Interval Management with Spacing to Parallel Dependent Runways (IMSPIDR) Experiment and Results
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Swieringa, Kurt A.; Capron, William R.
2012-01-01
An area in aviation operations that may offer an increase in efficiency is the use of continuous descent arrivals (CDA), especially during dependent parallel runway operations. However, variations in aircraft descent angle and speed can cause inaccuracies in estimated time of arrival calculations, requiring an increase in the size of the buffer between aircraft. This in turn reduces airport throughput and limits the use of CDAs during high-density operations, particularly to dependent parallel runways. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) concept uses a trajectory-based spacing tool onboard the aircraft to achieve by the runway an air traffic control assigned spacing interval behind the previous aircraft. This paper describes the first ever experiment and results of this concept at NASA Langley. Pilots flew CDAs to the Dallas Fort-Worth airport using airspeed calculations from the spacing tool to achieve either a Required Time of Arrival (RTA) or Interval Management (IM) spacing interval at the runway threshold. Results indicate flight crews were able to land aircraft on the runway with a mean of 2 seconds and less than 4 seconds standard deviation of the air traffic control assigned time, even in the presence of forecast wind error and large time delay. Statistically significant differences in delivery precision and number of speed changes as a function of stream position were observed, however, there was no trend to the difference and the error did not increase during the operation. Two areas the flight crew indicated as not acceptable included the additional number of speed changes required during the wind shear event, and issuing an IM clearance via data link while at low altitude. A number of refinements and future spacing algorithm capabilities were also identified.
A Concept for Airborne Precision Spacing for Dependent Parallel Approaches
NASA Technical Reports Server (NTRS)
Barmore, Bryan E.; Baxley, Brian T.; Abbott, Terence S.; Capron, William R.; Smith, Colin L.; Shay, Richard F.; Hubbs, Clay
2012-01-01
The Airborne Precision Spacing concept of operations has been previously developed to support the precise delivery of aircraft landing successively on the same runway. The high-precision and consistent delivery of inter-aircraft spacing allows for increased runway throughput and the use of energy-efficient arrivals routes such as Continuous Descent Arrivals and Optimized Profile Descents. This paper describes an extension to the Airborne Precision Spacing concept to enable dependent parallel approach operations where the spacing aircraft must manage their in-trail spacing from a leading aircraft on approach to the same runway and spacing from an aircraft on approach to a parallel runway. Functionality for supporting automation is discussed as well as procedures for pilots and controllers. An analysis is performed to identify the required information and a new ADS-B report is proposed to support these information needs. Finally, several scenarios are described in detail.
NASA Technical Reports Server (NTRS)
Waller, Marvin C.; Scanlon, Charles H.
1999-01-01
A number of our nations airports depend on closely spaced parallel runway operations to handle their normal traffic throughput when weather conditions are favorable. For safety these operations are curtailed in Instrument Meteorological Conditions (IMC) when the ceiling or visibility deteriorates and operations in many cases are limited to the equivalent of a single runway. Where parallel runway spacing is less than 2500 feet, capacity loss in IMC is on the order of 50 percent for these runways. Clearly, these capacity losses result in landing delays, inconveniences to the public, increased operational cost to the airlines, and general interruption of commerce. This document presents a description and the results of a fixed-base simulation study to evaluate an initial concept that includes a set of procedures for conducting safe flight in closely spaced parallel runway operations in IMC. Consideration of flight-deck information technology and displays to support the procedures is also included in the discussions. The procedures and supporting technology rely heavily on airborne capabilities operating in conjunction with the air traffic control system.
The Fight Deck Perspective of the NASA Langley AILS Concept
NASA Technical Reports Server (NTRS)
Rine, Laura L.; Abbott, Terence S.; Lohr, Gary W.; Elliott, Dawn M.; Waller, Marvin C.; Perry, R. Brad
2000-01-01
Many US airports depend on parallel runway operations to meet the growing demand for day to day operations. In the current airspace system, Instrument Meteorological Conditions (IMC) reduce the capacity of close parallel runway operations; that is, runways spaced closer than 4300 ft. These capacity losses can result in landing delays causing inconveniences to the traveling public, interruptions in commerce, and increased operating costs to the airlines. This document presents the flight deck perspective component of the Airborne Information for Lateral Spacing (AILS) approaches to close parallel runways in IMC. It represents the ideas the NASA Langley Research Center (LaRC) AILS Development Team envisions to integrate a number of components and procedures into a workable system for conducting close parallel runway approaches. An initial documentation of the aspects of this concept was sponsored by LaRC and completed in 1996. Since that time a number of the aspects have evolved to a more mature state. This paper is an update of the earlier documentation.
Comparison of Procedures for Dual and Triple Closely Spaced Parallel Runways
NASA Technical Reports Server (NTRS)
Verma, Savita; Ballinger, Deborah; Subramanian Shobana; Kozon, Thomas
2012-01-01
A human-in-the-loop high fidelity flight simulation experiment was conducted, which investigated and compared breakout procedures for Very Closely Spaced Parallel Approaches (VCSPA) with two and three runways. To understand the feasibility, usability and human factors of two and three runway VCSPA, data were collected and analyzed on the dependent variables of breakout cross track error and pilot workload. Independent variables included number of runways, cause of breakout and location of breakout. Results indicated larger cross track error and higher workload using three runways as compared to 2-runway operations. Significant interaction effects involving breakout cause and breakout location were also observed. Across all conditions, cross track error values showed high levels of breakout trajectory accuracy and pilot workload remained manageable. Results suggest possible avenues of future adaptation for adopting these procedures (e.g., pilot training), while also showing potential promise of the concept.
NASA Research For Instrument Approaches To Closely Spaced Parallel Runways
NASA Technical Reports Server (NTRS)
Elliott, Dawn M.; Perry, R. Brad
2000-01-01
Within the NASA Aviation Systems Capacity Program, the Terminal Area Productivity (TAP) Project is addressing airport capacity enhancements during instrument meteorological condition (IMC). The Airborne Information for Lateral Spacing (AILS) research within TAP has focused on an airborne centered approach for independent instrument approaches to closely spaced parallel runways using Differential Global Positioning System (DGPS) and Automatic Dependent Surveillance-Broadcast (ADS-B) technologies. NASA Langley Research Center (LaRC), working in partnership with Honeywell, Inc., completed in AILS simulation study, flight test, and demonstration in 1999 examining normal approaches and potential collision scenarios to runways with separation distances of 3,400 and 2,500 feet. The results of the flight test and demonstration validate the simulation study.
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Murdoch, Jennifer L.; Swieringa, Kurt A.; Barmore, Bryan E.; Capron, William R.; Hubbs, Clay E.; Shay, Richard F.; Abbott, Terence S.
2013-01-01
The predicted increase in the number of commercial aircraft operations creates a need for improved operational efficiency. Two areas believed to offer increases in aircraft efficiency are optimized profile descents and dependent parallel runway operations. Using Flight deck Interval Management (FIM) software and procedures during these operations, flight crews can achieve by the runway threshold an interval assigned by air traffic control (ATC) behind the preceding aircraft that maximizes runway throughput while minimizing additional fuel consumption and pilot workload. This document describes an experiment where 24 pilots flew arrivals into the Dallas Fort-Worth terminal environment using one of three simulators at NASA?s Langley Research Center. Results indicate that pilots delivered their aircraft to the runway threshold within +/- 3.5 seconds of their assigned time interval, and reported low workload levels. In general, pilots found the FIM concept, procedures, speeds, and interface acceptable. Analysis of the time error and FIM speed changes as a function of arrival stream position suggest the spacing algorithm generates stable behavior while in the presence of continuous (wind) or impulse (offset) error. Concerns reported included multiple speed changes within a short time period, and an airspeed increase followed shortly by an airspeed decrease.
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2011-01-01
This paper presents an overview of an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. This implementation provides the ability to manage spacing against two traffic aircraft, with one of these aircraft operating to a parallel dependent runway. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations
NASA Technical Reports Server (NTRS)
Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.
2012-01-01
Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.
Terminal Area Procedures for Paired Runways
NASA Technical Reports Server (NTRS)
Lozito, Sandra; Verma, Savita Arora
2011-01-01
Parallel runway operations have been found to increase capacity within the National Airspace but poor visibility conditions reduce the use of these operations. The NextGen and SESAR Programs have identified the capacity benefits from increased use of closely-space parallel runway. Previous research examined the concepts and procedures related to parallel runways however, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This simulation study developed and examined the pilot and controller procedures and information requirements for creating aircraft pairs for parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s (+/- 10s error) at a coupling point that was about 12 nmi from the runway threshold. Two variables were explored for the pilot participants: two levels of flight deck automation (current-day flight deck automation and auto speed control future automation) as well as two flight deck displays that assisted in pilot conformance monitoring. The controllers were also provided with automation to help create and maintain aircraft pairs. Results show the operations in this study were acceptable and safe. Subjective workload, when using the pairing procedures and tools, was generally low for both controllers and pilots, and situation awareness was typically moderate to high. Pilot workload was influenced by display type and automation condition. Further research on pairing and off-nominal conditions is required however, this investigation identified promising findings about the feasibility of closely-spaced parallel runway operations.
DOT National Transportation Integrated Search
2014-02-01
The purpose of this memorandum is to provide recommended Total System Error (TSE) models : for aircraft using RNAV (GPS) guidance when analyzing the wake encounter risk of proposed : simultaneous dependent (paired) approach operations to Closel...
Air Traffic and Operational Data on Selected US Airports with Parallel Runways
NASA Technical Reports Server (NTRS)
Doyle, Thomas M.; McGee, Frank G.
1998-01-01
This report presents information on a number of airports in the country with parallel runways and focuses on those that have at least one pair of parallel runways closer than 4300 ft. Information contained in the report describes the airport's current operational activity as obtained through contact with the facility and from FAA air traffic tower activity data for FY 1997. The primary reason for this document is to provide a single source of information for research to determine airports where Airborne Information for Lateral Spacing (AILS) technology may be applicable.
Reliability Modeling Methodology for Independent Approaches on Parallel Runways Safety Analysis
NASA Technical Reports Server (NTRS)
Babcock, P.; Schor, A.; Rosch, G.
1998-01-01
This document is an adjunct to the final report An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies. That report presents the results of our analysis of the problem of simultaneous but independent, approaches of two aircraft on parallel runways (independent approaches on parallel runways, or IAPR). This introductory chapter presents a brief overview and perspective of approaches and methodologies for performing safety analyses for complex systems. Ensuing chapter provide the technical details that underlie the approach that we have taken in performing the safety analysis for the IAPR concept.
Wake vortex effects on parallel runway operations
DOT National Transportation Integrated Search
2003-01-06
Aircraft wake vortex behavior in ground effect between two parallel runways at Frankfurt/Main International Airport was studied. The distance and time of vortex demise were examined as a function of crosswind, aircraft type, and a measure of atmosphe...
Wake turbulence limits on paired approaches to parallel runways
DOT National Transportation Integrated Search
2002-07-01
Wake turbulence considerations currently restrict the use of parallel runways less than 2500 ft (762 m) apart. : However, wake turbulence is not a factor if there are appropriate limits on allowed longitudinal pair spacings : and/or allowed crosswind...
Terminal Area Procedures for Paired Runways
NASA Technical Reports Server (NTRS)
Lozito, Sandy
2011-01-01
Parallel Runway operations have been found to increase capacity within the National Airspace (NAS) however, poor visibility conditions reduce this capacity [1]. Much research has been conducted to examine the concepts and procedures related to parallel runways however, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This study developed and examined the pilot and controller procedures and information requirements for creating aircraft pairs for parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s(+/- 10s error) at a coupling point that is about 12 nmi from the runway threshold. Two variables were explored for the pilot participants: Two levels of flight deck automation (current-day flight deck automation, and a prototype future automation) as well as two flight deck displays that assisted in pilot conformance monitoring. The controllers were also provided with automation to help create and maintain aircraft pairs. Data showed that the operations in this study were found to be acceptable and safe. Workload when using the pairing procedures and tools was generally low for both controllers and pilots, and situation awareness (SA) was typically moderate to high. There were some differences based upon the display and automation conditions for the pilots. Future research should consider the refinement of the concepts and tools for pilot and controller displays and automation for parallel runway concepts.
Increasing airport capacity with modified IFR approach procedures for close-spaced parallel runways
DOT National Transportation Integrated Search
2001-01-01
Because of wake turbulence considerations, current instrument approach : procedures treat close-spaced (i.e., less than 2,500 feet apart) parallel run : ways as a single runway. This restriction is designed to assure safety for all : aircraft types u...
Wake Encounter Analysis for a Closely Spaced Parallel Runway Paired Approach Simulation
NASA Technical Reports Server (NTRS)
Mckissick,Burnell T.; Rico-Cusi, Fernando J.; Murdoch, Jennifer; Oseguera-Lohr, Rosa M.; Stough, Harry P, III; O'Connor, Cornelius J.; Syed, Hazari I.
2009-01-01
A Monte Carlo simulation of simultaneous approaches performed by two transport category aircraft from the final approach fix to a pair of closely spaced parallel runways was conducted to explore the aft boundary of the safe zone in which separation assurance and wake avoidance are provided. The simulation included variations in runway centerline separation, initial longitudinal spacing of the aircraft, crosswind speed, and aircraft speed during the approach. The data from the simulation showed that the majority of the wake encounters occurred near or over the runway and the aft boundaries of the safe zones were identified for all simulation conditions.
The Simplified Aircraft-Based Paired Approach With the ALAS Alerting Algorithm
NASA Technical Reports Server (NTRS)
Perry, Raleigh B.; Madden, Michael M.; Torres-Pomales, Wilfredo; Butler, Ricky W.
2013-01-01
This paper presents the results of an investigation of a proposed concept for closely spaced parallel runways called the Simplified Aircraft-based Paired Approach (SAPA). This procedure depends upon a new alerting algorithm called the Adjacent Landing Alerting System (ALAS). This study used both low fidelity and high fidelity simulations to validate the SAPA procedure and test the performance of the new alerting algorithm. The low fidelity simulation enabled a determination of minimum approach distance for the worst case over millions of scenarios. The high fidelity simulation enabled an accurate determination of timings and minimum approach distance in the presence of realistic trajectories, communication latencies, and total system error for 108 test cases. The SAPA procedure and the ALAS alerting algorithm were applied to the 750-ft parallel spacing (e.g., SFO 28L/28R) approach problem. With the SAPA procedure as defined in this paper, this study concludes that a 750-ft application does not appear to be feasible, but preliminary results for 1000-ft parallel runways look promising.
NASA Technical Reports Server (NTRS)
Waller, Marvin C. (Editor); Scanlon, Charles H. (Editor)
1996-01-01
A Government and Industry workshop on Flight-Deck-Centered Parallel Runway Approaches in Instrument Meteorological Conditions (IMC) was conducted October 29, 1996 at the NASA Langley Research Center. This document contains the slides and records of the proceedings of the workshop. The purpose of the workshop was to disclose to the National airspace community the status of ongoing NASA R&D to address the closely spaced parallel runway problem in IMC and to seek advice and input on direction of future work to assure an optimized research approach. The workshop also included a description of a Paired Approach Concept which is being studied at United Airlines for application at the San Francisco International Airport.
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Hubbs, Clay; Shay, Rick; Karanian, James
2011-01-01
The Interval Management (IM) concept is being developed as a method to maintain or increase high traffic density airport arrival throughput while allowing aircraft to conduct near idle thrust descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR1) experiment at NASA Langley Research Center used 24 commercial pilots to examine IM procedures to conduct parallel dependent runway arrival operations while maintaining safe but efficient intervals behind the preceding aircraft. The use of IM procedures during these operations requires a lengthy and complex clearance from Air Traffic Control (ATC) to the participating aircraft, thereby making the use of Controller Pilot Data Link Communications (CPDLC) highly desirable as the communication method. The use of CPDLC reduces the need for voice transmissions between controllers and flight crew, and enables automated transfer of IM clearance elements into flight management systems or other aircraft avionics. The result is reduced crew workload and an increase in the efficiency of crew procedures. This paper focuses on the subset of data collected related to the use of CPDLC for IM operations into a busy airport. Overall, the experiment and results were very successful, with the mean time under 43 seconds for the flight crew to load the clearance into the IM spacing tool, review the calculated speed, and respond to ATC. An overall mean rating of Moderately Agree was given when the crews were asked if the use of CPDLC was operationally acceptable as simulated in this experiment. Approximately half of the flight crew reported the use of CPDLC below 10,000 for IM operations was unacceptable, with 83% reporting below 5000 was unacceptable. Also described are proposed modifications to the IM operations that may reduce CPDLC Respond time to less than 30 seconds and should significantly reduce the complexity of crew procedures, as well as follow-on research issues for operational use of CPDLC during IM operations.
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.
2008-01-01
Closely Space Parallel Runway (CSPR) configurations are capacity limited for departures due to the requirement to apply wake vortex separation standards from traffic departing on the adjacent parallel runway. To mitigate the effects of this constraint, a concept focusing on wind dependent departure operations has been developed, known as the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage of the fact that crosswinds of sufficient velocity blow wakes generated by aircraft departing from the downwind runway away from the upwind runway. Consequently, under certain conditions, wake separations on the upwind runway would not be required based on wakes generated by aircraft on the downwind runway, as is currently the case. It follows that information requirements, and sources for this information, would need to be determined for airport traffic control tower (ATCT) supervisory personnel who would be charged with decisions regarding use of the procedure. To determine the information requirements, data were collected from ATCT supervisors and controller-in-charge qualified individuals at Lambert-St. Louis International Airport (STL) and George Bush Houston Intercontinental Airport (IAH). STL and IAH were chosen as data collection sites based on the implementation of a WTMD prototype system, operating in shadow mode, at these locations. The 17 total subjects (STL: 5, IAH: 12) represented a broad-base of air traffic experience. Results indicated that the following information was required to support the conduct of WTMD operations: current and forecast weather information, current and forecast traffic demand and traffic flow restrictions, and WTMD System status information and alerting. Subjects further indicated that the requisite information is currently available in the tower cab with the exception of the WTMD status and alerting. Subjects were given a demonstration of a display supporting the prototype systems and unanimously stated that the WTMD status information they felt important was represented. Overwhelmingly, subjects felt that approving, monitoring and terminating the WTMD procedure could be integrated into their supervisory workload.
Role of the Controller in an Integrated Pilot-Controller Study for Parallel Approaches
NASA Technical Reports Server (NTRS)
Verma, Savvy; Kozon, Thomas; Ballinger, Debbi; Lozito, Sandra; Subramanian, Shobana
2011-01-01
Closely spaced parallel runway operations have been found to increase capacity within the National Airspace System but poor visibility conditions reduce the use of these operations [1]. Previous research examined the concepts and procedures related to parallel runways [2][4][5]. However, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This study developed and examined the pilot s and controller s procedures and information requirements for creating aircraft pairs for closely spaced parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s (+/- 10s error) at a coupling point that was 12 nmi from the runway threshold. In this paper, the role of the controller, as examined in an integrated study of controllers and pilots, is presented. The controllers utilized a pairing scheduler and new pairing interfaces to help create and maintain aircraft pairs, in a high-fidelity, human-in-the loop simulation experiment. Results show that the controllers worked as a team to achieve pairing between aircraft and the level of inter-controller coordination increased when the aircraft in the pair belonged to different sectors. Controller feedback did not reveal over reliance on the automation nor complacency with the pairing automation or pairing procedures.
Airborne Precision Spacing (APS) Dependent Parallel Arrivals (DPA)
NASA Technical Reports Server (NTRS)
Smith, Colin L.
2012-01-01
The Airborne Precision Spacing (APS) team at the NASA Langley Research Center (LaRC) has been developing a concept of operations to extend the current APS concept to support dependent approaches to parallel or converging runways along with the required pilot and controller procedures and pilot interfaces. A staggered operations capability for the Airborne Spacing for Terminal Arrival Routes (ASTAR) tool was developed and designated as ASTAR10. ASTAR10 has reached a sufficient level of maturity to be validated and tested through a fast-time simulation. The purpose of the experiment was to identify and resolve any remaining issues in the ASTAR10 algorithm, as well as put the concept of operations through a practical test.
Effects of ATC automation on precision approaches to closely space parallel runways
NASA Technical Reports Server (NTRS)
Slattery, R.; Lee, K.; Sanford, B.
1995-01-01
Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.
Analysis of WakeVAS Benefits Using ACES Build 3.2.1
NASA Technical Reports Server (NTRS)
Smith, Jeremy C.
2005-01-01
The FAA and NASA are currently engaged in a Wake Turbulence Research Program to revise wake turbulence separation standards, procedures, and criteria to increase airport capacity while maintaining or increasing safety. The research program is divided into three phases: Phase I near term procedural enhancements; Phase II wind dependent Wake Vortex Advisory System (WakeVAS) Concepts of Operations (ConOps); and Phase III farther term ConOps based on wake prediction and sensing. This report contains an analysis that evaluates the benefits of a closely spaced parallel runway (CSPR) Phase I ConOps, a single runway and CSPR Phase II ConOps and a single runway Phase III ConOps. A series of simulation runs were performed using the Airspace Concepts Evaluation System (ACES) Build 3.21 air traffic simulator to provide an initial assessment of the reduction in delay and cost savings obtained by the use of a WakeVAS at selected U.S. airports. The ACES simulator is being developed by NASA Ames Research Center as part of the Virtual Airspace Modelling and Simulation (VAMS) program.
Evaluation of an Airborne Spacing Concept, On-Board Spacing Tool, and Pilot Interface
NASA Technical Reports Server (NTRS)
Swieringa, Kurt; Murdoch, Jennifer L.; Baxley, Brian; Hubbs, Clay
2011-01-01
The number of commercial aircraft operations is predicted to increase in the next ten years, creating a need for improved operational efficiency. Two areas believed to offer significant increases in efficiency are optimized profile descents and dependent parallel runway operations. It is envisioned that during both of these types of operations, flight crews will precisely space their aircraft behind preceding aircraft at air traffic control assigned intervals to increase runway throughput and maximize the use of existing infrastructure. This paper describes a human-in-the-loop experiment designed to study the performance of an onboard spacing algorithm and pilots ratings of the usability and acceptability of an airborne spacing concept that supports dependent parallel arrivals. Pilot participants flew arrivals into the Dallas Fort-Worth terminal environment using one of three different simulators located at the National Aeronautics and Space Administration s (NASA) Langley Research Center. Scenarios were flown using Interval Management with Spacing (IM-S) and Required Time of Arrival (RTA) control methods during conditions of no error, error in the forecast wind, and offset (disturbance) to the arrival flow. Results indicate that pilots delivered their aircraft to the runway threshold within +/- 3.5 seconds of their assigned arrival time and reported that both the IM-S and RTA procedures were associated with low workload levels. In general, pilots found the IM-S concept, procedures, speeds, and interface acceptable; with 92% of pilots rating the procedures as complete and logical, 218 out of 240 responses agreeing that the IM-S speeds were acceptable, and 63% of pilots reporting that the displays were easy to understand and displayed in appropriate locations. The 22 (out of 240) responses, indicating that the commanded speeds were not acceptable and appropriate occurred during scenarios containing wind error and offset error. Concerns cited included the occurrence of multiple speed changes within a short time period, speed changes required within twenty miles of the runway, and an increase in airspeed followed shortly by a decrease in airspeed. Within this paper, appropriate design recommendations are provided, and the need for continued, iterative human-centered design is discussed.
Multi-aircraft dynamics, navigation and operation
NASA Astrophysics Data System (ADS)
Houck, Sharon Wester
Air traffic control stands on the brink of a revolution. Fifty years from now, we will look back and marvel that we ever flew by radio beacons and radar alone, much as we now marvel that early aviation pioneers flew by chronometer and compass alone. The microprocessor, satellite navigation systems, and air-to-air data links are the technical keys to this revolution. Many airports are near or at capacity now for at least portions of the day, making it clear that major increases in airport capacity will be required in order to support the projected growth in air traffic. This can be accomplished by adding airports, adding runways at existing airports, or increasing the capacity of the existing runways. Technology that allows use of ultra closely spaced (750 ft to 2500 ft) parallel approaches would greatly reduce the environmental impact of airport capacity increases. This research tackles the problem of multi aircraft dynamics, navigation, and operation, specifically in the terminal area, and presents new findings on how ultra closely spaced parallel approaches may be accomplished. The underlying approach considers how multiple aircraft are flown in visual conditions, where spacing criteria is much less stringent, and then uses this data to study the critical parameters for collision avoidance during an ultra closely spaced parallel approach. Also included is experimental and analytical investigations on advanced guidance systems that are critical components of precision approaches. Together, these investigations form a novel approach to the design and analysis of parallel approaches for runways spaced less than 2500 ft apart. This research has concluded that it is technically feasible to reduce the required runway spacing during simultaneous instrument approaches to less than the current minimum of 3400 ft with the use of advanced navigation systems while maintaining the currently accepted levels of safety. On a smooth day with both pilots flying a tunnel-in-the-sky display and being guided by a Category I LAAS, it is technically feasible to reduce the runway spacing to 1100 ft. If a Category I LAAS and an "intelligent auto-pilot" that executes both the approach and emergency escape maneuver are used, the technically achievable required runway spacing is reduced to 750 ft. Both statements presume full aircraft state information, including position, velocity, and attitude, is being reliably passed between aircraft at a rate equal to or greater than one Hz.
NASA Technical Reports Server (NTRS)
Neitzke, Kurt W.; Guerreiro, Nelson M.
2014-01-01
A design study was completed to explore the theoretical physical capacity (TPC) of the John F. Kennedy International Airport (KJFK) runway system for a northflow configuration assuming impedance-free (to throughput) air traffic control functionality. Individual runways were modeled using an agent-based, airspace simulation tool, the Airspace Concept Evaluation System (ACES), with all runways conducting both departures and arrivals on a first-come first-served (FCFS) scheduling basis. A realistic future flight schedule was expanded to 3.5 times the traffic level of a selected baseline day, September 26, 2006, to provide a steady overdemand state for KJFK runways. Rules constraining departure and arrival operations were defined to reflect physical limits beyond which safe operations could no longer be assumed. Safety buffers to account for all sources of operational variability were not included in the TPC estimate. Visual approaches were assumed for all arrivals to minimize inter-arrival spacing. Parallel runway operations were assumed to be independent based on lateral spacing distances. Resulting time intervals between successive airport operations were primarily constrained by same-runway and then by intersecting-runway spacing requirements. The resulting physical runway capacity approximates a theoretical limit that cannot be exceeded without modifying runway interaction assumptions. Comparison with current KJFK operational limits for a north-flow runway configuration indicates a substantial throughput gap of approximately 48%. This gap may be further analyzed to determine which part may be feasibly bridged through the deployment of advanced systems and procedures, and which part cannot, because it is either impossible or not cost-effective to control. Advanced systems for bridging the throughput gap may be conceptualized and simulated using this same experimental setup to estimate the level of gap closure achieved.
Aerial view of Runway 33 at SLF
NASA Technical Reports Server (NTRS)
2000-01-01
This aerial view shows the approach on Runway 33 at the KSC Shuttle Landing Facility. The runway is 15,000 feet long, with 1,000-foot paved overruns at each end; 300 feet wide (about length of football field), with 50-foot asphalt shoulders each side; 16 inches thick in the center, and 15 inches thick on sides. It has a slope of 24 inches from the center line to the edge for drainage. The single landing strip is considered two runways, depending on approach -- Runway 15 from northwest, Runway 33 from southeast.
Parallel runway requirement analysis study. Volume 1: The analysis
NASA Technical Reports Server (NTRS)
Ebrahimi, Yaghoob S.
1993-01-01
The correlation of increased flight delays with the level of aviation activity is well recognized. A main contributor to these flight delays has been the capacity of airports. Though new airport and runway construction would significantly increase airport capacity, few programs of this type are currently underway, let alone planned, because of the high cost associated with such endeavors. Therefore, it is necessary to achieve the most efficient and cost effective use of existing fixed airport resources through better planning and control of traffic flows. In fact, during the past few years the FAA has initiated such an airport capacity program designed to provide additional capacity at existing airports. Some of the improvements that that program has generated thus far have been based on new Air Traffic Control procedures, terminal automation, additional Instrument Landing Systems, improved controller display aids, and improved utilization of multiple runways/Instrument Meteorological Conditions (IMC) approach procedures. A useful element to understanding potential operational capacity enhancements at high demand airports has been the development and use of an analysis tool called The PLAND_BLUNDER (PLB) Simulation Model. The objective for building this simulation was to develop a parametric model that could be used for analysis in determining the minimum safety level of parallel runway operations for various parameters representing the airplane, navigation, surveillance, and ATC system performance. This simulation is useful as: a quick and economical evaluation of existing environments that are experiencing IMC delays, an efficient way to study and validate proposed procedure modifications, an aid in evaluating requirements for new airports or new runways in old airports, a simple, parametric investigation of a wide range of issues and approaches, an ability to tradeoff air and ground technology and procedures contributions, and a way of considering probable blunder mechanisms and range of blunder scenarios. This study describes the steps of building the simulation and considers the input parameters, assumptions and limitations, and available outputs. Validation results and sensitivity analysis are addressed as well as outlining some IMC and Visual Meteorological Conditions (VMC) approaches to parallel runways. Also, present and future applicable technologies (e.g., Digital Autoland Systems, Traffic Collision and Avoidance System II, Enhanced Situational Awareness System, Global Positioning Systems for Landing, etc.) are assessed and recommendations made.
Preliminary Human-in-the-Loop Assessment of Procedures for Very-Closely-Spaced Parallel Runways
NASA Technical Reports Server (NTRS)
Verma, Savita; Lozito, Sandra C.; Ballinger, Deborah S.; Trot, Greg; Hardy, Gordon H.; Panda, Ramesh C.; Lehmer, Ronald D.; Kozon, Thomas E.
2010-01-01
Demand in the future air transportation system concept is expected to double or triple by 2025 [1]. Increasing airport arrival rates will help meet the growing demand that could be met with additional runways but the expansion airports is met with environmental challenges for the surrounding communities when using current standards and procedures. Therefore, changes to airport operations can improve airport capacity without adding runways. Building additional runways between current ones, or moving them closer, is a potential solution to meeting the increasing demand, as addressed by the Terminal Area Capacity Enhancing Concept (TACEC). TACEC requires robust technologies and procedures that need to be tested such that operations are not compromised under instrument meteorological conditions. The reduction of runway spacing for independent simultaneous operations dramatically exacerbates the criticality of wake vortex incursion and the calculation of a safe and proper breakout maneuver. The study presented here developed guidelines for such operations by performing a real-time, human-in-the-loop simulation using precision navigation, autopilot-flown approaches, with the pilot monitoring aircraft spacing and the wake vortex safe zone during the approach.
2000-09-12
KENNEDY SPACE CENTER, FLA. -- This aerial view shows the approach on Runway 33 at the KSC Shuttle Landing Facility. The runway is 15,000 feet long, with 1,000-foot paved overruns at each end; 300 feet wide (about length of football field), with 50-foot asphalt shoulders each side; 16 inches thick in the center, and 15 inches thick on sides. It has a slope of 24 inches from the center line to the edge for drainage. The single landing strip is considered two runways, depending on approach Runway 15 from northwest, Runway 33 from southeast
2000-09-12
KENNEDY SPACE CENTER, FLA. -- This aerial view shows the approach on Runway 33 at the KSC Shuttle Landing Facility. The runway is 15,000 feet long, with 1,000-foot paved overruns at each end; 300 feet wide (about length of football field), with 50-foot asphalt shoulders each side; 16 inches thick in the center, and 15 inches thick on sides. It has a slope of 24 inches from the center line to the edge for drainage. The single landing strip is considered two runways, depending on approach Runway 15 from northwest, Runway 33 from southeast
Ground effects on aircraft noise. [near grazing incidence
NASA Technical Reports Server (NTRS)
Willshire, W. L., Jr.; Hilton, D. A.
1979-01-01
A flight experiment was conducted to investigate air-to-ground propagation of sound near grazing incidence. A turbojet-powered aircraft was flown at low altitudes over the ends of two microphone arrays. An eight-microphone array was positioned along a 1850 m concrete runway. The second array consisted of 12 microphones positioned parallel to the runway over grass. Twenty-eight flights were flown at altitudes ranging from 10 m to 160 m. The acoustic data recorded in the field reduced to one-third-octave band spectra and time correlated with the flight and weather information. A small portion of the data was further reduced to values of ground attenuation as a function of frequency and incidence angle by two different methods. In both methods, the acoustic signals compared originated from identical sources. Attenuation results obtained by using the two methods were in general agreement. The measured ground attenuation was largest in the frequency range of 200 to 400 Hz. A strong dependence was found between ground attenuation and incidence angle with little attenuation measured for angles of incidence greater than 10 to 15 degrees.
Development of a Wake Vortex Spacing System for Airport Capacity Enhancement and Delay Reduction
NASA Technical Reports Server (NTRS)
Hinton, David A.; OConnor, Cornelius J.
2000-01-01
The Terminal Area Productivity project has developed the technologies required (weather measurement, wake prediction, and wake measurement) to determine the aircraft spacing needed to prevent wake vortex encounters in various weather conditions. The system performs weather measurements, predicts bounds on wake vortex behavior in those conditions, derives safe wake spacing criteria, and validates the wake predictions with wake vortex measurements. System performance to date indicates that the potential runway arrival rate increase with Aircraft VOrtex Spacing System (AVOSS), considering common path effects and ATC delivery variance, is 5% to 12% depending on the ratio of large and heavy aircraft. The concept demonstration system, using early generation algorithms and minimal optimization, is performing the wake predictions with adequate robustness such that only 4 hard exceedances have been observed in 1235 wake validation cases. This performance demonstrates the feasibility of predicting wake behavior bounds with multiple uncertainties present, including the unknown aircraft weight and speed, weather persistence between the wake prediction and the observations, and the location of the weather sensors several kilometers from the approach location. A concept for the use of the AVOSS system for parallel runway operations has been suggested, and an initial study at the JFK International Airport suggests that a simplified AVOSS system can be successfully operated using only a single lidar as both the weather sensor and the wake validation instrument. Such a selfcontained AVOSS would be suitable for wake separation close to the airport, as is required for parallel approach concepts such as SOIA.
Predicting near-ground vortex lifetimes using Weibull density functions
DOT National Transportation Integrated Search
2007-01-08
To mitigate safety hazards posed by near-ground vortex lateral transport, under : instrument flight rules (IFR), parallel runway operations must adopt aircraft spacing : standards that often reduce capacity. Once the phenomenon of lateral transport i...
Motion of Aircraft Wake Vortices in Ground Effect.
DOT National Transportation Integrated Search
2000-04-01
This report addresses the wake-turbulence separation standards for close-spaced parallel runways. Ground-wind anemometer data collected at Kennedy (landing) and O'Hare (takeoff) airports are analyzed to assess the lateral transport probability for wa...
Temporal Precedence Checking for Switched Models and its Application to a Parallel Landing Protocol
NASA Technical Reports Server (NTRS)
Duggirala, Parasara Sridhar; Wang, Le; Mitra, Sayan; Viswanathan, Mahesh; Munoz, Cesar A.
2014-01-01
This paper presents an algorithm for checking temporal precedence properties of nonlinear switched systems. This class of properties subsume bounded safety and capture requirements about visiting a sequence of predicates within given time intervals. The algorithm handles nonlinear predicates that arise from dynamics-based predictions used in alerting protocols for state-of-the-art transportation systems. It is sound and complete for nonlinear switch systems that robustly satisfy the given property. The algorithm is implemented in the Compare Execute Check Engine (C2E2) using validated simulations. As a case study, a simplified model of an alerting system for closely spaced parallel runways is considered. The proposed approach is applied to this model to check safety properties of the alerting logic for different operating conditions such as initial velocities, bank angles, aircraft longitudinal separation, and runway separation.
NASA Technical Reports Server (NTRS)
Giulianetti, Demo J.
2001-01-01
Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.
Wind effects on the lateral motion of wake vortices
DOT National Transportation Integrated Search
1999-11-01
This report examines the influence of crosswind and other factors on the behavior of wake vortices between parallel runways. The measurements used in the analysis came from landing (1976-77) and takeoff (1980) operations at O'Hare International Airpo...
76 FR 2944 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
... equipment. Rehabilitate airfield guidance signs. Rehabilitate runway 16/34 (design only). Rehabilitate parallel and connecting taxiways (design only). Rehabilitate terminal building. Conduct wildlife hazard assessment. Terminal building expansion (design only). PFC administrative costs. Reconstruct west aircraft...
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo; Madden, Michael M.; Butler, Rickey W.; Perry, Raleigh B.
2014-01-01
This report presents analytical and simulation results of an investigation into proposed operational concepts for closely spaced parallel runways, including the Simplified Aircraft-based Paired Approach (SAPA) with alerting and an escape maneuver, MITRE?s echelon spacing and no escape maneuver, and a hybrid concept aimed at lowering the visibility minima. We found that the SAPA procedure can be used at 950 ft separations or higher with next-generation avionics and that 1150 ft separations or higher is feasible with current-rule compliant ADS-B OUT. An additional 50 ft reduction in runway separation for the SAPA procedure is possible if different glideslopes are used. For the echelon concept we determined that current generation aircraft cannot conduct paired approaches on parallel paths using echelon spacing on runways less than 1400 ft apart and next-generation aircraft will not be able to conduct paired approach on runways less than 1050 ft apart. The hybrid concept added alerting and an escape maneuver starting 1 NM from the threshold when flying the echelon concept. This combination was found to be effective, but the probability of a collision can be seriously impacted if the turn component of the escape maneuver has to be disengaged near the ground (e.g. 300 ft or below) due to airport buildings and surrounding terrain. We also found that stabilizing the approach path in the straight-in segment was only possible if the merge point was at least 1.5 to 2 NM from the threshold unless the total system error can be sufficiently constrained on the offset path and final turn.
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Hansman, R. John
1997-01-01
Efforts to increase airport capacity include studies of aircraft systems that would enable simultaneous approaches to closely spaced parallel runway in Instrument Meteorological Conditions (IMC). The time-critical nature of a parallel approach results in key design issues for current and future collision avoidance systems. Two part-task flight simulator studies have examined the procedural and display issues inherent in such a time-critical task, the interaction of the pilot with a collision avoidance system, and the alerting criteria and avoidance maneuvers preferred by subjects.
Earthshots: Satellite images of environmental change – Riyadh, Saudi Arabia
,
2013-01-01
Located about 35 kilometers north of Riyadh, King Khalid International Airport opened in 1983, so it only appears in the images after that date. The two parallel runways are each 4,200 meters long. The airport occupies about 225 square kilometers.
NASA Runway Incursion Prevention System (RIPS) Dallas-Fort Worth Demonstration Performance Analysis
NASA Technical Reports Server (NTRS)
Cassell, Rick; Evers, Carl; Esche, Jeff; Sleep, Benjamin; Jones, Denise R. (Technical Monitor)
2002-01-01
NASA's Aviation Safety Program Synthetic Vision System project conducted a Runway Incursion Prevention System (RIPS) flight test at the Dallas-Fort Worth International Airport in October 2000. The RIPS research system includes advanced displays, airport surveillance system, data links, positioning system, and alerting algorithms to provide pilots with enhanced situational awareness, supplemental guidance cues, a real-time display of traffic information, and warnings of runway incursions. This report describes the aircraft and ground based runway incursion alerting systems and traffic positioning systems (Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Service - Broadcast (TIS-B)). A performance analysis of these systems is also presented.
Characterizing a Wake-Free Safe Zone for the Simplified Aircraft-Based Paired Approach Concept
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Neitzke, Kurt W.; Johnson, Sally C.; Stough, H. Paul, III; McKissick, Burnell T.; Syed, Hazari I.
2010-01-01
The Federal Aviation Administration (FAA) has proposed a concept of operations geared towards achieving increased arrival throughput at U.S. Airports, known as the Simplified Aircraft-based Paired Approach (SAPA) concept. In this study, a preliminary characterization of a wake-free safe zone (WFSZ) for the SAPA concept has been performed. The experiment employed Monte-Carlo simulations of varying approach profiles by aircraft pairs to closely-spaced parallel runways. Three different runway lateral spacings were investigated (750 ft, 1000 ft and 1400 ft), along with no stagger and 1500 ft stagger between runway thresholds. The paired aircraft were flown in a leader/trailer configuration with potential wake encounters detected using a wake detection surface translating with the trailing aircraft. The WFSZ is characterized in terms of the smallest observed initial in-trail distance leading to a wake encounter anywhere along the approach path of the aircraft. The results suggest that the WFSZ can be characterized in terms of two primary altitude regions, in ground-effect (IGE) and out of ground-effect (OGE), with the IGE region being the limiting case with a significantly smaller WFSZ. Runway stagger was observed to only modestly reduce the WFSZ size, predominantly in the OGE region.
Summary results from long-term wake turbulence measurements at San Francisco International Airport
DOT National Transportation Integrated Search
2004-07-01
This report summarizes the results of an extensive wake turbulence data collection program at the San Francisco International : Airport (SFO). Most of the landings at SFO are conducted on closely spaced parallel runways that are spaced 750 feet : bet...
Enabling CSPA Operations Through Pilot Involvement in Longitudinal Approach Spacing
NASA Technical Reports Server (NTRS)
Battiste, Vernol (Technical Monitor); Pritchett, Amy
2003-01-01
Several major airports around the United States have, or plan to have, closely-spaced parallel runways. This project complemented current and previous research by examining the pilots ability to control their position longitudinally within their approach stream.This project s results considered spacing for separation from potential positions of wake vortices from the parallel approach. This preventive function could enable CSPA operations to very closely spaced runways. This work also considered how pilot involvement in longitudinal spacing could allow for more efficient traffic flow, by allowing pilots to keep their aircraft within tighter arrival slots then air traffic control (ATC) might be able to establish, and by maintaining space within the arrival stream for corresponding departure slots. To this end, this project conducted several research studies providing an analytic and computational basis for calculating appropriate aircraft spacings, experimental results from a piloted flight simulator test, and an experimental testbed for future simulator tests. The following sections summarize the results of these three efforts.
Description of the AILS Alerting Algorithm
NASA Technical Reports Server (NTRS)
Samanant, Paul; Jackson, Mike
2000-01-01
This document provides a complete description of the Airborne Information for Lateral Spacing (AILS) alerting algorithms. The purpose of AILS is to provide separation assurance between aircraft during simultaneous approaches to closely spaced parallel runways. AILS will allow independent approaches to be flown in such situations where dependent approaches were previously required (typically under Instrument Meteorological Conditions (IMC)). This is achieved by providing multiple levels of alerting for pairs of aircraft that are in parallel approach situations. This document#s scope is comprehensive and covers everything from general overviews, definitions, and concepts down to algorithmic elements and equations. The entire algorithm is presented in complete and detailed pseudo-code format. This can be used by software programmers to program AILS into a software language. Additional supporting information is provided in the form of coordinate frame definitions, data requirements, calling requirements as well as all necessary pre-processing and post-processing requirements. This is important and required information for the implementation of AILS into an analysis, a simulation, or a real-time system.
NASA Astrophysics Data System (ADS)
Gordon, Craig A.
This thesis examines the ability of a small, single-engine airplane to return to the runway following an engine failure shortly after takeoff. Two sets of trajectories are examined. One set of trajectories has the airplane fly a straight climb on the runway heading until engine failure. The other set of trajectories has the airplane perform a 90° turn at an altitude of 500 feet and continue until engine failure. Various combinations of wind speed, wind direction, and engine failure times are examined. The runway length required to complete the entire flight from the beginning of the takeoff roll to wheels stop following the return to the runway after engine failure is calculated for each case. The optimal trajectories following engine failure consist of three distinct segments: a turn back toward the runway using a large bank angle and angle of attack; a straight glide; and a reversal turn to align the airplane with the runway. The 90° turn results in much shorter required runway lengths at lower headwind speeds. At higher headwind speeds, both sets of trajectories are limited by the length of runway required for the landing rollout, but the straight climb cases generally require a lower angle of attack to complete the flight. The glide back to the runway is performed at an airspeed below the best glide speed of the airplane due to the need to conserve potential energy after the completion of the turn back toward the runway. The results are highly dependent on the rate of climb of the airplane during powered flight. The results of this study can aid the pilot in determining whether or not a return to the runway could be performed in the event of an engine failure given the specific wind conditions and runway length at the time of takeoff. The results can also guide the pilot in determining the takeoff profile that would offer the greatest advantage in returning to the runway.
Evaluation of Scheduling Methods for Multiple Runways
NASA Technical Reports Server (NTRS)
Bolender, Michael A.; Slater, G. L.
1996-01-01
Several scheduling strategies are analyzed in order to determine the most efficient means of scheduling aircraft when multiple runways are operational and the airport is operating at different utilization rates. The study compares simulation data for two and three runway scenarios to results from queuing theory for an M/D/n queue. The direction taken, however, is not to do a steady-state, or equilibrium, analysis since this is not the case during a rush period at a typical airport. Instead, a transient analysis of the delay per aircraft is performed. It is shown that the scheduling strategy that reduces the delay depends upon the density of the arrival traffic. For light traffic, scheduling aircraft to their preferred runways is sufficient; however, as the arrival rate increases, it becomes more important to separate traffic by weight class. Significant delay reduction is realized when aircraft that belong to the heavy and small weight classes are sent to separate runways with large aircraft put into the 'best' landing slot.
A Simulation Testbed for Airborne Merging and Spacing
NASA Technical Reports Server (NTRS)
Santos, Michel; Manikonda, Vikram; Feinberg, Art; Lohr, Gary
2008-01-01
The key innovation in this effort is the development of a simulation testbed for airborne merging and spacing (AM&S). We focus on concepts related to airports with Super Dense Operations where new airport runway configurations (e.g. parallel runways), sequencing, merging, and spacing are some of the concepts considered. We focus on modeling and simulating a complementary airborne and ground system for AM&S to increase efficiency and capacity of these high density terminal areas. From a ground systems perspective, a scheduling decision support tool generates arrival sequences and spacing requirements that are fed to the AM&S system operating on the flight deck. We enhanced NASA's Airspace Concept Evaluation Systems (ACES) software to model and simulate AM&S concepts and algorithms.
Analytical Assessment of Simultaneous Parallel Approach Feasibility from Total System Error
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2014-01-01
In a simultaneous paired approach to closely-spaced parallel runways, a pair of aircraft flies in close proximity on parallel approach paths. The aircraft pair must maintain a longitudinal separation within a range that avoids wake encounters and, if one of the aircraft blunders, avoids collision. Wake avoidance defines the rear gate of the longitudinal separation. The lead aircraft generates a wake vortex that, with the aid of crosswinds, can travel laterally onto the path of the trail aircraft. As runway separation decreases, the wake has less distance to traverse to reach the path of the trail aircraft. The total system error of each aircraft further reduces this distance. The total system error is often modeled as a probability distribution function. Therefore, Monte-Carlo simulations are a favored tool for assessing a "safe" rear-gate. However, safety for paired approaches typically requires that a catastrophic wake encounter be a rare one-in-a-billion event during normal operation. Using a Monte-Carlo simulation to assert this event rarity with confidence requires a massive number of runs. Such large runs do not lend themselves to rapid turn-around during the early stages of investigation when the goal is to eliminate the infeasible regions of the solution space and to perform trades among the independent variables in the operational concept. One can employ statistical analysis using simplified models more efficiently to narrow the solution space and identify promising trades for more in-depth investigation using Monte-Carlo simulations. These simple, analytical models not only have to address the uncertainty of the total system error but also the uncertainty in navigation sources used to alert an abort of the procedure. This paper presents a method for integrating total system error, procedure abort rates, avionics failures, and surveillance errors into a statistical analysis that identifies the likely feasible runway separations for simultaneous paired approaches.
NASA Technical Reports Server (NTRS)
Cassell, Rick; Smith, Alex; Connors, Mary; Wojciech, Jack; Rosekind, Mark R. (Technical Monitor)
1996-01-01
As new technologies and procedures are introduced into the National Airspace System, whether they are intended to improve efficiency, capacity, or safety level, the quantification of potential changes in safety levels is of vital concern. Applications of technology can improve safety levels and allow the reduction of separation standards. An excellent example is the Precision Runway Monitor (PRM). By taking advantage of the surveillance and display advances of PRM, airports can run instrument parallel approaches to runways separated by 3400 feet with the same level of safety as parallel approaches to runways separated by 4300 feet using the standard technology. Despite a wealth of information from flight operations and testing programs, there is no readily quantifiable relationship between numerical safety levels and the separation standards that apply to aircraft on final approach. This paper presents a modeling approach to quantify the risk associated with reducing separation on final approach. Reducing aircraft separation, both laterally and longitudinally, has been the goal of several aviation R&D programs over the past several years. Many of these programs have focused on technological solutions to improve navigation accuracy, surveillance accuracy, aircraft situational awareness, controller situational awareness, and other technical and operational factors that are vital to maintaining flight safety. The risk assessment model relates different types of potential aircraft accidents and incidents and their contribution to overall accident risk. The framework links accident risks to a hierarchy of failsafe mechanisms characterized by procedures and interventions. The model will be used to assess the overall level of safety associated with reducing separation standards and the introduction of new technology and procedures, as envisaged under the Free Flight concept. The model framework can be applied to various aircraft scenarios, including parallel and in-trail approaches. This research was performed under contract to NASA and in cooperation with the FAA's Safety Division (ASY).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... include: demolition of approximately 6,435 feet of Airport Road; construction of approximately 6,405 feet of relocated Airport Road; installation of ILS components on the north end of Runway 20; construction of access roads and equipment shelter buildings; construction of the parallel taxiway/ramp expansion...
Closely Spaced Independent Parallel Runway Simulation.
1984-10-01
facility consists of the Central Computer Facility, the Controller Laboratory, and the Simulator Pilot Complex. CENTRAL COMPUTER FACILITY. The Central... Computer Facility consists of a group of mainframes, minicomputers, and associated peripherals which host the operational and data acquisition...in the Controller Laboratory and convert their verbal directives into a keyboard entry which is transmitted to the Central Computer Complex, where
Simplified Aircraft-Based Paired Approach: Concept Definition and Initial Analysis
NASA Technical Reports Server (NTRS)
Johnson, Sally C.; Lohr, Gary W.; McKissick, Burnell T.; Abbott, Terence S.; Geurreiro, Nelson M.; Volk, Paul
2013-01-01
Simplified Aircraft-based Parallel Approach (SAPA) is an advanced concept proposed by the Federal Aviation Administration (FAA) to support dependent parallel approach operations to runways with lateral spacing closer than 2500 ft. At the request of the FAA, NASA performed an initial assessment of the potential performance and feasibility of the SAPA concept, including developing and assessing an operational implementation of the concept and conducting a Monte Carlo wake simulation study to examine the longitudinal spacing requirements. The SAPA concept was shown to have significant operational advantages in supporting the pairing of aircraft with dissimilar final approach speeds. The wake simulation study showed that support for dissimilar final approach speeds could be significantly enhanced through the use of a two-phased altitudebased longitudinal positioning requirement, with larger longitudinal positioning allowed for higher altitudes out of ground effect and tighter longitudinal positioning defined for altitudes near and in ground effect. While this assessment is preliminary and there are a number of operational issues still to be examined, it has shown the basic SAPA concept to be technically and operationally feasible.
Detection of Obstacles in Monocular Image Sequences
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia
1997-01-01
The ability to detect and locate runways/taxiways and obstacles in images captured using on-board sensors is an essential first step in the automation of low-altitude flight, landing, takeoff, and taxiing phase of aircraft navigation. Automation of these functions under different weather and lighting situations, can be facilitated by using sensors of different modalities. An aircraft-based Synthetic Vision System (SVS), with sensors of different modalities mounted on-board, complements the current ground-based systems in functions such as detection and prevention of potential runway collisions, airport surface navigation, and landing and takeoff in all weather conditions. In this report, we address the problem of detection of objects in monocular image sequences obtained from two types of sensors, a Passive Millimeter Wave (PMMW) sensor and a video camera mounted on-board a landing aircraft. Since the sensors differ in their spatial resolution, and the quality of the images obtained using these sensors is not the same, different approaches are used for detecting obstacles depending on the sensor type. These approaches are described separately in two parts of this report. The goal of the first part of the report is to develop a method for detecting runways/taxiways and objects on the runway in a sequence of images obtained from a moving PMMW sensor. Since the sensor resolution is low and the image quality is very poor, we propose a model-based approach for detecting runways/taxiways. We use the approximate runway model and the position information of the camera provided by the Global Positioning System (GPS) to define regions of interest in the image plane to search for the image features corresponding to the runway markers. Once the runway region is identified, we use histogram-based thresholding to detect obstacles on the runway and regions outside the runway. This algorithm is tested using image sequences simulated from a single real PMMW image.
2008-02-20
KENNEDY SPACE CENTER, FLA. -- From the Shuttle Landing Facility runway at NASA's Kennedy Space Center, space shuttle Atlantis is towed to theOrbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller
2008-02-20
KENNEDY SPACE CENTER, FLA. -- From the Shuttle Landing Facility runway at NASA's Kennedy Space Center, space shuttle Atlantis is towed to the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller
2008-02-20
KENNEDY SPACE CENTER, FLA. -- From the Shuttle Landing Facility runway at NASA's Kennedy Space Center, space shuttle Atlantis is towed toward the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller
2008-02-20
KENNEDY SPACE CENTER, FLA. -- From the Shuttle Landing Facility runway at NASA's Kennedy Space Center, space shuttle Atlantis is towed to the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller
2008-02-20
KENNEDY SPACE CENTER, FLA. -- From the Shuttle Landing Facility runway at NASA's Kennedy Space Center, space shuttle Atlantis is towed to the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller
Method and device for landing aircraft dependent on runway occupancy time
NASA Technical Reports Server (NTRS)
Ghalebsaz Jeddi, Babak (Inventor)
2012-01-01
A technique for landing aircraft using an aircraft landing accident avoidance device is disclosed. The technique includes determining at least two probability distribution functions; determining a safe lower limit on a separation between a lead aircraft and a trail aircraft on a glide slope to the runway; determining a maximum sustainable safe attempt-to-land rate on the runway based on the safe lower limit and the probability distribution functions; directing the trail aircraft to enter the glide slope with a target separation from the lead aircraft corresponding to the maximum sustainable safe attempt-to-land rate; while the trail aircraft is in the glide slope, determining an actual separation between the lead aircraft and the trail aircraft; and directing the trail aircraft to execute a go-around maneuver if the actual separation approaches the safe lower limit. Probability distribution functions include runway occupancy time, and landing time interval and/or inter-arrival distance.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
... Norfolk Airport Authority (NAA), the owner and operator of the airport. The additional planning effort by NAA has modified the project purpose and need and refined various project elements, including the need... decision to prepare a federal EIS primarily on NAA's proposal to construct a new Runway 5R/23L in parallel...
Simulated Wake Characteristics Data for Closely Spaced Parallel Runway Operations Analysis
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Neitzke, Kurt W.
2012-01-01
A simulation experiment was performed to generate and compile wake characteristics data relevant to the evaluation and feasibility analysis of closely spaced parallel runway (CSPR) operational concepts. While the experiment in this work is not tailored to any particular operational concept, the generated data applies to the broader class of CSPR concepts, where a trailing aircraft on a CSPR approach is required to stay ahead of the wake vortices generated by a lead aircraft on an adjacent CSPR. Data for wake age, circulation strength, and wake altitude change, at various lateral offset distances from the wake-generating lead aircraft approach path were compiled for a set of nine aircraft spanning the full range of FAA and ICAO wake classifications. A total of 54 scenarios were simulated to generate data related to key parameters that determine wake behavior. Of particular interest are wake age characteristics that can be used to evaluate both time- and distance- based in-trail separation concepts for all aircraft wake-class combinations. A simple first-order difference model was developed to enable the computation of wake parameter estimates for aircraft models having weight, wingspan and speed characteristics similar to those of the nine aircraft modeled in this work.
Multiple curved descending approaches and the air traffic control problem
NASA Technical Reports Server (NTRS)
Hart, S. G.; Mcpherson, D.; Kreifeldt, J.; Wemple, T. E.
1977-01-01
A terminal area air traffic control simulation was designed to study ways of accommodating increased air traffic density. The concepts that were investigated assumed the availability of the microwave landing system and data link and included: (1) multiple curved descending final approaches; (2) parallel runways certified for independent and simultaneous operation under IFR conditions; (3) closer spacing between successive aircraft; and (4) a distributed management system between the air and ground. Three groups each consisting of three pilots and two air traffic controllers flew a combined total of 350 approaches. Piloted simulators were supplied with computer generated traffic situation displays and flight instruments. The controllers were supplied with a terminal area map and digital status information. Pilots and controllers also reported that the distributed management procedure was somewhat more safe and orderly than the centralized management procedure. Flying precision increased as the amount of turn required to intersect the outer mark decreased. Pilots reported that they preferred the alternative of multiple curved descending approaches with wider spacing between aircraft to closer spacing on single, straight in finals while controllers preferred the latter option. Both pilots and controllers felt that parallel runways are an acceptable way to accommodate increased traffic density safely and expeditiously.
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.
2003-01-01
A simulation study was conducted in 1994 at Langley Research Center that used 12 commercial airline pilots repeatedly flying complex Microwave Landing System (MLS)-type approaches to parallel runways under Category IIIc weather conditions. Two sensor insert concepts of 'Synthetic Vision Systems' (SVS) were used in the simulated flights, with a more conventional electro-optical display (similar to a Head-Up Display with raster capability for sensor imagery), flown under less restrictive visibility conditions, used as a control condition. The SVS concepts combined the sensor imagery with a computer-generated image (CGI) of an out-the-window scene based on an onboard airport database. Various scenarios involving runway traffic incursions (taxiing aircraft and parked fuel trucks) and navigational system position errors (both static and dynamic) were used to assess the pilots' ability to manage the approach task with the display concepts. The two SVS sensor insert concepts contrasted the simple overlay of sensor imagery on the CGI scene without additional image processing (the SV display) to the complex integration (the AV display) of the CGI scene with pilot-decision aiding using both object and edge detection techniques for detection of obstacle conflicts and runway alignment errors.
An Analysis of the Role of ATC in the AILS Concept
NASA Technical Reports Server (NTRS)
Waller, Marvin C.; Doyle, Thomas M.; McGee, Frank G.
2000-01-01
Airborne information for lateral spacing (AILS) is a concept for making approaches to closely spaced parallel runways in instrument meteorological conditions (IMC). Under the concept, each equipped aircraft will assume responsibility for accurately managing its flight path along the approach course and maintaining separation from aircraft on the parallel approach. This document presents the results of an analysis of the AILS concept from an Air Traffic Control (ATC) perspective. The process has been examined in a step by step manner to determine ATC system support necessary to safely conduct closely spaced parallel approaches using the AILS concept. The analysis resulted in recognizing a number of issues related to integrating the process into the airspace system and proposes operating procedures.
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.
1994-01-01
An extensive simulation study was performed to determine and compare the spatial awareness of commercial airline pilots on simulated landing approaches using conventional flight displays with their awareness using advanced pictorial 'pathway in the sky' displays. Sixteen commercial airline pilots repeatedly made simulated complex microwave landing system approaches to closely spaced parallel runways with an extremely short final segment. Scenarios involving conflicting traffic situation assessments and recoveries from flight path offset conditions were used to assess spatial awareness (own ship position relative the the desired flight route, the runway, and other traffic) with the various display formats. The situation assessment tools are presented, as well as the experimental designs and the results. The results demonstrate that the integrated pictorial displays substantially increase spatial awareness over conventional electronic flight information systems display formats.
2008-02-20
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility runway at NASA's Kennedy Space Center, a tractor tow vehicle is backed up to space shuttle Atlantis for towing to the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller
Uncertainty Analysis for the Evaluation of a Passive Runway Arresting System
NASA Technical Reports Server (NTRS)
Deloach, Richard; Marlowe, Jill M.; Yager, Thomas J.
2009-01-01
This paper considers the stopping distance of an aircraft involved in a runway overrun incident when the runway has been provided with an extension comprised of a material engineered to induce high levels of rolling friction and drag. A formula for stopping distance is derived that is shown to be the product of a known formula for the case of friction without drag, and a dimensionless constant between 0 and 1 that quantifies the further reduction in stopping distance when drag is introduced. This additional quantity, identified as the Drag Reduction Factor, D, is shown to depend on the ratio of drag force to friction force experienced by the aircraft as it enters the overrun area. The specific functional form of D is shown to depend on how drag varies with speed. A detailed uncertainty analysis is presented which reveals how the uncertainty in estimates of stopping distance are influenced by experimental error in the force measurements that are acquired in a typical evaluation experiment conducted to assess candidate overrun materials.
NASA Technical Reports Server (NTRS)
Timmerman, J.; Jones, Denise R. (Technical Monitor)
2001-01-01
A Runway Incursion Prevention System (RIPS) was tested at the Dallas - Ft. Worth International Airport in October 2000. The system integrated airborne and ground components to provide both pilots and controllers with enhanced situational awareness, supplemental guidance cues, a real-time display of traffic information, and warning of runway incursions in order to prevent runway incidents while also improving operational capability. Rockwell Collins provided and supported a prototype Automatic Dependent Surveillance - Broadcast (ADS-B) system using 1090 MHz and a prototype Differential GPS (DGPS) system onboard the NASA Boeing 757 research aircraft. This report describes the Rockwell Collins contributions to the RIPS flight test, summarizes the development process, and analyzes both ADS-B and DGPS data collected during the flight test. In addition, results are report on interoperability tests conducted between the NASA Advanced General Aviation Transport Experiments (AGATE) ADS-B flight test system and the NASA Boeing 757 ADS-B system.
NASA Technical Reports Server (NTRS)
Tanner, J. A.
1972-01-01
An experimental investigation was conducted to study the performance of an aircraft tire under cyclic braking conditions and to study the performance of a currently operational aircraft antiskid braking system. Dry, damp, and flooded runway surface conditions were used in the investigation. The results indicated that under cyclic braking conditions the braking and cornering-force friction coefficients may be influenced by fluctuations in the vertical load, flexibility in the wheel support, and the spring coupling between the wheel and the tire-pavement interface. The cornering capability was shown to be negligible at wheel slip ratios well below a locked-wheel skid under all test surface conditions. The maximum available brake-force friction coefficient was shown to be dependent upon the runway surface condition, upon velocity, and, for wet runways, upon tire differences. Moderate reductions in vertical load and brake system pressure did not significantly affect the overall wet-runway performance of the tire.
Visual slant misperception and the Black-Hole landing situation
NASA Technical Reports Server (NTRS)
Perrone, J. A.
1983-01-01
A theory which explains the tendency for dangerously low approaches during night landing situations is presented. The two dimensional information at the pilot's eye contains sufficient information for the visual system to extract the angle of slant of the runway relative to the approach path. The analysis is depends upon perspective information which is available at a certain distance out from the aimpoint, to either side of the runway edgelights. Under black hole landing conditions, however, this information is not available, and it is proposed that the visual system use instead the only available information, the perspective gradient of the runway edgelights. An equation is developed which predicts the perceived approach angle when this incorrect parameter is used. The predictions are in close agreement with existing experimental data.
Studies of Contaminated Runways,
1980-01-01
slide friction we refer to the friction which is produced due to the relative motion between a rubber tyre and a hard runway. tThis type of friction is... rubber planing" and a tyre exposed to such a process shows damages in form of a local sticky surface or a locally worn-off layer. The steam, which...macrostructure causes when dry together with a rubber tyre brake numbers Prom 0.7 to 1.1 depending on the rubber mixture and inflation pressure. On this type of
14 CFR 151.79 - Runway paving: Second runway; wind conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Runway paving: Second runway; wind...: Second runway; wind conditions. (a) All airports. Paving a second runway on the basis of wind conditions... second runway is oriented with the existing paved runway to achieve the maximum wind coverage, with due...
14 CFR 151.79 - Runway paving: Second runway; wind conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Runway paving: Second runway; wind...: Second runway; wind conditions. (a) All airports. Paving a second runway on the basis of wind conditions... second runway is oriented with the existing paved runway to achieve the maximum wind coverage, with due...
14 CFR 151.79 - Runway paving: Second runway; wind conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Runway paving: Second runway; wind...: Second runway; wind conditions. (a) All airports. Paving a second runway on the basis of wind conditions... second runway is oriented with the existing paved runway to achieve the maximum wind coverage, with due...
14 CFR 151.79 - Runway paving: Second runway; wind conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Runway paving: Second runway; wind...: Second runway; wind conditions. (a) All airports. Paving a second runway on the basis of wind conditions... second runway is oriented with the existing paved runway to achieve the maximum wind coverage, with due...
Models of Wake-Vortex Spreading Mechanisms and Their Estimated Uncertainties
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.; Hardy, Gordon H.; Meyn, Larry A.
2006-01-01
One of the primary constraints on the capacity of the nation's air transportation system is the landing capacity at its busiest airports. Many airports with nearly-simultaneous operations on closely-spaced parallel runways (i.e., as close as 750 ft (246m)) suffer a severe decrease in runway acceptance rate when weather conditions do not allow full utilization. The objective of a research program at NASA Ames Research Center is to develop the technologies needed for traffic management in the airport environment so that operations now allowed on closely-spaced parallel runways under Visual Meteorological Conditions can also be carried out under Instrument Meteorological Conditions. As part of this overall research objective, the study reported here has developed improved models for the various aerodynamic mechanisms that spread and transport wake vortices. The purpose of the study is to continue the development of relationships that increase the accuracy of estimates for the along-trail separation distances available before the vortex wake of a leading aircraft intrudes into the airspace of a following aircraft. Details of the models used and their uncertainties are presented in the appendices to the paper. Suggestions are made as to the theoretical and experimental research needed to increase the accuracy of and confidence level in the models presented and instrumentation required or more precise estimates of the motion and spread of vortex wakes. The improved wake models indicate that, if the following aircraft is upwind of the leading aircraft, the vortex wakes of the leading aircraft will not intrude into the airspace of the following aircraft for about 7s (based on pessimistic assumptions) for most atmospheric conditions. The wake-spreading models also indicate that longer time intervals before wake intrusion are available when atmospheric turbulence levels are mild or moderate. However, if the estimates for those time intervals are to be reliable, further study is necessary to develop the instrumentation and procedures needed to accurately define when the more benign atmospheric conditions exist.
Computing danger zones for provably safe closely spaced parallel approaches: Theory and experiment
NASA Astrophysics Data System (ADS)
Teo, Rodney
In poor visibility, paired approaches to airports with closely spaced parallel runways are not permitted, thus halving the arrival rate. With Global Positioning System technology, datalinks and cockpit displays, this could be averted. One important problem is ensuring safety during a blundered approach by one aircraft. This is on-going research. A danger zone around the blunderer is required. If the correct danger zone could be calculated, then it would be possible to get 100% of clear-day capacity in poor-visibility days even on 750 foot runways. The danger zones vary significantly (during an approach) and calculating them in real time would be very significant. Approximations (e.g. outer bounds) are not good enough. This thesis presents a way to calculate these danger zones in real time for a very broad class of blunder trajectories. The approach in this thesis differs from others in that it guarantees safety for any possible blunder trajectory as long as the speeds and turn rates of the blunder are within certain bounds. In addition, the approach considers all emergency evasive maneuvers whose speeds and turn rates are within certain bounds about a nominal emergency evasive maneuver. For all combinations of these blunder and evasive maneuver trajectories, it guarantees that the evasive maneuver is safe. For more than 1 million simulation runs, the algorithm shows a 100% rate of Successful Alerts and a 0% rate of Collisions Given an Alert. As an experimental testbed, two 10-ft wingspan fully autonomous unmanned aerial vehicles and a ground station are developed together with J. S. Jang. The development includes the design and flight testing of automatic controllers. The testbed is used to demonstrate the algorithm implementation through an autonomous closely spaced parallel approach, with one aircraft programmed to blunder. The other aircraft responds according to the result of the algorithm on board it and evades autonomously when required. This experimental demonstration is successfully conducted, showing the implementation of the algorithm, in particular, demonstrating that it can run in real time. Finally; with the necessary sensors and datalink, and the appropriate procedures in place, the algorithm developed in this thesis will enable 100% of clear-day capacity in poor-visibility days even on 750 foot runways.
Parallel Approach Separation and Controller Performance
1989-11-01
adjacent runways from the current minimum of 2.0 to 1.5 nautical miles (nmi). The possible impact of this alteration included changes in the nature and...for aircraft in trail on the same approach. 4. Determine if a change in separation standard affects controller work effort and if so, how. SIMULATION...practice effects should be minimal. 2. They can evaluate the realism of the simulation. 3. They are better able to evaluate the impact of any changes
Runway Rubber Removal Specification Development: Field Evaluation Procedures Development.
1984-07-01
removal was sufficient enough to restore full pave- ment skid resistance (based on tests with a DBV). With regard to high-pressure water rubber ...over a test surface, the rubber slider resists motion-. The force, parallel to the test surface, which acts on the slider registers an output on a dial...PROCEDURE 1. Check rubber shoe for wear . Replace when the edge is worn by more than 3/16 in as measured with a rule laid flat across the slider width. 2
System-Oriented Runway Management Concept of Operations
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Atkins, Stephen
2015-01-01
This document describes a concept for runway management that maximizes the overall efficiency of arrival and departure operations at an airport or group of airports. Specifically, by planning airport runway configurations/usage, it focuses on the efficiency with which arrival flights reach their parking gates from their arrival fixes and departure flights exit the terminal airspace from their parking gates. In the future, the concept could be expanded to include the management of other limited airport resources. While most easily described in the context of a single airport, the concept applies equally well to a group of airports that comprise a metroplex (i.e., airports in close proximity that share resources such that operations at the airports are at least partially dependent) by including the coordination of runway usage decisions between the airports. In fact, the potential benefit of the concept is expected to be larger in future metroplex environments due to the increasing need to coordinate the operations at proximate airports to more efficiently share limited airspace resources. This concept, called System-Oriented Runway Management (SORM), is further broken down into a set of airport traffic management functions that share the principle that operational performance must be measured over the complete surface and airborne trajectories of the airport's arrivals and departures. The "system-oriented" term derives from the belief that the traffic management objective must consider the efficiency of operations over a wide range of aircraft movements and National Airspace System (NAS) dynamics. The SORM concept is comprised of three primary elements: strategic airport capacity planning, airport configuration management, and combined arrival/departure runway planning. Some aspects of the SORM concept, such as using airport configuration management1 as a mechanism for improving aircraft efficiency, are novel. Other elements (e.g., runway scheduling, which is a part of combined arrival/departure runway scheduling) have been well studied, but are included in the concept for completeness and to allow the concept to define the necessary relationship among the elements. The goal of this document is to describe the overall SORM concept and how it would apply both within the NAS and potential future Next Generation Air Traffic System (NextGen) environments, including research conducted to date. Note that the concept is based on the belief that runways are the primary constraint and the decision point for controlling efficiency, but the efficiency of runway management must be measured over a wide range of space and time. Implementation of the SORM concept is envisioned through a collection of complementary, necessary capabilities collectively focused on ensuring efficient arrival and departure traffic management, where that efficiency is measured not only in terms of runway efficiency but in terms of the overall trajectories between parking gates and transition fixes. For the more original elements of the concept-airport configuration management-this document proposes specific air traffic management (ATM) decision-support automation for realizing the concept.
Runway Exit Designs for Capacity Improvement Demonstrations. Phase 1: Algorithm Development
NASA Technical Reports Server (NTRS)
Trani, A. A.; Hobeika, A. G.; Sherali, H.; Kim, B. J.; Sadam, C. K.
1990-01-01
A description and results are presented of a study to locate and design rapid runway exits under realistic airport conditions. The study developed a PC-based computer simulation-optimization program called REDIM (runway exit design interactive model) to help future airport designers and planners to locate optimal exits under various airport conditions. The model addresses three sets of problems typically arising during runway exit design evaluations. These are the evaluations of existing runway configurations, addition of new rapid runway turnoffs, and the design of new runway facilities. The model is highly interactive and allows a quick estimation of the expected value of runway occupancy time. Aircraft populations and airport environmental conditions are among the multiple inputs to the model to execute a viable runway location and geometric design solution. The results presented suggest that possible reductions on runway occupancy time (ROT) can be achieved with the use of optimally tailored rapid runway designs for a given aircraft population. Reductions of up to 9 to 6 seconds are possible with the implementation of 30 m/sec variable geometry exits.
Factors influencing aircraft ground handling performance
NASA Technical Reports Server (NTRS)
Yager, T. J.
1983-01-01
Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.
75 FR 13337 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
....00 PFC Level: North terminal complex conceptual design. Cargo service road. Decision Date: December 1... and II). Aircraft rescue and firefighting building (design). Runway 24 runway safety area improvements (design). Runway 24 runway safety area improvements (grading/drainage). Runway 6 localizer (design...
14 CFR 151.80 - Runway paving: Additional runway; other conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway paving...
14 CFR 151.80 - Runway paving: Additional runway; other conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway paving...
14 CFR 151.80 - Runway paving: Additional runway; other conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway paving...
14 CFR 151.79 - Runway paving: Second runway; wind conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Runway paving: Second runway; wind conditions. 151.79 Section 151.79 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.79 Runway paving...
14 CFR 151.80 - Runway paving: Additional runway; other conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway paving...
14 CFR 151.80 - Runway paving: Additional runway; other conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway paving...
Status of runway slipperiness research
NASA Technical Reports Server (NTRS)
Horne, W. B.
1976-01-01
Runway slipperiness research performed in the United States and Europe since 1968 is reviewed. Topics discussed include: (1) runway flooding during rainstorms; (2) hydroplaning; (3) identification of slippery runways including the results from ground vehicle friction measurements and attempts to correlate these measurements with aircraft stopping performance; (4) progress and problems associated with the development of antihydroplaning runway surface treatments such as pavement grooving and porous friction course (PFC); and (5) runway rubber deposits and their removal.
Review of factors affecting aircraft wet runway performance
NASA Technical Reports Server (NTRS)
Yager, T. J.
1983-01-01
Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.
Runway Operations Planning: A Two-Stage Heuristic Algorithm
NASA Technical Reports Server (NTRS)
Anagnostakis, Ioannis; Clarke, John-Paul
2003-01-01
The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, can also be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. This paper introduces a two stage heuristic algorithm for solving the Runway Operations Planning (ROP) problem. In the first stage, sequences of departure class slots and runway crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program with a Branch & Bound algorithm implementation. Preliminary results from this implementation of the two-stage algorithm on real-world traffic data are presented.
NextGen Operational Improvements: Will they Improve Human Performance
NASA Technical Reports Server (NTRS)
Beard, Bettina L.; Johnston, James C.; Holbrook, Jon
2013-01-01
Modernization of the National Airspace System depends critically on the development of advanced technology, including cutting-edge automation, controller decision-support tools and integrated on-demand information. The Next Generation Air Transportation System national plan envisions air traffic control tower automation that proposes solutions for seven problems: 1) departure metering, 2) taxi routing, 3) taxi and runway scheduling, 4) departure runway assignments, 5) departure flow management, 6) integrated arrival and departure scheduling and 7) runway configuration management. Government, academia and industry are simultaneously pursuing the development of these tools. For each tool, the development process typically begins by assessing its potential benefits, and then progresses to designing preliminary versions of the tool, followed by testing the tool's strengths and weaknesses using computational modeling, human-in-the-loop simulation and/or field tests. We compiled the literature, evaluated the methodological rigor of the studies and served as referee for partisan conclusions that were sometimes overly optimistic. Here we provide the results of this review.
NASA Technical Reports Server (NTRS)
Reeder, John P.
1959-01-01
Flight tests were made to determine the capability of positioning a gliding airplane for a landing on a 5,000-foot runway with special reference to the gliding flight of a satellite vehicle of fixed configuration upon reentry into the earth's atmosphere. The lift-drag ratio and speed of the airplane in the glides were varied through as large a range as possible. The results showed a marked tendency to undershoot the runway when the lift-drag ratios were below certain values, depending upon the speed in the glide. A straight line dividing the successful approaches from the undershoots could be drawn through a lift-drag ratio of about 3 at 100 knots and through a lift-drag ratio of about 7 at 185 knots. Provision of a drag device would be very beneficial, particularly in reducing the tendency toward undershooting at the higher speeds.
Analysis of localizer and glide slope Flight Technical Error
DOT National Transportation Integrated Search
2008-12-09
A new wake turbulence procedure has been developed that permits two dependent arrival traffic streams during instrument meteorological conditions : to runways with centerline separations less than 2500 ft. For the proposed procedure, aircraft approac...
Runway Operations Planning: A Two-Stage Solution Methodology
NASA Technical Reports Server (NTRS)
Anagnostakis, Ioannis; Clarke, John-Paul
2003-01-01
The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. Thus, Runway Operations Planning (ROP) is a critical component of airport operations planning in general and surface operations planning in particular. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, may be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. Generating optimal runway operations plans was approached in with a 'one-stage' optimization routine that considered all the desired objectives and constraints, and the characteristics of each aircraft (weight class, destination, Air Traffic Control (ATC) constraints) at the same time. Since, however, at any given point in time, there is less uncertainty in the predicted demand for departure resources in terms of weight class than in terms of specific aircraft, the ROP problem can be parsed into two stages. In the context of the Departure Planner (OP) research project, this paper introduces Runway Operations Planning (ROP) as part of the wider Surface Operations Optimization (SOO) and describes a proposed 'two stage' heuristic algorithm for solving the Runway Operations Planning (ROP) problem. Focus is specifically given on including runway crossings in the planning process of runway operations. In the first stage, sequences of departure class slots and runwy crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program. Preliminary results from the algorithm implementation on real-world traffic data are included.
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Williams, Daniel M.
2008-01-01
Significant air traffic increases are anticipated for the future of the National Airspace System (NAS). To cope with future traffic increases, fundamental changes are required in many aspects of the air traffic management process including the planning and use of NAS resources. Two critical elements of this process are the selection of airport runway configurations, and the effective management of active runways. Two specific research areas in NASA's Airspace Systems Program (ASP) have been identified to address efficient runway management: Runway Configuration Management (RCM) and Arrival/Departure Runway Balancing (ADRB). This report documents efforts in assessing past as well as current work in these two areas.
1972-03-07
This early chart conceptualizes the use of two parallel Solid Rocket Motor Boosters in conjunction with three main engines to launch the proposed Space Shuttle to orbit. At approximately twenty-five miles altitude, the boosters would detach from the Orbiter and parachute back to Earth where they would be recovered and refurbished for future use. The Shuttle was designed as NASA's first reusable space vehicle, launching vertically like a spacecraft and landing on runways like conventional aircraft. Marshall Space Flight Center had management responsibility for the Shuttle's propulsion elements, including the Solid Rocket Boosters.
Study of noise level at Raja Haji Fisabilillah airport in Tanjung Pinang, Riau Islands
NASA Astrophysics Data System (ADS)
Nofriandi, H.; Wijayanti, A.; Fachrul, M. F.
2018-01-01
Raja Haji Fisabilillah International Airport is a central airport located in Kampung Mekarsari, Pinang Kencana District, Tanjung Pinang City, Riau Islands Province. The aims of this study are to determine noise level at the airport and to calculate noise index using WECPNL (Weighted Equivalent Continuous Perceived Noise Level) method. The method using recommendations from the International Civil Aviation Organization (ICAO), the measurement point is based on at a distance of 300 meters parallel to the runway, as well as 1000 meters, 2000 meters, 3000 meters and 4000 meters from the runway end. The results at point 3 was 75.30 dB(A). Based on the noise intensity result, Boeing aircraft 737-500 was considered as the highest in the airport surrounding area, which is 95.24 dB(A) and the lowest was at point 12 with a value of 37,24 dB(A). Mapping contour shows that 3 areas of noise and point 3 with 75,30 dB(A) were considered as second level area and were complied to the standard required.
Runway Safety Monitor Algorithm for Single and Crossing Runway Incursion Detection and Alerting
NASA Technical Reports Server (NTRS)
Green, David F., Jr.
2006-01-01
The Runway Safety Monitor (RSM) is an aircraft based algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety and Security Program's Synthetic Vision System project. The RSM algorithm provides warnings of runway incursions in sufficient time for pilots to take evasive action and avoid accidents during landings, takeoffs or when taxiing on the runway. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Reno/Tahoe International Airport (RNO) and the Wallops Flight Facility (WAL) during July and August of 2004, and the RSM performance results and lessons learned from those flight tests.
Runway incursion severity risk analysis.
DOT National Transportation Integrated Search
2012-09-14
Runway incursions are defined as the unauthorized presence of a vehicle, pedestrian, or aircraft on a runway. Identifying situations or conditions in which runway incursions are more likely to be severe can suggest policy implications and areas for f...
Airborne-Managed Spacing in Multiple Arrival Streams
NASA Technical Reports Server (NTRS)
Barmore, Bryan; Abbott, Terence; Krishnamurthy, Karthik
2004-01-01
A significant bottleneck in the current air traffic system occurs at the runway. Expanding airports and adding new runways will help solve this problem; however, this comes at a significant cost, financially, politically and environmentally. A complementary solution is to safely increase the capacity of current runways. This can be achieved by precise spacing at the runway threshold with a resulting reduction in the spacing buffer required under today s operations. At the NASA Langley Research Center, the Advanced Air Transportation Technologies (AATT) Project is investigating airborne technologies and procedures that will assist the pilot in achieving precise spacing behind another aircraft. This new spacing clearance instructs the pilot to follow speed cues from a new on-board guidance system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). AMSTAR receives Automatic Dependent Surveillance-Broadcast (ADS-B) reports from the leading aircraft and calculates the appropriate speed for the ownership to fly in order to achieve the desired spacing interval, time or distance-based, at the runway threshold. Since the goal is overall system capacity, the speed guidance algorithm is designed to provide system benefit over individual efficiency. This paper discusses the concept of operations and design of AMSTAR to support airborne precision spacing. Results from the previous stage of development, focused only on in-trail spacing, are discussed along with the evolution of the concept to include merging of converging streams of traffic. This paper also examines how this operation might support future wake vortex-based separation and other advances in terminal area operations. Finally, the research plan for the merging capabilities, to be performed during the summer and fall of 2004 is presented.
Landmark navigation and autonomous landing approach with obstacle detection for aircraft
NASA Astrophysics Data System (ADS)
Fuerst, Simon; Werner, Stefan; Dickmanns, Dirk; Dickmanns, Ernst D.
1997-06-01
A machine perception system for aircraft and helicopters using multiple sensor data for state estimation is presented. By combining conventional aircraft sensor like gyros, accelerometers, artificial horizon, aerodynamic measuring devices and GPS with vision data taken by conventional CCD-cameras mounted on a pan and tilt platform, the position of the craft can be determined as well as the relative position to runways and natural landmarks. The vision data of natural landmarks are used to improve position estimates during autonomous missions. A built-in landmark management module decides which landmark should be focused on by the vision system, depending on the distance to the landmark and the aspect conditions. More complex landmarks like runways are modeled with different levels of detail that are activated dependent on range. A supervisor process compares vision data and GPS data to detect mistracking of the vision system e.g. due to poor visibility and tries to reinitialize the vision system or to set focus on another landmark available. During landing approach obstacles like trucks and airplanes can be detected on the runway. The system has been tested in real-time within a hardware-in-the-loop simulation. Simulated aircraft measurements corrupted by noise and other characteristic sensor errors have been fed into the machine perception system; the image processing module for relative state estimation was driven by computer generated imagery. Results from real-time simulation runs are given.
DOT National Transportation Integrated Search
2002-10-24
The analysis set was limited to runway incursion incidents that occurred : between January 1, 2000 and June 30,2002. : The runway incursion incidents included incidents involving eitherhold : line transgressions or actual runway penetrations. : ...
DOT National Transportation Integrated Search
2002-10-24
The analysis set was limited to runway incursion incidents that occurred : between January 1, 2000 and June 30,2002. : The runway incursion incidents included incidents involving eitherhold : line transgressions or actual runway penetrations. : ...
NASA Technical Reports Server (NTRS)
Horne, W. B.; Griswold, G. D.
1975-01-01
A high pressure water blast with rotating spray bar treatment for removing paint and rubber deposits from airport runways is studied. The results of the evaluation suggest that the treatment is very effective in removing above surface paint and rubber deposits to the point that pavement skid resistance is restored to trafficked but uncontaminated runway surface skid resistance levels. Aircraft operating problems created by runway slipperiness are reviewed along with an assessment of the contributions that pavement surface treatments, surface weathering, traffic polishing, and rubber deposits make in creating or alleviating runway slipperiness. The results suggest that conventional surface treatments for both portland cement and asphaltic concrete runways are extremely vulnerable to rubber deposit accretions which can produce runway slipperiness conditions for aircraft operations as or more slippery than many snow and ice-covered runway conditions. Pavement grooving surface treatments are shown to be the least vulnerable to rubber deposits accretion and traffic polishing of the surface treatments examined.
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Vogler, William A.; Baldasare, Paul
1988-01-01
Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.
NASA Technical Reports Server (NTRS)
Phojanamongkolkij, Nipa; Oseguera-Lohr, Rosa M.; Lohr, Gary W.; Robbins, Steven W.; Fenbert, James W.; Hartman, Christopher L.
2015-01-01
The System-Oriented Runway Management (SORM) concept is a collection of capabilities focused on a more efficient use of runways while considering all of the factors that affect runway use. Tactical Runway Configuration Management (TRCM), one of the SORM capabilities, provides runway configuration and runway usage recommendations, and monitoring the active runway configuration for suitability given existing factors. This report focuses on the metroplex environment, with two or more proximate airports having arrival and departure operations that are highly interdependent. The myriad of factors that affect metroplex opeations require consideration in arriving at runway configurations that collectively best serve the system as a whole. To assess the metroplex TRCM (mTRCM) benefit, the performance metrics must be compared with the actual historical operations. The historical configuration schedules can be viewed as the schedules produced by subject matter experts (SMEs), and therefore are referred to as the SMEs' schedules. These schedules were obtained from the FAA's Aviation System Performance Metrics (ASPM) database; this is the most representative information regarding runway configuration selection by SMEs. This report focused on a benefit assessment of total delay, transit time, and throughput efficiency (TE) benefits using the mTRCM algorithm at representative volumes for today's traffic at the New York metroplex (N90).
Performance Evaluation of Evasion Maneuvers for Parallel Approach Collision Avoidance
NASA Technical Reports Server (NTRS)
Winder, Lee F.; Kuchar, James K.; Waller, Marvin (Technical Monitor)
2000-01-01
Current plans for independent instrument approaches to closely spaced parallel runways call for an automated pilot alerting system to ensure separation of aircraft in the case of a "blunder," or unexpected deviation from the a normal approach path. Resolution advisories by this system would require the pilot of an endangered aircraft to perform a trained evasion maneuver. The potential performance of two evasion maneuvers, referred to as the "turn-climb" and "climb-only," was estimated using an experimental NASA alerting logic (AILS) and a computer simulation of relative trajectory scenarios between two aircraft. One aircraft was equipped with the NASA alerting system, and maneuvered accordingly. Observation of the rates of different types of alerting failure allowed judgement of evasion maneuver performance. System Operating Characteristic (SOC) curves were used to assess the benefit of alerting with each maneuver.
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.; Johnson, Edward J.; Domino, David A.
2008-01-01
A concept focusing on wind dependent departure operations has been developed the current version of this concept is called the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage the fact that cross winds of sufficient velocity blow wakes generated by "heavy" and B757 category aircraft on the downwind runway away from the upwind runway. Supervisory Air Traffic Controllers would be responsible for authorization of the Procedure. An investigation of the information requirements necessary to for Supervisors to approve monitor and terminate the Procedure was conducted. Results clearly indicated that the requisite information is currently available in air traffic control towers and that additional information was not required.
Cockpit Technology for Prevention of General Aviation Runway Incursions
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Jones, Denise R.
2007-01-01
General aviation accounted for 74 percent of runway incursions but only 57 percent of the operations during the four-year period from fiscal year (FY) 2001 through FY2004. Elements of the NASA Runway Incursion Prevention System were adapted and tested for general aviation aircraft. Sixteen General Aviation pilots, of varying levels of certification and amount of experience, participated in a piloted simulation study to evaluate the system for prevention of general aviation runway incursions compared to existing moving map displays. Pilots flew numerous complex, high workload approaches under varying weather and visibility conditions. A rare-event runway incursion scenario was presented, unbeknownst to the pilots, which represented a typical runway incursion situation. The results validated the efficacy and safety need for a runway incursion prevention system for general aviation aircraft.
Runway Safety Monitor Algorithm for Runway Incursion Detection and Alerting
NASA Technical Reports Server (NTRS)
Green, David F., Jr.; Jones, Denise R. (Technical Monitor)
2002-01-01
The Runway Safety Monitor (RSM) is an algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety Program's Synthetic Vision System element. The RSM algorithm provides pilots with enhanced situational awareness and warnings of runway incursions in sufficient time to take evasive action and avoid accidents during landings, takeoffs, or taxiing on the runway. The RSM currently runs as a component of the NASA Integrated Display System, an experimental avionics software system for terminal area and surface operations. However, the RSM algorithm can be implemented as a separate program to run on any aircraft with traffic data link capability. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Dallas-Ft Worth International Airport (DFW) during September and October of 2000, and the RSM performance results and lessons learned from those flight tests.
75 FR 13336 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... Approved for Collection at Key West International Airport (EYW) and Use at EYW: Runway safety area design. Runway safety area construction. Approach clearing--design. Runway obstruction clearing--design. Runway obstruction clearing, phase II--construction. Noise implementation plan, phase 6--design. Noise implementation...
76 FR 77887 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-14
... Runway 4/22 extension, environmental assessment Runway 4/22 design--phase 3 Extend runway 4/22...: Snow removal equipment acquisition Airport pavement rehabilitation Master plan update Brief Description of Projects Approved For Collection: Design and permitting for runway 13/31 Easement acquisition...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
...-Pavement Stationary Runway Weather Information Systems AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of In-Pavement Stationary Runway Weather Information Systems... waivers to foreign manufacturers of Active or Passive In- Pavement Stationary Runway Weather Information...
Progress Toward Future Runway Management
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Brown, Sherilyn A.; Atkins, Stephen; Eisenhawer, Stephen W.; Bott, Terrance F.; Long, Dou; Hasan, Shahab
2011-01-01
The runway is universally acknowledged as a constraining factor to capacity in the National Airspace System (NAS). It follows that investigation of the effective use of runways, both in terms of selection and assignment, is paramount to the efficiency of future NAS operations. The need to address runway management is not a new idea; however, as the complexities of factors affecting runway selection and usage increase, the need for effective research in this area correspondingly increases. Under the National Aeronautics and Space Administration s Airspace Systems Program, runway management is a key research area. To address a future NAS which promises to be a complex landscape of factors and competing interests among users and operators, effective runway management strategies and capabilities are required. This effort has evolved from an assessment of current practices, an understanding of research activities addressing surface and airspace operations, traffic flow management enhancements, among others. This work has yielded significant progress. Systems analysis work indicates that the value of System Oriented Runway Management tools is significantly increased in the metroplex environment over that of the single airport case. Algorithms have been developed to provide runway configuration recommendations for a single airport with multiple runways. A benefits analysis has been conducted that indicates the SORM benefits include supporting traffic growth, cost reduction as a result of system efficiency, NAS optimization from metroplex operations, fairness in aircraft operations, and rational decision making.
DOT National Transportation Integrated Search
1972-01-01
The runway visual range (RVR) for a Type L-850 bidirectional centerline runway light has been calculated for the red and white output ports at three different current settings for both day and night illuminance thresholds. The calculations are based ...
Measures to increase airfield capacity by changing aircraft runway occupancy characteristics
NASA Technical Reports Server (NTRS)
Gosling, G. D.; Kanafani, A.; Rockaday, S. L. M.
1981-01-01
Airfield capacity and aircraft runway occupancy characteristics were studied. Factors that caused runway congestion and airfield crowding were identified. Several innovations designed to alleviate the congestion are discussed. Integrated landing management, the concept that the operation of the final approach and runway should be considered in concert, was identified as underlying all of the innovations.
Shuttle landing runway modification to improve tire spin-up wear performance
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Yager, Thomas J.; Stubbs, Sandy M.
1988-01-01
This paper presents the results of a series of tire spin-up wear tests on a simulated Kennedy Space Center (KSC) runway that were carried out to investigate the tire wear problem for Space Shuttle landings on the KSC runway and to test several modifications of the runway surface designed to alleviate the problem. It was found that the runway surface produced by a concrete smoothing machine using cutters spaced one and three-quarters blades per centimeter provided adequate wet cornering while limiting spin-up wear. Based on the test results, the KSC runway was smoothed for about 1066 m at each end, leaving the original high friction surface, for better wet steering and braking, in the 2438-m central section.
Shuttle Challenger landing on Runway 17 at Edwards at end of 51-B mission
NASA Technical Reports Server (NTRS)
1985-01-01
Shuttle Challenger lands on Runway 17 at Edwards at end of 51-B mission. The photo is a rear view of the shuttle landing gear touching the runway, with clouds of dirt trailing behind it. The nose gear is still in the air (071); Side view of the Challenger landing gear touching the runway (072).
Aircraft and ground vehicle friction measurements obtained under winter runway conditions
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1989-01-01
Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.
An assessment of predominant causal factors of pilot deviations that contribute to runway incursions
NASA Astrophysics Data System (ADS)
Campbell, Denado M.
The aim of this study was to identify predominant causal factors of pilot deviations in runway incursions over a two-year period. Runway incursion reports were obtained from NASA's Aviation Safety Reporting System (ASRS), and a qualitative method was used by classifying and coding each report to a specific causal factor(s). The causal factors that were used were substantiated by research from the Aircraft Owner's and Pilot's Association that found that these causal factors were the most common in runway incursion incidents and accidents. An additional causal factor was also utilized to determine the significance of pilot training in relation to runway incursions. From the reports examined, it was found that miscommunication and situational awareness have the greatest impact on pilots and are most often the major causes of runway incursions. This data can be used to assist airports, airlines, and the FAA to understand trends in pilot deviations, and to find solutions for specific problem areas in runway incursion incidents.
The Temporal Logic of the Tower Chief System
NASA Technical Reports Server (NTRS)
Hazelton, Lyman R., Jr.
1990-01-01
The purpose is to describe the logic used in the reasoning scheme employed in the Tower Chief system, a runway configuration management system. First, a review of classical logic is given. Defensible logics, truth maintenance, default logic, temporally dependent propositions, and resource allocation and planning are discussed.
Benefits Assessment for Tactical Runway Configuration Management Tool
NASA Technical Reports Server (NTRS)
Oseguera-Lohr, Rosa; Phojanamongkolkij, Nipa; Lohr, Gary; Fenbert, James W.
2013-01-01
The Tactical Runway Configuration Management (TRCM) software tool was developed to provide air traffic flow managers and supervisors with recommendations for airport configuration changes and runway usage. The objective for this study is to conduct a benefits assessment at Memphis (MEM), Dallas Fort-Worth (DFW) and New York's John F. Kennedy (JFK) airports using the TRCM tool. Results from simulations using the TRCM-generated runway configuration schedule are compared with results using historical schedules. For the 12 days of data used in this analysis, the transit time (arrival fix to spot on airport movement area for arrivals, or spot to departure fix for departures) for MEM departures is greater (7%) than for arrivals (3%); for JFK, there is a benefit for arrivals (9%) but not for departures (-2%); for DFW, arrivals show a slight benefit (1%), but this is offset by departures (-2%). Departure queue length benefits show fewer aircraft in queue for JFK (29%) and MEM (11%), but not for DFW (-13%). Fuel savings for surface operations at MEM are seen for both arrivals and departures. At JFK there are fuel savings for arrivals, but these are offset by increased fuel use for departures. In this study, no surface fuel benefits resulted for DFW. Results suggest that the TRCM algorithm requires modifications for complex surface traffic operations that can cause taxi delays. For all three airports, the average number of changes in flow direction (runway configuration) recommended by TRCM was many times greater than the historical data; TRCM would need to be adapted to a particular airport's needs, to limit the number of changes to acceptable levels. The results from this analysis indicate the TRCM tool can provide benefits at some high-capacity airports. The magnitude of these benefits depends on many airport-specific factors and would require adaptation of the TRCM tool; a detailed assessment is needed prior to determining suitability for a particular airport.
14 CFR 25.1533 - Additional operating limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and wet), and runway gradients) for smooth, hard-surfaced runways. Additionally, at the option of the... for variable factors (such as altitude, temperature, wind, and runway gradients) are those at which...
76 FR 12404 - Noise Exposure Map Notice; Jackson-Evers International Airport, Jackson, MS
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
...-2, Runways 16L/16R Radar and Modeled Flight Tracks for Departures and Arrivals; Figure 5-3, Runways 34L/34R Radar and Modeled Flight Tracks for Departures and Arrivals; Figure 5-4, Runways 16L/16R Radar and Modeled Flight Tracks for Flight Patterns; Figure 5-5, Runways 34L/34R Radar and Modeled Flight...
77 FR 64580 - Noise Exposure Map Notice for Van Nuys Airport, Van Nuys, California
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... for VNY; Figure 10, Modeled Flight Tracks for Runway 16R and 34L Jet Arrivals; Figure 11, Modeled Flight Tracks for Runway 16R and 34L Jet Departures; Figure 12, Modeled Flight Tracks for Runway 16R and 34L Propeller Arrivals; Figure 13, Modeled Flight Tracks for Runway 16L and 34R Propeller Arrivals...
Development and Execution of the RUNSAFE Runway Safety Bayesian Belief Network Model
NASA Technical Reports Server (NTRS)
Green, Lawrence L.
2015-01-01
One focus area of the National Aeronautics and Space Administration (NASA) is to improve aviation safety. Runway safety is one such thrust of investigation and research. The two primary components of this runway safety research are in runway incursion (RI) and runway excursion (RE) events. These are adverse ground-based aviation incidents that endanger crew, passengers, aircraft and perhaps other nearby people or property. A runway incursion is the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft; one class of RI events simultaneously involves two aircraft, such as one aircraft incorrectly landing on a runway while another aircraft is taking off from the same runway. A runway excursion is an incident involving only a single aircraft defined as a veer-off or overrun off the runway surface. Within the scope of this effort at NASA Langley Research Center (LaRC), generic RI, RE and combined (RI plus RE, or RUNSAFE) event models have each been developed and implemented as a Bayesian Belief Network (BBN). Descriptions of runway safety issues from the literature searches have been used to develop the BBN models. Numerous considerations surrounding the process of developing the event models have been documented in this report. The event models were then thoroughly reviewed by a Subject Matter Expert (SME) panel through multiple knowledge elicitation sessions. Numerous improvements to the model structure (definitions, node names, node states and the connecting link topology) were made by the SME panel. Sample executions of the final RUNSAFE model have been presented herein for baseline and worst-case scenarios. Finally, a parameter sensitivity analysis for a given scenario was performed to show the risk drivers. The NASA and LaRC research in runway safety event modeling through the use of BBN technology is important for several reasons. These include: 1) providing a means to clearly understand the cause and effect patterns leading to safety issues, incidents and accidents, 2) enabling the prioritization of specialty areas needing more attention to improve aviation safety, and 3) enabling the identification of gaps within NASA's Aviation Safety funding portfolio
System Oriented Runway Management: A Research Update
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Brown, Sherilyn A.; Stough, Harry P., III; Eisenhawer, Steve; Atkins, Stephen; Long, Dou
2011-01-01
The runway configuration used by an airport has significant implications with respect to its capacity and ability to effectively manage surface and airborne traffic. Aircraft operators rely on runway configuration information because it can significantly affect an airline's operations and planning of their resources. Current practices in runway management are limited by a relatively short time horizon for reliable weather information and little assistance from automation. Wind velocity is the primary consideration when selecting a runway configuration; however when winds are below a defined threshold, discretion may be used to determine the configuration. Other considerations relevant to runway configuration selection include airport operator constraints, weather conditions (other than winds) traffic demand, user preferences, surface congestion, and navigational system outages. The future offers an increasingly complex landscape for the runway management process. Concepts and technologies that hold the potential for capacity and efficiency increases for both operations on the airport surface and in terminal and enroute airspace are currently under investigation. Complementary advances in runway management are required if capacity and efficiency increases in those areas are to be realized. The System Oriented Runway Management (SORM) concept has been developed to address this critical part of the traffic flow process. The SORM concept was developed to address all aspects of runway management for airports of varying sizes and to accommodate a myriad of traffic mixes. SORM, to date, addresses the single airport environment; however, the longer term vision is to incorporate capabilities for multiple airport (Metroplex) operations as well as to accommodate advances in capabilities resulting from ongoing research. This paper provides an update of research supporting the SORM concept including the following: a concept of overview, results of a TRCM simulation, single airport and Metroplex modeling effort and a benefits assessment.
Effect of harmane, an endogenous β-carboline, on learning and memory in rats.
Celikyurt, Ipek Komsuoglu; Utkan, Tijen; Gocmez, Semil Selcen; Hudson, Alan; Aricioglu, Feyza
2013-01-01
Our aim was to investigate the effects of acute harmane administration upon learning and memory performance of rats using the three-panel runway paradigm and passive avoidance test. Male rats received harmane (2.5, 5, and 7.5mg/kg, i.p.) or saline 30 min. before each session of experiments. In the three panel runway paradigm, harmane did not affect the number of errors and latency in reference memory. The effect of harmane on the errors of working memory was significantly higher following the doses of 5mg/kg and 7.5mg/kg. The latency was changed significantly at only 7.5mg/kg in comparison to control group. Animals were given pre-training injection of harmane in the passive avoidance test in order to determine the learning function. Harmane treatment decreased the retention latency significantly and dose dependently, which indicates an impairment in learning. In this study, harmane impaired working memory in three panel runway test and learning in passive avoidance test. As an endogenous bioactive molecule, harmane might have a critical role in the modulation of learning and memory functions. Copyright © 2012 Elsevier Inc. All rights reserved.
Enhanced Airport Surface Detection Equipment Applications,
1985-04-17
of runway capacity for the single mixed runway case . The ASDE display, however, provides independent position and timing information on runway...restored to within approximately 5 percent of the good visibility capacity for the single mixed runway case . The lack of identity informa- tion on the ASDE...D.C. 20591 ENGINEERING AND ECONOMICS RESEARCH, INC. Technical Support Staff Henry R. Schramm Mignonette E. Stephen A-2 I m i . . . -i , ’ ,.i
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.; Hankins, Walter W., III; Barker, L. Keith
2001-01-01
This report examines a rollout and turnoff (ROTO) system for reducing the runway occupancy time for transport aircraft in low-visibility weather. Simulator runs were made to evaluate the system that includes a head-up display (HUD) to show the pilot a graphical overlay of the runway along with guidance and steering information to a chosen exit. Fourteen pilots (airline, corporate jet, and research pilots) collectively flew a total of 560 rollout and turnoff runs using all eight runways at Hartsfield Atlanta International Airport. The runs consisted of 280 runs for each of two runway visual ranges (RVRs) (300 and 1200 ft). For each visual range, half the runs were conducted with the HUD information and half without. For the runs conducted with the HUD information, the runway occupancy times were lower and more consistent. The effect was more pronounced as visibility decreased. For the 1200-ft visibility, the runway occupancy times were 13% lower with HUD information (46.1 versus 52.8 sec). Similarly, for the 300-ft visibility, the times were 28% lower (45.4 versus 63.0 sec). Also, for the runs with HUD information, 78% (RVR 1200) and 75% (RVR 300) had runway occupancy times less than 50 sec, versus 41 and 20%, respectively, without HUD information.
Federal Aviation Administration's Runway Incursion Program
DOT National Transportation Integrated Search
1997-12-08
To reverse the upward trend in runway incursions, FAA must have a strong : Runway Incursion Program to solve systemwide problems and expedite : solutions. The Office of Inspector General report recommends that FAA (1) assign specific responsibility f...
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Vogler, William A.; Baldasare, Paul
1990-01-01
Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.
Aviation infrastructure : challenges associated with building and maintaining runways
DOT National Transportation Integrated Search
2000-10-05
This testimony focuses on challenges associated with building new runways and with ensuring that existing runways are properly maintained. Recent flight delays and cancellations as well as significant media attention to them have heightened public co...
Coordinated Parallel Runway Approaches
NASA Technical Reports Server (NTRS)
Koczo, Steve
1996-01-01
The current air traffic environment in airport terminal areas experiences substantial delays when weather conditions deteriorate to Instrument Meteorological Conditions (IMC). Expected future increases in air traffic will put additional pressures on the National Airspace System (NAS) and will further compound the high costs associated with airport delays. To address this problem, NASA has embarked on a program to address Terminal Area Productivity (TAP). The goals of the TAP program are to provide increased efficiencies in air traffic during the approach, landing, and surface operations in low-visibility conditions. The ultimate goal is to achieve efficiencies of terminal area flight operations commensurate with Visual Meteorological Conditions (VMC) at current or improved levels of safety.
European Action Plan for the Prevention of Runway Incursions
DOT National Transportation Integrated Search
2017-11-20
This version of European Action Plan for the Prevention of Runway Incursions (EAPPRI) recognises the emergence of EU provisions intended to improve runway safety in Europe. However, like its predecessors, this third version of EAPPRI continues to rec...
Runway Scheduling for Charlotte Douglas International Airport
NASA Technical Reports Server (NTRS)
Malik, Waqar A.; Lee, Hanbong; Jung, Yoon C.
2016-01-01
This paper describes the runway scheduler that was used in the 2014 SARDA human-in-the-loop simulations for CLT. The algorithm considers multiple runways and computes optimal runway times for departures and arrivals. In this paper, we plan to run additional simulation on the standalone MRS algorithm and compare the performance of the algorithm against a FCFS heuristic where aircraft avail of runway slots based on a priority given by their positions in the FCFS sequence. Several traffic scenarios corresponding to current day traffic level and demand profile will be generated. We also plan to examine the effect of increase in traffic level (1.2x and 1.5x) and observe trends in algorithm performance.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. This aerial photo of the runway at the KSC Shuttle Landing Facility looks northeast. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000- foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle. At center right is the parking apron with the orbiter mate/demate tower. The tow-way stretches from the runway to the right, passing the hangar and storage facilities. A grassy area next to the mid- point of the runway is where the new control tower is located.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. This aerial photo of the runway at the KSC Shuttle Landing Facility looks northeast. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000- foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle. At center right is the parking apron with the orbiter mate/demate tower. The tow-way stretches from the runway to the right, passing the hangar and storage facilities. A grassy area next to the mid- point of the runway is where the new control tower is located.
2004-03-31
KENNEDY SPACE CENTER, FLA. - This aerial photo of the runway at the KSC Shuttle Landing Facility looks northeast. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts’ T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle. At center right is the parking apron with the orbiter mate/demate tower. The tow-way stretches from the runway to the right, passing the hangar and storage facilities. A grassy area next to the mid-point of the runway is where the new control tower is located.
2004-03-31
KENNEDY SPACE CENTER, FLA. - This aerial photo of the runway at the KSC Shuttle Landing Facility looks northeast. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts’ T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle. At center right is the parking apron with the orbiter mate/demate tower. The tow-way stretches from the runway to the right, passing the hangar and storage facilities. A grassy area next to the mid-point of the runway is where the new control tower is located.
NASA Technical Reports Server (NTRS)
Horne, W. B.
1977-01-01
Two runways were evaluated under artificially wetted conditions with the NASA diagonal-braked vehicle (DBV). Results of the evaluation which included a pavement drainage analysis, a pavement skid resistance analysis, and a DBV wet/dry stopping distance ratio analysis indicated that the ungrooved runway surfaces had poor water drainage characteristics and poor skid resistance under wet conditions at high speeds especially in rubbercoated areas of the runways. Grooving runways to a transverse 1-1/4 x 1/4 x 1/4 inch pattern greatly improved both the water drainage and pavement skid resistance capability of these asphaltic concrete surfaces.
Electronic System for Preventing Airport Runway Incursions
NASA Technical Reports Server (NTRS)
Dabney, Richard; Elrod, Susan
2009-01-01
A proposed system of portable illuminated signs, electronic monitoring equipment, and radio-communication equipment for preventing (or taking corrective action in response to) improper entry of aircraft, pedestrians, or ground vehicles onto active airport runways is described. The main overall functions of the proposed system would be to automatically monitor aircraft ground traffic on or approaching runways and to generate visible and/or audible warnings to affected pilots, ground-vehicle drivers, and control-tower personnel when runway incursions take place.
Throughput Benefit Assessment for Tactical Runway Configuration Management (TRCM)
NASA Technical Reports Server (NTRS)
Phojanamongkolkij, Nipa; Oseguera-Lohr, Rosa M.; Lohr, Gary W.; Fenbert, James W.
2014-01-01
The System-Oriented Runway Management (SORM) concept is a collection of needed capabilities focused on a more efficient use of runways while considering all of the factors that affect runway use. Tactical Runway Configuration Management (TRCM), one of the SORM capabilities, provides runway configuration and runway usage recommendations, monitoring the active runway configuration for suitability given existing factors, based on a 90 minute planning horizon. This study evaluates the throughput benefits using a representative sample of today's traffic volumes at three airports: Memphis International Airport (MEM), Dallas-Fort Worth International Airport (DFW), and John F. Kennedy International Airport (JFK). Based on this initial assessment, there are statistical throughput benefits for both arrivals and departures at MEM with an average of 4% for arrivals, and 6% for departures. For DFW, there is a statistical benefit for arrivals with an average of 3%. Although there is an average of 1% benefit observed for departures, it is not statistically significant. For JFK, there is a 12% benefit for arrivals, but a 2% penalty for departures. The results obtained are for current traffic volumes and should show greater benefit for increased future demand. This paper also proposes some potential TRCM algorithm improvements for future research. A continued research plan is being worked to implement these improvements and to re-assess the throughput benefit for today and future projected traffic volumes.
AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING CONCRETE ON RUNWAY
NASA Technical Reports Server (NTRS)
1975-01-01
AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING CONCRETE ON RUNWAY KSC-375C-10036.32 108-KSC-375C-10036.32, P-21425, ARCHIVE-04501 Aerial oblique of Shuttle Landing Facility. Pouring concrete on runway. Direction North - Altitude 100'.
Runway Scheduling Using Generalized Dynamic Programming
NASA Technical Reports Server (NTRS)
Montoya, Justin; Wood, Zachary; Rathinam, Sivakumar
2011-01-01
A generalized dynamic programming method for finding a set of pareto optimal solutions for a runway scheduling problem is introduced. The algorithm generates a set of runway fight sequences that are optimal for both runway throughput and delay. Realistic time-based operational constraints are considered, including miles-in-trail separation, runway crossings, and wake vortex separation. The authors also model divergent runway takeoff operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth International airport and three baseline heuristics are used to illustrate preliminary benefits of using the generalized dynamic programming method. Simulated traffic levels ranged from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline schedulers. Computational results suggest that the algorithm is promising for real-time application with an average computation time of 4.5 seconds. For even faster computation times, two heuristics are developed. As compared to the optimal, the heuristics are within 5% of the expected delay per aircraft and 1% of the expected number of runway operations per hour ad can be 100x faster.
AERIAL OF SHUTTLE LANDING FACILITY [SLF] RUNWAY CONSTRUCTION
NASA Technical Reports Server (NTRS)
1974-01-01
AERIAL OF SHUTTLE LANDING FACILITY [SLF] RUNWAY CONSTRUCTION KSC-374C-10236.33 108-KSC-374C-10236.33, P-15911, ARCHIVE-04477 Shuttle runway facility construction progress - oblique vertical, altitude 3,000 ft. time 1030 - direction south - south half from center.
14 CFR 77.2 - Definition of terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... planning document or military service military airport planning document. Precision instrument runway means... military airport layout plan; any other FAA planning document, or military service military airport planning document. Utility runway means a runway that is constructed for and intended to be used by...
Pilot Evaluations of Runway Status Light System
NASA Technical Reports Server (NTRS)
Young, Steven D.; Wills, Robert W.; Smith, R. Marshall
1996-01-01
This study focuses on use of the Transport Systems Research Vehicle (TSRV) Simulator at the Langley Research Center to obtain pilot opinion and input on the Federal Aviation Administration's Runway Status Light System (RWSL) prior to installation in an operational airport environment. The RWSL has been designed to reduce the likelihood of runway incursions by visually alerting pilots when a runway is occupied. Demonstrations of the RWSL in the TSRV Simulator allowed pilots to evaluate the system in a realistic cockpit environment.
Use of Very Weak Radiation Sources to Determine Aircraft Runway Position
NASA Technical Reports Server (NTRS)
Drinkwater, Fred J., III; Kibort, Bernard R.
1965-01-01
Various methods of providing runway information in the cockpit during the take-off and landing roll have been proposed. The most reliable method has been to use runway distance markers when visible. Flight tests were used to evaluate the feasibility of using weak radio-active sources to trigger a runway distance counter in the cockpit. The results of these tests indicate that a weak radioactive source would provide a reliable signal by which this indicator could be operated.
AERIAL OF SHUTTLE LANDING FACILITY [SLF] RUNWAY AND PARKING APRON
NASA Technical Reports Server (NTRS)
1974-01-01
AERIAL OF SHUTTLE LANDING FACILITY [SLF] RUNWAY AND PARKING APRON KSC-374C-10236.23 108-KSC-374C-10236.23, P-15909, ARCHIVE-04476 Shuttle runway facility construction progress - oblique vertical, altitude 1,000 ft. Time 1100 - direction E - Shuttle Park area.
76 FR 12405 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
.... Mandatory pavement markings. Airport signage. Runway guard lights. Wildlife study. PFC application.... Runway 18/36 pavement maintenance. Runway 13/31 pavement maintenance. PFC administration fees. Brief... Use: Tractor with snow blower and snow plow. Airport security and access control upgrades--design...
Human risk factors associated with pilots in runway excursions.
Chang, Yu-Hern; Yang, Hui-Hua; Hsiao, Yu-Jung
2016-09-01
A breakdown analysis of civil aviation accidents worldwide indicates that the occurrence of runway excursions represents the largest portion among all aviation occurrence categories. This study examines the human risk factors associated with pilots in runway excursions, by applying a SHELLO model to categorize the human risk factors and to evaluate the importance based on the opinions of 145 airline pilots. This study integrates aviation management level expert opinions on relative weighting and improvement-achievability in order to develop four kinds of priority risk management strategies for airline pilots to reduce runway excursions. The empirical study based on experts' evaluation suggests that the most important dimension is the liveware/pilot's core ability. From the perspective of front-line pilots, the most important risk factors are the environment, wet/containment runways, and weather issues like rain/thunderstorms. Finally, this study develops practical strategies for helping management authorities to improve major operational and managerial weaknesses so as to reduce the human risks related to runway excursions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Byrdsong, T. A.
1973-01-01
An experimental investigation was conducted to study the effect of grooved runway configurations on aircraft tire braking traction on flooded runway surfaces. The investigation was performed, utilizing size 49 x 17, type VII, aircraft tires with an inflation pressure of 170 lb per square inch at ground speeds up to approximately 120 knots. The results of this investigation indicate that when the runway is flooded, grooved surfaces provide better braking traction than an ungrooved surface and, in general, the level of braking traction was found to improve as the tire bearing pressure was increased because of an increase in the groove area of either the surface or the tire tread. Rounding the groove edges tended to degrade the tire braking capability from that developed on the same groove configuration with sharp edges. Results also indicate that braking friction coefficients for the test tires and runway surfaces decreased as ground speed was increased because of the hydroplaning effects.
Concept of Operations for Commercial and Business Aircraft Synthetic Vision Systems. 1.0
NASA Technical Reports Server (NTRS)
Williams Daniel M.; Waller, Marvin C.; Koelling, John H.; Burdette, Daniel W.; Capron, William R.; Barry, John S.; Gifford, Richard B.; Doyle, Thomas M.
2001-01-01
A concept of operations (CONOPS) for the Commercial and Business (CaB) aircraft synthetic vision systems (SVS) is described. The CaB SVS is expected to provide increased safety and operational benefits in normal and low visibility conditions. Providing operational benefits will promote SVS implementation in the Net, improve aviation safety, and assist in meeting the national aviation safety goal. SVS will enhance safety and enable consistent gate-to-gate aircraft operations in normal and low visibility conditions. The goal for developing SVS is to support operational minima as low as Category 3b in a variety of environments. For departure and ground operations, the SVS goal is to enable operations with a runway visual range of 300 feet. The system is an integrated display concept that provides a virtual visual environment. The SVS virtual visual environment is composed of three components: an enhanced intuitive view of the flight environment, hazard and obstacle defection and display, and precision navigation guidance. The virtual visual environment will support enhanced operations procedures during all phases of flight - ground operations, departure, en route, and arrival. The applications selected for emphasis in this document include low visibility departures and arrivals including parallel runway operations, and low visibility airport surface operations. These particular applications were selected because of significant potential benefits afforded by SVS.
Airplane takeoff and landing performance monitoring system
NASA Technical Reports Server (NTRS)
Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H. (Inventor)
1989-01-01
The invention is a real-time takeoff and landing performance monitoring system which provides the pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V sub R) within the safe zone of the runway or stopping the aircraft on the runway after landing or take off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. An important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in headwind occurring as the takeoff roll progresses. The system displays the position of the airplane on the runway, indicating runway used and runway available, summarizes the critical information into a situation advisory flag, flags engine failures and off-nominal acceleration performance, and indicates where on the runway particular events such as decision speed (V sub 1), rotation speed (V sub R) and expected stop points will occur based on actual or predicted performance. The display also indicates airspeed, wind vector, engine pressure ratios, second segment climb speed, and balanced field length (BFL). The system detects performance deficiencies by comparing the airplane's present performance with a predicted nominal performance based upon the given conditions.
14 CFR 151.77 - Runway paving: General rules.
Code of Federal Regulations, 2010 CFR
2010-01-01
... project include pavement construction and reconstruction, and include runway grooving to improve skid... course to correct major irregularities in the pavement. Runway resealing or refilling joints as an... Specification P-609) on a pavement the current surface of which consists of that kind of a bituminous surface...
14 CFR 151.77 - Runway paving: General rules.
Code of Federal Regulations, 2011 CFR
2011-01-01
... project include pavement construction and reconstruction, and include runway grooving to improve skid... course to correct major irregularities in the pavement. Runway resealing or refilling joints as an... Specification P-609) on a pavement the current surface of which consists of that kind of a bituminous surface...
14 CFR 151.77 - Runway paving: General rules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... project include pavement construction and reconstruction, and include runway grooving to improve skid... course to correct major irregularities in the pavement. Runway resealing or refilling joints as an... Specification P-609) on a pavement the current surface of which consists of that kind of a bituminous surface...
14 CFR 151.77 - Runway paving: General rules.
Code of Federal Regulations, 2014 CFR
2014-01-01
... project include pavement construction and reconstruction, and include runway grooving to improve skid... course to correct major irregularities in the pavement. Runway resealing or refilling joints as an... Specification P-609) on a pavement the current surface of which consists of that kind of a bituminous surface...
14 CFR 151.77 - Runway paving: General rules.
Code of Federal Regulations, 2013 CFR
2013-01-01
... project include pavement construction and reconstruction, and include runway grooving to improve skid... course to correct major irregularities in the pavement. Runway resealing or refilling joints as an... Specification P-609) on a pavement the current surface of which consists of that kind of a bituminous surface...
Elements affecting runway traction
NASA Technical Reports Server (NTRS)
Horne, W. B.
1974-01-01
The five basic elements affecting runway traction for jet transport aircraft operation are identified and described in terms of pilot, aircraft system, atmospheric, tire, and pavement performance factors or parameters. Where possible, research results are summarized, and means for restoring or improving runway traction for these different conditions are discussed.
14 CFR 151.9 - Runway clear zones: General.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Runway clear zones: General. 151.9 Section 151.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... above the elevation of the runway or 50 feet above the terrain at the outer extremity of the clear zone...
14 CFR 151.9 - Runway clear zones: General.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Runway clear zones: General. 151.9 Section 151.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... above the elevation of the runway or 50 feet above the terrain at the outer extremity of the clear zone...
14 CFR 151.9 - Runway clear zones: General.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Runway clear zones: General. 151.9 Section 151.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... above the elevation of the runway or 50 feet above the terrain at the outer extremity of the clear zone...
14 CFR 151.9 - Runway clear zones: General.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Runway clear zones: General. 151.9 Section 151.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... above the elevation of the runway or 50 feet above the terrain at the outer extremity of the clear zone...
14 CFR 151.9 - Runway clear zones: General.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Runway clear zones: General. 151.9 Section 151.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... above the elevation of the runway or 50 feet above the terrain at the outer extremity of the clear zone...
14 CFR 121.171 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... point at which the obstruction clearance plane associated with the approach end of the runway intersects... clearance plane means a plane sloping upward from the runway at a slope of 1:20 to the horizontal, and... centerline of the runway, beginning at the point where the obstruction clearance plane intersects the...
Runway image shape as a cue for judgment of approach angle.
DOT National Transportation Integrated Search
1979-11-01
One cue for visual judgment of glidepath angle has been referred to as form ratio. Form ratio is defined as the ratio of vertical height of the runway to width of the far end in the runway retinal image. The ability of pilots to judge form ratios was...
Distribution of Monochrome Screen Luminance in the CTOL Visual Technology Research Simulator.
1980-11-01
runway lines 3.8 4.2 8. Carrier runway 2.5 3.5 9. FLOLS* Meatball ** 2.0 2.4 10. FLOLS Background 0.68 1.3 *Fresnal Lens Optical Landing System...Standard U.S. Navy carrier optical landing device). ** Meatball is the light source of the FLOLS which the pilot uses for glideslope information in a carrier...LANDING DISPLAY FOV (Foot Lamberts) 1. Carrier Deck Runway Lighting 1.5 2. Carrier Runway Area 0.048 3. FLOLS Meatball 0.6 Figure 5 also shows the
Effect of Uncertainty on Deterministic Runway Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Malik, Waqar; Jung, Yoon C.
2012-01-01
Active runway scheduling involves scheduling departures for takeoffs and arrivals for runway crossing subject to numerous constraints. This paper evaluates the effect of uncertainty on a deterministic runway scheduler. The evaluation is done against a first-come- first-serve scheme. In particular, the sequence from a deterministic scheduler is frozen and the times adjusted to satisfy all separation criteria; this approach is tested against FCFS. The comparison is done for both system performance (throughput and system delay) and predictability, and varying levels of congestion are considered. The modeling of uncertainty is done in two ways: as equal uncertainty in availability at the runway as for all aircraft, and as increasing uncertainty for later aircraft. Results indicate that the deterministic approach consistently performs better than first-come-first-serve in both system performance and predictability.
Spot and Runway Departure Advisor (SARDA)
NASA Technical Reports Server (NTRS)
Jung, Yoon
2016-01-01
Spot and Runway Departure Advisor (SARDA) is a decision support tool to assist airline ramp controllers and ATC tower controllers to manage traffic on the airport surface to significantly improve efficiency and predictability in surface operations. The core function of the tool is the runway scheduler which generates an optimal solution for runway sequence and schedule of departure aircraft, which would minimize system delay and maximize runway throughput. The presentation also discusses the latest status of NASA's current surface research through a collaboration with an airline partner, where a tool is developed for airline ramp operators to assist departure pushback operations. The presentation describes the concept of the SARDA tool and results from human-in-the-loop simulations conducted in 2012 for Dallas-Ft. Worth International Airport and 2014 for Charlotte airport ramp tower.
The runway model of drug self-administration
Ettenberg, Aaron
2009-01-01
Behavioral scientists have employed operant runways as a means of investigating the motivational impact of incentive stimuli for the better part of the past 100 years. In this task, the speed with which a trained animal traverses a long straight alley for positive incentive stimuli, like food or water, provides a reliable index of the subject’s motivation to seek those stimuli. The runway is therefore a particularly appropriate tool for investigating the drug-seeking behavior of animals working for drugs of abuse. The current review describes our laboratory’s work over the past twenty years developing and implementing an operant runway model of drug self-administration. Procedures are described that methodologically dissociate the antecedent motivational processes that induce an animal to seek a drug, from the positive reinforcing consequences of actually earning the drug. Additional work is reviewed on the use of the runway method as a means of modeling the factors that often result in a “relapse” of drug self-administration after a period of abstinence (i.e., a response reinstatement test), as are runway studies that revealed the presence of opposing positive and negative consequences of self-administered cocaine. This body of work suggests that the runway method has served as a powerful behavioral tool for the study of the behavioral and neurobiological basis of drug self-administration. PMID:19032964
Evaluation of Airborne Precision Spacing in a Human-in-the-Loop Experiment
NASA Technical Reports Server (NTRS)
Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.
2005-01-01
A significant bottleneck in the current air traffic system occurs at the runway. Expanding airports and adding new runways will help solve this problem; however, this comes with significant costs: financially, politically and environmentally. A complementary solution is to safely increase the capacity of current runways. This can be achieved by precisely spacing aircraft at the runway threshold, with a resulting reduction in the spacing bu er required under today s operations. At NASA's Langley Research Center, the Airspace Systems program has been investigating airborne technologies and procedures that will assist the flight crew in achieving precise spacing behind another aircraft. A new spacing clearance allows the pilot to follow speed cues from a new on-board guidance system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). AMSTAR receives Automatic Dependent Surveillance-Broadcast (ADS-B) reports from an assigned, leading aircraft and calculates the appropriate speed for the ownship to fly to achieve the desired spacing interval, time- or distance-based, at the runway threshold. Since the goal is overall system capacity, the speed guidance algorithm is designed to provide system-wide benefits and stability to a string of arriving aircraft. An experiment was recently performed at the NASA Langley Air Traffic Operations Laboratory (ATOL) to test the flexibility of Airborne Precision Spacing operations under a variety of operational conditions. These included several types of merge and approach geometries along with the complementary merging and in-trail operations. Twelve airline pilots and four controllers participated in this simulation. Performance and questionnaire data were collected from a total of eighty-four individual arrivals. The pilots were able to achieve precise spacing with a mean error of 0.5 seconds and a standard deviation of 4.7 seconds. No statistically significant di erences in spacing performance were found between in-trail and merging operations or among the three modeled airspaces. Questionnaire data showed general acceptance for both pilots and controllers. These results reinforce previous findings from full-mission simulation and flight evaluation of the in-trail operations. This paper reviews the results of this simulation in detail.
Implementation of ADI: Schemes on MIMD parallel computers
NASA Technical Reports Server (NTRS)
Vanderwijngaart, Rob F.
1993-01-01
In order to simulate the effects of the impingement of hot exhaust jets of High Performance Aircraft on landing surfaces a multi-disciplinary computation coupling flow dynamics to heat conduction in the runway needs to be carried out. Such simulations, which are essentially unsteady, require very large computational power in order to be completed within a reasonable time frame of the order of an hour. Such power can be furnished by the latest generation of massively parallel computers. These remove the bottleneck of ever more congested data paths to one or a few highly specialized central processing units (CPU's) by having many off-the-shelf CPU's work independently on their own data, and exchange information only when needed. During the past year the first phase of this project was completed, in which the optimal strategy for mapping an ADI-algorithm for the three dimensional unsteady heat equation to a MIMD parallel computer was identified. This was done by implementing and comparing three different domain decomposition techniques that define the tasks for the CPU's in the parallel machine. These implementations were done for a Cartesian grid and Dirichlet boundary conditions. The most promising technique was then used to implement the heat equation solver on a general curvilinear grid with a suite of nontrivial boundary conditions. Finally, this technique was also used to implement the Scalar Penta-diagonal (SP) benchmark, which was taken from the NAS Parallel Benchmarks report. All implementations were done in the programming language C on the Intel iPSC/860 computer.
Benefits Assessment for Single-Airport Tactical Runway Configuration Management Tool (TRCM)
NASA Technical Reports Server (NTRS)
Oseguera-Lohr, Rosa; Phojanamonogkolkij, Nipa; Lohr, Gary W.
2015-01-01
The System-Oriented Runway Management (SORM) concept was developed as part of the Airspace Systems Program (ASP) Concepts and Technology Development (CTD) Project, and is composed of two basic capabilities: Runway Configuration Management (RCM), and Combined Arrival/Departure Runway Scheduling (CADRS). RCM is the process of designating active runways, monitoring the active runway configuration for suitability given existing factors, and predicting future configuration changes; CADRS is the process of distributing arrivals and departures across active runways based on local airport and National Airspace System (NAS) goals. The central component in the SORM concept is a tool for taking into account all the various factors and producing a recommendation for what would be the optimal runway configuration, runway use strategy, and aircraft sequence, considering as many of the relevant factors required in making this type of decision, and user preferences, if feasible. Three separate tools were initially envisioned for this research area, corresponding to the time scale in which they would operate: Strategic RCM (SRCM), with a planning horizon on the order of several hours, Tactical RCM (TRCM), with a planning horizon on the order of 90 minutes, and CADRS, with a planning horizon on the order of 15-30 minutes[1]. Algorithm development was initiated in all three of these areas, but the most fully developed to date is the TRCM algorithm. Earlier studies took a high-level approach to benefits, estimating aggregate benefits across most of the major airports in the National Airspace Systems (NAS), for both RCM and CADRS [2]. Other studies estimated the benefit of RCM and CADRS using various methods of re-sequencing arrivals to reduce delays3,4, or better balancing of arrival fixes5,6. Additional studies looked at different methods for performing the optimization involved in selecting the best Runway Configuration Plan (RCP) to use7-10. Most of these previous studies were high-level or generic in nature (not focusing on specific airports), and benefits were aggregated for the entire NAS, with relatively low fidelity simulation of SORM functions and aircraft trajectories. For SORM research, a more detailed benefits assessment of RCM and CADRS for specific airports or metroplexes is needed.
2008-02-20
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is towed into the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. Photo credit: NASA/Jack Pfaller
2008-02-20
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is towed toward the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. Photo credit: NASA/Jack Pfaller
14 CFR 151.87 - Lighting and electrical work: Standards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... participate in the costs of runway lighting is eligible for the installing of an airport beacon, lighted wind... percent U.S. participation in the costs of high intensity runway edge lighting (or the allowable.... share of the cost of runway edge lighting is 50 percent of the cost of the lighting installed but not...
14 CFR 151.87 - Lighting and electrical work: Standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... participate in the costs of runway lighting is eligible for the installing of an airport beacon, lighted wind... percent U.S. participation in the costs of high intensity runway edge lighting (or the allowable.... share of the cost of runway edge lighting is 50 percent of the cost of the lighting installed but not...
14 CFR 151.87 - Lighting and electrical work: Standards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... participate in the costs of runway lighting is eligible for the installing of an airport beacon, lighted wind... percent U.S. participation in the costs of high intensity runway edge lighting (or the allowable.... share of the cost of runway edge lighting is 50 percent of the cost of the lighting installed but not...
STS-33 Discovery, OV-103, MLG touches down on concrete runway 04 at EAFB
NASA Technical Reports Server (NTRS)
1989-01-01
STS-33 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down on concrete runway 04 at Edwards Air Force Base (EAFB), California, at 16:31:02 pm Pacific Standard Time (PST). This view captures OV-103's profile (port side) as it glides down the runway.
DOT National Transportation Integrated Search
2015-04-01
Runway overrun accidents occurring during landings in slippery conditions continue to occur frequently worldwide. After a : number of specific landing overrun accidents in the U.S., the National Transportation Safety Board (NTSB) issued a safety : re...
77 FR 22378 - Noise Exposure Map Notice; Lafayette Regional Airport, Lafayette, LA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
..., Existing and Future Condition Flight Tracks, Arrival and Departure--Runway 04L/R; Exhibit 4.3, Existing and Future Condition Flight Tracks, Arrival and Departure--Runway 11; Exhibit 4.4, Existing and Future Condition Flight Tracks, Arrival and Departure--Runway 22L/R; Exhibit 4.5, Existing and Future Condition...
14 CFR 151.87 - Lighting and electrical work: Standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... participate in the costs of runway lighting is eligible for the installing of an airport beacon, lighted wind... percent U.S. participation in the costs of high intensity runway edge lighting (or the allowable.... share of the cost of runway edge lighting is 50 percent of the cost of the lighting installed but not...
14 CFR 151.87 - Lighting and electrical work: Standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... participate in the costs of runway lighting is eligible for the installing of an airport beacon, lighted wind... percent U.S. participation in the costs of high intensity runway edge lighting (or the allowable.... share of the cost of runway edge lighting is 50 percent of the cost of the lighting installed but not...
Speed Profiles for Deceleration Guidance During Rollout and Turnoff (ROTO)
NASA Technical Reports Server (NTRS)
Barker, L. Keith; Hankins, Walter W., III; Hueschen, Richard M.
1999-01-01
Two NASA goals are to enhance airport safety and to improve capacity in all weather conditions. This paper contributes to these goals by examining speed guidance profiles to aid a pilot in decelerating along the runway to an exit. A speed profile essentially tells the pilot what the airplane's speed should be as a function of where the airplane is on the runway. While it is important to get off the runway as soon as possible (when striving to minimize runway occupancy time), the deceleration along a speed profile should be constrained by passenger comfort. Several speed profiles are examined with respect to their maximum decelerations and times to reach exit speed. One profile varies speed linearly with distance; another has constant deceleration; and two related nonlinear profiles delay maximum deceleration (braking) to reduce time spent on the runway.
Runway Incursion Prevention System Testing at the Wallops Flight Facility
NASA Technical Reports Server (NTRS)
Jones, Denise R.
2005-01-01
A Runway Incursion Prevention System (RIPS) integrated with a Synthetic Vision System concept (SVS) was tested at the Reno/Tahoe International Airport (RNO) and Wallops Flight Facility (WAL) in the summer of 2004. RIPS provides enhanced surface situational awareness and alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using a Gulfstream-V (G-V) aircraft as the test platform and a NASA test aircraft and a NASA test van as incurring traffic. The purpose of the study, from the RIPS perspective, was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts, focusing on crossing runway incursion scenarios. This paper gives an overview of the RIPS, WAL flight test activities, and WAL test results.
1982-08-01
Sliding Rubber and the Load Dependance of Road Tyre Friction," The Physics of Tire Tractio,’. Theory, and Experiment (Hays, D. F., and Brown, A. L...Saturation of Sliding Rubber and the Load Dependance of Road Tyre Friction," The Physics of Tire Traction, Theory, and Expe-iment (Hays, D. F., and...surfaces could be identified and evaluated before accidents happen or runway surfaces could be evaluated to determine if rubber or other contaminant
Design Considerations for a New Terminal Area Arrival Scheduler
NASA Technical Reports Server (NTRS)
Thipphavong, Jane; Mulfinger, Daniel
2010-01-01
Design of a terminal area arrival scheduler depends on the interrelationship between throughput, delay and controller intervention. The main contribution of this paper is an analysis of the above interdependence for several stochastic behaviors of expected system performance distributions in the aircraft s time of arrival at the meter fix and runway. Results of this analysis serve to guide the scheduler design choices for key control variables. Two types of variables are analyzed, separation buffers and terminal delay margins. The choice for these decision variables was tested using sensitivity analysis. Analysis suggests that it is best to set the separation buffer at the meter fix to its minimum and adjust the runway buffer to attain the desired system performance. Delay margin was found to have the least effect. These results help characterize the variables most influential in the scheduling operations of terminal area arrivals.
14 CFR 151.13 - Federal-aid Airport Program: Policy affecting landing aid requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (ALS). (2) In-runway lighting. (3) High intensity runway lighting. (4) Runway distance markers. For the purposes of this section “approach lighting system (ALS)” is a standard configuration of aeronautical... ALS and ILS, has been programmed by the FAA with funds then available therefor; (b) An extension of 3...
14 CFR 151.13 - Federal-aid Airport Program: Policy affecting landing aid requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (ALS). (2) In-runway lighting. (3) High intensity runway lighting. (4) Runway distance markers. For the purposes of this section “approach lighting system (ALS)” is a standard configuration of aeronautical... ALS and ILS, has been programmed by the FAA with funds then available therefor; (b) An extension of 3...
14 CFR 151.13 - Federal-aid Airport Program: Policy affecting landing aid requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (ALS). (2) In-runway lighting. (3) High intensity runway lighting. (4) Runway distance markers. For the purposes of this section “approach lighting system (ALS)” is a standard configuration of aeronautical... ALS and ILS, has been programmed by the FAA with funds then available therefor; (b) An extension of 3...
14 CFR 151.13 - Federal-aid Airport Program: Policy affecting landing aid requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (ALS). (2) In-runway lighting. (3) High intensity runway lighting. (4) Runway distance markers. For the purposes of this section “approach lighting system (ALS)” is a standard configuration of aeronautical... ALS and ILS, has been programmed by the FAA with funds then available therefor; (b) An extension of 3...
14 CFR 151.13 - Federal-aid Airport Program: Policy affecting landing aid requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (ALS). (2) In-runway lighting. (3) High intensity runway lighting. (4) Runway distance markers. For the purposes of this section “approach lighting system (ALS)” is a standard configuration of aeronautical... ALS and ILS, has been programmed by the FAA with funds then available therefor; (b) An extension of 3...
White Sands Space Harbor Area 1, Microwave Scanning Beam Landing ...
White Sands Space Harbor Area 1, Microwave Scanning Beam Landing Ground Stations, 1,500' to the south of the north end of Runway 17/35; 1,500' to the west of the east end of Runway 23/05; and 1,500' southwest of the northeast end of Runway 20/02., White Sands, Dona Ana County, NM
Wet runways. [aircraft landing and directional control
NASA Technical Reports Server (NTRS)
Horne, W. B.
1975-01-01
Aircraft stopping and directional control performance on wet runways is discussed. The major elements affecting tire/ground traction developed by jet transport aircraft are identified and described in terms of atmospheric, pavement, tire, aircraft system and pilot performance factors or parameters. Research results are summarized, and means for improving or restoring tire traction/aircraft performance on wet runways are discussed.
TRIZ Tool for Optimization of Airport Runway
NASA Astrophysics Data System (ADS)
Rao, K. Venkata; Selladurai, V.; Saravanan, R.
TRIZ tool is used for conceptual design and layout of the novel ascending and descending runway model for the effective utilization of short length airports. Handling bigger aircrafts at smaller airports become the necessity for economic consideration and for the benefit of vast airliners and the aspiring air travelers of the region. The authors’ proposal of ascending and descending runway would enable the operational need of wide body aircrafts such as Boeing 747 and Airbus A380-800. Negotiating take-off and landing of bigger aircrafts at less than 10000 feet runway is an optimization solution. This conceptual model and the theoretical design with its layout is dealt in this paper as Part - I. The computer-aided design and analysis using MATLAB with Simulink tool box to confirm the adequacy of the runway length for the bigger aircrafts at smaller airports is however dealt in subsequent papers.
78 FR 57674 - Order Limiting Operations at Newark Liberty International Airport
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... season. This waiver applies only to EWR slots for the following days and local times: (1) March 30... runway 4L/22R. Runway 4L/22R will be open during that period with reduced runway length. Night and... five or more consecutive days. However, the FAA does not routinely grant general waivers to the usage...
STS-33 Discovery, OV-103, MLG touches down on EAFB concrete runway 04
NASA Technical Reports Server (NTRS)
1989-01-01
STS-33 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touchdown is documented at Edwards Air Force Base (EAFB), California, on concrete runway 04. Views look forward from the space shuttle main engines (SSMEs) to the crew compartment as OV-103 glides down the runway. The landing occurred at 16:31:02 pm Pacific Standard Time (PST).
14 CFR Appendix A to Part 151 - Appendix A to Part 151
Code of Federal Regulations, 2011 CFR
2011-01-01
... zones at ends of eligible runways. (d) Approach lights (land for ALS eligible for 75 percent participation will be limited to an area 3200′ × 400′ for a Standard ALS and to an area 1700′ × 400′ for a short ALS located symmetrically about the runway centerline extended, beginning at the end of the runway...
14 CFR Appendix A to Part 151 - Appendix A to Part 151
Code of Federal Regulations, 2010 CFR
2010-01-01
... zones at ends of eligible runways. (d) Approach lights (land for ALS eligible for 75 percent participation will be limited to an area 3200′ × 400′ for a Standard ALS and to an area 1700′ × 400′ for a short ALS located symmetrically about the runway centerline extended, beginning at the end of the runway...
14 CFR Appendix A to Part 151 - Appendix A to Part 151
Code of Federal Regulations, 2014 CFR
2014-01-01
... zones at ends of eligible runways. (d) Approach lights (land for ALS eligible for 75 percent participation will be limited to an area 3200′ × 400′ for a Standard ALS and to an area 1700′ × 400′ for a short ALS located symmetrically about the runway centerline extended, beginning at the end of the runway...
14 CFR Appendix A to Part 151 - Appendix A to Part 151
Code of Federal Regulations, 2013 CFR
2013-01-01
... zones at ends of eligible runways. (d) Approach lights (land for ALS eligible for 75 percent participation will be limited to an area 3200′ × 400′ for a Standard ALS and to an area 1700′ × 400′ for a short ALS located symmetrically about the runway centerline extended, beginning at the end of the runway...
14 CFR Appendix A to Part 151 - Appendix A to Part 151
Code of Federal Regulations, 2012 CFR
2012-01-01
... zones at ends of eligible runways. (d) Approach lights (land for ALS eligible for 75 percent participation will be limited to an area 3200′ × 400′ for a Standard ALS and to an area 1700′ × 400′ for a short ALS located symmetrically about the runway centerline extended, beginning at the end of the runway...
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. This aerial photo of the runway at the KSC Shuttle Landing Facility looks north. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle. On the lower right is the parking apron with the orbiter mate/demate tower and the tow-way stretching from the runway to the lower right. Farther north is a grassy area where the new control tower is located.
Runway Incursion Prevention for General Aviation Operations
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel, Lawrence J., III
2006-01-01
A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.
Runway Incursion Prevention System for General Aviation Operations
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel III, Lawrence J.
2006-01-01
A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.
2004-03-31
KENNEDY SPACE CENTER, FLA. - This aerial photo of the runway at the KSC Shuttle Landing Facility looks north. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts’ T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle. On the lower right is the parking apron with the orbiter mate/demate tower and the tow-way stretching from the runway to the lower right. Farther north is a grassy area where the new control tower is located.
Runway Incursion Prevention: A Technology Solution
NASA Technical Reports Server (NTRS)
Young, Steven D.; Jones, Denise R.
2001-01-01
A runway incursion occurs any time an airplane, vehicle, person or object on the ground creates a collision hazard with an airplane that is taking off or landing at an airport under the supervision of Air Traffic Control (ATC). Despite the best efforts of the Federal Aviation Administration (FAA), runway incursions continue to occur more frequently. The number of incursions reported in the U.S. rose from 186 in 1993 to 431 in 2000, an increase of 132 percent. Recently, the National Transportation Safety Board (NTSB) has made specific recommendations for reducing runway incursions including a recommendation that the FAA require, at all airports with scheduled passenger service, a ground movement safety system that will prevent runway incursions; the system should provide a direct warning capability to flight crews. To this end, NASA and its industry partners have developed an advanced surface movement guidance and control system (A-SMGCS) architecture and operational concept that are designed to prevent runway incursions while also improving operational capability. This operational concept and system design have been tested in both full-mission simulation and operational flight test experiments at major airport facilities. Anecdotal, qualitative, and specific quantitative results will be presented along with an assessment of technology readiness with respect to equipage.
Some effects of adverse weather conditions on performance of airplane antiskid braking systems
NASA Technical Reports Server (NTRS)
Horne, W. B.; Mccarty, J. L.; Tanner, J. A.
1976-01-01
The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions.
Earth Observations by the Expedition 19 crew
2009-04-09
ISS019-E-005989 (9 April 2009) --- Red River floods in North Dakota and Minnesota are featured in this image photographed by an Expedition 19 crewmember on the International Space Station. The Red River, which flows north between North Dakota and Minnesota, flooded for a second time on the day this image was taken (9 April 2009). Two weeks earlier the river had crested at very high levels. The new floodwaters in the Red River, and especially in the less well-drained meandering tributaries east of the river, appear as black shapes against a snowy agricultural landscape defined by rectangular fields. The largest irregular black patches are the flooded low parts of fields along a canalized western tributary of the Red River (right). The city-block patterns of Wahpeton ND and Breckenridge MN, opposite one another on the banks of the Red River, stand out as dark gray patches against the snow at image top left. The main runway of the Henry Stern Airport lies angled northwest directly south of Wahpeton, and its 1.3 kilometers runway length gives scale to the view. Access roads to the agricultural fields tend to follow an orthogonal pattern, while larger roads leading to the cities cut across this pattern (lower left, near Wahpeton). A subtle pattern of drainage ditches and plow lines appear as thin parallel lines throughout fields in the scene.
Flight Test Evaluation of the Airborne Information for Lateral Spacing (AILS) Concept
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2002-01-01
The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2,500 feet. This report briefly describes the AILS operational concept and the results of a flight test of one implementation of this concept. The focus of this flight test experiment was to validate a prior simulator study, evaluating pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which an aircraft on one approach intrudes into the path of an aircraft on the other approach. Although the flight data set was not meant to be a statistically valid sample, the trends acquired in flight followed those of the simulator and therefore met the intent of validating the findings from the simulator. Results from this study showed that the design-goal mean miss-distance of 1,200 feet to potential collision situations was surpassed with an actual mean miss-distance of 1,859 feet. Pilot reaction times to the alerting system, which was an operational concern, averaged 0.65 seconds, were well below the design goal reaction time of 2.0 seconds. From the results of both of these tests, it can be concluded that this operational concept, with supporting technology and procedures, may provide an operationally viable means for conducting simultaneous, independent instrument approaches to runways spaced as close as 2500 ft.
Graphical User Interface Development and Design to Support Airport Runway Configuration Management
NASA Technical Reports Server (NTRS)
Jones, Debra G.; Lenox, Michelle; Onal, Emrah; Latorella, Kara A.; Lohr, Gary W.; Le Vie, Lisa
2015-01-01
The objective of this effort was to develop a graphical user interface (GUI) for the National Aeronautics and Space Administration's (NASA) System Oriented Runway Management (SORM) decision support tool to support runway management. This tool is expected to be used by traffic flow managers and supervisors in the Airport Traffic Control Tower (ATCT) and Terminal Radar Approach Control (TRACON) facilities.
STS-40 Columbia, OV-102, lands on concrete runway 22 at EAFB, California
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 Columbia's, Orbiter Vehicle (OV) 102's, main landing gear (MLG) touches down on concrete runway 22 at Edwards Air Force Base (EAFB), California at 8:29:11 am (Pacific Daylight Time (PDT)). OV-102's port side is captured in this profile view as its nose landing gear (NLG) glides above the runway before touch down and wheel stop.
STS-40 Columbia, OV-102, lands on concrete runway 22 at EAFB, California
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 Columbia's, Orbiter Vehicle (OV) 102's, main landing gear (MLG) touches down on concrete runway 22 at Edwards Air Force Base (EAFB), California at 8:29:11 am (Pacific Daylight Time (PDT)). OV-102's starboard side is captured in this profile view as its nose landing gear (NLG) glides above the runway before touch down and wheel stop.
STS-29 Discovery, OV-103, lands on Edwards AFB concrete runway 22
NASA Technical Reports Server (NTRS)
1989-01-01
STS-29 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down at a speed of approximately 205 knots (235 miles per hour) on concrete runway 22 at Edwards Air Force Base (AFB), California. Nose landing gear (NLG) is deployed and rides above runway surface prior touchdown. Mojave desert scrub brush appears in the foreground with mountain range appearing in the background.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. This aerial photo shows the runway at the KSC Shuttle Landing Facility at left. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle. In the foreground is the parking apron with the orbiter mate/demate tower, the hangar and other storage facilities, and the tow-way stretching from the runway to the lower right. Farther north is a grassy area where the new control tower is located.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. This aerial photo shows the runway at the KSC Shuttle Landing Facility extending left to upper right. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle. In the foreground is the parking apron with the orbiter mate/demate tower, the hangar and other storage facilities, and the tow-way stretching from the runway to the lower center. In the upper right is a grassy area where the new control tower is located.
Simulator Evaluation of Runway Incursion Prevention Technology for General Aviation Operations
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Prinzel, Lawrence J., III
2011-01-01
A Runway Incursion Prevention System (RIPS) has been designed under previous research to enhance airport surface operations situation awareness and provide cockpit alerts of potential runway conflict, during transport aircraft category operations, in order to prevent runway incidents while also improving operations capability. This study investigated an adaptation of RIPS for low-end general aviation operations using a fixed-based simulator at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). The purpose of the study was to evaluate modified RIPS aircraft-based incursion detection algorithms and associated alerting and airport surface display concepts for low-end general aviation operations. This paper gives an overview of the system, simulation study, and test results.
2004-03-31
KENNEDY SPACE CENTER, FLA. - This aerial photo shows the runway at the KSC Shuttle Landing Facility at left. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts’ T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle. In the foreground is the parking apron with the orbiter mate/demate tower, the hangar and other storage facilities, and the tow-way stretching from the runway to the lower right. Farther north is a grassy area where the new control tower is located.
2004-03-31
KENNEDY SPACE CENTER, FLA. - This aerial photo shows the runway at the KSC Shuttle Landing Facility extending left to upper right. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts’ T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle. In the foreground is the parking apron with the orbiter mate/demate tower, the hangar and other storage facilities, and the tow-way stretching from the runway to the lower center. In the upper right is a grassy area where the new control tower is located.
Runway Incursion Prevention System Simulation Evaluation
NASA Technical Reports Server (NTRS)
Jones, Denise R.
2002-01-01
A Runway Incursion Prevention System (RIPS) was evaluated in a full mission simulation study at the NASA Langley Research center in March 2002. RIPS integrates airborne and ground-based technologies to provide (1) enhanced surface situational awareness to avoid blunders and (2) alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted in a high fidelity simulator. The purpose of the study was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts. Eight commercial airline crews participated as test subjects completing 467 test runs. This paper gives an overview of the RIPS, simulation study, and test results.
Using Qualitative Hazard Analysis to Guide Quantitative Safety Analysis
NASA Technical Reports Server (NTRS)
Shortle, J. F.; Allocco, M.
2005-01-01
Quantitative methods can be beneficial in many types of safety investigations. However, there are many difficulties in using quantitative m ethods. Far example, there may be little relevant data available. This paper proposes a framework for using quantitative hazard analysis to prioritize hazard scenarios most suitable for quantitative mziysis. The framework first categorizes hazard scenarios by severity and likelihood. We then propose another metric "modeling difficulty" that desc ribes the complexity in modeling a given hazard scenario quantitatively. The combined metrics of severity, likelihood, and modeling difficu lty help to prioritize hazard scenarios for which quantitative analys is should be applied. We have applied this methodology to proposed concepts of operations for reduced wake separation for airplane operatio ns at closely spaced parallel runways.
NASA Technical Reports Server (NTRS)
Shortle, John F.; Allocco, Michael
2005-01-01
This paper describes a scenario-driven hazard analysis process to identify, eliminate, and control safety-related risks. Within this process, we develop selective criteria to determine the applicability of applying engineering modeling to hypothesized hazard scenarios. This provides a basis for evaluating and prioritizing the scenarios as candidates for further quantitative analysis. We have applied this methodology to proposed concepts of operations for reduced wake separation for closely spaced parallel runways. For arrivals, the process identified 43 core hazard scenarios. Of these, we classified 12 as appropriate for further quantitative modeling, 24 that should be mitigated through controls, recommendations, and / or procedures (that is, scenarios not appropriate for quantitative modeling), and 7 that have the lowest priority for further analysis.
2008-02-20
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is towed along a two-mile tow-way to the Orbiter Processing Facility, or OPF, where processing Atlantis for another flight will take place. Towing normally begins within four hours after landing and is completed within six hours unless removal of time-sensitive experiments is required on the runway. In the OPF, turnaround processing procedures on Atlantis will include various post-flight deservicing and maintenance functions, which are carried out in parallel with payload removal and the installation of equipment needed for the next mission. After a round trip of nearly 5.3 million miles, Atlantis and crew returned to Earth with a landing at 9:07 a.m. EST to complete the STS-122 mission. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Curto, Paul A. (Inventor); Brown, Gerald E. (Inventor); Zysko, Jan A. (Inventor)
2001-01-01
The present invention is a two-part wind advisory system comprising a ground station at an airfield and an airborne unit placed inside an aircraft. The ground station monitors wind conditions (wind speed, wind direction, and wind gust) at the airfield and transmits the wind conditions and an airfield ID to the airborne unit. The airborne unit identifies the airfield by comparing the received airfield ID with airfield IDs stored in a database. The airborne unit also calculates the headwind and crosswind for each runway in both directions at the airfield using the received wind conditions and runway information stored in the database. The airborne unit then determines a recommended runway for takeoff and landing operations of the aircraft based on th runway having the greatest headwind value and displays the airfield ID, wind conditions, and recommended runway to the pilot. Another embodiment of the present invention includes a wireless internet based airborne unit in which the airborne unit can receive the wind conditions from the ground station over the internet.
NASA Technical Reports Server (NTRS)
Haines, R. F.
1973-01-01
Thirty six students and 54 commercial airline pilots were tested in the fog chamber to determine the effect of runway edge and centerline light intensity and spacing, fog density, ambient luminance level, and lateral and vertical offset distance of the subject from the runway's centerline upon horizontal visual range. These data were obtained to evaluate the adequacy of a balanced lighting system to provide maximum visual range in fog viewing both centerline and runway edge lights. The daytime system was compared against two other candidate lighting systems; the nighttime system was compared against other candidate lighting systems. The second objective was to determine if visual range is affected by lights between the subject and the farthestmost light visible through the fog. The third objective was to determine if college student subjects differ from commercial airline pilots in their horizontal visual range through fog. Two studies were conducted.
Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport
NASA Technical Reports Server (NTRS)
Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon C.; Zhu, Zhifan; Jeong, Myeongsook; Kim, Hyounkong; Oh, Eunmi; Hong, Sungkwon
2017-01-01
This study aims to develop a controllers decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).
Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport
NASA Technical Reports Server (NTRS)
Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon Chul; Zhu, Zhifan; Jeong, Myeong-Sook; Kim, Hyoun Kyoung; Oh, Eunmi; Hong, Sungkwon
2017-01-01
This study aims to develop a controllers' decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).
Runway drainage characteristics related to tire friction performance
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1991-01-01
The capability of a runway pavement to rapidly drain water buildup during periods of precipitation is crucial to minimize tire hydroplaning potential and maintain adequate aircraft ground operational safety. Test results from instrumented aircraft, ground friction measuring vehicles, and NASA Langley's Aircraft Landing Dynamics Facility (ALDF) track have been summarized to indicate the adverse effects of pavement wetness conditions on tire friction performance. Water drainage measurements under a range of rainfall rates have been evaluated for several different runway surface treatments including the transversely grooved and longitudinally grinded concrete surfaces at the Space Shuttle Landing Facility (SLF) runway at NASA Kennedy Space Center in Florida. The major parameters influencing drainage rates and extent of flooding/drying conditions are identified. Existing drainage test data are compared to a previously derived empirical relationship and the need for some modification is indicated. The scope of future NASA Langley research directed toward improving empirical relationships to properly define runway drainage capability and consequently, enhance aircraft ground operational safety, is given.
Economic utilization of general aviation airport runways
NASA Technical Reports Server (NTRS)
Piper, R. R.
1971-01-01
The urban general aviation airport economics is studied in detail. The demand for airport services is discussed, and the different types of users are identified. The direct cost characteristics of the airport are summarized; costs to the airport owner are largely fixed, and, except at certain large airports, weight is not a significant factor in airport costs. The efficient use of an existing airport facility is explored, with the focus on the social cost of runway congestion as traffic density at the airport build up and queues form. The tradeoff between aircraft operating costs and airport costs is analyzed in terms of runway length. The transition from theory to practice is treated, and the policy of charging prices only on aircraft storage and fuel is felt likely to continue. Implications of the study from the standpoint of public policy include pricing that spreads traffic peaks to improve runway utilization, and pricing that discriminates against aircraft requiring long runways and causes owners to adopt V/STOL equipment.
Humanitarian Relief Capabilities in the Horn of Africa.
2014-06-13
surface runways (Central Intelligence Agency 2014a). Camp Lemonnier, the only U.S. military base in Africa, is located in Djibouti. The camp is in close... Intelligence Agency 2014d). Somalia has sixty-one airports, of which six have permanent surface runways (Central 10 Intelligence Agency 2014e). Ethiopia...has fifty-seven airports, of which seventeen have permanent surface runways (Central Intelligence Agency 2014c). The country with the same number
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. This aerial photo of the runway at the KSC Shuttle Landing Facility looks north. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle.
2004-03-31
KENNEDY SPACE CENTER, FLA. - This aerial photo of the runway at the KSC Shuttle Landing Facility looks north. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wide, with 50-foot asphalt shoulders. The runway is used by military and civilian cargo carriers, astronauts’ T-38 trainers, Shuttle Training Aircraft and helicopters, as well as the Space Shuttle.
STS-26 Discovery, OV-103, touches down on dry lakebed runway 17 at EAFB
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down on dry lakebed runway 17 at Edwards Air Force Base (EAFB), California. A small cloud of dust forms behind MLG as OV-103 begins to slow down as it passes a series of runway lights. EAFB and Dryden Flight Research Facility (DFRF) buildings and hangars appear in the background.
NASA Astrophysics Data System (ADS)
French, H. K.; Van Der Zee, S. E.; Wehrer, M.; Godio, A.; Pedersen, L. B.; Tsocano, G.
2013-12-01
The SoilCAM project (2008- 2012, EU-FP7-212663) aimed at improving methods for monitoring subsurace contaminant distribution and biodegradation. Two test sites were chosen, Oslo airport Gardermoen, Norway where de-icing agents infiltrate the soil during snowmelt and the Trecate site in Italy where an inland crude oil spill occurred in 1994. A number of geophysical investigation techniques were combined with soil and water sampling techniques. Data obtained from time-lapse measurements were further analysed by numerical modelling of flow and transport at different scales in order to characterise transport processes in the unsaturated and saturated zones. Laboratory experiments provided physical and biogeochemical data for model parameterisation and to select remediation methods. The geophysical techniques were used to map geological heterogeneities and to conduct time-lapse measurements of processes in the unsaturated zone. Both cross borehole and surface electrodes were used for electrical resistivity and induced polarisation surveys. Results showed clear indications of areas highly affected by de-icing chemicals along the runway at Oslo airport. The time lapse measurements along the runway at the airport showed infiltration patterns during snowmelt and were used to validate 2D unsaturated flow and transport simulations using SUTRA. The simulations illustrate the effect of layering geological structures and membranes, buried parallel to the runway, on the flow pattern. Complex interaction between bio-geo-chemical processes in a 1D vertical profile along the runway were described with the ORCHESTRA model. Smaller scale field site measurements revealed increase of iron and manganese during degradation of de-icing chemicals. At the Trecate site a combination of georadar, electrical resistivity and radio magneto telluric provided a broad outline of the geology down to 50 m. Anomalies in the Induced polarisation and electrical resistivity data from the cross borehole measurements indicate where the remaining crude oil can be found. Water samples from multilevel samplers reveal crude oil present in emulsion in the zone of groundwater fluctuations, highlighting the importance of colloidal transport. Modelling of multiphase flow of the fluctuating groundwater level explains the lack of horizontal displacement of the plume in the area. Geochemistry of the groundwater clearly indicates degradation of hydrocarbons under iron- and sulphate reducing conditions, but changes were too slow to be mapped by time-lapse geophysical measurements during the project period. MODFLOW was used to simulate the regional groundwater flow and transport in the area. Highlights of the results from both test sites will be presented as an integrated overview. Snow removal at Oslo airport
Navigation integrity monitoring and obstacle detection for enhanced-vision systems
NASA Astrophysics Data System (ADS)
Korn, Bernd; Doehler, Hans-Ullrich; Hecker, Peter
2001-08-01
Typically, Enhanced Vision (EV) systems consist of two main parts, sensor vision and synthetic vision. Synthetic vision usually generates a virtual out-the-window view using databases and accurate navigation data, e. g. provided by differential GPS (DGPS). The reliability of the synthetic vision highly depends on both, the accuracy of the used database and the integrity of the navigation data. But especially in GPS based systems, the integrity of the navigation can't be guaranteed. Furthermore, only objects that are stored in the database can be displayed to the pilot. Consequently, unexpected obstacles are invisible and this might cause severe problems. Therefore, additional information has to be extracted from sensor data to overcome these problems. In particular, the sensor data analysis has to identify obstacles and has to monitor the integrity of databases and navigation. Furthermore, if a lack of integrity arises, navigation data, e.g. the relative position of runway and aircraft, has to be extracted directly from the sensor data. The main contribution of this paper is about the realization of these three sensor data analysis tasks within our EV system, which uses the HiVision 35 GHz MMW radar of EADS, Ulm as the primary EV sensor. For the integrity monitoring, objects extracted from radar images are registered with both database objects and objects (e. g. other aircrafts) transmitted via data link. This results in a classification into known and unknown radar image objects and consequently, in a validation of the integrity of database and navigation. Furthermore, special runway structures are searched for in the radar image where they should appear. The outcome of this runway check contributes to the integrity analysis, too. Concurrent to this investigation a radar image based navigation is performed without using neither precision navigation nor detailed database information to determine the aircraft's position relative to the runway. The performance of our approach is demonstrated with real data acquired during extensive flight tests to several airports in Northern Germany.
STS-34 Atlantis, OV-104, touches down on runway 23 at EAFB, California
NASA Technical Reports Server (NTRS)
1989-01-01
STS-34 Atlantis, Orbiter Vehicle (OV) 104, main landing gear (MLG) touches down on Runway 23 dry lake bed at Edwards Air Force Base (EAFB), California. The nose landing gear rides above runway before touchdown as the MLG wheels produce a cloud of dust. OV-104's port side profile is captured as it glides by at a speed of approximately 195 knots (224 miles per hour).
STS-26 Discovery, OV-103, touches down on dry lakebed runway 17 at EAFB
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down on dry lakebed runway 17 at Edwards Air Force Base (EAFB), California. A cloud of dust forms behind MLG as OV-103 begins to slow down as it passes portable runway lights. Taken from the rear of the orbiter, view shows the space shuttle main engines (SSMEs) and the speedbrake/rudder deployed on tail section.
Joint Winter Runway Friction Program Accomplishments
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Wambold, James C.; Henry, John J.; Andresen, Arild; Bastian, Matthew
2002-01-01
The major program objectives are: (1) harmonize ground vehicle friction measurements to report consistent friction value or index for similar contaminated runway conditions, for example, compacted snow, and (2) establish reliable correlation between ground vehicle friction measurements and aircraft braking performance. Accomplishing these objectives would give airport operators better procedures for evaluating runway friction and maintaining acceptable operating conditions, providing pilots information to base go/no go decisions, and would contribute to reducing traction-related aircraft accidents.
Surface Management System Departure Event Data Analysis
NASA Technical Reports Server (NTRS)
Monroe, Gilena A.
2010-01-01
This paper presents a data analysis of the Surface Management System (SMS) performance of departure events, including push-back and runway departure events.The paper focuses on the detection performance, or the ability to detect departure events, as well as the prediction performance of SMS. The results detail a modest overall detection performance of push-back events and a significantly high overall detection performance of runway departure events. The overall detection performance of SMS for push-back events is approximately 55%.The overall detection performance of SMS for runway departure events nears 100%. This paper also presents the overall SMS prediction performance for runway departure events as well as the timeliness of the Aircraft Situation Display for Industry data source for SMS predictions.
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Quach, Cuong C.; Young, Steven D.
2007-01-01
A Runway Incursion Prevention System (RIPS) was tested at the Dallas-Ft. Worth International Airport (DFW) in October 2000. The system integrated airborne and ground components to provide both pilots and controllers with enhanced situational awareness, supplemental guidance cues, a real-time display of traffic information, and warning of runway incursions in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using NASA s Boeing 757 research aircraft and a test van equipped to emulate an incurring aircraft. The system was also demonstrated to over 100 visitors from the aviation community. This paper gives an overview of the RIPS, DFW flight test activities, and quantitative and qualitative results of the testing.
Tire and runway surface research
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1986-01-01
The condition of aircraft tires and runway surfaces can be crucial in meeting the stringent demands of aircraft ground operations, particularly under adverse weather conditions. Gaining a better understanding of the factors influencing the tire/pavement interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from several studies conducted at the Langley Aircraft Landing Dynamics Facility, tests with instrumented ground vehicles and aircraft, and some recent aircraft accident investigations are summarized to indicate effects of different tire and runway properties. The Joint FAA/NASA Runway Friction Program is described together with some preliminary test findings. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/pavement interface is given.
NASA Astrophysics Data System (ADS)
Vernaleken, Christoph; Mihalic, Lamir; Güttler, Mathias; Klingauf, Uwe
2006-05-01
Increasing traffic density on the aerodrome surface due to the continuous worldwide growth in the number of flight operations does not only cause capacity and efficiency problems, but also increases the risk of serious incidents and accidents on the airport movement area. Of these, Runway Incursions are the by far most safety-critical. In fact, the worst-ever accident in civil aviation, the collision of two Boeing B747s on Tenerife in 1977 with 583 fatalities, was caused by a Runway Incursion. Therefore, various Runway Safety programs have recently been initiated around the globe, often focusing on ground-based measures such as improved surveillance. However, as a lack of flight crew situational awareness is a key causal factor in many Runway Incursion incidents and accidents, there is a strong need for an onboard solution, which should be capable of interacting cooperatively with ground-based ATM systems, such as A-SMGCS where available. This paper defines the concept of preventive and reactive Runway Incursion avoidance and describes a Surface Movement Awareness & Alerting System (SMAAS) designed to alert the flight crew if they are at risk of infringing a runway. Both the SVS flight deck displays and the corresponding alerting algorithms utilize an ED 99A/RTCA DO-272A compliant aerodrome database, as well as airport operational, traffic and clearance data received via ADS-B or other data links, respectively. The displays provide the crew with enhanced positional, operational, clearance and traffic awareness, and they are used to visualize alerts. A future enhancement of the system will provide intelligent alerting for conflicts caused by surrounding traffic.
STS-38 Atlantis, Orbiter Vehicle (OV) 104, lands on runway 33 at KSC SLF
1990-11-20
STS038-S-041 (20 Nov 1990) --- STS-38 Atlantis, Orbiter Vehicle (OV) 104, lands on runway 33 at Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). The main landing gear (MLG) has just touched down on the runway surface as the nose landing gear (NLG) glides above it. The Department of Defense (DOD)-devoted mission came to an end (with complete wheel stop) at 4:43:37 pm (Eastern Standard Time (EST)).
Recent progress towards predicting aircraft ground handling performance
NASA Technical Reports Server (NTRS)
Yager, T. J.; White, E. J.
1981-01-01
Capability implemented in simulating aircraft ground handling performance is reviewed and areas for further expansion and improvement are identified. Problems associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior are discussed and efforts to improve tire/runway friction definition, and simulator fidelity are described. Aircraft braking performance data obtained on several wet runway surfaces are compared to ground vehicle friction measurements. Research to improve methods of predicting tire friction performance are discussed.
Attentional limitations with Head-Up Displays
NASA Technical Reports Server (NTRS)
Mccann, Robert S.; Foyle, David C.; Johnston, James C.
1993-01-01
Recent models of visual information processing suggest that visual attention can be focussed on either Head-Up Displays (HUD) or on the world beyond them, but not on both simultaneously. This hypothesis was tested in a part-task simulation in which subjects viewed a simulated approach to a runway with a HUD superimposed. An alphanumeric cue ('IFR' or 'VFR') appeared on either the HUD or the runway and was followed by two sets of three geometric forms; one set on the HUD and one set on the runway. Each set contained one potential target, either a stop sign or a diamond. If the cue spelled 'IFR', subjects made a speeded response based on the identity of the HUD target; if the cue spelled 'VFR', subjects made a speeded response based on the identity of the runway target. Regardless of cue location (HUD or Runway), responses were faster when the cue and the relevant target were part of the same perceptual group (i.e., both on the HUD or both on the runway) than when they were part of different perceptual groups. These results, as well as others, suggest that attentional constraints place severe limits on the ability of pilots to process HUD-referenced information and world-referenced information simultaneously. In addition, they provide direct evidence that transitioning from processing HUD information to processing world information requires an attention shift. Implications for HUD design are considered.
Selection of artificial gravity by animals during suborbital rocket flights
NASA Technical Reports Server (NTRS)
Lange, K. O.; Belleville, R. E.; Clark, F. C.
1975-01-01
White rats selected preferred artificial gravity levels by locomotion in centrifuges consisting of two runways mounted in the nose of sounding rockets. Roll rate of the Aerobee 150A rocket was designed to produce an angular velocity of 45 rpm during 5 min of free-fall, providing a gravity range from 0.3 to 1.5 G depending on a subject's runway position. One animal was released at the high and one at the low gravity position in each flight. Animal positions were continuously recorded. Locomotion patterns during these flights were similar. All four animals explored the entire available G-range. One rat settled at 0.4 G after 2 min; the others crossed the 1-G location in progressively narrower excursions and were near earth gravity at the end of the test period. Tentatively, the data suggest that normal earth-reared rats select earth gravity when available magnitudes include values above and below 1 G. Modification of gravity preference by prolonged exposure to higher or lower levels remains a possibility.
National blueprint for runway safety
DOT National Transportation Integrated Search
2000-10-01
The Blueprint describes the processes : employed to measurably reduce the risks : associated with runway incursions and surface : incidents. It sets expectations, establishes : accountability, communicates information, : and defines new and improved ...
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Steinmetz, G. G.
1983-01-01
Vertical-motion cues supplied by a g-seat to augment platform motion cues in the other five degrees of freedom were evaluated in terms of their effect on objective performance measures obtained during simulated transport landings under visual conditions. In addition to evaluating the effects of the vertical cueing, runway width and magnification effects were investigated. The g-seat was evaluated during fixed base and moving-base operations. Although performance with the g-seat only improved slightly over that with fixed-base operation, combined g-seat platform operation showed no improvement over improvement over platform-only operation. When one runway width at one magnification factor was compared with another width at a different factor, the visual results indicated that the runway width probably had no effect on pilot-vehicle performance. The new performance differences that were detected may be more readily attributed to the extant (existing throughout) increase in vertical velocity induced by the magnification factor used to change the runway width, rather than to the width itself.
A Concept and Implementation of Optimized Operations of Airport Surface Traffic
NASA Technical Reports Server (NTRS)
Jung, Yoon C.; Hoang, Ty; Montoya, Justin; Gupta, Gautam; Malik, Waqar; Tobias, Leonard
2010-01-01
This paper presents a new concept of optimized surface operations at busy airports to improve the efficiency of taxi operations, as well as reduce environmental impacts. The suggested system architecture consists of the integration of two decoupled optimization algorithms. The Spot Release Planner provides sequence and timing advisories to tower controllers for releasing departure aircraft into the movement area to reduce taxi delay while achieving maximum throughput. The Runway Scheduler provides take-off sequence and arrival runway crossing sequence to the controllers to maximize the runway usage. The description of a prototype implementation of this integrated decision support tool for the airport control tower controllers is also provided. The prototype decision support tool was evaluated through a human-in-the-loop experiment, where both the Spot Release Planner and Runway Scheduler provided advisories to the Ground and Local Controllers. Initial results indicate the average number of stops made by each departure aircraft in the departure runway queue was reduced by more than half when the controllers were using the advisories, which resulted in reduced taxi times in the departure queue.
Bowlin, Melissa S; McLeer, Dorothy F; Danielson-Francois, Anne M
2014-03-01
Evolutionary history and structural considerations constrain all aspects of animal physiology. Constraints on invertebrate locomotion are especially straightforward for students to observe and understand. In this exercise, students use spiders to investigate the concepts of adaptation, structure-function relationships, and trade-offs. Students measure burst and endurance performance in several taxonomic families of spiders whose ecological niches have led to different locomotory adaptations. Based on observations of spiders in their natural habitat and prior background information, students make predictions about spider performance. Students then construct their own knowledge by performing a hands-on, inquiry-based scientific experiment where the results are not necessarily known. Depending on the specific families chosen, students can observe that web-dwelling spiders have more difficulty navigating complex terrestrial terrain than ground-dwelling spiders and that there is a trade-off between burst performance and endurance performance in spiders. Our inexpensive runway design allows for countless variations on this basic experiment; for example, we have successfully used runways to show students how the performance of heterothermic ectotherms varies with temperature. High levels of intra- and interindividual variation in performance underscore the importance of using multiple trials and statistical tests. Finally, this laboratory activity can be completely student driven or standardized, depending on the instructor's preference.
Runway exit designs for capacity improvement demonstrations. Phase 2: Computer model development
NASA Technical Reports Server (NTRS)
Trani, A. A.; Hobeika, A. G.; Kim, B. J.; Nunna, V.; Zhong, C.
1992-01-01
The development is described of a computer simulation/optimization model to: (1) estimate the optimal locations of existing and proposed runway turnoffs; and (2) estimate the geometric design requirements associated with newly developed high speed turnoffs. The model described, named REDIM 2.0, represents a stand alone application to be used by airport planners, designers, and researchers alike to estimate optimal turnoff locations. The main procedures are described in detail which are implemented in the software package and possible applications are illustrated when using 6 major runway scenarios. The main output of the computer program is the estimation of the weighted average runway occupancy time for a user defined aircraft population. Also, the location and geometric characteristics of each turnoff are provided to the user.
NASA Astrophysics Data System (ADS)
Putra, J. C. P.; Safrilah
2017-06-01
Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.
DOT National Transportation Integrated Search
2010-02-12
Information provided through analysis of runway incursions is useful in many ways. Analysis of the errors made by pilots, controllers, and vehicle drivers is the first step toward developing error mitigation strategies. Furthermore, successful design...
14 CFR 93.153 - Communications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... operate an aircraft within the airspace specified in § 93.151, or taxi onto the runway at Ketchikan..., or taxi onto the runway at Ketchikan International Airport, unless that person continuously monitors...
STS-31 Discovery, Orbiter Vehicle (OV) 103, lands on EAFB concrete runway 22
NASA Technical Reports Server (NTRS)
1990-01-01
The main landing gear (MLG) of Discovery, Orbiter Vehicle (OV) 103, rides along concrete runway 22 at Edwards Air Force Base (EAFB), California, bringing mission STS-31 to an end. The nose landing gear (NLG) is suspended above the runway prior to touchdown and wheel stop which occurred at 6:51:00 am (Pacific Daylight Time (PDT)). View shows OV-103's starboard side and deployed rudder/speedbrake. EAFB facilities are seen in the distance.
Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal
2014-04-01
ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement
STS-34 Atlantis, OV-104, touches down on runway 23 at EAFB, California
NASA Technical Reports Server (NTRS)
1989-01-01
STS-34 Atlantis, Orbiter Vehicle (OV) 104, main landing gear (MLG) touches down on Runway 23 dry lake bed at Edwards Air Force Base (EAFB), California. The nose landing gear rides above runway before touchdown as the MLG wheels produce a cloud of dust. OV-104's port side profile is captured as it glides by at a speed of approximately 195 knots (224 miles per hour). The tail section with deployed speedbrake/rudder and space shuttle main engines (SSMEs) are visible.
Evaluation of Winter Operational Runway Friction Measurement Equipment, Procedures, and Research
NASA Technical Reports Server (NTRS)
1995-01-01
This document produced by the FAA/Industry Winter Runway Friction Measurement and Reporting Working Group, is designed to provide an overview of current information on the present guidance, practices, and procedures for reporting runway pavement surface conditions during winter operations at airports. It contains recommendations on the desirability of providing the best procedural consistency and standardization and discusses the available means to implement the guidance that will result in improved aviation safety at airports during hazardous winter conditions.
Design and Implementation of a Consolidated Airfield at McMurdo, Antarctica
2014-09-01
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR . ERDC/CRREL TR-14-22 iii Contents Abstract...the current loca- tion of the white ice runway (the wheeled runway at Pegasus) is about 1/3 mile WSW of where it was when it was originally ...ft below the surface. This is not surprising; when the original runway was established in 1991–92, there were regions where the ice needed to be
32 CFR 256.6 - Runway classification by aircraft type.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Runway classification by aircraft type. 256.6... type. Class A runways S-2, VC-6, C-1, C-2, TC-4C, U-10, U-11, LU-16, TU-16, HU-16, C-7, C-8, C-12, C-47...-130, A-7, A-38, AV-8, P-2, P-3, T-29, T-33, T-37, T-39, T-1, HC-130B, C-131, C-140, C-5A, KC-97, F-9...
32 CFR 256.6 - Runway classification by aircraft type.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 2 2011-07-01 2011-07-01 false Runway classification by aircraft type. 256.6... type. Class A runways S-2, VC-6, C-1, C-2, TC-4C, U-10, U-11, LU-16, TU-16, HU-16, C-7, C-8, C-12, C-47...-130, A-7, A-38, AV-8, P-2, P-3, T-29, T-33, T-37, T-39, T-1, HC-130B, C-131, C-140, C-5A, KC-97, F-9...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., hard-surfaced runways; and (ii) At the option of the applicant, grooved or porous friction course wet, hard-surfaced runways. (2) Smooth water, in the case of seaplanes and amphibians; and (3) Smooth, dry...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., hard-surfaced runways; and (ii) At the option of the applicant, grooved or porous friction course wet, hard-surfaced runways. (2) Smooth water, in the case of seaplanes and amphibians; and (3) Smooth, dry...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., hard-surfaced runways; and (ii) At the option of the applicant, grooved or porous friction course wet, hard-surfaced runways. (2) Smooth water, in the case of seaplanes and amphibians; and (3) Smooth, dry...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., hard-surfaced runways; and (ii) At the option of the applicant, grooved or porous friction course wet, hard-surfaced runways. (2) Smooth water, in the case of seaplanes and amphibians; and (3) Smooth, dry...
Earth Observations taken by the Expedition 14 crew
2006-11-07
ISS014-E-07480 (11 Nov. 2006) --- Dyess Air Force Base is featured in this image photographed by an Expedition 14 crewmember on the International Space Station. Dyess Air Force Base, located near the central Texas city of Abilene, is the home of the 7th Bomb Wing and 317th Airlift Groups of the United States Air Force. The Base also conducts all initial Air Force combat crew training for the B-1B Lancer aircraft. The main runway is approximately 5 kilometers in length to accommodate the large bombers and cargo aircraft at the base -- many of which are parked in parallel rows on the base tarmac. Lieutenant Colonel William E. Dyess, for whom the base is named, was a highly decorated pilot, squadron commander, and prisoner of war during World War II. The nearby town of Tye, Texas was established by the Texas and Pacific Railway in 1881, and expanded considerably following reactivation of a former air field as Dyess Air Force Base in 1956. Airfields and airports are useful sites for astronauts to hone their long camera lens photographic technique to acquire high resolution images. The sharp contrast between highly reflective linear features, such as runways, with darker agricultural fields and undisturbed land allows fine focusing of the cameras. This on-the-job training is key for obtaining high resolution imagery of Earth, as well as acquiring inspection photographs of space shuttle thermal protection tiles during continuing missions to the International Space Station.
Runway Status Lights Evaluation Report
DOT National Transportation Integrated Search
1998-09-01
The Federal Aviation Administration (FAA) conducted a proof-of-concept demonstration of the Runway Status Lights (RWSL) at Boston's Logan International Airport. The RWSL, employing a network of lights on the airport movement surface, conveys informat...
Development of a Bayesian Belief Network Runway Incursion and Excursion Model
NASA Technical Reports Server (NTRS)
Green, Lawrence L.
2014-01-01
In a previous work, a statistical analysis of runway incursion (RI) event data was conducted to ascertain the relevance of this data to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to several of the AvSP top ten TC and identified numerous primary causes and contributing factors of RI events. The statistical analysis served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events, also previously reported. Through literature searches and data analysis, this RI event network has now been extended to also model runway excursion (RE) events. These RI and RE event networks have been further modified and vetted by a Subject Matter Expert (SME) panel. The combined system-level BBN model will allow NASA to generically model the causes of RI and RE events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of runway safety incidents/accidents, and to improve runway safety in general. The development and structure of the BBN for both RI and RE events are documented in this paper.
Environmental assessment of airport pavement design and construction alternatives : final report.
DOT National Transportation Integrated Search
2016-02-01
The objective of this study is to quantify energy and environmental sustainability of asphalt and concrete : runway pavements using Life-Cycle Assessment (LCA). The design alternatives include runway rehabilitation/reconstruction : designs considered...
1980-01-01
one year with the savings realized in reduced wear on arresting gear. 2.2 Evaluation of the Potential Utility of the SCAN System for Monitoring Runway...without loss of accuracy due to build-up of rubber and other contaminants on the sensor surface? 2. Can water depth be measured representatively on a...Hargett, E.R., 1974: Skid- Resistance Evaluation of Seven Antihydroplaning Surfaces, Air Force Weapons Laboratory, Kirtland AP. NM4 87117, 39 pp
2014-01-10
CAPE CANAVERAL, Fla. - A Hennessey Venom GT stands on the 3.5-mile long runway between test runs at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles. Photo credit: NASA/Kim Shiflett
Probabilistic computer model of optimal runway turnoffs
NASA Technical Reports Server (NTRS)
Schoen, M. L.; Preston, O. W.; Summers, L. G.; Nelson, B. A.; Vanderlinden, L.; Mcreynolds, M. C.
1985-01-01
Landing delays are currently a problem at major air carrier airports and many forecasters agree that airport congestion will get worse by the end of the century. It is anticipated that some types of delays can be reduced by an efficient optimal runway exist system allowing increased approach volumes necessary at congested airports. A computerized Probabilistic Runway Turnoff Model which locates exits and defines path geometry for a selected maximum occupancy time appropriate for each TERPS aircraft category is defined. The model includes an algorithm for lateral ride comfort limits.
2015-01-01
1 Introduction The Pegasus White Ice Runway at McMurdo Station, Antarctica , has expe- rienced significant melting during the past two austral...Laboratory Trials of White Ice Paint to Improve the Energy Reflectance Properties of the Glacial- Ice Runway Surface Co ld R eg io ns R es ea rc h...ERDC/CRREL TN-15-1 January 2015 Pegasus Airfield Repair and Protection Laboratory Trials of White Ice Paint to Improve the Energy Reflectance
STS-29 Discovery, OV-103, lands on Edwards AFB concrete runway 22
NASA Technical Reports Server (NTRS)
1989-01-01
STS-29 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down at a speed of approximately 205 knots (235 miles per hour) on concrete runway 22 at Edwards Air Force Base (AFB), California. Nose landing gear (NLG) is deployed and rides above runway surface prior touchdown. Rear view captures OV-103 as it glides past photographer to wheel stop showing the tail section (speedbrake/rudder) and three space shuttle main engines (SSMEs). Mojave desert scrub brush appears in the foreground with aircraft hangar appearing in the background.
NASA Technical Reports Server (NTRS)
1975-01-01
The MCAIR five-degree-of-freedom motion-base simulator (MBS) was used in combination with a six-degree-of-freedom aircraft mathematical model to demonstrate the simulation adequacy on uncrowned runways, under various conditions. Known aircraft parameters were used where possible to increase program credibility. Tire-runway friction models were coordinated with personnel of NASA, Langley Research Center. The F-4 experienced pilots representing NASA, FAA, and USAF participated in the 130 approach-touchdown-rollout demonstration and verified the simulation adequacy.
A Mixed Integer Linear Program for Airport Departure Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Jung, Yoon Chul
2009-01-01
Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced delays as compared to FCFS, and the magnitude of the savings depends on the queue and departure fix structure. The MILP assumes deterministic aircraft arrival times at the runway queues. However, due to taxi time uncertainty, aircraft might arrive either earlier or later than these deterministic times. Thus, to incorporate this uncertainty, we present a method for using the MILP with "overlap discounted rolling planning horizon". The approach is based on valuing near-term decision results more than future ones. We develop a model of taxitime uncertainty based on real-world data, and then compare the baseline FCFS delays with delays using the above MILP in a simple rolling-horizon method and in the overlap discounted scheme.
14 CFR 91.605 - Transport category civil airplane weight limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... grooved or porous friction course runways, if provided in the Airplane Flight Manual, may be used only for runways that are grooved or treated with a porous friction course (PFC) overlay, and that the operator...
Three-track runway and taxiway profiles measured at international airports I and J
NASA Technical Reports Server (NTRS)
Hall, A. W.
1972-01-01
Three-track runway and taxiway profiles are presented for use in studies of airplane response to ground roughness. Tabulated and plotted data for two international airports, (designated I and J), are included.
14 CFR 151.85 - Special treatment areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... adjacent to runway ends, holding aprons, and taxiways to prevent erosion from the blast effects of the... end of the runway. (b) Holding aprons—a stabilized area up to 50 feet from the edge of the pavement...
14 CFR 151.85 - Special treatment areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... adjacent to runway ends, holding aprons, and taxiways to prevent erosion from the blast effects of the... end of the runway. (b) Holding aprons—a stabilized area up to 50 feet from the edge of the pavement...
14 CFR 151.85 - Special treatment areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... adjacent to runway ends, holding aprons, and taxiways to prevent erosion from the blast effects of the... end of the runway. (b) Holding aprons—a stabilized area up to 50 feet from the edge of the pavement...
Analysis of MLS Based Surveillance System (MLSS) Concepts
DOT National Transportation Integrated Search
1989-04-01
This report examines a number of surveillance system concepts to support safe independent runway approaches and converging runways under weather conditons. All surveillance conepts are based on the use of MLS signals. The resultin surveillance is ava...
Aircraft and Ground Vehicle Winter Runway Friction Assessment
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1999-01-01
Some background information is given together with the scope and objectives of a 5-year, Joint Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration (FAA). The primary objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices would report. This number, denoted the International Runway Friction Index (IRFI), will be related to all types of aircraft stopping performance. The range of test equipment, the test sites, test results and accomplishments, the extent of the substantial friction database compiled, and future test plans will be described. Several related studies have also been implemented including the effects of contaminant type on aircraft impingement drag, and the effectiveness of various runway and aircraft de-icing chemical types, and application rates.
Action-specific effects in aviation: what determines judged runway size?
Gray, Rob; Navia, José Antonio; Allsop, Jonathan
2014-01-01
Several recent studies have shown that the performance of a skill that involves acting on a goal object can influence one's judgment of the size of that object. The present study investigated this effect in an aviation context. Novice pilots were asked to perform a series of visual approach and landing manoeuvres in a flight simulator. After each landing, participants next performed a task in which runway size was judged for different simulated altitudes. Gaze behaviour and control stick kinematics were also analyzed. There were significant relationships between judged runway size and multiple action-related variables including touchdown velocity, time fixating the runway, and the magnitude and frequency of control inputs. These findings suggest that relationship between the perception of a target object and action is not solely determined by performance success or failure but rather involves a relationship between multiple variables that reflect the actor's ability.
Non-airborne conflicts: The causes and effects of runway transgressions
NASA Technical Reports Server (NTRS)
Tarrel, Richard J.
1985-01-01
The 1210 ASRS runway transgression reports are studied and expanded to yield descriptive statistics. Additionally, a one of three subset was studied in detail for purposes of evaluating the causes, risks, and consequences behind trangression events. Occurrences are subdivided by enabling factor and flight phase designations. It is concluded that a larger risk of collision is associated with controller enabled departure transgressions over all other categories. The influence of this type is especially evident during the period following the air traffic controllers' strike of 1981. Causal analysis indicates that, coincidentally, controller enabled departure transgressions also, show the strongest correlations between causal factors. It shows that departure errors occur more often when visibility is reduced, and when multiple takeoff runways or intersection takeoffs are employed. In general, runway transgressions attributable to both pilot and controller errors arise from three problem areas: information transfer, awareness, and spatial judgement. Enhanced awareness by controllers will probably reduce controller enabled incidents.
NASA Astrophysics Data System (ADS)
1982-09-01
Runways at many small airports are deteriorating faster than necessary because airport owners--usually local governments--have deferred critical maintenance. The result is damage to the runways' basic structure and a shortened useful life if they are not repaired. Based on GAO's review of 46 airports, studies by others, and the views of FAA officials, deferred maintenance is apparently a longstanding nationwide problem. Lack of funds is cited by airport owners as the primary reason for not performing needed maintenance; however, the Federal Aviation Administration's apathy to bring about satisfactory maintenance is a contributing cause. GAO is recommending actions that FAA can take to help ensure that runways at small airports are properly maintained. The Congress should recognize the airport owners' lack of resources to properly maintain airports when considering future revisions to the Airport Improvement Program.
A Runway Surface Monitor using Internet of Things
NASA Astrophysics Data System (ADS)
Troiano, Amedeo; Pasero, Eros
2014-05-01
The monitoring of runway surfaces, for the detection of ice formation or presence of water, is an important issue for reducing maintenance costs and improving traffic safety. An innovative sensor was developed to detect the presence of ice or water on its surface, and its repeatability, stability and reliability were assessed in different simulations and experiments, performed both in laboratory and in the field. Three sensors were embedded in the runway of the Turin-Caselle airport, in the north-west of Italy, to check the state of its surface. Each sensor was connected to a GPRS modem to send the collected data to a common database. The entire system was installed about three years ago, and up to now it shows correct work and automatic reactivation after malfunctions without any external help. The state of the runway surface is virtual represented in an internet website, using the Internet of Things features and opening new scenarios.
NASA Technical Reports Server (NTRS)
Wieland, Frederick; Santos, Michel; Krueger, William; Houston, Vincent E.
2011-01-01
With the expected worldwide increase of air traffic during the coming decade, both the Federal Aviation Administration's (FAA's) Next Generation Air Transportation System (NextGen), as well as Eurocontrol's Single European Sky ATM Research (SESAR) program have, as part of their plans, air traffic management (ATM) solutions that can increase performance without requiring time-consuming and expensive infrastructure changes. One such solution involves the ability of both controllers and flight crews to deliver aircraft to the runway with greater accuracy than they can today. Previous research has shown that time-based spacing techniques, wherein the controller assigns a time spacing to each pair of arriving aircraft, can achieve this goal by providing greater runway delivery accuracy and producing a concomitant increase in system-wide performance. The research described herein focuses on one specific application of time-based spacing, called Airborne Precision Spacing (APS), which has evolved over the past ten years. This research furthers APS understanding by studying its performance with realistic wind conditions obtained from atmospheric sounding data and with realistic wind forecasts obtained from the Rapid Update Cycle (RUC) short-range weather forecast. In addition, this study investigates APS performance with limited surveillance range, as provided by the Automatic Dependent Surveillance-Broadcast (ADS-B) system, and with an algorithm designed to improve APS performance when ADS-B surveillance data is unavailable. The results presented herein quantify the runway threshold delivery accuracy of APS under these conditions, and also quantify resulting workload metrics such as the number of speed changes required to maintain spacing.
Performance of Airborne Precision Spacing Under Realistic Wind Conditions
NASA Technical Reports Server (NTRS)
Wieland, Frederick; Santos, Michel; Krueger, William; Houston, Vincent E.
2011-01-01
With the expected worldwide increase of air traffic during the coming decade, both the Federal Aviation Administration s (FAA s) Next Generation Air Transportation System (NextGen), as well as Eurocontrol s Single European Sky ATM Research (SESAR) program have, as part of their plans, air traffic management solutions that can increase performance without requiring time-consuming and expensive infrastructure changes. One such solution involves the ability of both controllers and flight crews to deliver aircraft to the runway with greater accuracy than is possible today. Previous research has shown that time-based spacing techniques, wherein the controller assigns a time spacing to each pair of arriving aircraft, is one way to achieve this goal by providing greater runway delivery accuracy that produces a concomitant increase in system-wide performance. The research described herein focuses on a specific application of time-based spacing, called Airborne Precision Spacing (APS), which has evolved over the past ten years. This research furthers APS understanding by studying its performance with realistic wind conditions obtained from atmospheric sounding data and with realistic wind forecasts obtained from the Rapid Update Cycle (RUC) short-range weather forecast. In addition, this study investigates APS performance with limited surveillance range, as provided by the Automatic Dependent Surveillance-Broadcast (ADS-B) system, and with an algorithm designed to improve APS performance when an ADS-B signal is unavailable. The results presented herein quantify the runway threshold delivery accuracy of APS un-der these conditions, and also quantify resulting workload metrics such as the number of speed changes required to maintain spacing.
SURF IA Conflict Detection and Resolution Algorithm Evaluation
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Chartrand, Ryan C.; Wilson, Sara R.; Commo, Sean A.; Barker, Glover D.
2012-01-01
The Enhanced Traffic Situational Awareness on the Airport Surface with Indications and Alerts (SURF IA) algorithm was evaluated in a fast-time batch simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. SURF IA is designed to increase flight crew situation awareness of the runway environment and facilitate an appropriate and timely response to potential conflict situations. The purpose of the study was to evaluate the performance of the SURF IA algorithm under various runway scenarios, multiple levels of conflict detection and resolution (CD&R) system equipage, and various levels of horizontal position accuracy. This paper gives an overview of the SURF IA concept, simulation study, and results. Runway incursions are a serious aviation safety hazard. As such, the FAA is committed to reducing the severity, number, and rate of runway incursions by implementing a combination of guidance, education, outreach, training, technology, infrastructure, and risk identification and mitigation initiatives [1]. Progress has been made in reducing the number of serious incursions - from a high of 67 in Fiscal Year (FY) 2000 to 6 in FY2010. However, the rate of all incursions has risen steadily over recent years - from a rate of 12.3 incursions per million operations in FY2005 to a rate of 18.9 incursions per million operations in FY2010 [1, 2]. The National Transportation Safety Board (NTSB) also considers runway incursions to be a serious aviation safety hazard, listing runway incursion prevention as one of their most wanted transportation safety improvements [3]. The NTSB recommends that immediate warning of probable collisions/incursions be given directly to flight crews in the cockpit [4].
Evaluation of a driving simulator for ground-vehicle operator training
DOT National Transportation Integrated Search
2006-01-31
Improving runway safety is part of the Federal Aviation Administration (FAA) Flight Plan (FAA, 2005) with annual goals established for the reduction of runway incursions, including vehicle pedestrian deviations (VPDs). Reducing VPDs is a difficult ta...
An evaluation of winter operational runway friction measurement equipment, procedures and research
DOT National Transportation Integrated Search
1995-01-25
For many years, the aviation community has struggled with runway friction reporting practices. Airport operations personnel, in taking on the responsibility for conducting friction measurements during winter storms, work diligently to keep up with ra...
Airport pavement marking evaluation for reducing runway incursion
DOT National Transportation Integrated Search
2001-02-01
This study was undertaken to evaluate the widening of airport pavement marking in order to enhance their recognition. Results of this evaluation are aimed at reducing the potential of runway incursions and incidents by making airports pavement markin...
White Sands Space Harbor Area 1, Crash/Rescue Standby Support GPS ...
White Sands Space Harbor Area 1, Crash/Rescue Standby Support GPS Buildings, East side of Runway 17/35, approximately 2,650 feet north of intersection with Runway 23/05, White Sands, Dona Ana County, NM
AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING OF CONCRETE
NASA Technical Reports Server (NTRS)
1975-01-01
AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING OF CONCRETE KSC-375C-10036.31 108-KSC-375C-10036.31, P-21426, ARCHIVE-04502 Aerial oblique of Shuttle runway facilities. Pouring concrete on runway. Direction north - altitude 100'.
STS-41 Discovery, OV-103, glides over concrete runway 22 at EAFB, California
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 Discovery, Orbiter Vehicle (OV) 103, with nose landing gear (NLG) and main landing gear (MLG) deployed, glides over concrete runway 22 at Edwards Air Force Base (EAFB), California, prior to touchdown.
14 CFR Appendix I to Part 151 - Appendix I to Part 151
Code of Federal Regulations, 2013 CFR
2013-01-01
.... AC 150/5325-4 Runway Length Requirements for Airport Design. AC 150/5330-2 Runway/Taxiway Widths and... Lighting Circuits To Be Installed in Airport Pavements. AC 150/5345-31 Specification for L-833 Individual...
14 CFR Appendix I to Part 151 - Appendix I to Part 151
Code of Federal Regulations, 2010 CFR
2010-01-01
.... AC 150/5325-4 Runway Length Requirements for Airport Design. AC 150/5330-2 Runway/Taxiway Widths and... Lighting Circuits To Be Installed in Airport Pavements. AC 150/5345-31 Specification for L-833 Individual...
14 CFR Appendix I to Part 151 - Appendix I to Part 151
Code of Federal Regulations, 2011 CFR
2011-01-01
.... AC 150/5325-4 Runway Length Requirements for Airport Design. AC 150/5330-2 Runway/Taxiway Widths and... Lighting Circuits To Be Installed in Airport Pavements. AC 150/5345-31 Specification for L-833 Individual...
14 CFR Appendix I to Part 151 - Appendix I to Part 151
Code of Federal Regulations, 2014 CFR
2014-01-01
.... AC 150/5325-4 Runway Length Requirements for Airport Design. AC 150/5330-2 Runway/Taxiway Widths and... Lighting Circuits To Be Installed in Airport Pavements. AC 150/5345-31 Specification for L-833 Individual...
14 CFR Appendix I to Part 151 - Appendix I to Part 151
Code of Federal Regulations, 2012 CFR
2012-01-01
.... AC 150/5325-4 Runway Length Requirements for Airport Design. AC 150/5330-2 Runway/Taxiway Widths and... Lighting Circuits To Be Installed in Airport Pavements. AC 150/5345-31 Specification for L-833 Individual...
Runway safety : it's everybody's business
DOT National Transportation Integrated Search
2001-07-01
This booklet tells pilots and controllers what they can do to help prevent runway incursions by helping them to avoid situations that reduce errors and alerting them to situations as extra vigilance is required. It also provides information on how co...
Ground-vehicle operator training using a low-cost simulator
DOT National Transportation Integrated Search
2006-05-01
Pilots, controllers, and ground-vehicle operators all have an important role in runway safety. Their actions, either individually or collectively can cause or avert a runway incursion. The roles and responsibilities of pilots and controllers in this ...
NASA Technical Reports Server (NTRS)
Phojanamongkolkij, Nipa; Okuniek, Nikolai; Lohr, Gary W.; Schaper, Meilin; Christoffels, Lothar; Latorella, Kara A.
2014-01-01
The runway is a critical resource of any air transport system. It is used for arrivals, departures, and for taxiing aircraft and is universally acknowledged as a constraining factor to capacity for both surface and airspace operations. It follows that investigation of the effective use of runways, both in terms of selection and assignment as well as the timing and sequencing of the traffic is paramount to the efficient traffic flows. Both the German Aerospace Center (DLR) and NASA have developed concepts and tools to improve atomic aspects of coordinated arrival/departure/surface management operations and runway configuration management. In December 2012, NASA entered into a Collaborative Agreement with DLR. Four collaborative work areas were identified, one of which is called "Runway Management." As part of collaborative research in the "Runway Management" area, which is conducted with the DLR Institute of Flight Guidance, located in Braunschweig, the goal is to develop an integrated system comprised of the three DLR tools - arrival, departure, and surface management (collectively referred to as A/D/S-MAN) - and NASA's tactical runway configuration management (TRCM) tool. To achieve this goal, it is critical to prepare a concept of operations (ConOps) detailing how the NASA runway management and DLR arrival, departure, and surface management tools will function together to the benefit of each. To assist with the preparation of the ConOps, the integrated NASA and DLR tools are assessed through a functional analysis method described in this report. The report first provides the highlevel operational environments for air traffic management (ATM) in Germany and in the U.S., and the descriptions of the DLR's A/D/S-MAN and NASA's TRCM tools at the level of details necessary to compliment the purpose of the study. Functional analyses of each tool and a completed functional analysis of an integrated system design are presented next in the report. Future efforts to fully develop the ConOps will include: developing scenarios to fully test environmental, procedural, and data availability assumptions; executing the analysis by a walk-through of the integrated system using these scenarios; defining the appropriate role of operators in terms of their monitoring requirements and decision authority; executing the analysis by a walk-through of the integrated system with operator involvement; characterizing the environmental, system data requirements, and operator role assumptions for the ConOps.
White Sands Space Harbor Area 1, Runway 17/35, Extending 35,000 ...
White Sands Space Harbor Area 1, Runway 17/35, Extending 35,000 feet north from Range Road 10, beginning approximately 4.2 miles northeast of intersection with Range Road 7, White Sands, Dona Ana County, NM
Three-track runway and taxiway profiles measured at International Airports E and F
NASA Technical Reports Server (NTRS)
Hall, A. W.
1971-01-01
Three-track runway and taxiway profiles are presented for use in studies of airplane response to ground roughness. This report presents the tabulated and plotted data for two international airports (designed airports E and F).
An analysis of runway-taxiway transgressions at controlled airports
DOT National Transportation Integrated Search
1981-04-01
The purpose of this study was to determine the cause of aircraft making inadvertent or unauthorized takeoffs and transgressions onto active runways during takeoff and landing operations. The study was conducted in four phases: (1) Prior studies by FA...
77 FR 49852 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... of Projects Approved for Collection and Use: Runway 11/29 pavement rehabilitation. Taxiway B pavement rehabilitation. Runway 15/33 pavement rehabilitation. Aircraft rescue and firefighting equipment acquisition. Security enhancements. Rehabilitate concrete commercial apron. General aviation apron pavement...
Three-track runway and taxiway profiles measured at international airports G and H
NASA Technical Reports Server (NTRS)
Hall, A. W.
1972-01-01
Three-track runway and taxiway profiles are presented for use in studies of airplane response to ground roughness. This report presents the tabulated and plotted data for two international airports (designated airports G and H).
Ground winds for Kennedy Space Center, Florida, 1979 revision
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.
1979-01-01
Revised ground-level runway wind statistics for the Kennedy Space Center, Florida area are presented. Crosswind, headwind, tailwind, and headwind reversal percentage frequencies are given with respect to month and hour for the Kennedy Space Center Space Shuttle runway.
Calibration validation for the new generation runway visual range system
DOT National Transportation Integrated Search
2000-07-01
A forward scattermeter, consisting of transmitter and receiver heads mounted on a fork, is used in the New Genreration Runway Visual Range (NGRVR) System to assess the clarity of the atmosphere. The scattermeter is calibrated by comparison with refer...
2014-01-10
CAPE CANAVERAL, Fla. - An engineer readies a Hennessey Venom GT for test runs on the 3.5-mile long runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles. Photo credit: NASA/Kim Shiflett
2014-01-10
CAPE CANAVERAL, Fla. - Mechanics, engineers and Driver Brian Smith, in jumpsuit, ready a Hennessey Venom GT for test runs on the 3.5-mile long runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles. Photo credit: NASA/Kim Shiflett
2014-01-10
CAPE CANAVERAL, Fla. - Mechanics and engineers ready a Hennessey Venom GT for test runs on the 3.5-mile long runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles. Photo credit: NASA/Kim Shiflett
NASA tire/runway friction projects
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1995-01-01
The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.
Texture Modification of the Shuttle Landing Facility Runway at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Yager, Thomas J.
1996-01-01
This paper describes the test procedures and the selection criteria used in selecting the best runway surface texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-kt crosswinds if desired. This 5-kt increase over the previous 15-kt limit drastically increases landing safety and the ability to make on-time launches to support missions where space station rendezvous is planned.
Aluminum runway surface as possible aid to aircraft braking
NASA Technical Reports Server (NTRS)
Miller, C. D.; Pinkel, I. I.
1973-01-01
Several concepts are described for use singly or in combination to improve aircraft braking. All involve a thin layer of aluminum covering all or part of the runway. Advantage would derive from faster heat conduction from the tire-runway interface. Heating of tread surface with consequent softening and loss of friction coefficient should be reduced. Equations are developed indicating that at least 99 percent of friction heat should flow into the aluminum. Preliminary test results indicate a coefficient of sliding friction of 1.4, with predictably slight heating of tread. Elimination of conventional brakes is at least a remote possibility.
NASA Technical Reports Server (NTRS)
Kohl, R. E.
1973-01-01
The effectiveness of various vortex dissipation devices proposed for installation on or near aircraft runways is evaluated on basis of results of experiments conducted with a 0.03-scale model of a Boeing 747 transport aircraft in conjunction with a simulated runway. The test variables included type of vortex dissipation device, mode of operation of the powered devices, and altitude, lift coefficient and speed of the generating aircraft. A total of fifteen devices was investigated. The evaluation is based on time sequence photographs taken in the vertical and horizontal planes during each run.
A new FOD recognition algorithm based on multi-source information fusion and experiment analysis
NASA Astrophysics Data System (ADS)
Li, Yu; Xiao, Gang
2011-08-01
Foreign Object Debris (FOD) is a kind of substance, debris or article alien to an aircraft or system, which would potentially cause huge damage when it appears on the airport runway. Due to the airport's complex circumstance, quick and precise detection of FOD target on the runway is one of the important protections for airplane's safety. A multi-sensor system including millimeter-wave radar and Infrared image sensors is introduced and a developed new FOD detection and recognition algorithm based on inherent feature of FOD is proposed in this paper. Firstly, the FOD's location and coordinate can be accurately obtained by millimeter-wave radar, and then according to the coordinate IR camera will take target images and background images. Secondly, in IR image the runway's edges which are straight lines can be extracted by using Hough transformation method. The potential target region, that is, runway region, can be segmented from the whole image. Thirdly, background subtraction is utilized to localize the FOD target in runway region. Finally, in the detailed small images of FOD target, a new characteristic is discussed and used in target classification. The experiment results show that this algorithm can effectively reduce the computational complexity, satisfy the real-time requirement and possess of high detection and recognition probability.
Sensitivity of Runway Occupancy Time (ROT) to Various Rollout and Turnoff (ROTO) Factors. Volume 1
NASA Technical Reports Server (NTRS)
Goldthorpe, S. H.
1997-01-01
The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.
NASA Technical Reports Server (NTRS)
Stubbs, S. M.; Tanner, J. A.
1976-01-01
During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.
NASA Technical Reports Server (NTRS)
Goldthorpe, S. H.
1997-01-01
The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.
Airplane takeoff and landing performance monitoring system
NASA Technical Reports Server (NTRS)
Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)
1991-01-01
The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a predicted nominal performance based upon given conditions, performance deficiencies are detected by the system.
NASA Technical Reports Server (NTRS)
Green, David F.; Otero, Sharon D.; Barker, Glover D.; Jones, Denise R.
2009-01-01
The Next Generation Air Transportation System (NextGen) concept for 2025 envisions the movement of large numbers of people and goods in a safe, efficient, and reliable manner. The NextGen will remove many of the constraints in the current air transportation system, support a wider range of operations, and deliver an overall system capacity up to 3 times that of current operating levels. In order to achieve the NextGen vision, research is necessary in the areas of surface traffic optimization, maximum runway capacity, reduced runway occupancy time, simultaneous single runway operations, and terminal area conflict prevention, among others. The National Aeronautics and Space Administration (NASA) is conducting Collision Avoidance for Airport Traffic (CAAT) research to develop technologies, data, and guidelines to enable Conflict Detection and Resolution (CD&R) in the Airport Terminal Maneuvering Area (ATMA) under current and emerging NextGen operating concepts. In this report, an initial concept for an aircraft-based method for CD&R in the ATMA is presented. This method is based upon previous NASA work in CD&R for runway incursion prevention, the Runway Incursion Prevention System (RIPS). CAAT research is conducted jointly under NASA's Airspace Systems Program, Airportal Project and the Aviation Safety Program, Integrated Intelligent Flight Deck Project.
Performance Predictions for Proposed ILS Facilities at St. Louis Municipal Airport
DOT National Transportation Integrated Search
1978-01-01
The results of computer simulations of performance of proposed ILS facilities on Runway 12L/30R at St. Louis Municipal Airport (Lambert Field) are reported. These simulations indicate that an existing industrial complex located near the runway is com...
X-48C Flies Over Intersecting Runways
2013-02-28
The X-48C Hybrid Wing Body research aircraft flew over the intersection of several runways adjacent to the compass rose on Rogers Dry Lake at Edwards Air Force Base during one of the sub-scale aircraft's final test flights on Feb. 28, 2013.
Mitigating runway incursions : a safety benefits assessment of airport surface moving map displays
DOT National Transportation Integrated Search
2010-01-01
Airport surface moving maps vary in the capabilities provided (e.g., the depiction of ownship position and/or traffic, the presentation of taxi route, and indicating or alerting the potential for runway incursions). The purpose of this effort was to ...
77 FR 14584 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... square yards). Modify supplemental wind cones. Runway 8/26 pavement rejuvenation. Purchase snow removal equipment--high-speed snow plow. Master plan/land use. Design passenger terminal remodel. Install runway... lighting and cable rehabilitation. Construct improvements of terminal building. Design reconstruction of...
NASA Technical Reports Server (NTRS)
Bergeron, H. P.; Haynie, A. T.; Mcdede, J. B.
1980-01-01
A general aviation single pilot instrument flight rule simulation capability was developed. Problems experienced by single pilots flying in IFR conditions were investigated. The simulation required a three dimensional spatial navaid environment of a flight navigational area. A computer simulation of all the navigational aids plus 12 selected airports located in the Washington/Norfolk area was developed. All programmed locations in the list were referenced to a Cartesian coordinate system with the origin located at a specified airport's reference point. All navigational aids with their associated frequencies, call letters, locations, and orientations plus runways and true headings are included in the data base. The simulation included a TV displayed out-the-window visual scene of country and suburban terrain and a scaled model runway complex. Any of the programmed runways, with all its associated navaids, can be referenced to a runway on the airport in this visual scene. This allows a simulation of a full mission scenario including breakout and landing.
Formal Verification of the Runway Safety Monitor
NASA Technical Reports Server (NTRS)
Siminiceanu, Radu; Ciardo, Gianfranco
2006-01-01
The Runway Safety Monitor (RSM) designed by Lockheed Martin is part of NASA's effort to reduce runway accidents. We developed a Petri net model of the RSM protocol and used the model checking functions of our tool SMART to investigate a number of safety properties in RSM. To mitigate the impact of state-space explosion, we built a highly discretized model of the system, obtained by partitioning the monitored runway zone into a grid of smaller volumes and by considering scenarios involving only two aircraft. The model also assumes that there are no communication failures, such as bad input from radar or lack of incoming data, thus it relies on a consistent view of reality by all participants. In spite of these simplifications, we were able to expose potential problems in the RSM conceptual design. Our findings were forwarded to the design engineers, who undertook corrective action. Additionally, the results stress the efficiency attained by the new model checking algorithms implemented in SMART, and demonstrate their applicability to real-world systems.
NASA Technical Reports Server (NTRS)
Yager, T. J.; Horne, W. B.
1980-01-01
Friction measurement results obtained on the gypsum surface runways at Northrup Strip, White Sands Missile Range, N. M., using an instrumented tire test vehicle and a diagonal braked vehicle, are presented. These runways were prepared to serve as backup landing and retrieval sites to the primary sites located at Dryden Flight Research Center for shuttle orbiter during initial test flights. Similar friction data obtained on paved and other unpaved surfaces was shown for comparison and to indicate that the friction capability measured on the dry gypsum surface runways is sufficient for operations with the shuttle orbiter and the Boeing 747 aircraft. Based on these ground vehicle friction measurements, estimates of shuttle orbiter and aircraft tire friction performance are presented and discussed. General observations concerning the gypsum surface characteristics are also included and several recommendations are made for improving and maintaining adequate surface friction capabilities prior to the first shuttle orbiter landing.
NASA Technical Reports Server (NTRS)
Kibbee, G. W.
1978-01-01
The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.
Estimating the Effects of the Terminal Area Productivity Program
NASA Technical Reports Server (NTRS)
Lee, David A.; Kostiuk, Peter F.; Hemm, Robert V., Jr.; Wingrove, Earl R., III; Shapiro, Gerald
1997-01-01
The report describes methods and results of an analysis of the technical and economic benefits of the systems to be developed in the NASA Terminal Area Productivity (TAP) program. A runway capacity model using parameters that reflect the potential impact of the TAP technologies is described. The runway capacity model feeds airport specific models which are also described. The capacity estimates are used with a queuing model to calculate aircraft delays, and TAP benefits are determined by calculating the savings due to reduced delays. The report includes benefit estimates for Boston Logan and Detroit Wayne County airports. An appendix includes a description and listing of the runway capacity model.
STS-53 Discovery, Orbiter Vehicle (OV) 103, lands on runway 22 at EAFB, Calif
1992-12-09
STS-53 Discovery, Orbiter Vehicle (OV) 103, is slowed by a red, white, and blue drag chute during its landing on concrete runway 22 at Edwards Air Force Base (EAFB), California. Main landing gear (MLG) touchdown occurred at 12:43:17 pm (Pacific Standard Time (PST)). This aft view of OV-103 shows the drag chute deployed from its compartment at the base of the vertical tail, the speedbrake/rudder flaps open, and the space shuttle main engines (SSMEs). Both MLG and nose landing gear (NLG) ride along the runway surface. Desert scrub brush appears in the foreground and mountains are seen in the background.
2007-04-16
KENNEDY SPACE CENTER, FLA. -- Pilot Rick Svetkoff taxis a Starfighter F-104 down the runway on the Shuttle Landing Facility at Kennedy Space Center. The aircraft will take part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
2007-04-17
KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 approaches the runway at the KSC Shuttle Landing Facility for a landing after its test flight. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
2007-04-17
KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 lands on the runway at the KSC Shuttle Landing Facility after its test flight. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
Black Box Testing: Experiments with Runway Incursion Advisory Alerting System
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
2005-01-01
This report summarizes our research findings on the Black box testing of Runway Incursion Advisory Alerting System (RIAAS) and Runway Safety Monitor (RSM) system. Developing automated testing software for such systems has been a problem because of the extensive information that has to be processed. Customized software solutions have been proposed. However, they are time consuming to develop. Here, we present a less expensive, and a more general test platform that is capable of performing complete black box testing. The technique is based on the classification of the anomalies that arise during Monte Carlo simulations. In addition, we also discuss a generalized testing tool (prototype) that we have developed.
Project CHECO Southeast Asia Report. Forward Airfields for Tactical Airlift in SEA
1970-06-15
publications, this is an authen- tic s-sment of the effectiveness of USAF airpower in PACOM. ef /o a , Major General, USAF I/ m i ii l UNCLASSIFIED...Australian Air Force (RAAF) crews were airborne 35,569 times in 1969, with cargo that ranged from troops to chickens, cement , rice, ammunition, cattle...Runway surfaces--clay, laterite , limestone, light steel matting (M8Al), or sod, depending on the aircraft involved-- were expected to sustain 700 traffic
14 CFR 91.605 - Transport category civil airplane weight limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff.... (b) No person may operate a turbine-engine-powered transport category airplane certificated after... airport, the runway to be used, the effective runway gradient, the ambient temperature and wind component...
Code of Federal Regulations, 2011 CFR
2011-01-01
... of the runway. At those airports having defined strips or pathways that are used regularly for the... defined landing and takeoff area with no defined pathways for the landing and taking off of aircraft, a... and takeoff pathways. Those pathways so determined shall be considered runways and an appropriate...
75 FR 53351 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... adjacent to a 100m x 2000m blue-ice runway. The blue-ice runway is a natural feature that requires limited..., Suite 2, Salt Lake City, Utah 84107. Permit application No. 2011 WM-002. Nadene G. Kennedy, Permit...
Course structure-runway 28R San Francisco Airport.
DOT National Transportation Integrated Search
1973-09-01
The TSC electromagnetic scattering model is used to dtermine the expected ILS localizer performance for the planned 28R runway at San Francisco airport. It is found that the V-Ring and the 14/6 Alford array as well as the larger 22/8 Alford array ope...
F-15 ACTIVE touches down on Edwards AFB runway
1998-04-14
The F-15 ACTIVE touches down on the Edwards runway following its April 14, 1998 flight. The nose is high while the canards have their rear edge raised. the aircraft's speed brake, located on the top of the aircraft behind the canopy, is also raised.
5. VIEW OF AIRFIELD LOOKING EAST FROM BUILDING 8200 (CONTROL ...
5. VIEW OF AIRFIELD LOOKING EAST FROM BUILDING 8200 (CONTROL TOWER) SHOWING TAXIWAY B CROSSING ALPHA TAXIWAY IN FOREGROUND, ALERNATE RUNWAY (TAXIWAY J) IN MIDDLE GROUND, AND NORTH-SOUTH RUNWAY IN BACKGROUND. - Loring Air Force Base, Airfield, Central portion of base, Limestone, Aroostook County, ME
2003-12-17
KENNEDY SPACE CENTER, FLA. -- A new control tower is nearing completion at the KSC Shuttle Landing Facility. It will replace the old tower in use since 1987. The old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.
2003-12-17
KENNEDY SPACE CENTER, FLA. -- The existing control tower seen here at the edge of the KSC Shuttle Landing Facility is being replaced. In use since 1987, the old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.
Airplane takeoff and landing performance monitoring system
NASA Technical Reports Server (NTRS)
Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H., Jr. (Inventor)
1994-01-01
The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (VR) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.
Airplane takeoff and landing performance monitoring system
NASA Technical Reports Server (NTRS)
Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)
1996-01-01
The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.
NASA Technical Reports Server (NTRS)
Otero, Sharon D.; Barker, Glover D.; Jones, Denise R.
2013-01-01
The Next Generation Air Transportation System (NextGen) concept for 2025 envisions the movement of large numbers of people and goods in a safe, efficient, and reliable manner. The NextGen will remove many of the constraints in the current air transportation system, support a wider range of operations, and deliver an overall system capacity up to 3 times that of current operating levels. In order to achieve the NextGen vision, research is necessary in the areas of surface traffic optimization, maximum runway capacity, reduced runway occupancy time, simultaneous single runway operations, and terminal area conflict prevention, among others. The National Aeronautics and Space Administration (NASA) is conducting Collision Avoidance for Airport Traffic (CAAT) research to develop technologies, data, and guidelines to enable Conflict Detection and Resolution (CD&R) in the Airport Terminal Maneuvering Area (ATMA) under current and emerging NextGen operating concepts. The term ATMA was created to reflect the fact that the CD&R concept area of operation is focused near the airport within the terminal maneuvering area. In the following, an initial concept for an aircraft-based method for CD&R in the ATMA is presented. This method is based upon previous NASA work in CD&R for runway incursion prevention, the Runway Incursion Prevention System (RIPS).
Performance Evaluation of the Approaches and Algorithms Using Hamburg Airport Operations
NASA Technical Reports Server (NTRS)
Zhu, Zhifan; Okuniek, Nikolai; Gerdes, Ingrid; Schier, Sebastian; Lee, Hanbong; Jung, Yoon
2016-01-01
The German Aerospace Center (DLR) and the National Aeronautics and Space Administration (NASA) have been independently developing and testing their own concepts and tools for airport surface traffic management. Although these concepts and tools have been tested individually for European and US airports, they have never been compared or analyzed side-by-side. This paper presents the collaborative research devoted to the evaluation and analysis of two different surface management concepts. Hamburg Airport was used as a common test bed airport for the study. First, two independent simulations using the same traffic scenario were conducted; one by the DLR team using the Controller Assistance for Departure Optimization (CADEO) and the Taxi Routing for Aircraft: Creation and Controlling (TRACC) in a real-time simulation environment, and one by the NASA team based on the Spot and Runway Departure Advisor (SARDA) in a fast-time simulation environment. A set of common performance metrics was defined. The simulation results showed that both approaches produced operational benefits in efficiency, such as reducing taxi times, while maintaining runway throughput. Both approaches generated the gate pushback schedule to meet the runway schedule, such that the runway utilization was maximized. The conflict-free taxi guidance by TRACC helped avoid taxi conflicts and reduced taxiing stops, but the taxi benefit needed be assessed together with runway throughput to analyze the overall performance objective.
Performance Evaluation of the Approaches and Algorithms for Hamburg Airport Operations
NASA Technical Reports Server (NTRS)
Zhu, Zhifan; Okuniek, Nikolai; Gerdes, Ingrid; Schier, Sebastian; Lee, Hanbong; Jung, Yoon
2016-01-01
The German Aerospace Center (DLR) and the National Aeronautics and Space Administration (NASA) have been independently developing and testing their own concepts and tools for airport surface traffic management. Although these concepts and tools have been tested individually for European and US airports, they have never been compared or analyzed side-by-side. This paper presents the collaborative research devoted to the evaluation and analysis of two different surface management concepts. Hamburg Airport was used as a common test bed airport for the study. First, two independent simulations using the same traffic scenario were conducted: one by the DLR team using the Controller Assistance for Departure Optimization (CADEO) and the Taxi Routing for Aircraft: Creation and Controlling (TRACC) in a real-time simulation environment, and one by the NASA team based on the Spot and Runway Departure Advisor (SARDA) in a fast-time simulation environment. A set of common performance metrics was defined. The simulation results showed that both approaches produced operational benefits in efficiency, such as reducing taxi times, while maintaining runway throughput. Both approaches generated the gate pushback schedule to meet the runway schedule, such that the runway utilization was maximized. The conflict-free taxi guidance by TRACC helped avoid taxi conflicts and reduced taxiing stops, but the taxi benefit needed be assessed together with runway throughput to analyze the overall performance objective.
Performance Evaluation of the Approaches and Algorithms using Hamburg Airport Operations
NASA Technical Reports Server (NTRS)
Zhu, Zhifan; Lee, Hanbong; Jung, Yoon; Okuniek, Nikolai; Gerdes, Ingrid; Schier, Sebastian
2016-01-01
The German Aerospace Center (DLR) and the National Aeronautics and Space Administration (NASA) have been independently developing and testing their own concepts and tools for airport surface traffic management. Although these concepts and tools have been tested individually for European and US airports, they have never been compared or analyzed side-by-side. This paper presents the collaborative research devoted to the evaluation and analysis of two different surface management concepts. Hamburg Airport was used as a common test bed airport for the study. First, two independent simulations using the same traffic scenario were conducted: one by the DLR team using the Controller Assistance for Departure Optimization (CADEO) and the Taxi Routing for Aircraft58; Creation and Controlling (TRACC) in a real-time simulation environment, and one by the NASA team based on the Spot and Runway Departure Advisor (SARDA) in a fast-time simulation environment. A set of common performance metrics was defined. The simulation results showed that both approaches produced operational benefits in efficiency, such as reducing taxi times, while maintaining runway throughput. Both approaches generated the gate pushback schedule to meet the runway schedule, such that the runway utilization was maximized. The conflict-free taxi guidance by TRACC helped avoid taxi conflicts and reduced taxiing stops, but the taxi benefit needed be assessed together with runway throughput to analyze the overall performance objective.
Comprehensive and Highly Accurate Measurements of Crane Runways, Profiles and Fastenings
Dennig, Dirk; Bureick, Johannes; Link, Johannes; Diener, Dmitri; Hesse, Christian; Neumann, Ingo
2017-01-01
The process of surveying crane runways has been continually refined due to the competitive situation, modern surveying instruments, additional sensors, accessories and evaluation procedures. Guidelines, such as the International Organization for Standardization (ISO) 12488-1, define target values that must be determined by survey. For a crane runway these are for example the span, the position and height of the rails. The process has to be objective and reproducible. However, common processes of surveying crane runways do not meet these requirements sufficiently. The evaluation of the protocols, ideally by an expert, requires many years of experience. Additionally, the recording of crucial parameters, e.g., the wear of the rail, or the condition of the rail fastening and rail joints, is not regulated and for that reason are often not considered during the measurement. To solve this deficit the Advanced Rail Track Inspection System (ARTIS) was developed. ARTIS is used to measure the 3D position of crane rails, the cross-section of the crane rails, joints and, for the first time, the (crane-rail) fastenings. The system consists of a monitoring vehicle and an external tracking sensor. It makes kinematic observations with the tracking sensor from outside the rail run, e.g., the floor of an overhead crane runway, possible. In this paper we present stages of the development process of ARTIS, new target values, calibration of sensors and results of a test measurement. PMID:28505076
Analyzing Double Delays at Newark Liberty International Airport
NASA Technical Reports Server (NTRS)
Evans, Antony D.; Lee, Paul
2016-01-01
When weather or congestion impacts the National Airspace System, multiple different Traffic Management Initiatives can be implemented, sometimes with unintended consequences. One particular inefficiency that is commonly identified is in the interaction between Ground Delay Programs (GDPs) and time based metering of internal departures, or TMA scheduling. Internal departures under TMA scheduling can take large GDP delays, followed by large TMA scheduling delays, because they cannot be easily fitted into the overhead stream. In this paper we examine the causes of these double delays through an analysis of arrival operations at Newark Liberty International Airport (EWR) from June to August 2010. Depending on how the double delay is defined between 0.3 percent and 0.8 percent of arrivals at EWR experienced double delays in this period. However, this represents between 21 percent and 62 percent of all internal departures in GDP and TMA scheduling. A deep dive into the data reveals that two causes of high internal departure scheduling delays are upstream flights making up time between their estimated departure clearance times (EDCTs) and entry into time based metering, which undermines the sequencing and spacing underlying the flight EDCTs, and high demand on TMA, when TMA airborne metering delays are high. Data mining methods (currently) including logistic regression, support vector machines and K-nearest neighbors are used to predict the occurrence of double delays and high internal departure scheduling delays with accuracies up to 0.68. So far, key indicators of double delay and high internal departure scheduling delay are TMA virtual runway queue size, and the degree to which estimated runway demand based on TMA estimated times of arrival has changed relative to the estimated runway demand based on EDCTs. However, more analysis is needed to confirm this.
14 CFR 77.25 - Civil airport imaginary surfaces.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) AIRSPACE OBJECTS AFFECTING NAVIGABLE AIRSPACE Obstruction Standards § 77.25 Civil airport... the center of each end of the primary surface of each runway of each airport and connecting the... for either end of the runway. When a 5,000-foot arc is encompassed by tangents connecting two adjacent...
Tomorrows' Air Transportation System Breakout Series Report
NASA Technical Reports Server (NTRS)
2001-01-01
The purpose of this presentation is to discuss tomorrow's air transportation system. Section of this presentation includes: chair comments; other general comments; surface congestion alleviation; runway productivity; enhanced arrival/departure tools; integrated airspace decision support tools; national traffic flow management, runway independent operations; ATM TFM weather; and terminal weather.
Terminal Information Processing System (TIPS) Consolidated CAB Display (CCD) Comparative Analysis.
1982-04-01
Barometric pressure 3. Center field wind speed, direction and gusts 4. Runway visual range 5. Low-level wind shear 6. Vortex advisory 7. Runway equipment...PASSWORD Command (standard user) u. PAUSE Command (standard user) v. PMSG Command (standard user) w. PPD Command (standard user) x. PURGE Command (standard
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
... collection. Background: Information to be collected will focus on pilot, controller, or vehicle driver practices and/or feedback on specific runway safety initiatives, such as training programs, Runway Safety... incursions. Respondents: An estimated 8,900 pilots, aircraft support vehicle drivers, airport/airfield...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
...) antenna and shelter with a Mark 20 or Mark 20A LOC antenna and shelter, and relocation of the Runway 25 LOC antenna array to a location 1,070 feet outward from the Runway 07 threshold, relocation of the...
Performance predictions for a parabolic localizer antenna on Runway 28R - San Francisco Airport.
DOT National Transportation Integrated Search
1973-06-01
The TSC ILS localizer model is used to predict the performance of the Texas Instruments "wide aperture" parabolic antenna as a localizer system for runway 28R at San Francisco Airport. Course derogation caused by the new American Airlines hangar is c...
78 FR 57208 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-17
... LEVEL: End of runway deicing program--phase 1, runway 34R. Taxiway S pavement reconstruction. Replace carousel 9 and oversized bag belt TU3. Terminal redevelopment program--design and associated technical... APPROVED FOR COLLECTION AND USE: PFC program administration. Design taxiways A, L and B. BRIEF DESCRIPTION...
76 FR 28123 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... for Collection and Use: Design/construct passenger terminal and land/airside. PFC application... Level: Runway 16L/34R pavement rehabilitation. Concourse B--additional boarding bridges. North cargo... 16R134L. Joint seal runway 16R/34L--taxiways A and B. [[Page 28124
DOT National Transportation Integrated Search
2015-08-01
White pavement paint marking on airport runways was being discolored by rust-like staining. Discoloration is a critical safety : problem because white paint indicates runways and yellow paint is used for taxiways and aircraft parking. When the white ...
6. VIEW OF AIRFIELD LOOKING SOUTHEAST FROM BUILDING 8200 (CONTROL ...
6. VIEW OF AIRFIELD LOOKING SOUTHEAST FROM BUILDING 8200 (CONTROL TOWER SHOWING ALPHA TAXIWAY AND ALTERNATE RUNWAY (TAXIWAY J) IN FOREGROUND, NORTH-SIDE RUNWAY IN MIDDLE GROUND, AND ALERT AREA WITH ITS TAXIWAY IN BACKGROUND. - Loring Air Force Base, Airfield, Central portion of base, Limestone, Aroostook County, ME
14 CFR 151.15 - Federal-aid Airport Program: Policy affecting runway or taxiway remarking.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Federal-aid Airport Program: Policy... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS General Requirements § 151.15 Federal-aid Airport Program: Policy affecting runway or taxiway remarking. No project for...
14 CFR 151.15 - Federal-aid Airport Program: Policy affecting runway or taxiway remarking.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Federal-aid Airport Program: Policy... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS General Requirements § 151.15 Federal-aid Airport Program: Policy affecting runway or taxiway remarking. No project for...
14 CFR 151.15 - Federal-aid Airport Program: Policy affecting runway or taxiway remarking.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Federal-aid Airport Program: Policy... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS General Requirements § 151.15 Federal-aid Airport Program: Policy affecting runway or taxiway remarking. No project for...
14 CFR 135.361 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... distance from the point at which the obstruction clearance plane associated with the approach end of the... subpart, obstruction clearance plane means a plane sloping upward from the runway at a slope of 1:20 to... coincides with the centerline of the runway, beginning at the point where the obstruction clearance plane...
Effect of different runway size on pilot performance during simulated night landing approaches.
DOT National Transportation Integrated Search
1981-02-01
In Experiment I, three pilots flew simulated approaches and landings in a fixed-base simulator with a computer-generated-image visual display. Practice approaches were flown with an 8,000-ft-long runway that was either 75, 150, or 300 ft wide; test a...
DOT National Transportation Integrated Search
1982-02-01
Previous experiments have demonstrated illusions due to variations in both length and width of runways in nighttime 'black hole' approaches. Even though approach lighting is not designed to provide vertical guidance, it is possible that cues from app...
How Surface Treatments Enhance Ground Handling
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
2002-01-01
Several runway surface treatments developed in recent years are described in terms of how aircraft tire landing and takeoff friction requirements are met, particularly during adverse weather conditions. Changing the surface texture with grooving, grinding and shot peening, use of chemicals to remove or prevent accumulation of natural or man-made contaminants, and the use of new techniques and materials are discussed as means of improving surface friction performance. Test data are presented to illustrate the effects of runway conditions on aircraft ground performance. The severity of the problem of operating on runway surfaces which cannot provide sufficient aircraft tire friction capability is also illustrated from documented aircraft accident/incident reports. The paper concludes with recommendations for future pavement research activities.
2013-03-08
CAPE CANAVERAL, Fla. – At Kennedy Space Center's Shuttle Landing Facility, a granite plaque marks the spot where space shuttle Atlantis' nose gear came to a stop at the conclusion of STS-135, the final flight of the Space Shuttle Program. Permanent reminders indicate where on the runway the orbiters Discovery, Endeavour and Atlantis stopped rolling as each finished its last mission in 2011. In addition to the granite markers, which are installed alongside the runway, there are etchings in the grooved concrete along the runway's centerline to mark each wheelstop. The etchings and markers were created and installed by local artist Chad Stout of C Spray Glass Blasting in Cocoa, Fla. Photo credit: NASA/Tim Jacobs
2013-03-08
CAPE CANAVERAL, Fla. – At Kennedy Space Center's Shuttle Landing Facility, a granite plaque marks the spot where space shuttle Discovery's nose gear came to a stop at the conclusion of STS-133, the final flight of the Space Shuttle Program. Permanent reminders indicate where on the runway the orbiters Discovery, Endeavour and Atlantis stopped rolling as each finished its last mission in 2011. In addition to the granite markers, which are installed alongside the runway, there are etchings in the grooved concrete along the runway's centerline to mark each wheelstop. The etchings and markers were created and installed by local artist Chad Stout of C Spray Glass Blasting in Cocoa, Fla. Photo credit: NASA/Tim Jacobs
2013-03-08
CAPE CANAVERAL, Fla. – At Kennedy Space Center's Shuttle Landing Facility, a granite plaque marks the spot where space shuttle Endeavour's nose gear came to a stop at the conclusion of STS-134, the final flight of the Space Shuttle Program. Permanent reminders indicate where on the runway the orbiters Discovery, Endeavour and Atlantis stopped rolling as each finished its last mission in 2011. In addition to the granite markers, which are installed alongside the runway, there are etchings in the grooved concrete along the runway's centerline to mark each wheelstop. The etchings and markers were created and installed by local artist Chad Stout of C Spray Glass Blasting in Cocoa, Fla. Photo credit: NASA/Tim Jacobs
2014-01-10
CAPE CANAVERAL, Fla. - The Performance Power Racing and Hennessey Performance teams pose with a Hennessey Venom GT at the 3.5-mile long runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The teams are, from left, Hennessey's John Heinricy, John Hennessey, Brian Smith, Performance Power Racing's Johnny Bohmer, Matt Lundy and Jeff McEachran. The flat concrete runway is one of the few places in the world where high performance automobiles can be tested for aerodynamic and safety designs. Hennessey Performance of Sealy, Texas, worked with Performance Power Racing in West Palm Beach to arrange use of the NASA facility. Performance Power Racing has conducted numerous engineering tests on the runway with a variety of vehicles.
3. Credit USAF, ca. 1945. Original housed in the Records ...
3. Credit USAF, ca. 1945. Original housed in the Records of the Defense Intelligence Agency. Record Group 373. National Archives. Cartographic and Architectural Branch. Washington, D.C. Aerial orthophoto map 16PS5M79-IV23 of Muroc Flight Test Base (North Base), north faces up with runway at the top and Rogers Dry Lake at the lower right. Ammunition huts (not extant in 1995) appear in a cluster just south of the west end of the runway. Note runway markings on lakebed. Linear feature at very top of image is rocket sled test track designed and built 1944-1945. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA
Enhancing pilot situational awareness of the airport surface movement area
NASA Technical Reports Server (NTRS)
Jones, D. R.; Young, S. D.
1994-01-01
Two studies are being conducted to address airport surface movement area safety and capacity issues by providing enhanced situational awareness information to pilots. One study focuses on obtaining pilot opinion of the Runway Status Light System (RSLS). This system has been designed to reduce the likelihood of runway incursions by informing pilots when a runway is occupied. The second study is a flight demonstration of an rate integrated system consisting of an electronic moving map in the cockpit and display of the aircraft identification to the controller. Taxi route and hold warning information will be sent to the aircraft data link for display on the electronic moving map. This paper describes the plans for the two studies.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, the Starfighter F-104 starts to taxi to the runway. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
2007-04-17
KENNEDY SPACE CENTER, FLA. -- From the KSC Shuttle Landing Facility, the Starfighter F-104 picks up speed on the runway for takeoff. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
Wake Vortex Transport in Proximity to the Ground
NASA Technical Reports Server (NTRS)
Hamilton, David W.; Proctor, Fred H.
2000-01-01
A sensitivity study for aircraft wake vortex transport has been conducted using a validated large eddy simulation (LES) model. The study assumes neutrally stratified and nonturbulent environments and includes the consequences of the ground. The numerical results show that the nondimensional lateral transport is primarily influenced by the magnitude of the ambient crosswind and is insensitive to aircraft type. In most of the simulations, the ground effect extends the lateral position of the downwind vortex about one initial vortex spacing (b(sub o)) in the downstream direction. Further extension by as much as one b(sub o) occurs when the downwind vortex remains 'in ground effect' (IGE) for relatively long periods of time. Results also show that a layer-averaged ambient wind velocity can be used to bound the time for lateral transport of wake vortices to insure safe operations on a parallel runway.
NASA Technical Reports Server (NTRS)
Glaab, Patricia; Tamburro, Ralph; Lee, Paul
2016-01-01
In 2015, a series of systems analysis studies were conducted on John F. Kennedy Airport in New York (NY) in a collaborative effort between NASA and the Port Authority of New York and New Jersey (PANYNJ). This work was performed to build a deeper understanding of NY airspace and operations to determine the improvements possible through operational changes with tools currently available, and where new technology is required for additional improvement. The analysis was conducted using tool-based mathematical analyses, video inspection and evaluation using recorded arrival/departure/surface traffic captured by the Aerobahn tool (used by Kennedy Airport for surface metering), and aural data archives available publically through the web to inform the video segments. A discussion of impacts of trajectory and operational choices on capacity is presented, including runway configuration and usage (parallel, converging, crossing, shared, independent, staggered), arrival and departure route characteristics (fix sharing, merges, splits), and how compression of traffic is staged. The authorization in March of 2015 for New York to use reduced spacing under the Federal Aviation Administration (FAA) Wake Turbulence Recategorization (RECAT) also offers significant capacity benefit for New York airports when fully transitioned to the new spacing requirements, and the impact of these changes for New York is discussed. Arrival and departure capacity results are presented for each of the current day Kennedy Airport configurations. While the tools allow many variations of user-selected conditions, the analysis for these studies used arrival-priority, no-winds, additional safety buffer of 5% to the required minimum spacing, and a mix of traffic typical for Kennedy. Two additional "novel" configurations were evaluated. These configurations are of interest to Port Authority and to their airline customers, and are believed to offer near-term capacity benefit with minimal operational and equipage changes. One of these is the addition of an Optimized Profile Descent (OPD) route to runways 22L and 22R, and the other is the simultaneous use of 4 runways, which is not currently done at Kennedy. The background and configuration for each of these is described, and the capacity results are presented along with a discussion of drawbacks and enablers for each.
Development of the Runway Incursion Advisory and Alerting System (RIAAS): Research Summary
NASA Technical Reports Server (NTRS)
Jones, Denise R. (Technical Monitor); Cassell, Rick
2005-01-01
This report summarizes research conducted on an aircraft based Runway Incursion Advisory and Alerting System (RIAAS) developed under a cooperative agreement between Rannoch Corporation and the NASA Langley Research Center. A summary of RIAAS is presented along with results from simulation and flight testing, safety benefits, and key technical issues.
DOT National Transportation Integrated Search
2001-01-14
The FAA's new generation Runway Visual Range (RVR) : system was first placed into service in 1994 at several : key airports in the United States. During the last three : years, the Volpe National Transportation Systems Center : has monitored RVR data...
Construction, maintenance, and operation of a glacial runway : McMurdo Station, Antarctica
DOT National Transportation Integrated Search
1998-03-01
On February 7, 1994, a C-141 departed Christchurch, New Zealand, and landed on the 3050-m (10,000-ft) Pegasus glacial ice runway, located on the Ross Ice Shelf 13 km (8 mi) south of McMurdo, Antarctica. This event marked the final test for a five-yea...
STS-49 Endeavour, OV-105, landing on concrete runway 22 at EAFB, California
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49 Endeavour, Orbiter Vehicle (OV) 105, glides above concrete runway 22 at Edwards Air Force Base (EAFB), California, just before main landing gear (MLG) touchdown. Nose landing gear (NLG) is also deployed during the landing sequence. Landing occurred at 1:36:38 pm (Pacific Daylight Time (PDT)).
STS-33 Discovery, OV-103, approaches concrete runway 04 at EAFB, California
NASA Technical Reports Server (NTRS)
1989-01-01
STS-33 Discovery, Orbiter Vehicle (OV) 103, approaches runway 04 at Edwards Air Force Base (EAFB), California. OV-103 with landing gear deployed is silhouetted against the orange sky of a sunset as it glides over the mountains. The landing occurred at 16:31:02 pm Pacific Standard Time (PST).
Aircraft and avionic related research required to develop an effective high-speed runway exit system
NASA Technical Reports Server (NTRS)
Schoen, M. L.; Hosford, J. E.; Graham, J. M., Jr.; Preston, O. W.; Frankel, R. S.; Erickson, J. B.
1979-01-01
Research was conducted to increase airport capacity by studying the feasibility of the longitudinal separation between aircraft sequences on final approach. The multidisciplinary factors which include the utility of high speed exits for efficient runway operations were described along with recommendations and highlights of these studies.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... DEIS for Proposed Runway Safety Area Improvements at the Kodiak Airport, Kodiak, AK AGENCY: Federal... advise the public that a Draft Environmental Impact Statement (DEIS) for proposed Runway Safety Area... the DEIS can be submitted to the individual listed in the section, FOR FURTHER INFORMATION CONTACT. A...
78 FR 76383 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
...: LGA runways 4 and 31 runway safety area planning, environmental, and engineering. Brief Description of... Collection at EWR and Use at JFK at a $3.00 PFC Level: JFK taxiway P rehabilitation planning and engineering... delay reduction phase II--planning and engineering. Brief Description of Project Approved for Collection...
Ground winds for Kennedy Space Center, Florida (1978 version)
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.
1978-01-01
Ground level runway wind statistics are presented for the Kennedy Space Center, Florida area. Crosswind, headwind, tailwind, and headwind reversal percentage frequencies are given with respect to month and hour for the Kennedy Space Center Space Shuttle runway. This document supersedes NASA CR-128995 and should be used in place of it.
Upgraded FAA Airfield Capacity Model. Volume 2. Technical Description of Revisions
1981-02-01
the threshold t k a the time at which departure k is released FIGURE 3-1 TIME AXIS DIAGRAM OF SINGLE RUNWAY OPERATIONS 3-2 J"- SIGMAR the standard...standard deviation of the interarrival time. SIGMAR - the standard deviation of the arrival runway occupancy time. A-5 SINGLE - program subroutine for
STS-111 commander, Ken Cockrell, greets dignitaries and recovery technicians on the runway at Edward
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 commander Ken Cockrell greets dignitaries and recovery technicians on the runway at Edwards Air Force Base following the landing of the space shuttle Endeavour on June 19, 2002. Behind Cockrell are (from left) mission specialists Philippe Perrin and Franklin Chang-Diaz and Shuttle pilot Paul Lockhart.
Fast-Time Evaluations of Airborne Merging and Spacing in Terminal Arrival Operations
NASA Technical Reports Server (NTRS)
Krishnamurthy, Karthik; Barmore, Bryan; Bussink, Frank; Weitz, Lesley; Dahlene, Laura
2005-01-01
NASA researchers are developing new airborne technologies and procedures to increase runway throughput at capacity-constrained airports by improving the precision of inter-arrival spacing at the runway threshold. In this new operational concept, pilots of equipped aircraft are cleared to adjust aircraft speed to achieve a designated spacing interval at the runway threshold, relative to a designated lead aircraft. A new airborne toolset, prototypes of which are being developed at the NASA Langley Research Center, assists pilots in achieving this objective. The current prototype allows precision spacing operations to commence even when the aircraft and its lead are not yet in-trail, but are on merging arrival routes to the runway. A series of fast-time evaluations of the new toolset were conducted at the Langley Research Center during the summer of 2004. The study assessed toolset performance in a mixed fleet of aircraft on three merging arrival streams under a range of operating conditions. The results of the study indicate that the prototype possesses a high degree of robustness to moderate variations in operating conditions.
Texture Modification of the Shuttle Landing Facility Runway at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Yager, Thomas J.
1997-01-01
This paper describes the test procedures and the criteria used in selecting an effective runway-surface-texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-knot crosswinds, if desired. This 5-knot increase over the previous 15-knot limit drastically increases landing safety and the ability to make on-time launches to support missions in which Space Station rendezvous are planned. The paper presents the results of an initial (1988) texture modification to reduce tire spin-up wear and then describes a series of tests that use an instrumented ground-test vehicle to compare tire friction and wear characteristics, at small scale, of proposed texture modifications placed into the SLF runway surface itself. Based on these tests, three candidate surfaces were chosen to be tested at full-scale by using a highly modified and instrumented transport aircraft capable of duplicating full Orbiter landing profiles. The full-scale Orbiter tire testing revealed that tire wear could be reduced approximately by half with either of two candidates. The texture-modification technique using a Humble Equipment Company Skidabrader(trademark) shotpeening machine proved to be highly effective, and the entire SLF runway surface was modified in September 1994. The extensive testing and evaluation effort that preceded the selection of this particular surface-texture-modification technique is described herein.
Sagara, Hidenori; Kitamura, Yoshihisa; Sendo, Toshiaki; Araki, Hiroaki; Gomita, Yutaka
2008-04-01
Priming stimulation is known to promote the motivational effects of intracranial self-stimulation (ICSS) behavior. The runway method using priming stimulation can experimentally distinguish the reward and motivational effects of ICSS behavior. In this study, we examined the motivational effect of a drug as determined by the runway method using priming stimulation of ICSS behavior. Electrodes were implanted chronically into the medial forebrain bundle (MFB) of the rats. A lever for stimulation of the MFB was set on the opposite side of the start box in the apparatus. The rats were trained to obtain a reward stimulation (50-200 muA, 0.2 ms, 60 Hz) of the MFB by pressing the goal lever, and then priming stimulation of the MFB was applied. After priming stimulation, rats were placed in the start box of the runway apparatus and the time taken by the rat to press the lever was recorded. Priming stimulation frequency was significantly correlated with running speed (r=0.897, p<0.05). Methamphetamine (1, 3 mg/kg) induced an increase in running speed (F(3, 20)=16.257, p<0.01), and was further increased with increase in priming stimulation frequency. In addition, methamphetamine significantly enhanced the motivational effect. These results suggest that the runway method using priming stimulation of ICSS behavior may be an effective way to evaluate the enhancing effect of a drug on motivation.
Comparison of Different Control Schemes for Strategic Departure Metering
NASA Technical Reports Server (NTRS)
Idris, Husni; Shen, Ni; Saraf, Aditya; Bertino, Jason; Zelinski, Shannon
2016-01-01
Airports and their terminal airspaces are key choke points in the air transportation system causing major delays and adding to pollution. A solution aimed at mitigating these chokepoints integrates the scheduling of runway operations, flight release from the gates and ramp into the airport movement area, and merging with other traffic competing for downstream airspace points. Within this integrated concept, we present a simulation-based analysis of the departure metering process, which delays the release of flights into the airport movement area while balancing two competing objectives: (1) maintaining large enough queues at the airport resources to maximize throughput and (2) absorbing excess delays at the gates or in ramp areas to save on fuel consumption, emissions, noise, and passenger discomfort. Three metering strategies are compared which respectively attempt to control the number of flights that (1) left the gate but did not take off, (2) left the ramp but did not take off, and (3) spent their unimpeded transit time to the runway but did not take off. It was observed that under deterministic and demand uncertainty conditions, the first strategy performed better than the other two strategies in terms of maintaining the runway throughput while transferring a significant average delay of two minutes to the gate. On the other hand, under uncertainties of flight transit time and runway service rate, all the strategies struggled to delay flights at the gate without a significant impact on the runway throughput.
NASA Technical Reports Server (NTRS)
Robinson, John E.
2014-01-01
The Federal Aviation Administration's Next Generation Air Transportation System will combine advanced air traffic management technologies, performance-based procedures, and state-of-the-art avionics to maintain efficient operations throughout the entire arrival phase of flight. Flight deck Interval Management (FIM) operations are expected to use sophisticated airborne spacing capabilities to meet precise in-trail spacing from top-of-descent to touchdown. Recent human-in-the-loop simulations by the National Aeronautics and Space Administration have found that selection of the assigned spacing goal using the runway schedule can lead to premature interruptions of the FIM operation during periods of high traffic demand. This study compares three methods for calculating the assigned spacing goal for a FIM operation that is also subject to time-based metering constraints. The particular paradigms investigated include: one based upon the desired runway spacing interval, one based upon the desired meter fix spacing interval, and a composite method that combines both intervals. These three paradigms are evaluated for the primary arrival procedures to Phoenix Sky Harbor International Airport using the entire set of Rapid Update Cycle wind forecasts from 2011. For typical meter fix and runway spacing intervals, the runway- and meter fix-based paradigms exhibit moderate FIM interruption rates due to their inability to consider multiple metering constraints. The addition of larger separation buffers decreases the FIM interruption rate but also significantly reduces the achievable runway throughput. The composite paradigm causes no FIM interruptions, and maintains higher runway throughput more often than the other paradigms. A key implication of the results with respect to time-based metering is that FIM operations using a single assigned spacing goal will not allow reduction of the arrival schedule's excess spacing buffer. Alternative solutions for conducting the FIM operation in a manner more compatible with the arrival schedule are discussed in detail.
Guidance and Control Design for High-Speed Rollout and Turnoff (ROTO)
NASA Technical Reports Server (NTRS)
Goldthorpe, S. H.; Dangaran, R. D.; Dwyer, J. P.; McBee, L. S.; Norman, R. M.; Shannon, J. H.; Summers, L. G.
1996-01-01
A ROTO architecture, braking and steering control law and display designs for a research high speed Rollout and Turnoff (ROTO) system applicable to transport class aircraft are described herein. Minimum surface friction and FMS database requirements are also documented. The control law designs were developed with the aid of a non-real time simulation program incorporating airframe and gear dynamics as well as steering and braking guidance algorithms. An attainable objective of this ROTO system, as seen from the results of this study, is to assure that the studied aircraft can land with runway occupancy times less then 53 seconds. Runway occupancy time is measured from the time the aircraft crosses the runway threshold until its wing tip clears the near side of the runway. Turnoff ground speeds of 70 knots onto 30 degree exits are allowed with dry and wet surface conditions. Simulation time history and statistical data are documented herein. Parameters which were treated as variables in the simulation study include aircraft touchdown weight/speed/location, aircraft CG, runway friction, sensor noise and winds. After further design and development of the ROTO control system beyond the system developed earlier, aft CG MD-11 aircraft no longer require auto-asymmetric braking (steering) and fly-by-wire nose gear steering. However, the auto ROTO nose gear hysteresis must be less than 2 degrees. The 2 sigma dispersion certified for MD-11 CATIIIB is acceptable. Using this longitudinal dispersion, three ROTO exits are recommended at 3300, 4950 and 6750 feet past the runway threshold. The 3300 foot exit is required for MD-81 class aircraft. Designs documented in this report are valid for the assumptions/models used in this simulation. It is believed that the results will apply to the general class of transport aircraft; however further effort is required to validate this assumption for the general case.
NextGen Operations in a Simulated NY Area Airspace
NASA Technical Reports Server (NTRS)
Smith, Nancy M.; Parke, Bonny; Lee, Paul; Homola, Jeff; Brasil, Connie; Buckley, Nathan; Cabrall, Chris; Chevalley, Eric; Lin, Cindy; Morey, Susan;
2013-01-01
A human-in-the-loop simulation conducted in the Airspace Operations Laboratory (AOL) at NASA Ames Research Center explored the feasibility of a Next Generation Air Transportation System (NextGen) solution to address airspace and airport capacity limitations in and around the New York metropolitan area. A week-long study explored the feasibility of a new Optimal Profile Descent (OPD) arrival into the airspace as well as a novel application of a Terminal Area Precision Scheduling and Spacing (TAPSS) enhancement to the Traffic Management Advisor (TMA) arrival scheduling tool to coordinate high volume arrival traffic to intersecting runways. In the simulation, four en route sector controllers and four terminal radar approach control (TRACON) controllers managed traffic inbound to Newark International Airport's primary runway, 22L, and its intersecting overflow runway, 11. TAPSS was used to generate independent arrival schedules for each runway and a traffic management coordinator participant adjusted the arrival schedule for each runway 11 aircraft to follow one of the 22L aircraft. TAPSS also provided controller-managed spacing tools (slot markers with speed advisories and timelines) to assist the TRACON controllers in managing the arrivals that were descending on OPDs. Results showed that the tools significantly decreased the occurrence of runway violations (potential go-arounds) when compared with a Baseline condition with no tools. Further, the combined use of the tools with the new OPD produced a peak arrival rate of over 65 aircraft per hour using instrument flight rules (IFR), exceeding the current maximum arrival rate at Newark Liberty International Airport (EWR) of 52 per hour under visual flight rules (VFR). Although the participants rated the workload as relatively low and acceptable both with and without the tools, they rated the tools as reducing their workload further. Safety and coordination were rated by most participants as acceptable in both conditions, although the TRACON Runway Coordinator (TRC) rated neither as acceptable in the Baseline condition. Regarding the role of the TRC, the two TRACON controllers handling the 11 arrivals indicated that the TRC was very much needed in the Baseline condition without tools, but not needed in the condition with tools. This indicates that the tools were providing much of the sequencing and spacing information that the TRC had supplied in the Baseline condition.
2003-12-17
KENNEDY SPACE CENTER, FLA. -- Two control towers are seen at the edge of the KSC Shuttle Landing Facility, the old one in front and the nearly completed new tower in back. The old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Smith, Nancy M.; Bienert, Nancy; Brasil, Connie; Buckley, Nathan; Chevalley, Eric; Homola, Jeffrey; Omar, Faisal; Parke, Bonny; Yoo, Hyo-Sang
2016-01-01
LaGuardia (LGA) departure delay was identified by the stakeholders and subject matter experts as a significant bottleneck in the New York metropolitan area. Departure delay at LGA is primarily due to dependency between LGA's arrival and departure runways: LGA departures cannot begin takeoff until arrivals have cleared the runway intersection. If one-in one-out operations are not maintained and a significant arrival-to-departure imbalance occurs, the departure backup can persist through the rest of the day. At NASA Ames Research Center, a solution called "Departure-sensitive Arrival Spacing" (DSAS) was developed to maximize the departure throughput without creating significant delays in the arrival traffic. The concept leverages a Terminal Sequencing and Spacing (TSS) operations that create and manage the arrival schedule to the runway threshold and added an interface enhancement to the traffic manager's timeline to provide the ability to manually adjust inter-arrival spacing to build precise gaps for multiple departures between arrivals. A more complete solution would include a TSS algorithm enhancement that could automatically build these multi-departure gaps. With this set of capabilities, inter-arrival spacing could be controlled for optimal departure throughput. The concept was prototyped in a human-in-the- loop (HITL) simulation environment so that operational requirements such as coordination procedures, timing and magnitude of TSS schedule adjustments, and display features for Tower, TRACON and Traffic Management Unit could be determined. A HITL simulation was conducted in August 2014 to evaluate the concept in terms of feasibility, controller workload impact, and potential benefits. Three conditions were tested, namely a Baseline condition without scheduling, TSS condition that schedules the arrivals to the runway threshold, and TSS+DSAS condition that adjusts the arrival schedule to maximize the departure throughput. The results showed that during high arrival demand period, departure throughput could be incrementally increased under TSS and TSS+DSAS conditions without compromising the arrival throughput. The concept, operational procedures, and summary results were originally published in ATM20151 but detailed results were omitted. This paper expands on the earlier paper to provide the detailed results on throughput, conformance, safety, flight time/distance, etc. that provide extra insights into the feasibility and the potential benefits on the concept.
Effects of Scenery, Lighting, Glideslope, and Experience on Timing the Landing Flare
ERIC Educational Resources Information Center
Palmisano, Stephen; Favelle, Simone; Sachtler, W. L.
2008-01-01
This study examined three visual strategies for timing the initiation of the landing flare based on perceptions of either: (a) a critical height above ground level; (b) a critical runway width angle ([psi]); or (c) a critical time-to-contact (TTC) with the runway. Visual displays simulated landing approaches with trial-to-trial variations in…
DOT National Transportation Integrated Search
2001-10-23
This report explains the accident involving American Airlines flight 1420, a McDonnell : Douglas MD-82, which crashed after it overran the end of runway 4R during landing at Little Rock : National Airport in Little Rock, Arkansas. Safety issues discu...
Upgraded FAA Airfield Capacity Model. Volume 1. Supplemental User’s Guide
1981-02-01
SIGMAR (P4.0) cc 1-4 -standard deviation, in seconds, of arrival runway occupancy time (R.O.T.). SIGMAA (F4.0) cc 5-8 -standard deviation, in seconds...iI SI GMAC - The standard deviation of the time from departure clearance to start of roll. SIGMAR - The standard deviation of the arrival runway
NASA Technical Reports Server (NTRS)
Horne, W. B.; Yager, T. J.; Sleeper, R. K.; Merritt, L. R.
1977-01-01
The stopping distance, brake application velocity, and time of brake application were measured for two modern jet transports, along with the NASA diagonal-braked vehicle and the British Mu-Meter on several runways, which when wetted, cover the range of slipperiness likely to be encountered in the United States. Tests were designed to determine if correlation between the aircraft and friction measuring vehicles exists. The test procedure, data reduction techniques, and preliminary test results obtained with the Boeing 727, the Douglas DC-9, and the ground vehicles are given. Time histories of the aircraft test run parameters are included.
Design Sensitivity for a Subsonic Aircraft Predicted by Neural Network and Regression Models
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Patnaik, Surya N.
2005-01-01
A preliminary methodology was obtained for the design optimization of a subsonic aircraft by coupling NASA Langley Research Center s Flight Optimization System (FLOPS) with NASA Glenn Research Center s design optimization testbed (COMETBOARDS with regression and neural network analysis approximators). The aircraft modeled can carry 200 passengers at a cruise speed of Mach 0.85 over a range of 2500 n mi and can operate on standard 6000-ft takeoff and landing runways. The design simulation was extended to evaluate the optimal airframe and engine parameters for the subsonic aircraft to operate on nonstandard runways. Regression and neural network approximators were used to examine aircraft operation on runways ranging in length from 4500 to 7500 ft.
Analysis of a range estimator which uses MLS angle measurements
NASA Technical Reports Server (NTRS)
Downing, David R.; Linse, Dennis
1987-01-01
A concept that uses the azimuth signal from a microwave landing system (MLS) combined with onboard airspeed and heading data to estimate the horizontal range to the runway threshold is investigated. The absolute range error is evaluated for trajectories typical of General Aviation (GA) and commercial airline operations (CAO). These include constant intercept angles for GA and CAO, and complex curved trajectories for CAO. It is found that range errors of 4000 to 6000 feet at the entry of MLS coverage which then reduce to 1000-foot errors at runway centerline intercept are possible for GA operations. For CAO, errors at entry into MLS coverage of 2000 feet which reduce to 300 feet at runway centerline interception are possible.
NASA Technical Reports Server (NTRS)
Patterson, H. P.; Edmiston, R. P.; Connor, W. K.
1972-01-01
A dynamic preferential runway system (DPRS) was developed for John F. Kennedy International Airport for the purpose of controlling short term noise exposure in the neighboring communities. The DPRS is a computer-aided procedure for optimum selection of runways from the standpoint of noise and is based upon a community disturbance model which takes into account flyover levels, size of exposed populations, time of day and week, and persistence of overflights. A preliminary evaluation of the DPRS is presented on the basis of social survey data and telephone complaint records, for the trial period of August and September, 1971. Comparative use is made of data taken in a previous survey of the same community areas in 1969.
Soil runway friction evaluation in support of USAF C-17 transport aircraft operations
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1995-01-01
A series of NASA Diagonal-Braked Vehicle (DBV) test runs were performed on the soil runway 7/25 at Holland landing zone, Fort Bragg, North Carolina, near Pope Air Force Base in March 1995 at the request of the Air Force C-17 System Program Office. These ground vehicle test results indicated that the dry runway friction level was suitable for planned C-17 transport aircraft landing and take-off operations at various gross weights. These aircraft operations were successfully carried out. On-board aircraft deceleration measurements were comparable to NASA DBV measurements. Additional tests conducted with an Army High Mobility Multi-Purpose Wheeled Vehicle equipped with a portable decelerometer, showed good agreement with NASA DBV data.
NASA Technical Reports Server (NTRS)
Lehmann, F.; Richter, R.; Rothfuss, H.; Werner, K.; Hausknecht, P.; Mueller, A.; Strobl, P.
1992-01-01
During the MAC Europe 91 Campaign, the area of Oberpfaffenhofen including the land application testsite Oberpfaffenhofen was flown by the AVIRIS imaging spectrometer, the GER 2 imaging spectrometer (63 band scanner), and two SAR systems (NASA/JPL AIRSAR and DLR E-SAR). In parallel to the overflights ground spectrometry (ASD, IRIS M IV) and atmospheric measurements were carried out in order to provide data for optical sensor calibration. Ground spectrometry measurements were carried out in the runway area of the DLR research center Oberpfaffenhofen. This area was used as well during the GER 2 European flight campaign EISAC 89 as a calibration target. The land application testsite Oberpfaffenhofen is located 3 km north of the DLR research center. During the MAC Europe 91 Campaign a ground survey was carried out for documentation in the ground information data base (vegetation type, vegetation geometry, soil type, and soil mixture). Crop stands analyzed were corn, barley and rape. The DLR runway area and the land application testsite Oberpfaffenhofen were flown with the AVIRIS on 29 July and with the GER 2 on 12 and 23 July and 3 Sep. AVIRIS and GER 2 scenes were processed and atmospherically corrected for optical data analysis of optical and radar data. For the AVIRIS and the GER 2 scenes, signal-to-noise ratios (SNR) estimates were calculated. An example of the reflectance of 6 calibration targets inside a GER 2 scene of Oberpfaffenhofen is given. SNR values for the GER 2 for a medium albedo target are given. The integrated analysis for the optical and radar data was carried out in cooperation with the DLR Institute for Microwave Technologies.
Community noise technology needs: Boeing's perspective
NASA Technical Reports Server (NTRS)
Nihart, Gene L.
1992-01-01
Airport community acceptance of High Speed Civil Transport (HSCT) noise levels will depend on the relative noise levels of airplanes flying at the time of introduction. The 85 dBA noise contours for the range of large subsonic airplanes that are expected to be in service in the early 21st century are shown as a shaded area. A certifiable HSCT noise contour as shown, would be somewhat wider along the runway, but about the same in the residential areas downrange. An HSCT noise rule should insure this noise capability.
Generalized Philosophy of Alerting with Applications for Parallel Approach Collision Prevention
NASA Technical Reports Server (NTRS)
Winder, Lee F.; Kuchar, James K.
2000-01-01
The goal of the research was to develop formal guidelines for the design of hazard avoidance systems. An alerting system is automation designed to reduce the likelihood of undesirable outcomes that are due to rare failures in a human-controlled system. It accomplishes this by monitoring the system, and issuing warning messages to the human operators when thought necessary to head off a problem. On examination of existing and recently proposed logics for alerting it appears that few commonly accepted principles guide the design process. Different logics intended to address the same hazards may take disparate forms and emphasize different aspects of performance, because each reflects the intuitive priorities of a different designer. Because performance must be satisfactory to all users of an alerting system (implying a universal meaning of acceptable performance) and not just one designer, a proposed logic often undergoes significant piecemeal modification before gamma general acceptance. This report is an initial attempt to clarify the common performance goals by which an alerting system is ultimately judged. A better understanding of these goals will hopefully allow designers to reach the final logic in a quicker, more direct and repeatable manner. As a case study, this report compares three alerting logics for collision prevention during independent approaches to parallel runways, and outlines a fourth alternative incorporating elements of the first three, but satisfying stated requirements. Three existing logics for parallel approach alerting are described. Each follows from different intuitive principles. The logics are presented as examples of three "philosophies" of alerting system design.
Performance Evaluation of Individual Aircraft Based Advisory Concept for Surface Management
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Malik, Waqar; Tobias, Leonard; Jung, Yoon; Hong, Ty; Hayashi, Miwa
2013-01-01
Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASA's Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas/Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45% in medium scenarios and 60% in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23% in medium traffic and 33% in heavy. TMI compliance appeared unaffected by the advisory
NASA Technical Reports Server (NTRS)
Jung, Yoon; Malik, Waqar; Tobias, Leonard; Gupta, Gautam; Hoang, Ty; Hayashi, Miwa
2015-01-01
Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASAs Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas-Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45 in medium scenarios and 60 in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23 in medium traffic and 33 in heavy. TMI compliance appeared unaffected by the advisory.
2007-06-22
Following its landing on June 22, 2007, the Space Shuttle Atlantis is towed from the runway at Edwards Air Force Base to NASA Dryden's Mate-Demate Device (MDD) for post-flight processing in preparation for its return to the Kennedy Space Center in Florida.
DOT National Transportation Integrated Search
1996-12-01
This report explains the runway departure during attempted takeoff of Tower Air flight 41, N605FF, a Boeing 747-136 at John F. Kennedy International Airport, New York, on December 20, 1995. The safety issues discussed in this report include the adequ...
Perseus B Heads for Landing on Edwards AFB Runway
1998-04-30
The Perseus B remotely piloted aircraft approaches the runway at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden flight Research Center in April 1998. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.
NASA Technical Reports Server (NTRS)
Malik, Waqar
2016-01-01
Provide an overview of algorithms used in SARDA (Spot and Runway Departure Advisor) HITL (Human-in-the-Loop) simulation for Dallas Fort-Worth International Airport and Charlotte Douglas International airport. Outline a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the single runway scheduling (SRS) problem, and discuss heuristics to restrict the search space for the DP based algorithm and provide improvements.
Guide To Mobile Aircraft Arresting System Installation - Air Force Handbook 10-222, Volume 8
2000-03-01
38. Anchor Connection at Right Rear Wheel .................................................66 39. Store Tire Away from Runway – Right MAAS Trailer...MAAS Trailer .......68 42. Right Rear Wheel Anchor Point – Right MAAS Trailer.......................68 43. Right Rear Wheel Anchor Point Using...Rear Wheel .......................................73 47. Store Tire Away from Runway – Both MAAS Trailers ........................74 48. Left Rear
Integrated Analysis of Airport Capacity and Environmental Constraints
NASA Technical Reports Server (NTRS)
Hasan, Shahab; Long, Dou; Hart, George; Eckhause, Jeremy; Hemm, Robert; Busick, Andrew; Graham, Michael; Thompson, Terry; Murphy, Charles; Poage, James
2010-01-01
LMI conducted an integrated analysis of airport capacity and environmental constraints. identifying and ranking the key factors limiting achievement of NextGen capacity goals. The primary metric used was projected throughput, which was estimated for the years 2015 and 2025 based on the unconstrained demand forecast from the Federal Aviation Administration, and planned improvements including those proposed in the NextGen plan. A set of 310 critical airports was identified.. collectively accounting for more than 99 percent of domestic air traffic volume; a one-off analytical approach was used to isolate the constraint being assessed. The study considered three capacity constraints (runway.. taxiway, and gate) and three environmental constraints (fuel, NO(x) emissions, and noise). For the ten busiest airports, runway and noise are the primary and secondary constraints in both 2015 and 2025. For the OEP 35 airports and overall for the remaining airports, the most binding constraint is noise. Six of the 10 busiest airports, will face runway constraints in 2025, and 95 will face gate constraints. Nearly every airport will be subject to constraints due to emissions and NOx. Runway and taxi constraints are more concentrated in the large airports: environmental constraints are present at almost every airport regardless of size.
Models for estimating runway landing capacity with Microwave Landing System (MLS)
NASA Technical Reports Server (NTRS)
Tosic, V.; Horonjeff, R.
1975-01-01
A model is developed which is capable of computing the ultimate landing runway capacity, under ILS and MLS conditions, when aircraft population characteristics and air traffic control separation rules are given. This model can be applied in situations when only a horizontal separation between aircraft approaching a runway is allowed, as well as when both vertical and horizontal separations are possible. It is assumed that the system is free of errors, that is that aircraft arrive at specified points along the prescribed flight path precisely when the controllers intend for them to arrive at these points. Although in the real world there is no such thing as an error-free system, the assumption is adequate for a qualitative comparison of MLS with ILS. Results suggest that an increase in runway landing capacity, caused by introducing the MLS multiple approach paths, is to be expected only when an aircraft population consists of aircraft with significantly differing approach speeds and particularly in situations when vertical separation can be applied. Vertical separation can only be applied if one of the types of aircraft in the mix has a very steep descent angle.
Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques
NASA Technical Reports Server (NTRS)
Lee, Hanbong
2016-01-01
Accurate taxi time prediction is required for enabling efficient runway scheduling that can increase runway throughput and reduce taxi times and fuel consumptions on the airport surface. Currently NASA and American Airlines are jointly developing a decision-support tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp controllers to make gate pushback decisions and improve the overall efficiency of airport surface traffic. In this presentation, we propose to use Linear Optimized Sequencing (LINOS), a discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the runway scheduler in real-time airport operations. To assess its prediction accuracy, we also introduce a data-driven analytical method using machine learning techniques. These two taxi time prediction methods are evaluated with actual taxi time data obtained from the SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport (CLT) using various performance measurement metrics. Based on the taxi time prediction results, we also discuss how the prediction accuracy can be affected by the operational complexity at this airport and how we can improve the fast time simulation model before implementing it with an airport scheduling algorithm in a real-time environment.
The effect of windshear during takeoff roll on aircraft stopping distance
NASA Technical Reports Server (NTRS)
Zweifel, Terry
1990-01-01
A simulation of a Boeing 727 aircraft during acceleration on the runway is used to determine the effect of windshear on stopping distance. Windshears of various magnitudes, durations, and onset times are simulated to assess the aircraft performance during an aborted takeoff on five different runway surfaces. A windshear detection system, active during the takeoff roll and similar to the Honeywell Windshear Detection System is simulated to provide a discrete system to activate aircraft braking upon shear detection. The results of the simulation indicate that several factors effect the distance required to stop the aircraft. Notable among these are gross weight, takeoff flap position, runway characteristics, and pilot reaction time. Of the windshear parameters of duration, onset and magnitude, magnitude appears to have the most significant effect.
Dream Chaser Rolls Through Tow Tests at NASA Armstrong
2017-05-20
In this 2-minute, 41-second video, Sierra Nevada Corporation (SNC) puts its Dream Chaser engineering test vehicle through a series of ground tests at NASA's Armstrong Flight Research Center at Edwards Air Force Base, CA, to prepare for upcoming captive-carry and free-flight tests later this year. During this 60-mph tow test, a pickup truck pulled the Dream Chaser test vehicle on Edward’s runway to validate the performance of the spacecraft's nose skid, brakes, tires, and other systems. The company has performed the tests at 10 mph, 20 mph, and 40 mph over the last few months to lead up to the 60-mph runway test. Range and taxi tow tests are standard for winged vehicles that touchdown on a runway to prove the overall spacecraft handling post-landing.
Terminal area automatic navigation, guidance, and control 1: Automatic rollout, turnoff, and taxis
NASA Technical Reports Server (NTRS)
Pines, S.
1981-01-01
A study developed for the TCV B-737, designed to apply existing navigation aids plus magnetic leader cable signals and develop breaking and reverse thrust guidance laws to provide for rapid automated rollout, turnoff, and taxi to reduce runway occupation time for a wide variety of landing conditions for conventional commercial-type aircraft, is described. Closed loop guidance laws for braking and reverse thrust are derived for rollout, turnoff, and taxi, as functions of the landing speed, the desired taxi speed and the distance to go. Brake limitations for wet runway conditions and reverse thrust limitations are taken into account to provide decision rules to avoid tire skid and to choose an alternate turnoff point, farther down the runway, to accommodate extreme landing conditions.
Initial Data Analysis Results for ATD-2 ISAS HITL Simulation
NASA Technical Reports Server (NTRS)
Lee, Hanbong
2017-01-01
To evaluate the operational procedures and information requirements for the core functional capabilities of the ATD-2 project, such as tactical surface metering tool, APREQ-CFR procedure, and data element exchanges between ramp and tower, human-in-the-loop (HITL) simulations were performed in March, 2017. This presentation shows the initial data analysis results from the HITL simulations. With respect to the different runway configurations and metering values in tactical surface scheduler, various airport performance metrics were analyzed and compared. These metrics include gate holding time, taxi-out in time, runway throughput, queue size and wait time in queue, and TMI flight compliance. In addition to the metering value, other factors affecting the airport performance in the HITL simulation, including run duration, runway changes, and TMI constraints, are also discussed.
NASA Technical Reports Server (NTRS)
Stubbs, S. M.; Tanner, J. A.; Smith, E. G.
1979-01-01
The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.
An overview of the joint FAA/NASA aircraft/ground runway friction program
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1989-01-01
There is a need for information on runways which may become slippery due to various forms and types of contaminants. Experience has shown that since the beginning of all weather aircraft operations, there have been landing and aborted takeoff incidents and/or accidents each year where aircraft have either run off the end or veered off the shoulder of low friction runways. NASA Langley's Landing and Impact Dynamics Branch is involved in several research programs directed towards obtaining a better understanding of how different tire properties interact with varying pavement surface characteristics to produce acceptable performance for aircraft ground handling requirements. One such effort, which was jointly supported by not only NASA and the FAA but by several aviation industry groups including the Flight Safety Foundation, is described.
NASA Technical Reports Server (NTRS)
Wang, P.; Li, P.
1998-01-01
A high-resolution numerical study on parallel systems is reported on three-dimensional, time-dependent, thermal convective flows. A parallel implentation on the finite volume method with a multigrid scheme is discussed, and a parallel visualization systemm is developed on distributed systems for visualizing the flow.
Airport Noise Control Strategies,
1986-05-01
MONICA SMX SANTA MARIA PUBLIC, SANTA MARIA SNA JOHN WAYNE/ORANGE COUNTY, SANTA ANA SOL LAN CARLOS, SAN CARLOS CTS SONOMA COUNTY , SANTA ROSA SZP SANTA...RUNWAY SYSTEM TOTAL OPERATIONS 174827 CONTACT. NA STS SONOMA COUNTY SANTA ROSA, CA PREFERENTIAL RUNWAY SYSTEM INFORMAL FLIGHT OPERATION RESTRICTION...STS SONOMA COUNTY SANTA ROSA. CA SUN FRIEDMAN MEMORIAL HAILEY, ID SWF STEWART NEWBURGH, NY TED TETERBORO TETERBORO, NJ TLH TALLAHASSEE MUNICIPAL
General view of the Orbiter Discovery on runway 33 at ...
General view of the Orbiter Discovery on runway 33 at Kennedy Space Center shortly after landing. The orbiter is processed and prepared for being towed to the Orbiter Processing Facility for continued post flight processing and pre flight preparations for its next mission. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Technical Reports Server (NTRS)
Mcgowan, J. A.
1978-01-01
The models used to implement the DC-9-10 aircraft simulation for the Runway Direction Control study are presented. The study was done on the Douglas Aircraft six-degree-of-freedom motion simulator. Documentation of the models was in algebraic form, to the extent possible. Effort was directed toward presenting what was actually done rather than general forms.
2. X15 RUN UP AREA (Jan 59). A sharp, higher ...
2. X-15 RUN UP AREA (Jan 59). A sharp, higher altitide low oblique aerial view to the north, showing runway, at far left; X-15 Engine Test Complex in the center. This view predates construction of observation bunkers. - Edwards Air Force Base, X-15 Engine Test Complex, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Runway Detection From Map, Video and Aircraft Navigational Data
2016-03-01
FROM MAP, VIDEO AND AIRCRAFT NAVIGATIONAL DATA by Jose R. Espinosa Gloria March 2016 Thesis Advisor: Roberto Cristi Co-Advisor: Oleg...COVERED Master’s thesis 4. TITLE AND SUBTITLE RUNWAY DETECTION FROM MAP, VIDEO AND AIRCRAFT NAVIGATIONAL DATA 5. FUNDING NUMBERS 6. AUTHOR...Mexican Navy, unmanned aerial vehicles (UAV) have been equipped with daylight and infrared cameras. Processing the video information obtained from these
Tire/runway friction interface
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1990-01-01
An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.
Airport Traffic Conflict Detection and Resolution Algorithm Evaluation
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Chartrand, Ryan C.; Wilson, Sara R.; Commo, Sean A.; Ballard, Kathryn M.; Otero, Sharon D.; Barker, Glover D.
2016-01-01
Two conflict detection and resolution (CD&R) algorithms for the terminal maneuvering area (TMA) were evaluated in a fast-time batch simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. One CD&R algorithm, developed at NASA, was designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The second algorithm, Enhanced Traffic Situation Awareness on the Airport Surface with Indications and Alerts (SURF IA), was designed to increase flight crew awareness of the runway environment and facilitate an appropriate and timely response to potential conflict situations. The purpose of the study was to evaluate the performance of the aircraft-based CD&R algorithms during various runway, taxiway, and low altitude scenarios, multiple levels of CD&R system equipage, and various levels of horizontal position accuracy. Algorithm performance was assessed through various metrics including the collision rate, nuisance and missed alert rate, and alert toggling rate. The data suggests that, in general, alert toggling, nuisance and missed alerts, and unnecessary maneuvering occurred more frequently as the position accuracy was reduced. Collision avoidance was more effective when all of the aircraft were equipped with CD&R and maneuvered to avoid a collision after an alert was issued. In order to reduce the number of unwanted (nuisance) alerts when taxiing across a runway, a buffer is needed between the hold line and the alerting zone so alerts are not generated when an aircraft is behind the hold line. All of the results support RTCA horizontal position accuracy requirements for performing a CD&R function to reduce the likelihood and severity of runway incursions and collisions.
Parafoveal Target Detectability Reversal Predicted by Local Luminance and Contrast Gain Control
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Beard, Bettina L.; Null, Cynthia H. (Technical Monitor)
1996-01-01
This project is part of a program to develop image discrimination models for the prediction of the detectability of objects in a range of backgrounds. We wanted to see if the models could predict parafoveal object detection as well as they predict detection in foveal vision. We also wanted to make our simplified models more general by local computation of luminance and contrast gain control. A signal image (0.78 x 0.17 deg) was made by subtracting a simulated airport runway scene background image (2.7 deg square) from the same scene containing an obstructing aircraft. Signal visibility contrast thresholds were measured in a fully crossed factorial design with three factors: eccentricity (0 deg or 4 deg), background (uniform or runway scene background), and fixed-pattern white noise contrast (0%, 5%, or 10%). Three experienced observers responded to three repetitions of 60 2IFC trials in each condition and thresholds were estimated by maximum likelihood probit analysis. In the fovea the average detection contrast threshold was 4 dB lower for the runway background than for the uniform background, but in the parafovea, the average threshold was 6 dB higher for the runway background than for the uniform background. This interaction was similar across the different noise levels and for all three observers. A likely reason for the runway background giving a lower threshold in the fovea is the low luminance near the signal in that scene. In our model, the local luminance computation is controlled by a spatial spread parameter. When this parameter and a corresponding parameter for the spatial spread of contrast gain were increased for the parafoveal predictions, the model predicts the interaction of background with eccentricity.
NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1996-01-01
A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.; Knox, Charles E.
1994-01-01
A joint NASA/FAA flight test has been made to record instrument landing system (ILS) localizer receiver signals for use in mathematically modeling the ILS localizer for future simulation studies and airplane flight tracking tasks. The flight test was conducted on a portion of the ILS localizer installed on runway 25L at the Los Angeles International Airport. The tests covered the range from 10 to 32 n.mi. from the localizer antenna. Precision radar tracking information was compared with the recorded localizer deviation data. Data analysis showed that the ILS signal centerline was offset to the left of runway centerline by 0.071 degrees and that no significant bends existed on the localizer beam. Suggested simulation models for the ILS localizer are formed from a statistical analysis.
Environmental fog/rain visual display system for aircraft simulators
NASA Technical Reports Server (NTRS)
Chase, W. D. (Inventor)
1982-01-01
An environmental fog/rain visual display system for aircraft simulators is described. The electronic elements of the system include a real time digital computer, a caligraphic color display which simulates landing lights of selective intensity, and a color television camera for producing a moving color display of the airport runway as depicted on a model terrain board. The mechanical simulation elements of the system include an environmental chamber which can produce natural fog, nonhomogeneous fog, rain and fog combined, or rain only. A pilot looking through the aircraft wind screen will look through the fog and/or rain generated in the environmental chamber onto a viewing screen with the simulated color image of the airport runway thereon, and observe a very real simulation of actual conditions of a runway as it would appear through actual fog and/or rain.
Simulation evaluation of TIMER, a time-based, terminal air traffic, flow-management concept
NASA Technical Reports Server (NTRS)
Credeur, Leonard; Capron, William R.
1989-01-01
A description of a time-based, extended terminal area ATC concept called Traffic Intelligence for the Management of Efficient Runway scheduling (TIMER) and the results of a fast-time evaluation are presented. The TIMER concept is intended to bridge the gap between today's ATC system and a future automated time-based ATC system. The TIMER concept integrates en route metering, fuel-efficient cruise and profile descents, terminal time-based sequencing and spacing together with computer-generated controller aids, to improve delivery precision for fuller use of runway capacity. Simulation results identify and show the effects and interactions of such key variables as horizon of control location, delivery time error at both the metering fix and runway threshold, aircraft separation requirements, delay discounting, wind, aircraft heading and speed errors, and knowledge of final approach speed.
Development of Environmentally Benign and Reduced Corrosion Runway Deicing Fluid
2009-08-01
PCNA Peter Cremer North America PG Propylene glycol P&G Proctor and Gamble Inc. PNNL Pacific Northwest National Laboratory RDF Runway Deicing...Navy/NAVAIR Defining Navy needs Mack Findley Peter Cremer North America (PCNA) Bio-based raw materials selection Pat Viani SMI AMS 1435 testing...SMI), and other laboratories under the leadership of SAE G-12 Fluids Subcommittee, and is expected to provide a better indication of compatibility with
Wing Infrastructure and Development Outlook (WINDO) Final Environmental Assessment
2006-06-01
installation, and repair F Construct revetment , paint taxi lines, install runway shoulders, extend/repair flight line, maintain airfield pavement...RKMF990065 CONSTRUCT CHAPEL MEETING FAC C RKMF000041 CONSTRUCT REVETMENT LOLA SUPPORT FAC F RKMF010042 CONSTRUCT SHOULDERS RUNWAY 03L/21R F RKMF030054...100-foot transect intervals. Sampling utilized 100- foot intervals in blocks . Isolate artifacts were recorded on site forms until 1996. They were
2002-06-19
The Space Shuttle Endeavour's drag chute deploys to slow the orbiter as it rolls out on Runway 22 at Edwards Air Force Base at the conclusion of its 14-day STS-111 mission to the International Space Station.
Final Environmental Assessment for Maintaining the Rim Canal at Avon Park Air Force Range, Florida
2011-02-01
Alternative would improve safety by more efficiently draining water off the runways and taxiways. Soil disturbance within the canal would temporarily...taxiways. Soil disturbance within the canal would temporarily attract foraging birds and increase the BASH hazard. The mulch and sediment mixture placed...maintain the canal. The Preferred Alternative would improve safety by more efficiently draining water off the runways and taxiways. Soil
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-24
...In accordance with the Paperwork Reduction Act of 1995, FAA invites public comments about our intention to request the Office of Management and Budget (OMB) approval for to renew an information collection. Feedback from surveys to be conducted under this generic information collection will be used in the prevention of runway collisions and in the medication of the severity and frequency of runway incursions.
NASA Technical Reports Server (NTRS)
Marlin, E. C.; Horne, W. B.
1977-01-01
A wire-comb technique is described for transversely grooving the surface of a freshly laid (plastic state) slip-formed concrete overlay installed at Patrick Henry Airport. This method of surface texturing yields better water drainage and pavement skid resistance than that obtained with an older conventional burlap drag concrete surface treatment installed on an adjacent portion of the runway.
1983-09-01
for OMAN, Zone A 22. BARIK Location: 20055’N 56030’E (8) Users: no data Pavement: no data No. runways: 1 (8) Runway length: over 4,000 ft (8) Elevation...Baluza, 62 Qatar, 203 Barik , 175 224 L Bateen International, 193 People’s Democratic Battery maintenance, 38 Republic of Yemen, 140 Beihan, 153 Qatar
Operational Art and Aircraft Runway Requirements
1989-12-01
Center for Aerospace Doctrine, Research. and Education (AUCADRE). They are dedicaled to the advancement of the art and science -.f applying aerospace...36112-5532. Operational Art and * Aircraft Runway Requirements C. 0 M. 0 Thank you for your assistance Report No. AU-ARI-CP-89-4 Operational Art and...publication. iiU ABSTRACT A commander exercises operational art to achieve strategic goals through his design, organization, and conduct of campaigns. In
Response of a WB-47E Airplane to Runway Roughness at Eielson AFB, Alaska, September 1964
NASA Technical Reports Server (NTRS)
Morris, Garland J.; Hall, Albert W.
1965-01-01
An investigation has been conducted to measure the response of a WB-47E airplane to the roughness of the runway at Eielson AFB, Alaska. The acceleration level in the pilot's compartment and the pitching oscillation of the airplane were found to be sufficiently high to possibly cause pilot discomfort and have an adverse effect on the precision of take-off.
NASA Technical Reports Server (NTRS)
Glaab, Patricia C.
2012-01-01
The first phase of this study investigated the amount of time a flight can be delayed or expedited within the Terminal Airspace using only speed changes. The Arrival Capacity Calculator analysis tool was used to predict the time adjustment envelope for standard descent arrivals and then for CDA arrivals. Results ranged from 0.77 to 5.38 minutes. STAR routes were configured for the ACES simulation, and a validation of the ACC results was conducted comparing the maximum predicted time adjustments to those seen in ACES. The final phase investigated full runway-to-runway trajectories using ACES. The radial distance used by the arrival scheduler was incrementally increased from 50 to 150 nautical miles (nmi). The increased Planning Horizon radii allowed the arrival scheduler to arrange, path stretch, and speed-adjust flights to more fully load the arrival stream. The average throughput for the high volume portion of the day increased from 30 aircraft per runway for the 50 nmi radius to 40 aircraft per runway for the 150 nmi radius for a traffic set representative of high volume 2018. The recommended radius for the arrival scheduler s Planning Horizon was found to be 130 nmi, which allowed more than 95% loading of the arrival stream.
NASA Astrophysics Data System (ADS)
Vuye, Cedric; Couscheir, Karolien; Lauriks, Leen; Van den bergh, Wim; Van Bouwel, Philippe
2017-09-01
After the first rehabilitation of runway 07R/25L in 2015, runway 01/19 was reconstructed in the summer of 2016, as part of a cycle where all runway pavements at Brussels airport are completely renovated each thirty years. The top layer is a Marshall asphalt with a polymer modified bitumen. To optimize the water drainage the central part of the runway (47 m wide) is grooved instead of applying an anti-skid layer. In this paper the focus is on the durability of the grooved top layer. Two different Marshall asphalt mixtures with a different maximum granulate size (10 mm or 14 mm) are compared, both in the laboratory and in a full-scale trial. In the laboratory the resistance against rutting and raveling are investigated for both mixtures with and without adhesion promotor, which did not show a positive effect. In the full-scale trial the compactability and impact of both a longer curing period and a variation in the degree of compaction on the groove stability is investigated for both mixtures using a heavy truck. No visual differences could be found except in areas which were undercompacted and showed more damage to the grooves.
NASA Technical Reports Server (NTRS)
Krabill, W. B.; Hoge, F. E.; Martin, C. F.
1982-01-01
The use of aircraft laser ranging for the determination of baselines between ground based retroreflectors was investigated via simulations and with tests at Wallops Flight Center using the Airborne Oceanographic Lidar (AOL) on the Wallops C-54 aircraft ranging to a reflector array deployed around one of the Wallops runways. The aircraft altitude and reflector spacing were chosen on the basis of scaled down modeling of spacecraft tracking from 1000 km of reflectors separated by some 52 km, or of high altitude (10 km) aircraft tracking of reflectors separated by some 500 m. Aircraft altitudes flown for different passes across the runway reflector array varied from 800 m to 1350 m, with 32 reflectors deployed over an approximtely 300 m x 500 m ground pattern. The AOL transmitted 400 pulses/sec with a scan rate of 5/sec in a near circular pattern, so that the majority of the pulses were reflected by the runway surface or its environs rather than by retroreflectors. The return pulse characteristics clearly showed the high reflectivity of portions of the runway, with several returns indistinguishable in amplitude from reflector returns. For each pass across the reflector field, typically six to ten reflector hits were identified, consistent with that predicted by simulations and the observed transmitted elliptical pulse size.
Emergency Flight Control Using Computer-Controlled Thrust
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Fullerton, C. Gordon; Stewart, James F.; Gilyard, Glenn B.; Conley, Joseph A.
1995-01-01
Propulsion Controlled Aircraft (PCA) systems are digital electronic control systems undergoing development to provide limited maneuvering ability through variations of individual engine thrusts in multiple-engine airplanes. Provide landing capability when control surfaces inoperable. Incorporated on existing and future airplanes that include digital engine controls, digital flight controls, and digital data buses, adding no weight for additional hardware to airplane. Possible to handle total failure of hydraulic system, depending on how surfaces respond to loss of hydraulic pressure, and broken control cables or linkages. Future airplanes incorporate data from Global Positioning System for guidance to any suitable emergency runway in world.
Good, Cameron H.; Rowley, Courtney S.; Xu, Sheng-ping; Wang, Huikun; Burnham, Nathan W.; Hoffman, Alexander F.; Lupica, Carl R.; Ikemoto, Satoshi
2013-01-01
Many strong rewards, including abused drugs, also produce aversive effects that are poorly understood. For example, cocaine can produce aversive conditioning after its rewarding effects have dissipated, consistent with opponent process theory, but the neural mechanisms involved are not well known. Using electrophysiological recordings in awake rats, we found that some neurons in the lateral habenula (LHb), where activation produces aversive conditioning, exhibited biphasic responses to single doses of intravenous cocaine, with an initial inhibition followed by delayed excitation paralleling cocaine's shift from rewarding to aversive. Recordings in LHb slice preparations revealed similar cocaine-induced biphasic responses and further demonstrated that biphasic responses were mimicked by dopamine, that the inhibitory phase depended on dopamine D2-like receptors, and that the delayed excitation persisted after drug washout for prolonged durations consistent with findings in vivo. c-Fos experiments further showed that cocaine-activated LHb neurons preferentially projected to and activated neurons in the rostromedial tegmental nucleus (RMTg), a recently identified target of LHb axons that is activated by negative motivational stimuli and inhibits dopamine neurons. Finally, pharmacological excitation of the RMTg produced conditioned place aversion, whereas cocaine-induced avoidance behaviors in a runway operant paradigm were abolished by lesions of LHb efferents, lesions of the RMTg, or by optogenetic inactivation of the RMTg selectively during the period when LHb neurons are activated by cocaine. Together, these results indicate that LHb/RMTg pathways contribute critically to cocaine-induced avoidance behaviors, while also participating in reciprocally inhibitory interactions with dopamine neurons. PMID:23616555
Simulator Evaluation of Airborne Information for Lateral Spacing (AILS) Concept
NASA Technical Reports Server (NTRS)
Abbott, Terence S.; Elliott, Dawn M.
2001-01-01
The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2500 ft. This report describes the AILS operational concept and the results of a ground-based flight simulation experiment of one implementation of this concept. The focus of this simulation experiment was to evaluate pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which all aircraft oil one approach intrudes into the path of an aircraft oil the other approach. Results from this study showed that the design-goal mean miss-distance of 1200 ft to potential collision situations was surpassed with an actual mean miss-distance of 2236 ft. Pilot reaction times to the alerting system, which was an operational concern, averaged 1.11 sec, well below the design-goal reaction time 2.0 sec.These quantitative results and pilot subjective data showed that the AILS concept is reasonable from an operational standpoint.
2006-08-10
Approaching the runway after the first evaluation flight of the Quiet Spike project, NASA's F-15B testbed aircraft cruises over Roger's Dry Lakebed near the Dryden Flight Research Center. The Quiet Spike was developed by Gulfstream Aerospace as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.
Environmental Assessment for Management of South End of Runway Wetlands, Moody AFB, Georgia
2010-11-01
implement a management program for the wetlands at the south end of runway (EOR) at Moody AFB to reduce the bird/wildlife aircraft strike hazard (BASH) risk...because birds and other wildlife pose an increased bird/wildlife aircraft strike hazard (BASH) risk to aircraft utilizing the Moody AFB airfield. ln...support ofthe military mission, Moody AFB has implemented a BASH management program designed to minimize aircraft exposure to potentially hazardous
Environmental Assessment: Clear Zone and Accident Potential Zone Selective Tree Removal
2011-05-25
PROPOSED ACTION The Proposed Action would occur within the CZ and APZs north and south of the runway. The overall area is undeveloped wetland and...existing runway. Therefore, there is no practicable alternative to conducting the action in floodplain/ wetland areas. Three technical alternatives for...or removal would be required. Alternative 3 was eliminated because leaving woody debris in wetlands would not meet U.S. Army Corps of Engineers
Evaluation of Rapid-Setting Concretes for Airfield Spall Repair
1991-04-01
repair concretes for Rapid Runway Repair (RRR). The three were a methyl methacrylate binder (Silikal RI7AF), a magnesium phosphate mortar mix (Set-45...reld Methyl methacrylate Rapid-setting 82 Blended cement Pavement materials 16. PRICE CODE Magnesium phosphate cement Rapid runway repair Spall repair 17...conditions, and for use during RRR training. Silikal is a methyl methacrylate , which forms a solid mass within minutes after its two components are mixed. It
STS-29 Discovery, OV-103, lands on Edwards AFB concrete runway 22
1989-03-18
STS029-S-063 (18 March 1989) --- Discovery's main landing gear touches down on Runway 22 at Edwards Air Force Base in California following a successful five-day mission in Earth orbit. Onboard the spacecraft were Astronauts Michael L. Coats, John E. Blaha, James F. Buchli, Robert C. Springer and James P. Bagian. Wheels came to a stop at 6:36:40 a.m. (PST), March 18, 1989.
Evaluation of Ultra High Molecular Weight (UHMW) Polyethylene Panels for Aircraft Arresting Systems
2009-08-01
cables. When concrete or asphalt is used directly under the cables, the pavement surface becomes heavily damaged during a short period of time...the sealant and panels, and improving the performance of the asphalt and concrete mixtures adjacent to the panels. DISCLAIMER: The contents of...panels on Runway 34 at Elmendorf AFB.....................22 Figure 25. Some damage to the asphalt mixture adjacent to the concrete strip on Runway 34
Development of a Bayesian Belief Network Runway Incursion Model
NASA Technical Reports Server (NTRS)
Green, Lawrence L.
2014-01-01
In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.
Modelling runway incursion severity.
Wilke, Sabine; Majumdar, Arnab; Ochieng, Washington Y
2015-06-01
Analysis of the causes underlying runway incursions is fundamental for the development of effective mitigation measures. However, there are significant weaknesses in the current methods to model these factors. This paper proposes a structured framework for modelling causal factors and their relationship to severity, which includes a description of the airport surface system architecture, establishment of terminological definitions, the determination and collection of appropriate data, the analysis of occurrences for severity and causes, and the execution of a statistical analysis framework. It is implemented in the context of U.S. airports, enabling the identification of a number of priority interventions, including the need for better investigation and causal factor capture, recommendations for airfield design, operating scenarios and technologies, and better training for human operators in the system. The framework is recommended for the analysis of runway incursions to support safety improvements and the methodology is transferable to other areas of aviation safety risk analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Partial reinforcement (acquisition) effects within subjects
Amsel, Abram; MacKinnon, John R.; Rashotte, Michael E.; Surridge, C. Thomas
1964-01-01
Acquisition performance of 22 rats in a straight alley runway was examined. The animals were subjected to partial reinforcement when the alley was black (B±) and continuous reinforcement when it was white (W+). The results indicated (a) higher terminal performance, for partial as against continuous reinforcement conditions, for starting-time and running-time measures, and (b) lower terminal performance under partial conditions for a goal-entry-time measure. These results confirm within subjects an effect previously demonstrated, in the runway, only in between-groups tests, where one group is run under partial reinforcement and a separate group is run under continuous reinforcement in the presence of the same external stimuli. Differences between the runway situation, employing a discrete-trial procedure and performance measures at three points in the response chain, and the Skinner box situation, used in its free-operant mode with a single performance measure, are discussed in relation to the present findings. PMID:14130088
PARTIAL REINFORCEMENT (ACQUISITION) EFFECTS WITHIN SUBJECTS.
AMSEL, A; MACKINNON, J R; RASHOTTE, M E; SURRIDGE, C T
1964-03-01
Acquisition performance of 22 rats in a straight alley runway was examined. The animals were subjected to partial reinforcement when the alley was black (B+/-) and continuous reinforcement when it was white (W+). The results indicated (a) higher terminal performance, for partial as against continuous reinforcement conditions, for starting-time and running-time measures, and (b) lower terminal performance under partial conditions for a goal-entry-time measure. These results confirm within subjects an effect previously demonstrated, in the runway, only in between-groups tests, where one group is run under partial reinforcement and a separate group is run under continuous reinforcement in the presence of the same external stimuli. Differences between the runway situation, employing a discrete-trial procedure and performance measures at three points in the response chain, and the Skinner box situation, used in its free-operant mode with a single performance measure, are discussed in relation to the present findings.
Optimum runway orientation relative to crosswinds
NASA Technical Reports Server (NTRS)
Falls, L. W.; Brown, S. C.
1972-01-01
Specific magnitudes of crosswinds may exist that could be constraints to the success of an aircraft mission such as the landing of the proposed space shuttle. A method is required to determine the orientation or azimuth of the proposed runway which will minimize the probability of certain critical crosswinds. Two procedures for obtaining the optimum runway orientation relative to minimizing a specified crosswind speed are described and illustrated with examples. The empirical procedure requires only hand calculations on an ordinary wind rose. The theoretical method utilizes wind statistics computed after the bivariate normal elliptical distribution is applied to a data sample of component winds. This method requires only the assumption that the wind components are bivariate normally distributed. This assumption seems to be reasonable. Studies are currently in progress for testing wind components for bivariate normality for various stations. The close agreement between the theoretical and empirical results for the example chosen substantiates the bivariate normal assumption.
Operational Concept for Flight Crews to Participate in Merging and Spacing of Aircraft
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.
2006-01-01
The predicted tripling of air traffic within the next 15 years is expected to cause significant aircraft delays and create a major financial burden for the airline industry unless the capacity of the National Airspace System can be increased. One approach to improve throughput and reduce delay is to develop new ground tools, airborne tools, and procedures to reduce the variance of aircraft delivery to the airport, thereby providing an increase in runway throughput capacity and a reduction in arrival aircraft delay. The first phase of the Merging and Spacing Concept employs a ground based tool used by Air Traffic Control that creates an arrival time to the runway threshold based on the aircraft s current position and speed, then makes minor adjustments to that schedule to accommodate runway throughput constraints such as weather and wake vortex separation criteria. The Merging and Spacing Concept also employs arrival routing that begins at an en route metering fix at altitude and continues to the runway threshold with defined lateral, vertical, and velocity criteria. This allows the desired spacing interval between aircraft at the runway to be translated back in time and space to the metering fix. The tool then calculates a specific speed for each aircraft to fly while enroute to the metering fix based on the adjusted land timing for that aircraft. This speed is data-linked to the crew who fly this speed, causing the aircraft to arrive at the metering fix with the assigned spacing interval behind the previous aircraft in the landing sequence. The second phase of the Merging and Spacing Concept increases the timing precision of the aircraft delivery to the runway threshold by having flight crews using an airborne system make minor speed changes during enroute, descent, and arrival phases of flight. These speed changes are based on broadcast aircraft state data to determine the difference between the actual and assigned time interval between the aircraft pair. The airborne software then calculates a speed adjustment to null that difference over the remaining flight trajectory. Follow-on phases still under development will expand the concept to all types of aircraft, arriving from any direction, merging at different fixes and altitudes, and to any airport. This paper describes the implementation phases of the Merging and Spacing Concept, and provides high-level results of research conducted to date.
Some endocrinological aspects of barbiturate dependence.
Norton, P R
1971-02-01
1. Hypophysectomized rats become dependent on barbitone and show the same withdrawal syndrome as intact animals.2. Barbitone dependent rats have larger thyroid and adrenal glands, a larger liver, smaller gonads and larger secondary sex organs than untreated animals. The levator ani muscle of the males is smaller.3. In contrast, dependent female hypophysectomized rats only showed a decreased gonad weight and increased liver weight.4. Histologically, the thyroid gland of dependent rats appears more active, but the concentration of iodine bound to plasma protein, basal metabolic rate and body temperature are similar in dependent and untreated animals.5. Resting plasma corticosterone concentration appears to be unchanged in barbitone dependent animals, but stress induced increases in the concentration of corticosterone in plasma are less in dependent animals.6. Immature barbitone dependent rats grow at a faster rate than untreated animals, but hypophysectomized rats of similar age receiving barbitone do not.7. The additional body weight gained by barbitone dependent animals is of normal body composition.8. Administration of growth hormone has an identical growth inducing effect in dependent hypophysectomized animals and in untreated hypophysectomized animals.9. Barbitone dependent rats do not exhibit the ;frustration effect' in a double runway. In barbitone dependent rats approach to a potentially ;frustrating' situation is slower than in untreated animals.
Cruise-Efficient Short Takeoff and Landing (CESTOL): Potential Impact on Air Traffic Operations
NASA Technical Reports Server (NTRS)
Couluris, G. J.; Signor, D.; Phillips, J.
2010-01-01
The National Aeronautics and Space Administration (NASA) is investigating technological and operational concepts for introducing Cruise-Efficient Short Takeoff and Landing (CESTOL) aircraft into a future US National Airspace System (NAS) civil aviation environment. CESTOL is an aircraft design concept for future use to increase capacity and reduce emissions. CESTOL provides very flexible takeoff, climb, descent and landing performance capabilities and a high-speed cruise capability. In support of NASA, this study is a preliminary examination of the potential operational impact of CESTOL on airport and airspace capacity and delay. The study examines operational impacts at a subject site, Newark Liberty Intemational Airport (KEWR), New Jersey. The study extends these KEWR results to estimate potential impacts on NAS-wide network traffic operations due to the introduction of CESTOL at selected major airports. These are the 34 domestic airports identified in the Federal Aviation Administration's Operational Evolution Plan (OEP). The analysis process uses two fast-time simulation tools to separately model local and NAS-wide air traffic operations using predicted flight schedules for a 24-hour study period in 2016. These tools are the Sen sis AvTerminal model and NASA's Airspace Concept Evaluation System (ACES). We use both to simulate conventional-aircraft-only and CESTOL-mixed-with-conventional-aircraft operations. Both tools apply 4-dimension trajectory modeling to simulate individual flight movement. The study applies AvTerminal to model traffic operations and procedures for en route and terminal arrival and departures to and from KEWR. These AvTerminal applications model existing arrival and departure routes and profiles and runway use configurations, with the assumption jet-powered, large-sized civil CESTOL aircraft use a short runway and standard turboprop arrival and departure procedures. With these rules, the conventional jet and CESTOL aircraft are procedurally separated from each other geographically and in altitude during tenninal airspace approach and departure operations, and each use a different arrival runway. AvTeminal implements its unique Focal-point Scheduling Process to sequence, space and delay aircraft to resolve spacing and overtake conflicts among flights in the airspace and airport system serving KEWR. This Process effectively models integrated arrival and departure operations. AvTerminal assesses acceptance rates and delay magnitude and causality at selected locations, including en route outer boundary fixes, tenninal airspace arrival and departure boundary fixes, terminal airspace arrival merge and departure diverge fixes, and runway landing and takeoff runways. The analysis compares the resulting capacity impacts, flight delays and delay sources between CESTOL and conventional KEWR operations. AvTerminal quantitative results showed that CESTOL has significant capability to increase airport arrival acceptance rates (35-40% at KEWR) by taking advantage of otherwise underused airspace and runways where available. The study extrapolates the AvTerminal-derived KEWR peak arrival and departure acceptance rates to estimate capacity parameter values for each of the OEP airports in the ACES modeling of traffic through the entire NAS network. The extrapolations of acceptance rates allow full, partial or no achievement of CESTOL capacity gains at an OEP airport as determined by assessments of the degree to which local procedures allow leveraging of CESTOL capabilities. These assessments consider each OEP airport's runway geometries, runway system configurations, airport and airspace operations, and potential CESTOL traffic loadings. The ACES modeling, simulates airport and airspace spacing constraints imposed by airport runway system, terminal and en route air traffic control and traffic flow management operations using airport acceptance rates representing conventional-aircraft-only and CESTOL-mixed operations. CEOL aircraft are assumed to have Mach 0.8, and alternatively Mach 0.7, cruise speeds to examine compatibility with conventional aircraft operations in common airspace. The ACES results provides estimates of CESTOL delay impact NAS-wide and at OEP airports due to changes in OEP airport acceptance rates and changes in en route airspace potential conflict rates. Preliminary results show meaningful nationwide delay reductions (20%) due to CESTOL operations at 34 major domestic airports.
STS-41 crew poses in front of OV-103 on concrete runway 22 at EAFB, Calif
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 crewmembers pose in front of Discovery, Orbiter Vehicle (OV) 103, parked on concrete runway 22 at Edwards Air Force Base (EAFB), California. Having just completed their mission, the crewmembers are still wearing their launch and entry suits (LESs). From left to right are Mission Specialist (MS) Thomas D. Akers, Pilot Robert D. Cabana, Commander Richard N. Richards, MS Bruce E. Melnick, and MS William M. Shepherd.
Ground winds and winds aloft for Edwards AFB, California (1978 revision)
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.
1978-01-01
Ground level runway wind statistics for the Edwards AFB, California area are presented. Crosswind, headwind, tailwind, and headwind reversal percentage frequencies are given with respect to month and hour for the two major Edwards AFB runways. Also presented are Edwards AFB bivariate normal wind statistics for a 90 degree flight azimuth for altitudes 0 through 27 km. Wind probability distributions and statistics for any rotation of axes can be computed from the five given parameters.
1980-06-01
conrol 25 34parrozre alrspacecosrit Is 06pazture queue 27 ? Amway cros sin; delay control d.* Aizcaraft Czeratioiaj (Mrter:stics 21 Exit taxiway %a±l... Amway identification 12, Departure runway aMnds 1 ittaxiway location 17General aLV4ation basinq areas C.A= procedurei Is Aircraft separations...Number of runwry. _____________________________ U3 Amway identification 1.2 Deparure runway end Linksj 13 Runay crassinq Links 14Exit taxiway
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Devadiga, Sadashiva; Tang, Yuan-Liang
1994-01-01
This research was initiated as a part of the Advanced Sensor and Imaging System Technology (ASSIST) program at NASA Langley Research Center. The primary goal of this research is the development of image analysis algorithms for the detection of runways and other objects using an on-board camera. Initial effort was concentrated on images acquired using a passive millimeter wave (PMMW) sensor. The images obtained using PMMW sensors under poor visibility conditions due to atmospheric fog are characterized by very low spatial resolution but good image contrast compared to those images obtained using sensors operating in the visible spectrum. Algorithms developed for analyzing these images using a model of the runway and other objects are described in Part 1 of this report. Experimental verification of these algorithms was limited to a sequence of images simulated from a single frame of PMMW image. Subsequent development and evaluation of algorithms was done using video image sequences. These images have better spatial and temporal resolution compared to PMMW images. Algorithms for reliable recognition of runways and accurate estimation of spatial position of stationary objects on the ground have been developed and evaluated using several image sequences. These algorithms are described in Part 2 of this report. A list of all publications resulting from this work is also included.
NASA Astrophysics Data System (ADS)
Santoso, S. E.; Sulistiono, D.; Mawardi, A. F.
2017-11-01
FAA code for airport design has been broadly used by Indonesian Ministry of Aviation since decades ago. However, there is not much comprehensive study about its relevance and efficiency towards current situation in Indonesia. Therefore, a further comparison study on flexible pavement design for airport runway using comparable method has become essential. The main focus of this study is to compare which method between FAA and LCN that offer the most efficient and effective way in runway pavement planning. The comparative methods in this study mainly use the variety of variable approach. FAA code for instance, will use the approach on the aircraft’s maximum take-off weight and annual departure. Whilst LCN code use the variable of equivalent single wheel load and tire pressure. Based on the variables mentioned above, a further classification and rated method will be used to determine which code is best implemented. According to the analysis, it is clear that FAA method is the most effective way to plan runway design in Indonesia with consecutively total pavement thickness of 127cm and LCN method total pavement thickness of 70cm. Although, FAA total pavement is thicker that LCN its relevance towards sustainable and pristine condition in the future has become an essential aspect to consider in design and planning.
Potential impacts of advanced technologies on the ATC capacity of high-density terminal areas
NASA Technical Reports Server (NTRS)
Simpson, R. W.; Odoni, A. R.; Salas-Roche, F.
1986-01-01
Advanced technologies for airborne systems (automatic flight control, flight displays, navigation) and for ground ATC systems (digital communications, improved surveillance and tracking, automated decision-making) create the possibility of advanced ATC operations and procedures which can bring increased capacity for runway systems. A systematic analysis is carried out to identify certain such advanced ATC operations, and then to evaluate the potential benefits occurring over time at typical US high-density airports (Denver and Boston). The study is divided into three parts: (1) A Critical Examination of Factors Which Determine Operational Capacity of Runway Systems at Major Airports, is an intensive review of current US separation criteria and terminal area ATC operations. It identifies 11 new methods to increase the capacity of landings and takeoffs for runway systems; (2) Development of Risk Based Separation Criteria is the development of a rational structure for establishing reduced ATC separation criteria which meet a consistent Target Level of Safety using advanced technology and operational procedures; and (3) Estimation of Capacity Benefits from Advanced Terminal Area Operations - Denver and Boston, provides an estimate of the overall annual improvement in runway capacity which might be expected at Denver and Boston from using some of the advanced ATC procedures developed in Part 1. Whereas Boston achieved a substantial 37% increase, Denver only achieved a 4.7% increase in its overall annual capacity.
NASA Technical Reports Server (NTRS)
Heil, Robert Milton
1994-01-01
A recurring phenomenon, described as a wake vortex, develops as an aircraft approaches the runway to land. As the aircraft moves along the runway, each of the wing tips generates a spiraling and expanding cone of air. During the lifetime of this turbulent event, conditions exist over the runway which can be hazardous to following aircraft, particularly when a small aircraft is following a large aircraft. Left to themselves, these twin vortex patterns will converge toward each other near the center of the runway, harmlessly dissipating through interaction with each other or by contact with the ground. Unfortunately, the time necessary to disperse the vortex is often not predictable, and at busy airports can severely impact terminal area productivity. Rudimentary methods of avoidance are in place. Generally, time delays between landing aircraft are based on what is required to protect a small aircraft. Existing ambient wind conditions can complicate the situation. Reliable detection and tracking of a wake vortex hazard is a major technical problem which can significantly impact runway productivity. Landing minimums could be determined on the basis of the actual hazard rather than imposed on the basis of a worst case scenario. This work focuses on using a windfield description of a wake vortex to generate line-of-sight Doppler velocity truth data appropriate to an arbitrarily located active sensor such as a high resolution radar or lidar. The goal is to isolate a range Doppler signature of the vortex phenomenon that can be used to improve detection. Results are presented based on use of a simplified model of a wake vortex pattern. However, it is important to note that the method of analysis can easily be applied to any vortex model used to generate a windfield snapshot. Results involving several scan strategies are shown for a point sensor with a range resolution of 1 to 4 meters. Vortex signatures presented appear to offer potential for detection and tracking.
2009-12-01
taxiway, threshold, and cen t erline lighting will not meet curren t recommended criteria and current airfie l d oper ating waivers will remain in... operations . A preliminary runway construction-phasing plan was developed to maintain at least one taxiway from the 200 Ramp to the T ACAMO ramp. The...burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA
The noise impact of proposed runway alternatives at Craig Airport
NASA Technical Reports Server (NTRS)
Deloach, R.
1982-01-01
Four proposed runway expansion alternatives at Craig Airport in Jacksonville, Florida have been assessed with respect to their forecasted noise impact in the year 2005. The assessment accounts for population distributions around the airport and human subjective response to noise, as well as the distribution of noise levels in the surrounding community (footprints). The impact analysis was performed using the Airport-noise Levels and Annoyance Model (ALAMO), an airport community response model recently developd at Langley Research Center.
Terminal Forecast Reference Notebook, Camp Casey, Korea.
1981-08-01
AGL) immediately west of the runway. b. The instrument shelter, with psychrometer , is just outside of building T-2651. It is much too close to the...EQUALS 100 FEET A-6 b. The instrument shelter with psychrometer is 60 feet northwest of the weather station. c. The rain gauge, ML-17, is adjacent to... psychrometer , is 180 feet south of the weather station just east of the runway. A-7 X I x x A IA. WEATHER x STATION RAIN GAUGE SHLTOWER SE IN STRUMENT
1982-01-01
of an incident involving Eastern Airlines Flight 60 from New Orleans, Louisiana, to John F. Kennedy ( JFK ) International Airport , New York, on April 8...1981. The Boeing 727 made an emergency, gear-retracted landing on runway 22R at JFK Airport , followed by an emergency evacuation of the aircraft...runway 22R at John F. Kennedy ( JFK ) International Airport , Jamaica, New York. The landing of the Boeing 727 was followed by an emergency evacuation of
Aircraft Rollout Iterative Energy Simulation
NASA Technical Reports Server (NTRS)
Kinoshita, L.
1986-01-01
Aircraft Rollout Iterative Energy Simulation (ARIES) program analyzes aircraft-brake performance during rollout. Simulates threedegree-of-freedom rollout after nose-gear touchdown. Amount of brake energy dissipated during aircraft landing determines life expectancy of brake pads. ARIES incorporates brake pressure, actual flight data, crosswinds, and runway characteristics to calculate following: brake energy during rollout for up to four independent brake systems; time profiles of rollout distance, velocity, deceleration, and lateral runway position; and all aerodynamic moments on aircraft. ARIES written in FORTRAN 77 for batch execution.
STS-26 Discovery, OV-103, touches down on dry lakebed runway 17 at EAFB
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down on dry lakebed runway 17 at Edwards Air Force Base (EAFB), California. A cloud of dust forms behind MLG as OV-103 begins to slow down. Taken from the rear of the orbiter, view shows the space shuttle main engines (SSMEs) and the speedbrake/rudder deployed on tail section. EAFB and Dryden Flight Research Facility (DFRF) buildings and hangars appear in the background.
STS-29 Discovery, OV-103, lands on Edwards AFB concrete runway 22
1989-03-18
STS029-S-064 (18 Mar 1989) --- A rear view photographed from the ground just after Discovery's main landing gear touches down on Runway 22 at Edwards Air Force Base in California following a successful five-day mission in Earth orbit. Onboard the spacecraft were Astronauts Michael L. Coats, John E. Blaha, James F. Buchli, Robert C. Springer and James P. Bagian. Wheels came to a stop at 6:36:40 a.m. (PST), March 18, 1989.
2002-06-29
KENNEDY SPACE CENTER, FLA. - Space Shuttle Endeavour lands on runway 15 at KSC's Shuttle Landing Facility at 10:58 a.m. EDT atop a modified Boeing 747 Shuttle Carrier Aircraft. The cross-country ferry flight became necessary when three days of unfavorable weather conditions at KSC forced Endeavour to land on runway 22 at Dryden Flight Research Center, Edwards Air Force Base, Calif., on June 19 following mission STS-111. Processing of Endeavour will now begin for the launch of mission STS-113 targeted for October 2002
2002-06-29
KENNEDY SPACE CENTER, FLA. - Space Shuttle Endeavour lands on runway 15 at KSC's Shuttle Landing Facility at 10:58 a.m. EDT atop a modified Boeing 747 Shuttle Carrier Aircraft. The cross-country ferry flight became necessary when three days of unfavorable weather conditions at KSC forced Endeavour to land on runway 22 at Dryden Flight Research Center, Edwards Air Force Base, Calif., on June 19 following mission STS-111. Processing of Endeavour will now begin for the launch of mission STS-113 targeted for October 2002
Cockpit Displays for Enhancing Terminal-Area Situational Awareness and Runway Safety
NASA Technical Reports Server (NTRS)
Hyer, Paul V.; Otero, Sharon; Jones, Denise R. (Technical Monitor)
2007-01-01
HUD and PFD displays have been developed to enhance situational awareness and improve runway safety. These displays were designed to seamlessly transition through all phases of flight providing guidance and information to the pilot. This report describes the background of the Langley Research Center (LaRC) HUD and PFD work, the steps required to integrate the displays with those of other LaRC programs, the display characteristics of the several operational modes and the transitional logic governing the transition between displays.
STS-30 Atlantis, OV-104, landing approach to runway 22 at EAFB, California
1989-05-08
STS030-S-124 (8 May 1989) --- Its landing gear fully deployed, Space Shuttle Atlantis is lined up for its approach to Runway 22 at Edwards Air Force Base in southern California. Minutes later, at 12:44:33 (PDT), the spacecraft's wheels had come to a complete stop, marking the successful conclusion for the four-day STS-30 mission. Onboard were astronauts David M. Walker, Ronald J. Grabe, Norman E. Thagard, Mary L. Cleave and Mark C. Lee.
NASA Technical Reports Server (NTRS)
Wong, Gregory L.; Denery, Dallas (Technical Monitor)
2000-01-01
The Dynamic Planner (DP) has been designed, implemented, and integrated into the Center-TRACON Automation System (CTAS) to assist Traffic Management Coordinators (TMCs), in real time, with the task of planning and scheduling arrival traffic approximately 35 to 200 nautical miles from the destination airport. The TMC may input to the DP a series of current and future scheduling constraints that reflect the operation and environmental conditions of the airspace. Under these constraints, the DP uses flight plans, track updates, and Estimated Time of Arrival (ETA) predictions to calculate optimal runway assignments and arrival schedules that help ensure an orderly, efficient, and conflict-free flow of traffic into the terminal area. These runway assignments and schedules can be shown directly to controllers or they can be used by other CTAS tools to generate advisories to the controllers. Additionally, the TMC and controllers may override the decisions made by the DP for tactical considerations. The DP will adapt to computations to accommodate these manual inputs.