat saturation methods, which are sensitive to B0 inhomogeneities. Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) separates water and fat images with flexible echo shifting. Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER, alternatively termed as BLADE), in conjunction with IDEAL, yields Turboprop IDEAL (TP-IDEAL) and allows for decomposition of water and fat signal with motion correction. However, the flexibility of its parameter setting is limited, and the related phase correction is complicated. To address these problems, a novel method, BLADE-Dixon, is proposed in this study. This method used the same polarity readout gradients (fly-back gradients) to acquire in-phase and opposed-phases images, which led to less complicated phase correction and more flexible parameter setting compared to TP-IDEAL. Parallel imaging and undersampling were integrated to reduce scan time. Phantom, orbit, neck and knee images were acquired with BLADE-Dixon. Water-fat separation results were compared to those measured with conventional turbo spin echo (TSE) Dixon and TSE with fat saturation, respectively, to demonstrate the performance of BLADE-Dixon. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Unsteady blade-surface pressures on a large-scale advanced propeller: Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady 3-D Euler analysis technique is employed to compute the flow field of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (takeoff), the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  19. Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berg, D. E.

    Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.

  20. The construction and operation of a water tunnel in application to flow visualization studies of an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Olsen, J. H.; Liu, H. T.

    1973-01-01

    The water tunnel which was constructed at the NASA Ames Research Center is described along with the flow field adjacent to an oscillating airfoil. The design and operational procedures of the tunnel are described in detail. Hydrogen bubble and thymol blue techniques are used to visualize the flow field. Results of the flow visualizations are presented in a series of still pictures and a high speed movie. These results show that time stall is more complicated than simple shedding from the leading edge or the trailing edge, particularly at relatively low frequency oscillations comparable to those of a helicopter blade. Therefore, any successful theory for predicting the stall loads on the helicopter blades must treat an irregular separated region rather than a discrete vortex passing over each blade surface.

  1. Unsteady blade surface pressures on a large-scale advanced propeller - Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady three dimensional Euler analysis technique is employed to compute the flowfield of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (take-off) the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  2. Magnetotransport study of topological superconductor Cu0.10Bi2Se3 single crystal

    NASA Astrophysics Data System (ADS)

    Li, M. T.; Fang, Y. F.; Zhang, J. C.; Yi, H. M.; Zhou, X. J.; Lin, C. T.

    2018-03-01

    We report a magnetotransport study of vortex-pinning in Cu0.10Bi2Se3 single crystal. The sample is demonstrated to be in clean limit and absent of Pauli spin-limiting effect. Interestingly, the resistivity versus magnetic field shows an anomalously pronounced increase when approaching the superconducting-normal state boundary for both {{B}app}\\parallel ab and {{B}app}\\parallel c configurations. We have investigated the flux-flowing behavior under various magnetic fields and temperatures, enabling us to establish its anisotropic vortex phase diagram. Our results suggest the Cu0.10Bi2Se3 can be served as one unique material for exploring exotic surface vortex states in topological superconductors.

  3. Evaluation of the impact of noise metrics on tiltrotor aircraft design

    NASA Technical Reports Server (NTRS)

    Sternfeld, H.; Spencer, R.; Ziegenbein, P.

    1995-01-01

    A subjective noise evaluation was conducted in which the test participants evaluated the annoyance of simulated sounds representative of future civil tiltrotor aircraft. The subjective responses were correlated with the noise metrics of A-weighted sound pressure level, overall sound pressure level, and perceived level. The results indicated that correlation between subjective response and A-weighted sound pressure level is considerably enhanced by combining it in a multiple regression with overall sound pressure level. As a single metric, perceived level correlated better than A-weighted sound pressure level due to greater emphasis on low frequency noise components. This latter finding was especially true for indoor noise where the mid and high frequency noise components are attenuated by typical building structure. Using the results of the subjective noise evaluation, the impact on tiltrotor aircraft design was also evaluated. While A-weighted sound pressure level can be reduced by reduction in tip speed, an increase in number of rotor blades is required to achieve significant reduction of low frequency noise as measured by overall sound pressure level. Additional research, however, is required to achieve comparable reductions in impulsive noise due to blade-vortex interaction, and also to achieve reduction in broad band noise.

  4. Turbulence production due to secondary vortex cutting in a turbine rotor

    NASA Astrophysics Data System (ADS)

    Binder, A.

    1985-10-01

    Measurements of the unsteady flow field near and within a turbine rotor were made by means of a Laser-2-Focus velocimeter. The testing was performed in a single-stage cold-air turbine at part-load and near-design conditions. Random unsteadiness and flow angle results indicate that the secondary vortices of the stator break down after being cut and deformed by the rotor blades. A quantitative comparison shows that some of the energy contained in these secondary vortices is thereby converted into turbulence energy in the front part of the rotor. An attempt is made to explain this turbulence energy production as caused by the vortex breakdown.

  5. Interaction of a vortex and a premixed flame

    NASA Technical Reports Server (NTRS)

    Ferziger, Joel H.; Rutland, Christopher J.

    1989-01-01

    The interaction of a vortex structure and a premixed flame is studied. The presence of pressure gradients in the vortex and density gradients in the flame result in a complicated interaction. This interaction has been examined when the flame and vortex are fully coupled and in two special cases where they are decoupled: a frozen flame case and a frozen vortex case. In the frozen flame case the main effect of the flame on the vortex is through the barocline torque term. This has been modeled for high Damkoehler numbers. In the frozen vortex case the main effect, at moderate Damkoehler numbers, is to convect the flame around the vortex. At low Damkoehler numbers, depending on the length scales, pockets of unburned gas can form or the flame structure can be significantly changed. The two frozen cases provide a basis for understanding the full interaction.

  6. Predicting near-ground vortex lifetimes using Weibull density functions

    DOT National Transportation Integrated Search

    2007-01-08

    To mitigate safety hazards posed by near-ground vortex lateral transport, under : instrument flight rules (IFR), parallel runway operations must adopt aircraft spacing : standards that often reduce capacity. Once the phenomenon of lateral transport i...

  7. Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fuchs, Roman; Nordborg, Henrik

    2012-11-01

    We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.

  8. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  9. Turbine blade tip flow discouragers

    DOEpatents

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  10. A Laboratory Scale Vortex Generator for Simulation of Martian Dust Devils.

    NASA Astrophysics Data System (ADS)

    Balme, M.; Greeley, R.; Mickelson, B.; Iversen, J.; Beardmore, G.; Metzger, S.

    2001-12-01

    Martian dust particles are a few microns in diameter. Current Martian ambient wind speeds appear to be insufficient to lift such fine particles and are marginal to entrain even the optimum particles sizes for threshold (100-160mm diameter). Instead, dust devils were suggested as a local source of airborne particles and have been observed on Mars both from orbit and from lander data. Dust devils lift particles through enhanced local wind speeds and by a pressure drop often associated with the vortex which provides `lift'. This study seeks to 1) quantify the relative importance of enhanced wind speed versus pressure drop lift in dust devil entrainment threshold; 2) measure the mass transport potential of dust devils; 3) investigate the effects of surface roughness and topography on dust devil morphology; 4) quantify the overall effects of low atmospheric pressure on the formation, structure and entrainment processes of dust devils. To investigate the particle lifting properties of dust devils, a laboratory vortex generator was fabricated. It consists of a large vertical cylinder (45 and 75cm in diameter) containing a motor-driven rotor comprised of four vertical blades. Beneath the cylinder is a 2.4 by 2.4 m tabletop containing 14 differential pressure transducer ports used to measure the surface pressure structure of the vortex. Both the distance between the cylinder and the tabletop and the height of the blades within the cylinder can be varied. By controlling these variables and the angular velocity of the blades, a wide range of geometries and intensities of atmospheric vortices can be achieved. The apparatus is portable for use both under terrestrial atmospheric conditions and in the NASA-Ames Research Center Mars Surface Wind Tunnel facility to simulate Martian atmospheric conditions. The laboratory simulation is preferable to a numerical model because direct measurements of dust lifting threshold can be made and holds several advantages over terrestrial field measurements in that it is convenient, easily instrumented and, most importantly, can be moved to a low-pressure environment. Terrestrial field data are necessary, however, to validate the laboratory simulation as a good approximation of reality. Field measurements show that both pressure and velocity structure of the laboratory-generated vortex are similar to terrestrial dust devils. Initial threshold tests under terrestrial conditions show that the geometry of the vortex plays a key role in the angular velocity required to entrain material: smaller vortices have lower angular velocities at threshold. This is thought to be due to the smaller inflow boundary layer associated with narrow vortices and hence enhanced shear stress. However, calculations show that the shear stresses at the surface are at least two orders of magnitude less than the upward force caused by the pressure drop at the center of the vortex. This leads to the tentative conclusion that the actual particle lifting action of the `lift' force is minimal. A full program of experiments using this apparatus is under way to confirm these initial findings and a sequence of experiments under Martian conditions is being planned.

  11. Effect of the tubular-fan drum shapes on the performance of cleaning head module

    NASA Astrophysics Data System (ADS)

    Hong, C. K.; Y Cho, M.; Kim, Y. J.

    2013-12-01

    The geometrical effects of a tubular-fan drum on the performance improvement of the cleaning head module of a vacuum cleaner were investigated. In this study, the number of blades and the width of the blade were selected as the design parameters. Static pressure, eccentric vortex, turbulence kinetic energy (TKE) and suction efficiency were analysed and tabulated. Three-dimensional computational fluid dynamics method was used with an SST (Shear Stress Transfer) turbulence model to simulate the flow field at the suction of the cleaning head module using the commercial code ANSYS-CFX. Suction pressure distributions were graphically depicted for different values of the design parameters.

  12. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    NASA Astrophysics Data System (ADS)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  13. Vortex-Airfoil Interaction and Application of Methods for Digital Fringe Analysis.

    DTIC Science & Technology

    1986-03-15

    angles of attack. Different kinds of bluff bodies are used as vortex generators. Their wake is a Karman vortex street consisting of strong vortices of...Table of Contents 1. Introduction 1 2. A model for vortex paths around a profile and the sound generated by vortex -profile interaction 2"-- 3...I’ S.TTE(d~,t. TYPE OF PIrPORT a PERID COWERED ’. * Vortex -airfoil interaction and application of *methods for digital fringe analysis . 1 6

  14. An experimental study of static and oscillating rotor blade sections in reverse flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew Hume

    The rotorcraft community has a growing interest in the development of high-speed helicopters to replace outdated fleets. One barrier to the design of such helicopters is the lack of understanding of the aerodynamic behavior of retreating rotor blades in the reverse flow region. This work considers two fundamental models of this complex unsteady flow regime: static and oscillating (i.e., pitching) airfoils in reverse flow. Wind tunnel tests have been performed at the University of Maryland (UMD) and the United States Naval Academy (USNA). Four rotor blade sections are considered: two featuring a sharp geometric trailing edge (NACA 0012 and NACA 0024) and two featuring a blunt geometric trailing edge (ellipse and cambered ellipse). Static airfoil experiments were performed at angles of attack through 180 deg and Reynolds numbers up to one million, representative of the conditions found in the reverse flow region of a full-scale high-speed helicopter. Time-resolved velocity field measurements were used to identify three unsteady flow regimes: slender body vortex shedding, turbulent wake, and deep stall vortex shedding. Unsteady airloads were measured in these three regimes using unsteady pressure transducers. The magnitude of the unsteady airloads is high in the turbulent wake regime when the separated shear layer is close to the airfoil surface and in deep stall due to periodic vortex-induced flow. Oscillating airfoil experiments were performed on a NACA 0012 and cambered ellipse to investigate reverse flow dynamic stall characteristics by modeling cyclic pitching kinematics. The parameter space spanned three Reynolds numbers (165,000; 330,000; and 500,000), five reduced frequencies between 0.100 and 0.511, three mean pitch angles (5,10, and 15 deg), and two pitch amplitudes (5 deg and 10 deg). The sharp aerodynamic leading edge of the NACA 0012 airfoil forces flow separation resulting in deep dynamic stall. The number of associated vortex structures depends strongly on pitching kinematics. The cambered ellipse exhibits light reverse flow dynamic stall for a wide range of pitching kinematics. Deep dynamic stall over the cambered ellipse airfoil is observed for high mean pitch angles and pitch amplitudes. The detailed results and analysis in this work contributes to the development of a new generation of high-speed helicopters.

  15. Vortex matter stabilized by many-body interactions

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Aguiar, J. Albino

    2017-10-01

    This work investigates interactions of vortices in superconducting materials between standard types I and II, in the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body (many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar unconventional type of the vortex matter governed by the many-body interactions of vortices.

  16. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings

    NASA Astrophysics Data System (ADS)

    Qin, Suyang; Liu, Hong; Xiang, Yang

    2018-01-01

    Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*SL*), the circulation decreases for at most 20%. The newly defined formation modes and number could shed light on the understanding of the dynamics of multiple vortex ring flows.

  17. Hub vortex helical instability as the origin of wake meandering in the lee of a model wind-turbine

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Iungo, Giacomo Valerio; Camarri, Simone; Porte-Agel, Fernando; Gallaire, Francois

    2012-11-01

    Wind tunnel measurements were performed for the wake produced by a three-bladed wind turbine immersed in uniform flow. These tests show the presence of a vorticity structure in the near wake region mainly oriented along the streamwise direction, which is denoted as hub vortex. The hub vortex is characterized by oscillations with frequencies lower than the one connected to the rotational velocity of the rotor, which are ascribed to wake meandering by previous works. This phenomenon consists in transversal oscillations of the wind turbine wake, which are excited by the shedding of vorticity structures from the rotor disc acting as a bluff body. In this work temporal and spatial linear stability analyses of a wind turbine wake are performed on a base flow obtained through time-averaged wind tunnel velocity measurements. This study shows that the low frequency spectral component detected experimentally is the result of a convective instability of the hub vortex, which is characterized by a counter-winding single-helix structure. Simultaneous hot-wire measurements confirm the presence of a helicoidal unstable mode of the hub vortex with a streamwise wavenumber roughly equal to the one predicted from the linear instability analysis.

  18. Design and optimization of mixed flow pump impeller blades by varying semi-cone angle

    NASA Astrophysics Data System (ADS)

    Dash, Nehal; Roy, Apurba Kumar; Kumar, Kaushik

    2018-03-01

    The mixed flow pump is a cross between the axial and radial flow pump. These pumps are used in a large number of applications in modern fields. For the designing of these mixed flow pump impeller blades, a lot number of design parameters are needed to be considered which makes this a tedious task for which fundamentals of turbo-machinery and fluid mechanics are always prerequisites. The semi-cone angle of mixed flow pump impeller blade has a specified range of variations generally between 45o to 60o. From the literature review done related to this topic researchers have considered only a particular semi-cone angle and all the calculations are based on this very same semi-cone angle. By varying this semi-cone angle in the specified range, it can be verified if that affects the designing of the impeller blades for a mixed flow pump. Although a lot of methods are available for designing of mixed flow pump impeller blades like inverse time marching method, the pseudo-stream function method, Fourier expansion singularity method, free vortex method, mean stream line theory method etc. still the optimized design of the mixed flow pump impeller blade has been a cumbersome work. As stated above since all the available research works suggest or propose the blade designs with constant semi-cone angle, here the authors have designed the impeller blades by varying the semi-cone angle in a particular range with regular intervals for a Mixed-Flow pump. Henceforth several relevant impeller blade designs are obtained and optimization is carried out to obtain the optimized design (blade with optimal geometry) of impeller blade.

  19. A durability test rig and methodology for erosion-resistant blade coatings in turbomachinery

    NASA Astrophysics Data System (ADS)

    Leithead, Sean Gregory

    A durability test rig for erosion-resistant gas turbine engine compressor blade coatings was designed, completed and commissioned. Bare and coated 17-4PH steel V103-profile blades were rotated at up to 11500 rpm and impacted with Garnet sand for 5 hours at an average concentration of 2.51 gm3of air , at a blade leading edge Mach number of 0.50. The rig was determined to be an acceptable first stage axial compressor representation. Two types of 16 microm-thick coatings were tested: Titanium Nitride (TiN) and Chromium-Aluminum-Titanium Nitride (CrAlTiN), both applied using an Arc Physical Vapour Deposition technique at the National Research Council in Ottawa, Canada. A Leithead-Allan-Zhao (LAZ) score was created to compare the durability performance of uncoated and coated blades based on mass-loss and blade dimension changes. The bare blades' LAZ score was set as a benchmark of 1.00. The TiN-coated and CrAlTiN-coated blades obtained LAZ scores of 0.69 and 0.41, respectively. A lower score meant a more erosion-resistant coating. Major modes of blade wear included: trailing edge, leading edge and the rear suction surface. Trailing edge thickness was reduced, the leading edge became blunt, and the rear suction surface was scrubbed by overtip and recirculation zone vortices. It was found that the erosion effects of vortex flow were significant. Erosion damage due to reflected particles was not present due to the low blade solidity of 0.7. The rig is best suited for studying the performance of erosion-resistant coatings after they are proven effective in ASTM standardized testing. Keywords: erosion, compressor, coatings, turbomachinery, erosion rate, blade, experimental, gas turbine engine

  20. Vortex formation and instability in the left ventricle

    NASA Astrophysics Data System (ADS)

    Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.

  1. Numerical Investigation of Cavitation Improvement for a Francis Turbine

    NASA Astrophysics Data System (ADS)

    Yao, Zhifeng; Xiao, Ruofu; Wang, Fujun; Yang, Wei

    2015-12-01

    Cavitation in hydraulic machine is undesired due to its negative effects on performances. To improve cavitation performance of a Francis turbine without the change of the best efficiency point, a model runner geometry optimization was carried out. Firstly, the runner outlet diameter was appropriately increased to reduce the flow velocity at runner outlet region. Then, to avoid the change of the flow rate at the best efficiency point, the blade shapes were carefully adjusted by decreasing the blade outlet angles and increasing the blade wrap angles. A large number of the modified runners were tested by computational fluid dynamic (CFD) method. Finally the most appropriate one was selected, which has the runner outlet diameter 10% larger, the blade outlet angles 3 degrees smaller and the blade wrap angles 5 degrees larger. The results showed that the critical cavitation coefficient of the model runner decreased at every unit rotational speed after the optimization, and the effect was much remarkable at relative high flow rate. Besides, by analysing the internal flow field, it was found that the zone of the low pressure on pressure surface of the optimized turbine blades was reduced, the backflow and vortex rope in draft tube were reduced, and the cavitation zone was reduced obviously.

  2. Blade row interaction effects on flutter and forced response

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.

    1993-01-01

    In the flutter or forced response analysis of a turbomachine blade row, the blade row in question is commonly treated as if it is isolated from the neigboring blade rows. Disturbances created by vibrating blades are then free to propagate away from this blade row without being disturbed. In reality, neighboring blade rows will reflect some portion of this wave energy back toward the vibrating blades, causing additional unsteady forces on them. It is of fundamental importance to determine whether or not these reflected waves can have a significant effect on the aeroelastic stability or forced response of a blade row. Therefore, a procedure to calculate intra-blade-row unsteady aerodynamic interactions was developed which relies upon results available from isolated blade row unsteady aerodynamic analyses. In addition, an unsteady aerodynamic influence coefficient technique is used to obtain a model for the vibratory response in which the neighboring blade rows are also flexible. The flutter analysis shows that interaction effects can be destabilizing, and the forced response analysis shows that interaction effects can result in a significant increase in the resonant response of a blade row.

  3. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Mccolgan, C. J.; Ladden, R. M.; Klatte, R. J.

    1991-01-01

    Results of the program for the generation of a computer prediction code for noise of advanced single rotation, turboprops (prop-fans) such as the SR3 model are presented. The code is based on a linearized theory developed at Hamilton Standard in which aerodynamics and acoustics are treated as a unified process. Both steady and unsteady blade loading are treated. Capabilities include prediction of steady airload distributions and associated aerodynamic performance, unsteady blade pressure response to gust interaction or blade vibration, noise fields associated with thickness and steady and unsteady loading, and wake velocity fields associated with steady loading. The code was developed on the Hamilton Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis. The work had its genesis in the frequency domain acoustic theory developed at Hamilton Standard in the late 1970s. It was found that the method used for near field noise predictions could be adapted as a lifting surface theory for aerodynamic work via the pressure potential technique that was used for both wings and ducted turbomachinery. In the first realization of the theory for propellers, the blade loading was represented in a quasi-vortex lattice form. This was upgraded to true lifting surface loading. Originally, it was believed that a purely linear approach for both aerodynamics and noise would be adequate. However, two sources of nonlinearity in the steady aerodynamics became apparent and were found to be a significant factor at takeoff conditions. The first is related to the fact that the steady axial induced velocity may be of the same order of magnitude as the flight speed and the second is the formation of leading edge vortices which increases lift and redistribute loading. Discovery and properties of prop-fan leading edge vortices were reported in two papers. The Unified AeroAcoustic Program (UAAP) capabilites are demonstrated and the theory verified by comparison with the predictions with data from tests at NASA-Lewis. Steady aerodyanmic performance, unsteady blade loading, wakes, noise, and wing and boundary layer shielding are examined.

  4. Experimental investigation of vortices shed by various wing fin configurations. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Iversen, J.; Moghadam, M.

    1981-01-01

    Forty-six different fins, which were members of twelve plan-form families, were tested. A two dimensional Boeing single element airfoil at an angle of attack of eight degrees and a sweepback angle of thirty-two was used to simulate a portion of the wing of a generator aircraft. Various free stream velocities were used to test any individual fin at its particular angle of attack. While the fin itself was mounted on the upper surface of the generator model, the angle of attack of each fin was varied until stall was reached and/or passed. The relative fin vortex strengths were measured in two ways. First, the maximum angular velocity of a four blade rotor placed in the fin vortex center was measured with the use of a stroboscope. Second, the maximum rolling moment on a following wing model placed in the fin vortex center was measured by a force balance.

  5. Relationship Between Vortex Meander and Ambient Turbulence

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Hardy, Gordon H.; Meyn, Larry A.

    2006-01-01

    Efforts are currently underway to increase the capacity of airports by use of closely-spaced parallel runways. If such an objective is to be achieved safely and efficiently during both visual and instrument flight conditions, it will be necessary to develop more precise methods for the prediction of the motion and spread of the hazard posed by the lift-generated vortex-wakes of aircraft, and their uncertainties. The purpose of the present study is to relate the motion induced in vortex filaments by turbulence in the ambient flow field to the measured turbulence in the flow field. The problem came about when observations made in the two largest NASA wind tunnels indicated that extended exposure of vortex wakes to the turbulence in the wind tunnel air stream causes the centers of the vortices to meander about with time at a given downstream station where wake measurements are being made. Although such a behavior was expected, the turbulence level based on the maximum amplitude of meander was much less than the root-mean-squared value measured in the free-stream of the wind tunnel by use of hot-film anemometers. An analysis of the time-dependent motion of segments of vortex filaments as they interact with an eddy, indicates that the inertia of the filaments retards their motion enough in the early part of their travel to account for a large part of the difference in the two determinations of turbulence level. Migration of vortex filaments from one turbulent eddy to another (probably with a different orientation), is believed to account for the remainder of the difference. Methods that may possibly be developed for use in the measurement of the magnitude of the more intense eddies in turbulent flow fields and how they should be adjusted to predict vortex meander are then discussed.

  6. Reflection plane tests of a wind turbine blade tip section with ailerons

    NASA Technical Reports Server (NTRS)

    Savino, J. M.; Nyland, T. W.; Birchenough, A. G.; Jordan, F. L.; Campbell, N. K.

    1985-01-01

    Tests were conducted in the NASA Langley 30 by 60 foot Wind Tunnel on a full scale 7.31 m (24 ft) long tip section of a wind turbine rotor blade. The blade tip section was built with ailerons on the trailing edge. The ailerons, which spanned a length of 6.1 m (20 ft), were designed so that two types could be evaluated: the plain and the balanced. The ailerons were hinged on the suction surface at the 0.62 X chord station behind the leading edge. The purpose of the tests was to measure the aerodynamic characteristics of the blade section for: an angle of attack range from 0 deg to 90 deg aileron deflections from 0 deg to -90 deg, and Reynolds numbers of 0.79 and 1.5 x 10 to the 6th power. These data were then used to determine which aileron configuration had the most desirable rotor control and aerodynamic braking characteristics. Tests were also run to determine the effects of vortex generators, leading edge roughness, and the gaps between the aileron sections on the lift, drag, and chordwise force coefficients of the blade tip section.

  7. Computational study of the interaction between a shock and a near-wall vortex using a weighted compact nonlinear scheme

    NASA Astrophysics Data System (ADS)

    Zuo, Zhifeng; Maekawa, Hiroshi

    2014-02-01

    The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.

  8. Supersonic shock wave/vortex interaction

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Cattafesta, L.

    1993-01-01

    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of the rear stagnation point, and the reduced circulation distribution once again becomes self-similar in this region. A-new model of this interaction is proposed. Finally, a curve defining the approximate limits of supersonic vortex breakdown is presented.

  9. Vortex generation and wave-vortex interaction over a concave plate with roughness and suction

    NASA Technical Reports Server (NTRS)

    Bertolotti, Fabio

    1993-01-01

    The generation and amplification of vortices by surface homogeneities, both in the form of surface waviness and of wall-normal velocity, is investigated using the nonlinear parabolic stability equations. Transients and issues of algebraic growth are avoided through the use of a similarity solution as initial condition for the vortex. In the absence of curvature, the vortex decays as the square root of 1/x when flowing over streamwise aligned riblets of constant height, and grows as the square root of x when flowing over a corresponding streamwise aligned variation of blowing/suction transpiration velocity. However, in the presence of wall inhomogeneities having both streamwise and spanwise periodicity, the growth of the vortex can be much larger. In the presence of curvature, the vortex develops into a Gortler vortex. The 'direct' and 'indirect' interaction mechanisms possible in wave-vortex interaction are presented. The 'direct' interaction does not lead to strong resonance with the flow conditions investigated. The 'indirect' interaction leads to K-type transition.

  10. Aeroelastic modeling of rotor blades with spanwise variable elastic axis offset: Classic issues revisited and new formulations

    NASA Technical Reports Server (NTRS)

    Bielawa, Richard L.

    1988-01-01

    In response to a systematic methodology assessment program directed to the aeroelastic stability of hingeless helicopter rotor blades, improved basic aeroelastic reformulations and new formulations relating to structural sweep were achieved. Correlational results are presented showing the substantially improved performance of the G400 aeroelastic analysis incorporating these new formulations. The formulations pertain partly to sundry solutions to classic problem areas, relating to dynamic inflow with vortex-ring state operation and basic blade kinematics, but mostly to improved physical modeling of elastic axis offset (structural sweep) in the presence of nonlinear structural twist. Specific issues addressed are an alternate modeling of the delta EI torsional excitation due to compound bending using a force integration approach, and the detailed kinematic representation of an elastically deflected point mass of a beam with both structural sweep and nonlinear twist.

  11. Unsteady blade pressure measurements for the SR-7A propeller at cruise conditions

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Nallasamy, M.

    1990-01-01

    The unsteady blade surface pressures were measured on the SR-7A propeller. The freestream Mach no., inflow angle, and advance ratio were varied while measurements were made at nine blade stations. At a freestream Mach no. of 0.8, the data in terms of unsteady pressure coefficient vs. azimuth angle are compared to an unsteady 3-D Euler solution, yielding very encouraging results. The code predicts the shape (phase) of the waveform very well, while the magnitude is over-predicted in many cases. At tunnel Mach nos. below 0.6, an unusually large response on the suction surface at 0.15 chord and 0.88 radius was observed. The behavior of this response suggests the presence of a leading edge vortex. The midchord measuring stations on the suction surface exhibit a response that leads the forcing function while most other locations show a phase lag.

  12. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX-80

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-11-01

    The finite element method has proven to be an invaluable tool for analysis and design of complex, high performance systems, such as bladed-disk assemblies in aircraft turbofan engines. However, as the problem size increase, the computation time required by conventional computers can be prohibitively high. Parallel processing computers provide the means to overcome these computation time limits. This report summarizes the results of a research activity aimed at providing a finite element capability for analyzing turbomachinery bladed-disk assemblies in a vector/parallel processing environment. A special purpose code, named with the acronym SAPNEW, has been developed to perform static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements. SAPNEW provides a stand alone capability for static and eigen analysis on the Alliant FX/80, a parallel processing computer. A preprocessor, named with the acronym NTOS, has been developed to accept NASTRAN input decks and convert them to the SAPNEW format to make SAPNEW more readily used by researchers at NASA Lewis Research Center.

  13. Interaction of N-vortex structures in a continuum, including atmosphere, hydrosphere and plasma

    NASA Astrophysics Data System (ADS)

    Belashov, Vasily Yu.

    2017-10-01

    The results of analysis and numerical simulation of evolution and interaction of the N-vortex structures of various configuration and different vorticities in the continuum including atmosphere, hydrosphere and plasma are presented. It is found that in dependence on initial conditions the regimes of weak interaction with quasi-stationary evolution and active interaction with the "phase intermixing", when the evolution can lead to formation of complex forms of vorticity regions, are realized in the N-vortex systems. For the 2-vortex interaction the generalized critical parameter determining qualitative character of interaction of vortices is introduced. It is shown that for given initial conditions its value divides modes of active interaction and quasi-stationary evolution. The results of simulation of evolution and interaction of the two-dimensional and three-dimensional vortex structures, including such phenomena as dynamics of the atmospheric synoptic vortices of cyclonic types and tornado, hydrodynamic 4-vortex interaction and also interaction in the systems of a type of "hydrodynamic vortex - dust particles" are presented. The applications of undertaken approach to the problems of such plasma systems as streams of charged particles in a uniform magnetic field B and plasma clouds in the ionosphere are considered. It is shown that the results obtained have obvious applications in studies of the dynamics of the vortex structures dynamics in atmosphere, hydrosphere and plasma.

  14. Observation of the spiral flow and vortex induced by a suction pump in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Yano, H.; Ohyama, K.; Obara, K.; Ishikawa, O.

    2018-03-01

    A suction flow generates a whirlpool, namely a bathtub vortex, in a classical fluid; in contrast, rotating containers, which are usually used for studies of superfluid helium, can produce only simple solid rotation. In the present work, the superfluid flow and concentrated quantized vortices induced by a cryogenic motor immersed in superfluid 4He were investigated. Using a motor with six blades in a cylinder caused the free surface of the superfluid 4He to take on a parabolic shape, indicating that the motor produces a rotating superfluid flow. To drive a suction flow in superfluid helium, the motor was mounted in a cylindrical container with a small hole at the center of the top and a slit at the side, acting as a superfluid pump. This pump was successfully used to generate a spiral flow and a vortex with a funnel-shaped core in superfluid 4He, suggesting that the resulting suction flow transports and centralizes quantized vortices to the suction hole, increasing the vortex circulation and sucking the free surface of the superfluid down.

  15. Numerical simulation of steady and unsteady viscous flow in turbomachinery using pressure based algorithm

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, B.; Ho, Y.; Basson, A.

    1993-07-01

    The objective of this research is to simulate steady and unsteady viscous flows, including rotor/stator interaction and tip clearance effects in turbomachinery. The numerical formulation for steady flow developed here includes an efficient grid generation scheme, particularly suited to computational grids for the analysis of turbulent turbomachinery flows and tip clearance flows, and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, and is applicable to both viscous and inviscid flows. The values of these artificial dissipation is optimized to achieve accuracy and convergency in the solution. The numerical model is used to investigate the structure of tip clearance flows in a turbine nozzle. The structure of leakage flow is captured accurately, including blade-to-blade variation of all three velocity components, pitch and yaw angles, losses and blade static pressures in the tip clearance region. The simulation also includes evaluation of such quantities of leakage mass flow, vortex strength, losses, dominant leakage flow regions and the spanwise extent affected by the leakage flow. It is demonstrated, through optimization of grid size and artificial dissipation, that the tip clearance flow field can be captured accurately. The above numerical formulation was modified to incorporate time accurate solutions. An inner loop iteration scheme is used at each time step to account for the non-linear effects. The computation of unsteady flow through a flat plate cascade subjected to a transverse gust reveals that the choice of grid spacing and the amount of artificial dissipation is critical for accurate prediction of unsteady phenomena. The rotor-stator interaction problem is simulated by starting the computation upstream of the stator, and the upstream rotor wake is specified from the experimental data. The results show that the stator potential effects have appreciable influence on the upstream rotor wake. The predicted unsteady wake profiles are compared with the available experimental data and the agreement is good. The numerical results are interpreted to draw conclusions on the unsteady wake transport mechanism in the blade passage.

  16. Oblique and Parallel Modes of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Numbers

    DTIC Science & Technology

    1989-12-01

    differences in the shedding angles between experiments. It might then be j,. Vortex shedding in the wake of a circular cylinder 583 suggested that these...sandwiched between cels of frequency fL. In I " :. - Vortex shedding in the wake of a circular cylinder 593 (a) (b) Fioru’ 6. Visualization of the different ...Iparticularly’ suitable (heck, because the water tank is at oistinctl ’ different facility from the wind tunnel. The vortex frequencies in the wakes

  17. A theoretical formulation of wave-vortex interactions

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Wu, J. M.

    1989-01-01

    A unified theoretical formulation for wave-vortex interaction, designated the '(omega, Pi) framework,' is presented. Based on the orthogonal decomposition of fluid dynamic interactions, the formulation can be used to study a variety of problems, including the interaction of a longitudinal (acoustic) wave and/or transverse (vortical) wave with a main vortex flow. Moreover, the formulation permits a unified treatment of wave-vortex interaction at various approximate levels, where the normal 'piston' process and tangential 'rubbing' process can be approximated dfferently.

  18. Validations of Coupled CSD/CFD and Particle Vortex Transport Method for Rotorcraft Applications: Hover, Transition, and High Speed Flights

    NASA Technical Reports Server (NTRS)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    This paper presents validations of a novel rotorcraft analysis that coupled Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and Particle Vortex Transport Method (PVTM) methodologies. The CSD with associated vehicle trim analysis is used to calculate blade deformations and trim parameters. The near body CFD analysis is employed to provide detailed near body flow field information which is used to obtain high-fidelity blade aerodynamic loadings. The far field wake dominated region is simulated using the PVTM analysis which provides accurate prediction of the evolution of the rotor wake released from the near body CFD domains. A loose coupling methodology between the CSD and CFD/PVTM modules are used with appropriate information exchange amongst the CSD/CFD/PVTM modules. The coupled CSD/CFD/PVTM methodology is used to simulate various rotorcraft flight conditions (i.e. hover, transition, and high speed flights), and the results are compared with several sets of experimental data. For the hover condition, the results are compared with hover data for the HART II rotor tested at DLR Institute of Flight Systems, Germany. For the forward flight conditions, the results are validated with the UH-60A flight test data.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, R. M. da; Milošević, M. V.; Peeters, F. M.

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements ofmore » the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.« less

  20. Application of Pinniped Vibrissae to Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Poinsatte, Philip; Thurman, Douglas; Wroblewski, Adam; Snyder, Christopher

    2015-01-01

    Vibrissae of Phoca Vitulina (Harbor Seal) and Mirounga Angustirostris (Elephant Seal) possessundulations along their length. Harbor Seal Vibrissae were shown to reduce vortex induced vibrations and reduce dragcompared to appropriately scaled cylinders and ellipses. Samples of Harbor Seal vibrissae, Elephant Seal vibrissae andCalifornia Sea Lion vibrissae were collected from the Marine Mammal Center in California. CT scanning, microscopy and3D scanning techniques were utilized to characterize the whiskers. Computational fluid dynamics simulations of thewhiskers were carried out to compare them to an ellipse and a cylinder. Leading edge parameters from the whiskerswere used to create a 3D profile based on a modern power turbine blade. The NASA SW-2 facility was used to performwind tunnel cascade testing on the 'Seal Blades'. Computational Fluid Dynamics simulations were used to studyincidence angles from -37 to +10 degrees on the aerodynamic performance of the Seal Blade. The tests and simulationswere conducted at a Reynolds number of 100,000. The Seal Blades showed consistent performance improvements overthe baseline configuration. It was determined that a fuel burn reduction of approximately 5 could be achieved for a fixedwing aircraft. Noise reduction potential is also explored

  1. Investigation on centrifugal impeller in an axial-radial combined compressor with inlet distortion

    NASA Astrophysics Data System (ADS)

    Li, Du; Yang, Ce; Zhao, Ben; Zhou, Mi; Qi, Mingxu; Zhang, Jizhong

    2011-12-01

    Assembling an axial rotor and a stator at centrifugal compressor upstream to build an axial-radial combined compressor could achieve high pressure ratio and efficiency by appropriate size augment. Then upstream potential flow and wake effect appear at centrifugal impeller inlet. In this paper, the axial-radial compressor is unsteadily simulated by three-dimensional Reynolds averaged Navier-Stokes equations with uniform and circumferential distorted total pressure inlet condition to investigate upstream effect on radial rotor. The results show that span-wise nonuniform total pressure distribution is generated and radial and circumferential combined distortion is formed at centrifugal rotor inlet. The upstream stator wake deflects to rotor rotation direction and decreases with blade span increases. Circumferential distortion causes different separated flow formations at different pitch positions. The tip leakage vortex is suppressed in centrifugal blade passages. Under distorted inlet condition, flow direction of centrifugal impeller leading edge upstream varies evidently near hub and shroud but varies slightly at mid-span. In addition, compressor stage inlet distortion produces remarkable effect on blade loading of centrifugal blade both along chordwise and pitchwise.

  2. Fast generation of three-dimensional computational boundary-conforming periodic grids of C-type. [for turbine blades and propellers

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1982-01-01

    A fast computer program, GRID3C, was developed to generate multilevel three dimensional, C type, periodic, boundary conforming grids for the calculation of realistic turbomachinery and propeller flow fields. The technique is based on two analytic functions that conformally map a cascade of semi-infinite slits to a cascade of doubly infinite strips on different Riemann sheets. Up to four consecutively refined three dimensional grids are automatically generated and permanently stored on four different computer tapes. Grid nonorthogonality is introduced by a separate coordinate shearing and stretching performed in each of three coordinate directions. The grids are easily clustered closer to the blade surface, the trailing and leading edges and the hub or shroud regions by changing appropriate input parameters. Hub and duct (or outer free boundary) have different axisymmetric shapes. A vortex sheet of arbitrary thickness emanating smoothly from the blade trailing edge is generated automatically by GRID3C. Blade cross sectional shape, chord length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary smooth fashion in the spanwise direction.

  3. The uses and abuses of the acoustic analogy in helicopter rotor noise prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1987-01-01

    The generation of noise by helicopter rotor blades is considered theoretically, reviewing recent analyses based on the acoustic analogy (where the effect of fluid motion is replaced by fictitious sources in an undisturbed fluid). The fundamental principles of the acoustic approach are explained and illustrated with diagrams; the governing Ffowcs-Williams/Hawkings equations are written with a reformulated quadrupole term; and the directivity of noise produced (1) by regions with steep gradients (such as shock surfaces) and (2) by boundary-layer quadrupoles (tip-vortex and blade wakes) is shown to be the same as that of thickness noise. The need to include both (1) and (2) in acoustic-analogy computations is indicated.

  4. Comparison of steady and unsteady secondary flows in a turbine stator cascade

    NASA Technical Reports Server (NTRS)

    Hebert, Gregory J.; Tiederman, William G.

    1989-01-01

    The effect of periodic rotor wakes on the secondary flow structure in a turbine stator cascade was investigated. A mechanism simulated the wakes shed from rotor blades by passing cylindrical rods across the inlet to a linear cascade installed in a recirculating water flow loop. Velocity measurements showed a passage vortex, similar to that seen in steady flow, during the time associated with undisturbed fluid. However, as the rotor wake passed through the blade row, a large crossflow toward the suction surface was observed in the midspan region. This caused the development of two large areas of circulation between the midspan and endwall regions, significantly distorting and weakening the passage vortices.

  5. Unsteady Blade Row Interaction in a Transonic Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.

    1996-01-01

    Experimental data from jet-engine tests have indicated that unsteady blade row interaction effects can have a significant impact on the performance of multiple-stage turbines. The magnitude of blade row interaction is a function of both blade-count ratio and axial spacing. In the current research program, numerical simulations have been used to quantify the effects of blade count ratio on the performance of an advanced turbine geometries.

  6. A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    2008-01-01

    A concept for mitigating the adverse effects of jet vorticity and liftoff at high blowing ratios for turbine film cooling flows has been developed and studied at NASA Glenn Research Center. This "anti-vortex" film cooling concept proposes the addition of two branched holes from each primary hole in order to produce a vorticity counter to the detrimental kidney vortices from the main jet. These vortices typically entrain hot freestream gas and are associated with jet separation from the turbine blade surface. The anti-vortex design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The anti-vortex film cooling hole concept has been modeled computationally for a single row of 30deg angled holes on a flat surface using the 3D Navier-Stokes solver Glenn-HT. A modification of the anti-vortex concept whereby the branched holes exit adjacent to the main hole has been studied computationally for blowing ratios of 1.0 and 2.0 and at density ratios of 1.0 and 2.0. This modified concept was selected because it has shown the most promise in recent experimental studies. The computational results show that the modified design improves the film cooling effectiveness relative to the round hole baseline and previous anti-vortex cases, in confirmation of the experimental studies.

  7. Current-induced vortex motion and the vortex-glass transition in YBa{sub 2}Cu{sub 3}O{sub y} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojima, T.; Kakinuma, A.; Kuwasawa, Y.

    1997-12-01

    Measurements of current-voltage characteristics have been performed on YBa{sub 2}Cu{sub 3}O{sub y} films for two components of electric fields in the ab plane, E{sub x} and E{sub y}, in magnetic fields of the form (H{sub 0},H{sub 0},{delta}H{sub 0}), where x {parallel} the current density J, z {parallel} the c axis, and {delta}{lt}1. The simultaneous measurements of E{sub x} and E{sub y} under these conditions make it possible to analyze the situation of the vortex motion due to the Lorentz force. Our results indicate that vortices move as long-range correlated lines only below the glass transition temperature in a low-current limit.more » We also show that applying high-current density destroys line motion and induces a structural change of vortex lines in the glass state. {copyright} {ital 1997} {ital The American Physical Society}« less

  8. PT -symmetric gain and loss in a rotating Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Haag, Daniel; Dast, Dennis; Cartarius, Holger; Wunner, Günter

    2018-03-01

    PT -symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to support ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT -symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the nonuniform particle density and leave or enter the condensate through its borders creating the required net current.

  9. Turbulent transition behavior in a separated and attached-flow low pressure turbine passage

    NASA Astrophysics Data System (ADS)

    Memory, Curtis L.

    Various time accurate numerical simulations were conducted on the aft-loaded L1A low pressure turbine airfoil operating at Reynolds numbers presenting with fully-stalled, non-reattaching laminar separation. The numerical solver TURBO was modified from its annular gas turbine simulation configuration to conduct simulations based on a linear cascade wind tunnel facility. Simulation results for the fully separated flow fields revealed various turbulent decay mechanisms. Separated shear layer decay, in the form of vortices forming between the shear layer and the blade wall, was shown to agree with experimental particle image velocimetry (PIV) data in terms of decay vortex size and core vorticity levels. These vortical structures eventually mix into a large recirculation zone which dominates the blade wake. Turbulent wake ex- tent and time-averaged velocity distributions agreed with PIV data. Steady-blowing vortex generating jet (VGJ) flow control was then applied to the flow fields. VGJ-induced streamwise vorticity was only present at blowing ratios above 1.5. VGJs actuated at the point of flow separation on the blade wall were more effective than those actuated downstream, within the separation zone. Pulsed-blowing VGJs at the upstream blade wall position were then actuated at various pulsing frequencies, duty cycles, and blowing ratios. These condition variations yielded differing levels of separation zone mitigation. Pulsed VGJs were shown to be more effective than steady blowing VGJs at conditions of high blowing ratio, high frequency, or high duty cycle, where blowing ratio had the highest level of influence on pulsed jet efficacy. The characteristic "calm zone" following the end of a given VGJ pulse was observed in simulations exhibiting high levels of separation zone mitigation. Numerical velocity fields near the blade wall during this calm zone was shown to be similar to velocity fields observed in PIV data. Instantaneous numerical vorticity fields indicated that the elimination of the separation zone directly downstream of the VGJ hole is a pri- mary indicator of pulsed VGJ efficacy. This indicator was confirmed by numerical time-averaged velocity magnitude rms data in the same region.

  10. Acoustic characteristics of 1/20-scale model helicopter rotors

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.; Kohlhepp, Fred W.; Leighton, Kenneth P.

    1986-01-01

    A wind tunnel test to study the effects of geometric scale on acoustics and to investigate the applicability of very small scale models for the study of acoustic characteristics of helicopter rotors was conducted in the United Technologies Research Center Acoustic Research Tunnel. The results show that the Reynolds number effects significantly alter the Blade-Vortex-Interaction (BVI) Noise characteristics by enhancing the lower frequency content and suppressing the higher frequency content. In the time domain this is observed as an inverted thickness noise impulse rather than the typical positive-negative impulse of BVI noise. At higher advance ratio conditions, in the absence of BVI, the 1/20 scale model acoustic trends with Mach number follow those of larger scale models. However, the 1/20 scale model acoustic trends appear to indicate stall at higher thrust and advance ratio conditions.

  11. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.

    2010-01-01

    The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.

  12. CSM parallel structural methods research

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1989-01-01

    Parallel structural methods, research team activities, advanced architecture computers for parallel computational structural mechanics (CSM) research, the FLEX/32 multicomputer, a parallel structural analyses testbed, blade-stiffened aluminum panel with a circular cutout and the dynamic characteristics of a 60 meter, 54-bay, 3-longeron deployable truss beam are among the topics discussed.

  13. Anisotropic Josephson-vortex dynamics in layered organic superconductors

    NASA Astrophysics Data System (ADS)

    Yasuzuka, S.; Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T.; Koga, H.; Yamamura, Y.; Saito, K.; Akutsu, H.; Yamada, J.

    2010-06-01

    To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors κ-(ET)2Cu(NCS)2 and β-(BDA-TTP)2SbF6 under magnetic fields precisely parallel to the conducting planes. For κ-(ET)2Cu(NCS)2, in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for β-(BDA-TTP)2SbF6. The different anisotropic behavior is discussed in terms of the interlayer coupling strength.

  14. The calculation of rotor/fuselage interaction for two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1990-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces have a significant influence on the aerodynamic performance of the helicopter, ride quality, and vibration. A Computational Fluid Dynamic (CFD) method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary 2-D bodies was developed to address this helicopter problem. The vorticity and flow field velocities are calculated on a body-fitted computational mesh using an uncoupled iterative solution. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a simulated rotor wake with the flow about 2-D bodies, representing cross sections of fuselage components, was calculated to address the vortex interaction problem. The vortex interaction was calculated for the flow about a circular and an elliptic cylinder at 45 and 90 degrees incidence. The results demonstrate the significant variation in lift and drag on the 2-D bodies during the vortex interaction.

  15. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    NASA Astrophysics Data System (ADS)

    Sørensen, Jens N.; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan

    2014-06-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.

  16. Actuator line simulations of a Joukowsky and Tjæreborg rotor using spectral element and finite volume methods

    NASA Astrophysics Data System (ADS)

    Kleusberg, E.; Sarmast, S.; Schlatter, P.; Ivanell, S.; Henningson, D. S.

    2016-09-01

    The wake structure behind a wind turbine, generated by the spectral element code Nek5000, is compared with that from the finite volume code EllipSys3D. The wind turbine blades are modeled using the actuator line method. We conduct the comparison on two different setups. One is based on an idealized rotor approximation with constant circulation imposed along the blades corresponding to Glauert's optimal operating condition, and the other is the Tjffireborg wind turbine. The focus lies on analyzing the differences in the wake structures entailed by the different codes and corresponding setups. The comparisons show good agreement for the defining parameters of the wake such as the wake expansion, helix pitch and circulation of the helical vortices. Differences can be related to the lower numerical dissipation in Nek5000 and to the domain differences at the rotor center. At comparable resolution Nek5000 yields more accurate results. It is observed that in the spectral element method the helical vortices, both at the tip and root of the actuator lines, retain their initial swirl velocity distribution for a longer distance in the near wake. This results in a lower vortex core growth and larger maximum vorticity along the wake. Additionally, it is observed that the break down process of the spiral tip vortices is significantly different between the two methods, with vortex merging occurring immediately after the onset of instability in the finite volume code, while Nek5000 simulations exhibit a 2-3 radii period of vortex pairing before merging.

  17. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors.

    PubMed

    Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor

    2017-01-25

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  18. Implementation of Parallel Computing Technology to Vortex Flow

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer

    1999-01-01

    Mainframe supercomputers such as the Cray C90 was invaluable in obtaining large scale computations using several millions of grid points to resolve salient features of a tip vortex flow over a lifting wing. However, real flight configurations require tracking not only of the flow over several lifting wings but its growth and decay in the near- and intermediate- wake regions, not to mention the interaction of these vortices with each other. Resolving and tracking the evolution and interaction of these vortices shed from complex bodies is computationally intensive. Parallel computing technology is an attractive option in solving these flows. In planetary science vortical flows are also important in studying how planets and protoplanets form when cosmic dust and gases become gravitationally unstable and eventually form planets or protoplanets. The current paradigm for the formation of planetary systems maintains that the planets accreted from the nebula of gas and dust left over from the formation of the Sun. Traditional theory also indicate that such a preplanetary nebula took the form of flattened disk. The coagulation of dust led to the settling of aggregates toward the midplane of the disk, where they grew further into asteroid-like planetesimals. Some of the issues still remaining in this process are the onset of gravitational instability, the role of turbulence in the damping of particles and radial effects. In this study the focus will be with the role of turbulence and the radial effects.

  19. Vortex Ring Interaction With a Coaxially Aligned Cylinderical Rod

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.; Rajmanoharan, P.; Koochesfahani, Manoochehr

    1998-11-01

    We present results of experiments of a fully developed vortex ring interacting with a cylinderical rod, having a rounded nose, placed coaxially in line with the motion of the ring. The pressure field of the translating ring causes unsteady boundary layer separation and results in the formation of one or more ( secondary ) vortex rings, that subsequently interact. The nature and strength of the interaction depends on the ratio of the cylinder diameter to the ring diameter. For the larger diameter cylinders the vortex ring travels a few ring diameters before it breaks up. For the smaller diameter cylinders the vortex ring speed decreases slowly and, simultaneously, its diameter increases.

  20. A computational study on the interaction between a vortex and a shock wave

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.; Kumar, Ajay; Hussaini, M. Y.

    1989-01-01

    A computational study of two-dimensional shock vortex interaction is discussed in this paper. A second order upwind finite volume method is used to solve the Euler equations in conservation form. In this method, the shock wave is captured rather than fitted so that the cases where shock vortex interaction may cause secondary shocks can also be investigated. The effects of vortex strength on the computed flow and acoustic field generated by the interaction are qualitatively evaluated.

  1. A Comparison of Hybrid Reynolds Averaged Navier Stokes/Large Eddy Simulation (RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable Speed Power Turbine Blade Operating with Low Inlet Turbulence Levels

    DTIC Science & Technology

    2017-10-01

    Facility is a large-scale cascade that allows detailed flow field surveys and blade surface measurements.10–12 The facility has a continuous run ...structured grids at 2 flow conditions, cruise and takeoff, of the VSPT blade . Computations were run in parallel on a Department of Defense...RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable-Speed Power- Turbine Blade Operating with Low Inlet Turbulence Levels

  2. Turbulence Impact on Wind Turbines: Experimental Investigations on a Wind Turbine Model

    NASA Astrophysics Data System (ADS)

    Al-Abadi, A.; Kim, Y. J.; Ertunç, Ö.; Delgado, A.

    2016-09-01

    Experimental investigations have been conducted by exposing an efficient wind turbine model to different turbulence levels in a wind tunnel. Nearly isotropic turbulence is generated by using two static squared grids: fine and coarse one. In addition, the distance between the wind-turbine and the grid is adjusted. Hence, as the turbulence decays in the flow direction, the wind-turbine is exposed to turbulence with various energy and length scale content. The developments of turbulence scales in the flow direction at various Reynolds numbers and the grid mesh size are measured. Those measurements are conducted with hot-wire anemometry in the absence of the wind-turbine. Detailed measurements and analysis of the upstream and downstream velocities, turbulence intensity and spectrum distributions are done. Performance measurements are conducted with and without turbulence grids and the results are compared. Performance measurements are conducted with an experimental setup that allow measuring of torque, rotational speed from the electrical parameters. The study shows the higher the turbulence level, the higher the power coefficient. This is due to many reasons. First, is the interaction of turbulence scales with the blade surface boundary layer, which in turn delay the stall. Thus, suppressing the boundary layer and preventing it from separation and hence enhancing the aerodynamics characteristics of the blade. In addition, higher turbulence helps in damping the tip vortices. Thus, reduces the tip losses. Adding winglets to the blade tip will reduce the tip vortex. Further investigations of the near and far wake-surrounding intersection are performed to understand the energy exchange and the free stream entrainment that help in retrieving the velocity.

  3. Vortices in a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; Du, Zhi-Jing; Tan, Ren-Bing

    We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic)more » harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.« less

  4. Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  5. Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges

    DTIC Science & Technology

    2016-08-15

    aerospace engineering research. These include dynamic stall in wind turbines and helicopter rotors, and flapping-wing vehicle (micro-air vehicle) design...and Robinson, M., “Blade Three-Dimensional Dynamic Stall Response to Wind Turbine Operating Condition,” Journal of Solar Energy Engineering , Vol...Snapshots of TEV shedding in vortex ring representation. . . . . . . . . . . . . . . . 57 7.3 Schematic description of separated tip flow model

  6. Performance of a cascade in an annular vortex-generating tunnel over range of Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Thurston, Sidney; Brunk, Ralph E

    1951-01-01

    Total-pressure deficiency for an annular cascade of 65-(12)10 blades was measured at three radial stations over a range of Reynolds numbers from 50,000 to 250,000 and at angles of attack of 15 degrees and 25 degrees. The variation of turning angle and shape of static pressure distribution at these stations is also shown.

  7. Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auslaender, M.

    2010-05-25

    Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modeled as one-dimensional elastic objects. Vortices are a diverse playground for condensed matter because of the interplay between thermal fluctuations, vortex-vortex interactions, and the interaction of the vortex core with the three-dimensional disorder landscape. While vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here we employ magnetic force microscopy (MFM) to image and manipulate individual vortices in detwinned, single crystal YBa{sub 2}Cu{sub 3}O{sub 6.991} (YBCO), directly measuring the interaction of a moving vortex with the local disorder potential.more » We find an unexpected and dramatic enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.« less

  8. Rotor Vortex Filaments: Living on the Slipstream's Edge

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    1997-01-01

    The purpose of this paper is to gain a better understanding of rotor wake evolution in hover and axial flow by deriving an analytical solution for the time dependent behavior of vortex filament circulation and core size. This solution is applicable only for vortex filaments in the rotor far-wake. A primarily inviscid vortex/shear layer interaction (where the slipstream boundary is modeled as a shear layer) has been identified in this analytical treatment. This vortex/shear layer interaction results in decreasing, vortex filament circulation and core size with time. The inviscid vortex/shear layer interaction is shown, in a first-order treatment, to be of greater magnitude than viscous diffusion effects. The rate of contraction, and ultimate collapse, of the vortex filament core is found to be directly proportional to the rotor inflow velocity. This new insight into vortex filament decay promises to help reconcile several disparate observations made in the literature and will, hopefully, promote new advances in theoretical modeling of rotor wakes.

  9. Analogies between oscillation and rotation of bodies induced or influenced by vortex shedding

    NASA Astrophysics Data System (ADS)

    Lugt, H. J.

    Vortex-induced or vortex-influenced rotation and oscillation of bodies in a parallel flow are discussed. A steady flow occurs if the body axis is parallel to the flow or if the axis of rotation is perpendicular to the flow. Flows around an oscillating body are quasi-steady only if the Strougal number is much smaller than unity. The connection between rotation and oscillation is demonstrated in terms of the autorotation of a Lanchester propeller, and conditions for stable autorotation are defined. The Riabouchinsky curve is shown to be typical of forces and torques on bodies with vortical wakes, including situations with fixed body axes perpendicular to the flow. A differential equation is formulated for rotational and oscillating bodies that shed vortices by extending the pendulum equation to include vortical effects expressed as a fifth-order polynomial.

  10. Theoretical and Numerical Studies of a Vortex - Interaction Problem

    NASA Astrophysics Data System (ADS)

    Hsu, To-Ming

    The problem of vortex-airfoil interaction has received considerable interest in the helicopter industry. This phenomenon has been shown to be a major source of noise, vibration, and structural fatigue in helicopter flight. Since unsteady flow is always associated with vortex shedding and movement of free vortices, the problem of vortex-airfoil interaction also serves as a basic building block in unsteady aerodynamics. A careful study of the vortex-airfoil interaction reveals the major effects of the vortices on the generation of unsteady aerodynamic forces, especially the lift. The present work establishes three different flow models to study the vortex-airfoil interaction problem: a theoretical model, an inviscid flow model, and a viscous flow model. In the first two models, a newly developed aerodynamic force theorem has been successfully applied to identify the contributions to unsteady forces from various vortical systems in the flow field. Through viscous flow analysis, different features of laminar interaction, turbulent attached interaction, and turbulent separated interaction are examined. Along with the study of the vortex-airfoil interaction problem, several new schemes are developed for inviscid and viscous flow solutions. New formulas are derived to determine the trailing edge flow conditions, such as flow velocity and direction, in unsteady inviscid flow. A new iteration scheme that is faster for higher Reynolds number is developed for solving the viscous flow problem.

  11. Experimental study of interaction between a vortex ring and a solid surface for a wide range of ring velocities

    NASA Astrophysics Data System (ADS)

    Nikulin, V. V.

    2014-12-01

    Experiments were carried out for interaction of water-travelling vortex ring with a solid surface with the normal impingement to the surface; the vortex velocity was varied by factor of 30 and the Reynolds number had 60-times span. Laminar and turbulent vortex rings have been studied. The ratio of the vortex diameter at the moment of rebound from the surface to the vortex diameter before impingement is almost independent of the vortex velocity and Reynolds number. Within the experimental accuracy, the diameter of the vortex ring after rebound equals the footprint of the vortex on the solid surface. This brings assumption that the previously observed restrictions on the trace were related to the vortex rebound from the solid surface.

  12. A coupled CFD and wake model simulation of helicopter rotor in hover

    NASA Astrophysics Data System (ADS)

    Zhao, Qinghe; Li, Xiaodong

    2018-03-01

    The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.

  13. Development of a fiber optic compressor blade sensor

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1995-01-01

    A complete working prototype of the fiber optic blade tip sensor was first tested in the laboratory, followed by a thorough evaluation at NASA W8 Single Compressor Stage Facility in Lewis Research Center. Subsequently, a complete system with three parallel channels was fabricated and delivered to Dr. Kurkov. The final system was tested in the Subsonic Wind Tunnel Facility, in parallel with The General Electric Company's light probe system. The results at all operating speeds were comparable. This report provides a brief description of the system and presents a summary of the experimental results.

  14. Spectrum study on unsteadiness of shock wave-vortex ring interaction

    NASA Astrophysics Data System (ADS)

    Dong, Xiangrui; Yan, Yonghua; Yang, Yong; Dong, Gang; Liu, Chaoqun

    2018-05-01

    Shock oscillation with low-frequency unsteadiness commonly occurs in supersonic flows and is a top priority for the control of flow separation caused by shock wave and boundary layer interaction. In this paper, the interaction of the shock caused by the compression ramp and the vortex rings generated by a micro-vortex generator (MVG) in a supersonic flow at Ma = 2.5 is simulated by the implicit large eddy simulation method. The analysis of observation and the frequency of both the vortex ring motion and the shock oscillation is carried out. The results show that the shock produced by a compression ramp flow at Ma = 2.5 has a dominant non-dimensional low frequency, which is around St = 0.002, while the vortex rings behind the MVG have a dominant high frequency which is around St = 0.038. The dominant low frequency of the shock, which is harmful, can be removed or weakened through the shock-vortex ring interaction by the vortex rings which generate high frequency fluctuations. In the shock and vortex ring interaction region, a dominant high frequency St = 0.037-0.038 has been detected rather than the low frequency St = 0.002, which indicates that the vortex ring is stiff enough to break or weaken the shock. This analysis could provide an effective tool to remove or weaken the low frequency pressure fluctuation below 500 Hz, which has a negative effect on the flight vehicle structures and the environmental protection, through the high frequency vortex generation.

  15. Accelerating Climate and Weather Simulations through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark

    2011-01-01

    Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.

  16. Wire stripper

    NASA Technical Reports Server (NTRS)

    Economu, M. A. (Inventor)

    1978-01-01

    An insulation stripper is described which is especially useful for shielded wire, the stripper including a first pair of jaws with blades extending substantially perpendicular to the axis of the wire, and a second pair of jaws with blades extending substantially parallel to the axis of the wire. The first pair of jaws is pressed against the wire so the blades cut into the insulation, and the device is turned to form circumferential cuts in the insulation. Then the second pair of jaws is pressed against the wire so the blades cut into the insulation, and the wire is moved through the device to form longitudinal cuts that permit easy removal of the insulation. Each of the blades is located within the concave face of a V-block, to center the blades on the wire and to limit the depth of blade penetration.

  17. The effect of single-horn glaze ice on the vortex structures in the wake of a horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang

    2015-02-01

    The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.

  18. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  19. Aerodynamic parameter studies and sensitivity analysis for rotor blades in axial flight

    NASA Technical Reports Server (NTRS)

    Chiu, Y. Danny; Peters, David A.

    1991-01-01

    The analytical capability is offered for aerodynamic parametric studies and sensitivity analyses of rotary wings in axial flight by using a 3-D undistorted wake model in curved lifting line theory. The governing equations are solved by both the Multhopp Interpolation technique and the Vortex Lattice method. The singularity from the bound vortices is eliminated through the Hadamard's finite part concept. Good numerical agreement between both analytical methods and finite differences methods are found. Parametric studies were made to assess the effects of several shape variables on aerodynamic loads. It is found, e.g., that a rotor blade with out-of-plane and inplane curvature can theoretically increase lift in the inboard and outboard regions respectively without introducing an additional induced drag.

  20. A counter-rotating vortex pair in inviscid fluid

    NASA Astrophysics Data System (ADS)

    Habibah, Ummu; Fukumoto, Yasuhide

    2017-12-01

    We study the motion of a counter-rotating vortex pair with the circulations ±Γ move in incompressible fluid. The assumption is made that the core is very thin, that is the core radius σ is much smaller than the vortex radius d such that ɛ = σ/d ≪ 1. With this condition, the method of matched asymptotic expansion is employed. The solutions of the Navier-Stokes equations and the Biot-Savart law, regarding the inner and outer solutions respectively, are constructed in the form of a small parameter. An asymptotic expansion of the Biot-Savart law near the vortex core provides with the matching condition for an asymptotic expansion for limiting the Navier-Stokes equations for large radius r. The general formula of an anti-parallel vortex pair is established. At leading order O(ɛ0), we apply the special case in inviscid fluid, the Rankine vortex, a circular vortex of uniform vorticity. Furthermore at leading order O(ɛ5) we show the traveling speed of a vortex pair.

  1. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  2. Application of Computational Fluid Dynamics to the Study of Vortex Flow Control for the Management of Inlet Distortion

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Gibb, James

    1992-01-01

    The present study demonstrates that the Reduced Navier-Stokes code RNS3D can be used very effectively to develop a vortex generator installation for the purpose of minimizing the engine face circumferential distortion by controlling the development of secondary flow. The computing times required are small enough that studies such as this are feasible within an analysis-design environment with all its constraints of time and costs. This research study also established the nature of the performance improvements that can be realized with vortex flow control, and suggests a set of aerodynamic properties (called observations) that can be used to arrive at a successful vortex generator installation design. The ultimate aim of this research is to manage inlet distortion by controlling secondary flow through an arrangements of vortex generators configurations tailored to the specific aerodynamic characteristics of the inlet duct. This study also indicated that scaling between flight and typical wind tunnel test conditions is possible only within a very narrow range of generator configurations close to an optimum installation. This paper also suggests a possible law that can be used to scale generator blade height for experimental testing, but further research in this area is needed before it can be effectively applied to practical problems. Lastly, this study indicated that vortex generator installation design for inlet ducts is more complex than simply satisfying the requirement of attached flow, it must satisfy the requirement of minimum engine face distortion.

  3. Vortex/Body Interaction and Sound Generation in Low-Speed Flow

    NASA Technical Reports Server (NTRS)

    Kao, Hsiao C.

    1998-01-01

    The problem of sound generation by vortices interacting with an arbitrary body in a low-speed flow has been investigated by the method of matched asymptotic expansions. For the purpose of this report, it is convenient to divide the problem into three parts. In the first part the mechanism of the vortex/body interaction, which is essentially the inner solution in the inner region, is examined. The trajectories for a system of vortices rotating about their centroid are found to undergo enormous changes after interaction; from this, some interesting properties emerged. In the second part, the problem is formulated, the outer solution is found, matching is implemented, and solutions for acoustic pressure are obtained. In the third part, Fourier integrals are evaluated and predicated results presented. An examination of these results reveals the following: (a) the background noise can be either augmented or attenuated by a body after interaction, (b) sound generated by vortex/body interaction obeys a scaling factor, (C) sound intensity can be reduced substantially by positioning the vortex system in the "favorable" side of the body instead of the "unfavorable" side, and (d) acoustic radiation from vortex/bluff-body interaction is less than that from vortex/airfoil interaction under most circumstances.

  4. Control of runaway electron energy using externally injected whistler waves

    NASA Astrophysics Data System (ADS)

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2018-03-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here, we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by the parallel electric field. By introducing a wave that resonantly interacts with runaways in a particular range of energies which is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  5. Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets

    NASA Astrophysics Data System (ADS)

    Ren, Zhaoxin; Wang, Bing; Zheng, Longxi

    2018-03-01

    The analysis on the interactions of a large-scale shearing vortex, an incident oblique shock wave, and a chemical reaction in a planar shear layer is performed by numerical simulations. The reacting flows are obtained by directly solving the multi-species Navier-Stokes equations in the Eulerian frame, and the motions of individual point-mass fuel droplets are tracked in the Lagrangian frame considering the two-way coupling. The influences of shock strength and spray equivalence ratio on the shock-vortex interaction and the induced combustion are further studied. Under the present conditions, the incident shock is distorted by the vortex evolution to form the complicated waves including an incident shock wave, a multi-refracted wave, a reflected wave, and a transmitted wave. The local pressure and temperature are elevated by the shock impingement on the shearing vortex, which carries flammable mixtures. The chemical reaction is mostly accelerated by the refracted shock across the vortex. Two different exothermal reaction modes could be distinguished during the shock-vortex interaction as a thermal mode, due to the additional energy from the incident shock, and a local quasi detonation mode, due to the coupling of the refracted wave with reaction. The former mode detaches the flame and shock wave, whereas the latter mode tends to occur when the incident shock strength is higher and local equivalence ratio is higher approaching to the stoichiometric value. The numerical results illustrate that those two modes by shock-vortex interaction depend on the structure of the post-shock flame kernel, which may be located either in the vortex-braids of post-shock flows or in the shock-vortex interaction regime.

  6. Double-multiple streamtube model for Darrieus in turbines

    NASA Technical Reports Server (NTRS)

    Paraschivoiu, I.

    1981-01-01

    An analytical model is proposed for calculating the rotor performance and aerodynamic blade forces for Darrieus wind turbines with curved blades. The method of analysis uses a multiple-streamtube model, divided into two parts: one modeling the upstream half-cycle of the rotor and the other, the downstream half-cycle. The upwind and downwind components of the induced velocities at each level of the rotor were obtained using the principle of two actuator disks in tandem. Variation of the induced velocities in the two parts of the rotor produces larger forces in the upstream zone and smaller forces in the downstream zone. Comparisons of the overall rotor performance with previous methods and field test data show the important improvement obtained with the present model. The calculations were made using the computer code CARDAA developed at IREQ. The double-multiple streamtube model presented has two major advantages: it requires a much shorter computer time than the three-dimensional vortex model and is more accurate than multiple-streamtube model in predicting the aerodynamic blade loads.

  7. Ceramic-metal composites prepared via tape casting and melt infiltration methods

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Jun

    Melt infiltration of preforms prepared by tape casting and lamination has been accomplished using a short-time infiltration process that significantly suppresses reaction product formation. For layered materials produced via infiltration of laminated ceramic tapes, of particular interest is the effect that a large change in microstructure has on infiltration, phase formation, and mechanical properties. Hardness of the fine scale composite layers is approximately three times higher than coarse scale layers, due to greater strength of the fine B4C network. Fractography showed that crack propagation occurred by brittle fracture of the carbide and ductile extension of the metal. Despite large differences in hardness, the fracture mode of the fine and coarse scale microstructures appears identical. Fluid flow modeling for tape casting was conducted with a Newtonian slurry under a parallel blade, and the effect of beveling the blade based on a one dimensional flow model is shown. The discussion on slurry deformation after the blade exit suggests that the mode of slurry deformation depends on the relative importance of the pressure gradient and wall shear and that the existence of zero shear plane might have a negative effect on particle alignment in the tape. The analysis of the flow under a beveled blade predicts that this configuration is more advantageous than the parallel blade for productivity and parallel blade is better for producing uniform particle alignment and thinner tape. Also, the one dimensional flow model for the beveled blade is shown to be a valid approximation of the fluid behavior below a blade angle of 45 degrees. The flow visualization study on tape casting was conducted with a transparent apparatus and model slurry. Most investigators have concluded that the shear stress between the doctor blade and moving carrier causes the particle alignment, but, according to the result of visualization experiment, some degree of particle alignment is already established in the reservoir. The fluid flow concept of tape casting is incorporated with a metal infiltration technique to prepare the ceramic-metal composites with tailored porosity and pore orientation. Boron carbide-aluminum system was used to prepare the composites, and its stiffness constants were investigated. The aligned metal ligaments rarely affect the stiffness constant anisotropy which appears to be caused by tape casting operation.

  8. Numerical studies of the Kelvin-Hemholtz instability in a coronal jet

    NASA Astrophysics Data System (ADS)

    Zhao, Tian-Le; Ni, Lei; Lin, Jun; Ziegler, Udo

    2018-04-01

    Kelvin-Hemholtz (K-H) instability in a coronal EUV jet is studied via 2.5D MHD numerical simulations. The jet results from magnetic reconnection due to the interaction of the newly emerging magnetic field and the pre-existing magnetic field in the corona. Our results show that the Alfvén Mach number along the jet is about 5–14 just before the instability occurs, and it is even higher than 14 at some local areas. During the K-H instability process, several vortex-like plasma blobs with high temperature and high density appear along the jet, and magnetic fields have also been rolled up and the magnetic configuration including anti-parallel magnetic fields forms, which leads to magnetic reconnection at many X-points and current sheet fragments inside the vortex-like blob. After magnetic islands appear inside the main current sheet, the total kinetic energy of the reconnection outflows decreases, and cannot support the formation of the vortex-like blob along the jet any longer, then the K-H instability eventually disappears. We also present the results about how the guide field and flux emerging speed affect the K-H instability. We find that a strong guide field inhibits shock formation in the reconnecting upward outflow regions but helps secondary magnetic islands appear earlier in the main current sheet, and then apparently suppresses the K-H instability. As the speed of the emerging magnetic field decreases, the K-H instability appears later, the highest temperature inside the vortex blob gets lower and the vortex structure gets smaller.

  9. Calculation of three dimensional viscous flows in annular cascades using parabolized Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Lawerenz, M.

    Numerical algorithms for describing the endwall boundary layers and secondary flows in high turning turbine cascades are described. Partially-parabolic methods which cover three-dimensional viscous flow effects are outlined. Introduction of tip-clearance models and modifications of no-slip conditions without the use of wall functions expand the range of application and improve accuracy. Simultaneous computation of the profile boundary layers by refinement of the mesh size in the circumferential direction makes it possible to describe the boundary layer interaction in the corners formed by the bladings and the endwalls. The partially-parabolic method means that the streamwise elliptic coupling is well represented by the given pressure field and that separation does not occur, but it is not possible to describe the separation of the endwall boundary layer near the leading edge and the horse-shoe vortex there properly.

  10. Transonic flow visualization using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Bryanston-Cross, Peter J.

    1987-01-01

    An account is made of some of the applications of holographic interferometry to the visualization of transonic flows. In the case of the compressor shock visualization, the method is used regularly and has moved from being a research department invention to a design test tool. With the implementation of automatic processing and simple digitization systems, holographic vibrational analysis has also moved into routine nondestructive testing. The code verification interferograms were instructive, but the main turbomachinery interest is now in 3 dimensional flows. A major data interpretation effort will be required to compute tomographically the 3 dimensional flow around the leading or the trailing edges of a rotating blade row. The bolt on approach shows the potential application to current unsteady flows of interest. In particular that of the rotor passing and vortex interaction effects is experienced by the new generation of unducted fans. The turbocharger tests presents a new area for the application of holography.

  11. Multimodel methods for optimal control of aeroacoustics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guoquan; Collis, Samuel Scott

    2005-01-01

    A new multidomain/multiphysics computational framework for optimal control of aeroacoustic noise has been developed based on a near-field compressible Navier-Stokes solver coupled with a far-field linearized Euler solver both based on a discontinuous Galerkin formulation. In this approach, the coupling of near- and far-field domains is achieved by weakly enforcing continuity of normal fluxes across a coupling surface that encloses all nonlinearities and noise sources. For optimal control, gradient information is obtained by the solution of an appropriate adjoint problem that involves the propagation of adjoint information from the far-field to the near-field. This computational framework has been successfully appliedmore » to study optimal boundary-control of blade-vortex interaction, which is a significant noise source for helicopters on approach to landing. In the model-problem presented here, the noise propagated toward the ground is reduced by 12dB.« less

  12. Acoustic test of a model rotor and tail rotor: Results for the isolated rotors and combined configuration

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Burley, C. L.; Elliott, J. W.

    1989-01-01

    Acoustic data from a model scale main rotor and tail rotor experiment in the NASA Langley 14 by 22 Foot Subsonic Tunnel are presented for the main rotor and trail rotor in isolation and for the two rotors operating together. Results for the isolated main rotor show the importance of the rotor flapping conditions on mid-frequency noise content. High levels of main rotor retreating side blade-vortex interaction noise are shown to radiate downstream of the model. The isolated tail rotor noise results show the dominance of harmonic noise in the thrusting direction. The occurrence of tail rotor broadband noise is seen by the broadening of the tail rotor harmonics and is attributed to fuselage wake turbulence. The combined main and tail rotor data are presented to show the dominance of each rotor's different noise sources at different directivity locations.

  13. Acoustic Aspects of Active-Twist Rotor Control

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Wilbur, Matthew L.

    2002-01-01

    The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.

  14. Development of a Large Field-of-View PIV System for Rotorcraft Testing in the 14- x 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Harris, Jerome; Allan, Brian; Wong, Oliver; Mace, W. Derry

    2009-01-01

    A Large Field-of-View Particle Image Velocimetry (LFPIV) system has been developed for rotor wake diagnostics in the 14-by 22-Foot Subsonic Tunnel. The system has been used to measure three components of velocity in a plane as large as 1.524 meters by 0.914 meters in both forward flight and hover tests. Overall, the system performance has exceeded design expectations in terms of accuracy and efficiency. Measurements synchronized with the rotor position during forward flight and hover tests have shown that the system is able to capture the complex interaction of the body and rotor wakes as well as basic details of the blade tip vortex at several wake ages. Measurements obtained with traditional techniques such as multi-hole pressure probes, Laser Doppler Velocimetry (LDV), and 2D Particle Image Velocimetry (PIV) show good agreement with LFPIV measurements.

  15. Longitudinal disordering of vortex lattices in anisotropic superconductors

    NASA Astrophysics Data System (ADS)

    Harshman, D. R.; Brandt, E. H.; Fiory, A. T.; Inui, M.; Mitzi, D. B.; Schneemeyer, L. F.; Waszczak, J. V.

    1993-02-01

    Vortex disordering in superconducting crystals is shown to be markedly sensitive to penetration-depth anisotropy. At low temperature and high magnetic field, the muon-spin-rotation spectra for the highly anisotropic Bi2Sr2CaCu2O8+δ material are found to be anomalously narrow and symmetric about the applied field, in a manner consistent with a layered vortex sublattice structure with pinning-induced misalignment between layers. In contrast, spectra for the less-anisotropic YBa2Cu3O7-δ compounds taken at comparable fields are broader and asymmetric, showing that the vortex lattices are aligned parallel to the applied-field direction.

  16. Application of Pinniped Vibrissae to Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram (Principal Investigator); Ameri, Ali; Poinsatte, Phil; Thurman, Doug; Wroblewski, Adam; Snyder, Chris

    2015-01-01

    Vibrissae of Phoca Vitulina (Harbor Seal) and Mirounga Angustirostris (Elephant Seal) possess undulations along their length. Harbor Seal Vibrissae were shown to reduce vortex induced vibrations and reduce drag compared to appropriately scaled cylinders and ellipses. Samples of Harbor Seal vibrissae, Elephant Seal vibrissae and California Sea Lion vibrissae were collected from the Marine Mammal Center in California. CT scanning, microscopy and 3D scanning techniques were utilized to characterize the whiskers. Computational fluid dynamics simulations of the whiskers were carried out to compare them to an ellipse and a cylinder. Leading edge parameters from the whiskers were used to create a 3D profile based on a modern power turbine blade. The NASA SW-2 facility was used to perform wind tunnel cascade testing on the 'Seal Blades'. Computational Fluid Dynamics simulations were used to study incidence angles from -37 to +10 degrees on the aerodynamic performance of the Seal Blade. The tests and simulations were conducted at a Reynolds number of 100,000. The Seal Blades showed consistent performance improvements over the baseline configuration. It was determined that a fuel burn reduction of approximately 5 could be achieved for a fixed wing aircraft. Noise reduction potential is also explored.

  17. Experimental determination of transient strain in a thermally-cycled simulated turbine blade utilizing a non-contact technique

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Bizon, P. T.

    1978-01-01

    A type of noncontacting electro-optical extensometer was used to measure the displacement between parallel targets mounted on the leading edge of a simulated turbine blade throughout a complete heating and cooling cycle. The blade was cyclically heated and cooled by moving it into and out of a Mach 1 hot gas stream. The principle of operation and measurement procedure of the electro-optics extensometer are described.

  18. An Investigation of End-Wall Vortex Cavitation in a High Reynolds Number Axial-Flow Pump

    DTIC Science & Technology

    1989-08-01

    groove treatment, and various winglet configurations. Notwithstanding the differences between compressor and turbine flow fields, the deep- groove...treatment and pressure-surface winglet reduced the leakage by about 15 percent as reported by Booth et al. [20]. Additional numerical and experimental...the blade appears stationary because the eye blends the individual pictures together similar to a motion picture projection. However, at lower

  19. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    NASA Astrophysics Data System (ADS)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  20. Cooling arrangement for a tapered turbine blade

    DOEpatents

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

Top