Parallel Fast Multipole Method For Molecular Dynamics
2007-06-01
Parallel Fast Multipole Method For Molecular Dynamics THESIS Reid G. Ormseth, Captain, USAF AFIT/GAP/ENP/07-J02 DEPARTMENT OF THE AIR FORCE AIR...the United States Government. AFIT/GAP/ENP/07-J02 Parallel Fast Multipole Method For Molecular Dynamics THESIS Presented to the Faculty Department of...has also been provided by ‘The Art of Molecular Dynamics Simulation ’ by Dennis Rapaport. This work is the clearest treatment of the Fast Multipole
NASA Technical Reports Server (NTRS)
Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.
1995-01-01
In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.
Ergül, Özgür
2011-11-01
Fast and accurate solutions of large-scale electromagnetics problems involving homogeneous dielectric objects are considered. Problems are formulated with the electric and magnetic current combined-field integral equation and discretized with the Rao-Wilton-Glisson functions. Solutions are performed iteratively by using the multilevel fast multipole algorithm (MLFMA). For the solution of large-scale problems discretized with millions of unknowns, MLFMA is parallelized on distributed-memory architectures using a rigorous technique, namely, the hierarchical partitioning strategy. Efficiency and accuracy of the developed implementation are demonstrated on very large problems involving as many as 100 million unknowns.
NASA Astrophysics Data System (ADS)
Palmesi, P.; Abert, C.; Bruckner, F.; Suess, D.
2018-05-01
Fast stray field calculation is commonly considered of great importance for micromagnetic simulations, since it is the most time consuming part of the simulation. The Fast Multipole Method (FMM) has displayed linear O(N) parallelization behavior on many cores. This article investigates the error of a recent FMM approach approximating sources using linear—instead of constant—finite elements in the singular integral for calculating the stray field and the corresponding potential. After measuring performance in an earlier manuscript, this manuscript investigates the convergence of the relative L2 error for several FMM simulation parameters. Various scenarios either calculating the stray field directly or via potential are discussed.
Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver
Zhang, Bo; Lu, Benzhuo; Cheng, Xiaolin; ...
2013-01-01
This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann (AFMPB) solver. We introduce and discuss the following components in order: the Poisson-Boltzmann model, boundary integral equation reformulation, surface mesh generation, the nodepatch discretization approach, Krylov iterative methods, the new version of fast multipole methods (FMMs), and a dynamic prioritization technique for scheduling parallel operations. For each component, we also remark on feasible approaches for further improvements in efficiency, accuracy and applicability of the AFMPB solver to large-scale long-time molecular dynamics simulations. Lastly, the potential of the solver is demonstrated with preliminary numericalmore » results.« less
Computational electromagnetics: the physics of smooth versus oscillatory fields.
Chew, W C
2004-03-15
This paper starts by discussing the difference in the physics between solutions to Laplace's equation (static) and Maxwell's equations for dynamic problems (Helmholtz equation). Their differing physical characters are illustrated by how the two fields convey information away from their source point. The paper elucidates the fact that their differing physical characters affect the use of Laplacian field and Helmholtz field in imaging. They also affect the design of fast computational algorithms for electromagnetic scattering problems. Specifically, a comparison is made between fast algorithms developed using wavelets, the simple fast multipole method, and the multi-level fast multipole algorithm for electrodynamics. The impact of the physical characters of the dynamic field on the parallelization of the multi-level fast multipole algorithm is also discussed. The relationship of diagonalization of translators to group theory is presented. Finally, future areas of research for computational electromagnetics are described.
NASA Astrophysics Data System (ADS)
Palmesi, P.; Exl, L.; Bruckner, F.; Abert, C.; Suess, D.
2017-11-01
The long-range magnetic field is the most time-consuming part in micromagnetic simulations. Computational improvements can relieve problems related to this bottleneck. This work presents an efficient implementation of the Fast Multipole Method [FMM] for the magnetic scalar potential as used in micromagnetics. The novelty lies in extending FMM to linearly magnetized tetrahedral sources making it interesting also for other areas of computational physics. We treat the near field directly and in use (exact) numerical integration on the multipole expansion in the far field. This approach tackles important issues like the vectorial and continuous nature of the magnetic field. By using FMM the calculations scale linearly in time and memory.
Parallel fast multipole boundary element method applied to computational homogenization
NASA Astrophysics Data System (ADS)
Ptaszny, Jacek
2018-01-01
In the present work, a fast multipole boundary element method (FMBEM) and a parallel computer code for 3D elasticity problem is developed and applied to the computational homogenization of a solid containing spherical voids. The system of equation is solved by using the GMRES iterative solver. The boundary of the body is dicretized by using the quadrilateral serendipity elements with an adaptive numerical integration. Operations related to a single GMRES iteration, performed by traversing the corresponding tree structure upwards and downwards, are parallelized by using the OpenMP standard. The assignment of tasks to threads is based on the assumption that the tree nodes at which the moment transformations are initialized can be partitioned into disjoint sets of equal or approximately equal size and assigned to the threads. The achieved speedup as a function of number of threads is examined.
NASA Astrophysics Data System (ADS)
Guan, W.; Cheng, X.; Huang, J.; Huber, G.; Li, W.; McCammon, J. A.; Zhang, B.
2018-06-01
RPYFMM is a software package for the efficient evaluation of the potential field governed by the Rotne-Prager-Yamakawa (RPY) tensor interactions in biomolecular hydrodynamics simulations. In our algorithm, the RPY tensor is decomposed as a linear combination of four Laplace interactions, each of which is evaluated using the adaptive fast multipole method (FMM) (Greengard and Rokhlin, 1997) where the exponential expansions are applied to diagonalize the multipole-to-local translation operators. RPYFMM offers a unified execution on both shared and distributed memory computers by leveraging the DASHMM library (DeBuhr et al., 2016, 2018). Preliminary numerical results show that the interactions for a molecular system of 15 million particles (beads) can be computed within one second on a Cray XC30 cluster using 12,288 cores, while achieving approximately 54% strong-scaling efficiency.
FleCSPH - a parallel and distributed SPH implementation based on the FleCSI framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junghans, Christoph; Loiseau, Julien
2017-06-20
FleCSPH is a multi-physics compact application that exercises FleCSI parallel data structures for tree-based particle methods. In particular, FleCSPH implements a smoothed-particle hydrodynamics (SPH) solver for the solution of Lagrangian problems in astrophysics and cosmology. FleCSPH includes support for gravitational forces using the fast multipole method (FMM).
Petascale turbulence simulation using a highly parallel fast multipole method on GPUs
NASA Astrophysics Data System (ADS)
Yokota, Rio; Barba, L. A.; Narumi, Tetsu; Yasuoka, Kenji
2013-03-01
This paper reports large-scale direct numerical simulations of homogeneous-isotropic fluid turbulence, achieving sustained performance of 1.08 petaflop/s on GPU hardware using single precision. The simulations use a vortex particle method to solve the Navier-Stokes equations, with a highly parallel fast multipole method (FMM) as numerical engine, and match the current record in mesh size for this application, a cube of 40963 computational points solved with a spectral method. The standard numerical approach used in this field is the pseudo-spectral method, relying on the FFT algorithm as the numerical engine. The particle-based simulations presented in this paper quantitatively match the kinetic energy spectrum obtained with a pseudo-spectral method, using a trusted code. In terms of parallel performance, weak scaling results show the FMM-based vortex method achieving 74% parallel efficiency on 4096 processes (one GPU per MPI process, 3 GPUs per node of the TSUBAME-2.0 system). The FFT-based spectral method is able to achieve just 14% parallel efficiency on the same number of MPI processes (using only CPU cores), due to the all-to-all communication pattern of the FFT algorithm. The calculation time for one time step was 108 s for the vortex method and 154 s for the spectral method, under these conditions. Computing with 69 billion particles, this work exceeds by an order of magnitude the largest vortex-method calculations to date.
Hesford, Andrew J; Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C
2014-08-01
Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast.
NASA Astrophysics Data System (ADS)
Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; Qin, Jian; Karpeev, Dmitry; Hernandez-Ortiz, Juan; de Pablo, Juan J.; Heinonen, Olle
2016-08-01
Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O(N2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Method (FMM) to evaluate the integrals in O(N) operations, with O(N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. The results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.
Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; ...
2016-08-10
Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O( N 2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Methodmore » (FMM) to evaluate the integrals in O( N) operations, with O( N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. Lastly, the results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.« less
AUTOMATIC GENERATION OF FFT FOR TRANSLATIONS OF MULTIPOLE EXPANSIONS IN SPHERICAL HARMONICS
Mirkovic, Dragan; Pettitt, B. Montgomery; Johnsson, S. Lennart
2009-01-01
The fast multipole method (FMM) is an efficient algorithm for calculating electrostatic interactions in molecular simulations and a promising alternative to Ewald summation methods. Translation of multipole expansion in spherical harmonics is the most important operation of the fast multipole method and the fast Fourier transform (FFT) acceleration of this operation is among the fastest methods of improving its performance. The technique relies on highly optimized implementation of fast Fourier transform routines for the desired expansion sizes, which need to incorporate the knowledge of symmetries and zero elements in the input arrays. Here a method is presented for automatic generation of such, highly optimized, routines. PMID:19763233
2016-01-22
Numerical electromagnetic simulations based on the multilevel fast multipole method (MLFMM) were used to analyze and optimize the antenna...and are not necessarily endorsed by the United States Government. numerical simulations with the multilevel fast multipole method (MLFMM...and optimized using numerical simulations conducted with the multilevel fast multipole method (MLFMM) using FEKO software (www.feko.info). The
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei
2013-04-01
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.
A Wideband Fast Multipole Method for the two-dimensional complex Helmholtz equation
NASA Astrophysics Data System (ADS)
Cho, Min Hyung; Cai, Wei
2010-12-01
A Wideband Fast Multipole Method (FMM) for the 2D Helmholtz equation is presented. It can evaluate the interactions between N particles governed by the fundamental solution of 2D complex Helmholtz equation in a fast manner for a wide range of complex wave number k, which was not easy with the original FMM due to the instability of the diagonalized conversion operator. This paper includes the description of theoretical backgrounds, the FMM algorithm, software structures, and some test runs. Program summaryProgram title: 2D-WFMM Catalogue identifier: AEHI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4636 No. of bytes in distributed program, including test data, etc.: 82 582 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Any operating system with gcc version 4.2 or newer Has the code been vectorized or parallelized?: Multi-core processors with shared memory RAM: Depending on the number of particles N and the wave number k Classification: 4.8, 4.12 External routines: OpenMP ( http://openmp.org/wp/) Nature of problem: Evaluate interaction between N particles governed by the fundamental solution of 2D Helmholtz equation with complex k. Solution method: Multilevel Fast Multipole Algorithm in a hierarchical quad-tree structure with cutoff level which combines low frequency method and high frequency method. Running time: Depending on the number of particles N, wave number k, and number of cores in CPU. CPU time increases as N log N.
Kantardjiev, Alexander A
2015-04-05
A cluster of strongly interacting ionization groups in protein molecules with irregular ionization behavior is suggestive for specific structure-function relationship. However, their computational treatment is unconventional (e.g., lack of convergence in naive self-consistent iterative algorithm). The stringent evaluation requires evaluation of Boltzmann averaged statistical mechanics sums and electrostatic energy estimation for each microstate. irGPU: Irregular strong interactions in proteins--a GPU solver is novel solution to a versatile problem in protein biophysics--atypical protonation behavior of coupled groups. The computational severity of the problem is alleviated by parallelization (via GPU kernels) which is applied for the electrostatic interaction evaluation (including explicit electrostatics via the fast multipole method) as well as statistical mechanics sums (partition function) estimation. Special attention is given to the ease of the service and encapsulation of theoretical details without sacrificing rigor of computational procedures. irGPU is not just a solution-in-principle but a promising practical application with potential to entice community into deeper understanding of principles governing biomolecule mechanisms. © 2015 Wiley Periodicals, Inc.
The fast multipole method and point dipole moment polarizable force fields.
Coles, Jonathan P; Masella, Michel
2015-01-14
We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems.
Fast multipole method using Cartesian tensor in beam dynamic simulation
Zhang, He; Huang, He; Li, Rui; ...
2017-03-06
Here, the fast multipole method (FMM) using traceless totally symmetric Cartesian tensor to calculate the Coulomb interaction between charged particles will be presented. The Cartesian tensor-based FMM can be generalized to treat other non-oscillating interactions with the help of the differential algebra or the truncated power series algebra. Issues on implementation of the FMM in beam dynamic simulations are also discussed.
Ong, Eng Teo; Lee, Heow Pueh; Lim, Kian Meng
2004-09-01
This article presents a fast algorithm for the efficient solution of the Helmholtz equation. The method is based on the translation theory of the multipole expansions. Here, the speedup comes from the convolution nature of the translation operators, which can be evaluated rapidly using fast Fourier transform algorithms. Also, the computations of the translation operators are accelerated by using the recursive formulas developed recently by Gumerov and Duraiswami [SIAM J. Sci. Comput. 25, 1344-1381(2003)]. It is demonstrated that the algorithm can produce good accuracy with a relatively low order of expansion. Efficiency analyses of the algorithm reveal that it has computational complexities of O(Na), where a ranges from 1.05 to 1.24. However, this method requires substantially more memory to store the translation operators as compared to the fast multipole method. Hence, despite its simplicity in implementation, this memory requirement issue may limit the application of this algorithm to solving very large-scale problems.
Calculations of the binding affinities of protein-protein complexes with the fast multipole method
NASA Astrophysics Data System (ADS)
Kim, Bongkeun; Song, Jiming; Song, Xueyu
2010-09-01
In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.
Polarizable atomic multipole X-ray refinement: application to peptide crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnieders, Michael J.; Fenn, Timothy D.; Howard Hughes Medical Institute
2009-09-01
A method to accelerate the computation of structure factors from an electron density described by anisotropic and aspherical atomic form factors via fast Fourier transformation is described for the first time. Recent advances in computational chemistry have produced force fields based on a polarizable atomic multipole description of biomolecular electrostatics. In this work, the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field is applied to restrained refinement of molecular models against X-ray diffraction data from peptide crystals. A new formalism is also developed to compute anisotropic and aspherical structure factors using fast Fourier transformation (FFT) of Cartesian Gaussianmore » multipoles. Relative to direct summation, the FFT approach can give a speedup of more than an order of magnitude for aspherical refinement of ultrahigh-resolution data sets. Use of a sublattice formalism makes the method highly parallelizable. Application of the Cartesian Gaussian multipole scattering model to a series of four peptide crystals using multipole coefficients from the AMOEBA force field demonstrates that AMOEBA systematically underestimates electron density at bond centers. For the trigonal and tetrahedral bonding geometries common in organic chemistry, an atomic multipole expansion through hexadecapole order is required to explain bond electron density. Alternatively, the addition of interatomic scattering (IAS) sites to the AMOEBA-based density captured bonding effects with fewer parameters. For a series of four peptide crystals, the AMOEBA–IAS model lowered R{sub free} by 20–40% relative to the original spherically symmetric scattering model.« less
pureS2HAT: S 2HAT-based Pure E/B Harmonic Transforms
NASA Astrophysics Data System (ADS)
Grain, J.; Stompor, R.; Tristram, M.
2011-10-01
The pS2HAT routines allow efficient, parallel calculation of the so-called 'pure' polarized multipoles. The computed multipole coefficients are equal to the standard pseudo-multipoles calculated for the apodized sky maps of the Stokes parameters Q and U subsequently corrected by so-called counterterms. If the applied apodizations fullfill certain boundary conditions, these multipoles correspond to the pure multipoles. Pure multipoles of one type, i.e., either E or B, are ensured not to contain contributions from the other one, at least to within numerical artifacts. They can be therefore further used in the estimation of the sky power spectra via the pseudo power spectrum technique, which has to however correctly account for the applied apodization on the one hand, and the presence of the counterterms, on the other. In addition, the package contains the routines permitting calculation of the spin-weighted apodizations, given an input scalar, i.e., spin-0 window. The former are needed to compute the counterterms. It also provides routines for maps and window manipulations. The routines are written in C and based on the S2HAT library, which is used to perform all required spherical harmonic transforms as well as all inter-processor communication. They are therefore parallelized using MPI and follow the distributed-memory computational model. The data distribution patterns, pixelization choices, conventions etc are all as those assumed/allowed by the S2HAT library.
NASA Astrophysics Data System (ADS)
Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul
2015-03-01
Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.
Polynomial interpretation of multipole vectors
NASA Astrophysics Data System (ADS)
Katz, Gabriel; Weeks, Jeff
2004-09-01
Copi, Huterer, Starkman, and Schwarz introduced multipole vectors in a tensor context and used them to demonstrate that the first-year Wilkinson microwave anisotropy probe (WMAP) quadrupole and octopole planes align at roughly the 99.9% confidence level. In the present article, the language of polynomials provides a new and independent derivation of the multipole vector concept. Bézout’s theorem supports an elementary proof that the multipole vectors exist and are unique (up to rescaling). The constructive nature of the proof leads to a fast, practical algorithm for computing multipole vectors. We illustrate the algorithm by finding exact solutions for some simple toy examples and numerical solutions for the first-year WMAP quadrupole and octopole. We then apply our algorithm to Monte Carlo skies to independently reconfirm the estimate that the WMAP quadrupole and octopole planes align at the 99.9% level.
Multipole analysis of {sup 2}H({gamma},p)n in the {Delta} resonance region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whisnant, C.S.; Mize, W.K.; Pomarede, D.
1998-07-01
An energy-dependent multipole analysis of the photodisintegration of deuterium has been performed for photon energies between 187 and 314 MeV using recent data taken with linearly polarized photons. A good fit is obtained with 11 free parameters determining eight multipoles. A wide variety of multipole solutions has been examined and in all cases the cross section with photon polarization parallel to the reaction plane is dominated by electric transitions, with E2{bold {center_dot}}E1 interference responsible for the observed forward-backward angular asymmetry. The cross sections observed in perpendicular kinematics are dominated by magnetic multipoles. Several recent N{Delta}/NN coupled-channel calculations have predicted amore » pronounced 90{degree} dip in the cross section that is absent from the data. This dip can be reproduced by changing the M2 strength distribution in our fit. A comparison is made with multipoles calculated by Wilhelm and Arenh{umlt o}vel at 300 MeV. {copyright} {ital 1998} {ital The American Physical Society}« less
Gravitational tree-code on graphics processing units: implementation in CUDA
NASA Astrophysics Data System (ADS)
Gaburov, Evghenii; Bédorf, Jeroen; Portegies Zwart, Simon
2010-05-01
We present a new very fast tree-code which runs on massively parallel Graphical Processing Units (GPU) with NVIDIA CUDA architecture. The tree-construction and calculation of multipole moments is carried out on the host CPU, while the force calculation which consists of tree walks and evaluation of interaction list is carried out on the GPU. In this way we achieve a sustained performance of about 100GFLOP/s and data transfer rates of about 50GB/s. It takes about a second to compute forces on a million particles with an opening angle of θ ≈ 0.5. The code has a convenient user interface and is freely available for use. http://castle.strw.leidenuniv.nl/software/octgrav.html
NASA Astrophysics Data System (ADS)
Wu, Yueqian; Yang, Minglin; Sheng, Xinqing; Ren, Kuan Fang
2015-05-01
Light scattering properties of absorbing particles, such as the mineral dusts, attract a wide attention due to its importance in geophysical and environment researches. Due to the absorbing effect, light scattering properties of particles with absorption differ from those without absorption. Simple shaped absorbing particles such as spheres and spheroids have been well studied with different methods but little work on large complex shaped particles has been reported. In this paper, the surface Integral Equation (SIE) with Multilevel Fast Multipole Algorithm (MLFMA) is applied to study scattering properties of large non-spherical absorbing particles. SIEs are carefully discretized with piecewise linear basis functions on triangle patches to model whole surface of the particle, hence computation resource needs increase much more slowly with the particle size parameter than the volume discretized methods. To improve further its capability, MLFMA is well parallelized with Message Passing Interface (MPI) on distributed memory computer platform. Without loss of generality, we choose the computation of scattering matrix elements of absorbing dust particles as an example. The comparison of the scattering matrix elements computed by our method and the discrete dipole approximation method (DDA) for an ellipsoid dust particle shows that the precision of our method is very good. The scattering matrix elements of large ellipsoid dusts with different aspect ratios and size parameters are computed. To show the capability of the presented algorithm for complex shaped particles, scattering by asymmetry Chebyshev particle with size parameter larger than 600 of complex refractive index m = 1.555 + 0.004 i and different orientations are studied.
Bajaj, Chandrajit; Chen, Shun-Chuan; Rand, Alexander
2011-01-01
In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numerical linear algebra and the kernel independent fast multipole method is used for both simplicity and efficiency of our implementation. We perform a variety of computational experiments, testing our method on a number of actual proteins involved in molecular docking and demonstrating the effectiveness of our solver for computing molecular polarization energy. PMID:21660123
Leung, Chung Ming; Wang, Ya; Chen, Wusi
2016-11-01
In this letter, the airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively magnetized formation of 6 magnets to explore enhanced power density. In particular, the magnet array was positioned in parallel to the trajectory of the tip coil within its tip deflection span. The finite element simulations of the magnetic flux density and induced voltages at an open circuit condition were studied to find the maximum number of alternatively magnetized magnets that was required for the proposed energy harvester. Experimental results showed that the energy harvester with a pair of 6 alternatively magnetized linear magnet arrays was able to generate an induced voltage (V o ) of 20 V, with an open circuit condition, and 475 mW, under a 30 Ω optimal resistance load operating with the wind speed (U) at 7 m/s and a natural bending frequency of 3.54 Hz. Compared to the traditional electromagnetic energy harvester with a single magnet moving through a coil, the proposed energy harvester, containing multi-pole magnets and parallel array motion, enables the moving coil to accumulate a stronger magnetic flux in each period of the swinging motion. In addition to the comparison made with the airfoil-based piezoelectric energy harvester of the same size, our proposed electromagnetic energy harvester generates 11 times more power output, which is more suitable for high-power-density energy harvesting applications at regions with low environmental frequency.
Fast multipole methods on a cluster of GPUs for the meshless simulation of turbulence
NASA Astrophysics Data System (ADS)
Yokota, R.; Narumi, T.; Sakamaki, R.; Kameoka, S.; Obi, S.; Yasuoka, K.
2009-11-01
Recent advances in the parallelizability of fast N-body algorithms, and the programmability of graphics processing units (GPUs) have opened a new path for particle based simulations. For the simulation of turbulence, vortex methods can now be considered as an interesting alternative to finite difference and spectral methods. The present study focuses on the efficient implementation of the fast multipole method and pseudo-particle method on a cluster of NVIDIA GeForce 8800 GT GPUs, and applies this to a vortex method calculation of homogeneous isotropic turbulence. The results of the present vortex method agree quantitatively with that of the reference calculation using a spectral method. We achieved a maximum speed of 7.48 TFlops using 64 GPUs, and the cost performance was near 9.4/GFlops. The calculation of the present vortex method on 64 GPUs took 4120 s, while the spectral method on 32 CPUs took 4910 s.
Fast algorithms for Quadrature by Expansion I: Globally valid expansions
NASA Astrophysics Data System (ADS)
Rachh, Manas; Klöckner, Andreas; O'Neil, Michael
2017-09-01
The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method. Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.
NASA Astrophysics Data System (ADS)
Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang
2017-12-01
Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.
FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions
NASA Astrophysics Data System (ADS)
Huang, Jingfang; Jia, Jun; Zhang, Bo
2009-11-01
A Fortran program package is introduced for the rapid evaluation of the screened Coulomb interactions of N particles in three dimensions. The method utilizes an adaptive oct-tree structure, and is based on the new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related packages are also available at
Computer Science Techniques Applied to Parallel Atomistic Simulation
NASA Astrophysics Data System (ADS)
Nakano, Aiichiro
1998-03-01
Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.
Application of Fast Multipole Methods to the NASA Fast Scattering Code
NASA Technical Reports Server (NTRS)
Dunn, Mark H.; Tinetti, Ana F.
2008-01-01
The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.
An efficient blocking M2L translation for low-frequency fast multipole method in three dimensions
NASA Astrophysics Data System (ADS)
Takahashi, Toru; Shimba, Yuta; Isakari, Hiroshi; Matsumoto, Toshiro
2016-05-01
We propose an efficient scheme to perform the multipole-to-local (M2L) translation in the three-dimensional low-frequency fast multipole method (LFFMM). Our strategy is to combine a group of matrix-vector products associated with M2L translation into a matrix-matrix product in order to diminish the memory traffic. For this purpose, we first developed a grouping method (termed as internal blocking) based on the congruent transformations (rotational and reflectional symmetries) of M2L-translators for each target box in the FMM hierarchy (adaptive octree). Next, we considered another method of grouping (termed as external blocking) that was able to handle M2L translations for multiple target boxes collectively by using the translational invariance of the M2L translation. By combining these internal and external blockings, the M2L translation can be performed efficiently whilst preservingthe numerical accuracy exactly. We assessed the proposed blocking scheme numerically and applied it to the boundary integral equation method to solve electromagnetic scattering problems for perfectly electrical conductor. From the numerical results, it was found that the proposed M2L scheme achieved a few times speedup compared to the non-blocking scheme.
Hesford, Andrew J.; Waag, Robert C.
2010-01-01
The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased. PMID:20835366
NASA Astrophysics Data System (ADS)
Hesford, Andrew J.; Waag, Robert C.
2010-10-01
The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.
Hesford, Andrew J; Waag, Robert C
2010-10-20
The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.
NASA Astrophysics Data System (ADS)
Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew
2010-06-01
A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/~lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. Program summaryProgram title: AFMPB: Adaptive fast multipole Poisson-Boltzmann solver Catalogue identifier: AEGB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL 2.0 No. of lines in distributed program, including test data, etc.: 453 649 No. of bytes in distributed program, including test data, etc.: 8 764 754 Distribution format: tar.gz Programming language: Fortran Computer: Any Operating system: Any RAM: Depends on the size of the discretized biomolecular system Classification: 3 External routines: Pre- and post-processing tools are required for generating the boundary elements and for visualization. Users can use MSMS ( http://www.scripps.edu/~sanner/html/msms_home.html) for pre-processing, and VMD ( http://www.ks.uiuc.edu/Research/vmd/) for visualization. Sub-programs included: An iterative Krylov subspace solvers package from SPARSKIT by Yousef Saad ( http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html), and the fast multipole methods subroutines from FMMSuite ( http://www.fastmultipole.org/). Nature of problem: Numerical solution of the linearized Poisson-Boltzmann equation that describes electrostatic interactions of molecular systems in ionic solutions. Solution method: A novel node-patch scheme is used to discretize the well-conditioned boundary integral equation formulation of the linearized Poisson-Boltzmann equation. Various Krylov subspace solvers can be subsequently applied to solve the resulting linear system, with a bounded number of iterations independent of the number of discretized unknowns. The matrix-vector multiplication at each iteration is accelerated by the adaptive new versions of fast multipole methods. The AFMPB solver requires other stand-alone pre-processing tools for boundary mesh generation, post-processing tools for data analysis and visualization, and can be conveniently coupled with different time stepping methods for dynamics simulation. Restrictions: Only three or six significant digits options are provided in this version. Unusual features: Most of the codes are in Fortran77 style. Memory allocation functions from Fortran90 and above are used in a few subroutines. Additional comments: The current version of the codes is designed and written for single core/processor desktop machines. Check http://lsec.cc.ac.cn/~lubz/afmpb.html and http://mccammon.ucsd.edu/ for updates and changes. Running time: The running time varies with the number of discretized elements ( N) in the system and their distributions. In most cases, it scales linearly as a function of N.
Accurate van der Waals coefficients from density functional theory
Tao, Jianmin; Perdew, John P.; Ruzsinszky, Adrienn
2012-01-01
The van der Waals interaction is a weak, long-range correlation, arising from quantum electronic charge fluctuations. This interaction affects many properties of materials. A simple and yet accurate estimate of this effect will facilitate computer simulation of complex molecular materials and drug design. Here we develop a fast approach for accurate evaluation of dynamic multipole polarizabilities and van der Waals (vdW) coefficients of all orders from the electron density and static multipole polarizabilities of each atom or other spherical object, without empirical fitting. Our dynamic polarizabilities (dipole, quadrupole, octupole, etc.) are exact in the zero- and high-frequency limits, and exact at all frequencies for a metallic sphere of uniform density. Our theory predicts dynamic multipole polarizabilities in excellent agreement with more expensive many-body methods, and yields therefrom vdW coefficients C6, C8, C10 for atom pairs with a mean absolute relative error of only 3%. PMID:22205765
NASA Technical Reports Server (NTRS)
Jandhyala, Vikram (Inventor); Chowdhury, Indranil (Inventor)
2011-01-01
An approach that efficiently solves for a desired parameter of a system or device that can include both electrically large fast multipole method (FMM) elements, and electrically small QR elements. The system or device is setup as an oct-tree structure that can include regions of both the FMM type and the QR type. An iterative solver is then used to determine a first matrix vector product for any electrically large elements, and a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large elements and the electrically small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is obtained that is within predefined limits. The matrix vector products that were last obtained are used to solve for the desired parameter.
Wilkes, Daniel R; Duncan, Alec J
2015-04-01
This paper presents a numerical model for the acoustic coupled fluid-structure interaction (FSI) of a submerged finite elastic body using the fast multipole boundary element method (FMBEM). The Helmholtz and elastodynamic boundary integral equations (BIEs) are, respectively, employed to model the exterior fluid and interior solid domains, and the pressure and displacement unknowns are coupled between conforming meshes at the shared boundary interface to achieve the acoustic FSI. The low frequency FMBEM is applied to both BIEs to reduce the algorithmic complexity of the iterative solution from O(N(2)) to O(N(1.5)) operations per matrix-vector product for N boundary unknowns. Numerical examples are presented to demonstrate the algorithmic and memory complexity of the method, which are shown to be in good agreement with the theoretical estimates, while the solution accuracy is comparable to that achieved by a conventional finite element-boundary element FSI model.
DOT National Transportation Integrated Search
2017-05-01
The airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and : trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively : magnetized formation of 6 magnets to...
NASA Astrophysics Data System (ADS)
Pan, Xiao-Min; Wei, Jian-Gong; Peng, Zhen; Sheng, Xin-Qing
2012-02-01
The interpolative decomposition (ID) is combined with the multilevel fast multipole algorithm (MLFMA), denoted by ID-MLFMA, to handle multiscale problems. The ID-MLFMA first generates ID levels by recursively dividing the boxes at the finest MLFMA level into smaller boxes. It is specifically shown that near-field interactions with respect to the MLFMA, in the form of the matrix vector multiplication (MVM), are efficiently approximated at the ID levels. Meanwhile, computations on far-field interactions at the MLFMA levels remain unchanged. Only a small portion of matrix entries are required to approximate coupling among well-separated boxes at the ID levels, and these submatrices can be filled without computing the complete original coupling matrix. It follows that the matrix filling in the ID-MLFMA becomes much less expensive. The memory consumed is thus greatly reduced and the MVM is accelerated as well. Several factors that may influence the accuracy, efficiency and reliability of the proposed ID-MLFMA are investigated by numerical experiments. Complex targets are calculated to demonstrate the capability of the ID-MLFMA algorithm.
NASA Astrophysics Data System (ADS)
Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul
2015-11-01
Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.
A Very Fast and Angular Momentum Conserving Tree Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcello, Dominic C., E-mail: dmarce504@gmail.com
There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.
NASA Astrophysics Data System (ADS)
Landi Degl'Innocenti, E.; Bommier, V.; Sahal-Brechot, S.
1990-08-01
A general formalism is presented to describe resonance line polarization for a two-level atom in an optically thick, three-dimensional medium embedded in an arbitrary varying magnetic field and irradiated by an arbitrary radiation field. The magnetic field is supposed sufficiently small to induce a Zeeman splitting much smaller than the typical line width. By neglecting atomic polarization in the lower level and stimulated emission, an integral equation is derived for the multipole moments of the density matrix of the upper level. This equation shows how the multipole moments at any assigned point of the medium are coupled to the multipole moments relative at a different point as a consequence of the propagation of polarized radiation between the two points. The equation also accounts for the effect of the magnetic field, described by a kernel locally connecting multipole moments of the same rank, and for the role of inelastic and elastic (or depolarizing) collisions. After having given its formal derivation for the general case, the integral equation is particularized to the one-dimensional and two-dimensional cases. For the one-dimensional case of a plane parallel atmosphere, neglecting both the magnetic field and depolarizing collisions, the equation here derived reduces to a previous one given by Rees (1978).
Efficient Kriging via Fast Matrix-Vector Products
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Raykar, Vikas C.; Duraiswami, Ramani; Mount, David M.
2008-01-01
Interpolating scattered data points is a problem of wide ranging interest. Ordinary kriging is an optimal scattered data estimator, widely used in geosciences and remote sensing. A generalized version of this technique, called cokriging, can be used for image fusion of remotely sensed data. However, it is computationally very expensive for large data sets. We demonstrate the time efficiency and accuracy of approximating ordinary kriging through the use of fast matrixvector products combined with iterative methods. We used methods based on the fast Multipole methods and nearest neighbor searching techniques for implementations of the fast matrix-vector products.
NASA Astrophysics Data System (ADS)
Poursina, Mohammad; Anderson, Kurt S.
2014-08-01
This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de
2015-11-14
Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADESmore » can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.« less
Fast Particle Methods for Multiscale Phenomena Simulations
NASA Technical Reports Server (NTRS)
Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew
2000-01-01
We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.
Apparatus for and method of simulating turbulence
Dimas, Athanassios; Lottati, Isaac; Bernard, Peter; Collins, James; Geiger, James C.
2003-01-01
In accordance with a preferred embodiment of the invention, a novel apparatus for and method of simulating physical processes such as fluid flow is provided. Fluid flow near a boundary or wall of an object is represented by a collection of vortex sheet layers. The layers are composed of a grid or mesh of one or more geometrically shaped space filling elements. In the preferred embodiment, the space filling elements take on a triangular shape. An Eulerian approach is employed for the vortex sheets, where a finite-volume scheme is used on the prismatic grid formed by the vortex sheet layers. A Lagrangian approach is employed for the vortical elements (e.g., vortex tubes or filaments) found in the remainder of the flow domain. To reduce the computational time, a hairpin removal scheme is employed to reduce the number of vortex filaments, and a Fast Multipole Method (FMM), preferably implemented using parallel processing techniques, reduces the computation of the velocity field.
A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method
NASA Astrophysics Data System (ADS)
Chen, Leilei; Zheng, Changjun; Chen, Haibo
2013-09-01
This paper presents a wideband fast multipole boundary element method (FMBEM) for two dimensional acoustic design sensitivity analysis based on the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The strongly singular and hypersingular integrals in the sensitivity equations can be evaluated explicitly and directly by using the piecewise constant discretization. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. A set of optimal parameters for the wideband FMBEM design sensitivity analysis are obtained by observing the performances of the wideband FMM algorithm in terms of computing time and memory usage. Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.
Fall, Mandiaye; Boutami, Salim; Glière, Alain; Stout, Brian; Hazart, Jerome
2013-06-01
A combination of the multilevel fast multipole method (MLFMM) and boundary element method (BEM) can solve large scale photonics problems of arbitrary geometry. Here, MLFMM-BEM algorithm based on a scalar and vector potential formulation, instead of the more conventional electric and magnetic field formulations, is described. The method can deal with multiple lossy or lossless dielectric objects of arbitrary geometry, be they nested, in contact, or dispersed. Several examples are used to demonstrate that this method is able to efficiently handle 3D photonic scatterers involving large numbers of unknowns. Absorption, scattering, and extinction efficiencies of gold nanoparticle spheres, calculated by the MLFMM, are compared with Mie's theory. MLFMM calculations of the bistatic radar cross section (RCS) of a gold sphere near the plasmon resonance and of a silica coated gold sphere are also compared with Mie theory predictions. Finally, the bistatic RCS of a nanoparticle gold-silver heterodimer calculated with MLFMM is compared with unmodified BEM calculations.
Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek
2016-10-30
A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hesford, Andrew J.; Chew, Weng C.
2010-01-01
The distorted Born iterative method (DBIM) computes iterative solutions to nonlinear inverse scattering problems through successive linear approximations. By decomposing the scattered field into a superposition of scattering by an inhomogeneous background and by a material perturbation, large or high-contrast variations in medium properties can be imaged through iterations that are each subject to the distorted Born approximation. However, the need to repeatedly compute forward solutions still imposes a very heavy computational burden. To ameliorate this problem, the multilevel fast multipole algorithm (MLFMA) has been applied as a forward solver within the DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The typically regular distribution and shape of scattering elements in the inverse scattering problem allow the method to take advantage of data redundancy and reduce the computational demands of the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like iterations, where partial measurements are used to accelerate convergence. Numerical results demonstrate both the efficiency of the forward solver and the successful application of the inverse method to imaging problems with dimensions in the neighborhood of ten wavelengths. PMID:20707438
OCTGRAV: Sparse Octree Gravitational N-body Code on Graphics Processing Units
NASA Astrophysics Data System (ADS)
Gaburov, Evghenii; Bédorf, Jeroen; Portegies Zwart, Simon
2010-10-01
Octgrav is a very fast tree-code which runs on massively parallel Graphical Processing Units (GPU) with NVIDIA CUDA architecture. The algorithms are based on parallel-scan and sort methods. The tree-construction and calculation of multipole moments is carried out on the host CPU, while the force calculation which consists of tree walks and evaluation of interaction list is carried out on the GPU. In this way, a sustained performance of about 100GFLOP/s and data transfer rates of about 50GB/s is achieved. It takes about a second to compute forces on a million particles with an opening angle of heta approx 0.5. To test the performance and feasibility, we implemented the algorithms in CUDA in the form of a gravitational tree-code which completely runs on the GPU. The tree construction and traverse algorithms are portable to many-core devices which have support for CUDA or OpenCL programming languages. The gravitational tree-code outperforms tuned CPU code during the tree-construction and shows a performance improvement of more than a factor 20 overall, resulting in a processing rate of more than 2.8 million particles per second. The code has a convenient user interface and is freely available for use.
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Atefeh; Miri, MirFaez
2018-01-01
We study the response of a semiconductor quantum dot-metal nanoparticle system to an external field E 0 cos ( ω t ) . The borders between Fano, double peaks, weak transition, strong transition, and bistability regions of the phase diagram move considerably as one regards the multipole effects. The exciton-induced transparency is an artifact of the dipole approximation. The absorption of the nanoparticle, the population inversion of the quantum dot, the upper and lower limits of intensity where bistability occurs, the characteristic time to reach the steady state, and other features of the hybrid system change due to the multipole effects. The phase diagrams corresponding to the fields parallel and perpendicular to the axis of system are quite distinguishable. Thus, both the intensity and the polarization of the incident field can be used to control the system. In particular, the incident polarization can be used to switch on and switch off the bistable behavior. For applications such as miniaturized bistable devices and nanosensors sensitive to variations of the dielectric constant of the surrounding medium, multipole effects must be considered.
NASA Astrophysics Data System (ADS)
Sagui, Celeste; Pedersen, Lee G.; Darden, Thomas A.
2004-01-01
The accurate simulation of biologically active macromolecules faces serious limitations that originate in the treatment of electrostatics in the empirical force fields. The current use of "partial charges" is a significant source of errors, since these vary widely with different conformations. By contrast, the molecular electrostatic potential (MEP) obtained through the use of a distributed multipole moment description, has been shown to converge to the quantum MEP outside the van der Waals surface, when higher order multipoles are used. However, in spite of the considerable improvement to the representation of the electronic cloud, higher order multipoles are not part of current classical biomolecular force fields due to the excessive computational cost. In this paper we present an efficient formalism for the treatment of higher order multipoles in Cartesian tensor formalism. The Ewald "direct sum" is evaluated through a McMurchie-Davidson formalism [L. McMurchie and E. Davidson, J. Comput. Phys. 26, 218 (1978)]. The "reciprocal sum" has been implemented in three different ways: using an Ewald scheme, a particle mesh Ewald (PME) method, and a multigrid-based approach. We find that even though the use of the McMurchie-Davidson formalism considerably reduces the cost of the calculation with respect to the standard matrix implementation of multipole interactions, the calculation in direct space remains expensive. When most of the calculation is moved to reciprocal space via the PME method, the cost of a calculation where all multipolar interactions (up to hexadecapole-hexadecapole) are included is only about 8.5 times more expensive than a regular AMBER 7 [D. A. Pearlman et al., Comput. Phys. Commun. 91, 1 (1995)] implementation with only charge-charge interactions. The multigrid implementation is slower but shows very promising results for parallelization. It provides a natural way to interface with continuous, Gaussian-based electrostatics in the future. It is hoped that this new formalism will facilitate the systematic implementation of higher order multipoles in classical biomolecular force fields.
Acoustic and elastic multiple scattering and radiation from cylindrical structures
NASA Astrophysics Data System (ADS)
Amirkulova, Feruza Abdukadirovna
Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance and is required in a wide variety of physical contexts such as the implementation of "invisibility" cloaks, the effective parameter characterization, and the fabrication of dynamically tunable structures, etc. The dissertation develops fast, rapidly convergent iterative techniques to expedite the solution of MS problems. The formulation of MS problems reduces to a system of linear algebraic equations using Graf's theorem and separation of variables. The iterative techniques are developed using Neumann expansion and Block Toeplitz structure of the linear system; they are very general, and suitable for parallel computations and a large number of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the theoretical predictions are compared to computations obtained by COMSOL. To formulate the MS problem, the transition matrix is obtained by analyzing an acoustic and an elastic single scattering of incident waves by elastic isotropic and anisotropic solids. The mathematical model of wave scattering from multilayered cylindrical and spherical structures is developed by means of an exact solution of dynamic 3D elasticity theory. The recursive impedance matrix algorithm is derived for radially heterogeneous anisotropic solids. An explicit method for finding the impedance in piecewise uniform, transverse-isotropic material is proposed; the solution is compared to elasticity theory solutions involving Buchwald potentials. Furthermore, active exterior cloaking devices are modeled for acoustic and elastic media using multipole sources. A cloaking device can render an object invisible to some incident waves as seen by some external observer. The active cloak is generated by a discrete set of multipole sources that destructively interfere with an incident wave to produce zero total field over a finite spatial region. The approach precisely determines the necessary source amplitudes and enables a cloaked region to be determined using Graf's theorem. To apply the approach, the infinite series of multipole expansions are truncated, and the accuracy of cloaking is studied by modifying the truncation parameter.
Impedance loading and radiation of finite aperture multipole sources in fluid filled boreholes
NASA Astrophysics Data System (ADS)
Geerits, Tim W.; Kranz, Burkhard
2017-04-01
In the exploration of oil and gas finite aperture multipole borehole acoustic sources are commonly used to excite borehole modes in a fluid-filled borehole surrounded by a (poro-) elastic formation. Due to the mutual interaction of the constituent sources and their immediate proximity to the formation it has been unclear how and to what extent these effects influence radiator performance. We present a theory, based on the equivalent surface source formulation for fluid-solid systems that incorporates these 'loading' effects and allows for swift computation of the multipole source dimensionless impedance, the associated radiator motion and the resulting radiated wave field in borehole fluid and formation. Dimensionless impedance results are verified through a comparison with finite element modeling results in the cases of a logging while drilling tool submersed in an unbounded fluid and a logging while drilling tool submersed in a fluid filled borehole surrounded by a fast and a slow formation. In all these cases we consider a monopole, dipole and quadrupole excitation, as these cases are relevant to many borehole acoustic applications. Overall, we obtain a very good agreement.
NASA Astrophysics Data System (ADS)
Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro
2016-08-01
We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 107) to 300 ms (N = 109). These are currently limited by the time for the calculation of the domain decomposition and communication necessary for the interaction calculation. We discuss how we can overcome these bottlenecks.
NASA Astrophysics Data System (ADS)
Liska, Sebastian; Colonius, Tim
2017-02-01
A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, He; Luo, Li -Shi; Li, Rui
To compute the non-oscillating mutual interaction for a systems with N points, the fast multipole method (FMM) has an efficiency that scales linearly with the number of points. Specifically, for Coulomb interaction, FMM can be constructed using either the spherical harmonic functions or the totally symmetric Cartesian tensors. In this paper, we will present that the effciency of the Cartesian tensor-based FMM for the Coulomb interaction can be significantly improved by implementing the traces of the Cartesian tensors in calculation to reduce the independent elements of the n-th rank totally symmetric Cartesian tensor from (n + 1)(n + 2)=2 tomore » 2n + 1. The computation complexity for the operations in FMM are analyzed and expressed as polynomials of the highest rank of the Cartesian tensors. For most operations, the complexity is reduced by one order. Numerical examples regarding the convergence and the effciency of the new algorithm are demonstrated. As a result, a reduction of computation time up to 50% has been observed for a moderate number of points and rank of tensors.« less
Huang, He; Luo, Li -Shi; Li, Rui; ...
2018-05-17
To compute the non-oscillating mutual interaction for a systems with N points, the fast multipole method (FMM) has an efficiency that scales linearly with the number of points. Specifically, for Coulomb interaction, FMM can be constructed using either the spherical harmonic functions or the totally symmetric Cartesian tensors. In this paper, we will present that the effciency of the Cartesian tensor-based FMM for the Coulomb interaction can be significantly improved by implementing the traces of the Cartesian tensors in calculation to reduce the independent elements of the n-th rank totally symmetric Cartesian tensor from (n + 1)(n + 2)=2 tomore » 2n + 1. The computation complexity for the operations in FMM are analyzed and expressed as polynomials of the highest rank of the Cartesian tensors. For most operations, the complexity is reduced by one order. Numerical examples regarding the convergence and the effciency of the new algorithm are demonstrated. As a result, a reduction of computation time up to 50% has been observed for a moderate number of points and rank of tensors.« less
Earthquake models using rate and state friction and fast multipoles
NASA Astrophysics Data System (ADS)
Tullis, T.
2003-04-01
The most realistic current earthquake models employ laboratory-derived non-linear constitutive laws. These are the rate and state friction laws having both a non-linear viscous or direct effect and an evolution effect in which frictional resistance depends on time of stationary contact and has a memory of past slip velocity that fades with slip. The frictional resistance depends on the log of the slip velocity as well as the log of stationary hold time, and the fading memory involves an approximately exponential decay with slip. Due to the nonlinearly of these laws, analytical earthquake models are not attainable and numerical models are needed. The situation is even more difficult if true dynamic models are sought that deal with inertial forces and slip velocities on the order of 1 m/s as are observed during dynamic earthquake slip. Additional difficulties that exist if the dynamic slip phase of earthquakes is modeled arise from two sources. First, many physical processes might operate during dynamic slip, but they are only poorly understood, the relative importance of the processes is unknown, and the processes are even more nonlinear than those described by the current rate and state laws. Constitutive laws describing such behaviors are still being developed. Second, treatment of inertial forces and the influence that dynamic stresses from elastic waves may have on slip on the fault requires keeping track of the history of slip on remote parts of the fault as far into the past as it takes waves to travel from there. This places even more stringent requirements on computer time. Challenges for numerical modeling of complete earthquake cycles are that both time steps and mesh sizes must be small. Time steps must be milliseconds during dynamic slip, and yet models must represent earthquake cycles 100 years or more in length; methods using adaptive step sizes are essential. Element dimensions need to be on the order of meters, both to approximate continuum behavior adequately and to model microseismicity as well as large earthquakes. In order to model significant sized earthquakes this requires millions of elements. Modeling methods like the boundary element method that involve Green's functions normally require computation times that increase with the number N of elements squared, so using large N becomes impossible. We have adapted the Fast Multipole method to this problem in which the influence of sufficiently remote elements are grouped together and the elements are indexed such that the computations more efficient when run on parallel computers. Compute time varies with N log N rather than N squared. Computer programs are available that use this approach (http://www.servogrid.org/slide/GEM/PARK). Whether the multipole approach can be adapted to dynamic modeling is unclear.
Helicon waves in uniform plasmas. II. High m numbers
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Urrutia, J. M.
2015-09-01
Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B0. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel ["Helicon modes in uniform plasmas. I. Low m modes," Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name "helicon" to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B0. The field lines near the axis of helicons are perpendicular to B0 and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B0. The radiation efficiency of multipole antennas has been found to decrease with m.
Amisaki, Takashi; Toyoda, Shinjiro; Miyagawa, Hiroh; Kitamura, Kunihiro
2003-04-15
Evaluation of long-range Coulombic interactions still represents a bottleneck in the molecular dynamics (MD) simulations of biological macromolecules. Despite the advent of sophisticated fast algorithms, such as the fast multipole method (FMM), accurate simulations still demand a great amount of computation time due to the accuracy/speed trade-off inherently involved in these algorithms. Unless higher order multipole expansions, which are extremely expensive to evaluate, are employed, a large amount of the execution time is still spent in directly calculating particle-particle interactions within the nearby region of each particle. To reduce this execution time for pair interactions, we developed a computation unit (board), called MD-Engine II, that calculates nonbonded pairwise interactions using a specially designed hardware. Four custom arithmetic-processors and a processor for memory manipulation ("particle processor") are mounted on the computation board. The arithmetic processors are responsible for calculation of the pair interactions. The particle processor plays a central role in realizing efficient cooperation with the FMM. The results of a series of 50-ps MD simulations of a protein-water system (50,764 atoms) indicated that a more stringent setting of accuracy in FMM computation, compared with those previously reported, was required for accurate simulations over long time periods. Such a level of accuracy was efficiently achieved using the cooperative calculations of the FMM and MD-Engine II. On an Alpha 21264 PC, the FMM computation at a moderate but tolerable level of accuracy was accelerated by a factor of 16.0 using three boards. At a high level of accuracy, the cooperative calculation achieved a 22.7-fold acceleration over the corresponding conventional FMM calculation. In the cooperative calculations of the FMM and MD-Engine II, it was possible to achieve more accurate computation at a comparable execution time by incorporating larger nearby regions. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 582-592, 2003
Infrared/microwave (IR/MW) micromirror array beam combiner design and analysis.
Tian, Yi; Lv, Lijun; Jiang, Liwei; Wang, Xin; Li, Yanhong; Yu, Haiming; Feng, Xiaochen; Li, Qi; Zhang, Li; Li, Zhuo
2013-08-01
We investigated the design method of an infrared (IR)/microwave (MW) micromirror array type of beam combiner. The size of micromirror is in microscopic levels and comparable to MW wavelengths, so that the MW will not react in these dimensions, whereas the much shorter optical wavelengths will be reflected by them. Hence, the MW multilayered substrate was simplified and designed using transmission line theory. The beam combiner used an IR wavefront-division imaging technique to reflect the IR radiation image to the unit under test (UUT)'s pupil in a parallel light path. In addition, the boresight error detected by phase monopulse radar was analyzed using a moment-of method (MoM) and multilevel fast multipole method (MLFMM) acceleration technique. The boresight error introduced by the finite size of the beam combiner was less than 1°. Finally, in order to verify the wavefront-division imaging technique, a prototype of a micromirror array was fabricated, and IR images were tested. The IR images obtained by the thermal imager verified the correctness of the wavefront-division imaging technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, David J., E-mail: dhardy@illinois.edu; Schulten, Klaus; Wolff, Matthew A.
2016-03-21
The multilevel summation method for calculating electrostatic interactions in molecular dynamics simulations constructs an approximation to a pairwise interaction kernel and its gradient, which can be evaluated at a cost that scales linearly with the number of atoms. The method smoothly splits the kernel into a sum of partial kernels of increasing range and decreasing variability with the longer-range parts interpolated from grids of increasing coarseness. Multilevel summation is especially appropriate in the context of dynamics and minimization, because it can produce continuous gradients. This article explores the use of B-splines to increase the accuracy of the multilevel summation methodmore » (for nonperiodic boundaries) without incurring additional computation other than a preprocessing step (whose cost also scales linearly). To obtain accurate results efficiently involves technical difficulties, which are overcome by a novel preprocessing algorithm. Numerical experiments demonstrate that the resulting method offers substantial improvements in accuracy and that its performance is competitive with an implementation of the fast multipole method in general and markedly better for Hamiltonian formulations of molecular dynamics. The improvement is great enough to establish multilevel summation as a serious contender for calculating pairwise interactions in molecular dynamics simulations. In particular, the method appears to be uniquely capable for molecular dynamics in two situations, nonperiodic boundary conditions and massively parallel computation, where the fast Fourier transform employed in the particle–mesh Ewald method falls short.« less
Hardy, David J; Wolff, Matthew A; Xia, Jianlin; Schulten, Klaus; Skeel, Robert D
2016-03-21
The multilevel summation method for calculating electrostatic interactions in molecular dynamics simulations constructs an approximation to a pairwise interaction kernel and its gradient, which can be evaluated at a cost that scales linearly with the number of atoms. The method smoothly splits the kernel into a sum of partial kernels of increasing range and decreasing variability with the longer-range parts interpolated from grids of increasing coarseness. Multilevel summation is especially appropriate in the context of dynamics and minimization, because it can produce continuous gradients. This article explores the use of B-splines to increase the accuracy of the multilevel summation method (for nonperiodic boundaries) without incurring additional computation other than a preprocessing step (whose cost also scales linearly). To obtain accurate results efficiently involves technical difficulties, which are overcome by a novel preprocessing algorithm. Numerical experiments demonstrate that the resulting method offers substantial improvements in accuracy and that its performance is competitive with an implementation of the fast multipole method in general and markedly better for Hamiltonian formulations of molecular dynamics. The improvement is great enough to establish multilevel summation as a serious contender for calculating pairwise interactions in molecular dynamics simulations. In particular, the method appears to be uniquely capable for molecular dynamics in two situations, nonperiodic boundary conditions and massively parallel computation, where the fast Fourier transform employed in the particle-mesh Ewald method falls short.
NASA Astrophysics Data System (ADS)
Hardy, David J.; Wolff, Matthew A.; Xia, Jianlin; Schulten, Klaus; Skeel, Robert D.
2016-03-01
The multilevel summation method for calculating electrostatic interactions in molecular dynamics simulations constructs an approximation to a pairwise interaction kernel and its gradient, which can be evaluated at a cost that scales linearly with the number of atoms. The method smoothly splits the kernel into a sum of partial kernels of increasing range and decreasing variability with the longer-range parts interpolated from grids of increasing coarseness. Multilevel summation is especially appropriate in the context of dynamics and minimization, because it can produce continuous gradients. This article explores the use of B-splines to increase the accuracy of the multilevel summation method (for nonperiodic boundaries) without incurring additional computation other than a preprocessing step (whose cost also scales linearly). To obtain accurate results efficiently involves technical difficulties, which are overcome by a novel preprocessing algorithm. Numerical experiments demonstrate that the resulting method offers substantial improvements in accuracy and that its performance is competitive with an implementation of the fast multipole method in general and markedly better for Hamiltonian formulations of molecular dynamics. The improvement is great enough to establish multilevel summation as a serious contender for calculating pairwise interactions in molecular dynamics simulations. In particular, the method appears to be uniquely capable for molecular dynamics in two situations, nonperiodic boundary conditions and massively parallel computation, where the fast Fourier transform employed in the particle-mesh Ewald method falls short.
Multipolar Ewald methods, 1: theory, accuracy, and performance.
Giese, Timothy J; Panteva, Maria T; Chen, Haoyuan; York, Darrin M
2015-02-10
The Ewald, Particle Mesh Ewald (PME), and Fast Fourier–Poisson (FFP) methods are developed for systems composed of spherical multipole moment expansions. A unified set of equations is derived that takes advantage of a spherical tensor gradient operator formalism in both real space and reciprocal space to allow extension to arbitrary multipole order. The implementation of these methods into a novel linear-scaling modified “divide-and-conquer” (mDC) quantum mechanical force field is discussed. The evaluation times and relative force errors are compared between the three methods, as a function of multipole expansion order. Timings and errors are also compared within the context of the quantum mechanical force field, which encounters primary errors related to the quality of reproducing electrostatic forces for a given density matrix and secondary errors resulting from the propagation of the approximate electrostatics into the self-consistent field procedure, which yields a converged, variational, but nonetheless approximate density matrix. Condensed-phase simulations of an mDC water model are performed with the multipolar PME method and compared to an electrostatic cutoff method, which is shown to artificially increase the density of water and heat of vaporization relative to full electrostatic treatment.
Shieh, Bernard; Sabra, Karim G; Degertekin, F Levent
2016-11-01
A boundary element model provides great flexibility for the simulation of membrane-type micromachined ultrasonic transducers (MUTs) in terms of membrane shape, actuating mechanism, and array layout. Acoustic crosstalk is accounted for through a mutual impedance matrix that captures the primary crosstalk mechanism of dispersive-guided modes generated at the fluid-solid interface. However, finding the solution to the fully populated boundary element matrix equation using standard techniques requires computation time and memory usage that scales by the cube and by the square of the number of nodes, respectively, limiting simulation to a small number of membranes. We implement a solver with improved speed and efficiency through the application of a multilevel fast multipole algorithm (FMA). By approximating the fields of collections of nodes using multipole expansions of the free-space Green's function, an FMA solver can enable the simulation of hundreds of thousands of nodes while incurring an approximation error that is controllable. Convergence is drastically improved using a problem-specific block-diagonal preconditioner. We demonstrate the solver's capabilities by simulating a 32-element 7-MHz 1-D capacitive MUT (CMUT) phased array with 2880 membranes. The array is simulated using 233280 nodes for a very wide frequency band up to 50 MHz. For a simulation with 15210 nodes, the FMA solver performed ten times faster and used 32 times less memory than a standard solver based on LU decomposition. We investigate the effects of mesh density and phasing on the predicted array response and find that it is necessary to use about seven nodes over the width of the membrane to observe convergence of the solution-even below the first membrane resonance frequency-due to the influence of higher order membrane modes.
Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs
2010-05-31
Todor , Karhúnen-Loève Approximation of Random Fields by General- ized Fast Multipole Methods, Journal of Computational Physics 217(2006), 100–122. [19...20] R. Todor , Robust eigenvalue computation for smoothing operators, SIAM J. Num. Anal. 44(2006), 865–878. 29 [21] R. Todor and Ch. Schwab, Convergence
Planning & Priority Setting for Basic Research
2010-05-05
Integrated into numerous commercial codes in aerospace, automotive , semiconductor, and chemical industries Fast Multipole Methods (ONR 31) Applications... Use knowledge (even failures) to reduce risk in acquisition Provide the basis for future Navy and arine Corps syste s Ensure research...relevancy to Naval S&T strategy Transition pro ising Basic Research to applications Use kno ledge (even failures) to reduce risk in acquisition Maintain
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Gao, Hai-Feng; Du, Lei; Chen, Hai-Bo; Zhang, Chuanzeng
2016-01-01
An accurate numerical solver is developed in this paper for eigenproblems governed by the Helmholtz equation and formulated through the boundary element method. A contour integral method is used to convert the nonlinear eigenproblem into an ordinary eigenproblem, so that eigenvalues can be extracted accurately by solving a set of standard boundary element systems of equations. In order to accelerate the solution procedure, the parameters affecting the accuracy and efficiency of the method are studied and two contour paths are compared. Moreover, a wideband fast multipole method is implemented with a block IDR (s) solver to reduce the overall solution cost of the boundary element systems of equations with multiple right-hand sides. The Burton-Miller formulation is employed to identify the fictitious eigenfrequencies of the interior acoustic problems with multiply connected domains. The actual effect of the Burton-Miller formulation on tackling the fictitious eigenfrequency problem is investigated and the optimal choice of the coupling parameter as α = i / k is confirmed through exterior sphere examples. Furthermore, the numerical eigenvalues obtained by the developed method are compared with the results obtained by the finite element method to show the accuracy and efficiency of the developed method.
Traction reveals mechanisms of wall effects for microswimmers near boundaries
NASA Astrophysics Data System (ADS)
Shen, Xinhui; Marcos, Fu, Henry C.
2017-03-01
The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.
Traction reveals mechanisms of wall effects for microswimmers near boundaries.
Shen, Xinhui; Marcos; Fu, Henry C
2017-03-01
The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.
A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems
NASA Astrophysics Data System (ADS)
Dölz, Jürgen; Harbrecht, Helmut; Kurz, Stefan; Schöps, Sebastian; Wolf, Felix
2018-03-01
We present an indirect higher order boundary element method utilising NURBS mappings for exact geometry representation and an interpolation-based fast multipole method for compression and reduction of computational complexity, to counteract the problems arising due to the dense matrices produced by boundary element methods. By solving Laplace and Helmholtz problems via a single layer approach we show, through a series of numerical examples suitable for easy comparison with other numerical schemes, that one can indeed achieve extremely high rates of convergence of the pointwise potential through the utilisation of higher order B-spline-based ansatz functions.
3D Lagrangian VPM: simulations of the near-wake of an actuator disc and horizontal axis wind turbine
NASA Astrophysics Data System (ADS)
Berdowski, T.; Ferreira, C.; Walther, J.
2016-09-01
The application of a 3-dimensional Lagrangian vortex particle method has been assessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments In COntrolled conditions) experiment. The method was developed in the framework of the open- source Parallel Particle-Mesh library for handling the efficient data-parallelism on a CPU (Central Processing Unit) cluster, and utilized a O(N log N)-type fast multipole method for computational acceleration. Simulations with the actuator disc resulted in a wake expansion, velocity deficit profile, and induction factor that showed a close agreement with theoretical, numerical, and experimental results from literature. Also the shear layer expansion was present; the Kelvin-Helmholtz instability in the shear layer was triggered due to the round-off limitations of a numerical method, but this instability was delayed to beyond 1 diameter downstream due to the particle smoothing. Simulations with the 3-bladed turbine demonstrated that a purely 3-dimensional flow representation is challenging to model with particles. The manifestation of local complex flow structures of highly stretched vortices made the simulation unstable, but this was successfully counteracted by the application of a particle strength exchange scheme. The axial and radial velocity profile over the near wake have been compared to that of the original MEXICO experiment, which showed close agreement between results.
Helicon waves in uniform plasmas. II. High m numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
2015-09-15
Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B{sub 0}. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel [“Helicon modes in uniform plasmas.more » I. Low m modes,” Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name “helicon” to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B{sub 0}. The field lines near the axis of helicons are perpendicular to B{sub 0} and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B{sub 0}. The radiation efficiency of multipole antennas has been found to decrease with m.« less
Revision of FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions
NASA Astrophysics Data System (ADS)
Zhang, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai
2010-12-01
FMM-YUKAWA is a mathematical software package primarily for rapid evaluation of the screened Coulomb interactions of N particles in three dimensional space. Since its release, we have revised and re-organized the data structure, software architecture, and user interface, for the purpose of enabling more flexible, broader and easier use of the package. The package and its documentation are available at http://www.fastmultipole.org/, along with a few other closely related mathematical software packages. New version program summaryProgram title: FMM-Yukawa Catalogue identifier: AEEQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 2.0 No. of lines in distributed program, including test data, etc.: 78 704 No. of bytes in distributed program, including test data, etc.: 854 265 Distribution format: tar.gz Programming language: FORTRAN 77, FORTRAN 90, and C. Requires gcc and gfortran version 4.4.3 or later Computer: All Operating system: Any Classification: 4.8, 4.12 Catalogue identifier of previous version: AEEQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2331 Does the new version supersede the previous version?: Yes Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: The new version of fast multipole method (FMM) that diagonalizes the multipole-to-local translation operator is applied with the tree structure adaptive to sample particle locations. Reasons for new version: To handle much larger particle ensembles, to enable the iterative use of the subroutines in a solver, and to remove potential contention in assignments for parallelization. Summary of revisions: The software package FMM-Yukawa has been revised and re-organized in data structure, software architecture, programming methods, and user interface. The revision enables more flexible use of the package and economic use of memory resources. It consists of five stages. The initial stage (stage 1) determines, based on the accuracy requirement and FMM theory, the length of multipole expansions and the number of quadrature points for diagonalization, and loads the quadrature nodes and weights that are computed off line. Stage 2 constructs the oct-tree and interaction lists, with adaptation to the sparsity or density of particles and employing a dynamic memory allocation scheme at every tree level. Stage 3 executes the core FMM subroutine for numerical calculation of the particle interactions. The subroutine can now be used iteratively as in a solver, while the particle locations remain the same. Stage 4 releases the memory allocated in Stage 2 for the adaptive tree and interaction lists. The user can modify the iterative routine easily. When the particle locations are changed such as in a molecular dynamics simulation, stage 2 to 4 can also be used together repeatedly. The final stage releases the memory space used for the quadrature and other remaining FMM parameters. Programs at the stage level and at the user interface are re-written in the C programming language, while most of the translation and interaction operations remain in FORTRAN. As a result of the change in data structures and memory allocation, the revised package can accommodate much larger particle ensembles while maintaining the same accuracy-efficiency performance. The new version is also developed as an important precursor to its parallel counterpart on multi-core or many core processors in a shared memory programming environment. Particularly, in order to ensure mutual exclusion in concurrent updates without incurring extra latency, we have replaced all the assignment statements at a source box that put its data to multiple target boxes with assignments at every target box that gather data from source boxes. This amounts to replacing the column version of matrix-vector multiplication with the row version. The matrix here, however, is in compressive representation. Sufficient care is taken in the revision not to alter the algorithmic complexity or numerical behavior, as concurrent writing potentially takes place in the upward calculation of the multipole expansion coefficients, interactions at every level of the FMM tree, and downward calculation of the local expansion coefficients. The software modules and their compositions are also organized according to the stages they are used. Demonstration files and makefiles for merging the user routines and the library routines are provided. Restrictions: Accuracy requirement is described in terms of three or six digits. Higher multiples of three digits will be allowed in a later version. Finer decimation in digits for accuracy specification may or may not be necessary. Unusual features: Ready and friendly for customized use and instrumental in expression of concurrency and dependency for efficient parallelization. Running time: The running time depends linearly on the number N of particles, and varies with the distribution characteristics of the particle distribution. It also depends on the accuracy requirement, a higher accuracy requirement takes relatively longer time. The code outperforms the direct summation method when N⩾750.
Fast Multipole / Wavelet-IML Hybrids for Electromagnetic Analysis
2005-07-20
this project and honors/awards/degrees received - Mingyu Lu (Ph.D. granted in August 21, 2002; after that Post-doctoral Fellow on this project; he...Lu, K. Aygun, Mingyu Lu, and E. Michielssen, “Low frequency PWTD kernels”, To be submitted to Journal of Computational Physics, draft available upon...transient scattering phenomena involving large surfaces using integral equations. 18. M. Lu, K. Aygun, Mingyu Lu, and E. Michielssen, “Low frequency
Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems
2014-10-13
function and wide band Fast multipole methods for Hankel waves. (2) a new linear scaling discontinuous Galerkin density functional theory, which provide a...inflow boundary condition for Wigner quantum transport equations. Also, a book titled "Computational Methods for Electromagnetic Phenomena...equationsin layered media with FMM for Bessel functions , Science China Mathematics, (12 2013): 2561. doi: TOTAL: 6 Number of Papers published in peer
Karhunen Loève approximation of random fields by generalized fast multipole methods
NASA Astrophysics Data System (ADS)
Schwab, Christoph; Todor, Radu Alexandru
2006-09-01
KL approximation of a possibly instationary random field a( ω, x) ∈ L2( Ω, d P; L∞( D)) subject to prescribed meanfield Ea(x)=∫a(ω,x) dP(ω) and covariance Va(x,x')=∫(a(ω,x)-Ea(x))(a(ω,x')-Ea(x')) dP(ω) in a polyhedral domain D⊂Rd is analyzed. We show how for stationary covariances Va( x, x') = ga(| x - x'|) with ga( z) analytic outside of z = 0, an M-term approximate KL-expansion aM( ω, x) of a( ω, x) can be computed in log-linear complexity. The approach applies in arbitrary domains D and for nonseparable covariances Ca. It involves Galerkin approximation of the KL eigenvalue problem by discontinuous finite elements of degree p ⩾ 0 on a quasiuniform, possibly unstructured mesh of width h in D, plus a generalized fast multipole accelerated Krylov-Eigensolver. The approximate KL-expansion aM( x, ω) of a( x, ω) has accuracy O(exp(- bM1/ d)) if ga is analytic at z = 0 and accuracy O( M- k/ d) if ga is Ck at zero. It is obtained in O( MN(log N) b) operations where N = O( h- d).
Gumerov, Nail A; Duraiswami, Ramani
2009-01-01
The development of a fast multipole method (FMM) accelerated iterative solution of the boundary element method (BEM) for the Helmholtz equations in three dimensions is described. The FMM for the Helmholtz equation is significantly different for problems with low and high kD (where k is the wavenumber and D the domain size), and for large problems the method must be switched between levels of the hierarchy. The BEM requires several approximate computations (numerical quadrature, approximations of the boundary shapes using elements), and these errors must be balanced against approximations introduced by the FMM and the convergence criterion for iterative solution. These different errors must all be chosen in a way that, on the one hand, excess work is not done and, on the other, that the error achieved by the overall computation is acceptable. Details of translation operators for low and high kD, choice of representations, and BEM quadrature schemes, all consistent with these approximations, are described. A novel preconditioner using a low accuracy FMM accelerated solver as a right preconditioner is also described. Results of the developed solvers for large boundary value problems with 0.0001 less, similarkD less, similar500 are presented and shown to perform close to theoretical expectations.
An optimal FFT-based anisotropic power spectrum estimator
NASA Astrophysics Data System (ADS)
Hand, Nick; Li, Yin; Slepian, Zachary; Seljak, Uroš
2017-07-01
Measurements of line-of-sight dependent clustering via the galaxy power spectrum's multipole moments constitute a powerful tool for testing theoretical models in large-scale structure. Recent work shows that this measurement, including a moving line-of-sight, can be accelerated using Fast Fourier Transforms (FFTs) by decomposing the Legendre polynomials into products of Cartesian vectors. Here, we present a faster, optimal means of using FFTs for this measurement. We avoid redundancy present in the Cartesian decomposition by using a spherical harmonic decomposition of the Legendre polynomials. With this method, a given multipole of order l requires only 2l+1 FFTs rather than the (l+1)(l+2)/2 FFTs of the Cartesian approach. For the hexadecapole (l = 4), this translates to 40% fewer FFTs, with increased savings for higher l. The reduction in wall-clock time enables the calculation of finely-binned wedges in P(k,μ), obtained by computing multipoles up to a large lmax and combining them. This transformation has a number of advantages. We demonstrate that by using non-uniform bins in μ, we can isolate plane-of-sky (angular) systematics to a narrow bin at 0μ simeq while eliminating the contamination from all other bins. We also show that the covariance matrix of clustering wedges binned uniformly in μ becomes ill-conditioned when combining multipoles up to large values of lmax, but that the problem can be avoided with non-uniform binning. As an example, we present results using lmax=16, for which our procedure requires a factor of 3.4 fewer FFTs than the Cartesian method, while removing the first μ bin leads only to a 7% increase in statistical error on f σ8, as compared to a 54% increase with lmax=4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, Nick; Seljak, Uroš; Li, Yin
Measurements of line-of-sight dependent clustering via the galaxy power spectrum's multipole moments constitute a powerful tool for testing theoretical models in large-scale structure. Recent work shows that this measurement, including a moving line-of-sight, can be accelerated using Fast Fourier Transforms (FFTs) by decomposing the Legendre polynomials into products of Cartesian vectors. Here, we present a faster, optimal means of using FFTs for this measurement. We avoid redundancy present in the Cartesian decomposition by using a spherical harmonic decomposition of the Legendre polynomials. With this method, a given multipole of order ℓ requires only 2ℓ+1 FFTs rather than the (ℓ+1)(ℓ+2)/2 FFTsmore » of the Cartesian approach. For the hexadecapole (ℓ = 4), this translates to 40% fewer FFTs, with increased savings for higher ℓ. The reduction in wall-clock time enables the calculation of finely-binned wedges in P ( k ,μ), obtained by computing multipoles up to a large ℓ{sub max} and combining them. This transformation has a number of advantages. We demonstrate that by using non-uniform bins in μ, we can isolate plane-of-sky (angular) systematics to a narrow bin at 0μ ≅ while eliminating the contamination from all other bins. We also show that the covariance matrix of clustering wedges binned uniformly in μ becomes ill-conditioned when combining multipoles up to large values of ℓ{sub max}, but that the problem can be avoided with non-uniform binning. As an example, we present results using ℓ{sub max}=16, for which our procedure requires a factor of 3.4 fewer FFTs than the Cartesian method, while removing the first μ bin leads only to a 7% increase in statistical error on f σ{sub 8}, as compared to a 54% increase with ℓ{sub max}=4.« less
The p({gamma}, {pi}{sup 0}) reaction in the {Delta}(1232) region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, R.M.; Gutenberg, J.; Mukhopadhyay, N.C.
Linearly polarized photons from the Laser Electron Gamma Source (LEGS) have been used by Blanpied et al. to study the p({gamma}, {pi}{sup 0}) reaction, looking for the E2 transition amplitude in the nucleon to Delta(1232) excitation. These authors contrast their measured cross-section ratio d{sigma}{parallel}/d{sigma}{perpendicular}, with expectations of earlier analyses, by the authors and Wittman (DMW), by Nozawa et al. (NBL), and using the multipoles of Behrends and Donnachie directly, and find {open_quotes}large discrepancies{close_quotes} among them. Here the authors clarify these discrepancies. The crucial difference between DMW and NBL calculations is the inclusion of the u-channel {Delta} contribution in DMW, omittedmore » in NBL. The authors find for a fair, though not perfect, agreement with the new data: E{sub 1+}{sup {pi}}{sup 0} {r_arrow}2.1E{sub 1+}{sup {pi}}{sup 0}, keeping other multipoles fixed.« less
Beyond the plane-parallel approximation for redshift surveys
NASA Astrophysics Data System (ADS)
Castorina, Emanuele; White, Martin
2018-06-01
Redshift -space distortions privilege the location of the observer in cosmological redshift surveys, breaking the translational symmetry of the underlying theory. This violation of statistical homogeneity has consequences for the modelling of clustering observables, leading to what are frequently called `wide-angle effects'. We study these effects analytically, computing their signature in the clustering of the multipoles in configuration and Fourier space. We take into account both physical wide-angle contributions as well as the terms generated by the galaxy selection function. Similar considerations also affect the way power spectrum estimators are constructed. We quantify in an analytical way the biases that enter and clarify the relation between what we measure and the underlying theoretical modelling. The presence of an angular window function is also discussed. Motivated by this analysis, we present new estimators for the three dimensional Cartesian power spectrum and bispectrum multipoles written in terms of spherical Fourier-Bessel coefficients. We show how the latter have several interesting properties, allowing in particular a clear separation between angular and radial modes.
Atomic Forces for Geometry-Dependent Point Multipole and Gaussian Multipole Models
Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G.
2010-01-01
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In the current study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives ∂Dlm′m/∂Ω. The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen bonded dimers are used to test the inter-molecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential (ESP). The electrostatic energies and forces are compared to their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, while geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. PMID:20839297
Alignments of parity even/odd-only multipoles in CMB
NASA Astrophysics Data System (ADS)
Aluri, Pavan K.; Ralston, John P.; Weltman, Amanda
2017-12-01
We compare the statistics of parity even and odd multipoles of the cosmic microwave background (CMB) sky from Planck full mission temperature measurements. An excess power in odd multipoles compared to even multipoles has previously been found on large angular scales. Motivated by this apparent parity asymmetry, we evaluate directional statistics associated with even compared to odd multipoles, along with their significances. Primary tools are the Power tensor and Alignment tensor statistics. We limit our analysis to the first 60 multipoles i.e. l = [2, 61]. We find no evidence for statistically unusual alignments of even parity multipoles. More than one independent statistic finds evidence for alignments of anisotropy axes of odd multipoles, with a significance equivalent to ∼2σ or more. The robustness of alignment axes is tested by making Galactic cuts and varying the multipole range. Very interestingly, the region spanned by the (a)symmetry axes is found to broadly contain other parity (a)symmetry axes previously observed in the literature.
An inventory of bispectrum estimators for redshift space distortions
NASA Astrophysics Data System (ADS)
Regan, Donough
2017-12-01
In order to best improve constraints on cosmological parameters and on models of modified gravity using current and future galaxy surveys it is necessary maximally exploit the available data. As redshift-space distortions mean statistical translation invariance is broken for galaxy observations, this will require measurement of the monopole, quadrupole and hexadecapole of not just the galaxy power spectrum, but also the galaxy bispectrum. A recent (2015) paper by Scoccimarro demonstrated how the standard bispectrum estimator may be expressed in terms of Fast Fourier Transforms (FFTs) to afford an extremely efficient algorithm, allowing the bispectrum multipoles on all scales and triangle shapes to be measured in comparable time to those of the power spectrum. In this paper we present a suite of alternative proxies to measure the three-point correlation multipoles. In particular, we describe a modal (or plane wave) decomposition to capture the information in each multipole in a series of basis coefficients, and also describe three compressed estimators formed using the skew-spectrum, the line correlation function and the integrated bispectrum, respectively. As well as each of the estimators offering a different measurement channel, and thereby a robustness check, it is expected that some (especially the modal estimator) will offer a vast data compression, and so a much reduced covariance matrix. This compression may be vital to reduce the computational load involved in extracting the available three-point information.
HPAM: Hirshfeld Partitioned Atomic Multipoles
Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.
2011-01-01
An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274
Neutral Pion Electroproduction in the Δ Resonance Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villano, Anthony
2007-11-01
The electroproduction of baryon resonances at high Q 2 is examined. Analysis focuses on the Δ(1232) resonance via exclusive pseudoscalar meson production of π 0 particles. Differential cross sections are extracted for exclusive π 0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Δ(1232) resonance. The transition to pQCD is discussed in terms of E2/M1 and other multipoles. The helicity amplitude A 3/2 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Δ region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor Gmore » $$*\\atop{M}$$ is extracted along with the scalar to magnetic dipole ratio C2/M1.« less
Development and Application of a Parallel LCAO Cluster Method
NASA Astrophysics Data System (ADS)
Patton, David C.
1997-08-01
CPU intensive steps in the SCF electronic structure calculations of clusters and molecules with a first-principles LCAO method have been fully parallelized via a message passing paradigm. Identification of the parts of the code that are composed of many independent compute-intensive steps is discussed in detail as they are the most readily parallelized. Most of the parallelization involves spatially decomposing numerical operations on a mesh. One exception is the solution of Poisson's equation which relies on distribution of the charge density and multipole methods. The method we use to parallelize this part of the calculation is quite novel and is covered in detail. We present a general method for dynamically load-balancing a parallel calculation and discuss how we use this method in our code. The results of benchmark calculations of the IR and Raman spectra of PAH molecules such as anthracene (C_14H_10) and tetracene (C_18H_12) are presented. These benchmark calculations were performed on an IBM SP2 and a SUN Ultra HPC server with both MPI and PVM. Scalability and speedup for these calculations is analyzed to determine the efficiency of the code. In addition, performance and usage issues for MPI and PVM are presented.
Contract W911NF-09-1-0488 (Rush University Medical Center)
2012-11-23
algorithm. In Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, pages 12�21, New York, 1993. ACM. [8] R. Yokota, T. Hamada, J. P. Bardhan , M...computing gravity anom- alies. Geophysical Journal International, 2011. to appear. [13] R. Yokota, T. Hamada, J. P. Bardhan , M. G. Knepley, and L. A. Barba...extension of the petfmm a fast multipole library. Presentation at WCCM 2010, Sydney Australia, 2010. [15] J. P. Bardhan . Interpreting the Coulomb
Fast algorithms for evaluating the stress field of dislocation lines in anisotropic elastic media
NASA Astrophysics Data System (ADS)
Chen, C.; Aubry, S.; Oppelstrup, T.; Arsenlis, A.; Darve, E.
2018-06-01
In dislocation dynamics (DD) simulations, the most computationally intensive step is the evaluation of the elastic interaction forces among dislocation ensembles. Because the pair-wise interaction between dislocations is long-range, this force calculation step can be significantly accelerated by the fast multipole method (FMM). We implemented and compared four different methods in isotropic and anisotropic elastic media: one based on the Taylor series expansion (Taylor FMM), one based on the spherical harmonics expansion (Spherical FMM), one kernel-independent method based on the Chebyshev interpolation (Chebyshev FMM), and a new kernel-independent method that we call the Lagrange FMM. The Taylor FMM is an existing method, used in ParaDiS, one of the most popular DD simulation softwares. The Spherical FMM employs a more compact multipole representation than the Taylor FMM does and is thus more efficient. However, both the Taylor FMM and the Spherical FMM are difficult to derive in anisotropic elastic media because the interaction force is complex and has no closed analytical formula. The Chebyshev FMM requires only being able to evaluate the interaction between dislocations and thus can be applied easily in anisotropic elastic media. But it has a relatively large memory footprint, which limits its usage. The Lagrange FMM was designed to be a memory-efficient black-box method. Various numerical experiments are presented to demonstrate the convergence and the scalability of the four methods.
Reduced-rank approximations to the far-field transform in the gridded fast multipole method
NASA Astrophysics Data System (ADS)
Hesford, Andrew J.; Waag, Robert C.
2011-05-01
The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.
Reduced-Rank Approximations to the Far-Field Transform in the Gridded Fast Multipole Method.
Hesford, Andrew J; Waag, Robert C
2011-05-10
The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.
Reduced-Rank Approximations to the Far-Field Transform in the Gridded Fast Multipole Method
Hesford, Andrew J.; Waag, Robert C.
2011-01-01
The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly. PMID:21552350
Sheng, Weitian; Zhou, Chenming; Liu, Yang; Bagci, Hakan; Michielssen, Eric
2018-01-01
A fast and memory efficient three-dimensional full-wave simulator for analyzing electromagnetic (EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with conductors is proposed. The simulator relies on Muller and combined field surface integral equations (SIEs) to account for scattering from mine walls and conductors, respectively. During the iterative solution of the system of SIEs, the simulator uses a fast multipole method-fast Fourier transform (FMM-FFT) scheme to reduce CPU and memory requirements. The memory requirement is further reduced by compressing large data structures via singular value and Tucker decompositions. The efficiency, accuracy, and real-world applicability of the simulator are demonstrated through characterization of EM wave propagation in electrically large mine tunnels/galleries loaded with conducting cables and mine carts. PMID:29726545
Flexibly imposing periodicity in kernel independent FMM: A multipole-to-local operator approach
NASA Astrophysics Data System (ADS)
Yan, Wen; Shelley, Michael
2018-02-01
An important but missing component in the application of the kernel independent fast multipole method (KIFMM) is the capability for flexibly and efficiently imposing singly, doubly, and triply periodic boundary conditions. In most popular packages such periodicities are imposed with the hierarchical repetition of periodic boxes, which may give an incorrect answer due to the conditional convergence of some kernel sums. Here we present an efficient method to properly impose periodic boundary conditions using a near-far splitting scheme. The near-field contribution is directly calculated with the KIFMM method, while the far-field contribution is calculated with a multipole-to-local (M2L) operator which is independent of the source and target point distribution. The M2L operator is constructed with the far-field portion of the kernel function to generate the far-field contribution with the downward equivalent source points in KIFMM. This method guarantees the sum of the near-field & far-field converge pointwise to results satisfying periodicity and compatibility conditions. The computational cost of the far-field calculation observes the same O (N) complexity as FMM and is designed to be small by reusing the data computed by KIFMM for the near-field. The far-field calculations require no additional control parameters, and observes the same theoretical error bound as KIFMM. We present accuracy and timing test results for the Laplace kernel in singly periodic domains and the Stokes velocity kernel in doubly and triply periodic domains.
Multipole expansion method for supernova neutrino oscillations
Duan, Huaiyu; Shalgar, Shashank
2014-10-31
Here, we demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.
Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals
NASA Astrophysics Data System (ADS)
Hayami, Satoru; Kusunose, Hiroaki
2018-03-01
We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.
A polyvalent harmonic coil testing method for small-aperture magnets
NASA Astrophysics Data System (ADS)
Arpaia, Pasquale; Buzio, Marco; Golluccio, Giancarlo; Walckiers, Louis
2012-08-01
A method to characterize permanent and fast-pulsed iron-dominated magnets with small apertures is presented. The harmonic coil measurement technique is enhanced specifically for small-aperture magnets by (1) in situ calibration, for facing search-coil production inaccuracy, (2) rotating the magnet around its axis, for correcting systematic effects, and (3) measuring magnetic fluxes by stationary coils at different angular positions for measuring fast pulsed magnets. This method allows a quadrupole magnet for particle accelerators to be characterized completely, by assessing multipole field components, magnetic axis position, and field direction. In this paper, initially the metrological problems arising from testing small-aperture magnets are highlighted. Then, the basic ideas of the proposed method and the architecture of the corresponding measurement system are illustrated. Finally, experimental validation results are shown for small-aperture permanent and fast-ramped quadrupole magnets for the new linear accelerator Linac4 at CERN (European Organization for Nuclear Research).
Windowed multipole for cross section Doppler broadening
NASA Astrophysics Data System (ADS)
Josey, C.; Ducru, P.; Forget, B.; Smith, K.
2016-02-01
This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.
Liu, Yangfan; Bolton, J Stuart
2016-08-01
The (Cartesian) multipole series, i.e., the series comprising monopole, dipoles, quadrupoles, etc., can be used, as an alternative to the spherical or cylindrical wave series, in representing sound fields in a wide range of problems, such as source radiation, sound scattering, etc. The proofs of the completeness of the spherical and cylindrical wave series in these problems are classical results, and it is also generally agreed that the Cartesian multipole series spans the same space as the spherical waves: a rigorous mathematical proof of that statement has, however, not been presented. In the present work, such a proof of the completeness of the Cartesian multipole series, both in two and three dimensions, is given, and the linear dependence relations among different orders of multipoles are discussed, which then allows one to easily extract a basis from the multipole series. In particular, it is concluded that the multipoles comprising the two highest orders in the series form a basis of the whole series, since the multipoles of all the lower source orders can be expressed as a linear combination of that basis.
Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs
NASA Astrophysics Data System (ADS)
Choi, Woo-Yong; Chatterjee, Mainak
2015-03-01
With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.
A unified formulation of dichroic signals using the Borrmann effect and twisted photon beams.
Collins, Stephen P; Lovesey, Stephen W
2018-05-21
Dichroic X-ray signals derived from the Borrmann effect and a twisted photon beam with topological charge l = 1 are formulated with an effective wavevector. The unification applies for non-magnetic and magnetic materials. Electronic degrees of freedom associated with an ion are encapsulated in multipoles previously used to interpret conventional dichroism and Bragg diffraction enhanced by an atomic resonance. A dichroic signal exploiting the Borrmann effect with a linearly polarized beam presents charge-like multipoles that include a hexadecapole. A difference between dichroic signals obtained with a twisted beam carrying spin polarization (circular polarization) and opposite winding numbers presents charge-like atomic multipoles, whereas a twisted beam carrying linear polarization alone presents magnetic (time-odd) multipoles. Charge-like multipoles include a quadrupole, and magnetic multipoles include a dipole and an octupole. We discuss the practicalities and relative merits of spectroscopy exploiting the two remarkably closely-related processes. Signals using beams with topological charges l ≥ 2 present additional atomic multipoles.
Efficient Parallel Formulations of Hierarchical Methods and Their Applications
NASA Astrophysics Data System (ADS)
Grama, Ananth Y.
1996-01-01
Hierarchical methods such as the Fast Multipole Method (FMM) and Barnes-Hut (BH) are used for rapid evaluation of potential (gravitational, electrostatic) fields in particle systems. They are also used for solving integral equations using boundary element methods. The linear systems arising from these methods are dense and are solved iteratively. Hierarchical methods reduce the complexity of the core matrix-vector product from O(n^2) to O(n log n) and the memory requirement from O(n^2) to O(n). We have developed highly scalable parallel formulations of a hybrid FMM/BH method that are capable of handling arbitrarily irregular distributions. We apply these formulations to astrophysical simulations of Plummer and Gaussian galaxies. We have used our parallel formulations to solve the integral form of the Laplace equation. We show that our parallel hierarchical mat-vecs yield high efficiency and overall performance even on relatively small problems. A problem containing approximately 200K nodes takes under a second to compute on 256 processors and yet yields over 85% efficiency. The efficiency and raw performance is expected to increase for bigger problems. For the 200K node problem, our code delivers about 5 GFLOPS of performance on a 256 processor T3D. This is impressive considering the fact that the problem has floating point divides and roots, and very little locality resulting in poor cache performance. A dense matrix-vector product of the same dimensions would require about 0.5 TeraBytes of memory and about 770 TeraFLOPS of computing speed. Clearly, if the loss in accuracy resulting from the use of hierarchical methods is acceptable, our code yields significant savings in time and memory. We also study the convergence of a GMRES solver built around this mat-vec. We accelerate the convergence of the solver using three preconditioning techniques: diagonal scaling, block-diagonal preconditioning, and inner-outer preconditioning. We study the performance and parallel efficiency of these preconditioned solvers. Using this solver, we solve dense linear systems with hundreds of thousands of unknowns. Solving a 105K unknown problem takes about 10 minutes on a 64 processor T3D. Until very recently, boundary element problems of this magnitude could not even be generated, let alone solved.
Jakobsen, Sofie; Jensen, Frank
2014-12-09
We assess the accuracy of force field (FF) electrostatics at several levels of approximation from the standard model using fixed partial charges to conformational specific multipole fits including up to quadrupole moments. Potential-derived point charges and multipoles are calculated using least-squares methods for a total of ∼1000 different conformations of the 20 natural amino acids. Opposed to standard charge fitting schemes the procedure presented in the current work employs fitting points placed on a single isodensity surface, since the electrostatic potential (ESP) on such a surface determines the ESP at all points outside this surface. We find that the effect of multipoles beyond partial atomic charges is of the same magnitude as the effect due to neglecting conformational dependency (i.e., polarizability), suggesting that the two effects should be included at the same level in FF development. The redundancy at both the partial charge and multipole levels of approximation is quantified. We present an algorithm which stepwise reduces or increases the dimensionality of the charge or multipole parameter space and provides an upper limit of the ESP error that can be obtained at a given truncation level. Thereby, we can identify a reduced set of multipole moments corresponding to ∼40% of the total number of multipoles. This subset of parameters provides a significant improvement in the representation of the ESP compared to the simple point charge model and close to the accuracy obtained using the complete multipole parameter space. The selection of the ∼40% most important multipole sites is highly transferable among different conformations, and we find that quadrupoles are of high importance for atoms involved in π-bonding, since the anisotropic electric field generated in such regions requires a large degree of flexibility.
Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations
NASA Astrophysics Data System (ADS)
Detrixhe, Miles; Gibou, Frédéric
2016-10-01
The fast sweeping method is a popular algorithm for solving a variety of static Hamilton-Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.
Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.
2011-01-01
Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This paper employees the Multilevel Fast Multipole Method (MLFMM) feature of a commercial electromagnetic tool to model the fairing electromagnetic environment in the presence of an internal transmitter. This work is an extension of the perfect electric conductor model that was used to represent the bare aluminum internal fairing cavity. This fairing model includes typical acoustic blanketing commonly used in vehicle fairings. Representative material models within FEKO were successfully used to simulate the test case.
Elongation cutoff technique armed with quantum fast multipole method for linear scaling.
Korchowiec, Jacek; Lewandowski, Jakub; Makowski, Marcin; Gu, Feng Long; Aoki, Yuriko
2009-11-30
A linear-scaling implementation of the elongation cutoff technique (ELG/C) that speeds up Hartree-Fock (HF) self-consistent field calculations is presented. The cutoff method avoids the known bottleneck of the conventional HF scheme, that is, diagonalization, because it operates within the low dimension subspace of the whole atomic orbital space. The efficiency of ELG/C is illustrated for two model systems. The obtained results indicate that the ELG/C is a very efficient sparse matrix algebra scheme. Copyright 2009 Wiley Periodicals, Inc.
Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu; University of California Santa Barbara, Santa Barbara, CA, 93106; Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu
The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling,more » and show state-of-the-art speedup values for the fast sweeping method.« less
Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes
NASA Astrophysics Data System (ADS)
Wölbern, I.; Löbl, U.; Rümpker, G.
2014-04-01
In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.
Son of IXION: A Steady State Centrifugally Confined Plasma for Fusion*
NASA Astrophysics Data System (ADS)
Hassam, Adil
1996-11-01
A magnetic confinement scheme in which the inertial, u.grad(u), forces effect parallel confinement is proposed. The basic geometry is mirror-like as far as the poloidal field goes or, more simply, multipole (FM-1) type. The rotation is toroidal in this geometry. A supersonic rotation can effect complete parallel confinement, with the usual magnetic mirror force rendered irrelevant. The rotation shear, in addition, aids in the suppression of the flute mode. This suppression is not complete which indicates the addition of a toroidal field, at maximum of the order of the poloidal field. We show that at rotation in excess of Mach 3, the parallel particle and heat losses can be minimized to below the Lawson breakeven point. The crossfield transport can be expected to be better than tokamaks on account of the large velocity shear. Other advantages of the scheme are that it is steady state and disruption free. An exploratory experiment that tests equilibrium, parallel detachment, and MHD stability is proposed. The concept resembles earlier (Geneva, 1958) experiments on "homopolar generators" and a mirror configuration called IXION. Ixion, Greek mythological king, was forever strapped to a rotating, flaming wheel. *Work supported by DOE
Parallel and pipeline computation of fast unitary transforms
NASA Technical Reports Server (NTRS)
Fino, B. J.; Algazi, V. R.
1975-01-01
The letter discusses the parallel and pipeline organization of fast-unitary-transform algorithms such as the fast Fourier transform, and points out the efficiency of a combined parallel-pipeline processor of a transform such as the Haar transform, in which (2 to the n-th power) -1 hardware 'butterflies' generate a transform of order 2 to the n-th power every computation cycle.
Multipole Vectors: Decomposing Functions on a Sphere
NASA Astrophysics Data System (ADS)
Copi, C. J.; Huterer, D.; Starkman, G. D.
2011-09-01
We propose a novel representation of cosmic microwave anisotropy maps, where each multipole order l is represented by l unit vectors pointing in directions on the sky and an overall magnitude. These "multipole vectors and scalars" transform as vectors under rotations. Like the usual spherical harmonics, multipole vectors form an irreducible representation of the proper rotation group SO(3). However, they are related to the familiar spherical harmonic coefficients, alm, in a nonlinear way, and are therefore sensitive to different aspects of the CMB anisotropy. Nevertheless, it is straightforward to determine the multipole vectors for a given CMB map and we present an algorithm to compute them. Using the WMAP full-sky maps, we perform several tests of the hypothesis that the CMB anisotropy is statistically isotropic and Gaussian random. We find that the result from comparing the oriented area of planes defined by these vectors between multipole pairs 2<=l1!=l2<=8 is inconsistent with the isotropic Gaussian hypothesis at the 99.4% level for the ILC map and at 98.9% level for the cleaned map of Tegmark et al. A particular correlation is suggested between the l=3 and l=8 multipoles, as well as several other pairs. This effect is entirely different from the now familiar planarity and alignment of the quadrupole and octupole: while the aforementioned is fairly unlikely, the multipole vectors indicate correlations not expected in Gaussian random skies that make them unusually likely. The result persists after accounting for pixel noise and after assuming a residual 10% dust contamination in the cleaned WMAP map. While the definitive analysis of these results will require more work, we hope that multipole vectors will become a valuable tool for various cosmological tests, in particular those of cosmic isotropy.
Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.
NASA Astrophysics Data System (ADS)
Elliott, William Dewey
1995-01-01
A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over several simulation timesteps. One MD application described here highlights the utility of including long range contributions to Lennard-Jones potential in constant pressure simulations. Another application shows the time dependence of long range forces in a multiple time step MD simulation.
None, None
2015-09-28
Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less
Multipole moments in the effective fragment potential method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertoni, Colleen; Slipchenko, Lyudmila V.; Misquitta, Alston J.
In the effective fragment potential (EFP) method the Coulomb potential is represented using a set of multipole moments generated by the distributed multipole analysis (DMA) method. Misquitta, Stone, and Fazeli recently developed a basis space-iterated stockholder atom (BS-ISA) method to generate multipole moments. This study assesses the accuracy of the EFP interaction energies using sets of multipole moments generated from the BS-ISA method, and from several versions of the DMA method (such as analytic and numeric grid-based), with varying basis sets. Both methods lead to reasonable results, although using certain implementations of the DMA method can result in large errors.more » With respect to the CCSD(T)/CBS interaction energies, the mean unsigned error (MUE) of the EFP method for the S22 data set using BS-ISA–generated multipole moments and DMA-generated multipole moments (using a small basis set and the analytic DMA procedure) is 0.78 and 0.72 kcal/mol, respectively. Here, the MUE accuracy is on the same order as MP2 and SCS-MP2. The MUEs are lower than in a previous study benchmarking the EFP method without the EFP charge transfer term, demonstrating that the charge transfer term increases the accuracy of the EFP method. Regardless of the multipole moment method used, it is likely that much of the error is due to an insufficient short-range electrostatic term (i.e., charge penetration term), as shown by comparisons with symmetry-adapted perturbation theory.« less
Multipole moments in the effective fragment potential method
Bertoni, Colleen; Slipchenko, Lyudmila V.; Misquitta, Alston J.; ...
2017-02-17
In the effective fragment potential (EFP) method the Coulomb potential is represented using a set of multipole moments generated by the distributed multipole analysis (DMA) method. Misquitta, Stone, and Fazeli recently developed a basis space-iterated stockholder atom (BS-ISA) method to generate multipole moments. This study assesses the accuracy of the EFP interaction energies using sets of multipole moments generated from the BS-ISA method, and from several versions of the DMA method (such as analytic and numeric grid-based), with varying basis sets. Both methods lead to reasonable results, although using certain implementations of the DMA method can result in large errors.more » With respect to the CCSD(T)/CBS interaction energies, the mean unsigned error (MUE) of the EFP method for the S22 data set using BS-ISA–generated multipole moments and DMA-generated multipole moments (using a small basis set and the analytic DMA procedure) is 0.78 and 0.72 kcal/mol, respectively. Here, the MUE accuracy is on the same order as MP2 and SCS-MP2. The MUEs are lower than in a previous study benchmarking the EFP method without the EFP charge transfer term, demonstrating that the charge transfer term increases the accuracy of the EFP method. Regardless of the multipole moment method used, it is likely that much of the error is due to an insufficient short-range electrostatic term (i.e., charge penetration term), as shown by comparisons with symmetry-adapted perturbation theory.« less
A note on parallel and pipeline computation of fast unitary transforms
NASA Technical Reports Server (NTRS)
Fino, B. J.; Algazi, V. R.
1974-01-01
The parallel and pipeline organization of fast unitary transform algorithms such as the Fast Fourier Transform are discussed. The efficiency is pointed out of a combined parallel-pipeline processor of a transform such as the Haar transform in which 2 to the n minus 1 power hardware butterflies generate a transform of order 2 to the n power every computation cycle.
Multipole Structure and Coordinate Systems
ERIC Educational Resources Information Center
Burko, Lior M.
2007-01-01
Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahrdt, J.; Frentrup, W.; Gaupp, A.
BESSY plans to go to topping up operation in the near future. A high injection efficiency is essential to avoid particle losses inside the undulator magnets and to ensure a low radiation background in the beamlines. Dynamic and static multipoles of the insertion devices have to be minimized to accomplish this requirement. APPLE II devices show strong dynamic multipoles in the elliptical and vertical polarization mode. Measurements before and after shimming of these multipoles are presented. The static multipoles of the BESSY UE56-2 which are due to systematic block inhomgeneities have successfully been shimmed recovering the full dynamic aperture.
The active site of hen egg-white lysozyme: flexibility and chemical bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Held, Jeanette, E-mail: jeanette.netzel@uni-bayreuth.de; Smaalen, Sander van
Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) ofmore » HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C—H⋯O hydrogen bonds are identified by means of the existence of bond critical points (BCPs) in the multipole electron density. It is proposed that these weak interactions might be important for defining the tertiary structure and activity of HEWL. The deprotonated state of Glu35 prevents a distinction between the Phillips and Koshland mechanisms.« less
First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries
NASA Astrophysics Data System (ADS)
London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco
2018-04-01
Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2 ,|m |=2 ) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m |)=(2 ,2 ),(3 ,3 ),(4 ,4 ),(2 ,1 ),(3 ,2 ),(4 ,3 ) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.
Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results
NASA Astrophysics Data System (ADS)
Lee, Seokcheon
2018-02-01
Recently, the power spectrum (PS) multipoles using the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample are analyzed [1]. The based model for the analysis is the so-called TNS quasi-linear model and the analysis provides the multipoles up to the hexadecapole [2]. Thus, one might be able to recover the real-space linear matter PS by using the combinations of multipoles to investigate the cosmology [3]. We provide the analytic form of the ratio of quadrupole (hexadecapole) to monopole moments of the quasi-linear PS including the Fingers-of-God (FoG) effect to recover the real-space PS in the linear regime. One expects that observed values of the ratios of multipoles should be consistent with those of the linear theory at large scales. Thus, we compare the ratios of multipoles of the linear theory, including the FoG effect with the measured values. From these, we recover the linear matter power spectra in real-space. These recovered power spectra are consistent with the linear matter power spectra.
London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco
2018-04-20
Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2,|m|=2) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m|)=(2,2),(3,3),(4,4),(2,1),(3,2),(4,3) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.
Gravitational scattering of electromagnetic radiation
NASA Technical Reports Server (NTRS)
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Preparing the BESSY APPLE Undulators for Top-Up Operation
NASA Astrophysics Data System (ADS)
Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.
2007-01-01
BESSY plans to go to topping up operation in the near future. A high injection efficiency is essential to avoid particle losses inside the undulator magnets and to ensure a low radiation background in the beamlines. Dynamic and static multipoles of the insertion devices have to be minimized to accomplish this requirement. APPLE II devices show strong dynamic multipoles in the elliptical and vertical polarization mode. Measurements before and after shimming of these multipoles are presented. The static multipoles of the BESSY UE56-2 which are due to systematic block inhomgeneities have successfully been shimmed recovering the full dynamic aperture.
Searching the Force Field Electrostatic Multipole Parameter Space.
Jakobsen, Sofie; Jensen, Frank
2016-04-12
We show by tensor decomposition analyses that the molecular electrostatic potential for amino acid peptide models has an effective rank less than twice the number of atoms. This rank indicates the number of parameters that can be derived from the electrostatic potential in a statistically significant way. Using this as a guideline, we investigate different strategies for deriving a reduced set of atomic charges, dipoles, and quadrupoles capable of reproducing the reference electrostatic potential with a low error. A full combinatorial search of selected parameter subspaces for N-methylacetamide and a cysteine peptide model indicates that there are many different parameter sets capable of providing errors close to that of the global minimum. Among the different reduced multipole parameter sets that have low errors, there is consensus that atoms involved in π-bonding require higher order multipole moments. The possible correlation between multipole parameters is investigated by exhaustive searches of combinations of up to four parameters distributed in all possible ways on all possible atomic sites. These analyses show that there is no advantage in considering combinations of multipoles compared to a simple approach where the importance of each multipole moment is evaluated sequentially. When combined with possible weighting factors related to the computational efficiency of each type of multipole moment, this may provide a systematic strategy for determining a computational efficient representation of the electrostatic component in force field calculations.
Multipole surface plasmons in metallic nanohole arrays
NASA Astrophysics Data System (ADS)
Nishida, Munehiro; Hatakenaka, Noriyuki; Kadoya, Yutaka
2015-06-01
The quasibound electromagnetic modes for the arrays of nanoholes perforated in thin gold film are analyzed both numerically by the rigorous coupled wave analysis (RCWA) method and semianalytically by the coupled mode method. It is shown that when the size of the nanohole occupies a large portion of the unit cell, the surface plasmon polaritons (SPPs) at both sides of the film are combined by the higher order waveguide modes of the holes to produce multipole surface plasmons: coupled surface plasmon modes with multipole texture on the elec-tric field distributions. Further, it is revealed that the multipole texture either enhances or suppresses the couplings between SPPs depending on their diffraction orders and also causes band inversion and reconstruction in the coupled SPP band structure. Due to the multipole nature of the quasibound modes, multiple dark modes coexist to produce a variety of Fano resonance structures on the transmission and reflection spectra.
Mean-field theory for multipole ordering in f-electron systems on the basis of a j-j coupling scheme
NASA Astrophysics Data System (ADS)
Yamamura, Ryosuke; Hotta, Takashi
2018-05-01
We develop a microscopic theory for multipole ordering, applicable to the system with plural numbers of f electrons per ion, from an itinerant picture on the basis of a j-j coupling scheme. For the purpose, by introducing the Γ8 Hubbard Hamiltonian as the minimum model to discuss the multipole ordering in f-electron systems, we describe the mean-field approximation in terms of the multipole operators. For the case of n = 2 , where n denotes the average f-electron number per ion, we analyze the model on a simple cubic lattice to obtain the multipole phase diagram. In particular, we find the order of non-Kramers Γ3 quadrupoles, O20 and O22 , with different ordering vectors. We attempt to explain the phase diagram from the discussion on the interaction energy.
Fast Multipole Methods for Three-Dimensional N-body Problems
NASA Technical Reports Server (NTRS)
Koumoutsakos, P.
1995-01-01
We are developing computational tools for the simulations of three-dimensional flows past bodies undergoing arbitrary motions. High resolution viscous vortex methods have been developed that allow for extended simulations of two-dimensional configurations such as vortex generators. Our objective is to extend this methodology to three dimensions and develop a robust computational scheme for the simulation of such flows. A fundamental issue in the use of vortex methods is the ability of employing efficiently large numbers of computational elements to resolve the large range of scales that exist in complex flows. The traditional cost of the method scales as Omicron (N(sup 2)) as the N computational elements/particles induce velocities at each other, making the method unacceptable for simulations involving more than a few tens of thousands of particles. In the last decade fast methods have been developed that have operation counts of Omicron (N log N) or Omicron (N) (referred to as BH and GR respectively) depending on the details of the algorithm. These methods are based on the observation that the effect of a cluster of particles at a certain distance may be approximated by a finite series expansion. In order to exploit this observation we need to decompose the element population spatially into clusters of particles and build a hierarchy of clusters (a tree data structure) - smaller neighboring clusters combine to form a cluster of the next size up in the hierarchy and so on. This hierarchy of clusters allows one to determine efficiently when the approximation is valid. This algorithm is an N-body solver that appears in many fields of engineering and science. Some examples of its diverse use are in astrophysics, molecular dynamics, micro-magnetics, boundary element simulations of electromagnetic problems, and computer animation. More recently these N-body solvers have been implemented and applied in simulations involving vortex methods. Koumoutsakos and Leonard (1995) implemented the GR scheme in two dimensions for vector computer architectures allowing for simulations of bluff body flows using millions of particles. Winckelmans presented three-dimensional, viscous simulations of interacting vortex rings, using vortons and an implementation of a BH scheme for parallel computer architectures. Bhatt presented a vortex filament method to perform inviscid vortex ring interactions, with an alternative implementation of a BH scheme for a Connection Machine parallel computer architecture.
Fast parallel approach for 2-D DHT-based real-valued discrete Gabor transform.
Tao, Liang; Kwan, Hon Keung
2009-12-01
Two-dimensional fast Gabor transform algorithms are useful for real-time applications due to the high computational complexity of the traditional 2-D complex-valued discrete Gabor transform (CDGT). This paper presents two block time-recursive algorithms for 2-D DHT-based real-valued discrete Gabor transform (RDGT) and its inverse transform and develops a fast parallel approach for the implementation of the two algorithms. The computational complexity of the proposed parallel approach is analyzed and compared with that of the existing 2-D CDGT algorithms. The results indicate that the proposed parallel approach is attractive for real time image processing.
First-principles Theory of Magnetic Multipoles in Condensed Matter Systems
NASA Astrophysics Data System (ADS)
Suzuki, Michi-To; Ikeda, Hiroaki; Oppeneer, Peter M.
2018-04-01
The multipole concept, which characterizes the spacial distribution of scalar and vector objects by their angular dependence, has already become widely used in various areas of physics. In recent years it has become employed to systematically classify the anisotropic distribution of electrons and magnetization around atoms in solid state materials. This has been fuelled by the discovery of several physical phenomena that exhibit unusual higher rank multipole moments, beyond that of the conventional degrees of freedom as charge and magnetic dipole moment. Moreover, the higher rank electric/magnetic multipole moments have been suggested as promising order parameters in exotic hidden order phases. While the experimental investigations of such anomalous phases have provided encouraging observations of multipolar order, theoretical approaches have developed at a slower pace. In particular, a materials' specific theory has been missing. The multipole concept has furthermore been recognized as the key quantity which characterizes the resultant configuration of magnetic moments in a cluster of atomic moments. This cluster multipole moment has then been introduced as macroscopic order parameter for a noncollinear antiferromagnetic structure in crystals that can explain unusual physical phenomena whose appearance is determined by the magnetic point group symmetry. It is the purpose of this review to discuss the recent developments in the first-principles theory investigating multipolar degrees of freedom in condensed matter systems. These recent developments exemplify that ab initio electronic structure calculations can unveil detailed insight in the mechanism of physical phenomena caused by the unconventional, multipole degree of freedom.
Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations
NASA Astrophysics Data System (ADS)
Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.
2010-12-01
We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian Pacific Congress on Computational Mechanics, July 2010, iopscience.iop.org/1757-899X/10/1/012012. [4] G. Morra, P. Chatelain, P. Tackley and P. Koumoutzakos, 2007, Large scale three-dimensional boundary element simulation of subduction, in Proceeding International Conference on Computational Science - Part III, LNCS 4489, pp. 1122-1129. Interaction between two subducting slabs.
NASA Astrophysics Data System (ADS)
Tatchyn, Roman
1997-05-01
In recent years studies have been initiated on a new class of multipole field generators consisting of cuboid planar permanent magnet (PM) pieces arranged in bi-planar arrays of 2-fold rotational symmetry(R. Tatchyn, "Planar Permanent Magnet Multipoles: for Particle Accelerator and Storage Ring Applications ," IEEE Trans. Mag. 30, 5050(1994).)(T. Cremer, R. Tatchyn, "Planar Permanent Magnet Multipoles: Measurements and Configurations," in Proceedings of the 1995 Particle Accelerator Conference, IEEE Catalog No. 95CH35843, paper FAQ-20.). These structures, first introduced for Free Electron Laser (FEL) applications(R. Tatchyn, "Selected applications of planar permanent magnet multipoles in FEL insertion device design," NIM A341, 449(1994).), are based on reducing the rotational symmetry of conventional N-pole field generators from N-fold to 2-fold. One consequence of this reduction is a large higher-multipole content in a planar PM multipole's field at distances relatively close to the structure's axis, making it generally unsuitable for applications requiring a large high-quality field aperture. In this paper we outline an economical field-cancellation algorithm that can substantially decrease the harmonic content of a planar PM's field without breaking its biplanar geometry or 2-fold rotational symmetry. This will enable planar PM multipoles to be employed in a broader range of applications than heretofore possible, in particular as distributed focusing elements installed in insertion device gaps on synchrotron storage rings. This accomplishment is expected to remove the conventional restriction of an insertion device's length to the scale of the local focusing beta, enabling short-period, small-gap undulators to be installed and operated as high-brightness sources on lower-energy storage rings(R. Tatchyn, P. Csonka, A. Toor, "Perspectives on micropole undulators in synchrotron radiation technology," Rev. Sci. Instrum. 60(7), 1796(1989).). Operation as ordinary focusing elements in storage ring magnetic lattices, as well as the performance of other high-quality multipole applications, should also becomes possible with the realization of the proposed structures.
NASA Astrophysics Data System (ADS)
Copi, Craig J.; Huterer, Dragan; Starkman, Glenn D.
2004-08-01
We propose a novel representation of cosmic microwave anisotropy maps, where each multipole order l is represented by l unit vectors pointing in directions on the sky and an overall magnitude. These “multipole vectors and scalars” transform as vectors under rotations. Like the usual spherical harmonics, multipole vectors form an irreducible representation of the proper rotation group SO(3). However, they are related to the familiar spherical harmonic coefficients alm in a nonlinear way and are therefore sensitive to different aspects of the cosmic microwave background (CMB) anisotropy. Nevertheless, it is straightforward to determine the multipole vectors for a given CMB map and we present an algorithm to compute them. A code implementing this algorithm is available at http://www.phys.cwru.edu/projects/mpvectors/. Using the Wilkinson Microwave Anisotropy Probe (WMAP) full-sky maps, we perform several tests of the hypothesis that the CMB anisotropy is statistically isotropic and Gaussian random. We find that the result from comparing the oriented area of planes defined by these vectors between multipole pairs 2⩽l1≠l2⩽8 is inconsistent with the isotropic Gaussian hypothesis at the 99.4% level for the internal linear combination map and at 98.9% level for the cleaned map of Tegmark et al. A particular correlation is suggested between the l=3 and l=8 multipoles, as well as several other pairs. This effect is entirely different from the now familiar planarity and alignment of the quadrupole and octupole: while the aforementioned is fairly unlikely, the multipole vectors indicate correlations not expected in Gaussian random skies that make them unusually likely. The result persists after accounting for pixel noise and after assuming a residual 10% dust contamination in the cleaned WMAP map. While the definitive analysis of these results will require more work, we hope that multipole vectors will become a valuable tool for various cosmological tests, in particular those of cosmic isotropy.
Analysis techniques for diagnosing runaway ion distributions in the reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J., E-mail: jkim536@wisc.edu; Anderson, J. K.; Capecchi, W.
2016-11-15
An advanced neutral particle analyzer (ANPA) on the Madison Symmetric Torus measures deuterium ions of energy ranges 8-45 keV with an energy resolution of 2-4 keV and time resolution of 10 μs. Three different experimental configurations measure distinct portions of the naturally occurring fast ion distributions: fast ions moving parallel, anti-parallel, or perpendicular to the plasma current. On a radial-facing port, fast ions moving perpendicular to the current have the necessary pitch to be measured by the ANPA. With the diagnostic positioned on a tangent line through the plasma core, a chord integration over fast ion density, background neutral density,more » and local appropriate pitch defines the measured sample. The plasma current can be reversed to measure anti-parallel fast ions in the same configuration. Comparisons of energy distributions for the three configurations show an anisotropic fast ion distribution favoring high pitch ions.« less
2015-06-01
5110P and 16 dx360M4 nodes each with one NVIDIA Kepler K20M/K40M GPU. Each node contained dual Intel Xeon E5-2670 (Sandy Bridge) central processing...kernel and as such does not employ multiple processors. This work makes use of a single processing core and a single NVIDIA Kepler K40 GK110...bandwidth (2 × 16 slot), 7.877 GFloat/s; Kepler K40 peak, 4,290 × 1 billion floating-point operations (GFLOPs), and 288 GB/s Kepler K40 memory
A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazockdast, Ehssan, E-mail: ehssan@cims.nyu.edu; Center for Computational Biology, Simons Foundation, New York, NY 10010; Rahimian, Abtin, E-mail: arahimian@acm.org
We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs),more » and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid–structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler–Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber–fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of semi-flexible fibers.« less
A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics
NASA Astrophysics Data System (ADS)
Nazockdast, Ehssan; Rahimian, Abtin; Zorin, Denis; Shelley, Michael
2017-01-01
We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid-structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler-Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber-fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of semi-flexible fibers.
Geometry-dependent atomic multipole models for the water molecule.
Loboda, O; Millot, C
2017-10-28
Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.
Geometry-dependent atomic multipole models for the water molecule
NASA Astrophysics Data System (ADS)
Loboda, O.; Millot, C.
2017-10-01
Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.
15 cm mercury multipole thruster
NASA Technical Reports Server (NTRS)
Longhurst, G. R.; Wilbur, P. J.
1978-01-01
A 15 cm multipole ion thruster was adapted for use with mercury propellant. During the optimization process three separable functions of magnetic fields within the discharge chamber were identified: (1) they define the region where the bulk of ionization takes place, (2) they influence the magnitudes and gradients in plasma properties in this region, and (3) they control impedance between the cathode and main discharge plasmas in hollow cathode thrusters. The mechanisms for these functions are discussed. Data from SERT II and cusped magnetic field thrusters are compared with those measured in the multipole thruster. The performance of this thruster is shown to be similar to that of the other two thrusters. Means of achieving further improvement in the performance of the multipole thruster are suggested.
Moroi, Takeo; Takahashi, Tomo
2004-03-05
We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.
Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharchenko, V.F., E-mail: vkharchenko@bitp.kiev.ua
2015-04-15
The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determinemore » the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities.« less
Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.
Tao, Liang; Kwan, Hon Keung
2012-07-01
Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.
Electromagnetic multipole moments of the P_c^+(4380) pentaquark in light-cone QCD
NASA Astrophysics Data System (ADS)
Özdem, U.; Azizi, K.
2018-05-01
We calculate the electromagnetic multipole moments of the P_c^+(4380) pentaquark by modeling it as the diquark-diquark-antiquark and {\\bar{D}}^*Σ _c molecular state with quantum numbers J^P = 3/2^-. In particular, the magnetic dipole, electric quadrupole and magnetic octupole moments of this particle are extracted in the framework of light-cone QCD sum rule. The values of the electromagnetic multipole moments obtained via two pictures differ substantially from each other, which can be used to pin down the underlying structure of P_c^+(4380). The comparison of any future experimental data on the electromagnetic multipole moments of the P_c^+(4380) pentaquark with the results of the present work can shed light on the nature and inner quark organization of this state.
NASA Astrophysics Data System (ADS)
Wang, Qian; Ma, Ping; Lu, Hong; Tang, Xue-Zheng; Hua, Ning; Tang, Fa-Kuan
2009-12-01
Two cardiac functional models are constructed in this paper. One is a single current model and the other is a current multipole model. Parameters denoting the properties of these two models are calculated by a least-square fit to the measurements using a simulated annealing algorithm. The measured signals are detected at 36 observation nodes by a superconducting quantum interference device (SQUID). By studying the trends of position, orientation and magnitude of the single current dipole model and the current multipole model in the QRS complex during one time span and comparing the reconstructed magnetocardiography (MCG) of these two cardiac models, we find that the current multipole model is a more appropriate model to represent cardiac electrophysiological activity.
Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations
NASA Technical Reports Server (NTRS)
Fijany, Amir
1993-01-01
In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.
Some fast elliptic solvers on parallel architectures and their complexities
NASA Technical Reports Server (NTRS)
Gallopoulos, E.; Saad, Y.
1989-01-01
The discretization of separable elliptic partial differential equations leads to linear systems with special block tridiagonal matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconstant coefficients. A method was recently proposed to parallelize and vectorize BCR. In this paper, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational compelxity lower than that of parallel BCR.
Some fast elliptic solvers on parallel architectures and their complexities
NASA Technical Reports Server (NTRS)
Gallopoulos, E.; Saad, Youcef
1989-01-01
The discretization of separable elliptic partial differential equations leads to linear systems with special block triangular matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconsistant coefficients. A method was recently proposed to parallelize and vectorize BCR. Here, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches, including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational complexity lower than that of parallel BCR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudka, A. P.
A program for the refinement of the model of aspherical atoms within the Stewart-Hansen-Coppens formalism has been developed. Deformation scattering up to the 8th expansion order in multipoles has been taken into account for the first time. The program was tested for 11 crystals. The effect of the result of interpolation of radial scattering curves on the model parameters is considered. The importance of introduction of multipoles of high (5th-8th) orders into the model for a number of crystals is shown. The use of the extended multipole model for a silicon crystal revealed some new specific features of the electronicmore » structure: consideration of multipoles up to the 7th order makes it possible to explain the intensity of the forbidden 222 reflection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Santanu; Souradeep, Tarun, E-mail: santanud@iucaa.ernet.in, E-mail: tarun@iucaa.ernet.in
2015-05-01
A number of studies of WMAP and Planck claimed the low multipole (specially quadrupole) power deficiency in CMB power spectrum. Anomaly in the orientations of the low multipoles have also been claimed. There is a possibility that the power deficiency at low multipoles may not be of primordial origin and is only an observation artifact coming from the scan procedure adapted in the WMAP or Planck satellites. Therefore, it is always important to investigate all the observational artifacts that can mimic them. The CMB dipole which is much higher than the quadrupole can leak to the higher multipoles due tomore » the non-symmetric beam shape of the WMAP or Planck. We observe that a non-negligible amount of power from the dipole can get transferred to the quadrupole and the higher multipoles due to the non-symmetric beam shapes and contaminate the observed measurements. The orientation of the quadrupole generated by this power transfer is surprisingly very close to the quadrupole observed from the WMAP and Planck maps. However, our analysis shows that the orientation of the quadrupole can not be explained using only the dipole power leakage. In this paper we calculate the amount of quadrupole power leakage for different WMAP bands. For Planck we present the results in terms of upper limits on asymmetric beam parameters that can lead to significant amount of power leakage.« less
An implicit boundary integral method for computing electric potential of macromolecules in solvent
NASA Astrophysics Data System (ADS)
Zhong, Yimin; Ren, Kui; Tsai, Richard
2018-04-01
A numerical method using implicit surface representations is proposed to solve the linearized Poisson-Boltzmann equation that arises in mathematical models for the electrostatics of molecules in solvent. The proposed method uses an implicit boundary integral formulation to derive a linear system defined on Cartesian nodes in a narrowband surrounding the closed surface that separates the molecule and the solvent. The needed implicit surface is constructed from the given atomic description of the molecules, by a sequence of standard level set algorithms. A fast multipole method is applied to accelerate the solution of the linear system. A few numerical studies involving some standard test cases are presented and compared to other existing results.
Fast adaptive composite grid methods on distributed parallel architectures
NASA Technical Reports Server (NTRS)
Lemke, Max; Quinlan, Daniel
1992-01-01
The fast adaptive composite (FAC) grid method is compared with the adaptive composite method (AFAC) under variety of conditions including vectorization and parallelization. Results are given for distributed memory multiprocessor architectures (SUPRENUM, Intel iPSC/2 and iPSC/860). It is shown that the good performance of AFAC and its superiority over FAC in a parallel environment is a property of the algorithm and not dependent on peculiarities of any machine.
NASA Astrophysics Data System (ADS)
Schanz, Martin; Ye, Wenjing; Xiao, Jinyou
2016-04-01
Transient problems can often be solved with transformation methods, where the inverse transformation is usually performed numerically. Here, the discrete Fourier transform in combination with the exponential window method is compared with the convolution quadrature method formulated as inverse transformation. Both are inverse Laplace transforms, which are formally identical but use different complex frequencies. A numerical study is performed, first with simple convolution integrals and, second, with a boundary element method (BEM) for elastodynamics. Essentially, when combined with the BEM, the discrete Fourier transform needs less frequency calculations, but finer mesh compared to the convolution quadrature method to obtain the same level of accuracy. If further fast methods like the fast multipole method are used to accelerate the boundary element method the convolution quadrature method is better, because the iterative solver needs much less iterations to converge. This is caused by the larger real part of the complex frequencies necessary for the calculation, which improves the conditions of system matrix.
Apparatus and method of dissociating ions in a multipole ion guide
Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.
2014-07-08
A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.
Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fijany, A.; Milman, M.; Redding, D.
1994-12-31
In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm,more » designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.« less
Strong Evidence for Nucleon Resonances near 1900 MeV
Anisovich, A. V.; Burkert, V.; Hadžimehmedović, M.; ...
2017-08-11
Data on the reaction yp→K +A from the CLAS experiments are used to derive the leading multipoles, E 0+, M 1-, E 1+, and M 1+, from the production threshold to 2180 MeV in 24 slices of the invariant mass. The four multipoles are determined without any constraints. The multipoles are fitted using a multichannel L+P model that allows us to search for singularities and to extract the positions of poles on the complex energy plane in an almost model-independent method. The multipoles are also used as additional constraints in an energy-dependent analysis of a large body of pion andmore » photoinduced reactions within the Bonn-Gatchina partial wave analysis. The study confirms the existence of poles due to nucleon resonances with spin parity J P=1/2 -, 1/2 +, and 3/2 + in the region at about 1.9 GeV.« less
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Lai, J.; Luo, N.; Sun, S.; Shibata, M.; Ornstein, R.; Rein, R.
1991-01-01
The origin of torsional potentials in H3CSSCH3, H3CSSH, and HOOH and the anisotropy of the local charge distribution has been analyzed in terms of atomic multipoles calculated from the ab initio LCAO-MO-SCF wave function in the 6-31G* basis set. The results indicate that for longer -S-S-bonds the major contribution to these torsional barriers are electrostatic interactions of the atomic multipoles located on two atoms forming the rotated bond. This finding demonstrates the important role of electrostatic 1-2 interatomic interactions, usually neglected in conformational studies. It also opens the possibility to derive directly from accurate ab initio wave functions a simple nonempirical torsional potential involving atomic multipoles of two bonded atoms defining the torsional angle. For shorter -O-O- bonds, use of more precise models and inclusion of 1-3 interactions seems to be necessary.
Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Keller, D. A.; Ornstein, R. L.; Rein, R.
1993-01-01
The defects in atomic monopole models of molecular charge distribution have been analyzed for several model-blocked peptides and compared with accurate quantum chemical values. The results indicate that the angular characteristics of the molecular electrostatic potential around functional groups capable of forming hydrogen bonds can be considerably distorted within various models relying upon isotropic atomic charges only. It is shown that these defects can be corrected by augmenting the atomic point charge models by cumulative atomic multipole moments (CAMMs). Alternatively, sets of off-center atomic point charges could be automatically derived from respective multipoles, providing approximately equivalent corrections. For the first time, correlated atomic multipoles have been calculated for N-acetyl, N'-methylamide-blocked derivatives of glycine, alanine, cysteine, threonine, leucine, lysine, and serine using the MP2 method. The role of the correlation effects in the peptide molecular charge distribution are discussed.
Strong Evidence for Nucleon Resonances near 1900 MeV
NASA Astrophysics Data System (ADS)
Anisovich, A. V.; Burkert, V.; Hadžimehmedović, M.; Ireland, D. G.; Klempt, E.; Nikonov, V. A.; Omerović, R.; Osmanović, H.; Sarantsev, A. V.; Stahov, J.; Švarc, A.; Thoma, U.
2017-08-01
Data on the reaction γ p →K+Λ from the CLAS experiments are used to derive the leading multipoles, E0 +, M1 -, E1 +, and M1 +, from the production threshold to 2180 MeV in 24 slices of the invariant mass. The four multipoles are determined without any constraints. The multipoles are fitted using a multichannel L +P model that allows us to search for singularities and to extract the positions of poles on the complex energy plane in an almost model-independent method. The multipoles are also used as additional constraints in an energy-dependent analysis of a large body of pion and photoinduced reactions within the Bonn-Gatchina partial wave analysis. The study confirms the existence of poles due to nucleon resonances with spin parity JP=1 /2- , 1 /2+ , and 3 /2+ in the region at about 1.9 GeV.
Tunable multipole resonances in plasmonic crystals made by four-beam holographic lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y.; Li, X.; Zhang, X.
2016-02-01
Plasmonic nanostructures confine light to sub-wavelength scales, resulting in drastically enhanced light-matter interactions. Recent interest has focused on controlled symmetry breaking to create higher-order multipole plasmonic modes that store electromagnetic energy more efficiently than dipole modes. Here we demonstrate that four-beam holographic lithography enables fabrication of large-area plasmonic crystals with near-field coupled plasmons as well as deliberately broken symmetry to sustain multipole modes and Fano-resonances. Compared with the spectrally broad dipole modes we demonstrate an order of magnitude improved Q-factors (Q = 21) when the quadrupole mode is activated. We further demonstrate continuous tuning of the Fano-resonances using the polarization state ofmore » the incident light beam. The demonstrated technique opens possibilities to extend the rich physics of multipole plasmonic modes to wafer-scale applications that demand low-cost and high-throughput.« less
Analytic halo approach to the bispectrum of galaxies in redshift space
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuhiro; Nan, Yue; Hikage, Chiaki
2017-02-01
We present an analytic formula for the galaxy bispectrum in redshift space on the basis of the halo approach description with the halo occupation distribution of central galaxies and satellite galaxies. This work is an extension of a previous work on the galaxy power spectrum, which illuminated the significant contribution of satellite galaxies to the higher multipole spectrum through the nonlinear redshift space distortions of their random motions. Behaviors of the multipoles of the bispectrum are compared with results of numerical simulations assuming a halo occupation distribution of the low-redshift (LOWZ) sample of the Sloan Digital Sky Survey (SDSS) III baryon oscillation spectroscopic survey (BOSS) survey. Also presented are analytic approximate formulas for the multipoles of the bispectrum, which is useful to understanding their characteristic properties. We demonstrate that the Fingers of God effect is quite important for the higher multipoles of the bispectrum in redshift space, depending on the halo occupation distribution parameters.
NASA Astrophysics Data System (ADS)
Abozeed, Amina A.; Kadono, Toshiharu; Sekiyama, Akira; Fujiwara, Hidenori; Higashiya, Atsushi; Yamasaki, Atsushi; Kanai, Yuina; Yamagami, Kohei; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Andreev, Alexander V.; Wada, Hirofumi; Imada, Shin
2018-03-01
We developed a method to experimentally quantify the fourth-order multipole moment of the rare-earth 4f orbital. Linear dichroism (LD) in the Er 3d5/2 core-level photoemission spectra of cubic ErCo2 was measured using bulk-sensitive hard X-ray photoemission spectroscopy. Theoretical calculation reproduced the observed LD, and the result showed that the observed result does not contradict the suggested Γ 83 ground state. Theoretical calculation further showed a linear relationship between the LD size and the size of the fourth-order multipole moment of the Er3+ ion, which is proportional to the expectation value < O40 + 5O44> , where Onm are the Stevens operators. These analyses indicate that the LD in 3d photoemission spectra can be used to quantify the average fourth-order multipole moment of rare-earth atoms in a cubic crystal electric field.
Electron beam control for barely separated beams
Douglas, David R.; Ament, Lucas J. P.
2017-04-18
A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.
Measurement of the generalized form factors near threshold via γ*p→nπ+ at high Q2
NASA Astrophysics Data System (ADS)
Park, K.; Gothe, R. W.; Adhikari, K. P.; Adikaram, D.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jo, H. S.; Joo, K.; Kalantarians, N.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, S.; Pereira, S. Anefalos; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Y.; Tkachenko, S.; Trivedi, A.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhao, B.; Zhao, Z. W.
2012-03-01
We report the first extraction of the pion-nucleon multipoles near the production threshold for the nπ+ channel at relatively high momentum transfer (Q2 up to 4.2 GeV2). The dominance of the s-wave transverse multipole (E0+), expected in this region, allowed us to access the generalized form factor G1 within the light-cone sum-rule (LCSR) framework as well as the axial form factor GA. The data analyzed in this work were collected by the nearly 4π CEBAF Large Acceptance Spectrometer (CLAS) using a 5.754-GeV electron beam on a proton target. The differential cross section and the π-N multipole E0+/GD were measured using two different methods, the LCSR and a direct multipole fit. The results from the two methods are found to be consistent and almost Q2 independent.
Large-scale galactic motions: test of the Dipole Repeller model with the RFGC galaxies data
NASA Astrophysics Data System (ADS)
Parnovsky, S.
2017-06-01
The paper "The Dipole Repeller" in Nature Astronomy by Hoffman et al. state that the local large-scale galactic flow is dominated by a single attractor - associated with the Shapley Concentration - and a single previously unidentified repeller. We check this hypothesis using the data for 1459 galaxies from RFGC catalogue with distances up to 100 h-1 Mpc. We compared the models with multipole velocity field for pure Hubble expansion and dipole, quadrupole and octopole motion with the models with two attractors in the regions indicated by Hoffman et al with the multipole velocity field background. The results do not support the hypothesis, but does not contradict it. In any case, the inclusion of the following multipole is more effective than the addition of two attractors. Estimations of excess mass of attractors vary greatly, even changing their sign depending on the highest multipole used in model.
Visual Multipoles And The Assessment Of Visual Sensitivity To Displayed Images
NASA Astrophysics Data System (ADS)
Klein, Stanley A.
1989-08-01
The contrast sensitivity function (CSF) is widely used to specify the sensitivity of the visual system. Each point of the CSF specifies the amount of contrast needed to detect a sinusoidal grating of a given spatial frequency. This paper describes a set of five mathematically related visual patterns, called "multipoles," that should replace the CSF for measuring visual performance. The five patterns (ramp, edge, line, dipole and quadrupole) are localized in space rather than being spread out as sinusoidal gratings. The multipole sensitivity of the visual system provides an alternative characterization that complements the CSF in addition to offering several advantages. This paper provides an overview of the properties and uses of the multipole stimuli. This paper is largely a summary of several unpublished manuscripts with excerpts from them. Derivations and full references are omitted here. Please write me if you would like the full manuscripts.
Strategies for global optimization in photonics design.
Vukovic, Ana; Sewell, Phillip; Benson, Trevor M
2010-10-01
This paper reports on two important issues that arise in the context of the global optimization of photonic components where large problem spaces must be investigated. The first is the implementation of a fast simulation method and associated matrix solver for assessing particular designs and the second, the strategies that a designer can adopt to control the size of the problem design space to reduce runtimes without compromising the convergence of the global optimization tool. For this study an analytical simulation method based on Mie scattering and a fast matrix solver exploiting the fast multipole method are combined with genetic algorithms (GAs). The impact of the approximations of the simulation method on the accuracy and runtime of individual design assessments and the consequent effects on the GA are also examined. An investigation of optimization strategies for controlling the design space size is conducted on two illustrative examples, namely, 60° and 90° waveguide bends based on photonic microstructures, and their effectiveness is analyzed in terms of a GA's ability to converge to the best solution within an acceptable timeframe. Finally, the paper describes some particular optimized solutions found in the course of this work.
Dynamic grid refinement for partial differential equations on parallel computers
NASA Technical Reports Server (NTRS)
Mccormick, S.; Quinlan, D.
1989-01-01
The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids to provide adaptive resolution and fast solution of PDEs. An asynchronous version of FAC, called AFAC, that completely eliminates the bottleneck to parallelism is presented. This paper describes the advantage that this algorithm has in adaptive refinement for moving singularities on multiprocessor computers. This work is applicable to the parallel solution of two- and three-dimensional shock tracking problems.
Massively Parallel Solution of Poisson Equation on Coarse Grain MIMD Architectures
NASA Technical Reports Server (NTRS)
Fijany, A.; Weinberger, D.; Roosta, R.; Gulati, S.
1998-01-01
In this paper a new algorithm, designated as Fast Invariant Imbedding algorithm, for solution of Poisson equation on vector and massively parallel MIMD architectures is presented. This algorithm achieves the same optimal computational efficiency as other Fast Poisson solvers while offering a much better structure for vector and parallel implementation. Our implementation on the Intel Delta and Paragon shows that a speedup of over two orders of magnitude can be achieved even for moderate size problems.
NASA Technical Reports Server (NTRS)
Shia, R.-L.; Yung, Y. L.
1986-01-01
The problem of multiple scattering of nonpolarized light in a planetary body of arbitrary shape illuminated by a parallel beam is formulated using the integral equation approach. There exists a simple functional whose stationarity condition is equivalent to solving the equation of radiative transfer and whose value at the stationary point is proportional to the differential cross section. The analysis reveals a direct relation between the microscopic symmetry of the phase function for each scattering event and the macroscopic symmetry of the differential cross section for the entire planetary body, and the interconnection of these symmetry relations and the variational principle. The case of a homogeneous sphere containing isotropic scatterers is investigated in detail. It is shown that the solution can be expanded in a multipole series such that the general spherical problem is reduced to solving a set of decoupled integral equations in one dimension. Computations have been performed for a range of parameters of interest, and illustrative examples of applications to planetary problems as provided.
Multitasking domain decomposition fast Poisson solvers on the Cray Y-MP
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Fatoohi, Rod A.
1990-01-01
The results of multitasking implementation of a domain decomposition fast Poisson solver on eight processors of the Cray Y-MP are presented. The object of this research is to study the performance of domain decomposition methods on a Cray supercomputer and to analyze the performance of different multitasking techniques using highly parallel algorithms. Two implementations of multitasking are considered: macrotasking (parallelism at the subroutine level) and microtasking (parallelism at the do-loop level). A conventional FFT-based fast Poisson solver is also multitasked. The results of different implementations are compared and analyzed. A speedup of over 7.4 on the Cray Y-MP running in a dedicated environment is achieved for all cases.
Particle Tracking on the BNL Relativistic Heavy Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dell, G. F.
1986-08-07
Tracking studies including the effects of random multipole errors as well as the effects of random and systematic multipole errors have been made for RHIC. Initial results for operating at an off diagonal working point are discussed.
NASA Technical Reports Server (NTRS)
Farhat, Charbel
1998-01-01
In this grant, we have proposed a three-year research effort focused on developing High Performance Computation and Communication (HPCC) methodologies for structural analysis on parallel processors and clusters of workstations, with emphasis on reducing the structural design cycle time. Besides consolidating and further improving the FETI solver technology to address plate and shell structures, we have proposed to tackle the following design related issues: (a) parallel coupling and assembly of independently designed and analyzed three-dimensional substructures with non-matching interfaces, (b) fast and smart parallel re-analysis of a given structure after it has undergone design modifications, (c) parallel evaluation of sensitivity operators (derivatives) for design optimization, and (d) fast parallel analysis of mildly nonlinear structures. While our proposal was accepted, support was provided only for one year.
Fast, Massively Parallel Data Processors
NASA Technical Reports Server (NTRS)
Heaton, Robert A.; Blevins, Donald W.; Davis, ED
1994-01-01
Proposed fast, massively parallel data processor contains 8x16 array of processing elements with efficient interconnection scheme and options for flexible local control. Processing elements communicate with each other on "X" interconnection grid with external memory via high-capacity input/output bus. This approach to conditional operation nearly doubles speed of various arithmetic operations.
A Domain Decomposition Parallelization of the Fast Marching Method
NASA Technical Reports Server (NTRS)
Herrmann, M.
2003-01-01
In this paper, the first domain decomposition parallelization of the Fast Marching Method for level sets has been presented. Parallel speedup has been demonstrated in both the optimal and non-optimal domain decomposition case. The parallel performance of the proposed method is strongly dependent on load balancing separately the number of nodes on each side of the interface. A load imbalance of nodes on either side of the domain leads to an increase in communication and rollback operations. Furthermore, the amount of inter-domain communication can be reduced by aligning the inter-domain boundaries with the interface normal vectors. In the case of optimal load balancing and aligned inter-domain boundaries, the proposed parallel FMM algorithm is highly efficient, reaching efficiency factors of up to 0.98. Future work will focus on the extension of the proposed parallel algorithm to higher order accuracy. Also, to further enhance parallel performance, the coupling of the domain decomposition parallelization to the G(sub 0)-based parallelization will be investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaswamy, J.; Kalsi, S.; Hsieh, H.
1991-01-01
Magnetic measurements performed on the 12-pole trim magnets is described including Hall probe measurements to verify symmetry of the field and, rotating coil measurements to map the multipoles. The rotating coil measurements were carried out using a HP Dynamic Signal Analyzer. Excited as a quadrupole the dominant error multipole is the 20th pole and excited as a sextrupole the dominant error multipole is the 18th pole. Reasonable agreement was found between the Hall probe measurements and the rotating coil measurements. 2 refs., 5 figs.
NASA Astrophysics Data System (ADS)
Wu, Hong-Yu; Jiang, Li-Hong
2018-03-01
We study a (2 + 1) -dimensional N -coupled quintic nonlinear Schrödinger equation with spatially modulated nonlinearity and transverse modulation in nonlinear optics and Bose-Einstein condensate, and obtain bright-type and dark-type vector multipole as well as vortex soliton solutions. When the modulation depth q is fixed as 0 and 1, we can construct vector multipole and vortex solitons, respectively. Based on these solutions, we investigate the form and phase characteristics of vector multipole and vortex solitons.
Newman-Penrose constants of the Kerr-Newman metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong Xuefei; Shang Yu; Bai Shan
The Newman-Unti formalism of the Kerr-Newman metric near future null infinity is developed, with which the Newman-Penrose constants for both the gravitational and electromagnetic fields of the Kerr-Newman metric are computed and shown to be zero. The multipole structure near future null infinity in the sense of Janis-Newman of the Kerr-Newman metric is then further studied. It is found that up to the 2{sup 4}-pole, modulo a constant dependent upon the order of the pole, these multipole moments agree with those of Geroch-Hansen multipole moments defined at spatial infinity.
Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case
Campione, Salvatore; Warne, Larry K.; Langston, William L.; ...
2017-07-11
In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. Thesemore » results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.« less
Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Warne, Larry K.; Langston, William L.
In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. Thesemore » results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.« less
S-HARP: A parallel dynamic spectral partitioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, A.; Simon, H.
1998-01-01
Computational science problems with adaptive meshes involve dynamic load balancing when implemented on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run time. The authors present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. S-HARP partitions a graph from scratch, requiring no partition information from previous iterations. Two types of parallelism have been exploited in S-HARP, fine grain loop level parallelism and coarse grain recursive parallelism. The parallel partitioner has been implemented in Messagemore » Passing Interface on Cray T3E and IBM SP2 for portability. Experimental results indicate that S-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.2 seconds on a 64 processor Cray T3E. S-HARP is much more scalable than other dynamic partitioners, giving over 15 fold speedup on 64 processors while ParaMeTiS1.0 gives a few fold speedup. Experimental results demonstrate that S-HARP is three to 10 times faster than the dynamic partitioners ParaMeTiS and Jostle on six computational meshes of size over 100,000 vertices.« less
A general purpose subroutine for fast fourier transform on a distributed memory parallel machine
NASA Technical Reports Server (NTRS)
Dubey, A.; Zubair, M.; Grosch, C. E.
1992-01-01
One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.
Coulomb-like elastic interaction induced by symmetry breaking in nematic liquid crystal colloids.
Lee, Beom-Kyu; Kim, Sung-Jo; Kim, Jong-Hyun; Lev, Bohdan
2017-11-21
It is generally thought that colloidal particles in a nematic liquid crystal do not generate the first multipole term called deformation elastic charge as it violates the mechanical equilibrium. Here, we demonstrate theoretically and experimentally that this is not the case, and deformation elastic charges, as well as dipoles and quadrupoles, can be induced through anisotropic boundary conditions. We report the first direct observation of Coulomb-like elastic interactions between colloidal particles in a nematic liquid crystal. The behaviour of two spherical colloidal particles with asymmetric anchoring conditions induced by asymmetric alignment is investigated experimentally; the interaction of two particles located at the boundary of twist and parallel aligned regions is observed. We demonstrate that such particles produce deformation elastic charges and interact by Coulomb-like interactions.
NASA Technical Reports Server (NTRS)
El-Shenawee, Magda
2003-01-01
An intensive numerical study for the resonance scattering of malignant breast cancer tumors is presented. The rigorous three-dimensional electromagnetic model, based on the equivalence theorem, is used to obtain the induced electric and magnetic currents on the breast and tumor surfaces. The results show that a non-spherical malignant tumor can be characterized based its spectra regardless of its orientation, the incident polarization, or the incident or scattered directions. The tumor's spectra depend solely on its physical characteristics (i.e., the shape and the electrical properties), however, their locations are not functions of its burial depth. This work provides a useful guidance to select the appropriate frequency range for the tumor's size.
Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.
2011-01-01
Evaluating the impact of radio frequency transmission in vehicle fairings is important to electromagnetically sensitive spacecraft. This study employs the multilevel fast multipole method (MLFMM) from a commercial electromagnetic tool, FEKO, to model the fairing electromagnetic environment in the presence of an internal transmitter with improved accuracy over industry applied techniques. This fairing model includes material properties representative of acoustic blanketing commonly used in vehicles. Equivalent surface material models within FEKO were successfully applied to simulate the test case. Finally, a simplified model is presented using Nicholson Ross Weir derived blanket material properties. These properties are implemented with the coated metal option to reduce the model to one layer within the accuracy of the original three layer simulation.
Modeling Organochlorine Compounds and the σ-Hole Effect Using a Polarizable Multipole Force Field
2015-01-01
The charge distribution of halogen atoms on organochlorine compounds can be highly anisotropic and even display a so-called σ-hole, which leads to strong halogen bonds with electron donors. In this paper, we have systematically investigated a series of chloromethanes with one to four chloro substituents using a polarizable multipole-based molecular mechanics model. The atomic multipoles accurately reproduced the ab initio electrostatic potential around chloromethanes, including CCl4, which has a prominent σ-hole on the Cl atom. The van der Waals parameters for Cl were fitted to the experimental density and heat of vaporization. The calculated hydration free energy, solvent reaction fields, and interaction energies of several homo- and heterodimer of chloromethanes are in good agreement with experimental and ab initio data. This study suggests that sophisticated electrostatic models, such as polarizable atomic multipoles, are needed for accurate description of electrostatics in organochlorine compounds and halogen bonds, although further improvement is necessary for better transferability. PMID:24484473
Measurement of the generalized form factors near threshold via γ *p → nπ + at high Q 2
Park, K.; Adhikari, K. P.; Adikaram, D.; ...
2012-03-26
We report the first extraction of the pion-nucleon multipoles near the production threshold for the nπ + channel at relatively high momentum transfer (Q 2 up to 4.2 GeV 2). The dominance of the s-wave transverse multipole (E 0+), expected in this region, allowed us to access the generalized form factor G 1 within the light-cone sum rule (LCSR) framework as well as the axial form factor G A. The data analyzed in this work were collected by the nearly 4π CEBAF Large Acceptance Spectrometer (CLAS) using a 5.754-GeV electron beam on a proton target. The differential cross section andmore » the π-N multipole E 0+/G D were measured using two different methods, the LCSR and a direct multipole fit. The results from the two methods are found to be consistent and almost Q 2 independent.« less
Global Aspects of Charged Particle Motion in Axially Symmetric Multipole Magnetic Fields
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2003-01-01
The motion of a single charged particle in the space outside of a compact region of steady currents is investigated. The charged particle is assumed to produce negligible electromagnetic radiation, so that its energy is conserved. The source of the magnetic field is represented as a point multipole. After a general description, attention is focused on magnetic fields with axial symmetry. Lagrangian dynamical theory is utilized to identify constants of the motion as well as the equations of motion themselves. The qualitative method of Stonner is used to examine charged particle motion in axisymmetric multipole fields of all orders. Although the equations of motion generally have no analytical solutions and must be integrated numerically to produce a specific orbit, a topological examination of dynamics is possible, and can be used, d la Stonner, to completely describe the global aspects of the motion of a single charged particle in a space with an axisymmetric multipole magnetic field.
Pearson's random walk in the space of the CMB phases: Evidence for parity asymmetry
NASA Astrophysics Data System (ADS)
Hansen, M.; Frejsel, A. M.; Kim, J.; Naselsky, P.; Nesti, F.
2011-05-01
The temperature fluctuations of the cosmic microwave background (CMB) are supposed to be distributed randomly in both magnitude and phase, following to the simplest model of inflation. In this paper, we look at the odd and even multipoles of the spherical harmonic decomposition of the CMB, and the different characteristics of these, giving rise to a parity asymmetry. We compare the even and odd multipoles in the CMB power spectrum, and also the even and odd mean angles. We find for the multipoles of the power spectrum that there is power excess in odd multipoles, compared to even ones, meaning that we have a parity asymmetry. Further, for the phases, we present a random walk for the mean angles, and find a significant separation for even/odd mean angles, especially so for galactic coordinates. This is further tested and confirmed with a directional parity test, comparing the parity asymmetry in galactic and ecliptic coordinates.
Multipole gas thruster design. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Isaacson, G. C.
1977-01-01
The development of a low field strength multipole thruster operating on both argon and xenon is described. Experimental results were obtained with a 15-cm diameter multipole thruster and are presented for a wide range of discharge-chamber configurations. Minimum discharge losses were 300-350 eV/ion for argon and 200-250 eV/ion for xenon. Ion beam flatness parameters in the plane of the accelerator grid ranged from 0.85 to 0.93 for both propellants. Thruster performance is correlated for a range of ion chamber sizes and operating conditions as well as propellant type and accelerator system open area. A 30-cm diameter ion source designed and built using the procedure and theory presented here-in is shown capable of low discharge losses and flat ion-beam profiles without optimization. This indicates that by using the low field strength multipole design, as well as general performance correlation information provided herein, it should be possible to rapidly translate initial performance specifications into easily fabricated, high performance prototypes.
Polling-Based High-Bit-Rate Packet Transfer in a Microcellular Network to Allow Fast Terminals
NASA Astrophysics Data System (ADS)
Hoa, Phan Thanh; Lambertsen, Gaute; Yamada, Takahiko
A microcellular network will be a good candidate for the future broadband mobile network. It is expected to support high-bit-rate connection for many fast mobile users if the handover is processed fast enough to lessen its impact on QoS requirements. One of the promising techniques is believed to use for the wireless interface in such a microcellular network is the WLAN (Wireless LAN) technique due to its very high wireless channel rate. However, the less capability of mobility support of this technique must be improved to be able to expand its utilization for the microcellular environment. The reason of its less support mobility is large handover latency delay caused by contention-based handover to the new BS (base station) and delay of re-forwarding data from the old to new BS. This paper presents a proposal of multi-polling and dynamic LMC (Logical Macro Cell) to reduce mentioned above delays. Polling frame for an MT (Mobile Terminal) is sent from every BS belonging to the same LMC — a virtual single macro cell that is a multicast group of several adjacent micro-cells in which an MT is communicating. Instead of contending for the medium of a new BS during handover, the MT responds to the polling sent from that new BS to enable the transition. Because only one BS of the LMC receives the polling ACK (acknowledgement) directly from the MT, this ACK frame has to be multicast to all BSs of the same LMC through the terrestrial network to continue sending the next polling cycle at each BS. Moreover, when an MT hands over to a new cell, its current LMC is switched over to a newly corresponding LMC to prevent the future contending for a new LMC. By this way, an MT can do handover between micro-cells of an LMC smoothly because the redundant resource is reserved for it at neighboring cells, no need to contend with others. Our simulation results using the OMNeT++ simulator illustrate the performance achievements of the multi-polling and dynamic LMC scheme in eliminating handover latency, packet loss and keeping mobile users' throughput stable in the high traffic load condition though it causes somewhat overhead on the neighboring cells.
NASA Astrophysics Data System (ADS)
Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi
2018-01-01
We report our theoretical predictions on the linear magnetoelectric (ME) effects originating from odd-parity multipoles associated with spontaneous spin and orbital ordering on a diamond structure. We derive a two-orbital model for d electrons in eg orbitals by including the effective spin-orbit coupling which arises from the mixing between eg and t2 g orbitals. We show that the model acquires a net antisymmetric spin-orbit coupling once staggered spin and orbital orders occur spontaneously. The staggered orders are accompanied by odd-parity multipoles: magnetic monopole, quadrupoles, and toroidal dipoles. We classify the types of the odd-parity multipoles according to the symmetry of the spin and orbital orders. Furthermore, by computing the ME tensor using the linear response theory, we show that the staggered orders induce a variety of the linear ME responses. We elaborate all possible ME responses for each staggered order, which are useful to identify the order parameter and to detect the odd-parity multipoles by measuring the ME effects. We also elucidate the effect of lowering symmetry by a tetragonal distortion, which leads to richer ME responses. The implications of our results are discussed for the 5 d transition metal oxides, A OsO4 (A =K,Rb, and Cs) , in which the order parameters are not fully identified.
NASA Astrophysics Data System (ADS)
Mathias, Gerald; Egwolf, Bernhard; Nonella, Marco; Tavan, Paul
2003-06-01
We present a combination of the structure adapted multipole method with a reaction field (RF) correction for the efficient evaluation of electrostatic interactions in molecular dynamics simulations under periodic boundary conditions. The algorithm switches from an explicit electrostatics evaluation to a continuum description at the maximal distance that is consistent with the minimum image convention, and, thus, avoids the use of a periodic electrostatic potential. A physically motivated switching function enables charge clusters interacting with a given charge to smoothly move into the solvent continuum by passing through the spherical dielectric boundary surrounding this charge. This transition is complete as soon as the cluster has reached the so-called truncation radius Rc. The algorithm is used to examine the dependence of thermodynamic properties and correlation functions on Rc in the three point transferable intermolecular potential water model. Our test simulations on pure liquid water used either the RF correction or a straight cutoff and values of Rc ranging from 14 Å to 40 Å. In the RF setting, the thermodynamic properties and the correlation functions show convergence for Rc increasing towards 40 Å. In the straight cutoff case no such convergence is found. Here, in particular, the dipole-dipole correlation functions become completely artificial. The RF description of the long-range electrostatics is verified by comparison with the results of a particle-mesh Ewald simulation at identical conditions.
A Hierarchical Algorithm for Fast Debye Summation with Applications to Small Angle Scattering
Gumerov, Nail A.; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani
2012-01-01
Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error bound derived in this paper is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386
Testing statistical isotropy in cosmic microwave background polarization maps
NASA Astrophysics Data System (ADS)
Rath, Pranati K.; Samal, Pramoda Kumar; Panda, Srikanta; Mishra, Debesh D.; Aluri, Pavan K.
2018-04-01
We apply our symmetry based Power tensor technique to test conformity of PLANCK Polarization maps with statistical isotropy. On a wide range of angular scales (l = 40 - 150), our preliminary analysis detects many statistically anisotropic multipoles in foreground cleaned full sky PLANCK polarization maps viz., COMMANDER and NILC. We also study the effect of residual foregrounds that may still be present in the Galactic plane using both common UPB77 polarization mask, as well as the individual component separation method specific polarization masks. However, some of the statistically anisotropic modes still persist, albeit significantly in NILC map. We further probed the data for any coherent alignments across multipoles in several bins from the chosen multipole range.
NASA Astrophysics Data System (ADS)
Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin
2016-11-01
The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates the coupled fluid dynamics with the noise generation. Such a framework is developed where the fluid motion is modeled with a two-dimensional unsteady boundary element method that includes a vortex-particle wake. The unsteady surface forces from the potential flow solver are then passed to an acoustic boundary element solver to predict the radiated sound in low-Mach-number flows. The use of the boundary element method for both the hydrodynamic and acoustic solvers permits dramatic computational acceleration by application of the fast multiple method. The reduced order of calculations due to the fast multipole method allows for greater spatial resolution of the vortical wake per unit of computational time. The coupled flow-acoustic solver is validated against canonical vortex-sound problems. The capability of the coupled solver is demonstrated by analyzing the performance and noise production of an isolated bio-inspired swimmer and of tandem swimmers.
Characterization of Harmonic Signal Acquisition with Parallel Dipole and Multipole Detectors
NASA Astrophysics Data System (ADS)
Park, Sung-Gun; Anderson, Gordon A.; Bruce, James E.
2018-04-01
Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a powerful instrument for the study of complex biological samples due to its high resolution and mass measurement accuracy. However, the relatively long signal acquisition periods needed to achieve high resolution can serve to limit applications of FTICR-MS. The use of multiple pairs of detector electrodes enables detection of harmonic frequencies present at integer multiples of the fundamental cyclotron frequency, and the obtained resolving power for a given acquisition period increases linearly with the order of harmonic signal. However, harmonic signal detection also increases spectral complexity and presents challenges for interpretation. In the present work, ICR cells with independent dipole and harmonic detection electrodes and preamplifiers are demonstrated. A benefit of this approach is the ability to independently acquire fundamental and multiple harmonic signals in parallel using the same ions under identical conditions, enabling direct comparison of achieved performance as parameters are varied. Spectra from harmonic signals showed generally higher resolving power than spectra acquired with fundamental signals and equal signal duration. In addition, the maximum observed signal to noise (S/N) ratio from harmonic signals exceeded that of fundamental signals by 50 to 100%. Finally, parallel detection of fundamental and harmonic signals enables deconvolution of overlapping harmonic signals since observed fundamental frequencies can be used to unambiguously calculate all possible harmonic frequencies. Thus, the present application of parallel fundamental and harmonic signal acquisition offers a general approach to improve utilization of harmonic signals to yield high-resolution spectra with decreased acquisition time. [Figure not available: see fulltext.
Identifying the Development in Phase and Amplitude of Dipole and Multipole Radiation
ERIC Educational Resources Information Center
Rice, E. M.; Bradshaw, D. S.; Saadi, K.; Andrews, D. L.
2012-01-01
The spatial variation in phase and the propagating wave-front of plane wave electromagnetic radiation are widely familiar text-book territory. In contrast, the developing amplitude and phase of radiation emitted by a dipole or multipole source generally receive less attention, despite the prevalence of these systems. There is additional complexity…
Fukuda, Ikuo
2013-11-07
The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.
High-order multipole radiation from quantum Hall states in Dirac materials
NASA Astrophysics Data System (ADS)
Gullans, Michael J.; Taylor, Jacob M.; Imamoǧlu, Ataç; Ghaemi, Pouyan; Hafezi, Mohammad
2017-06-01
We investigate the optical response of strongly disordered quantum Hall states in two-dimensional Dirac materials and find qualitatively different effects in the radiation properties of the bulk versus the edge. We show that the far-field radiation from the edge is characterized by large multipole moments (>50 ) due to the efficient transfer of angular momentum from the electrons into the scattered light. The maximum multipole transition moment is a direct measure of the coherence length of the edge states. Accessing these multipole transitions would provide new tools for optical spectroscopy and control of quantum Hall edge states. On the other hand, the far-field radiation from the bulk appears as random dipole emission with spectral properties that vary with the local disorder potential. We determine the conditions under which this bulk radiation can be used to image the disorder landscape. Such optical measurements can probe submicron-length scales over large areas and provide complementary information to scanning probe techniques. Spatially resolving this bulk radiation would serve as a novel probe of the percolation transition near half filling.
Zhu, Lei; Yin, Qiuyuan; Irwin, David M; Zhang, Shuyi
2015-01-01
Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle.
Irwin, David M.; Zhang, Shuyi
2015-01-01
Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle. PMID:25807515
NASA Technical Reports Server (NTRS)
Dagum, Leonardo
1989-01-01
The data parallel implementation of a particle simulation for hypersonic rarefied flow described by Dagum associates a single parallel data element with each particle in the simulation. The simulated space is divided into discrete regions called cells containing a variable and constantly changing number of particles. The implementation requires a global sort of the parallel data elements so as to arrange them in an order that allows immediate access to the information associated with cells in the simulation. Described here is a very fast algorithm for performing the necessary ranking of the parallel data elements. The performance of the new algorithm is compared with that of the microcoded instruction for ranking on the Connection Machine.
Multipole Vector Anomalies in the First-Year WMAP Data: A Cut-Sky Analysis
NASA Astrophysics Data System (ADS)
Bielewicz, P.; Eriksen, H. K.; Banday, A. J.; Górski, K. M.; Lilje, P. B.
2005-12-01
We apply the recently defined multipole vector framework to the frequency-specific first-year WMAP sky maps, estimating the low-l multipole coefficients from the high-latitude sky by means of a power equalization filter. While most previous analyses of this type have considered only heavily processed (and foreground-contaminated) full-sky maps, the present approach allows for greater control of residual foregrounds and therefore potentially also for cosmologically important conclusions. The low-l spherical harmonic coefficients and corresponding multipole vectors are tabulated for easy reference. Using this formalism, we reassess a set of earlier claims of both cosmological and noncosmological low-l correlations on the basis of multipole vectors. First, we show that the apparent l=3 and 8 correlation claimed by Copi and coworkers is present only in the heavily processed map produced by Tegmark and coworkers and must therefore be considered an artifact of that map. Second, the well-known quadrupole-octopole correlation is confirmed at the 99% significance level and shown to be robust with respect to frequency and sky cut. Previous claims are thus supported by our analysis. Finally, the low-l alignment with respect to the ecliptic claimed by Schwarz and coworkers is nominally confirmed in this analysis, but also shown to be very dependent on severe a posteriori choices. Indeed, we show that given the peculiar quadrupole-octopole arrangement, finding such a strong alignment with the ecliptic is not unusual.
Multipole models of four-image gravitational lenses with anomalous flux ratios
NASA Astrophysics Data System (ADS)
Congdon, Arthur B.; Keeton, Charles R.
2005-12-01
It has been known for over a decade that many four-image gravitational lenses exhibit anomalous radio flux ratios. These anomalies can be explained by adding a clumpy cold dark matter (CDM) component to the background galactic potential of the lens. As an alternative, Evans & Witt (2003) recently suggested that smooth multipole perturbations provide a reasonable alternative to CDM substructure in some but not all cases. We generalize their method in two ways so as to determine whether multipole models can explain highly anomalous systems. We carry the multipole expansion to higher order, and also include external tidal shear as a free parameter. Fitting for the shear proves crucial to finding a physical (positive-definite density) model. For B1422+231, working to order kmax= 5 (and including shear) yields a model that is physical but implausible. Going to higher order (kmax>~ 9) reduces global departures from ellipticity, but at the cost of introducing small-scale wiggles in proximity to the bright images. These localized undulations are more pronounced in B2045+265, where kmax~ 17 multipoles are required to smooth out large-scale deviations from elliptical symmetry. Such modes surely cannot be taken at face value; they must indicate that the models are trying to reproduce some other sort of structure. Our formalism naturally finds models that fit the data exactly, but we use B0712+472 to show that measurement uncertainties have little effect on our results. Finally, we consider the system B1933+503, where two sources are lensed by the same foreground galaxy. The additional constraints provided by the images of the second source render the multipole model unphysical. We conclude that external shear must be taken into account to obtain plausible models, and that a purely smooth angular structure for the lens galaxy does not provide a viable alternative to the prevailing CDM clump hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malony, Allen D; Shende, Sameer
This is the final progress report for the FastOS (Phase 2) (FastOS-2) project with Argonne National Laboratory and the University of Oregon (UO). The project started at UO on July 1, 2008 and ran until April 30, 2010, at which time a six-month no-cost extension began. The FastOS-2 work at UO delivered excellent results in all research work areas: * scalable parallel monitoring * kernel-level performance measurement * parallel I/0 system measurement * large-scale and hybrid application performance measurement * onlne scalable performance data reduction and analysis * binary instrumentation
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess
2011-01-01
More efficient versions of an interpolation method, called kriging, have been introduced in order to reduce its traditionally high computational cost. Written in C++, these approaches were tested on both synthetic and real data. Kriging is a best unbiased linear estimator and suitable for interpolation of scattered data points. Kriging has long been used in the geostatistic and mining communities, but is now being researched for use in the image fusion of remotely sensed data. This allows a combination of data from various locations to be used to fill in any missing data from any single location. To arrive at the faster algorithms, sparse SYMMLQ iterative solver, covariance tapering, Fast Multipole Methods (FMM), and nearest neighbor searching techniques were used. These implementations were used when the coefficient matrix in the linear system is symmetric, but not necessarily positive-definite.
Earth's rotation in the framework of general relativity: rigid multipole moments
NASA Astrophysics Data System (ADS)
Klioner, S. A.; Soffel, M.; Xu, Ch.; Wu, X.
A set of equations describing the rotational motion of the Earth relative to the GCRS is formulated in the approximation of rigidly rotating multipoles. The external bodies are supposed to be mass monopoles. The derived set of formulas is supposed to form the theoretical basis for a practical post-Newtonian theory of Earth precession and nutation.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1993-01-01
Distributed Point Charge Models (PCM) for CO, (H2O)2, and HS-SH molecules have been computed from analytical expressions using multi-center multipole moments. The point charges (set of charges including both atomic and non-atomic positions) exactly reproduce both molecular and segmental multipole moments, thus constituting an accurate representation of the local anisotropy of electrostatic properties. In contrast to other known point charge models, PCM can be used to calculate not only intermolecular, but also intramolecular interactions. Comparison of these results with more accurate calculations demonstrated that PCM can correctly represent both weak and strong (intramolecular) interactions, thus indicating the merit of extending PCM to obtain improved potentials for molecular mechanics and molecular dynamics computational methods.
Electrostatic attraction between neutral microdroplets by ion fluctuations
NASA Astrophysics Data System (ADS)
Sheng, Yu-Jane; Tsao, Heng-Kwong
2004-06-01
The interaction between two aqueous droplets containing ions is investigated. The ion-fluctuation correlation gives rise to attraction between two neutral microdroplets, similar to the van der Waals interaction between neutral atoms. Electrostatic attraction consists of contributions from various induced multipole-multipole interactions, including dipole-dipole < P2z >2 r-6 , dipole-quadrupole < P2z > < Q 2zz > r-8 , dipole-octupole < P2z > < O 2zzz > r-10 , and quadrupole-quadrupole interactions < Q 2zz >2 r-10 . The mean-square multipole moments are determined analytically by linear response theory. The fluctuation-driven attraction is so strong at short distance that it may dominate over the Coulomb repulsion between like-charged droplets. These theoretical results are confirmed by Monte Carlo simulations.
Electrostatic attraction between neutral microdroplets by ion fluctuations.
Sheng, Yu-Jane; Tsao, Heng-Kwong
2004-06-01
The interaction between two aqueous droplets containing ions is investigated. The ion-fluctuation correlation gives rise to attraction between two neutral microdroplets, similar to the van der Waals interaction between neutral atoms. Electrostatic attraction consists of contributions from various induced multipole-multipole interactions, including dipole-dipole < P(2)(z) >(2) r(-6), dipole-quadrupole < P(2)(z) > < Q (2)(zz ) > r(-8), dipole-octupole < P(2)(z) > < O (2)(zzz ) > r(-10), and quadrupole-quadrupole interactions < Q (2)(zz ) >(2) r(-10). The mean-square multipole moments are determined analytically by linear response theory. The fluctuation-driven attraction is so strong at short distance that it may dominate over the Coulomb repulsion between like-charged droplets. These theoretical results are confirmed by Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Hong, Yang; Zuo, Depeng; Ren, Minglei; Lei, Tianjie; Liang, Ke
2018-01-01
Hydrological model calibration has been a hot issue for decades. The shuffled complex evolution method developed at the University of Arizona (SCE-UA) has been proved to be an effective and robust optimization approach. However, its computational efficiency deteriorates significantly when the amount of hydrometeorological data increases. In recent years, the rise of heterogeneous parallel computing has brought hope for the acceleration of hydrological model calibration. This study proposed a parallel SCE-UA method and applied it to the calibration of a watershed rainfall-runoff model, the Xinanjiang model. The parallel method was implemented on heterogeneous computing systems using OpenMP and CUDA. Performance testing and sensitivity analysis were carried out to verify its correctness and efficiency. Comparison results indicated that heterogeneous parallel computing-accelerated SCE-UA converged much more quickly than the original serial version and possessed satisfactory accuracy and stability for the task of fast hydrological model calibration.
Research on the Application of Fast-steering Mirror in Stellar Interferometer
NASA Astrophysics Data System (ADS)
Mei, R.; Hu, Z. W.; Xu, T.; Sun, C. S.
2017-07-01
For a stellar interferometer, the fast-steering mirror (FSM) is widely utilized to correct wavefront tilt caused by atmospheric turbulence and internal instrumental vibration due to its high resolution and fast response frequency. In this study, the non-coplanar error between the FSM and actuator deflection axis introduced by manufacture, assembly, and adjustment is analyzed. Via a numerical method, the additional optical path difference (OPD) caused by above factors is studied, and its effects on tracking accuracy of stellar interferometer are also discussed. On the other hand, the starlight parallelism between the beams of two arms is one of the main factors of the loss of fringe visibility. By analyzing the influence of wavefront tilt caused by the atmospheric turbulence on fringe visibility, a simple and efficient real-time correction scheme of starlight parallelism is proposed based on a single array detector. The feasibility of this scheme is demonstrated by laboratory experiment. The results show that starlight parallelism meets the requirement of stellar interferometer in wavefront tilt preliminarily after the correction of fast-steering mirror.
Prediction of conformationally dependent atomic multipole moments in carbohydrates
Cardamone, Salvatore
2015-01-01
The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an “atom in a molecule,” thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol−1 for open chains and just over 90% an error of maximum 4 kJ mol−1 for rings. © 2015 Wiley Periodicals, Inc. PMID:26547500
Prediction of conformationally dependent atomic multipole moments in carbohydrates.
Cardamone, Salvatore; Popelier, Paul L A
2015-12-15
The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an "atom in a molecule," thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol(-1) for open chains and just over 90% an error of maximum 4 kJ mol(-1) for rings. © 2015 Wiley Periodicals, Inc.
Role of higher-multipole deformations in exotic {sup 14}C cluster radioactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.
2011-06-15
We have studied nine cases of spontaneous emission of {sup 14}C clusters in the ground-state decays of the same number of parent nuclei from the trans-lead region, specifically from {sup 221}Fr to {sup 226}Th, using the preformed cluster model (PCM) of Gupta and collaborators, with choices of spherical, quadrupole deformation ({beta}{sub 2}) alone, and higher-multipole deformations ({beta}{sub 2}, {beta}{sub 3}, {beta}{sub 4}) with cold ''compact'' orientations {theta}{sup c} of decay products. The calculated {sup 14}C cluster decay half-life times are found to be in nice agreement with experimental data only for the case of higher-multipole deformations ({beta}{sub 2}-{beta}{sub 4}) andmore » {theta}{sup c} orientations of cold elongated configurations. In other words, compared to our earlier study of clusters heavier than {sup 14}C, where the inclusion of {beta}{sub 2} alone, with ''optimum'' orientations, was found to be enough to give the best comparison with data, here for {sup 14}C cluster decay the inclusion of higher-multipole deformations (up to hexadecapole), together with {theta}{sup c} orientations, is found to be essential on the basis of the PCM. Interestingly, whereas both the penetration probability and assault frequency work simply as scaling factors, the preformation probability is strongly influenced by the order of multipole deformations and orientations of nuclei. The possible role of Q value and angular-momentum effects are also considered in reference to {sup 14}C cluster radioactivity.« less
NASA Astrophysics Data System (ADS)
Chaillat, S.; Bonnet, M.; Semblat, J.
2007-12-01
Seismic wave propagation and amplification in complex media is a major issue in the field of seismology. To compute seismic wave propagation in complex geological structures such as in alluvial basins, various numerical methods have been proposed. The main advantage of the Boundary Element Method (BEM) is that only the domain boundaries (and possibly interfaces) are discretized, leading to a reduction of the number of degrees of freedom. The main drawback of the standard BEM is that the governing matrix is full and non- symmetric, which gives rise to high computational and memory costs. In other areas where the BEM is used (electromagnetism, acoustics), considerable speedup of solution time and decrease of memory requirements have been achieved through the development, over the last decade, of the Fast Multipole Method (FMM). The goal of the FMM is to speed up the matrix-vector product computation needed at each iteration of the GMRES iterative solver. Moreover, the governing matrix is never explicitly formed, which leads to a storage requirement well below the memory necessary for holding the complete matrix. The FMM-accelerated BEM therefore achieves substantial savings in both CPU time and memory. In this work, the FMM is extended to the 3-D frequency-domain elastodynamics and applied to the computation of seismic wave propagation in 3-D. The efficiency of the present FMM-BEM is demonstrated on seismology- oriented examples. First, the diffraction of a plane wave or a point source by a 3-D canyon is studied. The influence of the size of the meshed part of the free surface is studied, and computations are performed for non- dimensional frequencies higher than those considered in other studies (thanks to the use of the FM-BEM), with which comparisons are made whenever possible. The method is also applied to analyze the diffraction of a plane wave or a point source by a 3-D alluvial basin. A parametrical study is performed on the effect of the shape of the basin and the interaction of the wavefield with the basin edges is analyzed.
Fast I/O for Massively Parallel Applications
NASA Technical Reports Server (NTRS)
OKeefe, Matthew T.
1996-01-01
The two primary goals for this report were the design, contruction and modeling of parallel disk arrays for scientific visualization and animation, and a study of the IO requirements of highly parallel applications. In addition, further work in parallel display systems required to project and animate the very high-resolution frames resulting from our supercomputing simulations in ocean circulation and compressible gas dynamics.
ERIC Educational Resources Information Center
Camparo, James; Camparo, Lorinda B.
2013-01-01
Though ubiquitous, Likert scaling's traditional mode of analysis is often unable to uncover all of the valid information in a data set. Here, the authors discuss a solution to this problem based on methodology developed by quantum physicists: the state multipole method. The authors demonstrate the relative ease and value of this method by…
A structure adapted multipole method for electrostatic interactions in protein dynamics
NASA Astrophysics Data System (ADS)
Niedermeier, Christoph; Tavan, Paul
1994-07-01
We present an algorithm for rapid approximate evaluation of electrostatic interactions in molecular dynamics simulations of proteins. Traditional algorithms require computational work of the order O(N2) for a system of N particles. Truncation methods which try to avoid that effort entail untolerably large errors in forces, energies and other observables. Hierarchical multipole expansion algorithms, which can account for the electrostatics to numerical accuracy, scale with O(N log N) or even with O(N) if they become augmented by a sophisticated scheme for summing up forces. To further reduce the computational effort we propose an algorithm that also uses a hierarchical multipole scheme but considers only the first two multipole moments (i.e., charges and dipoles). Our strategy is based on the consideration that numerical accuracy may not be necessary to reproduce protein dynamics with sufficient correctness. As opposed to previous methods, our scheme for hierarchical decomposition is adjusted to structural and dynamical features of the particular protein considered rather than chosen rigidly as a cubic grid. As compared to truncation methods we manage to reduce errors in the computation of electrostatic forces by a factor of 10 with only marginal additional effort.
TMFF-A Two-Bead Multipole Force Field for Coarse-Grained Molecular Dynamics Simulation of Protein.
Li, Min; Liu, Fengjiao; Zhang, John Z H
2016-12-13
Coarse-grained (CG) models are desirable for studying large and complex biological systems. In this paper, we propose a new two-bead multipole force field (TMFF) in which electric multipoles up to the quadrupole are included in the CG force field. The inclusion of electric multipoles in the proposed CG force field enables a more realistic description of the anisotropic electrostatic interactions in the protein system and, thus, provides an improvement over the standard isotropic two-bead CG models. In order to test the accuracy of the new CG force field model, extensive molecular dynamics simulations were carried out for a series of benchmark protein systems. These simulation studies showed that the TMFF model can realistically reproduce the structural and dynamical properties of proteins, as demonstrated by the close agreement of the CG results with those from the corresponding all-atom simulations in terms of root-mean-square deviations (RMSDs) and root-mean-square fluctuations (RMSFs) of the protein backbones. The current two-bead model is highly coarse-grained and is 50-fold more efficient than all-atom method in MD simulation of proteins in explicit water.
Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A
2014-06-14
Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.
NASA Astrophysics Data System (ADS)
Rezaeian, P.; Ataenia, V.; Shafiei, S.
2017-12-01
In this paper, the flux of photons inside the irradiation cell of the Gammacell-220 is calculated using an analytical method based on multipole moment expansion. The flux of the photons inside the irradiation cell is introduced as the function of monopole, dipoles and quadruples in the Cartesian coordinate system. For the source distribution of the Gammacell-220, the values of the multipole moments are specified by direct integrating. To confirm the validation of the presented methods, the flux distribution inside the irradiation cell was determined utilizing MCNP simulations as well as experimental measurements. To measure the flux inside the irradiation cell, Amber dosimeters were employed. The calculated values of the flux were in agreement with the values obtained by simulations and measurements, especially in the central zones of the irradiation cell. In order to show that the present method is a good approximation to determine the flux in the irradiation cell, the values of the multipole moments were obtained by fitting the simulation and experimental data using Levenberg-Marquardt algorithm. The present method leads to reasonable results for the all source distribution even without any symmetry which makes it a powerful tool for the source load planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J.S.; Grice, M.E.; Politzer, P.
1990-01-01
The electrostatic potential V(r) that the nuclei and electrons of a molecule create in the surrounding space is well established as a guide in the study of molecular reactivity, and particularly, of biological recognition processes. Its rigorous computation is, however, very demanding of computer time for large molecules, such as those of interest in recognition interactions. The authors have accordingly investigated the use of an approximate finite multicenter multipole expansion technique to determine its applicability for producing reliable electrostatic potentials of dibenzo-p-dioxins and related molecules, with significantly reduced amounts of computer time, at distances of interest in recognition studies. Amore » comparative analysis of the potentials of three dibenzo-q-dioxins and a substituted naphthalene molecule computed using both the multipole expansion technique and GAUSSIAN 82 at the STO-5G level has been carried out. Overall they found that regions of negative and positive V(r) at 1.75 A above the molecular plane are very well reproduced by the multipole expansion technique, with up to a twenty-fold improvement in computer time.« less
NASA Astrophysics Data System (ADS)
Wu, Bofeng; Huang, Chao-Guang
2018-04-01
The 1 /r expansion in the distance to the source is applied to the linearized f (R ) gravity, and its multipole expansion in the radiation field with irreducible Cartesian tensors is presented. Then, the energy, momentum, and angular momentum in the gravitational waves are provided for linearized f (R ) gravity. All of these results have two parts, which are associated with the tensor part and the scalar part in the multipole expansion of linearized f (R ) gravity, respectively. The former is the same as that in General Relativity, and the latter, as the correction to the result in General Relativity, is caused by the massive scalar degree of freedom and plays an important role in distinguishing General Relativity and f (R ) gravity.
NASA Technical Reports Server (NTRS)
Hajian, Amir; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, John R.; Brown, Ben;
2011-01-01
We present a new calibration method based on cross-correlations with the Wilkinson Microwave Anisotropy Probe (WMAP) and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and mapmaking procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < I < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has a high signal-to-noise ratio over a wide range of multipoles.
The electromagnetic multipole moments of the charged open-flavor {Z}_{\\bar{c}q} states
NASA Astrophysics Data System (ADS)
Azizi, K.; Özdem, U.
2018-05-01
The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are investigated by assuming a diquark–antidiquark picture for their internal structure and quantum numbers {J}{PC}={1}+- for their spin-parity. In particular, their magnetic and quadrupole moments are extracted in the framework of light-cone QCD sum rule by the help of the photon distribution amplitudes. The electromagnetic multipole moments of the open-flavor {Z}\\bar{cq} states are important dynamical observables, which encode valuable information on their underlying structure. The results obtained for the magnetic moments of different structures are considerably large and can be measured in future experiments. We obtain very small values for the quadrupole moments of {Z}\\bar{cq} states indicating a nonspherical charge distribution.
Rapid modelling of the redshift-space power spectrum multipoles for a masked density field
NASA Astrophysics Data System (ADS)
Wilson, M. J.; Peacock, J. A.; Taylor, A. N.; de la Torre, S.
2017-01-01
In this work, we reformulate the forward modelling of the redshift-space power spectrum multipole moments for a masked density field, as encountered in galaxy redshift surveys. Exploiting the symmetries of the redshift-space correlation function, we provide a masked-field generalization of the Hankel transform relation between the multipole moments in real and Fourier space. Using this result, we detail how a likelihood analysis requiring computation for a broad range of desired P(k) models may be executed 103-104 times faster than with other common approaches, together with significant gains in spectral resolution. We present a concrete application to the complex angular geometry of the VIMOS Public Extragalactic Redshift Survey PDR-1 release and discuss the validity of this technique for finite-angle surveys.
Influence of permittivity on gradient force exerted on Mie spheres.
Chen, Jun; Li, Kaikai; Li, Xiao
2018-04-01
In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.
NASA Astrophysics Data System (ADS)
Chen, Yu-Sheng
The electronic structures of four energetic materials, trinitrodiazapentalene (C6H3N5O6, TNDAP), beta-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (C4H8N8O8, beta-HMX), 1,3,3-trinitroazetidine (C3H4N4O6, TNAZ), and hexahydro-1,3,5-trinitro-1,3,5-s-triazine (C3H6N6O6, RDX), have been analyzed using Hansen-Coppens multipole refinements, using high resolution X-ray diffraction data collected at low temperature, as well as from theoretical calculated structure factors from the solid state phase using density functional theory (DFT), plus B3LYP level theory, and the 6-31G* basis set. However, when comparing both the deformation density and the electrostatic potentials from the theoretical results in TNDAP and TNAZ, they disagree with the experimental results. Therefore, those results have been deposited in appendices A4 and A6, for future reference. In HMX and RDX the theoretical results are in good agreement with experimental results. The physical properties derived from the electronic structure in these four energetic materials, such as multipole populations, the values of the electron density and its Laplacian of the electron density at the bond critical points, have also been calculated using "Atoms in Molecules" (AIM) theory both from the solid state phase calculation, and the experiment, as well as directly calculated from the free molecule in the gas phase. The electron density and the magnitude of its Laplacian from the gas phase are always larger than for the solid state phase calculation and the experiment. This may be due to the packing effect. The transferability of the experimental electronic structure of the NO 2 groups from HMX to TNDAP, TNAZ and RDX are also presented here. Even though the major populated multipoles are robust (small e.s.d.'s), these are few in number, compared with other lower populated multipoles for which the populations span a larger range. Since the deformation electron density distributions are reconstructed using linear combinations of the multipoles, it is necessary to give more degrees of freedom in the refinements. Therefore, those electron density distributions which have a wider range of the multipole populations should not be fixed in the refinements. Utilizing the same coordinate system setup in the multipole refinements of the functional groups, this system can be used as a starting point for solving the charge distribution of a larger system.
Scattering properties of electromagnetic waves from metal object in the lower terahertz region
NASA Astrophysics Data System (ADS)
Chen, Gang; Dang, H. X.; Hu, T. Y.; Su, Xiang; Lv, R. C.; Li, Hao; Tan, X. M.; Cui, T. J.
2018-01-01
An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of metal objects in the lower terahertz (THz) frequency. The metal object can be viewed as perfectly electrical conducting object with a slightly rough surface in the lower THz region. Hence the THz scattered field from metal object can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are combined to compute the coherent part; while the small perturbation method is used for the incoherent part. With the MonteCarlo method, the radar cross section of the rough metal surface is computed by the multilevel fast multipole algorithm and the proposed hybrid algorithm, respectively. The numerical results show that the proposed algorithm has good accuracy to simulate the scattering properties rapidly in the lower THz region.
Boundary integral equation analysis for suspension of spheres in Stokes flow
NASA Astrophysics Data System (ADS)
Corona, Eduardo; Veerapaneni, Shravan
2018-06-01
We show that the standard boundary integral operators, defined on the unit sphere, for the Stokes equations diagonalize on a specific set of vector spherical harmonics and provide formulas for their spectra. We also derive analytical expressions for evaluating the operators away from the boundary. When two particle are located close to each other, we use a truncated series expansion to compute the hydrodynamic interaction. On the other hand, we use the standard spectrally accurate quadrature scheme to evaluate smooth integrals on the far-field, and accelerate the resulting discrete sums using the fast multipole method (FMM). We employ this discretization scheme to analyze several boundary integral formulations of interest including those arising in porous media flow, active matter and magneto-hydrodynamics of rigid particles. We provide numerical results verifying the accuracy and scaling of their evaluation.
NASA Astrophysics Data System (ADS)
Gurrala, Praveen; Downs, Andrew; Chen, Kun; Song, Jiming; Roberts, Ron
2018-04-01
Full wave scattering models for ultrasonic waves are necessary for the accurate prediction of voltage signals received from complex defects/flaws in practical nondestructive evaluation (NDE) measurements. We propose the high-order Nyström method accelerated by the multilevel fast multipole algorithm (MLFMA) as an improvement to the state-of-the-art full-wave scattering models that are based on boundary integral equations. We present numerical results demonstrating improvements in simulation time and memory requirement. Particularly, we demonstrate the need for higher order geom-etry and field approximation in modeling NDE measurements. Also, we illustrate the importance of full-wave scattering models using experimental pulse-echo data from a spherical inclusion in a solid, which cannot be modeled accurately by approximation-based scattering models such as the Kirchhoff approximation.
Performance of parallel computation using CUDA for solving the one-dimensional elasticity equations
NASA Astrophysics Data System (ADS)
Darmawan, J. B. B.; Mungkasi, S.
2017-01-01
In this paper, we investigate the performance of parallel computation in solving the one-dimensional elasticity equations. Elasticity equations are usually implemented in engineering science. Solving these equations fast and efficiently is desired. Therefore, we propose the use of parallel computation. Our parallel computation uses CUDA of the NVIDIA. Our research results show that parallel computation using CUDA has a great advantage and is powerful when the computation is of large scale.
Parallel MR imaging: a user's guide.
Glockner, James F; Hu, Houchun H; Stanley, David W; Angelos, Lisa; King, Kevin
2005-01-01
Parallel imaging is a recently developed family of techniques that take advantage of the spatial information inherent in phased-array radiofrequency coils to reduce acquisition times in magnetic resonance imaging. In parallel imaging, the number of sampled k-space lines is reduced, often by a factor of two or greater, thereby significantly shortening the acquisition time. Parallel imaging techniques have only recently become commercially available, and the wide range of clinical applications is just beginning to be explored. The potential clinical applications primarily involve reduction in acquisition time, improved spatial resolution, or a combination of the two. Improvements in image quality can be achieved by reducing the echo train lengths of fast spin-echo and single-shot fast spin-echo sequences. Parallel imaging is particularly attractive for cardiac and vascular applications and will likely prove valuable as 3-T body and cardiovascular imaging becomes part of standard clinical practice. Limitations of parallel imaging include reduced signal-to-noise ratio and reconstruction artifacts. It is important to consider these limitations when deciding when to use these techniques. (c) RSNA, 2005.
FastID: Extremely Fast Forensic DNA Comparisons
2017-05-19
FastID: Extremely Fast Forensic DNA Comparisons Darrell O. Ricke, PhD Bioengineering Systems & Technologies Massachusetts Institute of...Technology Lincoln Laboratory Lexington, MA USA Darrell.Ricke@ll.mit.edu Abstract—Rapid analysis of DNA forensic samples can have a critical impact on...time sensitive investigations. Analysis of forensic DNA samples by massively parallel sequencing is creating the next gold standard for DNA
fast_protein_cluster: parallel and optimized clustering of large-scale protein modeling data.
Hung, Ling-Hong; Samudrala, Ram
2014-06-15
fast_protein_cluster is a fast, parallel and memory efficient package used to cluster 60 000 sets of protein models (with up to 550 000 models per set) generated by the Nutritious Rice for the World project. fast_protein_cluster is an optimized and extensible toolkit that supports Root Mean Square Deviation after optimal superposition (RMSD) and Template Modeling score (TM-score) as metrics. RMSD calculations using a laptop CPU are 60× faster than qcprot and 3× faster than current graphics processing unit (GPU) implementations. New GPU code further increases the speed of RMSD and TM-score calculations. fast_protein_cluster provides novel k-means and hierarchical clustering methods that are up to 250× and 2000× faster, respectively, than Clusco, and identify significantly more accurate models than Spicker and Clusco. fast_protein_cluster is written in C++ using OpenMP for multi-threading support. Custom streaming Single Instruction Multiple Data (SIMD) extensions and advanced vector extension intrinsics code accelerate CPU calculations, and OpenCL kernels support AMD and Nvidia GPUs. fast_protein_cluster is available under the M.I.T. license. (http://software.compbio.washington.edu/fast_protein_cluster) © The Author 2014. Published by Oxford University Press.
Building better water models using the shape of the charge distribution of a water molecule
NASA Astrophysics Data System (ADS)
Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko
2017-11-01
The unique properties of liquid water apparently arise from more than just the tetrahedral bond angle between the nuclei of a water molecule since simple three-site models of water are poor at mimicking these properties in computer simulations. Four- and five-site models add partial charges on dummy sites and are better at modeling these properties, which suggests that the shape of charge distribution is important. Since a multipole expansion of the electrostatic potential describes a charge distribution in an orthogonal basis set that is exact in the limit of infinite order, multipoles may be an even better way to model the charge distribution. In particular, molecular multipoles up to the octupole centered on the oxygen appear to describe the electrostatic potential from electronic structure calculations better than four- and five-site models, and molecular multipole models give better agreement with the temperature and pressure dependence of many liquid state properties of water while retaining the computational efficiency of three-site models. Here, the influence of the shape of the molecular charge distribution on liquid state properties is examined by correlating multipoles of non-polarizable water models with their liquid state properties in computer simulations. This will aid in the development of accurate water models for classical simulations as well as in determining the accuracy needed in quantum mechanical/molecular mechanical studies and ab initio molecular dynamics simulations of water. More fundamentally, this will lead to a greater understanding of how the charge distribution of a water molecule leads to the unique properties of liquid water. In particular, these studies indicate that p-orbital charge out of the molecular plane is important.
NASA Astrophysics Data System (ADS)
Heaps, Charles W.; Schatz, George C.
2017-06-01
A computational method to model diffraction-limited images from super-resolution surface-enhanced Raman scattering microscopy is introduced. Despite significant experimental progress in plasmon-based super-resolution imaging, theoretical predictions of the diffraction limited images remain a challenge. The method is used to calculate localization errors and image intensities for a single spherical gold nanoparticle-molecule system. The light scattering is calculated using a modification of generalized Mie (T-matrix) theory with a point dipole source and diffraction limited images are calculated using vectorial diffraction theory. The calculation produces the multipole expansion for each emitter and the coherent superposition of all fields. Imaging the constituent fields in addition to the total field provides new insight into the strong coupling between the molecule and the nanoparticle. Regardless of whether the molecular dipole moment is oriented parallel or perpendicular to the nanoparticle surface, the anisotropic excitation distorts the center of the nanoparticle as measured by the point spread function by approximately fifty percent of the particle radius toward to the molecule. Inspection of the nanoparticle multipoles reveals that distortion arises from a weak quadrupole resonance interfering with the dipole field in the nanoparticle. When the nanoparticle-molecule fields are in-phase, the distorted nanoparticle field dominates the observed image. When out-of-phase, the nanoparticle and molecule are of comparable intensity and interference between the two emitters dominates the observed image. The method is also applied to different wavelengths and particle radii. At off-resonant wavelengths, the method predicts images closer to the molecule not because of relative intensities but because of greater distortion in the nanoparticle. The method is a promising approach to improving the understanding of plasmon-enhanced super-resolution experiments.
On the dynamic toroidal multipoles from localized electric current distributions.
Fernandez-Corbaton, Ivan; Nanz, Stefan; Rockstuhl, Carsten
2017-08-08
We analyze the dynamic toroidal multipoles and prove that they do not have an independent physical meaning with respect to their interaction with electromagnetic waves. We analytically show how the split into electric and toroidal parts causes the appearance of non-radiative components in each of the two parts. These non-radiative components, which cancel each other when both parts are summed, preclude the separate determination of each part by means of measurements of the radiation from the source or of its coupling to external electromagnetic waves. In other words, there is no toroidal radiation or independent toroidal electromagnetic coupling. The formal meaning of the toroidal multipoles is clear in our derivations. They are the higher order terms of an expansion of the multipolar coefficients of electric parity with respect to the electromagnetic size of the source.
Numerical Solution of Dyson Brownian Motion and a Sampling Scheme for Invariant Matrix Ensembles
NASA Astrophysics Data System (ADS)
Li, Xingjie Helen; Menon, Govind
2013-12-01
The Dyson Brownian Motion (DBM) describes the stochastic evolution of N points on the line driven by an applied potential, a Coulombic repulsion and identical, independent Brownian forcing at each point. We use an explicit tamed Euler scheme to numerically solve the Dyson Brownian motion and sample the equilibrium measure for non-quadratic potentials. The Coulomb repulsion is too singular for the SDE to satisfy the hypotheses of rigorous convergence proofs for tamed Euler schemes (Hutzenthaler et al. in Ann. Appl. Probab. 22(4):1611-1641, 2012). Nevertheless, in practice the scheme is observed to be stable for time steps of O(1/ N 2) and to relax exponentially fast to the equilibrium measure with a rate constant of O(1) independent of N. Further, this convergence rate appears to improve with N in accordance with O(1/ N) relaxation of local statistics of the Dyson Brownian motion. This allows us to use the Dyson Brownian motion to sample N× N Hermitian matrices from the invariant ensembles. The computational cost of generating M independent samples is O( MN 4) with a naive scheme, and O( MN 3log N) when a fast multipole method is used to evaluate the Coulomb interaction.
Reproducing the scaling laws for Slow and Fast ruptures
NASA Astrophysics Data System (ADS)
Romanet, Pierre; Bhat, Harsha; Madariaga, Raúl
2017-04-01
Modelling long term behaviour of large, natural fault systems, that are geometrically complex, is a challenging problem. This is why most of the research so far has concentrated on modelling the long term response of single planar fault system. To overcome this limitation, we appeal to a novel algorithm called the Fast Multipole Method which was developed in the context of modelling gravitational N-body problems. This method allows us to decrease the computational complexity of the calculation from O(N2) to O(N log N), N being the number of discretised elements on the fault. We then adapted this method to model the long term quasi-dynamic response of two faults, with step-over like geometry, that are governed by rate and state friction laws. We assume the faults have spatially uniform rate weakening friction. The results show that when stress interaction between faults is accounted, a complex spectrum of slip (including slow-slip events, dynamic ruptures and partial ruptures) emerges naturally. The simulated slow-slip and dynamic events follow the scaling law inferred by Ide et al. 2007 i. e. M ∝ T for slow-slip events and M ∝ T2 (in 2D) for dynamic events.
Large-scale trench-normal mantle flow beneath central South America
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rümpker, G.; Wölbern, I.
2018-01-01
We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.
STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers
NASA Astrophysics Data System (ADS)
Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia
2015-03-01
Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.
Quantum interference in laser spectroscopy of highly charged lithiumlike ions
NASA Astrophysics Data System (ADS)
Amaro, Pedro; Loureiro, Ulisses; Safari, Laleh; Fratini, Filippo; Indelicato, Paul; Stöhlker, Thomas; Santos, José Paulo
2018-02-01
We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2 s →2 p →2 s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes 79+207Pb and 80+209Bi due to experimental interest, as well as other examples of isotopes with lower Z , namely 56+141Pr and 64+165Ho. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.
Use of the ( e , e prime n ) reaction to study the giant multipole resonances in sup 116 Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskimen, R.A.; Ammons, E.A.; Arruda-Neto, J.D.T.
1991-04-01
The giant multipole resonances in {sup 116}Sn have been studied using the ({ital e},{ital e}{prime}{ital n}) reaction. Data were taken at effective momentum transfers of 0.37, 0.45, and 0.55 fm{sup {minus}1} and a multipole analysis of the data was performed. The inferred multipole strength functions identify the {ital E}2 and {ital E}0 resonances as distinct peaks at 12.2 and 17.9 MeV, respectively. The energy-weighted sum-rule strengths for the {ital E}2 and {ital E}0 resonances, obtained using a Lorentzian fit to the data, are 34{plus minus}13% and 93{plus minus}37%. When compared with results from alpha scattering and pion scattering the sum-rulemore » strengths exhibit approximate agreement, but the {ital E}0 strength identified in this measurement lies at higher excitation energy, consistent with the trend observed in heavier nuclei. The ({ital e},{ital e}{prime}{ital n}) data are compared with a continuum random phase approximation (RPA) calculation of the {ital E}2 and {ital E}0 strengths, and with an open-shell RPA calculation of the {ital E}2 strength. Both calculations disagree with the data in the region of the {ital E}2 resonance.« less
NASA Astrophysics Data System (ADS)
Terekhov, Pavel D.; Baryshnikova, Kseniia V.; Artemyev, Yuriy A.; Karabchevsky, Alina; Shalin, Alexander S.; Evlyukhin, Andrey B.
2017-07-01
Spectral multipole resonances of parallelepiped-, pyramid-, and cone-like shaped silicon nanoparticles excited by linearly polarized light waves are theoretically investigated. The numerical finite element method is applied for the calculations of the scattering cross sections as a function of the nanoparticles geometrical parameters. The roles of multipole moments (up to the third order) in the scattering process are analyzed using the semianalytical multipole decomposition approach. The possibility of scattering pattern configuration due to the tuning of the multipole contributions to the total scattered waves is discussed and demonstrated. It is shown that cubic nanoparticles can provide a strong isotropic side scattering with minimization of the scattering in forward and backward directions. In the case of the pyramidal and conical nanoparticles the total suppression of the side scattering can be obtained. It was found that due to the shape factor of the pyramidal and conical nanoparticles their electric toroidal dipole resonance can be excited in the spectral region of the first electric and magnetic dipole resonances. The influence of the incident light directions on the optical response of the pyramidal and conical nanoparticles is discussed. The obtained results provide important information that can be used for the development of nanoantennas with improved functionality due to the directional scattering effects.
The multigrid preconditioned conjugate gradient method
NASA Technical Reports Server (NTRS)
Tatebe, Osamu
1993-01-01
A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.
Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael
2012-06-01
We present l₁-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative self-consistent parallel imaging (SPIRiT). Like many iterative magnetic resonance imaging reconstructions, l₁-SPIRiT's image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing l₁-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of l₁-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT spoiled gradient echo (SPGR) sequence with up to 8× acceleration via Poisson-disc undersampling in the two phase-encoded directions.
Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael
2012-01-01
We present ℓ1-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the Wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative Self-Consistent Parallel Imaging (SPIRiT). Like many iterative MRI reconstructions, ℓ1-SPIRiT’s image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing ℓ1-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of ℓ1-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT Spoiled Gradient Echo (SPGR) sequence with up to 8× acceleration via poisson-disc undersampling in the two phase-encoded directions. PMID:22345529
Planck 2015 results: XI. CMB power spectra, likelihoods, and robustness of parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghanim, N.; Arnaud, M.; Ashdown, M.
This study presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (ℓ< 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy broughtmore » by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n s, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck’s wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the μK 2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Finally and nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the ΛCDM model, showing consistency with those established independently from temperature information alone.« less
Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Lilley, M.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Meinhold, P. R.; Melchiorri, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Serra, P.; Spencer, L. D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, I.e., a pixel-based likelihood at low multipoles (ℓ< 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, ns, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck's wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the μK2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the ΛCDM model, showing consistency with those established independently from temperature information alone.
Planck 2015 results: XI. CMB power spectra, likelihoods, and robustness of parameters
Aghanim, N.; Arnaud, M.; Ashdown, M.; ...
2016-09-20
This study presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (ℓ< 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy broughtmore » by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n s, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck’s wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the μK 2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Finally and nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the ΛCDM model, showing consistency with those established independently from temperature information alone.« less
Fast parallel algorithm for slicing STL based on pipeline
NASA Astrophysics Data System (ADS)
Ma, Xulong; Lin, Feng; Yao, Bo
2016-05-01
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.
Fox, W.; Sciortino, F.; v. Stechow, A.; ...
2017-03-21
We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Furthermore, these results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models ofmore » the importance of electron pressure gradients for obtaining fast magnetic reconnection.« less
Automatic recognition of vector and parallel operations in a higher level language
NASA Technical Reports Server (NTRS)
Schneck, P. B.
1971-01-01
A compiler for recognizing statements of a FORTRAN program which are suited for fast execution on a parallel or pipeline machine such as Illiac-4, Star or ASC is described. The technique employs interval analysis to provide flow information to the vector/parallel recognizer. Where profitable the compiler changes scalar variables to subscripted variables. The output of the compiler is an extension to FORTRAN which shows parallel and vector operations explicitly.
System and method for trapping and measuring a charged particle in a liquid
Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce
2013-07-23
A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.
System and method for trapping and measuring a charged particle in a liquid
Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce
2012-10-23
A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.
NASA Technical Reports Server (NTRS)
Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)
1994-01-01
The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.
Nonequilibrium electromagnetics: Local and macroscopic fields and constitutive relationships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker-Jarvis, James; Kabos, Pavel; Holloway, Christopher L.
We study the electrodynamics of materials using a Liouville-Hamiltonian-based statistical-mechanical theory. Our goal is to develop electrodynamics from an ensemble-average viewpoint that is valid for microscopic and nonequilibrium systems at molecular to submolecular scales. This approach is not based on a Taylor series expansion of the charge density to obtain the multipoles. Instead, expressions of the molecular multipoles are used in an inverse problem to obtain the averaging statistical-density function that is used to obtain the macroscopic fields. The advantages of this method are that the averaging function is constructed in a self-consistent manner and the molecules can either bemore » treated as point multipoles or contain more microstructure. Expressions for the local and macroscopic fields are obtained, and evolution equations for the constitutive parameters are developed. We derive equations for the local field as functions of the applied, polarization, magnetization, strain density, and macroscopic fields.« less
Microfluidic quadrupole and floating concentration gradient.
Qasaimeh, Mohammad A; Gervais, Thomas; Juncker, David
2011-09-06
The concept of fluidic multipoles, in analogy to electrostatics, has long been known as a particular class of solutions of the Navier-Stokes equation in potential flows; however, experimental observations of fluidic multipoles and of their characteristics have not been reported yet. Here we present a two-dimensional microfluidic quadrupole and a theoretical analysis consistent with the experimental observations. The microfluidic quadrupole was formed by simultaneously injecting and aspirating fluids from two pairs of opposing apertures in a narrow gap formed between a microfluidic probe and a substrate. A stagnation point was formed at the centre of the microfluidic quadrupole, and its position could be rapidly adjusted hydrodynamically. Following the injection of a solute through one of the poles, a stationary, tunable, and movable-that is, 'floating'-concentration gradient was formed at the stagnation point. Our results lay the foundation for future combined experimental and theoretical exploration of microfluidic planar multipoles including convective-diffusive phenomena.
Motion streaks in fast motion rivalry cause orientation-selective suppression.
Apthorp, Deborah; Wenderoth, Peter; Alais, David
2009-05-14
We studied binocular rivalry between orthogonally translating arrays of random Gaussian blobs and measured the strength of rivalry suppression for static oriented probes. Suppression depth was quantified by expressing monocular probe thresholds during dominance relative to thresholds during suppression. Rivalry between two fast motions or two slow motions was compared in order to test the suggestion that fast-moving objects leave oriented "motion streaks" due to temporal integration (W. S. Geisler, 1999). If fast motions do produce motion streaks, then fast motion rivalry might also entail rivalry between the orthogonal streak orientations. We tested this using a static oriented probe that was aligned either parallel to the motion trajectory (hence collinear with the "streaks") or was orthogonal to the trajectory, predicting that rivalry suppression would be greater for parallel probes, and only for rivalry between fast motions. Results confirmed that suppression depth did depend on probe orientation for fast motion but not for slow motion. Further experiments showed that threshold elevations for the oriented probe during suppression exhibited clear orientation tuning. However, orientation-tuned elevations were also present during dominance, suggesting within-channel masking as the basis of the extra-deep suppression. In sum, the presence of orientation-dependent suppression in fast motion rivalry is consistent with the "motion streaks" hypothesis.
Novel Optical Processor for Phased Array Antenna.
1992-10-20
parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in
Bit-parallel arithmetic in a massively-parallel associative processor
NASA Technical Reports Server (NTRS)
Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.
1992-01-01
A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.
Aerodynamic generation of electric fields in turbulence laden with charged inertial particles.
Di Renzo, M; Urzay, J
2018-04-26
Self-induced electricity, including lightning, is often observed in dusty atmospheres. However, the physical mechanisms leading to this phenomenon remain elusive as they are remarkably challenging to determine due to the high complexity of the multi-phase turbulent flows involved. Using a fast multi-pole method in direct numerical simulations of homogeneous turbulence laden with hundreds of millions of inertial particles, here we show that mesoscopic electric fields can be aerodynamically created in bi-disperse suspensions of oppositely charged particles. The generation mechanism is self-regulating and relies on turbulence preferentially concentrating particles of one sign in clouds while dispersing the others more uniformly. The resulting electric field varies over much larger length scales than both the mean inter-particle spacing and the size of the smallest eddies. Scaling analyses suggest that low ambient pressures, such as those prevailing in the atmosphere of Mars, increase the dynamical relevance of this aerodynamic mechanism for electrical breakdown.
NASA Astrophysics Data System (ADS)
Moreno, Javier; Somolinos, Álvaro; Romero, Gustavo; González, Iván; Cátedra, Felipe
2017-08-01
A method for the rigorous computation of the electromagnetic scattering of large dielectric volumes is presented. One goal is to simplify the analysis of large dielectric targets with translational symmetries taken advantage of their Toeplitz symmetry. Then, the matrix-fill stage of the Method of Moments is efficiently obtained because the number of coupling terms to compute is reduced. The Multilevel Fast Multipole Method is applied to solve the problem. Structured meshes are obtained efficiently to approximate the dielectric volumes. The regular mesh grid is achieved by using parallelepipeds whose centres have been identified as internal to the target. The ray casting algorithm is used to classify the parallelepiped centres. It may become a bottleneck when too many points are evaluated in volumes defined by parametric surfaces, so a hierarchical algorithm is proposed to minimize the number of evaluations. Measurements and analytical results are included for validation purposes.
An integral equation formulation for rigid bodies in Stokes flow in three dimensions
NASA Astrophysics Data System (ADS)
Corona, Eduardo; Greengard, Leslie; Rachh, Manas; Veerapaneni, Shravan
2017-03-01
We present a new derivation of a boundary integral equation (BIE) for simulating the three-dimensional dynamics of arbitrarily-shaped rigid particles of genus zero immersed in a Stokes fluid, on which are prescribed forces and torques. Our method is based on a single-layer representation and leads to a simple second-kind integral equation. It avoids the use of auxiliary sources within each particle that play a role in some classical formulations. We use a spectrally accurate quadrature scheme to evaluate the corresponding layer potentials, so that only a small number of spatial discretization points per particle are required. The resulting discrete sums are computed in O (n) time, where n denotes the number of particles, using the fast multipole method (FMM). The particle positions and orientations are updated by a high-order time-stepping scheme. We illustrate the accuracy, conditioning and scaling of our solvers with several numerical examples.
SWIFT: SPH With Inter-dependent Fine-grained Tasking
NASA Astrophysics Data System (ADS)
Schaller, Matthieu; Gonnet, Pedro; Chalk, Aidan B. G.; Draper, Peter W.
2018-05-01
SWIFT runs cosmological simulations on peta-scale machines for solving gravity and SPH. It uses the Fast Multipole Method (FMM) to calculate gravitational forces between nearby particles, combining these with long-range forces provided by a mesh that captures both the periodic nature of the calculation and the expansion of the simulated universe. SWIFT currently uses a single fixed but time-variable softening length for all the particles. Many useful external potentials are also available, such as galaxy haloes or stratified boxes that are used in idealised problems. SWIFT implements a standard LCDM cosmology background expansion and solves the equations in a comoving frame; equations of state of dark-energy evolve with scale-factor. The structure of the code allows implementation for modified-gravity solvers or self-interacting dark matter schemes to be implemented. Many hydrodynamics schemes are implemented in SWIFT and the software allows users to add their own.
Low-memory iterative density fitting.
Grajciar, Lukáš
2015-07-30
A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kim, Stephan D.; Luo, Jiajun; Buchholz, D. Bruce; Chang, R. P. H.; Grayson, M.
2016-09-01
A modular time division multiplexer (MTDM) device is introduced to enable parallel measurement of multiple samples with both fast and slow decay transients spanning from millisecond to month-long time scales. This is achieved by dedicating a single high-speed measurement instrument for rapid data collection at the start of a transient, and by multiplexing a second low-speed measurement instrument for slow data collection of several samples in parallel for the later transients. The MTDM is a high-level design concept that can in principle measure an arbitrary number of samples, and the low cost implementation here allows up to 16 samples to be measured in parallel over several months, reducing the total ensemble measurement duration and equipment usage by as much as an order of magnitude without sacrificing fidelity. The MTDM was successfully demonstrated by simultaneously measuring the photoconductivity of three amorphous indium-gallium-zinc-oxide thin films with 20 ms data resolution for fast transients and an uninterrupted parallel run time of over 20 days. The MTDM has potential applications in many areas of research that manifest response times spanning many orders of magnitude, such as photovoltaics, rechargeable batteries, amorphous semiconductors such as silicon and amorphous indium-gallium-zinc-oxide.
Kim, Stephan D; Luo, Jiajun; Buchholz, D Bruce; Chang, R P H; Grayson, M
2016-09-01
A modular time division multiplexer (MTDM) device is introduced to enable parallel measurement of multiple samples with both fast and slow decay transients spanning from millisecond to month-long time scales. This is achieved by dedicating a single high-speed measurement instrument for rapid data collection at the start of a transient, and by multiplexing a second low-speed measurement instrument for slow data collection of several samples in parallel for the later transients. The MTDM is a high-level design concept that can in principle measure an arbitrary number of samples, and the low cost implementation here allows up to 16 samples to be measured in parallel over several months, reducing the total ensemble measurement duration and equipment usage by as much as an order of magnitude without sacrificing fidelity. The MTDM was successfully demonstrated by simultaneously measuring the photoconductivity of three amorphous indium-gallium-zinc-oxide thin films with 20 ms data resolution for fast transients and an uninterrupted parallel run time of over 20 days. The MTDM has potential applications in many areas of research that manifest response times spanning many orders of magnitude, such as photovoltaics, rechargeable batteries, amorphous semiconductors such as silicon and amorphous indium-gallium-zinc-oxide.
NSLS-II BPM System Protection from Rogue Mode Coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blednykh, A.; Bach, B.; Borrelli, A.
2011-03-28
Rogue mode RF shielding has been successfully designed and implemented into the production multipole vacuum chambers. In order to avoid systematic errors in the NSLS-II BPM system we introduced frequency shift of HOM's by using RF metal shielding located in the antechamber slot of each multipole vacuum chamber. To satisfy the pumping requirement the face of the shielding has been perforated with roughly 50 percent transparency. It stays clear of synchrotron radiation in each chamber.
The multipole resonance probe: characterization of a prototype
NASA Astrophysics Data System (ADS)
Lapke, Martin; Oberrath, Jens; Schulz, Christian; Storch, Robert; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Brinkmann, Ralf Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona
2011-08-01
The multipole resonance probe (MRP) was recently proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2008 Appl. Phys. Lett. 93 051502). This communication reports the experimental characterization of a first MRP prototype in an inductively coupled argon/nitrogen plasma at 10 Pa. The behavior of the device follows the predictions of both an analytical model and a numerical simulation. The obtained electron densities are in excellent agreement with the results of Langmuir probe measurements.
Beyond Point Charges: Dynamic Polarization from Neural Net Predicted Multipole Moments.
Darley, Michael G; Handley, Chris M; Popelier, Paul L A
2008-09-09
Intramolecular polarization is the change to the electron density of a given atom upon variation in the positions of the neighboring atoms. We express the electron density in terms of multipole moments. Using glycine and N-methylacetamide (NMA) as pilot systems, we show that neural networks can capture the change in electron density due to polarization. After training, modestly sized neural networks successfully predict the atomic multipole moments from the nuclear positions of all atoms in the molecule. Accurate electrostatic energies between two atoms can be then obtained via a multipole expansion, inclusive of polarization effects. As a result polarization is successfully modeled at short-range and without an explicit polarizability tensor. This approach puts charge transfer and multipolar polarization on a common footing. The polarization procedure is formulated within the context of quantum chemical topology (QCT). Nonbonded atom-atom interactions in glycine cover an energy range of 948 kJ mol(-1), with an average energy difference between true and predicted energy of 0.2 kJ mol(-1), the largest difference being just under 1 kJ mol(-1). Very similar energy differences are found for NMA, which spans a range of 281 kJ mol(-1). The current proof-of-concept enables the construction of a new protein force field that incorporates electron density fragments that dynamically respond to their fluctuating environment.
NASA Astrophysics Data System (ADS)
Sagui, Celeste
2006-03-01
An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.
Long term dynamics of the high luminosity Large Hadron Collider with crab cavities
NASA Astrophysics Data System (ADS)
Barranco García, J.; De Maria, R.; Grudiev, A.; Tomás García, R.; Appleby, R. B.; Brett, D. R.
2016-10-01
The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) aims to achieve an integrated luminosity of 200 - 300 fb-1 per year, including the contribution from the upgrade of the injector chain. For the HL-LHC the larger crossing angle together with a smaller beta function at the collision point would result in more than 70% luminosity loss due to the incomplete geometric overlap of colliding bunches. To recover head-on collisions at the high-luminosity particle-physics detectors ATLAS and CMS and benefit from the very low β* provided by the Achromatic Telescopic Squeezing (ATS) optics, a local crab cavity scheme provides transverse kicks to the proton bunches. The tight space constraints at the location of these cavities leads to designs which are axially non-symmetric, giving rise to high order multipoles components of the main deflecting mode and, since these kicks are harmonic in time, we expand them in a series of multipoles in a similar fashion as is done for static field magnets. In this work we calculate, for the first time, the higher order multipoles and their impact on beam dynamics for three different crab cavity prototypes. Different approaches to calculate the multipoles are presented. Furthermore, we perform the first calculation of their impact on the long term stability of the machine using the concept of dynamic aperture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, F. K.; Eriksen, H. K.; Lilje, P. B.
We repeat and extend the analysis of Eriksen et al. and Hansen et al., testing the isotropy of the cosmic microwave background fluctuations. We find that the hemispherical power asymmetry previously reported for the largest scales l = 2-40 extends to much smaller scales. In fact, for the full multipole range l = 2-600, significantly more power is found in the hemisphere centered at (theta = 107{sup 0} +- 10{sup 0}, phi = 226{sup 0} +- 10{sup 0}) in galactic co-latitude and longitude than in the opposite hemisphere, consistent with the previously detected direction of asymmetry for l = 2-40.more » We adopt a model selection test where the direction and amplitude of asymmetry, as well as the multipole range, are free parameters. A model with an asymmetric distribution of power for l = 2-600 is found to be preferred over the isotropic model at the 0.4% significance level, taking into account the additional parameters required to describe it. A similar direction of asymmetry is found independently in all six subranges of 100 multipoles between l = 2-600. None of our 9800 isotropic simulated maps show a similarly consistent direction of asymmetry over such a large multipole range. No known systematic effects or foregrounds are found to be able to explain the asymmetry.« less
Aylor, K.; Hou, Z.; Knox, L.; ...
2017-11-20
The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540more » $${\\deg }^{2}$$ SPT-SZ survey offers measurements on sub-degree angular scales (multipoles $$650\\leqslant {\\ell }\\leqslant 2500$$) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and $${A}_{s}{e}^{-2\\tau }$$. We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at $${\\ell }\\gt 2000$$.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylor, K.; Hou, Z.; Knox, L.
The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540more » $${\\deg }^{2}$$ SPT-SZ survey offers measurements on sub-degree angular scales (multipoles $$650\\leqslant {\\ell }\\leqslant 2500$$) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and $${A}_{s}{e}^{-2\\tau }$$. We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at $${\\ell }\\gt 2000$$.« less
NASA Astrophysics Data System (ADS)
Aylor, K.; Hou, Z.; Knox, L.; Story, K. T.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H.-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Omori, Y.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.
2017-11-01
The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 {\\deg }2 SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650≤slant {\\ell }≤slant 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and {A}s{e}-2τ . We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at {\\ell }> 2000.
Magnetic field of longitudinal gradient bend
NASA Astrophysics Data System (ADS)
Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas
2018-06-01
The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.
Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boles, J L; Reyes, S; Ahle, L E
Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.
Large-scale trench-perpendicular mantle flow beneath northern Chile
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rumpker, G.; Woelbern, I.
2017-12-01
We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental plate. This is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab to the measurements.
[CMACPAR an modified parallel neuro-controller for control processes].
Ramos, E; Surós, R
1999-01-01
CMACPAR is a Parallel Neurocontroller oriented to real time systems as for example Control Processes. Its characteristics are mainly a fast learning algorithm, a reduced number of calculations, great generalization capacity, local learning and intrinsic parallelism. This type of neurocontroller is used in real time applications required by refineries, hydroelectric centers, factories, etc. In this work we present the analysis and the parallel implementation of a modified scheme of the Cerebellar Model CMAC for the n-dimensional space projection using a mean granularity parallel neurocontroller. The proposed memory management allows for a significant memory reduction in training time and required memory size.
Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Reeder, Scott B.
2017-01-01
Purpose To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. Theory and Methods A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Results Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. Conclusion A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. PMID:27403613
Method of reducing multipole content in a conductor assembly during manufacture
Meinke, Rainer [Melbourne, FL
2011-08-09
A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.
Polarizable atomic multipole-based force field for DOPC and POPE membrane lipids
NASA Astrophysics Data System (ADS)
Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Min, Hanyi; Li, Guohui
2018-04-01
A polarizable atomic multipole-based force field for the membrane bilayer models 1,2-dioleoyl-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) has been developed. The force field adopts the same framework as the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) model, in which the charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments. Many-body polarization including the inter- and intra-molecular polarization is modelled in a consistent manner with distributed atomic polarizabilities. The van der Waals parameters were first transferred from existing AMOEBA parameters for small organic molecules and then optimised by fitting to ab initio intermolecular interaction energies between models and a water molecule. Molecular dynamics simulations of the two aqueous DOPC and POPE membrane bilayer systems, consisting of 72 model molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, etc. were consistent with experimental values.
The evens and odds of CMB anomalies
NASA Astrophysics Data System (ADS)
Gruppuso, A.; Kitazawa, N.; Lattanzi, M.; Mandolesi, N.; Natoli, P.; Sagnotti, A.
2018-06-01
The lack of power of large-angle CMB anisotropies is known to increase its statistical significance at higher Galactic latitudes, where a string-inspired pre-inflationary scale Δ can also be detected. Considering the Planck 2015 data, and relying largely on a Bayesian approach, we show that the effect is mostly driven by the even - ℓ harmonic multipoles with ℓ ≲ 20, which appear sizably suppressed in a way that is robust with respect to Galactic masking, along with the corresponding detections of Δ. On the other hand, the first odd - ℓ multipoles are only suppressed at high Galactic latitudes. We investigate this behavior in different sky masks, constraining Δ through even and odd multipoles, and we elaborate on possible implications. We include low- ℓ polarization data which, despite being noise-limited, help in attaining confidence levels of about 3 σ in the detection of Δ. We also show by direct forecasts that a future all-sky E-mode cosmic-variance-limited polarization survey may push the constraining power for Δ beyond 5 σ.
Simulation of scattered fields: Some guidelines for the equivalent source method
NASA Astrophysics Data System (ADS)
Gounot, Yves J. R.; Musafir, Ricardo E.
2011-07-01
Three different approaches of the equivalent source method for simulating scattered fields are compared: two of them deal with monopole sets, the other with multipole expansions. In the first monopole approach, the sources have fixed positions given by specific rules, while in the second one (ESGA), the optimal positions are determined via a genetic algorithm. The 'pros and cons' of each of these approaches are discussed with the aim of providing practical guidelines for the user. It is shown that while both monopole techniques furnish quite good pressure field reconstructions with simple source arrangements, ESGA requires a number of monopoles significantly smaller and, with equal number of sources, yields a better precision. As for the multipole technique, the main advantage is that in principle any precision can be reached, provided the source order is sufficiently high. On the other hand, the results point out that the lack of rules for determining the proper multipole order necessary for a desired precision may constitute a handicap for the user.
Method of reducing multipole content in a conductor assembly during manufacture
Meinke, Rainer
2013-08-20
A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.
Multipole mixing ratios and substate populations in Rn-219
NASA Astrophysics Data System (ADS)
Jones, G. D.
2016-08-01
Historical alpha-gamma angular correlation data for the decay of 223Ra into excited states of 219Rn have been analysed, using the correct spins of the states involved, for the first time. The analyses produced multipole mixing ratios (E2/M1) of δ (144)=-0.11\\+/- 0.03, δ (154)=0, δ (158)=-0.205\\+/- 0.018 and δ (269)=-0.149\\+/- 0.004 where the nominal transition energies, in keV, are given in brackets. These values are consistent with published values obtained from internal conversion electron spectroscopy. It is also found that δ (324)=0 and δ (338)=-0.235\\+/- 0.030 (where both values differ from current tabulations) and that the sign of the multipole mixing ratio for the 122 keV transition is negative. The 158, 269 and 338 keV states are found to be aligned with high population of M=+/- 3/2 substates and the 127 keV state is believed to have undergone spin relaxation.
Real-time digital signal recovery for a multi-pole low-pass transfer function system.
Lee, Jhinhwan
2017-08-01
In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.
NASA Technical Reports Server (NTRS)
Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.;
2002-01-01
We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.
Characterization of the International Linear Collider damping ring optics
NASA Astrophysics Data System (ADS)
Shanks, J.; Rubin, D. L.; Sagan, D.
2014-10-01
A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.
Design study of beam position monitors for measuring second-order moments of charged particle beams
NASA Astrophysics Data System (ADS)
Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi
2012-01-01
This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).
NASA Astrophysics Data System (ADS)
Izquierdo, K.; Lekic, V.; Montesi, L.
2017-12-01
Gravity inversions are especially important for planetary applications since measurements of the variations in gravitational acceleration are often the only constraint available to map out lateral density variations in the interiors of planets and other Solar system objects. Currently, global gravity data is available for the terrestrial planets and the Moon. Although several methods for inverting these data have been developed and applied, the non-uniqueness of global density models that fit the data has not yet been fully characterized. We make use of Bayesian inference and a Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach to develop a Trans-dimensional Hierarchical Bayesian (THB) inversion algorithm that yields a large sample of models that fit a gravity field. From this group of models, we can determine the most likely value of parameters of a global density model and a measure of the non-uniqueness of each parameter when the number of anomalies describing the gravity field is not fixed a priori. We explore the use of a parallel tempering algorithm and fast multipole method to reduce the number of iterations and computing time needed. We applied this method to a synthetic gravity field of the Moon and a long wavelength synthetic model of density anomalies in the Earth's lower mantle. We obtained a good match between the given gravity field and the gravity field produced by the most likely model in each inversion. The number of anomalies of the models showed parsimony of the algorithm, the value of the noise variance of the input data was retrieved, and the non-uniqueness of the models was quantified. Our results show that the ability to constrain the latitude and longitude of density anomalies, which is excellent at shallow locations (<200 km), decreases with increasing depth. With higher computational resources, this THB method for gravity inversion could give new information about the overall density distribution of celestial bodies even when there is no other geophysical data available.
NASA Astrophysics Data System (ADS)
Slough, J. T.; Hoffman, A. L.
1990-04-01
A high-order multipole ``barrier'' field was applied at the vacuum tube wall in the TRX experiment [Phys. Fluids B 1, 840 (1989)] during both the preionization and field reversal phases of field-reversed configuration (FRC) formation. Use of this field during field reversal resulted in a significant reduction of impurities as well as increased flux trapping. With a large enough Bθ at the wall, sheath detachment from the wall became apparent, and flux loss through the sheath became negligible (<10%). At larger wall Bθ (>1.5 kG), destructive rotational spin-up occurred, driven by Hall current forces. When the multipole barrier field was also applied during either axial discharge or ringing theta current preionization, a very symmetric and uniform breakdown of the fill gas was achieved. In particular, using ringing theta preionization, complete ionization of the fill gas was accomplished with purely inductive fields of remarkably low magnitude, where Ez≤3 V/cm, and Eθ≤20 V/cm. Due to the improved ionization symmetry, about 65% to 75% of the lift-off flux (flux remaining after field reversal) could be retained through the remaining formation processes into an equilibrium FRC. Using the multipole field during both preionization and formation, it was possible to form FRC's with good confinement with greater than 3 mWb of trapped flux at 15 mTorr D2 or H2 in a 10 cm radius device. Values of s in excess of 4 could be achieved in this manner.
NASA Astrophysics Data System (ADS)
Romero, Angel H.
2017-10-01
The influence of ring puckering angle on the multipole moments of sixteen four-membered heterocycles (1-16) was theoretically estimated using MP2 and different DFTs in combination with the 6-31+G(d,p) basis set. To obtain an accurate evaluation, CCSD/cc-pVDZ level and, the MP2 and PBE1PBE methods in combination with the aug-cc-pVDZ and aug-cc-pVTZ basis sets were performed on the planar geometries of 1-16. In general, the DFT and MP2 approaches provided an identical dependence of the electrical properties with the puckering angle for 1-16. Quantitatively, the quality of the level of theory and basis sets affects significant the predictions of the multipole moments, in particular for the heterocycles containing C=O and C=S bonds. Convergence basis sets within the MP2 and PBE1PBE approximations are reached in the dipole moment calculations when the aug-cc-pVTZ basis set is used, while the quadrupole and octupole moment computations require a larger basis set than aug-cc-pVTZ. On the other hand, the multipole moments showed a strong dependence with the molecular geometry and the nature of the carbon-heteroatom bonds. Specifically, the C-X bond determines the behavior of the μ(ϕ), θ(ϕ) and Ώ(ϕ) functions, while the C=Y bond plays an important role in the magnitude of the studied properties.
Progress with the COGENT Edge Kinetic Code: Implementing the Fokker-Plank Collision Operator
Dorf, M. A.; Cohen, R. H.; Dorr, M.; ...
2014-06-20
Here, COGENT is a continuum gyrokinetic code for edge plasma simulations being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of a fourth-order finite-volume (conservative) discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. The distribution function F is discretized in v∥ – μ (parallel velocity – magnetic moment) velocity coordinates, and the code presently solves an axisymmetric full-f gyro-kinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. COGENT capabilities are extended by implementing the fully nonlinear Fokker-Plank operator to model Coulomb collisions in magnetized edge plasmas.more » The corresponding Rosenbluth potentials are computed by making use of a finite-difference scheme and multipole-expansion boundary conditions. Details of the numerical algorithms and results of the initial verification studies are discussed. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)« less
NASA Astrophysics Data System (ADS)
Lu, San; Artemyev, A. V.; Angelopoulos, V.
2017-11-01
Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.
Parallel heuristics for scalable community detection
Lu, Hao; Halappanavar, Mahantesh; Kalyanaraman, Ananth
2015-08-14
Community detection has become a fundamental operation in numerous graph-theoretic applications. Despite its potential for application, there is only limited support for community detection on large-scale parallel computers, largely owing to the irregular and inherently sequential nature of the underlying heuristics. In this paper, we present parallelization heuristics for fast community detection using the Louvain method as the serial template. The Louvain method is an iterative heuristic for modularity optimization. Originally developed in 2008, the method has become increasingly popular owing to its ability to detect high modularity community partitions in a fast and memory-efficient manner. However, the method ismore » also inherently sequential, thereby limiting its scalability. Here, we observe certain key properties of this method that present challenges for its parallelization, and consequently propose heuristics that are designed to break the sequential barrier. For evaluation purposes, we implemented our heuristics using OpenMP multithreading, and tested them over real world graphs derived from multiple application domains. Compared to the serial Louvain implementation, our parallel implementation is able to produce community outputs with a higher modularity for most of the inputs tested, in comparable number or fewer iterations, while providing real speedups of up to 16x using 32 threads.« less
The Mercury System: Embedding Computation into Disk Drives
2004-08-20
enabling technologies to build extremely fast data search engines . We do this by moving the search closer to the data, and performing it in hardware...engine searches in parallel across a disk or disk surface 2. System Parallelism: Searching is off-loaded to search engines and main processor can
Stress fields and energy of disclination-type defects in zones of localized elastic distortions
NASA Astrophysics Data System (ADS)
Sukhanov, Ivan I.; Tyumentsev, Alexander N.; Ditenberg, Ivan A.
2016-11-01
This paper studies theoretically the elastically deformed state and analyzes deformation mechanisms in nanocrystals in the zones of localized elastic distortions and related disclination-type defects, such as dipole, quadrupole and multipole of partial disclinations. Significant differences in the energies of quadrupole and multipole configurations in comparison with nanodipole are revealed. The mechanism of deformation localization in the field of elastic distortions is proposed, which is a quasi-periodic sequence of formation and relaxation of various disclination ensembles with a periodic change in the energy of the defect.
Multipole Plasmon Resonances in Gold Nanorods
Payne, Emma Kathryn; Shuford, Kevin L.; Park, Sungho; Schatz, George C.
2011-01-01
The optical properties of gold rods electrochemically deposited in anodic aluminum oxide templates have been investigated. Homogeneous suspensions of rods with average diameter of 85 nm and varying lengths of 96, 186, 321, 465, 495, 578, 641, 735, and 1175 nm were fabricated. The purity and dimensions of these rod nanostructures allowed us to observe higher order multipole resonances for the first time in a colloidal suspension. The experimental optical spectra agree with discrete dipole approximation calculations that have been modeled from the dimensions of the gold nanorods. PMID:16471797
A fast, parallel algorithm for distant-dependent calculation of crystal properties
NASA Astrophysics Data System (ADS)
Stein, Matthew
2017-12-01
A fast, parallel algorithm for distant-dependent calculation and simulation of crystal properties is presented along with speedup results and methods of application. An illustrative example is used to compute the Lennard-Jones lattice constants up to 32 significant figures for 4 ≤ p ≤ 30 in the simple cubic, face-centered cubic, body-centered cubic, hexagonal-close-pack, and diamond lattices. In most cases, the known precision of these constants is more than doubled, and in some cases, corrected from previously published figures. The tools and strategies to make this computation possible are detailed along with application to other potentials, including those that model defects.
Effects of ATC automation on precision approaches to closely space parallel runways
NASA Technical Reports Server (NTRS)
Slattery, R.; Lee, K.; Sanford, B.
1995-01-01
Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.
Distributed Function Mining for Gene Expression Programming Based on Fast Reduction.
Deng, Song; Yue, Dong; Yang, Le-chan; Fu, Xiong; Feng, Ya-zhou
2016-01-01
For high-dimensional and massive data sets, traditional centralized gene expression programming (GEP) or improved algorithms lead to increased run-time and decreased prediction accuracy. To solve this problem, this paper proposes a new improved algorithm called distributed function mining for gene expression programming based on fast reduction (DFMGEP-FR). In DFMGEP-FR, fast attribution reduction in binary search algorithms (FAR-BSA) is proposed to quickly find the optimal attribution set, and the function consistency replacement algorithm is given to solve integration of the local function model. Thorough comparative experiments for DFMGEP-FR, centralized GEP and the parallel gene expression programming algorithm based on simulated annealing (parallel GEPSA) are included in this paper. For the waveform, mushroom, connect-4 and musk datasets, the comparative results show that the average time-consumption of DFMGEP-FR drops by 89.09%%, 88.85%, 85.79% and 93.06%, respectively, in contrast to centralized GEP and by 12.5%, 8.42%, 9.62% and 13.75%, respectively, compared with parallel GEPSA. Six well-studied UCI test data sets demonstrate the efficiency and capability of our proposed DFMGEP-FR algorithm for distributed function mining.
NASA Astrophysics Data System (ADS)
Sihvola, Ari
2005-03-01
`Good reasons must, of force, give place to better', observes Brutus to Cassius, according to William Shakespeare in Julius Caesar. Roger Raab and Owen de Lange seem to agree, as they cite this sentence in the concluding chapter of their new book on the importance of exact multipole analysis in macroscopic electromagnetics. Very true and essential to remember in our daily research work. The two scientists from the University of Natal in Pietermaritzburg, South Africa (presently University of KwaZulu-Natal) have been working for a very long time on the accurate description of electric and magnetic response of matter and have published much of their findings in various physics journals. The present book gives us a clear and coherent exposition of many of these results. The important message of Raab and de Lange is that in the macroscopic description of matter, a correct balance between the various orders of electric and magnetic multipole terms has to be respected. If the inclusion of magnetic dipole terms is not complemented with electric quadrupoles, there is a risk of losing the translational invariance of certain important quantities. This means that the values of these quantities depend on the choice of the origin! `It canÂ't be Nature, for it is not sense' is another of the apt literary citations in the book. Often monographs written by researchers look like they have been produced using a cut-and-paste technique; earlier published articles are included in the same book but, unfortunately, too little additional effort is expended into moulding the totality into a unified story. This is not the case with Raab and de Lange. The structure and the text flow of the book serve perfectly its important message. After the obligatory introduction of material response to electromagnetic fields, constitutive relations, basic quantum theory and spacetime properties, a chapter follows with transmission and scattering effects where everything seems to work well with the `old' multipole theory. But then the focus is shifted to observables associated with the reflection of waves from a surface. And there the classical analysis fails. This gives the motivation for the following chapters where the transformed multipole theory is represented. As expected, the correct multipole balance restores the physicality of the results in the reflection problem. One of the healthy reminders for an electrical engineer-scientist reading the book is the fact that E and B are the primary electric and magnetic fields. The other two field quantities, D and H, are the response fields (which, by the way, are also shown to be origin-dependent and poorly\\endcolumn defined in the framework of classical multipole theory). In defence, however, for these poor latter quantities one can mention the many advantages of the engineering-type constitutive relations where D and B are expressed as responses to E and H. An example is the beautiful symmetry and complete analogy between the electric and magnetic quantities (voltage becomes current and vice versa in the duality transformation) which helps us write down solutions to electromagnetic problems from other known cases. From a pragmatic point of view we would also favour the use of quantities like Poynting vector and energy density (which require the H field). Another discussion-provoking question to the authors of the book might be whether their new multipole balance could be broken in the analysis of artificial materials. New nanotechnological discoveries and devices make it look like engineers can do anything. Perhaps in the design of complex media and metamaterials, a hot topic in todayÂ's materials science, such macroscopic responses can be tailored where a certain high-order multipole contribution dominates over other, more basic ones. Multiple Theory in Electromagnetism is suitable for a broad spectrum of readers: solid-state physicists, molecular chemists, theoretical and experimental optics scientists, radiophysics experts, electromagnetists and other electrical engineers, students and working scientists alike. This is a wonderful book. It certainly should appeal to them all.
NASA Astrophysics Data System (ADS)
Qiang, Ji
2017-10-01
A three-dimensional (3D) Poisson solver with longitudinal periodic and transverse open boundary conditions can have important applications in beam physics of particle accelerators. In this paper, we present a fast efficient method to solve the Poisson equation using a spectral finite-difference method. This method uses a computational domain that contains the charged particle beam only and has a computational complexity of O(Nu(logNmode)) , where Nu is the total number of unknowns and Nmode is the maximum number of longitudinal or azimuthal modes. This saves both the computational time and the memory usage of using an artificial boundary condition in a large extended computational domain. The new 3D Poisson solver is parallelized using a message passing interface (MPI) on multi-processor computers and shows a reasonable parallel performance up to hundreds of processor cores.
Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU
NASA Astrophysics Data System (ADS)
Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang
2017-10-01
Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.
Potential Application of a Graphical Processing Unit to Parallel Computations in the NUBEAM Code
NASA Astrophysics Data System (ADS)
Payne, J.; McCune, D.; Prater, R.
2010-11-01
NUBEAM is a comprehensive computational Monte Carlo based model for neutral beam injection (NBI) in tokamaks. NUBEAM computes NBI-relevant profiles in tokamak plasmas by tracking the deposition and the slowing of fast ions. At the core of NUBEAM are vector calculations used to track fast ions. These calculations have recently been parallelized to run on MPI clusters. However, cost and interlink bandwidth limit the ability to fully parallelize NUBEAM on an MPI cluster. Recent implementation of double precision capabilities for Graphical Processing Units (GPUs) presents a cost effective and high performance alternative or complement to MPI computation. Commercially available graphics cards can achieve up to 672 GFLOPS double precision and can handle hundreds of thousands of threads. The ability to execute at least one thread per particle simultaneously could significantly reduce the execution time and the statistical noise of NUBEAM. Progress on implementation on a GPU will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J.; Alpan, F. A.; Fischer, G.A.
2011-07-01
Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locationsmore » and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)« less
Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Reeder, Scott B
2017-06-01
To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. Magn Reson Med 77:2303-2309, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
fastBMA: scalable network inference and transitive reduction.
Hung, Ling-Hong; Shi, Kaiyuan; Wu, Migao; Young, William Chad; Raftery, Adrian E; Yeung, Ka Yee
2017-10-01
Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient, parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/). © The Authors 2017. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Olive, Jean-Arthur; Pearce, Frederick; Rondenay, Stéphane; Behn, Mark D.
2014-04-01
Many subduction zones exhibit significant retrograde motion of their arc and trench. The observation of fast shear-wave velocities parallel to the trench in such settings has been inferred to represent trench-parallel mantle flow beneath a retreating slab. Here, we investigate this process by measuring seismic anisotropy in the shallow Aegean mantle. We carry out shear-wave splitting analysis on a dense array of seismometers across the Western Hellenic Subduction Zone, and find a pronounced zonation of anisotropy at the scale of the subduction zone. Fast SKS splitting directions subparallel to the trench-retreat direction dominate the region nearest to the trench. Fast splitting directions abruptly transition to trench-parallel above the corner of the mantle wedge, and rotate back to trench-normal over the back-arc. We argue that the trench-normal anisotropy near the trench is explained by entrainment of an asthenospheric layer beneath the shallow-dipping portion of the slab. Toward the volcanic arc this signature is overprinted by trench-parallel anisotropy in the mantle wedge, likely caused by a layer of strained serpentine immediately above the slab. Arcward steepening of the slab and horizontal divergence of mantle flow due to rollback may generate an additional component of sub-slab trench-parallel anisotropy in this region. Poloidal flow above the retreating slab is likely the dominant source of back-arc trench-normal anisotropy. We hypothesize that trench-normal anisotropy associated with significant entrainment of the asthenospheric mantle near the trench may be widespread but only observable at shallow-dipping subduction zones where stations nearest the trench do not overlie the mantle wedge.
Tovkach, O M; Chernyshuk, S B; Lev, B I
2012-12-01
We develop the method proposed by Chernyshuk and Lev [Phys. Rev. E 81, 041701 (2010)] for theoretical investigation of elastic interactions between colloidal particles of arbitrary shape and chirality (polar as well as azimuthal anchoring) in the confined nematic liquid crystal (NLC). General expressions for six different types of multipole elastic interactions are obtained in the confined NLC: monopole-monopole (Coulomb type), monopole-dipole, monopole-quadrupole, dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The obtained formulas remain valid in the presence of the external electric or magnetic fields. The exact equations are found for all multipole coefficients for the weak anchoring case. For the strong anchoring coupling, the connection between the symmetry of the shape or director and multipole coefficients is obtained, which enables us to predict which multipole coefficients vanish and which remain nonzero. The particles with azimuthal helicoid anchoring are considered as an example. Dipole-dipole interactions between helicoid cylinders and cones are found in the confined NLC. In addition, the banana-shaped particles in homeotropic and planar nematic cells are considered. It is found that the dipole-dipole interaction between banana-shaped particles differs greatly from the dipole-dipole interaction between the axially symmetrical particles in the nematic cell. There is a crossover from attraction to repulsion between banana particles along some directions in nematic cells. It is shown that monopoles do not "feel" the type of nematic cell: monopole-monopole interaction turns out to be the same in homeotropic and planar nematic cells and converges to the Coulomb law as thickness increases, L→∞.
Zhu, Xiang; Zhang, Dianwen
2013-01-01
We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785
A distributed parallel storage architecture and its potential application within EOSDIS
NASA Technical Reports Server (NTRS)
Johnston, William E.; Tierney, Brian; Feuquay, Jay; Butzer, Tony
1994-01-01
We describe the architecture, implementation, use of a scalable, high performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.
Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle
NASA Astrophysics Data System (ADS)
Xiangyang, Xu; Siqi, Zhao; Peng, Dong
2017-12-01
A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.
Magnetic ground state of Sr 2 IrO 4 and implications for second-harmonic generation
Di Matteo, S.; Norman, M. R.
2016-08-24
The currently accepted magnetic ground state of Sr 2IrO 4 (the -++- state) preserves inversion symmetry. This is at odds, though, with recent experiments that indicate a magnetoelectric ground state, leading to the speculation that orbital currents or more exotic magnetic multipoles might exist in this material. In this paper, we analyze various magnetic configurations and demonstrate that two of them, the magnetoelectric -+-+ state and the nonmagnetoelectric ++++ state, can explain these recent second-harmonic generation (SHG) experiments, obviating the need to invoke orbital currents. The SHG-probed magnetic order parameter has the symmetry of a parity-breaking multipole in the -+-+more » state and of a parity-preserving multipole in the ++++ state. We speculate that either might have been created by the laser pump used in the experiments. An alternative is that the observed magnetic SHG signal is a surface effect. Finally, we suggest experiments that could be performed to test these various possibilities and also address the important issue of the suppression of the RXS intensity at the L 2 edge.« less
Magnetic ground state of Sr 2 IrO 4 and implications for second-harmonic generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Matteo, S.; Norman, M. R.
The currently accepted magnetic ground state of Sr 2IrO 4 (the -++- state) preserves inversion symmetry. This is at odds, though, with recent experiments that indicate a magnetoelectric ground state, leading to the speculation that orbital currents or more exotic magnetic multipoles might exist in this material. In this paper, we analyze various magnetic configurations and demonstrate that two of them, the magnetoelectric -+-+ state and the nonmagnetoelectric ++++ state, can explain these recent second-harmonic generation (SHG) experiments, obviating the need to invoke orbital currents. The SHG-probed magnetic order parameter has the symmetry of a parity-breaking multipole in the -+-+more » state and of a parity-preserving multipole in the ++++ state. We speculate that either might have been created by the laser pump used in the experiments. An alternative is that the observed magnetic SHG signal is a surface effect. Finally, we suggest experiments that could be performed to test these various possibilities and also address the important issue of the suppression of the RXS intensity at the L 2 edge.« less
Multipole and field uniformity tailoring of a 750 MHz rf dipole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delayen, Jean R.; Castillo, Alejandro
2014-12-01
In recent years great interest has been shown in developing rf structures for beam separation, correction of geometrical degradation on luminosity, and diagnostic applications in both lepton and hadron machines. The rf dipole being a very promising one among all of them. The rf dipole has been tested and proven to have attractive properties that include high shunt impedance, low and balance surface fields, absence of lower order modes and far-spaced higher order modes that simplify their damping scheme. As well as to be a compact and versatile design in a considerable range of frequencies, its fairly simple geometry dependencymore » is suitable both for fabrication and surface treatment. The rf dipole geometry can also be optimized for lowering multipacting risk and multipole tailoring to meet machine specific field uniformity tolerances. In the present work a survey of field uniformities, and multipole contents for a set of 750 MHz rf dipole designs is presented as both a qualitative and quantitative analysis of the inherent flexibility of the structure and its limitations.« less
A Simple Force-Motion Relation for Migrating Cells Revealed by Multipole Analysis of Traction Stress
Tanimoto, Hirokazu; Sano, Masaki
2014-01-01
For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dynamics of migrating cells. We measured the traction stress of Dictyostelium discoideum cells and investigated the lowest two moments, the force dipole and quadrupole moments, which reflect rotational and front-rear asymmetries of the stress field. We derived a simple force-motion relation in which cells migrate along the force dipole axis with a direction determined by the force quadrupole. Furthermore, as a complementary approach, we also investigated fine structures in the stress field that show front-rear asymmetric kinetics consistent with the multipole analysis. The tight force-motion relation enables us to predict cell migration only from the traction stress patterns. PMID:24411233
Li, Min; Zhang, John Z H
2017-02-14
A recently developed two-bead multipole force field (TMFF) is employed in coarse-grained (CG) molecular dynamics (MD) simulation of proteins in combination with polarizable CG water models, the Martini polarizable water model, and modified big multipole water model. Significant improvement in simulated structures and dynamics of proteins is observed in terms of both the root-mean-square deviations (RMSDs) of the structures and residue root-mean-square fluctuations (RMSFs) from the native ones in the present simulation compared with the simulation result with Martini's non-polarizable water model. Our result shows that TMFF simulation using CG water models gives much stable secondary structures of proteins without the need for adding extra interaction potentials to constrain the secondary structures. Our result also shows that by increasing the MD time step from 2 fs to 6 fs, the RMSD and RMSF results are still in excellent agreement with those from all-atom simulations. The current study demonstrated clearly that the application of TMFF together with a polarizable CG water model significantly improves the accuracy and efficiency for CG simulation of proteins.
Protein simulation using coarse-grained two-bead multipole force field with polarizable water models
NASA Astrophysics Data System (ADS)
Li, Min; Zhang, John Z. H.
2017-02-01
A recently developed two-bead multipole force field (TMFF) is employed in coarse-grained (CG) molecular dynamics (MD) simulation of proteins in combination with polarizable CG water models, the Martini polarizable water model, and modified big multipole water model. Significant improvement in simulated structures and dynamics of proteins is observed in terms of both the root-mean-square deviations (RMSDs) of the structures and residue root-mean-square fluctuations (RMSFs) from the native ones in the present simulation compared with the simulation result with Martini's non-polarizable water model. Our result shows that TMFF simulation using CG water models gives much stable secondary structures of proteins without the need for adding extra interaction potentials to constrain the secondary structures. Our result also shows that by increasing the MD time step from 2 fs to 6 fs, the RMSD and RMSF results are still in excellent agreement with those from all-atom simulations. The current study demonstrated clearly that the application of TMFF together with a polarizable CG water model significantly improves the accuracy and efficiency for CG simulation of proteins.
Multipole expansions and Fock symmetry of the hydrogen atom
NASA Astrophysics Data System (ADS)
Meremianin, A. V.; Rost, J.-M.
2006-10-01
The main difficulty in utilizing the O(4) symmetry of the hydrogen atom in practical calculations is the dependence of the Fock stereographic projection on energy. This is due to the fact that the wavefunctions of the states with different energies are proportional to the hyperspherical harmonics (HSH) corresponding to different points on the hypersphere. Thus, the calculation of the matrix elements reduces to the problem of re-expanding HSH in terms of HSH depending on different points on the hypersphere. We solve this problem by applying the technique of multipole expansions for four-dimensional HSH. As a result, we obtain the multipole expansions whose coefficients are the matrix elements of the boost operator taken between hydrogen wavefunctions (i.e., hydrogen form factors). The explicit expressions for those coefficients are derived. It is shown that the hydrogen matrix elements can be presented as derivatives of an elementary function. Such an operator representation is convenient for the derivation of recurrence relations connecting matrix elements between states corresponding to different values of the quantum numbers n and l.
Classification of "multipole" superconductivity in multiorbital systems and its implications
NASA Astrophysics Data System (ADS)
Nomoto, T.; Hattori, K.; Ikeda, H.
2016-11-01
Motivated by a growing interest in multiorbital superconductors with spin-orbit interactions, we perform the group-theoretical classification of various unconventional superconductivity emerging in symmorphic O , D4, and D6 space groups. The generalized Cooper pairs, which we here call "multipole" superconductivity, possess spin-orbital coupled (multipole) degrees of freedom, instead of the conventional spin singlet/triplet in single-orbital systems. From the classification, we obtain the following key consequences, which have never been focused in the long history of research in this field: (1) A superconducting gap function with Γ9⊗Γ9 in D6 possesses nontrivial momentum dependence different from the usual spin-1/2 classification. (2) Unconventional gap structure can be realized in the BCS approximation of purely local (onsite) interactions irrespective of attraction/repulsion. It implies the emergence of an electron-phonon (e-ph) driven unconventional superconductivity. (3) Reflecting symmetry of orbital basis functions there appear not symmetry protected but inevitable line nodes/gap minima, and thus, anisotropic s -wave superconductivity can be naturally explained even in the absence of competing fluctuations.
NASA Astrophysics Data System (ADS)
Liu, Jian; Zhang, Jinjuan; Xu, Chang; Ren, Zhongzhou
2017-05-01
In this paper, the nuclear longitudinal form factors are systematically studied from the intrinsic charge multipoles. For axially deformed nuclei, two different types of density profiles are used to describe their charge distributions. For the same charge distributions expanded with different basis functions, the corresponding longitudinal form factors are derived and compared with each other. Results show the multipoles Cλ of longitudinal form factors are independent of the basis functions of charge distributions. Further numerical calculations of longitudinal form factors of 12C indicates that the C 0 multipole reflects the contributions of spherical components of all nonorthogonal basis functions. For deformed nuclei, their charge RMS radii can also be determined accurately by the C 0 measurement. The studies in this paper examine the model-independent properties of electron scattering, which are useful for interpreting electron scattering experiments on exotic deformed nuclei. Supported by National Natural Science Foundation of China (11505292, 11175085, 11575082, 11235001, 11275138, and 11447226), by Shandong Provincial Natural Science Foundation, China (BS2014SF007), Fundamental Research Funds for Central Universities (15CX02072A).
Isotropic–Nematic Phase Transitions in Gravitational Systems. II. Higher Order Multipoles
NASA Astrophysics Data System (ADS)
Takács, Ádám; Kocsis, Bence
2018-04-01
The gravitational interaction among bodies orbiting in a spherical potential leads to the rapid relaxation of the orbital planes’ distribution, a process called vector resonant relaxation. We examine the statistical equilibrium of this process for a system of bodies with similar semimajor axes and eccentricities. We extend the previous model of Roupas et al. by accounting for the multipole moments beyond the quadrupole, which dominate the interaction for radially overlapping orbits. Nevertheless, we find no qualitative differences between the behavior of the system with respect to the model restricted to the quadrupole interaction. The equilibrium distribution resembles a counterrotating disk at low temperature and a spherical structure at high temperature. The system exhibits a first-order phase transition between the disk and the spherical phase in the canonical ensemble if the total angular momentum is below a critical value. We find that the phase transition erases the high-order multipoles, i.e., small-scale structure in angular momentum space, most efficiently. The system admits a maximum entropy and a maximum energy, which lead to the existence of negative temperature equilibria.
Adaptive multiple super fast simulated annealing for stochastic microstructure reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Seun; Lin, Guang; Sun, Xin
2013-01-01
Fast image reconstruction from statistical information is critical in image fusion from multimodality chemical imaging instrumentation to create high resolution image with large domain. Stochastic methods have been used widely in image reconstruction from two point correlation function. The main challenge is to increase the efficiency of reconstruction. A novel simulated annealing method is proposed for fast solution of image reconstruction. Combining the advantage of very fast cooling schedules, dynamic adaption and parallelization, the new simulation annealing algorithm increases the efficiencies by several orders of magnitude, making the large domain image fusion feasible.
Glover, William A; Atienza, Ederlyn E; Nesbitt, Shannon; Kim, Woo J; Castor, Jared; Cook, Linda; Jerome, Keith R
2016-01-01
Quantitative DNA detection of cytomegalovirus (CMV) and BK virus (BKV) is critical in the management of transplant patients. Quantitative laboratory-developed procedures for CMV and BKV have been described in which much of the processing is automated, resulting in rapid, reproducible, and high-throughput testing of transplant patients. To increase the efficiency of such assays, the performance and stability of four commercial preassembled frozen fast qPCR master mixes (Roche FastStart Universal Probe Master Mix with Rox, Bio-Rad SsoFast Probes Supermix with Rox, Life Technologies TaqMan FastAdvanced Master Mix, and Life Technologies Fast Universal PCR Master Mix), in combination with in-house designed primers and probes, was evaluated using controls and standards from standard CMV and BK assays. A subsequent parallel evaluation using patient samples was performed comparing the performance of freshly prepared assay mixes versus aliquoted frozen master mixes made with two of the fast qPCR mixes (Life Technologies TaqMan FastAdvanced Master Mix, and Bio-Rad SsoFast Probes Supermix with Rox), chosen based on their performance and compatibility with existing PCR cycling conditions. The data demonstrate that the frozen master mixes retain excellent performance over a period of at least 10 weeks. During the parallel testing using clinical specimens, no difference in quantitative results was observed between the preassembled frozen master mixes and freshly prepared master mixes. Preassembled fast real-time qPCR frozen master mixes perform well and represent an additional strategy laboratories can implement to reduce assay preparation times, and to minimize technical errors and effort necessary to perform clinical PCR. © 2015 Wiley Periodicals, Inc.
Are Fast Radio Bursts the Birthmark of Magnetars?
NASA Astrophysics Data System (ADS)
Lieu, Richard
2017-01-01
A model of fast radio bursts, which enlists young, short period extragalactic magnetars satisfying B/P > 2 × 1016 G s-1 (1 G = 1 statvolt cm-1) as the source, is proposed. When the parallel component {{\\boldsymbol{E}}}\\parallel of the surface electric field (under the scenario of a vacuum magnetosphere) of such pulsars approaches 5% of the critical field {E}c={m}e2{c}3/(e{\\hslash }), in strength, the field can readily decay via the Schwinger mechanism into electron-positron pairs, the back reaction of which causes {{\\boldsymbol{E}}}\\parallel to oscillate on a characteristic timescale smaller than the development of a spark gap. Thus, under this scenario, the open field line region of the pulsar magnetosphere is controlled by Schwinger pairs, and their large creation and acceleration rates enable the escaping pairs to coherently emit radio waves directly from the polar cap. The majority of the energy is emitted at frequencies ≲ 1 {GHz} where the coherent radiation has the highest yield, at a rate large enough to cause the magnetar to lose spin significantly over a timescale ≈ a few × {10}-3 s, the duration of a fast radio burst. Owing to the circumstellar environment of a young magnetar, however, the ≲1 GHz radiation is likely to be absorbed or reflected by the overlying matter. It is shown that the brightness of the remaining (observable) frequencies of ≈ 1 {GHz} and above are on a par with a typical fast radio burst. Unless some spin-up mechanism is available to recover the original high rotation rate that triggered the Schwinger mechanism, the fast radio burst will not be repeated again in the same magnetar.
Fast, Parallel and Secure Cryptography Algorithm Using Lorenz's Attractor
NASA Astrophysics Data System (ADS)
Marco, Anderson Gonçalves; Martinez, Alexandre Souto; Bruno, Odemir Martinez
A novel cryptography method based on the Lorenz's attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher.
Components of action potential repolarization in cerebellar parallel fibres.
Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna J; Raastad, Morten
2014-11-15
Repolarization of the presynaptic action potential is essential for transmitter release, excitability and energy expenditure. Little is known about repolarization in thin, unmyelinated axons forming en passant synapses, which represent the most common type of axons in the mammalian brain's grey matter.We used rat cerebellar parallel fibres, an example of typical grey matter axons, to investigate the effects of K(+) channel blockers on repolarization. We show that repolarization is composed of a fast tetraethylammonium (TEA)-sensitive component, determining the width and amplitude of the spike, and a slow margatoxin (MgTX)-sensitive depolarized after-potential (DAP). These two components could be recorded at the granule cell soma as antidromic action potentials and from the axons with a newly developed miniaturized grease-gap method. A considerable proportion of fast repolarization remained in the presence of TEA, MgTX, or both. This residual was abolished by the addition of quinine. The importance of proper control of fast repolarization was demonstrated by somatic recordings of antidromic action potentials. In these experiments, the relatively broad K(+) channel blocker 4-aminopyridine reduced the fast repolarization, resulting in bursts of action potentials forming on top of the DAP. We conclude that repolarization of the action potential in parallel fibres is supported by at least three groups of K(+) channels. Differences in their temporal profiles allow relatively independent control of the spike and the DAP, whereas overlap of their temporal profiles provides robust control of axonal bursting properties.
Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.
Li, Wenyuan; Gong, Ke; Li, Qingjiao; Alber, Frank; Zhou, Xianghong Jasmine
2015-03-15
Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently become important tools to study spatial genome organization. Removing biases from chromatin contact matrices generated by such techniques is a critical preprocessing step of subsequent analyses. The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C data, resulting in very large matrices of chromatin contacts. Such large-size matrices, however, pose a great challenge on the memory usage and speed of its normalization. Therefore, there is an urgent need for fast and memory-efficient methods for normalization of Hi-C data. We developed Hi-Corrector, an easy-to-use, open source implementation of the Hi-C data normalization algorithm. Its salient features are (i) scalability-the software is capable of normalizing Hi-C data of any size in reasonable times; (ii) memory efficiency-the sequential version can run on any single computer with very limited memory, no matter how little; (iii) fast speed-the parallel version can run very fast on multiple computing nodes with limited local memory. The sequential version is implemented in ANSI C and can be easily compiled on any system; the parallel version is implemented in ANSI C with the MPI library (a standardized and portable parallel environment designed for solving large-scale scientific problems). The package is freely available at http://zhoulab.usc.edu/Hi-Corrector/. © The Author 2014. Published by Oxford University Press.
Massively Parallel Processing for Fast and Accurate Stamping Simulations
NASA Astrophysics Data System (ADS)
Gress, Jeffrey J.; Xu, Siguang; Joshi, Ramesh; Wang, Chuan-tao; Paul, Sabu
2005-08-01
The competitive automotive market drives automotive manufacturers to speed up the vehicle development cycles and reduce the lead-time. Fast tooling development is one of the key areas to support fast and short vehicle development programs (VDP). In the past ten years, the stamping simulation has become the most effective validation tool in predicting and resolving all potential formability and quality problems before the dies are physically made. The stamping simulation and formability analysis has become an critical business segment in GM math-based die engineering process. As the simulation becomes as one of the major production tools in engineering factory, the simulation speed and accuracy are the two of the most important measures for stamping simulation technology. The speed and time-in-system of forming analysis becomes an even more critical to support the fast VDP and tooling readiness. Since 1997, General Motors Die Center has been working jointly with our software vendor to develop and implement a parallel version of simulation software for mass production analysis applications. By 2001, this technology was matured in the form of distributed memory processing (DMP) of draw die simulations in a networked distributed memory computing environment. In 2004, this technology was refined to massively parallel processing (MPP) and extended to line die forming analysis (draw, trim, flange, and associated spring-back) running on a dedicated computing environment. The evolution of this technology and the insight gained through the implementation of DM0P/MPP technology as well as performance benchmarks are discussed in this publication.
Ordered fast fourier transforms on a massively parallel hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Tong, Charles; Swarztrauber, Paul N.
1989-01-01
Design alternatives for ordered Fast Fourier Transformation (FFT) algorithms were examined on massively parallel hypercube multiprocessors such as the Connection Machine. Particular emphasis is placed on reducing communication which is known to dominate the overall computing time. To this end, the order and computational phases of the FFT were combined, and the sequence to processor maps that reduce communication were used. The class of ordered transforms is expanded to include any FFT in which the order of the transform is the same as that of the input sequence. Two such orderings are examined, namely, standard-order and A-order which can be implemented with equal ease on the Connection Machine where orderings are determined by geometries and priorities. If the sequence has N = 2 exp r elements and the hypercube has P = 2 exp d processors, then a standard-order FFT can be implemented with d + r/2 + 1 parallel transmissions. An A-order sequence can be transformed with 2d - r/2 parallel transmissions which is r - d + 1 fewer than the standard order. A parallel method for computing the trigonometric coefficients is presented that does not use trigonometric functions or interprocessor communication. A performance of 0.9 GFLOPS was obtained for an A-order transform on the Connection Machine.
Parallel processing in the honeybee olfactory pathway: structure, function, and evolution.
Rössler, Wolfgang; Brill, Martin F
2013-11-01
Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.
Multipole ordering and collective excitations in the excitonic phase of Pr0.5Ca0.5CoO3
NASA Astrophysics Data System (ADS)
Yamaguchi, Tomoki; Sugimoto, Koudai; Ohta, Yukinori
2018-05-01
As an extension of our previous paper (Yamaguchi et al., 2017) [24], we study the carrier doping dependence of the excitonic condensation in Pr0.5Ca0.5CoO3 using the random-phase and mean-field approximations for the realistic five-orbital Hubbard model. We show that the spin-triplet excitonic phase with a magnetic multipole ordering is stable against the doping of carriers in a considerable range around Co3+ (or 3d6). We discuss experimental relevance of our results.
Application of ion thruster technology to a 30-cm multipole sputtering ion source
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Kaufman, H. R.
1976-01-01
A 30-cm electron-bombardment ion source has been designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500-eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of + or -5 percent over the center 20 cm of the beam at a distance up to 30 cm from the ion source.
Ion flow experiments in a multipole discharge chamber
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.; Frisa, L. E.
1982-01-01
It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. Ion flow measurements in a multipole discharge chamber have shown that this assumption is not true. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions.
Electromagnetic multipole moments of elementary spin-1/2, 1, and 3/2 particles
NASA Astrophysics Data System (ADS)
Delgado-Acosta, E. G.; Kirchbach, M.; Napsuciale, M.; Rodríguez, S.
2012-06-01
We study multipole decompositions of the electromagnetic currents of spin-1/2, 1, and 3/2 particles described in terms of representation-specific wave equations which are second order in the momenta and which emerge within the recently elaborated Poincaré covariant-projector method, where the respective Lagrangians explicitly depend on the Lorentz group generators of the representations of interest. The currents are then the ordinary linear Noether currents related to phase invariance, and present themselves always as two-terms motion-plus spin-magnetization currents. The spin-magnetization currents appear weighted by the gyromagnetic ratio g, a free parameter in the method which we fix either by unitarity of forward Compton scattering amplitudes in the ultraviolet for spin-1 and spin-3/2, or in the spin-1/2 case, by their asymptotic vanishing, thus ending up in all three cases with the universal g value of g=2. Within the method under discussion, we calculate the electric multipoles of the above spins for the spinor, the four-vector, and the four-vector-spinor representations, and find it favorable in some aspects, specifically in comparison with the conventional Proca and Rarita-Schwinger frameworks. We furthermore attend to the most general non-Lagrangian spin-3/2 currents, which are allowed by Lorentz invariance to be up to third order in the momenta and construct the linear-current equivalent of identical multipole moments of one of them. We conclude that nonlinear non-Lagrangian spin-3/2 currents are not necessarily more general and more advantageous than the linear spin-3/2 Lagrangian current emerging within the covariant-projector formalism. Finally, we test the representation dependence of the multipoles by placing spin-1 and spin-3/2 in the respective (1,0)⊕(0,1) and (3/2,0)⊕(0,3/2) single-spin representations. We observe representation independence of the charge monopoles and the magnetic dipoles, in contrast to the higher multipoles, which turn out to be representation-dependent. In particular, we find the bi-vector (1,0)⊕(0,1) to be characterized by an electric quadrupole moment of opposite sign to the one found in (1/2,1/2), and consequently to the W boson. This observation allows us to explain the positive electric quadrupole moment of the ρ meson extracted from recent analyses of the ρ meson electric form factor. Our finding points toward the possibility that the ρ-meson could transform as part of an antisymmetric tensor with an a1 mesonlike state as its representation companion, a possibility consistent with the empirically established ρ and a1 vector meson dominance of the hadronic vector and axial-vector currents.
Turbomachinery CFD on parallel computers
NASA Technical Reports Server (NTRS)
Blech, Richard A.; Milner, Edward J.; Quealy, Angela; Townsend, Scott E.
1992-01-01
The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations.
2015-06-01
cient parallel code for applying the operator. Our method constructs a polynomial preconditioner using a nonlinear least squares (NLLS) algorithm. We show...apply the underlying operator. Such a preconditioner can be very attractive in scenarios where one has a highly efficient parallel code for applying...repeatedly solve a large system of linear equations where one has an extremely fast parallel code for applying an underlying fixed linear operator
A modified dual-level algorithm for large-scale three-dimensional Laplace and Helmholtz equation
NASA Astrophysics Data System (ADS)
Li, Junpu; Chen, Wen; Fu, Zhuojia
2018-01-01
A modified dual-level algorithm is proposed in the article. By the help of the dual level structure, the fully-populated interpolation matrix on the fine level is transformed to a local supported sparse matrix to solve the highly ill-conditioning and excessive storage requirement resulting from fully-populated interpolation matrix. The kernel-independent fast multipole method is adopted to expediting the solving process of the linear equations on the coarse level. Numerical experiments up to 2-million fine-level nodes have successfully been achieved. It is noted that the proposed algorithm merely needs to place 2-3 coarse-level nodes in each wavelength per direction to obtain the reasonable solution, which almost down to the minimum requirement allowed by the Shannon's sampling theorem. In the real human head model example, it is observed that the proposed algorithm can simulate well computationally very challenging exterior high-frequency harmonic acoustic wave propagation up to 20,000 Hz.
NASA Astrophysics Data System (ADS)
Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin
2015-11-01
Animals have evolved flexible wings and fins to efficiently and quietly propel themselves through the air and water. The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates three essential features: the fluid mechanics, the elastic structural response, and the noise generation. This study focuses on the development, validation, and demonstration of a transient, two-dimensional acoustic boundary element solver accelerated by a fast multipole algorithm. The resulting acoustic solver is used to characterize the acoustic signature produced by a vortex street advecting over a NACA 0012 airfoil, which is representative of vortex-body interactions that occur in schools of swimming fish. Both 2S and 2P canonical vortex streets generated by fish are investigated over the range of Strouhal number 0 . 2 < St < 0 . 4 , and the acoustic signature of the airfoil is quantified. This study provides the first estimate of the noise signature of a school of swimming fish. Lehigh University CORE Grant.
NASA Technical Reports Server (NTRS)
Phillips, J. R.
1996-01-01
In this paper we derive error bounds for a collocation-grid-projection scheme tuned for use in multilevel methods for solving boundary-element discretizations of potential integral equations. The grid-projection scheme is then combined with a precorrected FFT style multilevel method for solving potential integral equations with 1/r and e(sup ikr)/r kernels. A complexity analysis of this combined method is given to show that for homogeneous problems, the method is order n natural log n nearly independent of the kernel. In addition, it is shown analytically and experimentally that for an inhomogeneity generated by a very finely discretized surface, the combined method slows to order n(sup 4/3). Finally, examples are given to show that the collocation-based grid-projection plus precorrected-FFT scheme is competitive with fast-multipole algorithms when considering realistic problems and 1/r kernels, but can be used over a range of spatial frequencies with only a small performance penalty.
NASA Astrophysics Data System (ADS)
Bruna, Pablo J.; Grein, Friedrich
2007-08-01
The number of independent components, n, of traceless electric 2l-multipole moments is determined for C∞v molecules in Σ ±, Π, Δ, and Φ electronic states (Λ=0,1,2,3). Each 2l pole is defined by a rank-l irreducible tensor with (2l+1) components Pm(l) proportional to the solid spherical harmonic rlYml(θ,φ). Here we focus our attention on 2l poles with l =2,3,4 (quadrupole Θ, octopole Ω, and hexadecapole Φ). An important conclusion of this study is that n can be 1 or 2 depending on both the multipole rank l and state quantum number Λ. For Σ±(Λ=0) states, all 2l poles have one independent parameter (n=1). For spatially degenerate states—Π, Δ, and Φ (Λ=1,2,3)—the general rule reads n =1 for l <2∣Λ∣ (when the 2l-pole rank lies below 2∣Λ∣) but n =2 for higher 2l poles with l ⩾2∣Λ∣. The second nonzero term is the off-diagonal matrix element ⟨ψ+Λ∣P∣m∣=2Λ(l)∣ψ-Λ⟩. Thus, a Π(Λ =1) state has one dipole (μz) but two independent 2l poles for l ⩾2—starting with the quadrupole [Θzz,(Θxx-Θyy)]. A Δ(Λ =2) state has n =1 for 2(1,2,3) poles (μz,Θzz,Ωzzz) but n =2 for higher 2(l⩾4) poles—from the hexadecapole Φ up. For Φ(Λ =3) states, it holds that n =1 for 21 to 25 poles but n =2 for all 2(l⩾6) poles. In short, what is usually stated in the literature—that n =1 for all possible 2l poles of linear molecules—only applies to Σ± states. For degenerate states with n =2, all Cartesian 2l-pole components (l⩾2∣Λ∣) can be expressed as linear combinations of two irreducible multipoles, Pm=0(l ) and P∣m∣=2Λ(l) [parallel (z axis) and anisotropy (xy plane)]. Our predictions are exemplified by the Θ, Ω, and Φ moments calculated for Λ =0-3 states of selected diatomics (in parentheses): XΣ+2(CN ), XΠ2(NO ), aΠu3(C2), XΔ2(NiH ), XΔ3(TiO ), XΦ3(CoF ), and XΦ4(TiF ). States of Π symmetry are most affected by the deviation from axial symmetry.
[Metabolic study of the initial period of fasting in the king penguin chick].
Cherel, Y; Le Maho, Y
1985-01-01
There is an 80% decrease in the specific daily change in body mass (dm/m dt) during the first 5-6 days of fasting in king penguin chicks, which characterizes period I of fasting. Parallel decreases in plasma alanine and uric acid concentrations suggest an important reduction in protein degradation. Plasma concentration of beta-hydroxybutyrate and glucose are high, respectively 1.3 and 12.5 mmol X 1(-1), and do not change significantly.
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-01-01
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection. PMID:29023385
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-10-12
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.
FastQuery: A Parallel Indexing System for Scientific Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Jerry; Wu, Kesheng; Prabhat,
2011-07-29
Modern scientific datasets present numerous data management and analysis challenges. State-of-the- art index and query technologies such as FastBit can significantly improve accesses to these datasets by augmenting the user data with indexes and other secondary information. However, a challenge is that the indexes assume the relational data model but the scientific data generally follows the array data model. To match the two data models, we design a generic mapping mechanism and implement an efficient input and output interface for reading and writing the data and their corresponding indexes. To take advantage of the emerging many-core architectures, we also developmore » a parallel strategy for indexing using threading technology. This approach complements our on-going MPI-based parallelization efforts. We demonstrate the flexibility of our software by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using data from a particle accelerator model and a global climate model. We also conducted a detailed performance study using these scientific datasets. The results show that FastQuery speeds up the query time by a factor of 2.5x to 50x, and it reduces the indexing time by a factor of 16 on 24 cores.« less
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
Fast parallel tandem mass spectral library searching using GPU hardware acceleration.
Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K; Martin, Daniel B
2011-06-03
Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.
NASA Astrophysics Data System (ADS)
Kim, Bogyeong; Lee, Jeongwoo; Yi, Yu; Oh, Suyeon
2015-01-01
In this study we compare the temporal variations of the solar, interplanetary, and geomagnetic (SIG) parameters with that of open solar magnetic flux from 1976 to 2012 (from Solar Cycle 21 to the early phase of Cycle 24) for a purpose of identifying their possible relationships. By the open flux, we mean the average magnetic field over the source surface (2.5 solar radii) times the source area as defined by the potential field source surface (PFSS) model of the Wilcox Solar Observatory (WSO). In our result, most SIG parameters except the solar wind dynamic pressure show rather poor correlations with the open solar magnetic field. Good correlations are recovered when the contributions from individual multipole components are counted separately. As expected, solar activity indices such as sunspot number, total solar irradiance, 10.7 cm radio flux, and solar flare occurrence are highly correlated with the flux of magnetic quadrupole component. The dynamic pressure of solar wind is strongly correlated with the dipole flux, which is in anti-phase with Solar Cycle (SC). The geomagnetic activity represented by the Ap index is correlated with higher order multipole components, which show relatively a slow time variation with SC. We also found that the unusually low geomagnetic activity during SC 23 is accompanied by the weak open solar fields compared with those in other SCs. It is argued that such dependences of the SIG parameters on the individual multipole components of the open solar magnetic flux may clarify why some SIG parameters vary in phase with SC and others show seemingly delayed responses to SC variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flanagan, Eanna E.; Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853; Hinderer, Tanja
2007-06-15
We analyze the effect of gravitational radiation reaction on generic orbits around a body with an axisymmetric mass quadrupole moment Q to linear order in Q, to the leading post-Newtonian order, and to linear order in the mass ratio. This system admits three constants of the motion in absence of radiation reaction: energy, angular momentum along the symmetry axis, and a third constant analogous to the Carter constant. We compute instantaneous and time-averaged rates of change of these three constants. For a point particle orbiting a black hole, Ryan has computed the leading order evolution of the orbit's Carter constant,more » which is linear in the spin. Our result, when combined with an interaction quadratic in the spin (the coupling of the black hole's spin to its own radiation reaction field), gives the next to leading order evolution. The effect of the quadrupole, like that of the linear spin term, is to circularize eccentric orbits and to drive the orbital plane towards antialignment with the symmetry axis. In addition we consider a system of two point masses where one body has a single mass multipole or current multipole of order l. To linear order in the mass ratio, to linear order in the multipole, and to the leading post-Newtonian order, we show that there does not exist an analog of the Carter constant for such a system (except for the cases of an l=1 current moment and an l=2 mass moment). Thus, the existence of the Carter constant in Kerr depends on interaction effects between the different multipoles. With mild additional assumptions, this result falsifies the conjecture that all vacuum, axisymmetric spacetimes possess a third constant of the motion for geodesic motion.« less
ICE-COLA: fast simulations for weak lensing observables
NASA Astrophysics Data System (ADS)
Izard, Albert; Fosalba, Pablo; Crocce, Martin
2018-01-01
Approximate methods to full N-body simulations provide a fast and accurate solution to the development of mock catalogues for the modelling of galaxy clustering observables. In this paper we extend ICE-COLA, based on an optimized implementation of the approximate COLA method, to produce weak lensing maps and halo catalogues in the light-cone using an integrated and self-consistent approach. We show that despite the approximate dynamics, the catalogues thus produced enable an accurate modelling of weak lensing observables one decade beyond the characteristic scale where the growth becomes non-linear. In particular, we compare ICE-COLA to the MICE Grand Challenge N-body simulation for some fiducial cases representative of upcoming surveys and find that, for sources at redshift z = 1, their convergence power spectra agree to within 1 per cent up to high multipoles (i.e. of order 1000). The corresponding shear two point functions, ξ+ and ξ-, yield similar accuracy down to 2 and 20 arcmin respectively, while tangential shear around a z = 0.5 lens sample is accurate down to 4 arcmin. We show that such accuracy is stable against an increased angular resolution of the weak lensing maps. Hence, this opens the possibility of using approximate methods for the joint modelling of galaxy clustering and weak lensing observables and their covariance in ongoing and future galaxy surveys.
PHEPS: web-based pH-dependent Protein Electrostatics Server
Kantardjiev, Alexander A.; Atanasov, Boris P.
2006-01-01
PHEPS (pH-dependent Protein Electrostatics Server) is a web service for fast prediction and experiment planning support, as well as for correlation and analysis of experimentally obtained results, reflecting charge-dependent phenomena in globular proteins. Its implementation is based on long-term experience (PHEI package) and the need to explain measured physicochemical characteristics at the level of protein atomic structure. The approach is semi-empirical and based on a mean field scheme for description and evaluation of global and local pH-dependent electrostatic properties: protein proton binding; ionic sites proton population; free energy electrostatic term; ionic groups proton affinities (pKa,i) and their Coulomb interaction with whole charge multipole; electrostatic potential of whole molecule at fixed pH and pH-dependent local electrostatic potentials at user-defined set of points. The speed of calculation is based on fast determination of distance-dependent pair charge-charge interactions as empirical three exponential function that covers charge–charge, charge–dipole and dipole–dipole contributions. After atomic coordinates input, all standard parameters are used as defaults to facilitate non-experienced users. Special attention was given to interactive addition of non-polypeptide charges, extra ionizable groups with intrinsic pKas or fixed ions. The output information is given as plain-text, readable by ‘RasMol’, ‘Origin’ and the like. The PHEPS server is accessible at . PMID:16845042
Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations
NASA Technical Reports Server (NTRS)
Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.
2006-01-01
We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES*
Fu, Zhisong; Jeong, Won-Ki; Pan, Yongsheng; Kirby, Robert M.; Whitaker, Ross T.
2012-01-01
This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton–Jacobi equations to which it belongs, have a wide range of applications from geometric optics and seismology to biological modeling and analysis of geometry and images. The ability to solve such equations accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces and for solving inverse problems that rely on such equations in the forward model. Efficient solvers on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal, but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512–2534], the authors proposed the fast iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on the CPU and on parallel architectures, including graphics processors. We propose a new local update scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel triangle-based update scheme and its corresponding data structure for efficient irregular data mapping to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures with comparative results against state-of-the-art Eikonal solvers. PMID:22641200
Fast Fourier Transform algorithm design and tradeoffs
NASA Technical Reports Server (NTRS)
Kamin, Ray A., III; Adams, George B., III
1988-01-01
The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.
Crosetto, D.B.
1996-12-31
The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor to a plurality of slave processors to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor`s status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer, a digital signal processor, a parallel transfer controller, and two three-port memory devices. A communication switch within each node connects it to a fast parallel hardware channel through which all high density data arrives or leaves the node. 6 figs.
Crosetto, Dario B.
1996-01-01
The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.
NASA Astrophysics Data System (ADS)
Roccia, S.; Gaulard, C.; Étilé, A.; Chakma, R.
2017-07-01
In the context of nuclear orientation, we propose a new method to correct the multipole mixing ratios for asymmetries in the geometry of the setup but also in the detection system. This method is also robust against temperature fluctuations, beam intensity fluctuations and uncertainties in the nuclear structure of the nuclei. Additionally, this method provides a natural way to combine data from different detectors and make good use of all available statistics. We could use this method to demonstrate the accuracy that can be reached with the PolarEx setup now installed at the ALTO facility.
Method and apparatus for efficient photodetachment and purification of negative ion beams
Beene, James R [Oak Ridge, TN; Liu, Yuan [Knoxville, TN; Havener, Charles C [Knoxville, TN
2008-02-26
Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.
NASA Astrophysics Data System (ADS)
Kȩdzierski, Marcin; Wajnryb, Eligiusz
2011-10-01
Self-diffusion of colloidal particles confined to a cylindrical microchannel is considered theoretically and numerically. Virial expansion of the self-diffusion coefficient is performed. Two-body and three-body hydrodynamic interactions are evaluated with high precision using the multipole method. The multipole expansion algorithm is also used to perform numerical simulations of the self-diffusion coefficient, valid for all possible particle packing fractions. Comparison with earlier results shows that the widely used method of reflections is insufficient for calculations of hydrodynamic interactions even for small packing fractions and small particles radii, contrary to the prevalent opinion.
Multipolar electromagnetic fields around neutron stars: general-relativistic vacuum solutions
NASA Astrophysics Data System (ADS)
Pétri, J.
2017-12-01
Magnetic fields inside and around neutron stars are at the heart of pulsar magnetospheric activity. Strong magnetic fields are responsible for quantum effects, an essential ingredient to produce leptonic pairs and the subsequent broad-band radiation. The variety of electromagnetic field topologies could lead to the observed diversity of neutron star classes. Thus, it is important to include multipolar components to a presumably dominant dipolar magnetic field. Exact analytical solutions for these multipoles in Newtonian gravity have been computed in recent literature. However, flat space-time is not adequate to describe physics in the immediate surroundings of neutron stars. We generalize the multipole expressions to the strong gravity regime by using a slowly rotating metric approximation such as the one expected around neutron stars. Approximate formulae for the electromagnetic field including frame dragging are computed from which we estimate the Poynting flux and the braking index. Corrections to leading order in compactness and spin parameter are presented. As far as spin-down luminosity is concerned, it is shown that frame dragging remains irrelevant. For high-order multipoles starting from the quadrupole, the electric part can radiate more efficiently than the magnetic part. Both analytical and numerical tools are employed.
Tanimoto, Hirokazu; Sano, Masaki
2014-01-07
For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dynamics of migrating cells. We measured the traction stress of Dictyostelium discoideum cells and investigated the lowest two moments, the force dipole and quadrupole moments, which reflect rotational and front-rear asymmetries of the stress field. We derived a simple force-motion relation in which cells migrate along the force dipole axis with a direction determined by the force quadrupole. Furthermore, as a complementary approach, we also investigated fine structures in the stress field that show front-rear asymmetric kinetics consistent with the multipole analysis. The tight force-motion relation enables us to predict cell migration only from the traction stress patterns. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, John, E-mail: j.mcdonald@lancaster.ac.uk
Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l ∼< 50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a largemore » value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.
We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less
Quantum crystallographic charge density of urea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Quantum crystallographic charge density of urea
Wall, Michael E.
2016-06-08
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
NASA Astrophysics Data System (ADS)
Thomas, Gerald F.; Mulder, Fred; Meath, William J.
1980-12-01
The non-empirical generalized Kirkwood, Unsöld, and the single-Δ Unsöld methods (with double-zeta quality SCF wave-functions) are used to calculate isotropic dispersion (and induction) energy coefficients C2n, with n ⩽ 5, for interactions involving ground state CH 4, C 2H 6, C 3H 8, n-C 4H 10 and cyclo-C 3H 6. Results are also given for the related multipole polarizabilities α l, multipole sums S1/(0) and S1(-1) which are evaluated using sum rules, and the permanent multipole moments. for l = 1 (dipole) to l = 3 (octupole). Estimates of the reliability of the non-empirical methods, for the type of molecules considered, are obtained by a comparison with accurate literature values of α 1S1(-1) and C6. This, and the asymptotic properties of the multipolar expansion of the dispersion energy, the use to discuss recommended representation for the isotropic long range interaction energies through R-10 where R is the intermolecular separation.
Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.; ...
2017-07-21
We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less
Efficient minimization of multipole electrostatic potentials in torsion space
Bodmer, Nicholas K.
2018-01-01
The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate degrees of freedom. Nevertheless, a number of macromolecular modeling programs use a reduced set of conformational variables limited to rotatable bonds. Efficient algorithms for minimizing the energies of macromolecular systems with torsional degrees of freedom have been developed with the assumption that all atom-atom interaction potentials are isotropic. We describe novel modifications to address the anisotropy of higher order multipole terms while retaining the efficiency of these approaches. In addition, we present a treatment for obtaining derivatives of atom-centered tensors with respect to torsional degrees of freedom. We apply these results to enable minimization of the Amoeba multipole electrostatics potential in a system with torsional degrees of freedom, and validate the correctness of the gradients by comparison to finite difference approximations. In the interest of enabling a complete model of electrostatics with implicit treatment of solvent-mediated effects, we also derive expressions for the derivative of solvent accessible surface area with respect to torsional degrees of freedom. PMID:29641557
Determining pseudoscalar meson photoproduction amplitudes from complete experiments
NASA Astrophysics Data System (ADS)
Sandorfi, A. M.; Hoblit, S.; Kamano, H.; Lee, T.-S. H.
2011-05-01
A new generation of complete experiments is focused on a high precision extraction of pseudoscalar meson photoproduction amplitudes. Here, we review the development of the most general analytic form of the cross section, dependent upon the three polarization vectors of the beam, target and recoil baryon, including all single-, double- and triple-polarization terms involving 16 spin-dependent observables. We examine the different conventions that have been used by different authors, and we present expressions that allow the direct numerical calculation of any pseudoscalar meson photoproduction observables with arbitrary spin projections from the Chew-Goldberger-Low-Nambu amplitudes. We use this numerical tool to clarify apparent sign differences that exist in the literature, in particular with the definitions of six double-polarization observables. We also present analytic expressions that determine the recoil baryon polarization, together with examples of their potential use with quasi-4π detectors to deduce observables. As an illustration of the use of the consistent machinery presented in this review, we carry out a multipole analysis of the γp → K+Λ reaction and examine the impact of recently published polarization measurements. When combining data from different experiments, we utilize the Fierz identities to fit a consistent set of scales. In fitting multipoles, we use a combined Monte Carlo sampling of the amplitude space, with gradient minimization, and find a shallow χ2 valley pitted with a very large number of local minima. This results in broad bands of multipole solutions that are experimentally indistinguishable. While these bands have been noticeably narrowed by the inclusion of new polarization measurements, many of the multipoles remain very poorly determined, even in sign, despite the inclusion of data on eight different observables. We have compared multipoles from recent PWA codes with our model-independent solution bands and found that such comparisons provide useful consistency tests which clarify model interpretations. The potential accuracy of amplitudes that could be extracted from measurements of all 16 polarization observables has been studied with mock data using the statistical variations that are expected from ongoing experiments. We conclude that, while a mathematical solution to the problem of determining an amplitude free of ambiguities may require eight observables, as has been pointed out in the literature, experiments with realistically achievable uncertainties will require a significantly larger number.
Carrera, Mónica; Gallardo, José M; Pascual, Santiago; González, Ángel F; Medina, Isabel
2016-06-16
Anisakids are fish-borne parasites that are responsible for a large number of human infections and allergic reactions around the world. World health organizations and food safety authorities aim to control and prevent this emerging health problem. In the present work, a new method for the fast monitoring of these parasites is described. The strategy is divided in three steps: (i) purification of thermostable proteins from fish-borne parasites (Anisakids), (ii) in-solution HIFU trypsin digestion and (iii) monitoring of several peptide markers by parallel reaction monitoring (PRM) mass spectrometry. This methodology allows the fast detection of Anisakids in <2h. An affordable assay utilizing this methodology will facilitate testing for regulatory and safety applications. The work describes for the first time, the Protein Biomarker Discovery and the Fast Monitoring for the identification and detection of Anisakids in fishery products. The strategy is based on the purification of thermostable proteins, the use of accelerated in-solution trypsin digestions under an ultrasonic field provided by High-Intensity Focused Ultrasound (HIFU) and the monitoring of several peptide biomarkers by Parallel Reaction Monitoring (PRM) Mass Spectrometry in a linear ion trap mass spectrometer. The workflow allows the unequivocal detection of Anisakids, in <2h. The present strategy constitutes the fastest method for Anisakids detection, whose application in the food quality control area, could provide to the authorities an effective and rapid method to guarantee the safety to the consumers. Copyright © 2016 Elsevier B.V. All rights reserved.
Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS.
Warris, Sven; Yalcin, Feyruz; Jackson, Katherine J L; Nap, Jan Peter
2015-01-01
To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.
Fast disk array for image storage
NASA Astrophysics Data System (ADS)
Feng, Dan; Zhu, Zhichun; Jin, Hai; Zhang, Jiangling
1997-01-01
A fast disk array is designed for the large continuous image storage. It includes a high speed data architecture and the technology of data striping and organization on the disk array. The high speed data path which is constructed by two dual port RAM and some control circuit is configured to transfer data between a host system and a plurality of disk drives. The bandwidth can be more than 100 MB/s if the data path based on PCI (peripheral component interconnect). The organization of data stored on the disk array is similar to RAID 4. Data are striped on a plurality of disk, and each striping unit is equal to a track. I/O instructions are performed in parallel on the disk drives. An independent disk is used to store the parity information in the fast disk array architecture. By placing the parity generation circuit directly on the SCSI (or SCSI 2) bus, the parity information can be generated on the fly. It will affect little on the data writing in parallel on the other disks. The fast disk array architecture designed in the paper can meet the demands of the image storage.
Fast MPEG-CDVS Encoder With GPU-CPU Hybrid Computing
NASA Astrophysics Data System (ADS)
Duan, Ling-Yu; Sun, Wei; Zhang, Xinfeng; Wang, Shiqi; Chen, Jie; Yin, Jianxiong; See, Simon; Huang, Tiejun; Kot, Alex C.; Gao, Wen
2018-05-01
The compact descriptors for visual search (CDVS) standard from ISO/IEC moving pictures experts group (MPEG) has succeeded in enabling the interoperability for efficient and effective image retrieval by standardizing the bitstream syntax of compact feature descriptors. However, the intensive computation of CDVS encoder unfortunately hinders its widely deployment in industry for large-scale visual search. In this paper, we revisit the merits of low complexity design of CDVS core techniques and present a very fast CDVS encoder by leveraging the massive parallel execution resources of GPU. We elegantly shift the computation-intensive and parallel-friendly modules to the state-of-the-arts GPU platforms, in which the thread block allocation and the memory access are jointly optimized to eliminate performance loss. In addition, those operations with heavy data dependence are allocated to CPU to resolve the extra but non-necessary computation burden for GPU. Furthermore, we have demonstrated the proposed fast CDVS encoder can work well with those convolution neural network approaches which has harmoniously leveraged the advantages of GPU platforms, and yielded significant performance improvements. Comprehensive experimental results over benchmarks are evaluated, which has shown that the fast CDVS encoder using GPU-CPU hybrid computing is promising for scalable visual search.
NASA Astrophysics Data System (ADS)
Wang, Jun; Meng, Xiaohong; Li, Fang
2017-11-01
Generalized inversion is one of the important steps in the quantitative interpretation of gravity data. With appropriate algorithm and parameters, it gives a view of the subsurface which characterizes different geological bodies. However, generalized inversion of gravity data is time consuming due to the large amount of data points and model cells adopted. Incorporating of various prior information as constraints deteriorates the above situation. In the work discussed in this paper, a method for fast nonlinear generalized inversion of gravity data is proposed. The fast multipole method is employed for forward modelling. The inversion objective function is established with weighted data misfit function along with model objective function. The total objective function is solved by a dataspace algorithm. Moreover, depth weighing factor is used to improve depth resolution of the result, and bound constraint is incorporated by a transfer function to limit the model parameters in a reliable range. The matrix inversion is accomplished by a preconditioned conjugate gradient method. With the above algorithm, equivalent density vectors can be obtained, and interpolation is performed to get the finally density model on the fine mesh in the model domain. Testing on synthetic gravity data demonstrated that the proposed method is faster than conventional generalized inversion algorithm to produce an acceptable solution for gravity inversion problem. The new developed inversion method was also applied for inversion of the gravity data collected over Sichuan basin, southwest China. The established density structure in this study helps understanding the crustal structure of Sichuan basin and provides reference for further oil and gas exploration in this area.
Suplatov, Dmitry; Popova, Nina; Zhumatiy, Sergey; Voevodin, Vladimir; Švedas, Vytas
2016-04-01
Rapid expansion of online resources providing access to genomic, structural, and functional information associated with biological macromolecules opens an opportunity to gain a deeper understanding of the mechanisms of biological processes due to systematic analysis of large datasets. This, however, requires novel strategies to optimally utilize computer processing power. Some methods in bioinformatics and molecular modeling require extensive computational resources. Other algorithms have fast implementations which take at most several hours to analyze a common input on a modern desktop station, however, due to multiple invocations for a large number of subtasks the full task requires a significant computing power. Therefore, an efficient computational solution to large-scale biological problems requires both a wise parallel implementation of resource-hungry methods as well as a smart workflow to manage multiple invocations of relatively fast algorithms. In this work, a new computer software mpiWrapper has been developed to accommodate non-parallel implementations of scientific algorithms within the parallel supercomputing environment. The Message Passing Interface has been implemented to exchange information between nodes. Two specialized threads - one for task management and communication, and another for subtask execution - are invoked on each processing unit to avoid deadlock while using blocking calls to MPI. The mpiWrapper can be used to launch all conventional Linux applications without the need to modify their original source codes and supports resubmission of subtasks on node failure. We show that this approach can be used to process huge amounts of biological data efficiently by running non-parallel programs in parallel mode on a supercomputer. The C++ source code and documentation are available from http://biokinet.belozersky.msu.ru/mpiWrapper .
Effect of parallel electric fields on the ponderomotive stabilization of MHD instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litwin, C.; Hershkowitz, N.
The contribution of the wave electric field component E/sub parallel/, parallel to the magnetic field, to the ponderomotive stabilization of curvature driven instabilities is evaluated and compared to the transverse component contribution. For the experimental density range, in which the stability is primarily determined by the m = 1 magnetosonic wave, this contribution is found to be the dominant and stabilizing when the electron temperature is neglected. For sufficiently high electron temperatures the dominant fast wave is found to be axially evanescent. In the same limit, E/sub parallel/ becomes radially oscillating. It is concluded that the increased electron temperature nearmore » the plasma surface reduces the magnitude of ponderomotive effects.« less
Fast parallel tandem mass spectral library searching using GPU hardware acceleration
Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K.; Martin, Daniel B.
2011-01-01
Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching) is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment. PMID:21545112
Very fast motion planning for highly dexterous-articulated robots
NASA Technical Reports Server (NTRS)
Challou, Daniel J.; Gini, Maria; Kumar, Vipin
1994-01-01
Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.
NASA Astrophysics Data System (ADS)
Takagi, R.; Okada, T.; Yoshida, K.; Townend, J.; Boese, C. M.; Baratin, L. M.; Chamberlain, C. J.; Savage, M. K.
2016-12-01
We estimate shear wave velocity anisotropy in shallow crust near the Alpine fault using seismic interferometry of borehole vertical arrays. We utilized four borehole observations: two sensors are deployed in two boreholes of the Deep Fault Drilling Project in the hanging wall side, and the other two sites are located in the footwall side. Surface sensors deployed just above each borehole are used to make vertical arrays. Crosscorrelating rotated horizontal seismograms observed by the borehole and surface sensors, we extracted polarized shear waves propagating from the bottom to the surface of each borehole. The extracted shear waves show polarization angle dependence of travel time, indicating shear wave anisotropy between the two sensors. In the hanging wall side, the estimated fast shear wave directions are parallel to the Alpine fault. Strong anisotropy of 20% is observed at the site within 100 m from the Alpine fault. The hanging wall consists of mylonite and schist characterized by fault parallel foliation. In addition, an acoustic borehole imaging reveals fractures parallel to the Alpine fault. The fault parallel anisotropy suggest structural anisotropy is predominant in the hanging wall, demonstrating consistency of geological and seismological observations. In the footwall side, on the other hand, the angle between the fast direction and the strike of the Alpine fault is 33-40 degrees. Since the footwall is composed of granitoid that may not have planar structure, stress induced anisotropy is possibly predominant. The direction of maximum horizontal stress (SHmax) estimated by focal mechanisms of regional earthquakes is 55 degrees of the Alpine fault. Possible interpretation of the difference between the fast direction and SHmax direction is depth rotation of stress field near the Alpine fault. Similar depth rotation of stress field is also observed in the SAFOD borehole at the San Andreas fault.
Fast Computation and Assessment Methods in Power System Analysis
NASA Astrophysics Data System (ADS)
Nagata, Masaki
Power system analysis is essential for efficient and reliable power system operation and control. Recently, online security assessment system has become of importance, as more efficient use of power networks is eagerly required. In this article, fast power system analysis techniques such as contingency screening, parallel processing and intelligent systems application are briefly surveyed from the view point of their application to online dynamic security assessment.
The Anisotropic Structure of South China Sea: Using OBS Data to Constrain Mantle Flow
NASA Astrophysics Data System (ADS)
Li, L.; Xue, M.; Yang, T.; Liu, C.; Hua, Q.; Xia, S.; Huang, H.; Le, B. M.; Huo, D.; Pan, M.
2015-12-01
The dynamic mechanism of the formation of South China Sea (SCS) has been debated for decades. The anisotropic structure can provide useful insight into the complex evolution of SCS by indicating its mantle flow direction and strength. In this study, we employ shear wave splitting methods on two half-year seismic data collected from 10 and 6 passive source Ocean Bottom Seismometers (OBS) respectively. These OBSs were deployed along both sides of the extinct ridge in the central basin of SCS by Tongji University in 2012 and 2013 respectively, which were then successfully recovered in 2013 and 2015 respectively. Through processing and inspecting the global and regional earthquakes (with local events being processing) of the 2012 dataset, measurements are made for 2 global events and 24 regional events at 5 OBSs using the tangential energy minimization, the smallest eigenvalue minimization, as well as the correlation methods. We also implement cluster analysis on the splitting results obtained for different time windows as well as filtered at different frequency bands. For teleseismic core phases like SKS and PKS, we find the fast polarization direction beneath the central basin is approximately NE-SW, nearly parallel to the extinct ridge in the central basin of SCS. Whereas for regional events, the splitting analysis on S, PS and ScS phases shows much more complicated fast directions as the ray path varies for different phases. The fast directions observed can be divided into three groups: (1) for the events from the Eurasia plate, a gradual rotation of the fast polarization direction from NNE-SSW to NEE-SWW along the path from the inner Eurasia plate to the central SCS is observed, implying the mantle flow is controlled by the India-Eurasia collision; (2) for the events located at the junction of Pacific plate and Philippine plate, the dominant fast direction is NW-SE, almost perpendicular to Ryukyu Trench as well as sub-parallel to the absolute direction of Philippine plate; (3) for the events occurred in the SE direction near the Philippine Fault zone, the observed NE-SW fast direction is sub-parallel to the subduction direction of the Philippine plate.
JSD: Parallel Job Accounting on the IBM SP2
NASA Technical Reports Server (NTRS)
Saphir, William; Jones, James Patton; Walter, Howard (Technical Monitor)
1995-01-01
The IBM SP2 is one of the most promising parallel computers for scientific supercomputing - it is fast and usually reliable. One of its biggest problems is a lack of robust and comprehensive system software. Among other things, this software allows a collection of Unix processes to be treated as a single parallel application. It does not, however, provide accounting for parallel jobs other than what is provided by AIX for the individual process components. Without parallel job accounting, it is not possible to monitor system use, measure the effectiveness of system administration strategies, or identify system bottlenecks. To address this problem, we have written jsd, a daemon that collects accounting data for parallel jobs. jsd records information in a format that is easily machine- and human-readable, allowing us to extract the most important accounting information with very little effort. jsd also notifies system administrators in certain cases of system failure.
The polarization observables T, P, and H and their impact on γp → pπ0 multipoles
NASA Astrophysics Data System (ADS)
Hartmann, J.; Dutz, H.; Anisovich, A. V.; Bayadilov, D.; Beck, R.; Becker, M.; Beloglazov, Y.; Berlin, A.; Bichow, M.; Böse, S.; Brinkmann, K.-Th.; Crede, V.; Dieterle, M.; Eberhardt, H.; Elsner, D.; Fornet-Ponse, K.; Friedrich, St.; Frommberger, F.; Funke, Ch.; Gottschall, M.; Gridnev, A.; Grüner, M.; Goertz, St.; Gutz, E.; Hammann, Ch.; Hannappel, J.; Hannen, V.; Herick, J.; Hillert, W.; Hoffmeister, Ph.; Honisch, Ch.; Jahn, O.; Jude, T.; Käser, A.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Klassen, P.; Keshelashvili, I.; Klein, F.; Klempt, E.; Koop, K.; Krusche, B.; Kube, M.; Lang, M.; Lopatin, I.; Makonyi, K.; Messi, F.; Metag, V.; Meyer, W.; Müller, J.; Nanova, M.; Nikonov, V.; Novinski, D.; Novotny, R.; Piontek, D.; Reeve, S.; Rosenbaum, Ch.; Roth, B.; Reicherz, G.; Rostomyan, T.; Runkel, St.; Sarantsev, A.; Schmidt, Ch.; Schmieden, H.; Schmitz, R.; Seifen, T.; Sokhoyan, V.; Thämer, Ph.; Thiel, A.; Thoma, U.; Urban, M.; van Pee, H.; Walther, D.; Wendel, Ch.; Wiedner, U.; Wilson, A.; Winnebeck, A.; Witthauer, L.
2015-09-01
Data on the polarization observables T, P, and H for the reaction γp → pπ0 are reported. Compared to earlier data from other experiments, our data are more precise and extend the covered range in energy and angle substantially. The results were extracted from azimuthal asymmetries measured using a transversely polarized target and linearly polarized photons. The data were taken at the Bonn electron stretcher accelerator ELSA with the CBELSA/TAPS detector. Within the Bonn-Gatchina partial wave analysis, the new polarization data lead to a significant narrowing of the error band for the multipoles for neutral-pion photoproduction.
NASA Astrophysics Data System (ADS)
Pilkington, Terry
The classical definition of a black hole in terms of an event horizon relies on global properties of the spacetime. Realistic black holes have matter distributions surrounding them, which negates the asymptotic flatness needed for an event horizon. Using the (quasi-)local concept of marginally trapped surfaces, we investigate the Schwarzschild spacetime distorted by an axisymmetric matter distribution. We determine that it is possible to locate a future outer trapping horizon for a given foliation within certain value ranges of multipole moments. Furthermore, we show that there are no marginally trapped surfaces for arbitrary values of the multipole moment magnitudes. KEYWORDS: SCHWARZSCHILD; BLACK HOLE; DISTORTED SPACETIME; MARGINALLY TRAPPED SURFACE; FUTURE OUTER TRAPPING HORIZON
Exact formulas for multipole moments using Slater-type molecular orbitals
NASA Technical Reports Server (NTRS)
Jones, H. W.
1986-01-01
A triple infinite sum of formulas expressed as an expansion in Legendre polynomials is generated by use of computer algebra to represent the potential from the midpoint of two Slater-type orbitals; the charge density that determines the potential is given as the product of the two orbitals. An example using 1s orbitals shows that only a few terms are needed to obtain four-figure accuracy. Exact formulas are obtained for multipole moments by means of a careful study of expanded formulas, allowing an 'extrapolation to infinity'. This Loewdin alpha-function approach augmented by using a C matrix to characterize Slater-type orbitals can be readily generalized to all cases.
Dielectric metamaterials with toroidal dipolar response
Basharin, Alexey A.; Kafesaki, Maria; Economou, Eleftherios N.; ...
2015-03-27
Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here, we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. In addition, we show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials’ macroscopic response. Due to the unique field configuration of the toroidal mode, the proposed metamaterialsmore » could serve as a platform for sensing or enhancement of light absorption and optical nonlinearities.« less
NASA Astrophysics Data System (ADS)
Barakat, T.
2011-12-01
Higher order multipole potentials and electrostatic screening effects are introduced to incorporate the dangling bonds on the surface of a metallic nanopaticle and to modify the coulomb like potential energy terms, respectively. The total interaction energy function for any metallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terms are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.
Experimental investigations of argon and xenon ion sources
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1975-01-01
The multipole thruster was used to investigate the use of argon and xenon propellants as possible alternatives to the electric thruster propellants of mercury and cesium. The multipole approach was used because of its general high performance level. The design employed, using flat and cylindrical rolled sections of sheet metal, was selected for ease of fabrication, design, assembly, and modification. All testing was conducted in a vacuum facility and the pumping was accomplished by a 0.8 m diffusion pump together with liquid nitrogen cooled liner. Minimum discharge losses were in the 200-250 ev. ion range for both argon and xenon. Flatness parameters were typically in the 0.70-0.75 range.
General quadrupolar statistical anisotropy: Planck limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramazanov, S.; Rubtsov, G.; Thorsrud, M.
2017-03-01
Several early Universe scenarios predict a direction-dependent spectrum of primordial curvature perturbations. This translates into the violation of the statistical isotropy of cosmic microwave background radiation. Previous searches for statistical anisotropy mainly focussed on a quadrupolar direction-dependence characterised by a single multipole vector and an overall amplitude g {sub *}. Generically, however, the quadrupole has a more complicated geometry described by two multipole vectors and g {sub *}. This is the subject of the present work. In particular, we limit the amplitude g {sub *} for different shapes of the quadrupole by making use of Planck 2015 maps. We alsomore » constrain certain inflationary scenarios which predict this kind of more general quadrupolar statistical anisotropy.« less
Enqvist, Kari; Sloth, Martin S
2004-11-26
We investigate a possible connection between the suppression of the power at low multipoles in the cosmic microwave background (CMB) spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon, the equation of state of the dark energy can be related to the apparent cutoff in the CMB spectrum. The present limits on the equation of state of dark energy are shown to imply an IR cutoff in the CMB multipole interval of 9>l>8.5.
Fast Face-Recognition Optical Parallel Correlator Using High Accuracy Correlation Filter
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Kodate, Kashiko
2005-11-01
We designed and fabricated a fully automatic fast face recognition optical parallel correlator [E. Watanabe and K. Kodate: Appl. Opt. 44 (2005) 5666] based on the VanderLugt principle. The implementation of an as-yet unattained ultra high-speed system was aided by reconfiguring the system to make it suitable for easier parallel processing, as well as by composing a higher accuracy correlation filter and high-speed ferroelectric liquid crystal-spatial light modulator (FLC-SLM). In running trial experiments using this system (dubbed FARCO), we succeeded in acquiring remarkably low error rates of 1.3% for false match rate (FMR) and 2.6% for false non-match rate (FNMR). Given the results of our experiments, the aim of this paper is to examine methods of designing correlation filters and arranging database image arrays for even faster parallel correlation, underlining the issues of calculation technique, quantization bit rate, pixel size and shift from optical axis. The correlation filter has proved its excellent performance and higher precision than classical correlation and joint transform correlator (JTC). Moreover, arrangement of multi-object reference images leads to 10-channel correlation signals, as sharply marked as those of a single channel. This experiment result demonstrates great potential for achieving the process speed of 10000 face/s.
Bit error rate tester using fast parallel generation of linear recurring sequences
Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.
2003-05-06
A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.
Efficient implementation of parallel three-dimensional FFT on clusters of PCs
NASA Astrophysics Data System (ADS)
Takahashi, Daisuke
2003-05-01
In this paper, we propose a high-performance parallel three-dimensional fast Fourier transform (FFT) algorithm on clusters of PCs. The three-dimensional FFT algorithm can be altered into a block three-dimensional FFT algorithm to reduce the number of cache misses. We show that the block three-dimensional FFT algorithm improves performance by utilizing the cache memory effectively. We use the block three-dimensional FFT algorithm to implement the parallel three-dimensional FFT algorithm. We succeeded in obtaining performance of over 1.3 GFLOPS on an 8-node dual Pentium III 1 GHz PC SMP cluster.
Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake
NASA Astrophysics Data System (ADS)
Wu, Jie; Li, Hua; Jiang, Xuezheng; Yao, Jin
2018-02-01
This paper deals with design, simulation and experimental testing of a novel radial multi-pole multi-layer magnetorheological (MR) brake. This MR brake has an innovative structural design with superposition principle of two magnetic fields generated by the inner coils and the outer coils. The MR brake has several media layers of magnetorheological (MR) fluid located between the inner coils and the outer coils, and it can provide higher torque and higher torque density than conventional single-disk or multi-disk or multi-pole single-layer MR brakes can. In this paper, a brief introduction to the structure of the proposed MR brake was given first. Then, theoretical analysis of the magnetic circuit and the braking torque was conducted. In addition, a 3D electromagnetic model of the MR brake was developed to simulate and examine the magnetic flux intensity and corresponding braking torque. A prototype of the brake was fabricated and several tests were carried out to validate its torque capacity. The results show that the proposed MR brake can produce a maximum braking torque of 133 N m and achieve a high torque density of 25.0 kN m-2, a high torque range of 42 and a high torque-to-power ratio of 0.95 N m W-1.
Anatomy of the binary black hole recoil: A multipolar analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnittman, Jeremy D.; Buonanno, Alessandra; Meter, James R. van
2008-02-15
We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and nonzero, nonprecessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within {approx_equal}2%) and that only a few dominant modes contribute significantly to it (within {approx_equal}5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical resultsmore » can be reproduced by an 'effective Newtonian' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulas with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasinormal modes. Analytic formulas, obtained by expressing the multipole moments in terms of the fundamental quasinormal modes of a Kerr black hole, are able to explain the onset and amount of 'antikick' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and nonplanar kicks for equal-mass spinning black holes.« less
Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.
2007-01-01
We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.
NASA Technical Reports Server (NTRS)
Haynes, C. M.
1980-01-01
A 5 x 40 cm rectangular-beam ion source was designed and fabricated. A multipole field configuration was used to facilitate design of the modular rectangular chamber, while a three-grid ion optics system was used for increased ion current densities. For the multipole chamber, a magnetic integral of 0.000056 Tesla-m was used to contain the primary electrons. This integral value was reduced from the initial design value, with the reduction found necessary for discharge stability. The final value of magnetic integral resulted in discharge losses at typical operating conditions which ranged from 600 to 1000 eV/ion, in good agreement with the design value of 800 eV/ion. The beam current density at the ion optics was limited to about 3.2 mA/sq cm at 500 eV and to about 3.5 mA/sq cm at 1000 ev. The effects of nonuniform ion current, dimension tolerance, and grid thermal warping were considered. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source (approx. 40 cm) was also studied. Beam profiles were surveyed at a variety of operating conditions and the results of various amounts of beam overlap calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.Y.; Tepikian, S.
1985-01-01
Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator designs have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipolesmore » should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take a tremendous amount of computing time. In this review the method of determining chaotic orbit and applying the method to nonlinear problems in accelerator physics is discussed. We then discuss the scaling properties and effect of random sextupoles.« less
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.
1991-01-01
Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.
NASA Astrophysics Data System (ADS)
Shi, Wei; Hu, Xiaosong; Jin, Chao; Jiang, Jiuchun; Zhang, Yanru; Yip, Tony
2016-05-01
With the development and popularization of electric vehicles, it is urgent and necessary to develop effective management and diagnosis technology for battery systems. In this work, we design a parallel battery model, according to equivalent circuits of parallel voltage and branch current, to study effects of imbalanced currents on parallel large-format LiFePO4/graphite battery systems. Taking a 60 Ah LiFePO4/graphite battery system manufactured by ATL (Amperex Technology Limited, China) as an example, causes of imbalanced currents in the parallel connection are analyzed using our model, and the associated effect mechanisms on long-term stability of each single battery are examined. Theoretical and experimental results show that continuously increasing imbalanced currents during cycling are mainly responsible for the capacity fade of LiFePO4/graphite parallel batteries. It is thus a good way to avoid fast performance fade of parallel battery systems by suppressing variations of branch currents.
Procacci, Piero
2016-06-27
We present a new release (6.0β) of the ORAC program [Marsili et al. J. Comput. Chem. 2010, 31, 1106-1116] with a hybrid OpenMP/MPI (open multiprocessing message passing interface) multilevel parallelism tailored for generalized ensemble (GE) and fast switching double annihilation (FS-DAM) nonequilibrium technology aimed at evaluating the binding free energy in drug-receptor system on high performance computing platforms. The production of the GE or FS-DAM trajectories is handled using a weak scaling parallel approach on the MPI level only, while a strong scaling force decomposition scheme is implemented for intranode computations with shared memory access at the OpenMP level. The efficiency, simplicity, and inherent parallel nature of the ORAC implementation of the FS-DAM algorithm, project the code as a possible effective tool for a second generation high throughput virtual screening in drug discovery and design. The code, along with documentation, testing, and ancillary tools, is distributed under the provisions of the General Public License and can be freely downloaded at www.chim.unifi.it/orac .
Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip
2018-01-28
We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.
Neutrino and dark radiation properties in light of recent CMB observations
NASA Astrophysics Data System (ADS)
Archidiacono, Maria; Giusarma, Elena; Melchiorri, Alessandro; Mena, Olga
2013-05-01
Recent cosmic microwave background measurements at high multipoles from the South Pole Telescope and from the Atacama Cosmology Telescope seem to disagree in their conclusions for the neutrino and dark radiation properties. In this paper we set new bounds on the dark radiation and neutrino properties in different cosmological scenarios combining the ACT and SPT data with the nine-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP-9), baryon acoustic oscillation data, Hubble Telescope measurements of the Hubble constant, and supernovae Ia luminosity distance data. In the standard three massive neutrino case, the two high multipole probes give similar results if baryon acoustic oscillation data are removed from the analyses and Hubble Telescope measurements are also exploited. A similar result is obtained within a standard cosmology with Neff massless neutrinos, although in this case the agreement between these two measurements is also improved when considering simultaneously baryon acoustic oscillation data and Hubble Space Telescope measurements. In the Neff massive neutrino case the two high multipole probes give very different results regardless of the external data sets used in the combined analyses. When considering extended cosmological scenarios with a dark energy equation of state or with a running of the scalar spectral index, the evidence for neutrino masses found for the South Pole Telescope in the three neutrino scenario disappears for all the data combinations explored here. Again, adding Hubble Telescope data seems to improve the agreement between the two high multipole cosmic microwave background measurements considered here. In the case in which a dark radiation background with unknown clustering properties is also considered, SPT data seem to exclude the standard value for the dark radiation viscosity cvis2=1/3 at the 2σ C.L., finding evidence for massive neutrinos only when combining SPT data with baryon acoustic oscillation measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylor, K.; Hou, Z.; Knox, L.
The Planck cosmic microwave background temperature data are best fit with a Lambda CDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg(2) SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650 <= l <= 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing Lambda CDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipolemore » range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n(s) and A(s)e(-2 tau). We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of Lambda CDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at l > 2000.« less
Kuster, Daniel J.; Liu, Chengyu; Fang, Zheng; Ponder, Jay W.; Marshall, Garland R.
2015-01-01
Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.613 α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.613/10-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding. PMID:25894612
Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R
2015-01-01
Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding.
Point Charges Optimally Placed to Represent the Multipole Expansion of Charge Distributions
Onufriev, Alexey V.
2013-01-01
We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA) retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance the extent of the charge distribution–the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom), is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å ) is half that of the point multipole expansion up to the octupole order. PMID:23861790
An efficient parallel algorithm for matrix-vector multiplication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, B.; Leland, R.; Plimpton, S.
The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific computation. A fast parallel algorithm for this calculation is therefore necessary if one is to make full use of the new generation of parallel supercomputers. This paper presents a high performance, parallel matrix-vector multiplication algorithm that is particularly well suited to hypercube multiprocessors. For an n x n matrix on p processors, the communication cost of this algorithm is O(n/[radical]p + log(p)), independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by employing it as the kernel in themore » well-known NAS conjugate gradient benchmark, where a run time of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to date using a massively parallel supercomputer.« less
Walter, Alexander M; Pinheiro, Paulo S; Verhage, Matthijs; Sørensen, Jakob B
2013-01-01
Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca(2+) dependence, but also upstream steps depend on Ca(2+). After deletion of the Ca(2+) sensor for fast release - synaptotagmin-1 - slower Ca(2+)-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca(2+) sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca(2+)-dependent action: a Ca(2+)-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca(2+)-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca(2+)-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca(2+)-dependent fusion from the NRP. We conclude that the elusive 'alternative Ca(2+) sensor' for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca(2+)-dependent properties of secretion without assuming parallel pools or sensors.
Walter, Alexander M.; Pinheiro, Paulo S.; Verhage, Matthijs; Sørensen, Jakob B.
2013-01-01
Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca2+ dependence, but also upstream steps depend on Ca2+. After deletion of the Ca2+ sensor for fast release – synaptotagmin-1 – slower Ca2+-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca2+ sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca2+-dependent action: a Ca2+-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca2+-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca2+-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca2+-dependent fusion from the NRP. We conclude that the elusive ‘alternative Ca2+ sensor’ for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca2+-dependent properties of secretion without assuming parallel pools or sensors. PMID:24339761
Development of fast parallel multi-technique scanning X-ray imaging at Synchrotron Soleil
NASA Astrophysics Data System (ADS)
Medjoubi, K.; Leclercq, N.; Langlois, F.; Buteau, A.; Lé, S.; Poirier, S.; Mercère, P.; Kewish, C. M.; Somogyi, A.
2013-10-01
A fast multimodal scanning X-ray imaging scheme is prototyped at Soleil Synchrotron. It permits the simultaneous acquisition of complementary information on the sample structure, composition and chemistry by measuring transmission, differential phase contrast, small-angle scattering, and X-ray fluorescence by dedicated detectors with ms dwell time per pixel. The results of the proof of principle experiments are presented in this paper.
Fast MPEG-CDVS Encoder With GPU-CPU Hybrid Computing.
Duan, Ling-Yu; Sun, Wei; Zhang, Xinfeng; Wang, Shiqi; Chen, Jie; Yin, Jianxiong; See, Simon; Huang, Tiejun; Kot, Alex C; Gao, Wen
2018-05-01
The compact descriptors for visual search (CDVS) standard from ISO/IEC moving pictures experts group has succeeded in enabling the interoperability for efficient and effective image retrieval by standardizing the bitstream syntax of compact feature descriptors. However, the intensive computation of a CDVS encoder unfortunately hinders its widely deployment in industry for large-scale visual search. In this paper, we revisit the merits of low complexity design of CDVS core techniques and present a very fast CDVS encoder by leveraging the massive parallel execution resources of graphics processing unit (GPU). We elegantly shift the computation-intensive and parallel-friendly modules to the state-of-the-arts GPU platforms, in which the thread block allocation as well as the memory access mechanism are jointly optimized to eliminate performance loss. In addition, those operations with heavy data dependence are allocated to CPU for resolving the extra but non-necessary computation burden for GPU. Furthermore, we have demonstrated the proposed fast CDVS encoder can work well with those convolution neural network approaches which enables to leverage the advantages of GPU platforms harmoniously, and yield significant performance improvements. Comprehensive experimental results over benchmarks are evaluated, which has shown that the fast CDVS encoder using GPU-CPU hybrid computing is promising for scalable visual search.
Kelly, Benjamin J; Fitch, James R; Hu, Yangqiu; Corsmeier, Donald J; Zhong, Huachun; Wetzel, Amy N; Nordquist, Russell D; Newsom, David L; White, Peter
2015-01-20
While advances in genome sequencing technology make population-scale genomics a possibility, current approaches for analysis of these data rely upon parallelization strategies that have limited scalability, complex implementation and lack reproducibility. Churchill, a balanced regional parallelization strategy, overcomes these challenges, fully automating the multiple steps required to go from raw sequencing reads to variant discovery. Through implementation of novel deterministic parallelization techniques, Churchill allows computationally efficient analysis of a high-depth whole genome sample in less than two hours. The method is highly scalable, enabling full analysis of the 1000 Genomes raw sequence dataset in a week using cloud resources. http://churchill.nchri.org/.
PCTDSE: A parallel Cartesian-grid-based TDSE solver for modeling laser-atom interactions
NASA Astrophysics Data System (ADS)
Fu, Yongsheng; Zeng, Jiaolong; Yuan, Jianmin
2017-01-01
We present a parallel Cartesian-grid-based time-dependent Schrödinger equation (TDSE) solver for modeling laser-atom interactions. It can simulate the single-electron dynamics of atoms in arbitrary time-dependent vector potentials. We use a split-operator method combined with fast Fourier transforms (FFT), on a three-dimensional (3D) Cartesian grid. Parallelization is realized using a 2D decomposition strategy based on the Message Passing Interface (MPI) library, which results in a good parallel scaling on modern supercomputers. We give simple applications for the hydrogen atom using the benchmark problems coming from the references and obtain repeatable results. The extensions to other laser-atom systems are straightforward with minimal modifications of the source code.
Hidden in the background: a local approach to CMB anomalies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez, Juan C. Bueno, E-mail: juan.c.bueno@correounivalle.edu.co
2016-09-01
We investigate a framework aiming to provide a common origin for the large-angle anomalies detected in the Cosmic Microwave Background (CMB), which are hypothesized as the result of the statistical inhomogeneity developed by different isocurvature fields of mass m ∼ H present during inflation. The inhomogeneity arises as the combined effect of ( i ) the initial conditions for isocurvature fields (obtained after a fast-roll stage finishing many e -foldings before cosmological scales exit the horizon), ( ii ) their inflationary fluctuations and ( iii ) their coupling to other degrees of freedom. Our case of interest is when thesemore » fields (interpreted as the precursors of large-angle anomalies) leave an observable imprint only in isolated patches of the Universe. When the latter intersect the last scattering surface, such imprints arise in the CMB. Nevertheless, due to their statistically inhomogeneous nature, these imprints are difficult to detect, for they become hidden in the background similarly to the Cold Spot. We then compute the probability that a single isocurvature field becomes inhomogeneous at the end of inflation and find that, if the appropriate conditions are given (which depend exclusively on the preexisting fast-roll stage), this probability is at the percent level. Finally, we discuss several mechanisms (including the curvaton and the inhomogeneous reheating) to investigate whether an initial statistically inhomogeneous isocurvature field fluctuation might give rise to some of the observed anomalies. In particular, we focus on the Cold Spot, the power deficit at low multipoles and the breaking of statistical isotropy.« less
Behaviors of ellipsoidal micro-particles within a two-beam optical levitator
NASA Astrophysics Data System (ADS)
Petkov, T.; Yang, M.; Ren, K. F.; Pouligny, B.; Loudet, J.-C.
2017-07-01
The two-beam levitator (TBL) is a standard optical setup made of a couple of counter-propagating beams. Note worthily, TBLs allow the manipulation and trapping of particles at long working distances. While much experience has been accumulated in the trapping of single spherical particles in TBLs, the behaviors of asymmetrical particles turn out to be more complex, and even surprising. Here, we report observations with prolate ellipsoidal polystyrene particles, with varying aspect ratio and ratio of the two beam powers. Generalizing the earlier work by Mihiretie et al. in single beam geometries [JQSRT 126, 61 (2013)], we observe that particles may be either static, or permanently oscillating, and that the two-beam geometry produces new particle responses: some of them are static, but non-symmetrical, while others correspond to new types of oscillations. A two-dimensional model based on ray-optics qualitatively accounts for these configurations and for the "primary" oscillations of the particles. Furthermore, levitation powers measured in the experiments are in fair agreement with those computed from GLMT (Generalized Lorentz Mie Theory), MLFMA (Multilevel Fast Multipole Algorithm) and approximate ray-optics methods.
Parallel processing in a host plus multiple array processor system for radar
NASA Technical Reports Server (NTRS)
Barkan, B. Z.
1983-01-01
Host plus multiple array processor architecture is demonstrated to yield a modular, fast, and cost-effective system for radar processing. Software methodology for programming such a system is developed. Parallel processing with pipelined data flow among the host, array processors, and discs is implemented. Theoretical analysis of performance is made and experimentally verified. The broad class of problems to which the architecture and methodology can be applied is indicated.
Fast Whole-Engine Stirling Analysis
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2006-01-01
This presentation discusses the simulation approach to whole-engine for physical consistency, REV regenerator modeling, grid layering for smoothness, and quality, conjugate heat transfer method adjustment, high-speed low cost parallel cluster, and debugging.
Non-linear non-local molecular electrodynamics with nano-optical fields.
Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul
2015-10-28
The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1992-01-01
The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.
Planar Multipol-Resonance-Probe: A Spectral Kinetic Approach
NASA Astrophysics Data System (ADS)
Friedrichs, Michael; Gong, Junbo; Brinkmann, Ralf Peter; Oberrath, Jens; Wilczek, Sebastian
2016-09-01
Measuring plasma parameters, e.g. electron density and electron temperature, is an important procedure to verify the stability and behavior of a plasma process. For this purpose the multipole resonance probe (MRP) represents a satisfying solution to measure the electron density. However the influence of the probe on the plasma through its physical presence makes it unattractive for some processes in industrial application. A solution to combine the benefits of the spherical MRP with the ability to integrate the probe into the plasma reactor is introduced by the planar model of the MRP (pMRP). Introducing the spectral kinetic formalism leads to a reduced simulation-circle compared to particle-in-cell simulations. The model of the pMRP is implemented and first simulation results are presented.
Can cosmic shear shed light on low cosmic microwave background multipoles?
Kesden, Michael; Kamionkowski, Marc; Cooray, Asantha
2003-11-28
The lowest multipole moments of the cosmic microwave background (CMB) are smaller than expected for a scale-invariant power spectrum. One possible explanation is a cutoff in the primordial power spectrum below a comoving scale of k(c) approximately equal to 5.0 x 10(-4) Mpc(-1). Such a cutoff would increase significantly the cross correlation between the large-angle CMB and cosmic-shear patterns. The cross correlation may be detectable at >2sigma which, combined with the low CMB moments, may tilt the balance between a 2sigma result and a firm detection of a large-scale power-spectrum cutoff. The cutoff also increases the large-angle cross correlation between the CMB and the low-redshift tracers of the mass distribution.
Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.
NASA Astrophysics Data System (ADS)
Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.
2017-12-01
Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular magnetic spectra. This indicates that the spectral anisotropy in parallel and perpendicular direction is governed by intrinsic properties of SWT.
A High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions
NASA Technical Reports Server (NTRS)
Sun, Xian-He; Zhuang, Yu
1997-01-01
In this study, a compact finite-difference discretization is first developed for Helmholtz equations on rectangular domains. Special treatments are then introduced for Neumann and Neumann-Dirichlet boundary conditions to achieve accuracy and separability. Finally, a Fast Fourier Transform (FFT) based technique is used to yield a fast direct solver. Analytical and experimental results show this newly proposed solver is comparable to the conventional second-order elliptic solver when accuracy is not a primary concern, and is significantly faster than that of the conventional solver if a highly accurate solution is required. In addition, this newly proposed fourth order Helmholtz solver is parallel in nature. It is readily available for parallel and distributed computers. The compact scheme introduced in this study is likely extendible for sixth-order accurate algorithms and for more general elliptic equations.
A Parallel Fast Sweeping Method for the Eikonal Equation
NASA Astrophysics Data System (ADS)
Baker, B.
2017-12-01
Recently, there has been an exciting emergence of probabilistic methods for travel time tomography. Unlike gradient-based optimization strategies, probabilistic tomographic methods are resistant to becoming trapped in a local minimum and provide a much better quantification of parameter resolution than, say, appealing to ray density or performing checkerboard reconstruction tests. The benefits associated with random sampling methods however are only realized by successive computation of predicted travel times in, potentially, strongly heterogeneous media. To this end this abstract is concerned with expediting the solution of the Eikonal equation. While many Eikonal solvers use a fast marching method, the proposed solver will use the iterative fast sweeping method because the eight fixed sweep orderings in each iteration are natural targets for parallelization. To reduce the number of iterations and grid points required the high-accuracy finite difference stencil of Nobel et al., 2014 is implemented. A directed acyclic graph (DAG) is created with a priori knowledge of the sweep ordering and finite different stencil. By performing a topological sort of the DAG sets of independent nodes are identified as candidates for concurrent updating. Additionally, the proposed solver will also address scalability during earthquake relocation, a necessary step in local and regional earthquake tomography and a barrier to extending probabilistic methods from active source to passive source applications, by introducing an asynchronous parallel forward solve phase for all receivers in the network. Synthetic examples using the SEG over-thrust model will be presented.
Biomechanical Comparison of Parallel and Crossed Suture Repair for Longitudinal Meniscus Tears.
Milchteim, Charles; Branch, Eric A; Maughon, Ty; Hughey, Jay; Anz, Adam W
2016-04-01
Longitudinal meniscus tears are commonly encountered in clinical practice. Meniscus repair devices have been previously tested and presented; however, prior studies have not evaluated repair construct designs head to head. This study compared a new-generation meniscus repair device, SpeedCinch, with a similar established device, Fast-Fix 360, and a parallel repair construct to a crossed construct. Both devices utilize self-adjusting No. 2-0 ultra-high molecular weight polyethylene (UHMWPE) and 2 polyether ether ketone (PEEK) anchors. Crossed suture repair constructs have higher failure loads and stiffness compared with simple parallel constructs. The newer repair device would exhibit similar performance to an established device. Controlled laboratory study. Sutures were placed in an open fashion into the body and posterior horn regions of the medial and lateral menisci in 16 cadaveric knees. Evaluation of 2 repair devices and 2 repair constructs created 4 groups: 2 parallel vertical sutures created with the Fast-Fix 360 (2PFF), 2 crossed vertical sutures created with the Fast-Fix 360 (2XFF), 2 parallel vertical sutures created with the SpeedCinch (2PSC), and 2 crossed vertical sutures created with the SpeedCinch (2XSC). After open placement of the repair construct, each meniscus was explanted and tested to failure on a uniaxial material testing machine. All data were checked for normality of distribution, and 1-way analysis of variance by ranks was chosen to evaluate for statistical significance of maximum failure load and stiffness between groups. Statistical significance was defined as P < .05. The mean maximum failure loads ± 95% CI (range) were 89.6 ± 16.3 N (125.7-47.8 N) (2PFF), 72.1 ± 11.7 N (103.4-47.6 N) (2XFF), 71.9 ± 15.5 N (109.4-41.3 N) (2PSC), and 79.5 ± 25.4 N (119.1-30.9 N) (2XSC). Interconstruct comparison revealed no statistical difference between all 4 constructs regarding maximum failure loads (P = .49). Stiffness values were also similar, with no statistical difference on comparison (P = .28). Both devices in the current study had similar failure load and stiffness when 2 vertical or 2 crossed sutures were tested in cadaveric human menisci. Simple parallel vertical sutures perform similarly to crossed suture patterns at the time of implantation.
An embedded multi-core parallel model for real-time stereo imaging
NASA Astrophysics Data System (ADS)
He, Wenjing; Hu, Jian; Niu, Jingyu; Li, Chuanrong; Liu, Guangyu
2018-04-01
The real-time processing based on embedded system will enhance the application capability of stereo imaging for LiDAR and hyperspectral sensor. The task partitioning and scheduling strategies for embedded multiprocessor system starts relatively late, compared with that for PC computer. In this paper, aimed at embedded multi-core processing platform, a parallel model for stereo imaging is studied and verified. After analyzing the computing amount, throughout capacity and buffering requirements, a two-stage pipeline parallel model based on message transmission is established. This model can be applied to fast stereo imaging for airborne sensors with various characteristics. To demonstrate the feasibility and effectiveness of the parallel model, a parallel software was designed using test flight data, based on the 8-core DSP processor TMS320C6678. The results indicate that the design performed well in workload distribution and had a speed-up ratio up to 6.4.
Massively parallel implementation of 3D-RISM calculation with volumetric 3D-FFT.
Maruyama, Yutaka; Yoshida, Norio; Tadano, Hiroto; Takahashi, Daisuke; Sato, Mitsuhisa; Hirata, Fumio
2014-07-05
A new three-dimensional reference interaction site model (3D-RISM) program for massively parallel machines combined with the volumetric 3D fast Fourier transform (3D-FFT) was developed, and tested on the RIKEN K supercomputer. The ordinary parallel 3D-RISM program has a limitation on the number of parallelizations because of the limitations of the slab-type 3D-FFT. The volumetric 3D-FFT relieves this limitation drastically. We tested the 3D-RISM calculation on the large and fine calculation cell (2048(3) grid points) on 16,384 nodes, each having eight CPU cores. The new 3D-RISM program achieved excellent scalability to the parallelization, running on the RIKEN K supercomputer. As a benchmark application, we employed the program, combined with molecular dynamics simulation, to analyze the oligomerization process of chymotrypsin Inhibitor 2 mutant. The results demonstrate that the massive parallel 3D-RISM program is effective to analyze the hydration properties of the large biomolecular systems. Copyright © 2014 Wiley Periodicals, Inc.
Plasma Physics Calculations on a Parallel Macintosh Cluster
NASA Astrophysics Data System (ADS)
Decyk, Viktor; Dauger, Dean; Kokelaar, Pieter
2000-03-01
We have constructed a parallel cluster consisting of 16 Apple Macintosh G3 computers running the MacOS, and achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. For large problems where message packets are large and relatively few in number, performance of 50-150 MFlops/node is possible, depending on the problem. This is fast enough that 3D calculations can be routinely done. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. Full details are available on our web site: http://exodus.physics.ucla.edu/appleseed/.
Plasma Physics Calculations on a Parallel Macintosh Cluster
NASA Astrophysics Data System (ADS)
Decyk, Viktor K.; Dauger, Dean E.; Kokelaar, Pieter R.
We have constructed a parallel cluster consisting of 16 Apple Macintosh G3 computers running the MacOS, and achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. For large problems where message packets are large and relatively few in number, performance of 50-150 Mflops/node is possible, depending on the problem. This is fast enough that 3D calculations can be routinely done. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. Full details are available on our web site: http://exodus.physics.ucla.edu/appleseed/.
NASA Astrophysics Data System (ADS)
Szmytkowski, Radosław; Łukasik, Grzegorz
2016-09-01
We present tabulated data for several families of static electric and magnetic multipole susceptibilities for hydrogenic atoms with nuclear charge numbers from the range 1 ⩽ Z ⩽ 137. Atomic nuclei are assumed to be point-like and spinless. The susceptibilities considered include the multipole electric polarizabilities α E L → E L and magnetizabilities (magnetic susceptibilities) χ M L → M L with 1 ⩽ L ⩽ 4 (i.e., the dipole, quadrupole, octupole and hexadecapole ones), the electric-to-magnetic cross-susceptibilities α E L → M(L - 1) with 2 ⩽ L ⩽ 5 and α E L → M(L + 1) with 1 ⩽ L ⩽ 4, the magnetic-to-electric cross-susceptibilities χ M L → E(L - 1) with 2 ⩽ L ⩽ 5 and χ M L → E(L + 1) with 1 ⩽ L ⩽ 4 (it holds that χ M L → E(L ∓ 1) =α E(L ∓ 1) → M L), and the electric-to-toroidal-magnetic cross-susceptibilities α E L → T L with 1 ⩽ L ⩽ 4. Numerical values are computed from general exact analytical formulas, derived by us elsewhere within the framework of the Dirac relativistic quantum mechanics, and involving generalized hypergeometric functions 3F2 of the unit argument.
Wang, Han; Nakamura, Haruki; Fukuda, Ikuo
2016-03-21
We performed extensive and strict tests for the reliability of the zero-multipole (summation) method (ZMM), which is a method for estimating the electrostatic interactions among charged particles in a classical physical system, by investigating a set of various physical quantities. This set covers a broad range of water properties, including the thermodynamic properties (pressure, excess chemical potential, constant volume/pressure heat capacity, isothermal compressibility, and thermal expansion coefficient), dielectric properties (dielectric constant and Kirkwood-G factor), dynamical properties (diffusion constant and viscosity), and the structural property (radial distribution function). We selected a bulk water system, the most important solvent, and applied the widely used TIP3P model to this test. In result, the ZMM works well for almost all cases, compared with the smooth particle mesh Ewald (SPME) method that was carefully optimized. In particular, at cut-off radius of 1.2 nm, the recommended choices of ZMM parameters for the TIP3P system are α ≤ 1 nm(-1) for the splitting parameter and l = 2 or l = 3 for the order of the multipole moment. We discussed the origin of the deviations of the ZMM and found that they are intimately related to the deviations of the equilibrated densities between the ZMM and SPME, while the magnitude of the density deviations is very small.
NASA Astrophysics Data System (ADS)
Baker, Joanne C.; Grainge, Keith; Hobson, M. P.; Jones, Michael E.; Kneissl, R.; Lasenby, A. N.; O'Sullivan, C. M. M.; Pooley, Guy; Rocha, G.; Saunders, Richard; Scott, P. F.; Waldram, E. M.
1999-10-01
We describe observations at frequencies near 15GHz of the second 2x2deg^2 field imaged with the Cambridge Cosmic Anisotropy Telescope (CAT). After the removal of discrete radio sources, structure is detected in the images on characteristic scales of about half a degree, corresponding to spherical harmonic multipoles in the range l~330-680. A Bayesian analysis confirms that the signal arises predominantly from the cosmic microwave background (CMB) radiation for multipoles in the lower half of this range; the average broad-band power in a bin with centroid l=422 (θ~51arcmin) is estimated to be ΔTT 2.1-0.5+0.4 x10-5. For multipoles centred on l=615 (θ~35arcmin), we find contamination from Galactic emission is significant, and constrain the CMB contribution to the measured power in this bin to be ΔTT<2.0x10^-5 (1σ upper limit). These new results are consistent with the first detection made by CAT in a completely different area of sky. Together with data from other experiments, this new CAT detection adds weight to earlier evidence from CAT for a downturn in the CMB power spectrum on scales smaller than 1deg. Improved limits on the values of H0 and Ω are determined using the new CAT data.
Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip
2016-02-15
We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.
Low energy, high power hydrogen neutral beam for plasma heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su
A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase themore » efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.« less
Portion sizes and obesity: responses of fast-food companies.
Young, Lisa R; Nestle, Marion
2007-07-01
Because the sizes of food portions, especially of fast food, have increased in parallel with rising rates of overweight, health authorities have called on fast-food chains to decrease the sizes of menu items. From 2002 to 2006, we examined responses of fast-food chains to such calls by determining the current sizes of sodas, French fries, and hamburgers at three leading chains and comparing them to sizes observed in 1998 and 2002. Although McDonald's recently phased out its largest offerings, current items are similar to 1998 sizes and greatly exceed those offered when the company opened in 1955. Burger King and Wendy's have increased portion sizes, even while health authorities are calling for portion size reductions. Fast-food portions in the United States are larger than in Europe. These observations suggest that voluntary efforts by fast-food companies to reduce portion sizes are unlikely to be effective, and that policy approaches are needed to reduce energy intake from fast food.
Fast word reading in pure alexia: "fast, yet serial".
Bormann, Tobias; Wolfer, Sascha; Hachmann, Wibke; Neubauer, Claudia; Konieczny, Lars
2015-01-01
Pure alexia is a severe impairment of word reading in which individuals process letters serially with a pronounced length effect. Yet, there is considerable variation in the performance of alexic readers with generally very slow, but also occasionally fast responses, an observation addressed rarely in previous reports. It has been suggested that "fast" responses in pure alexia reflect residual parallel letter processing or that they may even be subserved by an independent reading system. Four experiments assessed fast and slow reading in a participant (DN) with pure alexia. Two behavioral experiments investigated frequency, neighborhood, and length effects in forced fast reading. Two further experiments measured eye movements when DN was forced to read quickly, or could respond faster because words were easier to process. Taken together, there was little support for the proposal that "qualitatively different" mechanisms or reading strategies underlie both types of responses in DN. Instead, fast responses are argued to be generated by the same serial-reading strategy.
Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea
NASA Astrophysics Data System (ADS)
Hongsresawat, S.; Russo, R. M.
2016-12-01
We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that parallel the strike of the now-inoperative spreading center in the South China Sea. This transition appears to occur in the central portion of Peninsular Malaysia and may mark the boundary between Tethyan upper mantle extruded from the India-Asia collision zone and supra-subduction upper mantle of the Indonesian arc.
NASA Astrophysics Data System (ADS)
Cao, L.; Kao, H.; Wang, K.; Wang, Z.
2016-12-01
Haida Gwaii is located along the transpressive Queen Charlotte margin between the Pacific (PA) and North America (NA) plates. The highly oblique relative plate motion is partitioned, with the strike-slip component accommodated by the Queen Charlotte Fault (QCF) and the convergent component by a thrust fault offshore. To understand how the presence of a obliquely subducting slab influences shear deformation of the plate boundary, we investigate mantle anisotropy by analyzing shear-wave splitting of teleseismic SKS phases recorded at 17 seismic stations in and around Haida Gwaii. We used the MFAST program to determine the polarization direction of the fast wave (φ) and the delay time (δt) between the fast and slow phases. The fast directions derived from stations on Haida Gwaii and two stations to the north on the Alaska Panhandle are predominantly margin-parallel (NNW). However, away from the plate boundary, the fast direction transitions to WSW-trending, very oblique or perpendicular to the plate boundary. Because the average delay time of 0.6-2.45 s is much larger than values based on an associated local S phase splitting analysis in the same study area, it is reasonable to infer that most of the anisotropy from our SKS analysis originates from the upper mantle and is associated with lattice-preferred orientation of anisotropic minerals. The margin-parallel fast direction within about 100 km of the QCF (average φ = -40º and δt = 1.2 s) is likely induced by the PA-NA shear motion. The roughly margin-normal fast directions farther away, although more scatterd, are consistent with that previously observed in the NA continent and are attributed to the absolute motion of the NA plate. However, the transition between the two regimes based on our SKS analysis appears to be gradual, suggesting that the plate boundary shear influences a much broader region at mantle depths than would be inferred from the surface trace of the QCF. We think this is due to the presence of a subducted portion of the Pacific plate. Because the slab travels mostly in the strike direction, it is expected to induce margin-parallel shear deformation of the mantle material. This result has importance implications to the geodynamics of transpressive plate margins.
NASA Astrophysics Data System (ADS)
Anisovich, A. V.; Beck, R.; Döring, M.; Gottschall, M.; Hartmann, J.; Kashevarov, V.; Klempt, E.; Meißner, Ulf-G.; Nikonov, V.; Ostrick, M.; Rönchen, D.; Sarantsev, A.; Strakovsky, I.; Thiel, A.; Tiator, L.; Thoma, U.; Workman, R.; Wunderlich, Y.
2016-09-01
New data on pion-photoproduction off the proton have been included in the partial-wave analyses Bonn-Gatchina and SAID and in the dynamical coupled-channel approach Jülich-Bonn. All reproduce the recent new data well: the double-polarization data for E, G, H, P and T in γ p→ π0p from ELSA, the beam asymmetry Σ for γ p→ π0p and π+n from Jefferson Laboratory, and the precise new differential cross section and beam asymmetry data Σ for γ p→ π0p from MAMI. The new fit results for the multipoles are compared with predictions not taking into account the new data. The mutual agreement is improved considerably but still far from being perfect.
N* resonances from KΛ amplitudes in sliced bins in energy
NASA Astrophysics Data System (ADS)
Anisovich, A. V.; Burkert, V.; Hadžimehmedović, M.; Ireland, D. G.; Klempt, E.; Nikonov, V. A.; Omerović, R.; Sarantsev, A. V.; Stahov, J.; Švarc, A.; Thoma, U.
2017-12-01
The two reactions γ p→ K+Λ and π- p→ K0Λ are analyzed to determine the leading photoproduction multipoles and the pion-induced partial wave amplitudes in slices of the invariant mass. The multipoles and the partial-wave amplitudes are simultaneously fitted in a multichannel Laurent+Pietarinen model (L+P model), which determines the poles in the complex energy plane on the second Riemann sheet close to the physical axes. The results from the L+P fit are compared with the results of an energy-dependent fit based on the Bonn-Gatchina (BnGa) approach. The study confirms the existence of several poles due to nucleon resonances in the region at about 1.9 GeV with quantum numbers JP = 1/2+, 3/2+, 1/2-, 3/2-, 5/2-.
Cs 62 DJ Rydberg-atom macrodimers formed by long-range multipole interaction
NASA Astrophysics Data System (ADS)
Han, Xiaoxuan; Bai, Suying; Jiao, Yuechun; Hao, Liping; Xue, Yongmei; Zhao, Jianming; Jia, Suotang; Raithel, Georg
2018-03-01
Long-range macrodimers formed by D -state cesium Rydberg atoms are studied in experiments and calculations. Cesium [62DJ]2 Rydberg-atom macrodimers, bonded via long-range multipole interaction, are prepared by two-color photoassociation in a cesium atom trap. The first color (pulse A) resonantly excites seed Rydberg atoms, while the second (pulse B, detuned by the molecular binding energy) resonantly excites the Rydberg-atom macrodimers below the [62DJ]2 asymptotes. The molecules are measured by extraction of autoionization products and Rydberg-atom electric-field ionization, and ion detection. Molecular spectra are compared with calculations of adiabatic molecular potentials. From the dependence of the molecular signal on the detection delay time, the lifetime of the molecules is estimated to be 3 -6 μ s .
Oxidation of gallium arsenide in a plasma multipole device. Study of the MOS structures obtained
NASA Technical Reports Server (NTRS)
Gourrier, S.; Mircea, A.; Simondet, F.
1980-01-01
The oxygen plasma oxidation of GaAs was studied in order to obtain extremely high frequency responses with MOS devices. In the multipole system a homogeneous oxygen plasma of high density can easily be obtained in a large volume. This system is thus convenient for the study of plasma oxidation of GaAs. The electrical properties of the MOS diodes obtained in this way are controlled by interface states, located mostly in the upper half of the band gap where densities in the 10 to the 13th power/(sq cm) (eV) range can be estimated. Despite these interface states the possibility of fabricating MOSFET transistors working mostly in the depletion mode for a higher frequency cut-off still exists.
Final-state QED multipole radiation in antenna parton showers
NASA Astrophysics Data System (ADS)
Kleiss, Ronald; Verheyen, Rob
2017-11-01
We present a formalism for a fully coherent QED parton shower. The complete multipole structure of photonic radiation is incorporated in a single branching kernel. The regular on-shell 2 → 3 kinematic picture is kept intact by dividing the radiative phase space into sectors, allowing for a definition of the ordering variable that is similar to QCD antenna showers. A modified version of the Sudakov veto algorithm is discussed that increases performance at the cost of the introduction of weighted events. Due to the absence of a soft singularity, the formalism for photon splitting is very similar to the QCD analogon of gluon splitting. However, since no color structure is available to guide the selection of a spectator, a weighted selection procedure from all available spectators is introduced.
Symmetry breaking in linear multipole traps
NASA Astrophysics Data System (ADS)
Pedregosa-Gutierrez, J.; Champenois, C.; Kamsap, M. R.; Hagel, G.; Houssin, M.; Knoop, M.
2018-03-01
Radiofrequency multipole traps have been used for some decades in cold collision experiments and are gaining interest for precision spectroscopy due to their low micromotion contribution and the predicted unusual cold-ion structures. However, the experimental realisation is not yet fully controlled, and open questions in the operation of these devices remain. We present experimental observations of symmetry breaking of the trapping potential in a macroscopic octupole trap with laser-cooled ions. Numerical simulations have been performed in order to explain the appearance of additional local potential minima and be able to control them in a next step. We characterise these additional potential minima, in particular with respect to their position, their potential depth and their probability of population as a function of the radial and angular displacement of the trapping rods.
NASA Technical Reports Server (NTRS)
Burt, Eric A.; Tjoelker, R. L.
2007-01-01
A recent long-term comparison between the compensated multi-pole Linear Ion Trap Standard (LITS) and the laser-cooled primary standards via GPS carrier phase time transfer showed a deviation of less than 2.7x10(exp -17)/day. A subsequent evaluation of potential drift contributors in the LITS showed that the leading candidates are fluctuations in background gases and the neon buffer gas. The current vacuum system employs a "flow-through" turbomolecular pump and a diaphragm fore pump. Here we consider the viability of a "sealed" vacuum system pumped by a non-evaporable getter for long-term ultra-stable clock operation. Initial tests suggests that both further stability improvement and longer mean-time-between-maintenance can be achieved using this approach
Gaussian polarizable-ion tight binding.
Boleininger, Max; Guilbert, Anne Ay; Horsfield, Andrew P
2016-10-14
To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).
Gaussian polarizable-ion tight binding
NASA Astrophysics Data System (ADS)
Boleininger, Max; Guilbert, Anne AY; Horsfield, Andrew P.
2016-10-01
To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).
Optical Radiation from Integer Quantum Hall States in Dirac Materials
NASA Astrophysics Data System (ADS)
Gullans, Michael; Taylor, Jacob; Ghaemi, Pouyan; Hafezi, Mohammad
Quantum Hall systems exhibit topologically protected edge states, which can have a macroscopic spatial extent. Such edge states provide a unique opportunity to study a quantum emitter whose size far exceeds the wavelength of emitted light. To better understand this limit, we theoretically characterize the optical radiation from integer quantum Hall states in two-dimensional Dirac materials. We show that the scattered light from the bulk reflects the spatial profile of the wavefunctions, enabling spatial imaging of the disorder landscape. We find that the radiation from the edge states are characterized by the presence of large multipole moments in the far-field. This multipole radiation arises from the transfer of angular momentum from the electrons into the scattered light, enabling the generation of coherent light with high orbital angular momentum.
NASA Astrophysics Data System (ADS)
Eremin, Yu. A.; Sveshnikov, A. G.
2017-07-01
The optical theorem is generalized to the case of excitation of a local inhomogeneity introduced in a transparent substrate by a multipole of arbitrary order. It is shown that, to calculate the generalized extinction cross section, it is sufficient to calculate the derivatives of the scattered field at a single point by adding a constant and a definite integral. Apart from general scientific interest, the proposed generalization makes it possible to calculate the absorption cross section by subtracting the scattering cross section from the extinction cross section. The latter fact is important, because the scattered field in the far zone contains no Sommerfeld integrals. In addition, the proposed generalization allows one to test computer modules for the case where a lossless inhomogeneity is considered.
The development of GPU-based parallel PRNG for Monte Carlo applications in CUDA Fortran
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kargaran, Hamed, E-mail: h-kargaran@sbu.ac.ir; Minuchehr, Abdolhamid; Zolfaghari, Ahmad
The implementation of Monte Carlo simulation on the CUDA Fortran requires a fast random number generation with good statistical properties on GPU. In this study, a GPU-based parallel pseudo random number generator (GPPRNG) have been proposed to use in high performance computing systems. According to the type of GPU memory usage, GPU scheme is divided into two work modes including GLOBAL-MODE and SHARED-MODE. To generate parallel random numbers based on the independent sequence method, the combination of middle-square method and chaotic map along with the Xorshift PRNG have been employed. Implementation of our developed PPRNG on a single GPU showedmore » a speedup of 150x and 470x (with respect to the speed of PRNG on a single CPU core) for GLOBAL-MODE and SHARED-MODE, respectively. To evaluate the accuracy of our developed GPPRNG, its performance was compared to that of some other commercially available PPRNGs such as MATLAB, FORTRAN and Miller-Park algorithm through employing the specific standard tests. The results of this comparison showed that the developed GPPRNG in this study can be used as a fast and accurate tool for computational science applications.« less
Algorithm for fast event parameters estimation on GEM acquired data
NASA Astrophysics Data System (ADS)
Linczuk, Paweł; Krawczyk, Rafał D.; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Wojeński, Andrzej; Chernyshova, Maryna; Czarski, Tomasz
2016-09-01
We present study of a software-hardware environment for developing fast computation with high throughput and low latency methods, which can be used as back-end in High Energy Physics (HEP) and other High Performance Computing (HPC) systems, based on high amount of input from electronic sensor based front-end. There is a parallelization possibilities discussion and testing on Intel HPC solutions with consideration of applications with Gas Electron Multiplier (GEM) measurement systems presented in this paper.
Petrović, Z Lj; Phelps, A V
2009-12-01
Absolute spectral emissivities for Doppler broadened H(alpha) profiles are measured and compared with predictions of energetic hydrogen ion, atom, and molecule behavior in low-current electrical discharges in H2 at very high electric field E to gas density N ratios E/N and low values of Nd , where d is the parallel-plate electrode separation. These observations reflect the energy and angular distributions for the excited atoms and quantitatively test features of multiple-scattering kinetic models in weakly ionized hydrogen in the presence of an electric field that are not tested by the spatial distributions of H(alpha) emission. Absolute spectral intensities agree well with predictions. Asymmetries in Doppler profiles observed parallel to the electric field at 4
Hardware-efficient implementation of digital FIR filter using fast first-order moment algorithm
NASA Astrophysics Data System (ADS)
Cao, Li; Liu, Jianguo; Xiong, Jun; Zhang, Jing
2018-03-01
As the digital finite impulse response (FIR) filter can be transformed into the shift-add form of multiple small-sized firstorder moments, based on the existing fast first-order moment algorithm, this paper presents a novel multiplier-less structure to calculate any number of sequential filtering results in parallel. The theoretical analysis on its hardware and time-complexities reveals that by appropriately setting the degree of parallelism and the decomposition factor of a fixed word width, the proposed structure may achieve better area-time efficiency than the existing two-dimensional (2-D) memoryless-based filter. To evaluate the performance concretely, the proposed designs for different taps along with the existing 2-D memoryless-based filters, are synthesized by Synopsys Design Compiler with 0.18-μm SMIC library. The comparisons show that the proposed design has less area-time complexity and power consumption when the number of filter taps is larger than 48.
A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids
NASA Technical Reports Server (NTRS)
Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.
NASA Technical Reports Server (NTRS)
Mccormick, S.; Quinlan, D.
1989-01-01
The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids (global and local) to provide adaptive resolution and fast solution of PDEs. Like all such methods, it offers parallelism by using possibly many disconnected patches per level, but is hindered by the need to handle these levels sequentially. The finest levels must therefore wait for processing to be essentially completed on all the coarser ones. A recently developed asynchronous version of FAC, called AFAC, completely eliminates this bottleneck to parallelism. This paper describes timing results for AFAC, coupled with a simple load balancing scheme, applied to the solution of elliptic PDEs on an Intel iPSC hypercube. These tests include performance of certain processes necessary in adaptive methods, including moving grids and changing refinement. A companion paper reports on numerical and analytical results for estimating convergence factors of AFAC applied to very large scale examples.
Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Brouwer, Randall Jay
1991-01-01
The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.
NASA Technical Reports Server (NTRS)
Wigton, Larry
1996-01-01
Improving the numerical linear algebra routines for use in new Navier-Stokes codes, specifically Tim Barth's unstructured grid code, with spin-offs to TRANAIR is reported. A fast distance calculation routine for Navier-Stokes codes using the new one-equation turbulence models is written. The primary focus of this work was devoted to improving matrix-iterative methods. New algorithms have been developed which activate the full potential of classical Cray-class computers as well as distributed-memory parallel computers.
Fast realization of nonrecursive digital filters with limits on signal delay
NASA Astrophysics Data System (ADS)
Titov, M. A.; Bondarenko, N. N.
1983-07-01
Attention is given to the problem of achieving a fast realization of nonrecursive digital filters with the aim of reducing signal delay. It is shown that a realization wherein the impulse characteristic of the filter is divided into blocks satisfies the delay requirements and is almost as economical in terms of the number of multiplications as conventional fast convolution. In addition, the block method leads to a reduction in the needed size of the memory and in the number of additions; the short-convolution procedure is substantially simplified. Finally, the block method facilitates the paralleling of computations owing to the simple transfers between subfilters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiajia; Wang, Yuming; McIntosh, Scott W.
We combine observations of the Coronal Multi-channel Polarimeter and the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to study the characteristic properties of (propagating) Alfvénic motions and quasi-periodic intensity disturbances in polar plumes. This unique combination of instruments highlights the physical richness of the processes taking place at the base of the (fast) solar wind. The (parallel) intensity perturbations with intensity enhancements around 1% have an apparent speed of 120 km s{sup −1} (in both the 171 and 193 Å passbands) and a periodicity of 15 minutes, while the (perpendicular) Alfvénic wave motions have a velocity amplitude ofmore » 0.5 km s{sup −1}, a phase speed of 830 km s{sup −1}, and a shorter period of 5 minutes on the same structures. These observations illustrate a scenario where the excited Alfvénic motions are propagating along an inhomogeneously loaded magnetic field structure such that the combination could be a potential progenitor of the magnetohydrodynamic turbulence required to accelerate the fast solar wind.« less
NASA Astrophysics Data System (ADS)
Homuth, B.; Löbl, U.; Batte, A. G.; Link, K.; Kasereka, C. M.; Rümpker, G.
2016-09-01
Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.
An accurate, fast, and scalable solver for high-frequency wave propagation
NASA Astrophysics Data System (ADS)
Zepeda-Núñez, L.; Taus, M.; Hewett, R.; Demanet, L.
2017-12-01
In many science and engineering applications, solving time-harmonic high-frequency wave propagation problems quickly and accurately is of paramount importance. For example, in geophysics, particularly in oil exploration, such problems can be the forward problem in an iterative process for solving the inverse problem of subsurface inversion. It is important to solve these wave propagation problems accurately in order to efficiently obtain meaningful solutions of the inverse problems: low order forward modeling can hinder convergence. Additionally, due to the volume of data and the iterative nature of most optimization algorithms, the forward problem must be solved many times. Therefore, a fast solver is necessary to make solving the inverse problem feasible. For time-harmonic high-frequency wave propagation, obtaining both speed and accuracy is historically challenging. Recently, there have been many advances in the development of fast solvers for such problems, including methods which have linear complexity with respect to the number of degrees of freedom. While most methods scale optimally only in the context of low-order discretizations and smooth wave speed distributions, the method of polarized traces has been shown to retain optimal scaling for high-order discretizations, such as hybridizable discontinuous Galerkin methods and for highly heterogeneous (and even discontinuous) wave speeds. The resulting fast and accurate solver is consequently highly attractive for geophysical applications. To date, this method relies on a layered domain decomposition together with a preconditioner applied in a sweeping fashion, which has limited straight-forward parallelization. In this work, we introduce a new version of the method of polarized traces which reveals more parallel structure than previous versions while preserving all of its other advantages. We achieve this by further decomposing each layer and applying the preconditioner to these new components separately and in parallel. We demonstrate that this produces an even more effective and parallelizable preconditioner for a single right-hand side. As before, additional speed can be gained by pipelining several right-hand-sides.
A fast ultrasonic simulation tool based on massively parallel implementations
NASA Astrophysics Data System (ADS)
Lambert, Jason; Rougeron, Gilles; Lacassagne, Lionel; Chatillon, Sylvain
2014-02-01
This paper presents a CIVA optimized ultrasonic inspection simulation tool, which takes benefit of the power of massively parallel architectures: graphical processing units (GPU) and multi-core general purpose processors (GPP). This tool is based on the classical approach used in CIVA: the interaction model is based on Kirchoff, and the ultrasonic field around the defect is computed by the pencil method. The model has been adapted and parallelized for both architectures. At this stage, the configurations addressed by the tool are : multi and mono-element probes, planar specimens made of simple isotropic materials, planar rectangular defects or side drilled holes of small diameter. Validations on the model accuracy and performances measurements are presented.
Ordered fast Fourier transforms on a massively parallel hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Tong, Charles; Swarztrauber, Paul N.
1991-01-01
The present evaluation of alternative, massively parallel hypercube processor-applicable designs for ordered radix-2 decimation-in-frequency FFT algorithms gives attention to the reduction of computation time-dominating communication. A combination of the order and computational phases of the FFT is accordingly employed, in conjunction with sequence-to-processor maps which reduce communication. Two orderings, 'standard' and 'cyclic', in which the order of the transform is the same as that of the input sequence, can be implemented with ease on the Connection Machine (where orderings are determined by geometries and priorities. A parallel method for trigonometric coefficient computation is presented which does not employ trigonometric functions or interprocessor communication.
Fast parallel molecular algorithms for DNA-based computation: factoring integers.
Chang, Weng-Long; Guo, Minyi; Ho, Michael Shan-Hui
2005-06-01
The RSA public-key cryptosystem is an algorithm that converts input data to an unrecognizable encryption and converts the unrecognizable data back into its original decryption form. The security of the RSA public-key cryptosystem is based on the difficulty of factoring the product of two large prime numbers. This paper demonstrates to factor the product of two large prime numbers, and is a breakthrough in basic biological operations using a molecular computer. In order to achieve this, we propose three DNA-based algorithms for parallel subtractor, parallel comparator, and parallel modular arithmetic that formally verify our designed molecular solutions for factoring the product of two large prime numbers. Furthermore, this work indicates that the cryptosystems using public-key are perhaps insecure and also presents clear evidence of the ability of molecular computing to perform complicated mathematical operations.
NASA Astrophysics Data System (ADS)
Wang, Yue; Yu, Jingjun; Pei, Xu
2018-06-01
A new forward kinematics algorithm for the mechanism of 3-RPS (R: Revolute; P: Prismatic; S: Spherical) parallel manipulators is proposed in this study. This algorithm is primarily based on the special geometric conditions of the 3-RPS parallel mechanism, and it eliminates the errors produced by parasitic motions to improve and ensure accuracy. Specifically, the errors can be less than 10-6. In this method, only the group of solutions that is consistent with the actual situation of the platform is obtained rapidly. This algorithm substantially improves calculation efficiency because the selected initial values are reasonable, and all the formulas in the calculation are analytical. This novel forward kinematics algorithm is well suited for real-time and high-precision control of the 3-RPS parallel mechanism.
Fast Mapping Across Time: Memory Processes Support Children's Retention of Learned Words.
Vlach, Haley A; Sandhofer, Catherine M
2012-01-01
Children's remarkable ability to map linguistic labels to referents in the world is commonly called fast mapping. The current study examined children's (N = 216) and adults' (N = 54) retention of fast-mapped words over time (immediately, after a 1-week delay, and after a 1-month delay). The fast mapping literature often characterizes children's retention of words as consistently high across timescales. However, the current study demonstrates that learners forget word mappings at a rapid rate. Moreover, these patterns of forgetting parallel forgetting functions of domain-general memory processes. Memory processes are critical to children's word learning and the role of one such process, forgetting, is discussed in detail - forgetting supports extended mapping by promoting the memory and generalization of words and categories.
Sabouni, Abas; Pouliot, Philippe; Shmuel, Amir; Lesage, Frederic
2014-01-01
This paper introduce a fast and efficient solver for simulating the induced (eddy) current distribution in the brain during transcranial magnetic stimulation procedure. This solver has been integrated with MRI and neuronavigation software to accurately model the electromagnetic field and show eddy current in the head almost in real-time. To examine the performance of the proposed technique, we used a 3D anatomically accurate MRI model of the 25 year old female subject.
Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method
NASA Astrophysics Data System (ADS)
Lawton, Stephen; Crawford, Curran
2014-06-01
Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade.
Yue, Chao; Li, Wen; Reeves, Geoffrey D.; ...
2016-07-01
Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Chao; Li, Wen; Reeves, Geoffrey D.
Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less
LINEAR AND NONLINEAR CORRECTIONS IN THE RHIC INTERACTION REGIONS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PILAT,F.; CAMERON,P.; PTITSYN,V.
2002-06-02
A method has been developed to measure operationally the linear and non-linear effects of the interaction region triplets, that gives access to the multipole content through the action kick, by applying closed orbit bumps and analysing tune and orbit shifts. This technique has been extensively tested and used during the RHIC operations in 2001. Measurements were taken at 3 different interaction regions and for different focusing at the interaction point. Non-linear effects up to the dodecapole have been measured as well as the effects of linear, sextupolar and octupolar corrections. An analysis package for the data processing has been developedmore » that through a precise fit of the experimental tune shift data (measured by a phase lock loop technique to better than 10{sup -5} resolution) determines the multipole content of an IR triplet.« less
Anisovich, A. V.; Beck, R.; Döring, M.; ...
2016-09-16
New data on pion-photoproduction off the proton have been included in the partial wave analyses Bonn-Gatchina and SAID and in the dynamical coupled-channel approach Julich-Bonn. All reproduce the recent new data well: the double polarization data for E, G, H, P and T inmore » $$\\gamma p \\to \\pi^0 p$$ from ELSA, the beam asymmetry $$\\Sigma$$ for $$\\gamma p \\to \\pi^0 p$$ and $$\\pi^+ n$$ from Jefferson Laboratory, and the precise new differential cross section and beam asymmetry data $$\\Sigma$$ for $$\\gamma p \\to \\pi^0 p$$ from MAMI. The new fit results for the multipoles are compared with predictions not taking into account the new data. Lastly, the mutual agreement is improved considerably but still far from being perfect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anisovich, A. V.; Beck, R.; Döring, M.
New data on pion-photoproduction off the proton have been included in the partial wave analyses Bonn-Gatchina and SAID and in the dynamical coupled-channel approach Julich-Bonn. All reproduce the recent new data well: the double polarization data for E, G, H, P and T inmore » $$\\gamma p \\to \\pi^0 p$$ from ELSA, the beam asymmetry $$\\Sigma$$ for $$\\gamma p \\to \\pi^0 p$$ and $$\\pi^+ n$$ from Jefferson Laboratory, and the precise new differential cross section and beam asymmetry data $$\\Sigma$$ for $$\\gamma p \\to \\pi^0 p$$ from MAMI. The new fit results for the multipoles are compared with predictions not taking into account the new data. Lastly, the mutual agreement is improved considerably but still far from being perfect.« less
Effects on the CMB from compactification before inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontou, Eleni-Alexandra; Blanco-Pillado, Jose J.; Hertzberg, Mark P.
2017-04-01
Many theories beyond the Standard Model include extra dimensions, though these have yet to be directly observed. In this work we consider the possibility of a compactification mechanism which both allows extra dimensions and is compatible with current observations. This compactification is predicted to leave a signature on the CMB by altering the amplitude of the low l multipoles, dependent on the amount of inflation. Recently discovered CMB anomalies at low multipoles may be evidence for this. In our model we assume the spacetime is the product of a four-dimensional spacetime and flat extra dimensions. Before the compactification, both themore » four-dimensional spacetime and the extra dimensions can either be expanding or contracting independently. Taking into account physical constraints, we explore the observational consequences and the plausibility of these different models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Shamik; Kothari, Rahul; Jain, Pankaj
We propose a dipole modulation model for the Cosmic Microwave Background Radiation (CMBR) polarization field. We show that the model leads to correlations between l and l+1 multipoles, exactly as in the case of temperature. We obtain results for the case of TE, EE and BB correlations. An anisotropic or inhomogeneous model of primordial power spectrum which leads to such correlations in temperature field also predicts similar correlations in CMBR polarization. We analyze the CMBR temperature and polarization data in order to extract the signal of these correlation between l and l+1 multipoles. Our results for the case of temperaturemore » using the latest PLANCK data agree with those obtained by an earlier analysis. A detailed study of the correlation in the polarization data is not possible at present. Hence we restrict ourselves to a preliminary investigation in this case.« less
Threshold π 0 Photoproduction on Transverse Polarised Protons at MAMI
Schumann, S.
2015-09-14
Polarisation-dependent differential cross sections σ T associated with the target asymmetry T have been measured for the reaction γ p -→ p π 0 with transverse target polarisation from π 0 threshold up to photon energies of 190 MeV. Additionally, the data were obtained using a frozen-spin butanol target with the Crystal Ball / TAPS detector set-up and the Glasgow photon tagging system at the Mainz Microtron MAMI. Our results for σ T have been used in combination with our previous measurements of the unpolarised cross section σ 0 and the beam asymmetry Σ for a model-independent determination of Smore » and P wave multipoles in the π 0 threshold region, which includes for the first time a direct determination of the imaginary part of the E 0+ multipole.« less
CMB EB and TB cross-spectrum estimation via pseudospectrum techniques
NASA Astrophysics Data System (ADS)
Grain, J.; Tristram, M.; Stompor, R.
2012-10-01
We discuss methods for estimating EB and TB spectra of the cosmic microwave background anisotropy maps covering limited sky area. Such odd-parity correlations are expected to vanish whenever parity is not broken. As this is indeed the case in the standard cosmologies, any evidence to the contrary would have a profound impact on our theories of the early Universe. Such correlations could also become a sensitive diagnostic of some particularly insidious instrumental systematics. In this work we introduce three different unbiased estimators based on the so-called standard and pure pseudo-spectrum techniques and later assess their performance by means of extensive Monte Carlo simulations performed for different experimental configurations. We find that a hybrid approach combining a pure estimate of B-mode multipoles with a standard one for E-mode (or T) multipoles, leads to the smallest error bars for both EB (or TB respectively) spectra as well as for the three other polarization-related angular power spectra (i.e., EE, BB, and TE). However, if both E and B multipoles are estimated using the pure technique, the loss of precision for the EB spectrum is not larger than ˜30%. Moreover, for the experimental configurations considered here, the statistical uncertainties-due to sampling variance and instrumental noise-of the pseudo-spectrum estimates is at most a factor ˜1.4 for TT, EE, and TE spectra and a factor ˜2 for BB, TB, and EB spectra, higher than the most optimistic Fisher estimate of the variance.
Power Spectrum Analysis of Polarized Emission from the Canadian Galactic Plane Survey
NASA Astrophysics Data System (ADS)
Stutz, R. A.; Rosolowsky, E. W.; Kothes, R.; Landecker, T. L.
2014-05-01
Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization data set at 1.4 GHz covering an area of 1060 deg2. The data analyzed are a combination of data from the 100 m Effelsberg Telescope, the 26 m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from l ≈ 60 to l ≈ 104 and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b = 9°, associated with the disk-halo transition in a 15° region around l = 108°. Localized variations in the index are found toward H II regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα emission) indicating that the thermal emission depolarizes background synchrotron emission.