Science.gov

Sample records for parallel frequency-domain optical

  1. Dynamic optical frequency domain reflectometry.

    PubMed

    Arbel, Dror; Eyal, Avishay

    2014-04-21

    We describe a dynamic Optical Frequency Domain Reflectometry (OFDR) system which enables real time, long range, acoustic sensing at high sampling rate. The system is based on a fast scanning laser and coherent detection scheme. Distributed sensing is obtained by probing the Rayleigh backscattered light. The system was tested by interrogation of a 10 km communication type single mode fiber and successfully detected localized impulse and sinusoidal excitations.

  2. Frequency-Domain Optical Mammogram

    DTIC Science & Technology

    2002-10-01

    have performed the proposed analysis of frequency-domain optical mammograms for a clinical population of about 150 patients. This analysis has led to...model the propagation of light in tissue14-20 have led to new approaches to optical mammography. As The authors are with the Department of Electrical...Modulation Methods, and Signal Detection /406 7.2.1 Lasers and arc lamps / 407’ 7.2.2 Pulsed sources / 407 7.2.3 Laser diodes and light-emitting diodes ( LEDs

  3. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  4. Frequency-Domain Optical Mammography

    DTIC Science & Technology

    2001-10-01

    optical measurements on breast-like phantoms (Months 19-24) a. Prepare the breast-like phantoms (optical inhomogeneities + strongly scattering...reveals contralateral hemodynamic changes upon hemi- imaging of solid phantoms for optical mammography. Appl Opt field paradigm. Vision Res 41: 97...1064 nm for the Nd:YAG, 660-1180 nm (tunable) for the Ti:sapphire, and 625-780 nm (tunable) for dye lasers using DCM or oxanine 1 dyes. A unique

  5. Fully parallel adaptive finite element simulation using the simplified spherical harmonics approximations for frequency-domain fluorescence-enhanced optical imaging

    NASA Astrophysics Data System (ADS)

    Lu, Yujie; Zhu, Banghe; Shen, Haiou; Rasmussen, John C.; Wang, Ge; Sevick-Muraca, Eva M.

    2011-03-01

    Fluorescence-enhanced optical imaging/tomography may play an important role in preclinical research and clinical diagnostics as a type of optical molecular. Time- and frequency-domain measurement can acquire more measurement information, reducing the ill-posedness and improving the reconstruction quality of fluorescence-enhanced optical tomography. Although the diffusion approximation (DA) theory has been extensively in optical imaging, high-order photon migration models must be further investigated for application to complex and small tissue volumes. In this paper, a frequency-domain fully parallel adaptive finite element solver is developed with the simplified spherical harmonics (SPN) approximations. To fully evaluate the performance of the SPN approximations, a fast tetrahedron-based Monte Carlo simulator suitable for complex heterogeneous geometries is developed using the convolution strategy to realize the simulation of the fluorescence excitation and emission. With simple and real digital mouse phantoms, the results show that the significant precision and speed improvements are obtained from the parallel adaptive mesh evolution strategy.

  6. Digital parallel frequency-domain spectroscopy for tissue imaging

    NASA Astrophysics Data System (ADS)

    Arnesano, Cosimo; Santoro, Ylenia; Gratton, Enrico

    2012-09-01

    Near-infrared (NIR) (650 to 1000 nm) optical properties of turbid media can be quantified accurately and noninvasively using methods based on diffuse reflectance or transmittance, such as frequency-domain photon migration (FDPM). Conventional FDPM techniques based on white-light steady-state (SS) spectral measurements in conjunction with the acquisition of frequency-domain (FD) data at selected wavelengths using laser diodes are used to measure broadband NIR scattering-corrected absorption spectra of turbid media. These techniques are limited by the number of wavelength points used to obtain FD data and by the sweeping technique used to collect FD data over a relatively large range. We have developed a method that introduces several improvements in the acquisition of optical parameters, based on the digital parallel acquisition of a comb of frequencies and on the use of a white laser as a single light source for both FD and SS measurements. The source, due to the high brightness, allows a higher penetration depth with an extremely low power on the sample. The parallel acquisition decreases the time required by standard serial systems that scan through a range of modulation frequencies. Furthermore, all-digital acquisition removes analog noise, avoids the analog mixer, and does not create radiofrequency interference or emission.

  7. Optical wire guided lumpectomy: frequency domain measurements

    NASA Astrophysics Data System (ADS)

    Dayton, A. L.; Keränen, V. T.; Prahl, S. A.

    2009-02-01

    In practice, complete removal of the tumor during a lumpectomy is difficult; the published rates of positive margins range from 10% to 50%. A spherical lumpectomy specimen with tumor directly in the middle may improve the success rate. A light source placed within the tumor may accomplish this goal by creating a sphere surrounding the tumor that can serve as a guide for resection. In an optical phantom and a prophylactic mastectomy specimen, sinusoidally modulated light within the medium was collected by optical fiber(s) at fixed distance(s) from the source and used to measure the optical properties. These optical properties were then used to calculate the distance the light had traveled through the medium. The fiber was coupled to an 830nm diode laser that was modulated at 100, 200 and 300 MHz. A handheld optical probe collected the modulated light and a network analyzer measured the phase lag. This data was used to calculate the distance the light traveled from the emitting fiber tip to the probe. The optical properties were μa = 0.004mm-1 and μ1s = 0.38mm-1 in the phantom. The optical properties for the tissue were μa = 0.005mm-1 and μ1s = 0.20mm-1. The prediction of distance from the source was within 4mm of the actual distance at 30mm in the phantom and within 3mm of the actual distance at 25mm in the tissue. The feasibility of a frequency domain system that makes measurements of local optical properties and then extrapolates those optical properties to make measurements of distance with a separate probe was demonstrated.

  8. Frequency domain optical tomography in human tissue

    NASA Astrophysics Data System (ADS)

    Yao, Yuqi; Wang, Yao; Pei, Yaling; Zhu, Wenwu; Hu, Jenhun; Barbour, Randall L.

    1995-10-01

    In this paper, a reconstruction algorithm for frequency-domain optical tomography in human tissue is presented. A fast and efficient multigrid finite difference (MGFD) method is adopted as a forward solver to obtain the simulated detector responses and the required imaging operator. The solutions obtained form MGFD method for 3D problems with weakly discontinuous cocoefficients are compared with analyzed solutions to determine the accuracy of the numerical method. Simultaneous reconstruction of both absorption and scattering coefficients for tissue-like media is accomplished by solving a perturbation equation using the Born approximation. This solution is obtained by a conjugate gradient descent method with Tikhonov regularization. Two examples are given to show the quality of the reconstruction results. Both involve the examination of anatomically accurate optical models of tissue derived from segmented 3D magnetic resonance images to which have been assigned optical coefficients to the designated tissue types. One is a map of a female breast containing two small 'added pathologies', such as tumors. The other is a map of the brain containing a 'local bleeding' area, representing a hemorrhage. The reconstruction results show that the algorithm is computationally practical and can yield qualitatively correct geometry of the objects embedded in the simulated human tissue. Acceptable results are obtaiend even when 10% noise is present in the data.

  9. Frequency domain optical tomography using a Monte Carlo perturbation method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toshihiro; Sakamoto, Hiroki

    2016-04-01

    A frequency domain Monte Carlo method is applied to near-infrared optical tomography, where an intensity-modulated light source with a given modulation frequency is used to reconstruct optical properties. The frequency domain reconstruction technique allows for better separation between the scattering and absorption properties of inclusions, even for ill-posed inverse problems, due to cross-talk between the scattering and absorption reconstructions. The frequency domain Monte Carlo calculation for light transport in an absorbing and scattering medium has thus far been analyzed mostly for the reconstruction of optical properties in simple layered tissues. This study applies a Monte Carlo calculation algorithm, which can handle complex-valued particle weights for solving a frequency domain transport equation, to optical tomography in two-dimensional heterogeneous tissues. The Jacobian matrix that is needed to reconstruct the optical properties is obtained by a first-order "differential operator" technique, which involves less variance than the conventional "correlated sampling" technique. The numerical examples in this paper indicate that the newly proposed Monte Carlo method provides reconstructed results for the scattering and absorption coefficients that compare favorably with the results obtained from conventional deterministic or Monte Carlo methods.

  10. Optical frequency-domain reflectometry for microbend sensor demodulation.

    PubMed

    Pierce, S G; MacLean, A; Culshaw, B

    2000-09-01

    The operation of an incoherent optical frequency-domain reflectometer for monitoring the continuous Rayleigh backscatter in a multimode optical fiber is presented. A simple but effective model to predict the value of beat frequencies arising in the system when excited by a linearly frequency-swept amplitude modulation has been developed. We have verified the model's predictions by experimental measurement of beat frequencies and modulation depth indices of different lengths of standard graded-index multimode optical fiber. Demonstration of the system sensitivity to the detection of microbending loss is then discussed. In particular the detection of loss in a hydrogel-based water-sensing cable allows an alternative interrogation to conventional optical time-domain reflectometry techniques to be implemented. We demonstrate that the incoherent optical frequency-domain reflectometer is capable of detecting and locating sections of increased loss in a multimode optical fiber, and we discuss the fundamental limits on spatial resolution and dynamic range.

  11. Compact optical processor for Hough and frequency domain features

    NASA Astrophysics Data System (ADS)

    Ott, Peter

    1996-11-01

    Shape recognition is necessary in a broad band of applications such as traffic sign or work piece recognition. It requires not only neighborhood processing of the input image pixels but global interconnection of them. The Hough transform (HT) performs such a global operation and it is well suited in the preprocessing stage of a shape recognition system. Translation invariant features can be easily calculated form the Hough domain. We have implemented on the computer a neural network shape recognition system which contains a HT, a feature extraction, and a classification layer. The advantage of this approach is that the total system can be optimized with well-known learning techniques and that it can explore the parallelism of the algorithms. However, the HT is a time consuming operation. Parallel, optical processing is therefore advantageous. Several systems have been proposed, based on space multiplexing with arrays of holograms and CGH's or time multiplexing with acousto-optic processors or by image rotation with incoherent and coherent astigmatic optical processors. We took up the last mentioned approach because 2D array detectors are read out line by line, so a 2D detector can achieve the same speed and is easier to implement. Coherent processing can allow the implementation of tilers in the frequency domain. Features based on wedge/ring, Gabor, or wavelet filters have been proven to show good discrimination capabilities for texture and shape recognition. The astigmatic lens system which is derived form the mathematical formulation of the HT is long and contains a non-standard, astigmatic element. By methods of lens transformation s for coherent applications we map the original design to a shorter lens with a smaller number of well separated standard elements and with the same coherent system response. The final lens design still contains the frequency plane for filtering and ray-tracing shows diffraction limited performance. Image rotation can be done

  12. Frequency-domain optical mammography: edge effect corrections.

    PubMed

    Fantini, S; Franceschini, M A; Gaida, G; Gratton, E; Jess, H; Mantulin, W W; Moesta, K T; Schlag, P M; Kaschke, M

    1996-01-01

    We have investigated the problem of edge effects in laser-beam transillumination scanning of the human breast. Edge effects arise from tissue thickness variability along the scanned area, and from lateral photon losses through the sides of the breast. Edge effects can be effectively corrected in frequency-domain measurements by employing a two-step procedure: (1) use of the phase information to calculate an effective tissue thickness for each pixel location; (2) application of the knowledge of tissue thickness to calculate an edge-corrected optical image from the ac signal image. The measurements were conducted with a light mammography apparatus (LIMA) designed for feasibility tests in the clinical environment. Operating in the frequency-domain (110 MHz), this instrument performs a transillumination optical scan at two wavelengths (685 and 825 nm). We applied the proposed two-step procedure to data from breast phantoms and from human breasts. The processed images provide higher contrast and detectability in optical mammography with respect to raw data breast images.

  13. Broadband ultrasonic sensor array via optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Steinberg, Idan; Eyal, Avishay

    2015-03-01

    We introduce a new approach for multiplexing fiber-based ultrasound sensors using Optical Frequency Domain Reflectometry (OFDR). In the present demonstration of the method, each sensor was a short section of Polyimide-coated single-mode fiber. One end of the sensing fiber was pigtailed to a mirror and the other end was connected, via a fiber optic delay line, to a 1X4 fiber coupler. The multiplexing was enabled by using a different delay to each sensor. Ultrasonic excitation was performed by a 1MHz transducer which transmitted 4μs tone-bursts above the sensor array. The ultrasound waves generated optical phase variations in the fibers which were detected using the OFDR method. The ultrasound field at the sensors was successfully reconstructed without any noticeable cross-talk.

  14. Frequency-domain optical tomographic imaging of arthritic finger joints.

    PubMed

    Hielscher, Andreas H; Kim, Hyun Keol; Montejo, Ludguier D; Blaschke, Sabine; Netz, Uwe J; Zwaka, Paul A; Illing, Gerd; Muller, Gerhard A; Beuthan, Jürgen

    2011-10-01

    We are presenting data from the largest clinical trial on optical tomographic imaging of finger joints to date. Overall we evaluated 99 fingers of patients affected by rheumatoid arthritis (RA) and 120 fingers from healthy volunteers. Using frequency-domain imaging techniques we show that sensitivities and specificities of 0.85 and higher can be achieved in detecting RA. This is accomplished by deriving multiple optical parameters from the optical tomographic images and combining them for the statistical analysis. Parameters derived from the scattering coefficient perform slightly better than absorption derived parameters. Furthermore we found that data obtained at 600 MHz leads to better classification results than data obtained at 0 or 300 MHz.

  15. Multimodal optical molecular image reconstruction with frequency domain measurements.

    PubMed

    Bartels, M; Chen, W; Bardhan, R; Ke, S; Halas, N J; Wareing, T; McGhee, J; Joshi, A

    2009-01-01

    Multimodality molecular imaging is becoming more and more important to understand both the structural and the functional characteristics of tissue, organs and tumors. So far, invasive nuclear methods utilizing ionizing radiation have been the "gold standard" of molecular imaging. We investigate non-contact, non-invasive, patient-tolerant and inexpensive near infrared (NIR) frequency domain optical tomography (FDOT) as a functional complement to structural X-ray computed tomography (CT) data. We show a novel multifrequency NIR FDOT approach both in transmission and reflectance mode and employ radiative transport equation (RTE) for 3D reconstruction of a target with novel fluorescent gold nanoshell indocyanine green (NS ICG) in an ex vivo nude mouse. The results demonstrate that gold NS ICG with multifrequency NIR FDOT is a promising fluorophore for multimodal optical molecular image reconstruction.

  16. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal; Downer, M. C.; Muggli, Patric; Yakimenko, Vitaly; Babzien, Marcus; Kusche, Karl; Fedurin, Mikhail

    2010-11-01

    Beam-driven plasma wakefield accelerators (PWFA), such as the ``plasma afterburner,'' are a promising approach for significantly increasing the particle energies of conventional accelerators. The study and optimization of PWFA would benefit from an experimental correlation between the parameters of the drive bunch, the accelerated bunch and the corresponding, accelerating plasma wave structure. However, the plasma wave structure has not yet been observed directly in PWFA. We will report our current work on noninvasive optical Frequency Domain Interferometric (FDI) and Holographic (FDH) visualization of beam-driven plasma waves. Both techniques employ two laser pulses (probe and reference) co-propagating with the particle drive-beam and its plasma wake. The reference pulse precedes the drive bunch, while the probe overlaps the plasma wave and maps its longitudinal and transverse structure. The experiment is being developed at the BNL/ATF Linac to visualize wakes generated by two and multi-bunch drive beams.

  17. RA diagnostics applying optical tomography in frequency domain

    NASA Astrophysics Data System (ADS)

    Klose, Alexander D.; Prapavat, Viravuth; Minet, Olaf; Beuthan, Juergen; Mueller, Gerhard J.

    1998-01-01

    Our aim is to reconstruct the optical parameters in a slice of a finger joint phantom for further investigations about rheumatoid arthritis (RA). Therefore, we have developed a flexible NIR scanning system in order to collect amplitude and phase delay of photon density waves in frequency-domain. A cylindrical finger joint phantom was embedded in a container of Intralipid solution due to the application of an inverse method for infinite geometry. The joint phantom was investigated by a laser beam obtaining several projections. The average optical parameters of each projection was calculated. Using different reconstruction techniques, e.g. ART and SIRT with a special projection operator, we reconstructed the optical parameters in a slice. The projection operator can be heuristically described by a photon path density function of a homogeneous media with infinite geometry. Applied to an object with an unknown distribution of optical parameters it calculates the expectation value of the investigated object. The potentials and limits of these fast reconstruction methods will be presented.

  18. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    SciTech Connect

    Zgadzaj, Rafal; Downer, Michael C.; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl; Fedurin, Michhail; Babzien, Marcus

    2010-11-04

    Bunch driven plasma wakefield accelerators (PWFA), such as the 'plasma afterburner', are a promising emerging method for significantly increasing the energy output of conventional particle accelerators. The study and optimization of this method would benefit from an experimental correlation of the drive bunch parameters and the accelerated particle parameters with the corresponding plasma wave structure. However, the plasma wave structure has not been observed directly so far. We will report ongoing development of a noninvasive optical Frequency Domain Interferometric (FDI) and Holographic (FDH) diagnostics of bunch driven plasma wakes. Both FDI and FDH have been previously demonstrated in the case of laser driven wakes. These techniques employ two laser pulses co-propagating with the drive particle bunch and the trailing plasma wave. One pulse propagates ahead of the drive bunch and serves as a reference, while the second is overlapped with the plasma wave and probes its structure. The multi-shot FDI and single-shot FDH diagnostics permit direct noninvasive observation of longitudinal and transverse structure of the plasma wakes. The experiment is being developed at the 70 MeV Linac in the Accelerator Test Facility at Brookhaven National Laboratory to visualize wakes generated by two and multi-bunch drive beams.

  19. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal; Downer, Michael C.; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl; Fedurin, Michhail; Babzien, Marcus

    2010-11-01

    Bunch driven plasma wakefield accelerators (PWFA), such as the "plasma afterburner," are a promising emerging method for significantly increasing the energy output of conventional particle accelerators [1]. The study and optimization of this method would benefit from an experimental correlation of the drive bunch parameters and the accelerated particle parameters with the corresponding plasma wave structure. However, the plasma wave structure has not been observed directly so far. We will report ongoing development of a noninvasive optical Frequency Domain Interferometric (FDI) [2] and Holographic (FDH) [3] diagnostics of bunch driven plasma wakes. Both FDI and FDH have been previously demonstrated in the case of laser driven wakes. These techniques employ two laser pulses co-propagating with the drive particle bunch and the trailing plasma wave. One pulse propagates ahead of the drive bunch and serves as a reference, while the second is overlapped with the plasma wave and probes its structure. The multi-shot FDI and single-shot FDH diagnostics permit direct noninvasive observation of longitudinal and transverse structure of the plasma wakes. The experiment is being developed at the 70 MeV Linac in the Accelerator Test Facility at Brookhaven National Laboratory to visualize wakes generated by two [4] and multi-bunch [5] drive beams.

  20. Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation

    PubMed Central

    Vakoc, B. J.; Yun, S. H.; Tearney, G. J.; Bouma, B. E.

    2009-01-01

    A novel optical frequency-domain imaging system is demonstrated that employs a passive optical demodulation circuit and a chirped digital acquisition clock derived from a voltage-controlled oscillator. The demodulation circuit allows the separation of signals from positive and negative depths to better than 50 dB, thereby eliminating depth degeneracy and doubling the imaging depth range. Our system design is compatible with dual-balanced and polarization-diverse detection, important techniques in the practical biomedical application of optical frequency-domain imaging. PMID:16480209

  1. High-resolution frequency domain second harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Su, Jianping; Tomov, I. V.; Jiang, Yi; Chen, Zhongping

    2007-02-01

    We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain SH-OCT to 12μm. The acquisition time was shortened by more than two orders of magnitude compared to time domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on second harmonic has been used to obtain polarization resolved images.

  2. New optical frequency domain differential mode delay measurement method for a multimode optical fiber.

    PubMed

    Ahn, T; Moon, S; Youk, Y; Jung, Y; Oh, K; Kim, D

    2005-05-30

    A novel mode analysis method and differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

  3. Depth sensitivity of frequency domain optical measurements in diffusive media

    PubMed Central

    Sassaroli, Angelo; Torricelli, Alessandro; Spinelli, Lorenzo; Farina, Andrea; Durduran, Turgut; Cavalieri, Stefano; Pifferi, Antonio

    2017-01-01

    The depth sensitivity functions for AC amplitude, phase (PH) and DC intensity signals have been obtained in the frequency domain (where the source amplitude is modulated at radio-frequencies) by making use of analytical solutions of the photon diffusion equation in an infinite slab geometry. Furthermore, solutions for the relative contrast of AC, PH and DC signals when a totally absorbing plane is placed at a fixed depth of the slab have also been obtained. The solutions have been validated by comparisons with gold standard Monte Carlo simulations. The obtained results show that the AC signal, for modulation frequencies < 200 MHz, has a depth sensitivity with similar characteristics to that of the continuous-wave (CW) domain (source modulation frequency of zero). Thus, the depth probed by such a signal can be estimated by using the formula of penetration depth for the CW domain (Sci. Rep. 6, 27057 (2016)27256988). However, the PH signal has a different behavior compared to the CW domain, showing a larger depth sensitivity at shallow depths and a less steep relative contrast as a function of depth. These results mark a clear difference in term of depth sensitivity between AC and PH signals, and highlight the complexity of the estimation of the actual depth probed in tissue spectroscopy. PMID:28663921

  4. Depth sensitivity of frequency domain optical measurements in diffusive media.

    PubMed

    Binzoni, Tiziano; Sassaroli, Angelo; Torricelli, Alessandro; Spinelli, Lorenzo; Farina, Andrea; Durduran, Turgut; Cavalieri, Stefano; Pifferi, Antonio; Martelli, Fabrizio

    2017-06-01

    The depth sensitivity functions for AC amplitude, phase (PH) and DC intensity signals have been obtained in the frequency domain (where the source amplitude is modulated at radio-frequencies) by making use of analytical solutions of the photon diffusion equation in an infinite slab geometry. Furthermore, solutions for the relative contrast of AC, PH and DC signals when a totally absorbing plane is placed at a fixed depth of the slab have also been obtained. The solutions have been validated by comparisons with gold standard Monte Carlo simulations. The obtained results show that the AC signal, for modulation frequencies < 200 MHz, has a depth sensitivity with similar characteristics to that of the continuous-wave (CW) domain (source modulation frequency of zero). Thus, the depth probed by such a signal can be estimated by using the formula of penetration depth for the CW domain (Sci. Rep.6, 27057 (2016)). However, the PH signal has a different behavior compared to the CW domain, showing a larger depth sensitivity at shallow depths and a less steep relative contrast as a function of depth. These results mark a clear difference in term of depth sensitivity between AC and PH signals, and highlight the complexity of the estimation of the actual depth probed in tissue spectroscopy.

  5. A distributed fiber optic sensor system for dike monitoring using Brillouin optical frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Nöther, Nils; Wosniok, Aleksander; Krebber, Katerina; Thiele, Elke

    2008-03-01

    We report on the development of a complete system for spatially resolved detection of critical soil displacement in river embankments. The system uses Brillouin frequency domain analysis (BOFDA) for distributed measurement of strain in silica optical fibers. Our development consists of the measurement unit, an adequate coating for the optical fibers and a technique to integrate the coated optical fibers into geotextiles as they are commonly used in dike construction. We present several laboratory and field tests that prove the capability of the system to detect areas of soil displacement as small as 2 meters. These are the first tests of truly distributed strain measurements on optical fibers embedded into geosynthetics.

  6. FBG sensor interrogation using fiber optical bistability in frequency domain

    NASA Astrophysics Data System (ADS)

    Lv, Guohui; Ou, Jinping; Ye, Hongan; Zhou, Zhi; Shang, Shaohua; Yang, Chao; Wang, Huiying

    2007-01-01

    In this paper, we propose a novel scheme of fiber Bragg grating interrogation by use of hybrid fiber optical bistable device (OBD). The OBD is realized in the fiber Bragg grating (FBG) sensing element. Light source is an electronic tuned widely swept ring fiber laser. In this experiment, FBG's are acting as optical intensity modulator and sensing elements at same time. Combined with feedback control circuit, the OBD can be used as an optic-fiber sensor working in digital type through bistable switching phenomenon. We discuss the mechanism of this bistable sensor. Scanning the bias Voltage on PZT, the bistable pulse signal can be counted by circuit that operates in the manner of a pulse-equivalent. If we use 16 bit Digital Analog Converter (DAC), the resolution will achieve 1pm level. High accuracy, high speed and high ratio of signal to noise are the advantages of this scheme.

  7. Accelerating frequency-domain diffuse optical tomographic image reconstruction using graphics processing units.

    PubMed

    Prakash, Jaya; Chandrasekharan, Venkittarayan; Upendra, Vishwajith; Yalavarthy, Phaneendra K

    2010-01-01

    Diffuse optical tomographic image reconstruction uses advanced numerical models that are computationally costly to be implemented in the real time. The graphics processing units (GPUs) offer desktop massive parallelization that can accelerate these computations. An open-source GPU-accelerated linear algebra library package is used to compute the most intensive matrix-matrix calculations and matrix decompositions that are used in solving the system of linear equations. These open-source functions were integrated into the existing frequency-domain diffuse optical image reconstruction algorithms to evaluate the acceleration capability of the GPUs (NVIDIA Tesla C 1060) with increasing reconstruction problem sizes. These studies indicate that single precision computations are sufficient for diffuse optical tomographic image reconstruction. The acceleration per iteration can be up to 40, using GPUs compared to traditional CPUs in case of three-dimensional reconstruction, where the reconstruction problem is more underdetermined, making the GPUs more attractive in the clinical settings. The current limitation of these GPUs in the available onboard memory (4 GB) that restricts the reconstruction of a large set of optical parameters, more than 13,377.

  8. Parallel full-waveform inversion in the frequency domain by the Gauss-Newton method

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Zhuang, Yuan

    2016-06-01

    In this paper, we investigate the full-waveform inversion in the frequency domain. We first test the inversion ability of three numerical optimization methods, i.e., the steepest-descent method, the Newton-CG method and the Gauss- Newton method, for a simple model. The results show that the Gauss-Newton method performs well and efficiently. Then numerical computations for a benchmark model named Marmousi model by the Gauss-Newton method are implemented. Parallel algorithm based on message passing interface (MPI) is applied as the inversion is a typical large-scale computational problem. Numerical computations show that the Gauss-Newton method has good ability to reconstruct the complex model.

  9. Optimization of spatial frequency domain imaging technique for estimating optical properties of food and biological materials

    USDA-ARS?s Scientific Manuscript database

    Spatial frequency domain imaging technique has recently been developed for determination of the optical properties of food and biological materials. However, accurate estimation of the optical property parameters by the technique is challenging due to measurement errors associated with signal acquis...

  10. Optical frequency domain reflectometry: principles and applications in fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Kreger, Stephen T.; Rahim, Nur Aida Abdul; Garg, Naman; Klute, Sandra M.; Metrey, Daniel R.; Beaty, Noah; Jeans, James W.; Gamber, Robert

    2016-05-01

    Optical Frequency Domain Reflectometry (OFDR) is the basis of an emerging high-definition distributed fiber optic sensing (HD-FOS) technique that provides an unprecedented combination of resolution and sensitivity. OFDR employs swept laser interferometry to produce strain or temperature vs. sensor length with fiber Bragg gratings (FBGs) or Rayleigh scatter as the source signal. We look at the influence of HD-FOS on design and test of new, lighter weight, stronger and more fuel efficient vehicles. Examples include defect detection, model verification and structural health monitoring of composites, and temperature distribution monitoring of battery packs and inverters in hybrid and electric powertrains.

  11. Spatially-dense, multi-spectral, frequency-domain diffuse optical tomography of breast cancer

    NASA Astrophysics Data System (ADS)

    Ban, Han Yong

    Diffuse optical tomography (DOT) employs near-infrared light to image the concentration of chromophores and cell organelles in tissue and thereby providing access to functional parameters that can differentiate cancerous from normal tissues. This thesis describes research at the bench and in the clinic that explores and identifies the potential of DOT breast cancer imaging. The bench and clinic instrumentation differ but share important features: they utilize a very large, spatially dense, set of source-detector pairs (10 7) for imaging in the parallel-plate geometry. The bench experiments explored three-dimensional (3D) image resolution and fidelity as a function of numerous parameters and also ascertained the effects of a chest wall phantom. The chest wall is always present but is typically ignored in breast DOT. My experiments clarified chest wall influences and developed schemes to mitigate these effects. Mostly, these schemes involved selective data exclusion, but their efficacy also depended on reconstruction approach. Reconstruction algorithms based on analytic (fast) Fourier inversion and linear algebraic techniques were explored. The clinical experiments centered around a DOT instrument that I designed, constructed, and have begun to test (in-vitro and in-vivo). This instrumentation offers many features new to the field. Specifically, the imager employs spatially-dense, multi-spectral, frequency-domain data; it possesses the world's largest optical source-detector density yet reported, facilitated by highly-parallel CCD-based frequency-domain imaging based on gain-modulation heterodyne detection. The instrument thus measures both phase and amplitude of the diffusive light waves. Other features include both frontal and sagittal breast imaging capabilities, ancillary cameras for measurement of breast boundary profiles, real-time data normalization, and mechanical improvements for patient comfort. The instrument design and construction is my most significant

  12. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing.

    PubMed

    Maclachlan, Robert A; Riviere, Cameron N

    2009-06-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling.

  13. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing

    PubMed Central

    MacLachlan, Robert A.; Riviere, Cameron N.

    2010-01-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling. PMID:20428484

  14. 100-Gb/s coherent optical fiber communication with frequency domain equalization

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Li, Juhao; Yang, Chuanchuan; Chen, Zhangyuan; Zhao, Chunxu; Zhang, Su

    2010-12-01

    Multi- and single-carrier (SC) coherent optical fiber communication with frequency domain equalization (FDE) is discussed with emphasis on 100-Gb/s operation. 120-Gb/s coherent optical (CO-SCFDE) system over 317-km standard single-mode fiber is demonstrated. Coherent optical orthogonal frequency-division-multiplexing (CO-OFDM) and single-carrier frequency-division-multiplexing scheme (CO-SCFDM) are theoretically and experimentally compared.

  15. Frequency-Domain Iterative Parallel Interference Cancellation for Multicode Spread-Spectrum MIMO Multiplexing

    NASA Astrophysics Data System (ADS)

    Nakajima, Akinori; Garg, Deepshikha; Adachi, Fumiyuki

    Very high-speed data services are demanded in the next generation wireless systems. However, the available bandwidth is limited. The use of multi-input multi-output (MIMO) multiplexing can increase the transmission rate without bandwidth expansion. For high-speed data transmission, however, the channel becomes severely frequency-selective and the achievable bit error rate (BER) performance degrades. In our previous work, we proposed the joint use of iterative frequency-domain parallel interference cancellation (PIC) and two-dimensional (2D) MMSE-FDE for the non-spread single-carrier (SC) transmission in a frequency-selective fading channel. The joint use of PIC and 2D MMSE-FDE can effectively suppress the inter-path interference (IPI) and the inter-code interference (ICI), resulting from the channel frequency-selectivity, and the interference from other antennas simultaneously. An iterative PIC with 2D MMSE-FDE has a high computational complexity. In this paper, to well suppress the interference from other antennas while reducing the computational complexity, we propose to replace 2D MMSE-FDE by 1D MMSE-FDE except for the initial iteration stage and to use multicode spread-spectrum (SS) transmission instead of the non-spread SC transmission. The BER performance of the proposed scheme in a frequency-selective Rayleigh fading channel is evaluated by computer simulation to show that the proposed scheme can basically match the BER performance of 2D MMSE-FDE with lower complexity.

  16. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting

    PubMed Central

    Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Bouma, B. E.

    2009-01-01

    A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of the wavelength-swept OFDI laser source. PMID:19484034

  17. Frequency-domain single-shot optical frequency comb tomography using VIPA

    NASA Astrophysics Data System (ADS)

    Miyaoka, Takumi; Shioda, Tatsutoshi

    2016-03-01

    Novel two-dimensional single-shot imaging optical system based on Frequency-domain interferometry using a virtually imaged phased array is proposed. The VIPA simultaneously outputs incoherent optical frequency combs (OFCs) whose teeth interval are scanned as a function of its output angle. Teeth intervals of the OFCs only in a reference are spatially swept by using of a VIPA whose advantage compared to an optical resonator. Thus, the single-shot imaging system can be realized with the FSR scanned frequency-domain OFC interference monitored by CCD. This system enable high speed 2-dimensional tomographic image without mechanical moving part. And the axial measurement range is not limited by using multi-order interference that is generated by OFCs interferometry. We will present the operation principle with its confirmed results in terms of both simulation and experiment.

  18. Real-time frequency-domain fiber optic sensor for intra-arterial blood oxygen measurements

    NASA Astrophysics Data System (ADS)

    Alcala, J. R.; Scott, Ian L.; Parker, Jennifer W.; Atwater, Beauford W.; Yu, Clement; Fischer, Russell; Bellingrath, K.

    1993-05-01

    A real time frequency domain phosphorimeter capable of measuring precise and accurate excited state lifetimes for determining oxygen is described. This frequency domain instrument does not make use of cross correlation techniques traditionally used in frequency domain fluorometers. Instead, the electrical signal from the detector is filtered to contain only the first several harmonics. This filtered signal is then sampled and averaged over a few thousand cycles. The absolute phase and absolute modulation of each sampled harmonic of the excitation and of the luminescence is computed by employing fast Fourier transform algorithms. The phase delay and the modulation ratio is then calculated at each harmonic frequency. A least squares fit is performed in the frequency domain to obtain the lifetimes of discrete exponentials. Oxygen concentrations are computed from these lifetimes. Prototypes based on these techniques were built employing commercially available components. Results from measurements in saline solution and in the arterial blood of dogs show that oxygen concentrations can be determined reproducibly. The system drift is less than 1% in over 100 hours of continuous operation. The performance of fiber optic sensors was evaluated in dogs over a period of 10 hours. The sensors tracked changes in arterial oxygen tension over the course of the experiment without instabilities. The overall response of the system was about 90 seconds. The update time was 3 seconds.

  19. High speed 3D endoscopic optical frequency domain imaging probe for lung cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Feroldi, Fabio; Mo, Jianhua; Helderman, Frank; de Groot, Mattijs; de Boer, Johannes F.

    2013-06-01

    We present a miniature motorized endoscopic probe for Optical Frequency Domain Imaging with an outer diameter of 1.65 mm and a rotation speed of 3,000 - 12,500 rpm. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non-uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm. We demonstrated its performance with imaging ex vivo pig bronchial and in vivo goat lung.

  20. Note: A simple broad bandwidth undersampling frequency-domain digital diffuse optical spectroscopy system.

    PubMed

    Jung, Justin; Istfan, Raeef; Roblyer, Darren

    2014-07-01

    Near-Infrared frequency-domain technologies, such as Diffuse Optical Spectroscopy (DOS), have demonstrated growing potential in a number of clinical applications. The broader dissemination of this technology is limited by the complexity and cost of instrumentation. We present here a simple system constructed with off-the-shelf components that utilizes undersampling for digital frequency-domain dDOS measurements. Broadband RF sweeps (50-300 MHz) were digitally sampled at 25 MSPS; amplitude, phase, and optical property extractions were within 5% of network analyzer derived values. The use of undersampling for broad bandwidth dDOS provides a significant reduction in complexity, power consumption, and cost compared with high-speed ADCs and analog techniques.

  1. Note: A simple broad bandwidth undersampling frequency-domain digital diffuse optical spectroscopy system

    NASA Astrophysics Data System (ADS)

    Jung, Justin; Istfan, Raeef; Roblyer, Darren

    2014-07-01

    Near-Infrared frequency-domain technologies, such as Diffuse Optical Spectroscopy (DOS), have demonstrated growing potential in a number of clinical applications. The broader dissemination of this technology is limited by the complexity and cost of instrumentation. We present here a simple system constructed with off-the-shelf components that utilizes undersampling for digital frequency-domain dDOS measurements. Broadband RF sweeps (50-300 MHz) were digitally sampled at 25 MSPS; amplitude, phase, and optical property extractions were within 5% of network analyzer derived values. The use of undersampling for broad bandwidth dDOS provides a significant reduction in complexity, power consumption, and cost compared with high-speed ADCs and analog techniques.

  2. Note: A simple broad bandwidth undersampling frequency-domain digital diffuse optical spectroscopy system

    PubMed Central

    Jung, Justin; Istfan, Raeef; Roblyer, Darren

    2014-01-01

    Near-Infrared frequency-domain technologies, such as Diffuse Optical Spectroscopy (DOS), have demonstrated growing potential in a number of clinical applications. The broader dissemination of this technology is limited by the complexity and cost of instrumentation. We present here a simple system constructed with off-the-shelf components that utilizes undersampling for digital frequency-domain dDOS measurements. Broadband RF sweeps (50–300 MHz) were digitally sampled at 25 MSPS; amplitude, phase, and optical property extractions were within 5% of network analyzer derived values. The use of undersampling for broad bandwidth dDOS provides a significant reduction in complexity, power consumption, and cost compared with high-speed ADCs and analog techniques. PMID:25085193

  3. Nonuniform strain measurement in composite material based on optical frequency domain reflection

    NASA Astrophysics Data System (ADS)

    Li, Huajun; Zhang, Dongsheng; Li, Litong; Wu, Mengqi; Wen, Xiaoyan

    2016-06-01

    Traditional electrical sensor or traditional fiber Bragg grating sensing technology is not applicable to the measurement of nonuniform strain in composite material. Therefore, the distributed nonuniform strain in the lap plate position of composite interlining material is measured using a single fiber with optical frequency domain reflection technology in this study. The experimental results show consistency with the experiment phenomena, and the measurement accuracy could be increased to the submillimeter level.

  4. Towards spatial frequency domain optical imaging of neurovascular coupling in a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Lin, Alexander J.; Konecky, Soren D.; Rice, Tyler B.; Green, Kim N.; Choi, Bernard; Durkin, Anthony J.; Tromberg, Bruce J.

    2012-02-01

    Early neurovascular coupling (NVC) changes in Alzheimer's disease can potentially provide imaging biomarkers to assist with diagnosis and treatment. Previous efforts to quantify NVC with intrinsic signal imaging have required assumptions of baseline optical pathlength to calculate changes in oxy- and deoxy-hemoglobin concentrations during evoked stimuli. In this work, we present an economical spatial frequency domain imaging (SFDI) platform utilizing a commercially available LED projector, camera, and off-the-shelf optical components suitable for imaging dynamic optical properties. The fast acquisition platform described in this work is validated on silicone phantoms and demonstrated in neuroimaging of a mouse model.

  5. Brain connectivity study of joint attention using frequency-domain optical imaging technique

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ujwal; Zhu, Banghe; Godavarty, Anuradha

    2010-02-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic populations. In this study, diffuse optical imaging is being used to study brain connectivity for the first time in response to joint attention experience in normal adults. The prefrontal region of the brain was non-invasively imaged using a frequency-domain based optical imager. The imaging studies were performed on 11 normal right-handed adults and optical measurements were acquired in response to joint-attention based video clips. While the intensity-based optical data provides information about the hemodynamic response of the underlying neural process, the time-dependent phase-based optical data has the potential to explicate the directional information on the activation of the brain. Thus brain connectivity studies are performed by computing covariance/correlations between spatial units using this frequency-domain based optical measurements. The preliminary results indicate that the extent of synchrony and directional variation in the pattern of activation varies in the left and right frontal cortex. The results have significant implication for research in neural pathways associated with autism that can be mapped using diffuse optical imaging tools in the future.

  6. Comparison of DSP schemes with frequency domain equalization for passive optical networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ye, Jia; Liu, Yanhe; Yan, Lianshan

    2015-08-01

    In recent years, digital signal processing (DSP) has been widely investigated for the applications in future next generation passive optical networks (PONs). In this paper, we compare four transmission technologies based on DSP with frequency domain equalization (FDE) for PON transmission with double-side band (DSB) intensity modulation and direct detection. These schemes include orthogonal frequency division multiplexing (OFDM), single-carrier frequency domain equalization (SCFDE), discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) and interleaved frequency division multiplexing (IFDM). We analyze their computational complexity and flexibility in PON applications, and compare their transmission performance by experiments. Based on above work, we propose and experimentally demonstrate a hybrid DSP-enhanced PON architecture with downstream OFDM modulation and upstream SCFDE modulation.

  7. Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): Study protocol for a randomized controlled trial.

    PubMed

    Kubo, Takashi; Shinke, Toshiro; Okamura, Takayuki; Hibi, Kiyoshi; Nakazawa, Gaku; Morino, Yoshihiro; Shite, Junya; Fusazaki, Tetsuya; Otake, Hiromasa; Kozuma, Ken; Akasaka, Takashi

    2016-11-01

    Optical coherence tomography is becoming increasingly widespread as an adjunctive intravascular diagnostic technique in percutaneous coronary intervention (PCI), because of its ability to visualize coronary structures at high resolution. Several studies have reported that intravascular ultrasound (IVUS) guidance in PCI might be helpful to reduce subsequent stent thrombosis, restenosis, repeat revascularization, myocardial infarction, and cardiac death. The OPtical frequency domain imaging vs. INtravascular ultrasound in percutaneous coronary InterventiON (OPINION) trial is aimed at evaluating the impact of optical frequency domain imaging (OFDI) guidance in PCI on clinical outcomes compared with IVUS guidance. The OPINION trial is a multicenter, prospective, randomized, controlled, open-label, parallel group, non-inferiority trial in Japan. The eligible patients are randomly assigned to receive either OFDI-guided PCI or IVUS-guided PCI. PCI is performed using the biolimus-eluting stent in accordance with a certain criteria of OFDI and IVUS for optimal stent deployment. All patients will undergo a follow-up angiography at 8 months. The primary endpoint is target vessel failure composed of cardiac death, myocardial infarction attributed to the target vessel, and clinically-driven target vessel revascularization at 12 months. When completed, the OPINION trial will contribute to define the clinical value of the OFDI guidance in PCI. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  8. Feasibility of direct digital sampling for diffuse optical frequency domain spectroscopy in tissue

    NASA Astrophysics Data System (ADS)

    Roblyer, Darren; O'Sullivan, Thomas D.; Warren, Robert V.; Tromberg, Bruce J.

    2013-04-01

    Frequency domain optical spectroscopy in the diffusive regime is currently being investigated for biomedical applications including tumor detection, therapy monitoring, exercise metabolism and others. Analog homodyne or heterodyne detection of sinusoidally modulated signals has been the predominant method for measuring phase and amplitude of photon density waves that have traversed through tissue. Here we demonstrate the feasibility of utilizing direct digital sampling of modulated signals using a 3.6 gigasample/second 12 bit analog to digital converter. Digitally synthesized modulated signals between 50 MHz and 400 MHz were measured on tissue-simulating phantoms at six near-infrared wavelengths. An amplitude and phase precision of 1% and 0.6° were achieved during drift tests. Amplitude, phase, scattering and absorption values were compared with a well-characterized network analyzer-based diffuse optical device. Optical properties measured with both systems were within 3.6% for absorption and 2.8% for scattering over a range of biologically relevant values. Direct digital sampling represents a viable method for frequency domain diffuse optical spectroscopy and has the potential to reduce system complexity, size and cost.

  9. Feasibility of Direct Digital Sampling for Diffuse Optical Frequency Domain Spectroscopy in Tissue.

    PubMed

    Roblyer, Darren; O'Sullivan, Thomas D; Warren, Robert V; Tromberg, Bruce

    2013-04-01

    Frequency domain optical spectroscopy in the diffusive regime is currently being investigated for biomedical applications including tumor detection, therapy monitoring, exercise metabolism, and others. Analog homodyne or heterodyne detection of sinusoidally modulated signals have been the predominant method for measuring phase and amplitude of photon density waves that have traversed through tissue. Here we demonstrate the feasibility of utilizing direct digital sampling of modulated signals using a 3.6 Gigasample/second 12 bit Analog to Digital Converter. Digitally synthesized modulated signals between 50MHz and 400MHz were measured on tissue simulating phantoms at six near-infrared wavelengths. An amplitude and phase precision of 1% and 0.6 degrees were achieved during drift tests. Amplitude, phase, scattering and absorption values were compared with a well-characterized network analyzer based diffuse optical device. Measured optical properties measured with both systems were within 3.6% for absorption and 2.8% for scattering over a range of biologically relevant values. Direct digital sampling represents a viable method for frequency domain diffuse optical spectroscopy and has the potential to reduce system complexity, size, and cost.

  10. High-resolution frequency-domain second-harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Su, Jianping; Tomov, Ivan V.; Jiang, Yi; Chen, Zhongping

    2007-04-01

    We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain second-harmonic optical coherence tomography (SH-OCT) to 12 μm. The acquisition time was shortened by more than 2 orders of magnitude compared to the time-domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon, and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on the SH has been used to obtain polarization resolved images.

  11. Real-Time FPGA Processing for High-Speed Optical Frequency Domain Imaging

    PubMed Central

    Vakoc, Benjamin J.; Suter, Melissa J.; Yun, Seok-Hyun; Tearney, Guillermo J.; Bouma, Brett E.

    2010-01-01

    We present a novel algorithm for reconstructing interferograms acquired in optical frequency domain imaging (OFDI). The algorithm was developed specifically for processing in field programmable gate arrays (FPGAs) and featured the use of a finite-impulse-response (FIR) filter implementation of B-spline interpolation for efficiently re-sampling k-space. When implemented in FPGAs, the algorithm allowed for real-time processing of interferograms acquired with a high-speed OFDI system at 54 kHz and a sampling rate of 100 MS/s. PMID:19336296

  12. Frequency-Domain Chromatic Dispersion Equalization Using Overlap-Add Methods in Coherent Optical System

    NASA Astrophysics Data System (ADS)

    Xu, T.; Jacobsen, G.; Popov, S.; Forzati, M.; Mårtensson, J.; Mussolin, M.; Li, J.; Wang, K.; Zhang, Y.; Friberg, A. T.

    2011-06-01

    The frequency domain equalizers (FDEs) employing two types of overlap-add zero-padding (OLA-ZP) methods are applied to compensate the chromatic dispersion in a 112-Gbit/s non-return-to-zero polarization division multiplexed quadrature phase shift keying (NRZ-PDM-QPSK) coherent optical transmission system. Simulation results demonstrate that the OLA-ZP methods can achieve the same acceptable performance as the overlapsave method. The required minimum overlap (or zero-padding) in the FDE is derived, and the optimum fast Fourier transform length to minimize the computational complexity is also analyzed.

  13. Multipixel system for gigahertz frequency-domain optical imaging of finger joints

    NASA Astrophysics Data System (ADS)

    Netz, Uwe J.; Beuthan, Jürgen; Hielscher, Andreas H.

    2008-03-01

    Frequency-domain optical imaging systems have shown great promise for characterizing blood oxygenation, hemodynamics, and other physiological parameters in human and animal tissues. However, most of the frequency domain systems presented so far operate with source modulation frequencies below 150MHz. At these low frequencies, their ability to provide accurate data for small tissue geometries such as encountered in imaging of finger joints or rodents is limited. Here, we present a new system that can provide data up to 1GHz using an intensity modulated charged coupled device camera. After data processing, the images show the two-dimensional distribution of amplitude and phase of the light modulation on the finger surface. The system performance was investigated and test measurements on optical tissue phantoms were taken to investigate whether higher frequencies yield better signal-to-noise ratios (SNRs). It could be shown that local changes in optical tissue properties, as they appear in the initial stages of rheumatoid arthritis in a finger joint, are detectable by simple image evaluation, with the range of modulation frequency around 500MHz proving to yield the highest SNR.

  14. Multipixel system for gigahertz frequency-domain optical imaging of finger joints.

    PubMed

    Netz, Uwe J; Beuthan, Jürgen; Hielscher, Andreas H

    2008-03-01

    Frequency-domain optical imaging systems have shown great promise for characterizing blood oxygenation, hemodynamics, and other physiological parameters in human and animal tissues. However, most of the frequency domain systems presented so far operate with source modulation frequencies below 150 MHz. At these low frequencies, their ability to provide accurate data for small tissue geometries such as encountered in imaging of finger joints or rodents is limited. Here, we present a new system that can provide data up to 1 GHz using an intensity modulated charged coupled device camera. After data processing, the images show the two-dimensional distribution of amplitude and phase of the light modulation on the finger surface. The system performance was investigated and test measurements on optical tissue phantoms were taken to investigate whether higher frequencies yield better signal-to-noise ratios (SNRs). It could be shown that local changes in optical tissue properties, as they appear in the initial stages of rheumatoid arthritis in a finger joint, are detectable by simple image evaluation, with the range of modulation frequency around 500 MHz proving to yield the highest SNR.

  15. Two-dimensional frequency-domain visco-elastic full waveform inversion: Parallel algorithms, optimization and performance

    NASA Astrophysics Data System (ADS)

    Brossier, R.

    2011-04-01

    Full waveform inversion (FWI) is an appealing seismic data-fitting procedure for the derivation of high-resolution quantitative models of the subsurface at various scales. Full modelling and inversion of visco-elastic waves from multiple seismic sources allow for the recovering of different physical parameters, although they remain computationally challenging tasks. An efficient massively parallel, frequency-domain FWI algorithm is implemented here on large-scale distributed-memory platforms for imaging two-dimensional visco-elastic media. The resolution of the elastodynamic equations, as the forward problem of the inversion, is performed in the frequency domain on unstructured triangular meshes, using a low-order finite element discontinuous Galerkin method. The linear system resulting from discretization of the forward problem is solved with a parallel direct solver. The inverse problem, which is presented as a non-linear local optimization problem, is solved in parallel with a quasi-Newton method, and this allows for reliable estimation of multiple classes of visco-elastic parameters. Two levels of parallelism are implemented in the algorithm, based on message passing interfaces and multi-threading, for optimal use of computational time and the core-memory resources available on modern distributed-memory multi-core computational platforms. The algorithm allows for imaging of realistic targets at various scales, ranging from near-surface geotechnic applications to crustal-scale exploration.

  16. High speed miniature motorized endoscopic probe for 3D optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Feroldi, Fabio; Mo, Jianhua; Helderman, Frank; de Groot, Mattijs; de Boer, Johannes F.

    2013-03-01

    We present a miniature motorized endoscopic probe for Optical Frequency Domain Imaging with an outer diameter of 1.65 mm and a rotation speed of 3,000 - 12,500 rpm. This is the smallest motorized high speed OCT probe to our knowledge. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non-uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm We demonstrated its performance with imaging ex vivo pig bronchial and in vivo goat lung.

  17. Miniature swept source for point of care Optical Frequency Domain Imaging

    PubMed Central

    Goldberg, Brian D.; Nezam, S.M. Reza Motaghian; Jillella, Priyanka; Bouma, Brett E.; Tearney, Guillermo J.

    2009-01-01

    Point of care (POC) medical technologies require portable, small, robust instrumentation for practical implementation. In their current embodiment, optical frequency domain imaging (OFDI) systems employ large form-factor wavelength-swept lasers, making them impractical in the POC environment. Here, we describe a first step toward a POC OFDI system by demonstrating a miniaturized swept-wavelength source. The laser is based on a tunable optical filter using a reflection grating and a miniature resonant scanning mirror. The laser achieves 75 nm of bandwidth centered at 1340 nm, a 0.24 nm instantaneous line width, a 15.3 kHz repetition rate with 12 mW peak output power, and a 30.4 kHz A-line rate when utilizing forward and backward sweeps. The entire laser system is approximately the size of a deck of cards and can operate on battery power for at least one hour. PMID:19259202

  18. Optical-fiber frequency domain interferometer with nanometer resolution and centimeter measuring range.

    PubMed

    Weng, Jidong; Tao, Tianjiong; Liu, Shenggang; Ma, Heli; Wang, Xiang; Liu, Cangli; Tan, Hua

    2013-11-01

    A new optical-fiber frequency domain interferometer (OFDI) device for accurate measurement of the absolute distance between two stationary objects, with centimeter measuring range and nanometer resolution, has been developed. Its working principle and on-line data processing method were elaborated. The new OFDI instrument was constructed all with currently available commercial communication products. It adopted the wide-spectrum amplified spontaneous emission light as the light source and optical-fiber tip as the test probe. Since this device consists of only fibers or fiber coupled components, it is very compact, convenient to operate, and easy to carry. By measuring the single-step length of a translation stage and the thickness of standard gauge blocks, its ability in implementing nanometer resolution and centimeter measuring range on-line measurements was validated.

  19. Frequency domain optical resolution photoacoustic and fluorescence microscopy using a modulated laser diode

    NASA Astrophysics Data System (ADS)

    Langer, Gregor; Langer, Andreas; Buchegger, Bianca; Jacak, Jaroslaw; Klar, Thomas A.; Berer, Thomas

    2017-03-01

    In this paper a multimodal optical-resolution photoacoustic and fluorescence microscope in frequency domain is presented. Photoacoustic waves and modulated fluorescence are generated in chromophores by using a modulated diode laser. The photoacoustic waves, recorded with a hydrophone, and the fluorescence signals, acquired with an avalanche photodiode, are simultaneously measured using a lock-in technique. Two possibilities to optimize the signal-to-noise ratio are discussed. The first method is based on the optimization of the excitation waveform and it is argued why square-wave excitation is best. The second way to enhance the SNR is to optimize the modulation frequency. For modulation periods that are much shorter than the relaxation times of the excited chromophores, the photoacoustic signal scales linearly with the modulation frequency. We come to the conclusion that frequency-domain photoacoustic microscopy performed with modulation frequencies in the range of 100 MHz can compete with time-domain photoacoustic microscopy regarding the signal-to-noise ratio. The theoretical predictions are confirmed by experimental results. Additionally, images of stained and unstained biological samples are presented in order to demonstrate the capabilities of the multimodal imaging system.

  20. Full-field time-encoded frequency-domain optical coherence tomography.

    PubMed

    Povazay, Boris; Unterhuber, Angelika; Hermann, Boris; Sattmann, Harald; Arthaber, Holger; Drexler, Wolfgang

    2006-08-21

    Ultrahigh axial resolution surface profiling as well as volumetric optical imaging based on time encoded optical coherence tomography in the frequency domain without any mechanical scanning element is presented. A frequency tuned broad bandwidth titanium sapphire laser is interfaced to an optical microscope (Axioskop 2 MAT, Carl Zeiss Meditec) that is enhanced with an interferometric imaging head. The system is equipped with a 640 x 480 pixel CMOS camera, optimized for the 800 nm wavelength tuning range for transmission and reflection measurements of a microscopic sample. Sample volume information over 1.3 x 1 x 0.2 mm(3) with ~3 mum axial and ~4 mum transverse resolution in tissue is acquired by a single wavelength scan over more than 100 nm optical bandwidth from <760 to >860 nm with 128-2048 equidistant optical frequency steps with an acquisition time of 1 to 50 ms per step. Topography and tomography with a signal to noise ratio of 83 dB is demonstrated on test surfaces and biological specimen respectively. This novel OCT technique promises to enable high speed, three dimensional imaging by employing high frame rate cameras and state of the art tunable lasers in a mechanically stable environment, due to lack of moving components while reducing the intensity on the sample.

  1. Effects of motion on optical properties in the spatial frequency domain

    PubMed Central

    Nguyen, John Quan; Saager, Rolf B.; Cuccia, David J.; Kelly, Kristen M.; Jakowatz, James; Hsiang, David; Durkin, Anthony J.

    2011-01-01

    Spatial frequency domain imaging (SFDI) is a noncontact and wide-field optical imaging technology currently being used to study the optical properties and chromophore concentrations of in vivo skin including skin lesions of various types. Part of the challenge of developing a clinically deployable SFDI system is related to the development of effective motion compensation strategies, which in turn, is critical for recording high fidelity optical properties. Here we present a two-part strategy for SFDI motion correction. After verifying the effectiveness of the motion correction algorithm on tissue-simulating phantoms, a set of skin-imaging data was collected in order to test the performance of the correction technique under real clinical conditions. Optical properties were obtained with and without the use of the motion correction technique. The results indicate that the algorithm presented here can be used to render optical properties in moving skin surfaces with fidelities within 1.5% of an ideal stationary case and with up to 92.63% less variance. Systematic characterization of the impact of motion variables on clinical SFDI measurements reveals that until SFDI instrumentation is developed to the point of instantaneous imaging, motion compensation is necessary for the accurate localization and quantification of heterogeneities in a clinical setting. PMID:22191926

  2. Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model

    PubMed Central

    Tabassum, Syeda; Zhao, Yanyu; Istfan, Raeef; Wu, Junjie; Waxman, David J.; Roblyer, Darren

    2016-01-01

    Determination of chemotherapy efficacy early during treatment would provide more opportunities for physicians to alter and adapt treatment plans. Diffuse optical technologies may be ideally suited to track early biological events following chemotherapy administration due to low cost and high information content. We evaluated the use of spatial frequency domain imaging (SFDI) to characterize a small animal tumor model in order to move towards the goal of endogenous optical monitoring of cancer therapy in a controlled preclinical setting. The effects of key measurement parameters including the choice of imaging spatial frequency and the repeatability of measurements were evaluated. The precision of SFDI optical property extractions over repeat mouse measurements was determined to be within 3.52% for move and replace experiments. Baseline optical properties and chromophore values as well as intratumor heterogeneity were evaluated over 25 tumors. Additionally, tumor growth and chemotherapy response were monitored over a 45 day longitudinal study in a small number of mice to demonstrate the ability of SFDI to track treatment effects. Optical scattering and oxygen saturation increased as much as 70% and 25% respectively in treated tumors, suggesting SFDI may be useful for preclinical tracking of cancer therapies. PMID:27867722

  3. Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model.

    PubMed

    Tabassum, Syeda; Zhao, Yanyu; Istfan, Raeef; Wu, Junjie; Waxman, David J; Roblyer, Darren

    2016-10-01

    Determination of chemotherapy efficacy early during treatment would provide more opportunities for physicians to alter and adapt treatment plans. Diffuse optical technologies may be ideally suited to track early biological events following chemotherapy administration due to low cost and high information content. We evaluated the use of spatial frequency domain imaging (SFDI) to characterize a small animal tumor model in order to move towards the goal of endogenous optical monitoring of cancer therapy in a controlled preclinical setting. The effects of key measurement parameters including the choice of imaging spatial frequency and the repeatability of measurements were evaluated. The precision of SFDI optical property extractions over repeat mouse measurements was determined to be within 3.52% for move and replace experiments. Baseline optical properties and chromophore values as well as intratumor heterogeneity were evaluated over 25 tumors. Additionally, tumor growth and chemotherapy response were monitored over a 45 day longitudinal study in a small number of mice to demonstrate the ability of SFDI to track treatment effects. Optical scattering and oxygen saturation increased as much as 70% and 25% respectively in treated tumors, suggesting SFDI may be useful for preclinical tracking of cancer therapies.

  4. Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range

    NASA Astrophysics Data System (ADS)

    Lim, H.; de Boer, J. F.; Park, B. H.; Lee, E. C.; Yelin, R.; Yun, S. H.

    2006-06-01

    Optical frequency domain imaging (OFDI) in the 800-nm biological imaging window is demonstrated by using a novel wavelength-swept laser source. The laser output is tuned continuously from 815 to 870 nm at a 43.2-kHz repetition rate with 7-mW average power. Axial resolution of 10-μm in biological tissue and peak sensitivity of 96 dB are achieved. In vivo imaging of Xenopus laevis is demonstrated with an acquisition speed of 84 frames per second (512 axial lines per frame). This new imaging technique may prove useful in comprehensive retinal screening for medical diagnosis and contrast-agent-based imaging for biological investigations.

  5. Optimal sparsifying bases for frequency-domain optical-coherence tomography.

    PubMed

    Nayak, Rohit; Seelamantula, Chandra Sekhar

    2012-12-01

    We address the reconstruction problem in frequency-domain optical-coherence tomography (FDOCT) from undersampled measurements within the framework of compressed sensing (CS). Specifically, we propose optimal sparsifying bases for accurate reconstruction by analyzing the backscattered signal model. Although one might expect Fourier bases to be optimal for the FDOCT reconstruction problem, it turns out that the optimal sparsifying bases are windowed cosine functions where the window is the magnitude spectrum of the laser source. Further, the windowed cosine bases can be phase locked, which allows one to obtain higher accuracy in reconstruction. We present experimental validations on real data. The findings reported in this Letter are useful for optimal dictionary design within the framework of CS-FDOCT.

  6. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals.

    PubMed

    Ding, Zhenyang; Yao, X Steve; Liu, Tiegen; Du, Yang; Liu, Kun; Han, Qun; Meng, Zhuo; Chen, Hongxin

    2012-12-17

    We present a novel method to achieve a space-resolved long- range vibration detection system based on the correlation analysis of the optical frequency-domain reflectometry (OFDR) signals. By performing two separate measurements of the vibrated and non-vibrated states on a test fiber, the vibration frequency and position of a vibration event can be obtained by analyzing the cross-correlation between beat signals of the vibrated and non-vibrated states in a spatial domain, where the beat signals are generated from interferences between local Rayleigh backscattering signals of the test fiber and local light oscillator. Using the proposed technique, we constructed a standard single-mode fiber based vibration sensor that can have a dynamic range of 12 km and a measurable vibration frequency up to 2 kHz with a spatial resolution of 5 m. Moreover, preliminarily investigation results of two vibration events located at different positions along the test fiber are also reported.

  7. A study of optical frequency domain reflectometry and its associated distributed sensor applications

    NASA Astrophysics Data System (ADS)

    Bolen, Ryan

    Optical Frequency Domain Reflectometry (OFDR) is an interferometric technique which is capable of interrogating fibers under test (FUT) up to kilometers in length with millimeter resolution[10]. It does so by taking the Rayleigh backscattered light, or Fresnel back-reflected light and combining it with the reference arm to create a beating signal. The beating signal is then Fourier transformed to create a scattering profile of the FUT. Presented in this thesis are 5 novel OFDR configurations that improve the SNR in the spatial domain up to 26dB. As well, 4 new data analysis algorithms are presented that improve the spectral resolution by up to a factor of 40 and spectral SNR by 1.31dB. The FUT's investigated are regular SMF, linear FBG's, and chirped FBG's. With these, the wavelength shift at specific points along the FUT is measured and correlated with temperature changes (with associated applications), longitudinal stress, and torsional stress stimuli.

  8. Spatial-Resolution Improvement in Optical Frequency Domain Reflectometry System Based on Tunable Linear Fiber Laser

    NASA Astrophysics Data System (ADS)

    Li, Guoyu; Zhao, Peng; Li, Yan

    2011-02-01

    In optical frequency domain reflectometry (OFDR) system, the spatial resolution is obtained by using the total frequency-sweep span of the tunable laser. However, in practice, the spatial resolution is severely limited by nonlinearity in the lightwave-frequency sweep of the tunable laser. A closed-loop PZT modulated DBR linear fiber laser is proposed to improve the spatial resolution of the OFDR system. Experimental results show that the spatial resolution of OFDR system has improved greatly. When the frequency sweep excursion is 66GHz and the fiber under test (FUT) is 7 m, the OFDR system has a spatial resolution of 1.5 m with open-loop PZT modulated laser. But the spatial resolution increases to 35 cm with closed-loop PZT modulated laser.

  9. Real-time locating and speed measurement of fibre fuse using optical frequency-domain reflectometry

    PubMed Central

    Jiang, Shoulin; Ma, Lin; Fan, Xinyu; Wang, Bin; He, Zuyuan

    2016-01-01

    We propose and experimentally demonstrate real-time locating and speed measurement of fibre fuse by analysing the Doppler shift of reflected light using optical frequency-domain reflectometry (OFDR). Our method can detect the start of a fibre fuse within 200 ms which is equivalent to a propagation distance of about 10 cm in standard single-mode fibre. We successfully measured instantaneous speed of propagating fibre fuses and observed their subtle fluctuation owing to the laser power instability. The resolution achieved for speed measurement in our demonstration is 1 × 10−3 m/s. We studied the fibre fuse propagation speed dependence on the launched power in different fibres. Our method is promising for both real time fibre fuse monitoring and future studies on its propagation and termination. PMID:27146550

  10. Frequency-Domain Intravascular Optical Coherence Tomography of the Femoropopliteal Artery

    SciTech Connect

    Karnabatidis, Dimitris Katsanos, Konstantinos; Paraskevopoulos, Ioannis; Diamantopoulos, Athanasios; Spiliopoulos, Stavros; Siablis, Dimitris

    2011-12-15

    Purpose: Optical coherence tomography (OCT) is a catheter-based imaging method that employs near-infrared light to produce high-resolution intravascular images. The authors report the safety and feasibility and illustrate common imaging findings of frequency-domain OCT (FD-OCT) imaging of the femoropopliteal artery in a series of 20 patients who underwent infrainguinal angioplasty. Methods: After crossing the lesion of interest, OCT was performed with a dextrose saline flush technique with simultaneous obstructive manual groin compression. An automatic pullback FD-OCT device was employed (each scan acquiring 54 mm of vessel lumen in 271 consecutive frames). OCT images were acquired before and after balloon dilatation and following provisional stenting if necessary and were evaluated for baseline characteristics of plaque or in-stent restenosis (ISR), vessel wall trauma after angioplasty, presence of thrombus, stent apposition, and tissue prolapse. Imaging follow-up was not included in this study's protocol. Results: Twenty-seven obstructive lesions (18 cases of de novo atherosclerosis and 9 of ISR) of the femoropopliteal artery were imaged and 148 acquisitions were analyzed in total. High-resolution intravascular OCT imaging with effective blood clearance was achieved in 93.9%. Failure was mainly attributed to preocclusive proximal lesions and/or collateral flow. Mixed features of lipid pool areas, calcium deposits, necrotic core, and fibrosis were identified in all of the imaged atherosclerotic lesions, whereas ISR was purely fibrotic. After balloon angioplasty, OCT identified extensive intimal tears in all cases and one case of severe dissection that biplane subtraction angiography failed to identify. Conclusions: Infrainguinal frequency-domain optical coherence tomography is safe and feasible and may provide intravascular high-resolution imaging of the femoropopliteal artery during infrainguinal angioplasty procedures.

  11. High frame-rate intravascular optical frequency-domain imaging in vivo

    PubMed Central

    Cho, Han Saem; Jang, Sun-Joo; Kim, Kyunghun; Dan-Chin-Yu, Alexey V.; Shishkov, Milen; Bouma, Brett E.; Oh, Wang-Yuhl

    2013-01-01

    Intravascular optical frequency-domain imaging (OFDI), a second-generation optical coherence tomography (OCT) technology, enables imaging of the three-dimensional (3D) microstructure of the vessel wall following a short and nonocclusive clear liquid flush. Although 3D vascular visualization provides a greater appreciation of the vessel wall and intraluminal structures, a longitudinal imaging pitch that is several times bigger than the optical imaging resolution of the system has limited true high-resolution 3D imaging, mainly due to the slow scanning speed of previous imaging catheters. Here, we demonstrate high frame-rate intravascular OFDI in vivo, acquiring images at a rate of 350 frames per second. A custom-built, high-speed, and high-precision fiber-optic rotary junction provided uniform and high-speed beam scanning through a custom-made imaging catheter with an outer diameter of 0.87 mm. A 47-mm-long rabbit aorta was imaged in 3.7 seconds after a short contrast agent flush. The longitudinal imaging pitch was 34 μm, comparable to the transverse imaging resolution of the system. Three-dimensional volume-rendering showed greatly enhanced visualization of tissue microstructure and stent struts relative to what is provided by conventional intravascular imaging speeds. PMID:24466489

  12. Doppler imaging with dual-detection full-range frequency domain optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.

    2010-01-01

    Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488

  13. No-Guard-Interval Coherent Optical OFDM with Frequency Domain Equalization

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yutaka; Takatori, Yasuyuki

    This chapter describes the novel no-guard-interval (GI) coherent optical orthogonal frequency division multiplexing (OFDM) format for high-capacity optical transport network (OTN). Unlike the conventional OFDM configuration, the proposed scheme employs a very small number of OFDM subcarriers, so simple optical analog subcarrier multiplexing can be realized without digital signal processing (DSP) in the OFDM modulation. The scheme also introduces simple OFDM demultiplexing and a digital adaptive time domain or frequency domain equalizer for DSP demodulation in the receiver, without recourse to OFDM overhead (OH) bytes such as GI and training symbols, unlike the conventional OFDM receiver. There is no line rate increase in the OTN channel due to the introduction of these OFDM OH bytes (i.e., the line rate of 111 Gb/s includes 7% OTN overhead, and 103-Gb/s payload is available for bit transparent OTN mapping of 100-GbE signals). The No-GI-OFDM proposal is experimentally tested at the channel rate of 111 Gbit/s as the first step to realizing DWDM long-haul transport at over 10 Tbps.

  14. Frequency domain model for analysis of paralleled, series-output-connected Mapham inverters

    NASA Technical Reports Server (NTRS)

    Brush, Andrew S.; Sundberg, Richard C.; Button, Robert M.

    1989-01-01

    The Mapham resonant inverter is characterized as a two-port network driven by a selected periodic voltage. The two-port model is then used to model a pair of Mapham inverters connected in series and employing phasor voltage regulation. It is shown that the model is useful for predicting power output in paralleled inverter units, and for predicting harmonic current output of inverter pairs, using standard power flow techniques. Some sample results are compared to data obtained from testing hardware inverters.

  15. Frequency domain model for analysis of paralleled, series-output-connected Mapham inverters

    NASA Technical Reports Server (NTRS)

    Brush, Andrew S.; Sundberg, Richard C.; Button, Robert M.

    1989-01-01

    The Mapham resonant inverter is characterized as a two-port network driven by a selected periodic voltage. The two-port model is then used to model a pair of Mapham inverters connected in series and employing phasor voltage regulation. It is shown that the model is useful for predicting power output in paralleled inverter units, and for predicting harmonic current output of inverter pairs, using standard power flow techniques. Some examples are compared to data obtained from testing hardware inverters.

  16. Frequency domain model for analysis of paralleled, series-output-connected Mapham inverters

    NASA Technical Reports Server (NTRS)

    Brush, Andrew S.; Sundberg, Richard C.; Button, Robert M.

    1989-01-01

    The Mapham resonant inverter is characterized as a two-port network driven by a selected periodic voltage. The two-port model is then used to model a pair of Mapham inverters connected in series and employing phasor voltage regulation. It is shown that the model is useful for predicting power output in paralleled inverter units, and for predicting harmonic current output of inverter pairs, using standard power flow techniques. Some sample results are compared to data obtained from testing hardware inverters.

  17. Assessment of smoke inhalation injury using volumetric optical frequency domain imaging in sheep models

    NASA Astrophysics Data System (ADS)

    Applegate, Matthew B.; Hariri, Lida P.; Beagle, John; Tan, Khay Ming; Chee, Chunmin; Hales, Charles A.; Suter, Melissa J.

    2012-02-01

    Smoke inhalation injury is a serious threat to victims of fires and explosions, however accurate diagnosis of patients remains problematic. Current evaluation techniques are highly subjective, often involving the integration of clinical findings with bronchoscopic assessment. It is apparent that new quantitative methods for evaluating the airways of patients at risk of inhalation injury are needed. Optical frequency domain imaging (OFDI) is a high resolution optical imaging modality that enables volumetric microscopy of the trachea and upper airways in vivo. We anticipate that OFDI may be a useful tool in accurately assessing the airways of patients at risk of smoke inhalation injury by detecting injury prior to the onset of symptoms, and therefore guiding patient management. To demonstrate the potential of OFDI for evaluating smoke inhalation injury, we conducted a preclinical study in which we imaged the trachea/upper airways of 4 sheep prior to, and up to 60 minutes post exposure to cooled cotton smoke. OFDI enabled the visualization of increased mucus accumulation, mucosal thickening, epithelial disruption and sloughing, and increased submucosal signal intensity attributed to polymorphonuclear infiltrates. These results were consistent with histopathology findings. Bronchoscopic inspection of the upper airways appeared relatively normal with only mild accumulation of mucus visible within the airway lumen. The ability of OFDI to not only accurately detect smoke inhalation injury, but to quantitatively assess and monitor the progression or healing of the injury over time may provide new insights into the management of patients such as guiding clinical decisions regarding the need for intubation and ventilator support.

  18. 3D imaging of tomato seeds using frequency domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fan, Chuanmao; Yao, Gang

    2012-05-01

    A fast imaging system that can reveal internal sample structures is important for research and quality controls of seeds. Optical coherence tomography (OCT) is a non-invasive optical imaging technique that can acquire high speed, high resolution depth-resolved images in scattering samples. It has found numerous applications in studying various biological tissues and other materials in vivo. A few studies have reported the use of OCT in studying seed morphology. However, 3D imaging of internal seed structure has not been reported before. In this study, we used a frequency domain OCT system to image tomato seeds. The system has a central wavelength of 844nm with a 46.8 nm FWHM bandwidth. The requirement for depth scan was eliminated by using a Fourier domain implementation. The B-scan imaging speed was limited by the spectroscopic imaging CCD at 52 kHz. The calibrated system has a 6.7μm depth resolution and a 15.4μm lateral resolution. Our results show that major seed structures can be clearly visualized in OCT images.

  19. Combined spectrally encoded confocal microscopy and optical frequency domain imaging system

    NASA Astrophysics Data System (ADS)

    Kang, DongKyun; Suter, Melissa J.; Boudoux, Caroline; Yachimski, Patrick S.; Bouma, Brett E.; Nishioka, Norman S.; Tearney, Guillermo J.

    2009-02-01

    Spectrally encoded confocal microscopy (SECM) and optical frequency domain imaging (OFDI) are two reflectancebased imaging technologies that may be utilized for high-resolution microscopic screening of internal organs. SECM provides en face images of tissues with a high lateral resolution of 1-2 μm, and a penetration depth of up to 300 μm. OFDI generates cross-sectional images of tissue architecture with a resolution of 10-20 μm and a penetration depth of 1- 2 mm. Since the two technologies yield complementary microscopic information on two different size scales (SECM-cellular and OFDI-architectural) that are commonly used for histopathologic evaluation, their combination may allow for more accurate optical diagnosis. Here, we report the integration of these two imaging modalities in a single bench top system. SECM images of swine small intestine showed the presence of goblet cells, and OFDI images revealed the finger-shaped villous architecture. In clinical study of 9 gastroesophageal biopsies from 8 patients, a diverse set of architectural and cellular features was observed, including squamous mucosa with mild hyperplasia and gastric antral mucosa with gastric pits and crypts. The capability of this multimodality device to enable the visualization of microscopic features on these two size scales supports our hypothesis that improved diagnostic accuracy may be obtained by merging these two technologies into a single instrument.

  20. 3D shape tracking of minimally invasive medical instruments using optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Parent, Francois; Kanti Mandal, Koushik; Loranger, Sebastien; Watanabe Fernandes, Eric Hideki; Kashyap, Raman; Kadoury, Samuel

    2016-03-01

    We propose here a new alternative to provide real-time device tracking during minimally invasive interventions using a truly-distributed strain sensor based on optical frequency domain reflectometry (OFDR) in optical fibers. The guidance of minimally invasive medical instruments such as needles or catheters (ex. by adding a piezoelectric coating) has been the focus of extensive research in the past decades. Real-time tracking of instruments in medical interventions facilitates image guidance and helps the user to reach a pre-localized target more precisely. Image-guided systems using ultrasound imaging and shape sensors based on fiber Bragg gratings (FBG)-embedded optical fibers can provide retroactive feedback to the user in order to reach the targeted areas with even more precision. However, ultrasound imaging with electro-magnetic tracking cannot be used in the magnetic resonance imaging (MRI) suite, while shape sensors based on FBG embedded in optical fibers provides discrete values of the instrument position, which requires approximations to be made to evaluate its global shape. This is why a truly-distributed strain sensor based on OFDR could enhance the tracking accuracy. In both cases, since the strain is proportional to the radius of curvature of the fiber, a strain sensor can provide the three-dimensional shape of medical instruments by simply inserting fibers inside the devices. To faithfully follow the shape of the needle in the tracking frame, 3 fibers glued in a specific geometry are used, providing 3 degrees of freedom along the fiber. Near real-time tracking of medical instruments is thus obtained offering clear advantages for clinical monitoring in remotely controlled catheter or needle guidance. We present results demonstrating the promising aspects of this approach as well the limitations of using the OFDR technique.

  1. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D.; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2016-10-01

    A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer.

  2. Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization.

    PubMed

    Chen, Chen; Zhuge, Qunbi; Plant, David V

    2011-04-11

    This paper presents a new channel estimation/equalization algorithm for coherent OFDM (CO-OFDM) digital receivers, which enables the elimination of the cyclic prefix (CP) for OFDM transmission. We term this new system as the zero-guard-interval (ZGI)-CO-OFDM. ZGI-CO-OFDM employs an overlapped frequency-domain equalizer (OFDE) to compensate both chromatic dispersion (CD) and polarization mode dispersion (PMD) before the OFDM demodulation. Despite the zero CP overhead, ZGI-CO-OFDM demonstrates a superior PMD tolerance than the previous reduced-GI (RGI)-CO-OFDM, which is verified under several different PMD conditions. Additionally, ZGI-CO-OFDM can improve the channel estimation accuracy under high PMD conditions by using a larger intra-symbol frequency-averaging (ISFA) length as compared to RGI-CO-OFDM. ZGI-CO-OFDM also enables the use of ever smaller fast Fourier transform (FFT) sizes (i.e. <128), while maintaining the zero CP overhead. Finally, we provide an analytical comparison of the computation complexity between the conventional, RGI- and ZGI- CO-OFDM. We show that ZGI-CO-OFDM requires reasonably small additional computation effort (~13.6%) compared to RGI-CO-OFDM for 112-Gb/s transmission over a 1600-km dispersion-uncompensated optical link.

  3. Graphics processing unit-based dispersion encoded full-range frequency-domain optical coherence tomography.

    PubMed

    Wang, Ling; Hofer, Bernd; Guggenheim, Jeremy A; Povazay, Boris

    2012-07-01

    Dispersion encoded full-range (DEFR) frequency-domain optical coherence tomography (FD-OCT) and its enhanced version, fast DEFR, utilize dispersion mismatch between sample and reference arm to eliminate the ambiguity in OCT signals caused by non-complex valued spectral measurement, thereby numerically doubling the usable information content. By iteratively suppressing asymmetrically dispersed complex conjugate artifacts of OCT-signal pulses the complex valued signal can be recovered without additional measurements, thus doubling the spatial signal range to cover the full positive and negative sampling range. Previously the computational complexity and low processing speed limited application of DEFR to smaller amounts of data and did not allow for interactive operation at high resolution. We report a graphics processing unit (GPU)-based implementation of fast DEFR, which significantly improves reconstruction speed by a factor of more than 90 in respect to CPU-based processing and thereby overcomes these limitations. Implemented on a commercial low-cost GPU, a display line rate of ∼21,000 depth scans/s for 2048 samples/depth scan using 10 iterations of the fast DEFR algorithm has been achieved, sufficient for real-time visualization in situ.

  4. Graphics processing unit-based dispersion encoded full-range frequency-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Hofer, Bernd; Guggenheim, Jeremy A.; Považay, Boris

    2012-07-01

    Dispersion encoded full-range (DEFR) frequency-domain optical coherence tomography (FD-OCT) and its enhanced version, fast DEFR, utilize dispersion mismatch between sample and reference arm to eliminate the ambiguity in OCT signals caused by non-complex valued spectral measurement, thereby numerically doubling the usable information content. By iteratively suppressing asymmetrically dispersed complex conjugate artifacts of OCT-signal pulses the complex valued signal can be recovered without additional measurements, thus doubling the spatial signal range to cover the full positive and negative sampling range. Previously the computational complexity and low processing speed limited application of DEFR to smaller amounts of data and did not allow for interactive operation at high resolution. We report a graphics processing unit (GPU)-based implementation of fast DEFR, which significantly improves reconstruction speed by a factor of more than 90 in respect to CPU-based processing and thereby overcomes these limitations. Implemented on a commercial low-cost GPU, a display line rate of ~21,000 depth scans/s for 2048 samples/depth scan using 10 iterations of the fast DEFR algorithm has been achieved, sufficient for real-time visualization in situ.

  5. Frequency-domain diffuse optical tomography with single source-detector pair for breast cancer detection

    NASA Astrophysics Data System (ADS)

    Orlova, A. G.; Turchin, I. V.; Plehanov, V. I.; Shakhova, N. M.; Fiks, I. I.; Kleshnin, M. I.; Konuchenko, N. Yu; Kamensky, V. A.

    2008-04-01

    An experimental setup for multicolor frequency-domain diffuse optical tomography (FD DOT) was created to visualize neoplasia of breast tissue and to estimate its size. The breast is gently pressed between two glass plates and scanned in the transilluminative configuration by a single source and detector pair. Illumination at three wavelengths (684 nm, 794 nm, and 850 nm) which correspond to different parts of the absorption spectrum in a therapeutic transparency window provides information about concentration of the main absorbers (oxygenated hemoglobin, deoxygenated hemoglobin, and fat/water). Source amplitude modulation at 140 MHz increases spatial resolution and provides separate reconstruction of scattering and absorption coefficients. Moreover, it gives information about breast thickness, which is important for reconstruction. The sensitivity of the system enables one to detect the light propagated through tissue having thickness up to 8 cm. Studies on model media and preliminary in vivo experiments with normal breast and breast carcinoma were performed. An increase of scattering coefficient and total hemoglobin concentration is observed in the tumor area. This corroborates validity of the FD DOT method for breast cancer diagnosis.

  6. Optical frequency-domain reflectometry using multiple wavelength-swept elements of a DFB laser array

    NASA Astrophysics Data System (ADS)

    DiLazaro, Tom; Nehmetallah, Georges

    2017-02-01

    Coherent optical frequency-domain reflectometry (C-OFDR) is a distance measurement technique with significant sensitivity and detector bandwidth advantages over normal time-of-flight methods. Although several swept-wavelength laser sources exist, many exhibit short coherence lengths, or require precision mechanical tuning components. Semiconductor distributed feedback lasers (DFBs) are advantageous as a mid-to-long range OFDR source because they exhibit a narrow linewidth and can be rapidly tuned simply via injection current. However, the sweep range of an individual DFB is thermally limited. Here, we present a novel high-resolution OFDR system that uses a compact, monolithic 12-element DFB array to create a continuous, gap-free sweep over a wide wavelength range. Wavelength registration is provided by the incorporation of a HCN gas cell and reference interferometer. The wavelength-swept spectra of the 12 DFBs are combined in post-processing to achieve a continuous total wavelength sweep of more than 40 nm (5.4 THz) in the telecommunications C-Band range.

  7. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging

    PubMed Central

    Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2016-01-01

    Abstract. A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer. PMID:26822943

  8. A nonlinearity-tolerant frequency domain root M-shaped pulse for coherent optical communication systems.

    PubMed

    Xu, Xian; Zhuge, Qunbi; Châtelain, Benoît; Morsy-Osman, Mohamed; Chagnon, Mathieu; Qiu, Meng; Plant, David V

    2013-12-30

    A new intersymbol interference (ISI)-free nonlinearity-tolerant frequency domain root M-shaped pulse (RMP) is derived for dispersion unmanaged coherent optical transmission systems. Beginning with the relationship between pulse shaping and intra-channel nonlinearity effects, we derive closed-form expressions for the proposed pulse. Experimental demonstrations reveal that by employing the proposed pulse at a roll-off factor of 1, the maximum transmission reach of a single-channel 56 Gb/s polarization-division-multiplexed quadrature phase-shift keying (PDM-QPSK) system can be extended by 33% and 17%, when compared to systems using a root raised cosine (RRC) pulse and a root optimized pulse (ROP), respectively. For a single-channel 128 Gb/s polarization-division-multiplexed 16-quadrature amplitude modulation (PDM-16QAM) system, the reach can be extended by 44% and 18%, respectively. Reach increases of 30% and 13% are also observed for a dense wavelength-division multiplexing (DWDM) 504 Gb/s PDM-QPSK transmission system. The tolerance to narrow filtering effect for the three pulses is experimentally studied as well.

  9. Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yueli; Burnes, Daina L.; de Bruin, Martijn; Mujat, Mircea; de Boer, Johannes F.

    2009-03-01

    To compare the optical properties of the human retina, 3-D volumetric images of the same eye are acquired with two nearly identical optical coherence tomography (OCT) systems at center wavelengths of 845 and 1060 nm using optical frequency domain imaging (OFDI). To characterize the contrast of individual tissue layers in the retina at these two wavelengths, the 3-D volumetric data sets are carefully spatially matched. The relative scattering intensities from different layers such as the nerve fiber, photoreceptor, pigment epithelium, and choroid are measured and a quantitative comparison is presented. OCT retinal imaging at 1060 nm is found to have a significantly better depth penetration but a reduced contrast between the retinal nerve fiber, the ganglion cell, and the inner plexiform layers compared to the OCT retinal imaging at 845 nm.

  10. Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging.

    PubMed

    Chen, Yueli; Burnes, Daina L; de Bruin, Martijn; Mujat, Mircea; de Boer, Johannes F

    2009-01-01

    To compare the optical properties of the human retina, 3-D volumetric images of the same eye are acquired with two nearly identical optical coherence tomography (OCT) systems at center wavelengths of 845 and 1060 nm using optical frequency domain imaging (OFDI). To characterize the contrast of individual tissue layers in the retina at these two wavelengths, the 3-D volumetric data sets are carefully spatially matched. The relative scattering intensities from different layers such as the nerve fiber, photoreceptor, pigment epithelium, and choroid are measured and a quantitative comparison is presented. OCT retinal imaging at 1060 nm is found to have a significantly better depth penetration but a reduced contrast between the retinal nerve fiber, the ganglion cell, and the inner plexiform layers compared to the OCT retinal imaging at 845 nm.

  11. High-resolution differential mode delay measurement for a multimode optical fiber using a modified optical frequency domain reflectometer.

    PubMed

    Ahn, T-J; Kim, D

    2005-10-03

    A novel differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry (OFDR) has been proposed. We have obtained a high-resolution DMD value of 0.054 ps/m for a commercial multimode optical fiber with length of 50 m by using a modified OFDR in a Mach-Zehnder interferometer structure with a tunable external cavity laser and a Mach-Zehnder interferometer instead of Michelson interferometer. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method. DMD resolution with our proposed OFDR technique is more than an order of magnitude better than a result obtainable with a conventional time-domain method.

  12. Predictors of periprocedural (type IVa) myocardial infarction, as assessed by frequency-domain optical coherence tomography.

    PubMed

    Porto, Italo; Di Vito, Luca; Burzotta, Francesco; Niccoli, Giampaolo; Trani, Carlo; Leone, Antonio M; Biasucci, Luigi M; Vergallo, Rocco; Limbruno, Ugo; Crea, Filippo

    2012-02-01

    Frequency-domain optical coherence tomography (FD-OCT) is easily able to define both pre- and post-stenting features of the atherosclerotic plaque that can potentially be related to periprocedural complications. We sought to examine which FD-OCT-defined characteristics, assessed both before and after stent deployment, predicted periprocedural (type IVa) myocardial infarction (MI). FD-OCT was performed before and after coronary stenting in 50 patients undergoing percutaneous coronary intervention (PCI) for either non-ST segment elevation MI (NSTEMI) or stable angina. All patients underwent single-vessel stenting, and only drug-eluting stents were implanted. Troponin T was analyzed on admission, before PCI, and at 12 and 24 hours after PCI, and type IVa MI was defined in stable angina as a rise of at least 3× upper reference limit and in NSTEMI as a pre-PCI troponin T fall, followed by post-PCI troponin T rise >20%. Type IVa MI was diagnosed in 21 patients, while the remaining 29 represented the control group. FD-OCT analysis showed that thin-cap fibroatheroma (76.2% versus 41.4%; P=0.017) prior to PCI, intrastent thrombus (61.9% versus 20.7%; P=0.04), and intrastent dissection (61.9% versus 31%; P=0.03) after PCI were significantly more frequent in type IVa MI than in the control group. Multivariate logistic regression analysis confirmed thin-cap fibroatheroma (OR 29.7, 95% CI 1.4 to 32.1), intrastent thrombus (OR 5.5, CI 1.2 to 24.9) and intrastent dissection (OR 5.3, CI 1.2 to 24.3) as independent predictors of type IVa MI. In conclusion, presence of thin-cap fibroatheroma at pre-PCI FD-OCT and of intrastent thrombus and intrastent dissection at post-PCI FD-OCT predict type IVa MI in a contemporary sample of patients treated with second-generation drug-eluting stents. Interestingly, 2 of the 3 predictors of type IVa MI were not apparent at pre-PCI FD-OCT.

  13. Full field frequency domain common path optical coherence tomography with annular aperture

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.; Friedman, Ron; Liraz, Lior; Dadon, Ronen

    2007-07-01

    Theoretical and experimental results are presented using the common path Mirau interference microscope and using the Linnik microscope with annular masks to increase the depth of field. The competence between the spatial and temporal coherence was investigated theoretically and confirmed experimentally. Phase imaging of onion epidermis cells was presented showing the possibility of obtaining profiles of the cells. Frequency domain OCT was shown to be possible using full field setup.

  14. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Hueber, Dennis; Franceschini, Maria Angela; Gratton, Enrico; Rosenfeld, Warren; Stubblefield, Phillip G.; Maulik, Dev; Stankovic, Miljan R.

    1999-06-01

    We have used continuous-wave (CW) and frequency-domain spectroscopy to investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and 3D adjustment of the optical probe. By measuring the absolute values of the brain absorption and reduced scattering coefficients at two wavelengths (758 and 830 nm), frequency-domain spectroscopy provided absolute readings (in contrast to the relative readings of CW spectroscopy) of cerebral haemoglobin concentration and saturation during experimentally induced perturbations in cerebral haemodynamics and oxygenation. Such perturbations included a modulation of the inspired oxygen concentration, transient brain asphyxia, carotid artery occlusion and terminal brain asphyxia. The baseline cerebral haemoglobin saturation and concentration, measured with frequency-domain spectroscopy, were about 60% and 42 µM respectively. The cerebral saturation values ranged from a minimum of 17% (during transient brain asphyxia) to a maximum of 80% (during recovery from transient brain asphyxia). To analyse the CW optical data, we have (a) derived a mathematical relationship between the cerebral optical properties and the differential pathlength factor and (b) introduced a method based on the spatial dependence of the detected intensity (dc slope method). The analysis of the cerebral optical signals associated with the arterial pulse and with respiration demonstrates that motion artefacts can significantly affect the intensity recorded from a single optode pair. Motion artefacts can be strongly reduced by combining data from multiple optodes to provide relative readings in the dc slope method. We also report significant biphasic changes (initial decrease and successive increase) in the reduced scattering coefficient measured

  15. Evaluating the thermal stability of multi-pass cells' effective optical path length using optical frequency domain reflectometer

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Cao, Xiuhan; Li, Jinyi; Du, Zhenhui

    2016-10-01

    Multi-pass cells (MPCs) are commonly used to improve the sensitivity for trace gas detection using spectroscopy technologies. The determination of Effective Optical Path Length (EOPL) of a MPC is very important and challenging in applications which aim at absolute measurements. It is well-known that the temperature changing will exercise some influence on the MPCs' spatial structure, however, measurements of the influence haven't been reported which might due to the limitation of measuring method. In this paper, we used a direct high-precision measuring method with Optical Frequency Domain Reflectometer (OFDR) to evaluate the thermal stability of a multi-pass cell. To simulate the environment with a large range of temperature changing, this paper gave a series of experiments by setting the temperature control unit in system from 25 to 175 degree Celsius, and the MPC's EOPL was measured simultaneously for the investigation of temperature response. The results showed that the effective optical path length increase monotonically along with the variation of the temperature, and the rising rate is 0.5 mm/ºC with the total length of about 3 meters which should be pay attention to when the ultra-high accuracy results are demanded. To stabilize the EOPL of the system, if it is possible, the environment temperature of gas cell can be controlled with a constant temperature. In practical applications, the real-time monitoring of EOPL with a direct measuring method may be necessary.

  16. Improvements in frequency-domain based NIRF optical tomography modality for preclinical studies

    NASA Astrophysics Data System (ADS)

    Darne, Chinmay D.; Sevick-Muraca, Eva M.

    2014-05-01

    Herein we present recent improvements in system design and performance evaluation of near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system developed for small animal fluorescence tomography and installed within a commercial micro-CT/PET scanner. We improved system performance by increasing signal-to-noise ratio (SNR) through use of high powered rf modulation, novel data collection scheme, and data discrimination based on the associated noise levels. Noise characteristics show improvement with these techniques and are currently being employed to improve 3-D fluorescence for tomographic reconstructions in phantoms before incorporating into hybrid scanner.

  17. Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject

    SciTech Connect

    Fishkin, J.B.; Coquoz, O.; Anderson, E.R.; Brenner, M.; Tromberg, B.J. |

    1997-01-01

    A 1-GHz multifrequency, multiwavelength frequency-domain photon migration instrument is used to measure quantitatively the optical absorption ({mu}{sub a}) and effective optical scattering ({mu}{sub s}{sup {prime}}) of normal and malignant tissues in a human subject. Large ellipsoidal ({approximately}10-cm major axis, {approximately}6-cm minor axes) subcutaneous malignant lesions were compared with adjacent normal sites in the abdomen and back. Absorption coefficients recorded at 674, 811, 849, and 956 nm were used to calculate tissue hemoglobin concentration (oxyhemoglobin, deoxyhemoglobin, and total), water concentration, hemoglobin oxygen saturation, and blood volume fraction {ital in vivo}. Our results show that the normal and the malignant tissues measured in the patient have clearly resolvable optical and physiological property differences that may be broadly useful in identifying and characterizing tumors.{copyright} 1997 Optical Society of America

  18. Optical frequency domain reflectometry based fiber Bragg grating vibration sensor array using sinusoidal current modulation of laser diodes

    NASA Astrophysics Data System (ADS)

    Wada, Atsushi; Tanaka, Satoshi; Takahashi, Nobuaki

    2015-09-01

    We present multipoint vibration sensing using fiber Bragg gratings and optical frequency domain refrectometry (OFDR). In OFDR based method, the maximum number of arrayed sensor can be few thousands and the measurement time is determined by wavelength scanning rate of a light source. In our sensor system, a laser diode is used as a wavelength scanning light source. Lasing wavelength of a laser diode can be modulated by changing its injection current. The injection current can be precisely modulated at high frequency up to 1 MHz using a laser-diode controller and wavelength scanning can be then easily achieved with a laser diode.

  19. Parallel optical sampler

    DOEpatents

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  20. Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain

    NASA Astrophysics Data System (ADS)

    Nadeau, Kyle P.; Durkin, Anthony J.; Tromberg, Bruce J.

    2014-05-01

    We have developed a method for extracting spatial frequency information content from biological tissue, which is used to calculate tissue optical properties and determine tissue structural orientation. This demodulation method employs a two-dimensional Hilbert transform using a spiral phase function in Fourier space. The approach presented here allows for the determination of tissue optical properties using a single frame of data for each modulation frequency, increasing imaging speed by two to threefold versus conventional, three-phase spatial frequency domain imaging (SFDI). This new single-phase Hilbert transform approach recovers optical property and scattering orientation index values within 1% and 10% of three-phase SFDI, respectively. These results suggest that, using the Hilbert demodulation technique, SFDI data acquisition speed can be increased significantly while preserving data quality, which will help us move forward toward the implementation of a real-time SFDI platform.

  1. Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain

    PubMed Central

    Nadeau, Kyle P.; Durkin, Anthony J.; Tromberg, Bruce J.

    2014-01-01

    Abstract. We have developed a method for extracting spatial frequency information content from biological tissue, which is used to calculate tissue optical properties and determine tissue structural orientation. This demodulation method employs a two-dimensional Hilbert transform using a spiral phase function in Fourier space. The approach presented here allows for the determination of tissue optical properties using a single frame of data for each modulation frequency, increasing imaging speed by two to threefold versus conventional, three-phase spatial frequency domain imaging (SFDI). This new single-phase Hilbert transform approach recovers optical property and scattering orientation index values within 1% and 10% of three-phase SFDI, respectively. These results suggest that, using the Hilbert demodulation technique, SFDI data acquisition speed can be increased significantly while preserving data quality, which will help us move forward toward the implementation of a real-time SFDI platform. PMID:24858131

  2. Computer-aided classification of rheumatoid arthritis in finger joints using frequency domain optical tomography

    NASA Astrophysics Data System (ADS)

    Klose, C. D.; Kim, H. K.; Netz, U.; Blaschke, S.; Zwaka, P. A.; Mueller, G. A.; Beuthan, J.; Hielscher, A. H.

    2009-02-01

    Novel methods that can help in the diagnosis and monitoring of joint disease are essential for efficient use of novel arthritis therapies that are currently emerging. Building on previous studies that involved continuous wave imaging systems we present here first clinical data obtained with a new frequency-domain imaging system. Three-dimensional tomographic data sets of absorption and scattering coefficients were generated for 107 fingers. The data were analyzed using ANOVA, MANOVA, Discriminant Analysis DA, and a machine-learning algorithm that is based on self-organizing mapping (SOM) for clustering data in 2-dimensional parameter spaces. Overall we found that the SOM algorithm outperforms the more traditional analysis methods in terms of correctly classifying finger joints. Using SOM, healthy and affected joints can now be separated with a sensitivity of 0.97 and specificity of 0.91. Furthermore, preliminary results suggest that if a combination of multiple image properties is used, statistical significant differences can be found between RA-affected finger joints that show different clinical features (e.g. effusion, synovitis or erosion).

  3. All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging.

    PubMed

    Jun, Changsu; Villiger, Martin; Oh, Wang-Yuhl; Bouma, Brett E

    2014-10-20

    Innovations in laser engineering have yielded several novel configurations for high repetition rate, broad sweep range, and long coherence length wavelength swept lasers. Although these lasers have enabled high performance frequency-domain optical coherence tomography, they are typically complicated and costly and many require access to proprietary materials or devices. Here, we demonstrate a simplified ring resonator configuration that is straightforward to construct from readily available materials at a low total cost. It was enabled by an insight regarding the significance of isolation against bidirectional operation and by configuring the sweep range of the intracavity filter to exceed its free spectral range. The design can easily be optimized to meet a range of operating specifications while yielding robust and stable performance. As an example, we demonstrate 240 kHz operation with 125 nm sweep range and >70 mW of average output power and demonstrate high quality frequency domain OCT imaging. The complete component list and directions for assembly of the laser are posted on-line at www.octresearch.org.

  4. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system.

    PubMed

    Spirou, Gloria M; Mandelis, Andreas; Vitkin, I Alex; Whelan, William M

    2008-05-10

    Photoacoustic (more precisely, photothermoacoustic) signals generated by the absorption of photons can be related to the incident laser fluence rate. The dependence of frequency domain photoacoustic (FD-PA) signals on the optical absorption coefficient (micro(a)) and the effective attenuation coefficient (micro(eff)) of a turbid medium [polyvinyl chloride-plastisol (PVCP)] with tissuelike optical properties was measured, and empirical relationships between these optical properties and the photoacoustic (PA) signal amplitude and the laser fluence rate were derived for the water (PVCP system with and without optical scatterers). The measured relationships between these sample optical properties and the PA signal amplitude were found to be linear, consistent with FD-PA theory: micro(a)=a(A/Phi)-b and micro(eff)=c(A/Phi)+d, where Phi is the laser fluence, A is the FD-PA amplitude, and a, ...,d are empirical coefficients determined from the experiment using linear frequency-swept modulation and a lock-in heterodyne detection technique. This quantitative technique can easily be used to measure the optical properties of general turbid media using FD-PAs.

  5. Study on optical frequency domain reflectometry based on tunable semiconductor laser

    NASA Astrophysics Data System (ADS)

    Li, Guoyu; Liu, Tongqing; Zhang, Liwei; Guan, Bai-ou

    2009-11-01

    The relation of beat frequency, sweep rate, optical frequency modulation excursion and length of fiber under test (FUT) based on tunable semiconductor laser is studied. Experimental results show that the frequency of beat signal will increase when the length of the FUT, optical frequency modulation excursion or sweep rate increases.

  6. Analytical investigation of a novel interrogation approach of fiber Bragg grating sensors using Optical Frequency Domain Reflectometry

    NASA Astrophysics Data System (ADS)

    Yüksel, Kivilcim; Pala, Deniz

    2016-06-01

    This work presents a novel approach in interrogating Polarization Dependent Loss (PDL) of cascaded identical FBGs using Optical Frequency Domain Reflectometer (OFDR). The fundamentals of both polarisation properties of uniform FBGs and polarisation-sensitive OFDR are explained and the benefits of this novel approach in measuring transversal load are discussed. The numerical programs computing the spectral evolution of PDL of the FBGs in the array as a function of grating parameters (grating length and birefringence) are presented. Our simulation results show an excellent agreement with the previously reported simulation (and experimental) results in the literature obtained on a single FBG by using classical state-of-the-art measurement techniques. As an envisaged application, the proposed system shows the feasibility of measuring the residual stresses during manufacturing process of composite materials which is not straightforward by amplitude spectrum measurements and/or considering only the axial strains.

  7. Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging

    PubMed Central

    Furukawa, Hiroyuki; Hiro-Oka, Hideaki; Satoh, Nobuyuki; Yoshimura, Reiko; Choi, Donghak; Nakanishi, Motoi; Igarashi, Akihito; Ishikawa, Hitoshi; Ohbayashi, Kohji; Shimizu, Kimiya

    2010-01-01

    We describe a high-speed long-depth range optical frequency domain imaging (OFDI) system employing a long-coherence length tunable source and demonstrate dynamic full-range imaging of the anterior segment of the eye including from the cornea surface to the posterior capsule of the crystalline lens with a depth range of 12 mm without removing complex conjugate image ambiguity. The tunable source spanned from 1260 to 1360 nm with an average output power of 15.8 mW. The fast A-scan rate of 20,000 per second provided dynamic OFDI and dependence of the whole anterior segment change on time following abrupt relaxation from the accommodated to the relaxed status, which was measured for a healthy eye and that with an intraocular lens. PMID:21258564

  8. New insights into the coronary artery bifurcation hypothesis-generating concepts utilizing 3-dimensional optical frequency domain imaging.

    PubMed

    Farooq, Vasim; Serruys, Patrick W; Heo, Jung Ho; Gogas, Bill D; Okamura, Takayuki; Gomez-Lara, Josep; Brugaletta, Salvatore; Garcìa-Garcìa, Hector M; van Geuns, Robert Jan

    2011-08-01

    Coronary artery bifurcations are a common challenging lesion subset accounting for approximately 10% to 20% of all percutaneous coronary interventions. The provisional T-stenting approach is generally recommended as the first-line management of most lesions. Carina shift is suggested to be the predominant mechanism of side-branch pinching during provisional T-stenting and has been indirectly inferred from bench work and other intravascular imaging modalities. Offline 3-dimensional (3D) reconstructions of patients studied in the first-in-man trial of the high-frequency (160 frames/s) Terumo optical frequency domain imaging system were undertaken using volume-rendering software. Through a series of 3D reconstructions, several novel hypothesis-generating concepts are presented.

  9. Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography.

    PubMed

    Chen, Liang-Yu; Pan, Min-Chun; Pan, Min-Cheng

    2012-01-01

    In this study, we first propose the use of edge-preserving regularization in optimizing an ill-conditioned problem in the reconstruction procedure for diffuse optical tomography to prevent unwanted edge smoothing, which usually degrades the attributes of images for distinguishing tumors from background tissues when using Tikhonov regularization. In the edge-preserving regularization method presented here, a potential function with edge-preserving properties is introduced as a regularized term in an objective function. With the minimization of this proposed objective function, an iterative method to solve this optimization problem is presented in which half-quadratic regularization is introduced to simplify the minimization task. Both numerical and experimental data are employed to justify the proposed technique. The reconstruction results indicate that edge-preserving regularization provides a superior performance over Tikhonov regularization. © 2012 Optical Society of America

  10. Molecular Electronics for Frequency Domain Optical Storage. Persistent Spectral Hole-Burning. A Review.

    DTIC Science & Technology

    1985-03-25

    if applicable) Office of Naval Research IBM Almaden Research Center Chemistry Division, Code 1113 6c. ADDRESS (City, State, and ZIP Code) 7b...NOTATION Journal of Molecular Electronics 17. .* COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number) FIEL GRUP SB...GOUP Molecular electronics, spectral hole-burning, frequency I I domain. optical storage, solid state photo chemistry , * I photon gating. 19. ABSTRACT

  11. Digital phosphorimeter with frequency domain signal processing: Application to real-time fiber-optic oxygen sensing

    NASA Astrophysics Data System (ADS)

    Alcala, J. Ricardo; Yu, Clement; Yeh, Gong Jong

    1993-06-01

    An instrument to measure the excited-state lifetimes of phosphorescent materials in real time is described. This apparatus uses pulsed and frequency-doubled Nd:YAG solid-state laser for excitation, sampler for data acquisition, and frequency domain methods for data fitting. The instrument amplifies the ac components of the detector output and band limits the signal to 25 kHz. The fundamental frequency of the excitation is then set to obtain a desired number of harmonics. This band limited signal is sampled and averaged over few thousand cycles in the time domain. The frequency domain representation of the data is obtained by employing fast Fourier transform algorithms. The phase delay and the modulation ratio of each sampled harmonic is then computed. Ten to a hundred values of the phase and modulations are averaged before computing the sensor lifetime. The instrument is capable of measuring precise and accurate excited-state lifetimes from subpicowatt luminescent signals in 100 μm optical fibers. To monitor oxygen for biomedical applications the response time of the system is decreased by collecting only 8 or 16 harmonics. A least-squares fit yields the lifetimes of single exponentials. A component of zero lifetime is introduced to account for the backscatter excitation. The phosphorescence lifetimes measured reproducibly to three parts in a thousand are used to monitor oxygen. Oxygen concentrations are computed employing empirical polynomials. The system drift is less than 1% over 100 h of continuous operation. This instrument is used to measure oxygen concentrations in vitro and in vivo with 2 s update times and 90 s full response times. Examples of measurements in saline solutions and in dogs are presented.

  12. Magnetic resonance guided optical spectroscopy imaging of human breast cancer using a combined frequency domain and continuous wave approach

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Davis, Scott C.; Jiang, Shudong; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2012-03-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used to image high-risk patients for breast cancer because of its higher sensitivity to tumors (approaching 100%) than traditional x-ray mammography. We focus on Near Infrared Spectroscopy (NIRS) as an emerging functional and molecular imaging technique that non-invasively quantifies optical properties of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration to increase the relatively low specificity of DCE-MRI. Our optical imaging system combines six frequency domain wavelengths, measured using PMT detectors with three continuous wave wavelengths measured using CCD/spectrometers. We present methods on combining the synergistic attributes of DCE-MR and NIRS for in-vivo imaging of breast cancer in three dimensions using a custom optical MR breast coil and diffusion based light modeling software, NIRFAST. We present results from phantom studies, healthy subjects, and breast cancer patients. Preliminary results show contrast recovery within 10% in phantoms and spatial resolution less than 5mm. Images from healthy subjects were recovered with properties similar to literature values and previous studies. Patient images have shown elevated total hemoglobin values and water fraction, agreeing with histology and previous results. The additional information gained from NIRS may improve the ability to distinguish between malignant and benign lesions during MR imaging. These dual modality instruments will provide complex anatomical and molecular prognostic information, and may decrease the number of biopsies, thereby improving patient care.

  13. A sensitivity function-based conjugate gradient method for optical tomography with the frequency-domain equation of radiative transfer

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Keol; Charette, André

    2007-03-01

    The Sensitivity Function-based Conjugate Gradient Method (SFCGM) is described. This method is used to solve the inverse problems of function estimation, such as the local maps of absorption and scattering coefficients, as applied to optical tomography for biomedical imaging. A highly scattering, absorbing, non-reflecting, non-emitting medium is considered here and simultaneous reconstructions of absorption and scattering coefficients inside the test medium are achieved with the proposed optimization technique, by using the exit intensity measured at boundary surfaces. The forward problem is solved with a discrete-ordinates finite-difference method on the framework of the frequency-domain full equation of radiative transfer. The modulation frequency is set to 600 MHz and the frequency data, obtained with the source modulation, is used as the input data. The inversion results demonstrate that the SFCGM can retrieve simultaneously the spatial distributions of optical properties inside the medium within a reasonable accuracy, by significantly reducing a cross-talk between inter-parameters. It is also observed that the closer-to-detector objects are better retrieved.

  14. Accurate reconstruction of the optical parameter distribution in participating medium based on the frequency-domain radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Qiao, Yao-Bin; Qi, Hong; Zhao, Fang-Zhou; Ruan, Li-Ming

    2016-12-01

    Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in the present work. The forward model of FD-RTE is solved via the finite volume method (FVM). The regularization term formatted by the generalized Gaussian Markov random field model is used in the objective function to overcome the ill-posed nature of the inverse problem. The multi-start conjugate gradient (MCG) method is employed to search the minimum of the objective function and increase the efficiency of convergence. A modified adjoint differentiation technique using the collimated radiative intensity is developed to calculate the gradient of the objective function with respect to the optical parameters. All simulation results show that the proposed reconstruction algorithm based on FD-RTE can obtain the accurate distributions of absorption and scattering coefficients. The reconstructed images of the scattering coefficient have less errors than those of the absorption coefficient, which indicates the former are more suitable to probing the inner structure. Project supported by the National Natural Science Foundation of China (Grant No. 51476043), the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).

  15. Optical frequency domain imaging with a rapidly swept laser in the 1300nm bio-imaging window

    NASA Astrophysics Data System (ADS)

    Meleppat, Ratheesh Kumar; Vadakke Matham, Murukeshan; Seah, Leong Keey

    2015-07-01

    Optical frequency domain imaging system (OFDI) in the 1300nm biological imaging window is demonstrated by using a high speed frequency swept laser source. The output of the laser with central wave length of 1320nm is continuously tuned over a bandwidth of 100nm with a repetition rate of 16 KHz. The laser source has an instantaneous coherence length of 6mm and delivers an average power of 12mW. Axial resolution ~ 6μm in the biological tissue and peak sensitivity of 110dB are achieved. The experimentally determined values of the imaging parameters such as the axial resolution, sensitivity and depth range are found to be in good agreement with the theoretically estimated values. The developed system is capable of generating the images of size 512x1024 at a rate of 20 frames per second. High resolution and high contrast images of the finger nail and anterior chamber of a pig's eye acquired using the developed OFDI system are presented, which demonstrate the feasibility of the system for in-vivo biomedical imaging applications.

  16. Hartmann modelling in the discrete spatial-frequency domain: application to real-time reconstruction in adaptive optics

    NASA Astrophysics Data System (ADS)

    Correia, Carlos; Kulcsár, Caroline; Conan, Jean-Marc; Raynaud, Henri-François

    2008-07-01

    Adaptive Optical systems (AO) with a very large number of degrees-of-freedom (DoF) need the proper development of reconstruction and control algorithms mingling both increased performance and reduced computational burden. The Hartmann wave-front sensor (HS-WFS) is broadly used in AO, featuring a set of lenslet arrays aligned onto a Cartesian grid. It works by averaging the slope of the wave-front in each sub-aperture. Throughout this paper the suitability of the so-called Hudgin, Fried and Southwell geometries to model the HS are analysed. Methods of exploiting data obtained from the telescope's annular aperture through the DFT are revisited. An alternative approach based upon the discrete Gerchberg iterative algorithm is employed. It inherently solves the extrapolation and circularization. The inverse problem is regularised to form the minimum mean-square error (MMSE) reconstructor in the spatial-frequency domain. Results obtained through Monte-Carlo simulations allow for a comprehensive comparison to the standard vector-matrix multiplies (VMM/VMMr) algorithm. Computational burden is kept O(DoF log2(DoF)).

  17. Intraoperative spatial frequency domain diffuse optical tomography with indo-cyanine green (ICG) fluorescence contrast (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chong, Sang Hoon; Parthasarathy, Ashwin B.; Kavuri, Venkaiah C.; Moscatelli, Frank A.; Singhal, Sunil; Yodh, Arjun G.

    2017-02-01

    Surgical resection is the most effective treatment strategy for solid tumors, but complete removal of the tumor is critical for post-surgical recovery/long-term survival and is dependent on correct identification of the tumor margin and accurate excision of microscopic residual tumor in the surgical field. Fluorescence image guided surgery is an emerging technique that has shown promise for intraoperative location of tumors and tumor margins. Current versions of such intraoperative fluorescence imaging, however, are generally limited to 2D near-surface images, i.e., without information about tumor depth. Here we present an intraoperative fluorescence imaging system for 3D volumetric imaging of tumors; the system uses spatial frequency domain diffuse optical tomography with an analytic inversion reconstruction method. The new instrument can derive depth-sensitive 3D tumor images at depths up to 1 cm, and it employs compact epi-imaging and illumination suitable for the operating room, with quasi-real-time image reconstruction for surgical visualization. We present experimental results with FDA-approved Indocynanine Green using an extensive array of tissue phantoms and in a pilot in-vivo study.

  18. Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund

    2009-07-01

    In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.

  19. Invited Article: Acousto-optic finite-difference frequency-domain algorithm for first-principles simulations of on-chip acousto-optic devices

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Cerjan, Alexander; Fan, Shanhui

    2017-02-01

    We introduce a finite-difference frequency-domain algorithm for coupled acousto-optic simulations. First-principles acousto-optic simulation in time domain has been challenging due to the fact that the acoustic and optical frequencies differ by many orders of magnitude. We bypass this difficulty by formulating the interactions between the optical and acoustic waves rigorously as a system of coupled nonlinear equations in frequency domain. This approach is particularly suited for on-chip devices that are based on a variety of acousto-optic interactions such as the stimulated Brillouin scattering. We validate our algorithm by simulating a stimulated Brillouin scattering process in a suspended waveguide structure and find excellent agreement with coupled-mode theory. We further provide an example of a simulation for a compact on-chip resonator device that greatly enhances the effect of stimulated Brillouin scattering. Our algorithm should facilitate the design of nanophotonic on-chip devices for the harnessing of photon-phonon interactions.

  20. FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data—Part 1: Algorithm

    NASA Astrophysics Data System (ADS)

    Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves

    2009-03-01

    This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.

  1. Comparison of frequency domain optical coherence tomography and quantitative coronary angiography for the assessment of coronary lesions

    NASA Astrophysics Data System (ADS)

    Zafar, Haroon; Sharif, Faisal; Leahy, Martin J.

    2014-03-01

    Quantitative coronary angiography (QCA) has been used as a standard technique for the evaluation of coronary artery disease for many years. Intracoronary optical coherence tomography (OCT) offers higher resolution, faster image acquisition speeds and greater sensitivity than the intravascular ultrasound (IVUS). Recently developed frequency domain OCT (FD-OCT) systems overcome many technical limitations of conventional time domain OCT systems (TDOCT). The main objective of this study was to compare the FD-OCT and QCA measurements for the assessment of coronary lesions. A total of 21 stenoses in 18 patients were analysed using QCA and FD-OCT. The average minimum lumen diameter (MLD) and percent lumen area stenosis (%AS) by QCA were 1.52+/-0.44 mm and 68+/-9% respectively. The average MLD and %AS by FD-OCT were 1.32+/-0.38 mm and 63+/-14% respectively. There was a moderate but significant correlation between QCA and FD-OCT measured MLD (r = 0.5, p < 0.01) and %AS (r = 0.56, p < 0.01). Bland-Altman analysis showed that the mean differences between the QCA and FD-OCT measurements were 0.18+/-0.81 (limits of agreement: -0.63 to 0.99) for MLD and 4.4+/-22.8 (limits of agreement: -18.4 to 27.2) for %AS. The root mean square error (RMSE) between the QCA and FD-OCT measured MLD and %AS was +/-0.44 mm and +/-12.1% respectively.

  2. Frequency-domain optical coherence tomography assessment of unprotected left main coronary artery disease-a comparison with intravascular ultrasound.

    PubMed

    Fujino, Yusuke; Bezerra, Hiram G; Attizzani, Guilherme F; Wang, Wei; Yamamoto, Hirosada; Chamié, Daniel; Kanaya, Tomoaki; Mehanna, Emile; Tahara, Satoko; Nakamura, Sunao; Costa, Marco A

    2013-09-01

    To investigate safety and feasibility of imaging unprotected left main (ULM) using frequency-domain optical coherence tomography (FD-OCT) compared with intravascular ultrasound (IVUS). IVUS has been used to assess and guide percutaneous coronary intervention (PCI) of ULM disease. FD-OCT offers 10-fold higher axial resolution than IVUS and its high-speed image acquisition obviates the need for proximal balloon occlusion. We prospectively enrolled 35 consecutive patients with ULM disease. FD-OCT and IVUS assessments were attempted pre- and post-PCI and compared in regards to safety, ability to image the region of interest (ROI), number of pullbacks, volume of contrast and ability to detect malapposition, dissection, and thrombus. Patients were followed for 1 year when FD-OCT imaging was repeated. FD-OCT required more repeated pullbacks to image the ROI compared to IVUS. Mean lumen and stent areas were similar between FD-OCT and IVUS (11.24 ± 2.66 vs. 10.85 ± 2.47 mm(2) , P = 0.13 and 10.44 ± 2.33 vs. 10.49 ± 2.32 mm(2) , P = 0.82, respectively), whereas imaged stent length was shorter with FD-OCT. Malapposition areas and volumes were larger and more edge dissections were detected by FD-OCT. There were no clinical adverse events and no complications associated with FD-OCT at baseline and 1-year follow-up. All dissections were healed, whereas stent malapposition was still detected at follow-up. FD-OCT assessment of ULM is feasible and safe. Direct comparisons with IVUS reveal that FD-OCT achieved imaging completeness less often, whereas it was more sensitive in detecting malapposition and edge dissections, and similar to IVUS in the assessment of lumen and stent dimensions. Copyright © 2013 Wiley Periodicals, Inc.

  3. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography.

    PubMed

    Ozaki, Yuichi; Kitabata, Hironori; Tsujioka, Hiroto; Hosokawa, Seiki; Kashiwagi, Manabu; Ishibashi, Kohei; Komukai, Kenichi; Tanimoto, Takashi; Ino, Yasushi; Takarada, Shigeho; Kubo, Takashi; Kimura, Keizo; Tanaka, Atsushi; Hirata, Kumiko; Mizukoshi, Masato; Imanishi, Toshio; Akasaka, Takashi

    2012-01-01

    Although an intracoronary frequency-domain optical coherence tomography (FD-OCT) system overcomes several limitations of the time-domain OCT (TD-OCT) system, the former requires injection of contrast media for image acquisition. The increased total amount of contrast media for FD-OCT image acquisition may lead to the impairment of renal function. The safety and usefulness of the non-occlusion method with low-molecular-weight dextran L (LMD-L) via a guiding catheter for TD-OCT image acquisition have been reported previously. The aim of the present study was to compare the image quality and quantitative measurements between contrast media and LMD-L for FD-OCT image acquisition in coronary stented lesions. Twenty-two patients with 25 coronary stented lesions were enrolled in this study. FD-OCT was performed with the continuous-flushing method via a guiding catheter. Both contrast media and LMD-L were infused at a rate of 4 ml/s by an autoinjector. With regard to image quality, the prevalence of clear image segments was comparable between contrast media and LMD-L (97.9% vs. 96.5%, P=0.90). Furthermore, excellent correlations were observed between both flushing solutions in terms of minimum lumen area, mean lumen area, and mean stent area. The total volumes of contrast media and of LMD-L needed for OCT image acquisition were similar. FD-OCT image acquisition with LMD-L has the potential to reduce the total amount of contrast media without loss of image quality.

  4. A parallel algorithm for 2D visco-acoustic frequency-domain full-waveform inversion: application to a dense OBS data set

    NASA Astrophysics Data System (ADS)

    Sourbier, F.; Operto, S.; Virieux, J.

    2006-12-01

    We present a distributed-memory parallel algorithm for 2D visco-acoustic full-waveform inversion of wide-angle seismic data. Our code is written in fortran90 and use MPI for parallelism. The algorithm was applied to real wide-angle data set recorded by 100 OBSs with a 1-km spacing in the eastern-Nankai trough (Japan) to image the deep structure of the subduction zone. Full-waveform inversion is applied sequentially to discrete frequencies by proceeding from the low to the high frequencies. The inverse problem is solved with a classic gradient method. Full-waveform modeling is performed with a frequency-domain finite-difference method. In the frequency-domain, solving the wave equation requires resolution of a large unsymmetric system of linear equations. We use the massively parallel direct solver MUMPS (http://www.enseeiht.fr/irit/apo/MUMPS) for distributed-memory computer to solve this system. The MUMPS solver is based on a multifrontal method for the parallel factorization. The MUMPS algorithm is subdivided in 3 main steps: a symbolic analysis step that performs re-ordering of the matrix coefficients to minimize the fill-in of the matrix during the subsequent factorization and an estimation of the assembly tree of the matrix. Second, the factorization is performed with dynamic scheduling to accomodate numerical pivoting and provides the LU factors distributed over all the processors. Third, the resolution is performed for multiple sources. To compute the gradient of the cost function, 2 simulations per shot are required (one to compute the forward wavefield and one to back-propagate residuals). The multi-source resolutions can be performed in parallel with MUMPS. In the end, each processor stores in core a sub-domain of all the solutions. These distributed solutions can be exploited to compute in parallel the gradient of the cost function. Since the gradient of the cost function is a weighted stack of the shot and residual solutions of MUMPS, each processor

  5. Efficient frequency-domain channel equalization methods for dual-polarization orthogonal frequency-division multiplexing/offset quadrature amplitude modulation-passive optical network

    NASA Astrophysics Data System (ADS)

    Lin, Bangjiang; Fang, Xi; Tang, Xuan; Lin, Chun; Li, Yiwei; Zhang, Shihao; Wu, Yi; Li, Hui

    2016-10-01

    We present dual-polarization orthogonal frequency-division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) transmission for passive optical network (PON) with intensity modulation and direct detection, which has high spectral efficiency and high robustness against chromatic dispersion (CD) and polarization mode dispersion (PMD). The frequency-domain optical fiber channel transmission model for dual-polarization OFDM/OQAM-PON with the CD- and PMD-induced intrinsic imaginary interference (IMI) effect is systemically deduced. The intrasymbol frequency-domain averaging (ISFA) and minimum mean-squared error (MMSE) with the full loaded (FL) and half loaded (HL) preamble structures are used to mitigate the IMI effect. Compared with the conventional interference approximation method, the ISFA and MMSE offer improved receiver sensitivity. For channel estimation, the FL method is more effective than the HL method in mitigating the IMI effect and optical noise.

  6. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber.

    PubMed

    Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young

    2005-12-12

    We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.

  7. Frequency domain photoacoustic and fluorescence microscopy

    PubMed Central

    Langer, Gregor; Buchegger, Bianca; Jacak, Jaroslaw; Klar, Thomas A.; Berer, Thomas

    2016-01-01

    We report on simultaneous frequency domain optical-resolution photoacoustic and fluorescence microscopy with sub-µm lateral resolution. With the help of a blood smear, we show that photoacoustic and fluorescence images provide complementary information. Furthermore, we compare theoretically predicted signal-to-noise ratios of sinusoidal modulation in frequency domain with pulsed excitation in time domain. PMID:27446698

  8. Trajectories in parallel optics.

    PubMed

    Klapp, Iftach; Sochen, Nir; Mendlovic, David

    2011-10-01

    In our previous work we showed the ability to improve the optical system's matrix condition by optical design, thereby improving its robustness to noise. It was shown that by using singular value decomposition, a target point-spread function (PSF) matrix can be defined for an auxiliary optical system, which works parallel to the original system to achieve such an improvement. In this paper, after briefly introducing the all optics implementation of the auxiliary system, we show a method to decompose the target PSF matrix. This is done through a series of shifted responses of auxiliary optics (named trajectories), where a complicated hardware filter is replaced by postprocessing. This process manipulates the pixel confined PSF response of simple auxiliary optics, which in turn creates an auxiliary system with the required PSF matrix. This method is simulated on two space variant systems and reduces their system condition number from 18,598 to 197 and from 87,640 to 5.75, respectively. We perform a study of the latter result and show significant improvement in image restoration performance, in comparison to a system without auxiliary optics and to other previously suggested hybrid solutions. Image restoration results show that in a range of low signal-to-noise ratio values, the trajectories method gives a significant advantage over alternative approaches. A third space invariant study case is explored only briefly, and we present a significant improvement in the matrix condition number from 1.9160e+013 to 34,526.

  9. A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization.

    PubMed

    Otuya, David Odeke; Kasai, Keisuke; Yoshida, Masato; Hirooka, Toshihiko; Nakazawa, Masataka

    2013-09-23

    We demonstrate a single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse optical time-division multiplexing (OTDM) transmission by utilizing frequency-domain equalization (FDE). FDE makes it possible to compensate precisely for the waveform distortions caused by hardware imperfections thus greatly improving the error vector magnitude (EVM) of the demodulated 64 QAM signal compared with that obtained with a conventional FIR filter. As a result, a coherent 64 QAM OTDM transmission over 150 km with a bit error rate of below the forward error correction limit of 2 x 10⁻³ (requiring 7% overhead) was achieved for the first time.

  10. Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Kerbage, C.; Lim, H.; Sun, W.; Mujat, M.; de Boer, J. F.

    2007-06-01

    Three dimensional rapid large depth range imaging of the anterior segments of the human eye by an optical frequency domain imaging system is presented. The tunable source spans from 1217 to 1356 nm with an average output power of 60 mW providing a measured axial resolution of 10 μm in air based on the coherence envelope. The effective depth range is 4 mm, defined as the distance over which the sensitivity drops by 6 dB, achieved by frequency shifting the optical signal using acousto-optic modulators. The measured maximum sensitivity is 109 dB at a sample arm power of 14.7mW and A-lines rate of 43,900 per second. Images consisting of 512 depth profiles are acquired at an acquisition rate of 85 frames per second. We demonstrate an optical frequency domain imaging system capable of mapping in vivo the entire area of the human anterior segment (13.4 x 12 x 4.2 mm) in 1.4 seconds.

  11. Experimental demonstration of half cycle 64-QAM Nyquist-SCM direct-detection optical communication system with data-aided estimation and overlap frequency-domain equalization

    NASA Astrophysics Data System (ADS)

    Li, Danyu; He, Jing; Tang, Jin; Chen, Ming; Chen, Lin

    2014-12-01

    A half cycle 64-quadrature amplitude modulation (QAM) Nyquist subcarrier modulation (SCM) polarization division multiplexing (PDM) intensity modulation direct detection optical communication system is experimentally demonstrated. At the receiver, training sequences-based channel estimation and an overlap frequency domain equalization method are proposed to enhance the system performance. The experimental results show that the half cycle 64-QAM Nyquist-SCM PDM signal can be transmitted over 43-km standard single-mode fibers with a bit error rate below the forward error coding threshold of 2.4×10-2.

  12. Real-time simultaneous single snapshot of optical properties and blood flow using coherent spatial frequency domain imaging (cSFDI)

    PubMed Central

    Ghijsen, Michael; Choi, Bernard; Durkin, Anthony J.; Gioux, Sylvain; Tromberg, Bruce J.

    2016-01-01

    In this work we present and validate a wide-field method for the real-time mapping of tissue absorption, scattering and blood flow properties over wide regions of tissue (15 cm x 15 cm) with high temporal resolution (50 frames per second). We achieve this by applying Fourier Domain demodulation techniques to coherent spatial frequency domain imaging to extract optical properties and speckle flow index from a single snapshot. Applying this technique to forearm reactive hyperemia protocols demonstrates the ability to resolve intrinsic physiological signals such as the heart beat waveform and the buildup of deoxyhemoglobin associated with oxygen consumption. PMID:27231595

  13. Peri-stent contrast staining, major evaginations and severe malapposition after biolimus-eluting stent implantation: a case report based on coronary optical frequency domain imaging.

    PubMed

    Antonsen, Lisbeth; Thayssen, Per; Jensen, Lisette Okkels

    2014-01-01

    Peri-stent contrast staining and late acquired malapposition represent pathological vessel wall healing patterns following percutaneous coronary intervention with stent implantation. Earlier studies have described these abnormal vessel wall responses commonly present after implantation of first-generation drug-eluting stents. These coronary vascular changes can cause flow disturbance and thereby dispose for later thrombotic events. This case report, based on coronary optical frequency domain imaging, describes peri-stent contrast staining, major evaginations and severe malapposition occurring 18months after third-generation biolimus-eluting stent implantation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Direct high-precision measurement of the effective optical path length of multi-pass cell with optical frequency domain reflectometer.

    PubMed

    Du, Z H; Gao, H; Cao, X H

    2016-01-11

    Multi-pass cells (MPCs) are commonly used in trace-gas detection and weak spectrum measurement. It is essential to accomplish a high-precision measurement of MPCs' effective optical path length (EOPL). A direct high-precision measuring method of MPCs' EOPL with optical frequency domain reflectometer (OFDR) was reported and demonstrated in this paper. Several important parameters of a MPC, such as EOPL and base length, were derived with high-precision by identifying the complicated signal of OFDR. The MPC's EOPL was also verified with the prevailing absorbance method. The results showed that the MPC's EOPL measured by each of these two methods is highly consistent. However, the relative uncertainty with the OFDR dramatically decreased 2 orders of magnitude (about 0.0085%) than that with the absorbance method. It demonstrated that the OFDR method with fewer measurement links is more conducive to a direct measurement. The performances of beam spread and stray light in the White-cell were also evaluated with the method.

  15. Frequency domain measurement systems

    NASA Technical Reports Server (NTRS)

    Eischer, M. C.

    1978-01-01

    Stable frequency sources and signal processing blocks were characterized by their noise spectra, both discrete and random, in the frequency domain. Conventional measures are outlined, and systems for performing the measurements are described. Broad coverage of system configurations which were found useful is given. Their functioning and areas of application are discussed briefly. Particular attention is given to some of the potential error sources in the measurement procedures, system configurations, double-balanced-mixer-phase-detectors, and application of measuring instruments.

  16. Longitudinal, 3D Imaging of Collagen Remodeling in Murine Hypertrophic Scars In Vivo Using Polarization-Sensitive Optical Frequency Domain Imaging.

    PubMed

    Lo, William C Y; Villiger, Martin; Golberg, Alexander; Broelsch, G Felix; Khan, Saiqa; Lian, Christine G; Austen, William G; Yarmush, Martin; Bouma, Brett E

    2016-01-01

    Hypertrophic scars (HTS), frequently seen after traumatic injuries and surgery, remain a major clinical challenge because of the limited success of existing therapies. A significant obstacle to understanding HTS etiology is the lack of tools to monitor scar remodeling longitudinally and noninvasively. We present an in vivo, label-free technique using polarization-sensitive optical frequency domain imaging for the 3D, longitudinal assessment of collagen remodeling in murine HTS. In this study, HTS was induced with a mechanical tension device for 4-10 days on incisional wounds and imaged up to 1 month after device removal; an excisional HTS model was also imaged at 6 months after injury to investigate deeper and more mature scars. We showed that local retardation and degree of polarization provide a robust signature for HTS. Compared with normal skin with heterogeneous local retardation and low degree of polarization, HTS was characterized by an initially low local retardation, which increased as collagen fibers remodeled, and a persistently high degree of polarization. This study demonstrates that polarization-sensitive optical frequency domain imaging offers a powerful tool to gain significant biological insights into HTS remodeling by enabling longitudinal assessment of collagen in vivo, which is critical to elucidating HTS etiology and developing more effective HTS therapies.

  17. Frequency-domain measurements of changes of optical pathlength during spreading depression in a rodent brain model

    NASA Astrophysics Data System (ADS)

    Maris, Michael B.; Mayevsky, Avraham; Sevick, Eva M.; Chance, Britton

    1991-05-01

    Previously, we have shown that time-resolved spectroscopy can monitor changes in the distribution of photon migration pathlengths which are reflective of the changes in the tissue absorption due primarily to oxygenated or deoxygenated hemoglobin. In this study, we have monitored mean photon migration pathlengths in the frequency domain in the rodent brain insulted by hypoxia, ischemia and spreading depression (SD) using phase modulated spectroscopy (PMS). This technique consisted of monitoring light which emerged from the exposed rodent skull at 8 mm form an incident light source of 754 nm and 816 nm whose intensity was modulated at 220 MHz. The changes in phase-shift, (theta), of the emergent light with respect to the incident light are reflective of the photon pathlengths and hemoglobin absorbance. A multiprobe assembly holding PMS source fiber, nicotinamide dinucleotide (NADH) fluorometric probe, electrocortigraph (ECoG) electrodes, and doppler blood flow probe was placed on the rodent brain to simultaneously monitor brain metabolism, electrical cortical activity (ECoG) and blood flow. The PMS detector fiber was placed 8 mm posterior to the multiprobe assembly. Correlations between changes in intracellular deoxygenation (NADH) and hemoglobin deoxygenation as measured by PMS changes at 754 nm and 816 nm during hypoxia, and ischemia were found. The depolarization phase of spreading depression resulted in a similar increase at both 754 nm and 816 nm. We attribute this result to vasoconstriction and/or the decrease of extracellular space due to water shift in the rodent brain.

  18. Bio-Photonic Detection and Quantitative Evaluation Method for the Progression of Dental Caries Using Optical Frequency-Domain Imaging Method

    PubMed Central

    Wijesinghe, Ruchire Eranga; Cho, Nam Hyun; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun

    2016-01-01

    The initial detection of dental caries is an essential biomedical requirement to barricade the progression of caries and tooth demineralization. The objective of this study is to introduce an optical frequency-domain imaging technique based quantitative evaluation method to calculate the volume and thickness of enamel residual, and a quantification method was developed to evaluate the total intensity fluctuation in depth direction owing to carious lesions, which can be favorable to identify the progression of dental caries in advance. The cross-sectional images of the ex vivo tooth samples were acquired using 1.3 μm spectral domain optical coherence tomography system (SD-OCT). Moreover, the advantages of the proposed method over the conventional dental inspection methods were compared to highlight the potential capability of OCT. As a consequence, the threshold parameters obtained through the developed method can be used as an efficient investigating technique for the initial detection of demineralization. PMID:27929440

  19. Persistent Spectral Hole Burning Materials for Time-and- Frequency-Domain Optical Memories and Signal Processing

    DTIC Science & Technology

    2007-11-02

    spectral hole burning, optical material, rare earth , photon echo, optical correlator, laser, optical, spectroscopy, coherent transient 17. SECURITY...that determine material performance, emphasizing parameters relevant to device development. Attention was focused on rare earth and transition metal...Er3+ ions and optimized their hole burning and coherent transient properties. Crystal composition and rare earth ion concentration were tailored to

  20. Frequency-domain endoscopic diffuse optical tomography reconstruction algorithm based on dual-modulation-frequency and dual-points source diffuse equation

    NASA Astrophysics Data System (ADS)

    Qin, Zhuanping; Hou, Qiang; Zhao, Huijuan; Yang, Yanshuang; Zhou, Xiaoqing; Gao, Feng

    2013-03-01

    In this paper, frequency-domain endoscopic diffuse optical tomography image reconstruction algorithm based on dual-modulation-frequency and dual-points source diffuse equation is investigated for the reconstruction of the optical parameters including the absorption and reducing scattering coefficients. The forward problem is solved by the finite element method based on the frequency domain diffuse equation (FD-DE) for dual-points source approximation and multi-modulation-frequency. In the image reconstruction, a multi-modulation-frequency Newton-Raphson algorithm is applied to obtain the solution. To further improve the image accuracy and quality, a method based on the region of interest (ROI) is applied on the above procedures. The simulation is performed in the tubular model to verify the validity of the algorithm. Results show that the FD-DE with dual-points source approximate is more accuracy at shorter source-detector separation. The reconstruction with dual-modulation-frequency improves the image accuracy and quality compared to the results with single-modulation-frequency and triple-modulation-frequency method. The peak optical coefficients in ROI (ROI_max) are almost equivalent to the true optical coefficients with the relative error less than 6.67%. The full width at half maximum (FWHM) achieves 82% of the true radius. The contrast-to-noise ratio (CNR) and image coefficient(IC) is 5.678 and 26.962, respectively. Additionally, the results with the method based on ROI show that the ROI_max is equivalent to the true value. The FWHM can improve by 88% of the true radius. The CNR and IC is improved over 7.782 and 45.335, respectively.

  1. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm

    NASA Astrophysics Data System (ADS)

    John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.

    2015-07-01

    This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ≍ 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.

  2. Quantification of airway thickness changes in smoke-inhalation injury using in-vivo 3-D endoscopic frequency-domain optical coherence tomography

    PubMed Central

    Lee, Sang-Won; Heidary, Andrew E.; Yoon, David; Mukai, David; Ramalingam, Tirunelveli; Mahon, Sari; Yin, Jiechen; Jing, Joseph; Liu, Gangjun; Chen, Zhongping; Brenner, Matthew

    2011-01-01

    Smoke inhalation injury is frequently accompanied by cyanide poisoning that may result in substantial morbidity and mortality, and methods are needed to quantitatively determine extent of airway injury. We utilized a 3-D endoscopic frequency-domain optical coherence tomography (FD-OCT) constructed with a swept-source laser to investigate morphological airway changes following smoke and cyanide exposure in rabbits. The thickness of the mucosal area between the epithelium and cartilage in the airway was measured and quantified. 3-D endoscopic FD-OCT was able to detect significant increases in the thickness of the tracheal walls of the rabbit beginning almost immediately after smoke inhalation injuries which were similar to those with combined smoke and cyanide poisoning. PMID:21339870

  3. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde

    2017-03-01

    Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery.

  4. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection

    PubMed Central

    Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde

    2017-01-01

    Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery. PMID:28327613

  5. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection.

    PubMed

    Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde

    2017-03-22

    Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery.

  6. Dual Optical Sensor for Oxygen and Temperature Based on the Combination of Time Domain and Frequency Domain Techniques

    PubMed Central

    Lam, Hung; Rao, Govind; Loureiro, Joanna

    2012-01-01

    In measuring specific conditions in the real world, there are many situations where both the oxygen concentration and the temperature have to be determined simultaneously. Here we describe a dual optical sensor for oxygen and temperature that can be adapted for different applications. The measurement principle of this sensor is based on the luminescence decay times of the oxygen-sensitive ruthenium complex tris-4,7-diphenyl-1,10-phenanthroline ruthenium(III) [Rudpp] and the temperature-sensitive europium complex tris(dibenzoylmethane) mono(5-amino-1,10-phenanthroline)europium(III) [Eudatp]. The excitation and emission spectra of the two luminophores overlap significantly and cannot be discriminated in the conventional way using band pass filters or other optical components. However, by applying both the frequency and time domain techniques, we can separate the signals from the individual decay time of the complexes. The europium complex is entrapped in a poly-(methyl methacrylate) (PMMA) layer and the ruthenium complex is physically adsorbed on silica gel and incorporated in a silicone layer. The two layers are attached to each other by a double sided silicone based tape. The europium sensing film was found to be temperature-sensitive between 10 and 70ºC and the ruthenium oxygen-sensitive layer can reliably measure between 0 and 21% oxygen. PMID:21315899

  7. Long-range measurement of Rayleigh scatter signature beyond laser coherence length based on coherent optical frequency domain reflectometry.

    PubMed

    Ohno, Shingo; Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2016-08-22

    Long-range C-OFDR measurement of fiber Rayleigh scatter signature is described. The Rayleigh scatter signature, which is an interference pattern of backscatters from the random refractive indices in fibers, is known to be applicable to fiber identification and temperature or strain sensing by measuring its repeatability and its spectral shift. However, these applications have not been realized at ranges beyond the laser coherence length since laser phase noise degrades its repeatability. This paper proposes and demonstrates a method for analyzing the optical power spectrum of local Rayleigh backscatter to overcome the limitation imposed by laser phase noise. The measurable range and spatial performance are also investigated experimentally with respect to the remaining phase noise and noise reduction by signal averaging with the proposed method. The feasibility of Rayleigh scatter signature measurement for long-range applications is confirmed.

  8. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOEpatents

    Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.

    1995-01-01

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.

  9. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOEpatents

    Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.

    1995-06-13

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.

  10. Generalized regression neural network trained preprocessing of frequency domain correlation filter for improved face recognition and its optical implementation

    NASA Astrophysics Data System (ADS)

    Banerjee, Pradipta K.; Datta, Asit K.

    2013-02-01

    The paper proposes an improved strategy for face recognition using correlation filter under varying lighting conditions and occlusion where spatial domain preprocessing is carried out by two convolution kernels. The first convolution kernel is a contour kernel for emphasizing high frequency components of face image and the other kernel is a smoothing kernel used for minimization of noise those may arise due to preprocessing. The convolution kernels are obtained by training a generalized regression neural network using enhanced face features. Face features are enhanced by conventional principal component analysis. The proposed method reduces the false acceptance rate and false rejection rate in comparison to other standard correlation filtering techniques. Moreover, the processing is fast when compared to the existing illumination normalization techniques. A scheme of hardware implementation of all optical correlation technique is also suggested based on single spatial light modulator in a beam folding architecture. Two benchmark databases YaleB and PIE are used for performance verification of the proposed scheme and the improved results are obtained for both illumination variations and occlusions in test face images.

  11. Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult

    PubMed Central

    Dehaes, Mathieu; Grant, P. Ellen; Sliva, Danielle D.; Roche-Labarbe, Nadège; Pienaar, Rudolph; Boas, David A.; Franceschini, Maria Angela; Selb, Juliette

    2011-01-01

    The near infrared spectroscopy (NIRS) frequency-domain multi-distance (FD-MD) method allows for the estimation of optical properties in biological tissue using the phase and intensity of radiofrequency modulated light at different source-detector separations. In this study, we evaluated the accuracy of this method to retrieve the absorption coefficient of the brain at different ages. Synthetic measurements were generated with Monte Carlo simulations in magnetic resonance imaging (MRI)-based heterogeneous head models for four ages: newborn, 6 and 12 month old infants, and adult. For each age, we determined the optimal set of source-detector separations and estimated the corresponding errors. Errors arise from different origins: methodological (FD-MD) and anatomical (curvature, head size and contamination by extra-cerebral tissues). We found that the brain optical absorption could be retrieved with an error between 8–24% in neonates and infants, while the error increased to 19–44% in adults over all source-detector distances. The dominant contribution to the error was found to be the head curvature in neonates and infants, and the extra-cerebral tissues in adults. PMID:21412461

  12. Quantitative fluorescence imaging enabled by spatial frequency domain optical-property mapping in the sub-diffusive regime for surgical guidance

    NASA Astrophysics Data System (ADS)

    Sibai, Mira; Veilleux, Israel; Elliott, Jonathan T.; Leblond, Frederic; Roberts, David W.; Wilson, Brian C.

    2015-03-01

    Intraoperative fluorescence guidance enables maximum safe resection of, for example, glioblastomas by providing surgeons with real-time tumor optical contrast. Specifically, 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence guided resection can improve surgical outcomes by better defining tumor margins and identifying satellite tumor foci. However, visual assessment of PpIX fluorescence is subjective and limited by the distorting effects of light attenuation (absorption and scattering) by tissue and background tissue autofluorescence. We have previously shown, using a point fluorescence-reflectance fiberoptic probe, that non-invasive measurement of the absolute PpIX concentration, [PpIX], further improves sensitivity and specificity, leading to the demonstration that the technique can also detect low-grade gliomas as well as otherwise undetectable residual tumor foci in high-grade disease. Here, we extend this approach to wide-field quantitative fluorescence imaging (qFI) by implementing spatial frequency domain imaging (SFDI) to recover the tissue optical absorption and transport scattering coefficients across the field of view. We report on the performance of this approach to determine the intrinsic fluorescence intensity in tissue-simulating phantoms in both the fully diffusive (i.e. scatter-dominated) and sub-diffusive (low transport albedo) regimes, for which higher spatial frequencies are used. The performance of qFI is compared to a Born- normalization correction scheme, as well as to the values obtained using the fiberoptic probe on homogeneous tissue phantoms containing PpIX.

  13. Evaluation of the accuracy of brain optical properties estimation at different ages using the frequency-domain multi-distance method

    NASA Astrophysics Data System (ADS)

    Dehaes, Mathieu; Grant, P. Ellen; Sliva, Danielle D.; Roche-Labarbe, Nadège; Pienaar, Rudolph; Boas, David A.; Franceschini, Maria Angela; Selb, Juliette

    2011-03-01

    NIRS is safe, non-invasive and offers the possibility to record local hemodynamic parameters at the bedside, avoiding the transportation of neonates and critically ill patients. In this work, we evaluate the accuracy of the frequency-domain multi-distance (FD-MD) method to retrieve brain optical properties from neonate to adult. Realistic measurements are simulated using a 3D Monte Carlo modeling of light propagation. Height different ages were investigated: a term newborn of 38 weeks gestational age, two infants of 6 and 12 months of age, a toddler of 2 year (yr.) old, two children of 5 and 10 years of age, a teenager of 14 yr. old, and an adult. Measurements are generated at multiple distances on the right parietal area of head models and fitted to a homogeneous FD-MD model to estimate the brain optical properties. In the newborn, infants, toddler and 5 yr. old child models, the error was dominated by the head curvature, while the superficial layer in the 10 yr. old child, teenager and adult heads. The influence of the CSF is also evaluated. In this case, absorption coefficients suffer from an additional error. In all cases, measurements at 5 mm provided worse estimation because of the diffusion approximation.

  14. Sex Differences in Nonculprit Coronary Plaque Microstructures on Frequency-Domain Optical Coherence Tomography in Acute Coronary Syndromes and Stable Coronary Artery Disease.

    PubMed

    Kataoka, Yu; Puri, Rishi; Hammadah, Muhammad; Duggal, Bhanu; Uno, Kiyoko; Kapadia, Samir R; Tuzcu, E Murat; Nissen, Steven E; King, Peta; Nicholls, Stephen J

    2016-08-01

    Numerous reports suggest sex-related differences in atherosclerosis. Frequency-domain optical coherence tomography has enabled visualization of plaque microstructures associated with disease instability. The prevalence of plaque microstructures between sexes has not been characterized. We investigated sex differences in plaque features in patients with coronary artery disease. Nonculprit plaques on frequency-domain optical coherence tomography imaging were compared between men and women with either stable coronary artery disease (n=320) or acute coronary syndromes (n=115). A greater prevalence of cardiovascular risk factors was observed in women. Nonculprit plaques in women with stable coronary artery disease were more likely to exhibit plaque erosion (8.6% versus 0.3%; P=0.03) and a smaller lipid arc (163.1±71.4° versus 211.2±71.2°; P=0.03), and less likely to harbor cholesterol crystals (17.2% versus 27.5%; P=0.01) and calcification (15.4% versus 34.4%; P=0.008), whereas fibrous cap thickness (105.2±62.1 versus 96.1±40.4 µm; P=0.57), the prevalence of thin-cap fibroatheroma (26.5% versus 25.2%; P=0.85), and microchannels (19.2% versus 20.5%; P=0.95) were comparable. In women with acute coronary syndrome, a smaller lipid arc (171.6±53.2° versus 235.8±86.4°; P=0.03), a higher frequency of plaque erosion (11.4% versus 0.6%; P=0.04), and a lower prevalence of cholesterol crystal (28.6% versus 38.2%; P=0.03) and calcification (10.0% versus 23.7%; P=0.01) were observed. These differences persisted after adjusting clinical demographics. Although thin-cap fibroatheromas in men clustered within proximal arterial segments, thin-cap fibroatheromas were evenly distributed in women. Despite more comorbid risk factors in women, their nonculprit plaques exhibited more plaque erosion, and less cholesterol and calcium content. This distinct phenotype suggests sex-related differences in the pathophysiology of atherosclerosis. © 2016 American Heart Association, Inc.

  15. Longitudinal, 3D Imaging of Collagen Remodeling in Murine Hypertrophic Scars In Vivo using Polarization-sensitive Optical Frequency Domain Imaging

    PubMed Central

    Lo, William C. Y.; Villiger, Martin; Golberg, Alexander; Broelsch, G. Felix; Khan, Saiqa; Lian, Christine G.; Austen, William G.; Yarmush, Martin; Bouma, Brett E.

    2016-01-01

    Hypertrophic scars (HTS), frequently seen after traumatic injuries and surgery, remain a major clinical challenge due to the limited success of existing therapies. A significant obstacle to understanding HTS etiology is the lack of tools to monitor scar remodeling longitudinally and non-invasively. We present an in vivo, label-free technique using polarization-sensitive optical frequency domain imaging (PS-OFDI) for the 3D, longitudinal assessment of collagen remodeling in murine HTS. In this study, HTS was induced with a mechanical tension device for 4 to 10 days on incisional wounds and imaged up to one month after device removal; an excisional HTS model was also imaged at 6 months after injury to investigate deeper and more mature scars. We showed that local retardation (LR) and degree of polarization (DOP) provide a robust signature for HTS. Compared to normal skin with heterogeneous LR and low DOP, HTS was characterized by an initially low LR, which increased as collagen fibers remodeled, and a persistently high DOP. This study demonstrates that PS-OFDI offers a powerful tool to gain significant biological insights into HTS remodeling by enabling longitudinal assessment of collagen in vivo, which is critical to elucidating HTS etiology and developing more effective HTS therapies. PMID:26763427

  16. Comparison of intravascular optical frequency domain imaging versus intravascular ultrasound during balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension

    PubMed Central

    Kubota, Shuji; Okazaki, Toru; Hara, Hisao; Hiroi, Yukio

    2016-01-01

    Objectives The aims of this study are (1) to evaluate the safety and feasibility of using optical frequency domain imaging (OFDI) during balloon pulmonary angioplasty (BPA) procedures, (2) to assess the correlations between the vessel area (VA) and luminal area (LA) obtained by OFDI and intravascular ultrasound (IVUS), and (3) to compare inter‐ and intra‐observer variability among measurements taken from OFDI and IVUS images. Background The BPA in patients with chronic thromboembolic pulmonary hypertension (CTEPH) is an evolving procedure. Methods Twenty‐three consecutive attempts of pair of OFDI and IVUS during BPA were evaluated. All complications that occurred during‐BPA and up to 48 hr post‐BPA were recorded. Using side branches as landmarks, 48 pairs of regions were chosen to compare measurements of VA and LA. Results OFDI images can be obtained without any procedurally related complications. Although the VA and LA measurements obtained by OFDI were smaller than those obtained by IVUS, high correlations were found (VA: r = 0.78, P < 0.0001 and LA: r = 0.75, P < 0.0001). Less inter‐ and intra‐observer variability was found when using measurements taken from OFDI versus IVUS images. Conclusions OFDI during BPA was safe and feasible. The reproducibility of OFDI imaging was excellent and offered a favorable addition to the BPA procedures. © 2016 The Authors Catheterization and Cardiovascular Interventions Published by Wiley Periodicals, Inc. PMID:26991798

  17. Optical Interferometric Parallel Data Processor

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.

    1987-01-01

    Image data processed faster than in present electronic systems. Optical parallel-processing system effectively calculates two-dimensional Fourier transforms in time required by light to travel from plane 1 to plane 8. Coherence interferometer at plane 4 splits light into parts that form double image at plane 6 if projection screen placed there.

  18. In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm.

    PubMed

    de Bruin, Daniel M; Burnes, Daina L; Loewenstein, John; Chen, Yueli; Chang, Susie; Chen, Teresa C; Esmaili, Daniel D; de Boer, Johannes F

    2008-10-01

    To assess the application of optical frequency domain imaging (OFDI) at 1050 nm for the detection of choroidal neovascularization (CNV) in age-related macular degeneration (AMD) and its response to treatment. Three patients presenting with blurred vision and exudative AMD were imaged before and after anti-VEGF treatment with ranibizumab. The patients were imaged with OFDI, a swept-source-based, high-speed optical coherence tomography (OCT) system developed at the Wellman Center for Photomedicine. A center wavelength of 1050 nm was used that has been demonstrated to provide better imaging of the deeper structures of the retina below the RPE, such as the choroidal vasculature. Three-dimensional data sets were acquired in 2 to 4 seconds. En face images were compiled from cross-sectional OFDI data and correlated with color fundus photography (CF) and fluorescein angiograms (FAs). Cross-sectional images were coregistered with CF and FA to obtain depth-resolved information about CNV, CNV volume, retinal thickness, subretinal fluid volume and height of neurosensory detachment before and after treatment with ranibizumab. A band of reduced reflectivity below the RPE was identified in all three subjects that corresponded to areas of confirmed and suspected occult CNV on FA. After treatment, this band was reduced in volume in all patients. High-speed 3-D OFDI at 1050 nm is a promising technology for imaging the retina and choroid in neovascular AMD. The developed system at 1050 nm provides good contrast for occult (type 1) CNV and may have advantages compared with time domain and current state of the art spectral domain OCT systems (SD-OCT) at 850 nm.

  19. Measurement of the blood flow rate and velocity in coronary artery stenosis using intracoronary frequency domain optical coherence tomography: Validation against fractional flow reserve.

    PubMed

    Zafar, Haroon; Sharif, Faisal; Leahy, Martin J

    2014-12-01

    The main objective of this study was to assess the blood flow rate and velocity in coronary artery stenosis using intracoronary frequency domain optical coherence tomography (FD-OCT). A correlation between fractional flow reserve (FFR) and FD-OCT derived blood flow velocity is also included in this study. A total of 20 coronary stenoses in 15 patients were assessed consecutively by quantitative coronary angiography (QCA), FFR and FD-OCT. A percutaneous coronary intervention (PCI) optimization system was used in this study which combines wireless FFR measurement and FD-OCT imaging in one platform. Stenoses were labelled severe if FFR ≤ 0.8. Blood flow rate and velocity in each stenosis segment were derived from the volumetric analysis of the FD-OCT pull back images. The FFR value was ≤ 0.80 in 5 stenoses (25%). The mean blood flow rate in severe coronary stenosis (n = 5) was 2.54 ± 0.55 ml/s as compared to 4.81 ± 1.95 ml/s in stenosis with FFR > 0.8 (n = 15). A good and significant correlation between FFR and FD-OCT blood flow velocity in coronary artery stenosis (r = 0.74, p < 0.001) was found. The assessment of stenosis severity using FD-OCT derived blood flow rate and velocity has the ability to overcome many limitations of QCA and intravascular ultrasound (IVUS).

  20. Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography.

    PubMed

    Hood, Donald C; Lin, Christine E; Lazow, Margot A; Locke, Kirsten G; Zhang, Xian; Birch, David G

    2009-05-01

    To better understand the effects of retinitis pigmentosa (RP) on post-receptor anatomy, the thicknesses of the receptor, inner nuclear, retinal ganglion cell (RGC), and retinal nerve fiber layers (RNFL) were measured with frequency-domain optical coherence tomography (fdOCT). FdOCT scans were obtained from the horizontal midline in 30 patients with RP and 23 control subjects of comparable age. Raw images were exported and the thicknesses of photoreceptor/RPE, inner nuclear, RGC plus inner plexiform, and nerve fiber layers were measured with a manual segmentation procedure aided by a computer program. The RNFL thickness was also measured in 20 controls and 25 patients using circular peripapillary fdOCT scans. Results from controls were consistent with known anatomy. In patients with RP, the pattern of photoreceptor loss with eccentricity was consistent with the field constriction characteristic of RP. INL and RGC layer measures were comparable to normal subjects, although some patients showed slightly thicker RGC layers. However, RNFL layer thickness was significantly greater than normal; a majority of patients showed a thicker RFNL on both horizontal midline scans and peripapillary scans. To make optimal use of OCT RNFL thickness as a measure of the integrity of RGCs in patients with RP, a better understanding of the causes of the thickening seen in the majority of the patients is needed. As the RGC layer thickness can be measured with fdOCT, RGC layer thickness may turn out to be a more direct and valid indicator of the presence of RGCs in patients with RP.

  1. Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Da; Kimura, Hiroto; Hayashi, Kenta; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Yasui, Takeshi

    2016-09-01

    A terahertz (THz) frequency synthesizer based on photomixing of two near-infrared lasers with a sub-THz to THz frequency offset is a powerful tool for spectroscopy of polar gas molecules due to its broad spectral coverage; however, its frequency accuracy and resolution are relatively low. To tune the output frequency continuously and widely while maintaining its traceability to a frequency standard, we developed a photomixing THz synthesizer phase-locked to dual optical frequency combs (OFCs). While the phase-locking to dual OFCs ensured continuous tuning within a spectral range of 120 GHz, in addition to the traceability to the frequency standard, use of a broadband uni-traveling carrier photodiode for photomixing enabled the generation of CW-THz radiation within a frequency range from 0.2 to 1.5 THz. We demonstrated THz frequency-domain spectroscopy of gas-phase acetonitrile CH3CN and its isotope CH3 13CN in the frequency range of 0.600-0.720 THz using this THz synthesizer. Their rotational transitions were assigned with a frequency accuracy of 8.42 × 10-8 and a frequency resolution of 520 kHz. Furthermore, the concentration of the CH3CN gas at 20 Pa was determined to be (5.41 ± 0.05) × 1014 molecules/cm3 by curve fitting analysis of the measured absorbance spectrum, and the mixture ratio of the mixed CH3CN/CH3 13CN gas was determined to be 1:2.26 with a gas concentration of 1014-1015 molecules/cm3. The developed THz synthesizer is highly promising for high-precision THz-FDS of low-pressure molecular gases and will enable the qualitative and quantitative analyses of multiple gases.

  2. Method and Apparatus of Multiplexing and Acquiring Data from Multiple Optical Fibers Using a Single Data Channel of an Optical Frequency-Domain Reflectometry (OFDR) System

    NASA Technical Reports Server (NTRS)

    Parker, Jr., Allen R (Inventor); Chan, Hon Man (Inventor); Piazza, Anthony (Nino) (Inventor); Richards, William Lance (Inventor)

    2014-01-01

    A method and system for multiplexing a network of parallel fiber Bragg grating (FBG) sensor-fibers to a single acquisition channel of a closed Michelson interferometer system via a fiber splitter by distinguishing each branch of fiber sensors in the spatial domain. On each branch of the splitter, the fibers have a specific pre-determined length, effectively separating each branch of fiber sensors spatially. In the spatial domain the fiber branches are seen as part of one acquisition channel on the interrogation system. However, the FBG-reference arm beat frequency information for each fiber is retained. Since the beat frequency is generated between the reference arm, the effective fiber length of each successive branch includes the entire length of the preceding branch. The multiple branches are seen as one fiber having three segments where the segments can be resolved. This greatly simplifies optical, electronic and computational complexity, and is especially suited for use in multiplexed or branched OFS networks for SHM of large and/or distributed structures which need a lot of measurement points.

  3. Effect of wavelength on the electrical parameters of a vertical parallel junction silicon solar cell illuminated by its rear side in frequency domain

    NASA Astrophysics Data System (ADS)

    Sahin, Gökhan

    The influence of the illumination wavelength on the electrical parameters of a vertical parallel junction silicon solar cell by its rear side is theoretically analyzed. Based on the excess minority carrier's density, the photocurrent density and photovoltage across the junction were determined. From both photocurrent and the photovoltage, the series and shunt resistance expressions are deduced and the solar cell associated capacitance and conversion efficiency are calculated. The aim of this study is to show the influence of the illumination wavelength on the electrical parameters of the cell and the behavior of both parasitic resistances and capacitance versus operating point.

  4. VISAR Analysis in the Frequency Domain

    DOE PAGES

    Dolan, D. H.; Specht, P.

    2017-05-18

    VISAR measurements are typically analyzed in the time domain, where velocity is approximately proportional to fringe shift. Moving to the frequency domain clarifies the limitations of this approximation and suggests several improvements. For example, optical dispersion preserves high-frequency information, so a zero-dispersion (air delay) interferometer does not provide optimal time resolution. Combined VISAR measurements can also improve time resolution. With adequate bandwidth and reasonable noise levels, it is quite possible to achieve better resolution than the VISAR approximation allows.

  5. Additive Value of Integrated Backscatter IVUS for Detection of Vulnerable Plaque by Optical Frequency Domain Imaging: An Ex Vivo Autopsy Study of Human Coronary Arteries.

    PubMed

    Nakano, Masataka; Yahagi, Kazuyuki; Yamamoto, Hirosada; Taniwaki, Masanori; Otsuka, Fumiyuki; Ladich, Elena R; Joner, Michael; Virmani, Renu

    2016-02-01

    This study sought to evaluate the diagnostic performance of optical frequency domain imaging (OFDI) for recognition of coronary plaque morphologies and to assess additive values of integrated backscatter intravascular ultrasound (IB-IVUS) in detection of vulnerable plaque. Precise diagnosis of coronary lesions susceptible to plaque rupture and thrombosis may serve to stratify the risk of future coronary events and to make decisions for appropriate treatment of choice. Twenty-seven coronary arteries from 14 human autopsy hearts were interrogated ex vivo by OFDI and IB-IVUS. Imaged segments were sectioned at 3 mm intervals where a total of 360 pairs of cross-sectional images coregistered to histology were investigated. Overall, OFDI could depict various plaque components and structures such as fibrous tissue, sheet and nodular calcification, lipid, cholesterol crystals, and healed plaque rupture. OFDI could detect 14 of 18 thin-cap fibroatheroma (TCFA), however, the diagnostic accuracy was not high (positive predictive value [PPV] = 60.9%, κ = 0.664; area under the curve [AUC]: 0.88) mainly because of signal interference from macrophages. Further, we defined IB-IVUS-derived TCFA by recursive partitioning analysis as: 1) cross-sectional % lipid area >65.1%; 2) % lipid area >32.3 but <65.1% with plaque area >10.5 mm(2), where TCFA detection by IB-IVUS alone was marginal (PPV = 50.0%, κ = 0.545; AUC: 0.82). However, when IB-IVUS was combined with OFDI, all pseudo OFDI-derived TCFA (non-TCFA on histology) were excluded. Accordingly, PPV of TCFAs diagnosed by both OFDI and IB-IVUS was improved to 100.0% (κ = 0.704; AUC: 0.93). OFDI could recognize detailed morphologies of human coronary plaque. However, diagnostic accuracy of both OFDI alone and IB-IVUS alone to identify TCFA is limited. Combination of IB-IVUS with OFDI improved the accuracy for TCFA detection, suggesting hybrid imaging or further development of novel devices will be required to identify

  6. Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants

    NASA Astrophysics Data System (ADS)

    Demel, Anja; Feilke, Katharina; Wolf, Martin; Poets, Christian F.; Franz, Axel R.

    2014-01-01

    Near-infrared spectroscopy (NIRS) is increasingly used in neonatal intensive care. We investigated the impact of skin, bone, and cerebrospinal fluid (CSF) layer thickness in term and preterm infants on absorption-(μa) and/or reduced scattering coefficients (μs‧) measured by multidistance frequency-domain (FD)-NIRS. Transcranial ultrasound was performed to measure the layer thicknesses. Correlations were only statistically significant for μa at 692 nm with bone thickness and μs‧ at 834 nm with skin thickness. There is no evidence that skin, bone, or CSF thickness have an important effect on μa and μs‧. Layer thicknesses of skin, bone, and CSF in the range studied do not seem to affect cerebral oxygenation measurements by multidistance FD-NIRS significantly.

  7. Frequency domain convolution for SCANSAR

    NASA Astrophysics Data System (ADS)

    Cantraine, Guy; Dendal, Didier

    1994-12-01

    Starting from basic signals expressions, the rigorous formulation of frequency domain convolution is demonstrated, in general and impulse terms, including antenna patterns and squint angle. The major differences with conventional algorithms are discussed and theoretical concepts clarified. In a second part, the philosophy of advanced SAR algorithms is compared with that of a SCANSAR observation (several subswaths). It is proved that a general impulse response can always be written as the product of three factors, i.e., a phasor, an antenna coefficient, and a migration expression, and that the details of antenna effects can be ignored in the usual SAR system, but not the range migration (the situation is reversed in a SCANSAR reconstruction scheme). In a next step, some possible inverse filter kernels (the matched filter, the true inverse filter, ...) for general SAR or SCANSAR mode reconstructions, are compared. By adopting a noise corrupted model of data, we get the corresponding Wiener filter, the major interest of which is to avoid all divergence risk. Afterwards, the vocable `a class of filter' is introduced and summarized by a parametric formulation. Lastly, the homogeneity of the reconstruction, with a noncyclic fast Fourier transform deconvolution is studied by comparing peak responses according to the burst location. The more homogeneous sensitivity of the Wiener filter, with a stepper fall when the target begins to go outside the antenna pattern, is confirmed. A linear optimal merging of adjacent looks (in azimuth) minimizing the rms noise is also presented, as well as consideration about squint ambiguity.

  8. Frequency domain FIR and IIR adaptive filters

    NASA Technical Reports Server (NTRS)

    Lynn, D. W.

    1990-01-01

    A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.

  9. Coherent-control of linear signals: Frequency-domain analysis

    NASA Astrophysics Data System (ADS)

    Mukamel, Shaul

    2013-10-01

    The dependence of various types of linear signals on the phase profile of broadband optical pulses is examined using fundamental time translation invariance symmetry of multipoint correlation functions. The frequency-domain wave-mixing analysis presented here unifies several arguments made earlier with respect to the conditions whereby coherent control schemes may be used.

  10. Parallel Readout of Optical Disks

    DTIC Science & Technology

    1992-08-01

    block. Since the optical disks we use store only unipolar binary amplitude infor- mation, a space-bandwidth product (SBP) penalty must be paid to...through a crossed po- larizer and decoded as a logical 1 or 0. Depending on the setting of the polarizers, the amplitude of the light corresponding to... amplitude error since it only becomes significant when the position error e(x,y) is comparable to the distance between the disk and the image

  11. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.

    PubMed

    Correia, Carlos M; Teixeira, Joel

    2014-12-01

    Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place.

  12. Noninvasive cerebral hemoglobin oxygenation quantification of fetal sheep under hypoxic stress in utero using frequency-domain diffuse optical two-layer model

    NASA Astrophysics Data System (ADS)

    Choe, Regine; Durduran, Turgut; Yu, Guoqiang; Nijland, Mark J. M.; Nathanielsz, Peter W.; Chance, Britton; Yodh, Arjun G.; Ramanujam, Nirmala

    2003-07-01

    A study using pregnant sheep was designed to simulate fetal hypoxia in order to investigate the ability of near-infrared spectroscopy (NIRS) to detect and quantify fetal hypoxia in utero. The near-infrared spectroscopic probe consisted of two detectors and six source positions. It was placed on the maternal ewe abdomen above the fetal head. The light sources were modulated at 70 MHz and frequency-encoded so that simultaneous measurements at 675, 786, 830 nm for each source position were possible. After the baseline measurements, fetal hypoxia was induced by blocking the aorta of pregnant ewe and thus compromising the blood supply to the uterus. Blood gas samples were concurrently drawn from the fetal brachial artery and jugular veins. Analysis of the diffuse optical data used a two-layer model to separate the maternal layer from the fetal head. The analysis also employed a priori spectral information about tissue chromophores. This approach provided good quantification of blood oxygenation changes, which correlated well with the blood gas analyses. By contrast the homogeneous model underestimated oxygenation changes during hypoxia.

  13. Globality and speed of optical parallel processors.

    PubMed

    Lohmann, A W; Marathay, A S

    1989-09-15

    The chances of optical computing are probably best if a large number of processing elements act in parallel. The efficiency of parallel processors depends, among other things, on the time it takes to communicate signals from one processor to any other processor. In an optical parallel processor one hopes to be able to transmit a signal from one processor to any other processor within only one cycle period, no matter how far apart the processors are. Such a global communications network is desirable especially for algorithms with global interactions. The fast Fourier algorithm is an example. We define a degree of globality and we show how speed and globality are related. Our result applies to a specific architecture based on spatial filtering.

  14. Integrated 10 Gb/s multilevel multiband passive optical network and 500 Mb/s indoor visible light communication system based on Nyquist single carrier frequency domain equalization modulation.

    PubMed

    Wang, Yuanquan; Shi, Jianyang; Yang, Chao; Wang, Yiguang; Chi, Nan

    2014-05-01

    We propose and experimentally demonstrate a novel integrated passive optical network (PON) and indoor visible light communication (VLC) system based on Nyquist single carrier frequency domain equalization (N-SC-FDE) modulation with direct detection. In this system, a directly modulated laser and a commercially available red light emitting diode are served as the transmitters of the PON and VLC, respectively. To enable high spectral efficiency, high-speed transmission, and flexible multiple access with simplified optical network unit-side digital signal processing, multilevel, multiband quadrature amplitude modulations 128/64/16 are implemented here. VLC N-SC-FDE signals are successfully delivered a further 30 cm indoor distance after transmitting over a span of 40 km single mode fiber (SMF) together with 3 sub-band PON signals. As a proof of concept, a 10 Gb/s PON and 500 Mb/s VLC integrated system for three wired users and one wireless user is successfully achieved, which shows the promising potential and feasibility of this proposal to extend multiple services from metropolitan to suburban areas.

  15. Investigations on polarimetric terahertz frequency domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Gong, Yandong; Zhang, Banghong; Notake, Takashi; Minamide, Hiroaki; Olivo, Malini; Sugii, Shigeki

    2014-04-01

    A polarimetric Terahertz frequency-domain spectroscopy system is presented which has an additional polarization measurement function at the Terahertz band. The achromatic Terahertz waveplate, which acts as the key device in the system, is also presented.

  16. Substructure coupling in the frequency domain

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Frequency domain analysis was found to be a suitable method for determining the transient response of systems subjected to a wide variety of loads. However, since a large number of calculations are performed within the discrete frequency loop, the method loses it computational efficiency if the loads must be represented by a large number of discrete frequencies. It was also discovered that substructure coupling in the frequency domain work particularly well for analyzing structural system with a small number of interface and loaded degrees of freedom. It was discovered that substructure coupling in the frequency domain can lead to an efficient method of obtaining natural frequencies of undamped structures. It was also found that the damped natural frequencies of a system may be determined using frequency domain techniques.

  17. Spatial frequency domain spectroscopy of two layer media

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Durkin, Anthony J.

    2011-10-01

    Monitoring of tissue blood volume and oxygen saturation using biomedical optics techniques has the potential to inform the assessment of tissue health, healing, and dysfunction. These quantities are typically estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in superficial tissue such as the skin can be confounded by the strong absorption of melanin in the epidermis. Furthermore, epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. This study describes a technique for decoupling the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. An artificial neural network was used to map input optical properties to spatial frequency domain diffuse reflectance of two layer media. Then, iterative fitting was used to determine the optical properties from simulated spatial frequency domain diffuse reflectance. Additionally, an artificial neural network was trained to directly map spatial frequency domain reflectance to sets of optical properties of a two layer medium, thus bypassing the need for iteration. In both cases, the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis were determined independently. The accuracy and efficiency of the iterative fitting approach was compared with the direct neural network inversion.

  18. Frequency domain fluorometry: theory and application.

    PubMed

    Vetromile, Carissa M; Jameson, David M

    2014-01-01

    Frequency domain fluorometry is a widely utilized tool in the physical, chemical, and biological sciences. This chapter focuses on the theory of the method and the practical aspects required to carry out intensity decay, i.e., lifetime measurements on a modern frequency domain fluorometer. Several chemical/biological systems are utilized to illustrate data acquisition protocols. Data analysis procedures and methodologies are also discussed.

  19. Parallel Optical Random Access Memory (PORAM)

    NASA Astrophysics Data System (ADS)

    Alphonse, G. A.

    1989-06-01

    It is shown that the need to minimize component count, power and size, and to maximize packing density require a parallel optical random access memory to be designed in a two-level hierarchy: a modular level and an interconnect level. Three module designs are proposed, in the order of research and development requirements. The first uses state-of-the-art components, including individually addressed laser diode arrays, acousto-optic (AO) deflectors and magneto-optic (MO) storage medium, aimed at moderate size, moderate power, and high packing density. The next design level uses an electron-trapping (ET) medium to reduce optical power requirements. The third design uses a beam-steering grating surface emitter (GSE) array to reduce size further and minimize the number of components.

  20. Parallel Optical Random Access Memory (PORAM)

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.

    1989-01-01

    It is shown that the need to minimize component count, power and size, and to maximize packing density require a parallel optical random access memory to be designed in a two-level hierarchy: a modular level and an interconnect level. Three module designs are proposed, in the order of research and development requirements. The first uses state-of-the-art components, including individually addressed laser diode arrays, acousto-optic (AO) deflectors and magneto-optic (MO) storage medium, aimed at moderate size, moderate power, and high packing density. The next design level uses an electron-trapping (ET) medium to reduce optical power requirements. The third design uses a beam-steering grating surface emitter (GSE) array to reduce size further and minimize the number of components.

  1. Randomized study to assess the effect of thrombus aspiration on flow area in patients with ST-elevation myocardial infarction: an optical frequency domain imaging study--TROFI trial.

    PubMed

    Onuma, Yoshinobu; Thuesen, Leif; van Geuns, Robert-Jan; van der Ent, Martin; Desch, Steffen; Fajadet, Jean; Christiansen, Evald; Smits, Peter; Holm, Niels Ramsing; Regar, Evelyn; van Mieghem, Nicolas; Borovicanin, Vladimir; Paunovic, Dragica; Senshu, Kazuhisa; van Es, Gerrit-Anne; Muramatsu, Takashi; Lee, Il-Soo; Schuler, Gerhard; Zijlstra, Felix; Garcia-Garcia, Hector M; Serruys, Patrick W

    2013-04-01

    Primary percutaneous coronary intervention (PPCI) with thrombectomy (TB) seems to reduce the thrombus burden, resulting in a larger flow area as measured with optical frequency domain imaging (OFDI). In a multi-centre study, 141 patients with ST elevation myocardial infarction <12 h from onset were randomized to either PPCI with TB using an Eliminate catheter (TB: n = 71) or without TB (non-TB: n = 70), having operators blinded for the OFDI results. The primary endpoint was minimum flow area (MinFA) post-procedure assessed by OFDI, defined as: [stent area + incomplete stent apposition (ISA) area] - (intraluminal defect + tissue prolapse area). Sample size was based on the expected difference of 0.72 mm(2) in MinFA. Baseline demographics, pre-procedural quantitative coronary angiography (QCA), and procedural characteristics were well matched between the two groups. On OFDI, the stent area (TB: 7.62 ± 2.23 mm(2), non-TB: 7.05 ± 2.12 mm(2), P = 0.14) and MinFA (TB: 7.08 ± 2.14 mm(2) vs. non-TB: 6.51 ± 1.99 mm(2), Δ0.57 mm(2), P = 0.12) were not different. In addition, the amount of protrusion, intraluminal defect, and ISA area were similar in the both groups. PPCI with TB was associated with a similar flow area as well as stent area to PPCI without TB.

  2. Optical flow optimization using parallel genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe

    2011-06-01

    A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.

  3. Parallel Memory Addressing Using Coincident Optical Pulses

    DTIC Science & Technology

    1989-09-15

    case reduces to a at the interface between the electronic memory structure more manageable 21n lines controlling processing units and the optical system...Addressing Donald M. Chiarulli, Rami G. Melhem, and Steven P. Levitan University of Pittsburgh omm on-bus, shared-memory .dcoder can process only a single...encoded multiprocessors are the most k address,thuslimitingmemoryaccess to widely used parallel processing single location. Memory interleaving tech

  4. Optical Ray Tracing Using Parallel Processors

    DTIC Science & Technology

    2004-06-01

    communications would be low compared to the amount of calculation required. This is the method being used in the Great Mersenne Prime Search,6 where numerous...volunteers around the world permit idle time on their computers to be used to search for the elusive Mersenne primes (only 41 have ever been...and 6Mersenne Prime Search (2003). http://www.mersenne.org/prime.htm CAMERON et al.: OPTICAL RAY TRACING USING PARALLEL PROCESSORS 97 • measuring the

  5. Subtraction of background fluorescence in multiharmonic frequency-domain fluorimetry.

    PubMed

    Periasamy, N; Verkman, A S

    1992-02-14

    Background fluorescence is a major concern in time-resolved microfluorimetry studies of biological samples. A general method for subtraction of an arbitrary background signal in measurements of lifetime and anisotropy decay by multiharmonic Fourier transform spectroscopy is presented. Multifrequency phase and modulation values are measured in parallel by transformation of digitized time-domain waveforms into the frequency domain. For subtraction of background, time-domain waveforms are acquired for emission and reference photomultipliers for sample (e.g., cell containing fluorophore) and blank (e.g., unlabeled cell). Time-domain waveforms obtained in a series of measurements (e.g., sample and blank for parallel and perpendicular orientations of an emission polarizer) are time-justified by least-squares fitting of reference channel waveforms or by phase comparison of the first Fourier harmonics of the reference channel. Background is then subtracted directly in the time domain, and the subtracted waveform is Fourier transformed to the frequency domain for analysis of lifetime or anisotropy decay. This approach yielded excellent background correction over a wide range of background intensities and decay profiles. The method was tested in cuvette fluorimetry with fluorescein and acridine orange and in fluorescence microscopy with living MDCK cells loaded with the pH indicator BCECF. Sample lifetimes and rotational parameters could be recovered accurately with greater than 50% of the signal arising from background. These results establish a direct and practical approach to subtraction of background in complex biological and chemical samples studied by frequency-domain fluorimetry.

  6. Spatial frequency domain error budget

    SciTech Connect

    Hauschildt, H; Krulewich, D

    1998-08-27

    The aim of this paper is to describe a methodology for designing and characterizing machines used to manufacture or inspect parts with spatial-frequency-based specifications. At Lawrence Livermore National Laboratory, one of our responsibilities is to design or select the appropriate machine tools to produce advanced optical and weapons systems. Recently, many of the component tolerances for these systems have been specified in terms of the spatial frequency content of residual errors on the surface. We typically use an error budget as a sensitivity analysis tool to ensure that the parts manufactured by a machine will meet the specified component tolerances. Error budgets provide the formalism whereby we account for all sources of uncertainty in a process, and sum them to arrive at a net prediction of how "precisely" a manufactured component can meet a target specification. Using the error budget, we are able to minimize risk during initial stages by ensuring that the machine will produce components that meet specifications before the machine is actually built or purchased. However, the current error budgeting procedure provides no formal mechanism for designing machines that can produce parts with spatial-frequency-based specifications. The output from the current error budgeting procedure is a single number estimating the net worst case or RMS error on the work piece. This procedure has limited ability to differentiate between low spatial frequency form errors versus high frequency surface finish errors. Therefore the current error budgeting procedure can lead us to reject a machine that is adequate or accept a machine that is inadequate. This paper will describe a new error budgeting methodology to aid in the design and characterization of machines used to manufacture or inspect parts with spatial-frequency-based specifications. The output from this new procedure is the continuous spatial frequency content of errors that result on a machined part. If the machine

  7. Double random phase spread spectrum spread space technique for secure parallel optical multiplexing with individual encryption key

    NASA Astrophysics Data System (ADS)

    Hennelly, B. M.; Javidi, B.; Sheridan, J. T.

    2005-09-01

    A number of methods have been recently proposed in the literature for the encryption of 2-D information using linear optical systems. In particular the double random phase encoding system has received widespread attention. This system uses two Random Phase Keys (RPK) positioned in the input spatial domain and the spatial frequency domain and if these random phases are described by statistically independent white noises then the encrypted image can be shown to be a white noise. Decryption only requires knowledge of the RPK in the frequency domain. The RPK may be implemented using a Spatial Light Modulators (SLM). In this paper we propose and investigate the use of SLMs for secure optical multiplexing. We show that in this case it is possible to encrypt multiple images in parallel and multiplex them for transmission or storage. The signal energy is effectively spread in the spatial frequency domain. As expected the number of images that can be multiplexed together and recovered without loss is proportional to the ratio of the input image and the SLM resolution. Many more images may be multiplexed with some loss in recovery. Furthermore each individual encryption is more robust than traditional double random phase encoding since decryption requires knowledge of both RPK and a lowpass filter in order to despread the spectrum and decrypt the image. Numerical simulations are presented and discussed.

  8. Compact parallel optical interface built with optical fiber tips

    NASA Astrophysics Data System (ADS)

    Kopp, Christophe; Gilbert, Karen; Bernabe, Stéphane; Albert, Blandine

    2006-09-01

    MultiChip Module approach and the use of micro-optics offer determinant solutions to reach the mechanical compactness required by most applications for high rate data communications transmitters and receivers. Such a miniaturization often leads to develop very challenging assembling processes when fiber coupling is needed. In this paper we present an original fabrication process to build very small parallel optical interface with optical fiber tips. This fabrication process is based on common fiber ribbon mounting into wet etched V shaped holder into silicon and a dicing-polishing step to create small pieces with optical quality considering flatness and roughness. The dicing-polishing principle is well-known in integrated waveguides technology. An example of realization is presented to connect a parallel optical subassembly transmitter with a MPO/MTP connector. The results show that the dicing-polishing step allows to obtain a diced-polished face with a roughness about 5 to 10nm onto the fiber. Such an optical quality is as good as a cleaved fiber when measuring light coupling performances. Thus, such micro-optical components offer a new building block for designers to extract the light from their photonic devices. Moreover, the fabrication process appears to be low cost and compatible with mass production.

  9. Comparing the vascular response in implantation of self-expanding, bare metal nitinol stents or paclitaxel-eluting nitinol stents in superficial femoral artery lesions: a serial optical frequency domain imaging study.

    PubMed

    Miki, Kojiro; Fujii, Kenichi; Shibuya, Masahiko; Fukunaga, Masashi; Imanaka, Takahiro; Tamaru, Hiroto; Nishimura, Machiko; Horimatsu, Tetsuo; Honda, Yasuhiro; Fitzgerald, Peter J; Masuyama, Tohru; Ishihara, Masaharu

    2016-12-20

    This study sought to investigate differences in vascular response between self-expanding bare metal nitinol stents (BMS) and paclitaxel-eluting nitinol stents (PES), in superficial femoral artery (SFA) disease, using optical frequency domain imaging (OFDI). Six months after stent implantation, follow-up quantitative vascular angiography (QVA) and OFDI assessment were scheduled to evaluate vascular response. Volume index (VI) was defined as volume divided by stent length. The primary endpoint was OFDI-derived late lumen area loss, defined as lumen VI post stent implantation minus lumen VI at follow-up. A total of 28 SFA lesions were analysed, with cases randomised to receive either BMS or PES implantation. QVA-derived diameter stenosis at six-month follow-up was lower in the PES group than in the BMS group (28.5% vs. 39.7%, p=0.04). After six months, BMS VI increased by 33.8% (20.7±3.7 to 27.7±3.5 mm3/mm), whilst PES exhibited an increase of 32.1% (19.0±2.3 to 25.1±4.7 mm3/mm). Neointimal VI was smaller (7.4±2.6 mm3/mm vs. 10.5±3.2 mm3/mm, p<0.01) and late lumen area loss was lower (2.9±1.3 mm3/mm vs. 5.6±2.8 mm3/mm, p<0.01) in the PES group. Serial volumetric OFDI analyses confirmed significantly smaller amounts of neointimal tissue and lower late lumen area loss following PES implantation for SFA lesions at short-term follow-up.

  10. Method of parallel switching of optical channels

    SciTech Connect

    Kompanets, I N; Neevina, T A; Kompanets, S I

    2012-12-31

    The possibility of creating parallel-type switches for N Multiplication-Sign N optical waveguide channel communication is studied. A method based on bit-by-bit channel addressing is proposed and one of its possible implementations using the photorefractive effect in the waveguide material is considered. The method is modelled by the example of switching of 8 Multiplication-Sign 8 channels, controlled by reconfigurable matrix of light signals. (special issue devoted to the 90th anniversary of n.g. basov)

  11. Microcirculation monitoring with real time spatial frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Chen, Xinlin; Cao, Zili; Lin, Weihao; Zhu, Danfeng; Zhu, Xiuwei; Zeng, Bixin; Xu, M.

    2017-01-01

    We present a spatial frequency domain imaging (SFDI) study of local hemodynamics in the forearm of healthy volunteers performing paced breathing. Real time Single Snapshot Multiple Frequency Demodulation - Spatial Frequency Domain Imaging (SSMD-SFDI) was used to map the optical properties of the subsurface of the forearm continuously. The oscillations of the concentrations of deoxy- and oxyhemoglobin at the subsurface of the forearm induced by paced breathing are found to be close to out-of-phase, attributed to the dominance of the blood flow modulation by paced breathing. The properties of local microcirculation including the blood transit times through capillaries and venules are extracted by fitting to Simplified Hemodynamics Model. Our preliminary results suggest that the real time SSMD-SFDI platform may serve as one effective imaging modality for microcirculation monitoring.

  12. Parallel optical nanolithography using nanoscale bowtie apertures

    NASA Astrophysics Data System (ADS)

    Uppuluri, Sreemanth M. V.

    needed to bring an array of bowtie apertures into intimate contact with the photoresist surface we present an optical interference based alignment system that aligns the mask and photoresist surfaces to within 0.1 mrad of parallelism. In this work we show that bowtie apertures can be used to produce patterns in the photoresist of dimensions in the order of 85-90 nm. We also demonstrate parallel optical nanolithography using an array of bowtie apertures that opens up the possibility of using arrays of bowtie apertures to produce a large number of nanoscale light spots for parallel nano-manufacturing.

  13. Studies in optical parallel processing. [All optical and electro-optic approaches

    NASA Technical Reports Server (NTRS)

    Lee, S. H.

    1978-01-01

    Threshold and A/D devices for converting a gray scale image into a binary one were investigated for all-optical and opto-electronic approaches to parallel processing. Integrated optical logic circuits (IOC) and optical parallel logic devices (OPA) were studied as an approach to processing optical binary signals. In the IOC logic scheme, a single row of an optical image is coupled into the IOC substrate at a time through an array of optical fibers. Parallel processing is carried out out, on each image element of these rows, in the IOC substrate and the resulting output exits via a second array of optical fibers. The OPAL system for parallel processing which uses a Fabry-Perot interferometer for image thresholding and analog-to-digital conversion, achieves a higher degree of parallel processing than is possible with IOC.

  14. Intra- and interobserver reliability and intra-catheter reproducibility using frequency domain optical coherence tomography for the evaluation of morphometric stent parameters and qualitative assessment of stent strut coverage.

    PubMed

    Antonsen, Lisbeth; Thayssen, Per; Junker, Anders; Veien, Karsten Tange; Hansen, Henrik Steen; Hansen, Knud Nørregaard; Hougaard, Mikkel; Jensen, Lisette Okkels

    2015-12-01

    Frequency-domain optical coherence tomography (FD-OCT) is a high-resolution imaging tool (~10-15 μm), which enables near-histological in-vivo images of the coronary vessel wall. The use of the technique is increasing, both for research- and clinical purposes. This study sought to investigate the intra- and interobserver reliability, as well as the intra-catheter reproducibility of quantitative FD-OCT-assessment of morphometric stent parameters and qualitative FD-OCT-evaluation of strut coverage in 10 randomly selected 6-month follow-up Nobori® biolimus-eluting stents (N-BESs). Ten N-BESs (213 cross sectional areas (CSAs) and 1897 struts) imaged with OCT 6 months post-implantation were randomly selected and analyzed by 2 experienced analysts, and the same 10 N-BESs were analyzed by one of the analysts 3 months later. Further, 2 consecutive pullbacks randomly performed in another 10 N-BESs (219 CSAs and 1860 struts) were independently assessed by one of the analysts. The intraobserver variability with regard to relative difference of mean luminal area and mean stent area at the CSA-level was very low: 0.1%±1.4% and 0.5%±3.2%. Interobserver variability also proved to be low: -2.1%±3.3% and 2.1%±4.6%, and moreover, very restricted intra-catheter variation was observed: 0.02%±6.8% and -0.18%±5.2%. The intraobserver-, interobserver- and intra-catheter reliability for the qualitative evaluation of strut coverage was found to be: kappa (κ)=0.91 (95% confidence interval (CI): 0.88-0.93, p<0.01), κ=0.88 (95% CI: 0.85-0.91, p<0.01), and κ=0.73 (95% CI: 0.68-0.78, p<0.01), respectively. FD-OCT is a reproducible and reliable imaging tool for quantitative evaluation of stented coronary segments, and for qualitative assessment of strut coverage. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Adaptive corrector operating in frequency domain

    NASA Astrophysics Data System (ADS)

    Radikaynen, Y. M.

    1984-11-01

    An interference-immune corrector for a signal converter with automatic regulation of adaptation speed is described which operates in the frequency domain with fast convergence and high signal-to-noise ratio. It contains an analog-to-digital converter, a demodulator, and a filter array with equidistant spacing of center frequencies, three multipliers and two summators, as well as a reference signal generator, a frequency divider, a counter, and a noise meter. Filtering is done by a n-point Fourier transformation or bunching with a memory at the filter input followed by inverse Fourier transformation or debunching, respectively. The algorithm of corrector operation in the frequency domain can be constructed heuristically by an analog to the complex algorithm of minimizing the mean-square error in the time domain. Each weight factor can be processed independently and only once per Fourier transformation cycle, which ensures fast convergence without preliminary phase correction even with large distortions in the communication channel.

  16. Photo sorting and compression in frequency domain

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Wong, Tien-Tsin; Heng, Pheng-Ann

    2004-10-01

    With the increasing popularity of digital camera, organizing and managing the large collection of digital photos effectively are therefore required. In this paper, we study the photo album sorting, clustering and compression techniques in DCT frequency domain without having to decompress JPEG photos into spatial domain firstly. We utilize the first several non-zero DCT coefficients to build our feature set and calculate the energy histograms in frequency domain directly. We then calculate the similarity distance of every two photos, and perform photo album sorting and adaptive clustering algorithms to group the most similar photos together. We further compress those clustered photos by a MPEG-like algorithm with variable IBP frames and adaptive search windows. Our methods provide a compact and reasonable format for people to store and transmit their large number of digital photos. Experiments prove that our algorithm is efficient and effective for digital photo processing.

  17. Parallel reservoir computing using optical amplifiers.

    PubMed

    Vandoorne, Kristof; Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Bienstman, Peter

    2011-09-01

    Reservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation. We have previously proposed a network of coupled semiconductor optical amplifiers as an interesting test case for such a hardware implementation. In this paper, we investigate the important design parameters and the consequences of process variations through simulations. We use an isolated word recognition task with babble noise to evaluate the performance of the photonic reservoirs with respect to traditional software reservoir implementations, which are based on leaky hyperbolic tangent functions. Our results show that the use of coherent light in a well-tuned reservoir architecture offers significant performance benefits. The most important design parameters are the delay and the phase shift in the system's physical connections. With optimized values for these parameters, coherent semiconductor optical amplifier (SOA) reservoirs can achieve better results than traditional simulated reservoirs. We also show that process variations hardly degrade the performance, but amplifier noise can be detrimental. This effect must therefore be taken into account when designing SOA-based RC implementations.

  18. Spatial frequency domain imaging for monitoring palpable breast lesions

    NASA Astrophysics Data System (ADS)

    Robbins, Constance M.; Antaki, James F.; Kainerstorfer, Jana M.

    2017-02-01

    We describe a novel approach for monitoring breast lesions, utilizing spatial frequency domain imaging, a diffuse optical imaging method to detect hemoglobin contrast, in combination with mechanical compression of the tissue. The project is motivated by the growing rate of unnecessary breast biopsies, caused by uncertainty in X-ray mammographic diagnoses. We believe there is a need for an alternate means of tracking the progression palpable lesions exhibiting probably benign features, that can be performed non-invasively and hence frequently: at home or in the clinic. The proposed approach capitalizes on two distinguishing properties of cancerous lesions, namely the relative stiffness with respect to surrounding tissue and the optical absorption due to the greater vascularization, hence hemoglobin concentration. The current research project is a pilot study to evaluate the principle on soft, breast tissue-mimicking phantoms containing stiffer, more highly absorbing inclusions. Spatial frequency domain imaging was performed by projecting onto the phantom a series of wide-field patterns at multiple spatial frequencies. Image analysis then was performed to map absorption and scattering properties. The results of the study demonstrate that compression significantly increases the optical contrast observed for inclusions located 10 and 15 mm beneath the surface. In the latter case, the inclusion was not detectable without compression.

  19. Nonintrusive noncontacting frequency-domain photothermal radiometry of caries

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Yasser H.; Abd-Elwahab, Bassam

    2010-04-01

    Among diffusion methods, photothermal radiometry (PTR) has the ability to penetrate and yield information about an opaque medium well beyond the range of conventional optical imaging. Owing to this ability, pulsed-laser PTR has been extensively used in turbid media such as biological tissues to study the sub-surface deposition of laser radiation, a task that may be difficult or impossible for many optical methods due to excessive scattering and absorption. In this paper considers the achievements of Pulsed Photothermal Radiometry using IR camera in the investigation of physical properties of biological materials and the diagnostics of the interaction of laser radiation with biological materials. A three-dimensional heat conduction formulation with the use of three-dimensional optical diffusion is developed to derive a turbid frequency-domain PTR model. The present photo-thermal model for frequency-domain PTR may prove useful for non-contact; non-invasive, in situ evaluate the depth profilometric imaging capabilities of FDPTR in monitoring carious and artificial subsurface lesions in human teeth.

  20. Frequency-Domain Identification Of Aeroelastic Modes

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Tischler, Mark B.

    1991-01-01

    Report describes flight measurements and frequency-domain analyses of aeroelastic vibrational modes of wings of XV-15 tilt-rotor aircraft. Begins with description of flight-test methods. Followed by brief discussion of methods of analysis, which include Fourier-transform computations using chirp z transformers, use of coherence and other spectral functions, and methods and computer programs to obtain frequencies and damping coefficients from measurements. Includes brief description of results of flight tests and comparisions among various experimental and theoretical results. Ends with section on conclusions and recommended improvements in techniques.

  1. Frequency Domain Modeling of SAW Devices

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, G. M.

    2007-01-01

    New SAW sensors for integrated vehicle health monitoring of aerospace vehicles are being investigated. SAW technology is low cost, rugged, lightweight, and extremely low power. However, the lack of design tools for MEMS devices in general, and for Surface Acoustic Wave (SAW) devices specifically, has led to the development of tools that will enable integrated design, modeling, simulation, analysis and automatic layout generation of SAW devices. A frequency domain model has been created. The model is mainly first order, but it includes second order effects from triple transit echoes. This paper presents the model and results from the model for a SAW delay line device.

  2. Parallel Optical and Electrochemical DNA Detection

    NASA Astrophysics Data System (ADS)

    Knoll, Wolfgang; Liu, Jianyun; Niu, Lifang; Nielsen, Peter Eigil; Tiefenauer, Louis

    This contribution introduces strategies for the sensitive detection of oligonucleotides as bio-analytes binding from solution to a variety of probe architectures assembled at the (Au-) sensor surface. Detection principles based on surface plasmon optics and electrochemical techniques are compared. In particular, cyclic- and square wave voltammetry (SWV) are applied for the read-out of ferrocene redox labels conjugated to streptavidin that binds to the (biotinylated) DNA targets after hybridizing to the interfacial probe matrix of either DNA or peptide nucleic acid (PNA) strands. By employing streptavidin modified with fluorophores the identical sensor architecture can be used for the recording of hybridization reactions by surface plasmon fluorescence spectroscopy (SPFS). The Langmuir isotherms determined by both techniques, i.e., by SWV and SPFS, give virtually identical affinity constants KA, confirming that the mode of detection has no influence on the hybridization reaction. By using semiconducting nanoparticles as luminescence labels that can be tuned in their bandgap energies over a wide range of emission wavelengths surface plasmon fluorescence microscopy allows for the parallel read-out of multiple analyte binding events simultaneously.

  3. High-order wide-band frequency domain identification using composite curve fitting

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.

    1992-01-01

    A method is presented for curve fitting nonparametric frequency domain data so as to identify a parametric model composed of two models in parallel, where each model has dynamics in a specified portion of the frequency band. This decomposition overcomes the problem of numerical sensitivity since lower order polynomials can be used compared to existing methods which estimate the model as a single entity. Consequently, composite curve fitting is useful for frequency domain identification of high-order systems and/or systems whose dynamics are spread over a large bandwidth. The approach can be extended to identify an arbitrary number of parallel subsystems in specified frequency regimes.

  4. High-order wide-band frequency domain identification using composite curve fitting

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.

    1992-01-01

    A method is presented for curve fitting nonparametric frequency domain data so as to identify a parametric model composed of two models in parallel, where each model has dynamics in a specified portion of the frequency band. This decomposition overcomes the problem of numerical sensitivity since lower order polynomials can be used compared to existing methods which estimate the model as a single entity. Consequently, composite curve fitting is useful for frequency domain identification of high-order systems and/or systems whose dynamics are spread over a large bandwidth. The approach can be extended to identify an arbitrary number of parallel subsystems in specified frequency regimes.

  5. Combined frequency domain photoacoustic and ultrasound imaging for intravascular applications

    PubMed Central

    Castelino, Robin F.; Hynes, Michael; Munding, Chelsea E.; Telenkov, Sergey; Foster, F. Stuart

    2016-01-01

    Intravascular photoacoustic (IVPA) imaging has the potential to characterize lipid-rich structures based on the optical absorption contrast of tissues. In this study, we explore frequency domain photoacoustics (FDPA) for intravascular applications. The system employed an intensity-modulated continuous wave (CW) laser diode, delivering 1W over an intensity modulated chirp frequency of 4-12MHz. We demonstrated the feasibility of this approach on an agar vessel phantom with graphite and lipid targets, imaged using a planar acoustic transducer co-aligned with an optical fibre, allowing for the co-registration of IVUS and FDPA images. A frequency domain correlation method was used for signal processing and image reconstruction. The graphite and lipid targets show an increase in FDPA signal as compared to the background of 21dB and 16dB, respectively. Use of compact CW laser diodes may provide a valuable alternative for the development of photoacoustic intravascular devices instead of pulsed laser systems. PMID:27895986

  6. Experimental free-space optical network for massively parallel computers

    NASA Astrophysics Data System (ADS)

    Araki, S.; Kajita, M.; Kasahara, K.; Kubota, K.; Kurihara, K.; Redmond, I.; Schenfeld, E.; Suzaki, T.

    1996-03-01

    A free-space optical interconnection scheme is described for massively parallel processors based on the interconnection-cached network architecture. The optical network operates in a circuit-switching mode. Combined with a packet-switching operation among the circuit-switched optical channels, a high-bandwidth, low-latency network for massively parallel processing results. The design and assembly of a 64-channel experimental prototype is discussed, and operational results are presented.

  7. In vivo validation of quantitative frequency domain fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Ghijsen, Michael; Nalcioglu, Orhan; Gulsen, Gultekin

    2012-12-01

    We have developed a hybrid frequency domain fluorescence tomography and magnetic resonance imaging system (MRI) for small animal imaging. The main purpose of this system is to obtain quantitatively accurate fluorescence concentration and lifetime images using a multi-modality approach. In vivo experiments are undertaken to evaluate the system. We compare the recovered fluorescence parameters with and without MRI structural a priori information. In addition, we compare two optical background heterogeneity correction methods: Born normalization and utilizing diffuse optical tomography (DOT) functional a priori information. The results show that the concentration and lifetime of a 4.2-mm diameter indocyanine green inclusion located 15 mm deep inside a rat can be recovered with less than a 5% error when functional a priori information from DOT and structural a priori information from MRI are utilized.

  8. Single carrier frequency domain equalization based on SSB modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Fang, Wuliang; Shao, Yufeng; Huang, Bo; Chi, Nan

    2009-11-01

    Single-carrier frequency domain equalization (SC-FDE), as a mature technique in wireless commutation, is widely researched for signal equalization and compensation utilizing high speed electronic devices such as DSP. In this paper, for the first time, we propose and demonstrate a SC-FDE technique in optical communication system. By adopting SCFDE technique, after 50km, 80km, 100km transmission for a 10Gb/s ASK single sideband (SSB) signal on a single mode fiber (SMF), the dispersion of optical signa1 is effectively compensated. The SSB signal is generated by a dual-arm Mach-Zehnder modulator (MZM) cascading a phase modulator (PM) based on Hilbert Finite impulse response (FIR) digital filter. The results demonstrate, in our proposed SC-FDE model, the eye opening and the clock recovery is improved, and the effect of compensation is enhanced as the transmission distance increases.

  9. Monitoring electrical and thermal burns with Spatial Frequency Domain Imaging

    NASA Astrophysics Data System (ADS)

    Ramella-Roman, Jessica

    2011-10-01

    Thermal and electrical injuries are devastating and hard-to-treat clinical lesions. The pathophysiology of these injuries is not fully understood to this day. Further elucidating the natural history of this form of tissue injury could be helpful in offering stage-appropriate therapy. Spatial Frequency Domain Imaging (SFDI) is a novel non-invasive technique that can be used to determine optical properties of biological media. We have developed an experimental apparatus based on SFDI aimed at monitoring parameters of clinical interest such as tissue oxygen saturation, methemoglobin volume fraction, and hemoglobin volume fraction. Co- registered Laser Doppler images of the lesions are also acquired to assess tissue perfusion. Results of experiments conducted on a rat model and discussions on the systemic changes in tissue optical properties before and after injury will be presented.

  10. Frequency domain laser velocimeter signal processor

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Murphy, R. Jay

    1991-01-01

    A new scheme for processing signals from laser velocimeter systems is described. The technique utilizes the capabilities of advanced digital electronics to yield a signal processor capable of operating in the frequency domain maximizing the information obtainable from each signal burst. This allows a sophisticated approach to signal detection and processing, with a more accurate measurement of the chirp frequency resulting in an eight-fold increase in measurable signals over the present high-speed burst counter technology. Further, the required signal-to-noise ratio is reduced by a factor of 32, allowing measurements within boundary layers of wind tunnel models. Measurement accuracy is also increased up to a factor of five.

  11. Frequency domain state-space system identification

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Wen; Juang, Jer-Nan; Lee, Gordon

    1992-01-01

    An algorithm for identifying state-space models from frequency response data of linear systems is presented. A matrix-fraction description of the transfer function is employed to curve-fit the frequency response data, using the least-squares method. The parameters of the matrix-fraction representation are then used to construct the Markov parameters of the system. Finally, state-space models are obtained through the Eigensystem Realization Algorithm using Markov parameters. The main advantage of this approach is that the curve-fitting and the Markov parameter construction are linear problems which avoid the difficulties of nonlinear optimization of other approaches. Another advantage is that it avoids windowing distortions associated with other frequency domain methods.

  12. Hybrid photomultiplier tube and photodiode parallel detection array for wideband optical spectroscopy of the breast guided by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    El-Ghussein, Fadi; Mastanduno, Michael A.; Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.

    2014-01-01

    A new optical parallel detection system of hybrid frequency and continuous-wave domains was developed to improve the data quality and accuracy in recovery of all breast optical properties. This new system was deployed in a previously existing system for magnetic resonance imaging (MRI)-guided spectroscopy, and allows incorporation of additional near-infrared wavelengths beyond 850 nm, with interlaced channels of photomultiplier tubes (PMTs) and silicon photodiodes (PDs). The acquisition time for obtaining frequency-domain data at six wavelengths (660, 735, 785, 808, 826, and 849 nm) and continuous-wave data at three wavelengths (903, 912, and 948 nm) is 12 min. The dynamic ranges of the detected signal are 105 and 106 for PMT and PD detectors, respectively. Compared to the previous detection system, the SNR ratio of frequency-domain detection was improved by nearly 103 through the addition of an RF amplifier and the utilization of programmable gain. The current system is being utilized in a clinical trial imaging suspected breast cancer tumors as detected by contrast MRI scans.

  13. Hybrid photomultiplier tube and photodiode parallel detection array for wideband optical spectroscopy of the breast guided by magnetic resonance imaging.

    PubMed

    El-Ghussein, Fadi; Mastanduno, Michael A; Jiang, Shudong; Pogue, Brian W; Paulsen, Keith D

    2014-01-01

    A new optical parallel detection system of hybrid frequency and continuous-wave domains was developed to improve the data quality and accuracy in recovery of all breast optical properties. This new system was deployed in a previously existing system for magnetic resonance imaging (MRI)-guided spectroscopy, and allows incorporation of additional near-infrared wavelengths beyond 850 nm, with interlaced channels of photomultiplier tubes (PMTs) and silicon photodiodes (PDs). The acquisition time for obtaining frequency-domain data at six wavelengths (660, 735, 785, 808, 826, and 849 nm) and continuous-wave data at three wavelengths (903, 912, and 948 nm) is 12 min. The dynamic ranges of the detected signal are 105 and 106 for PMT and PD detectors, respectively. Compared to the previous detection system, the SNR ratio of frequency-domain detection was improved by nearly 103 through the addition of an RF amplifier and the utilization of programmable gain. The current system is being utilized in a clinical trial imaging suspected breast cancer tumors as detected by contrast MRI scans.

  14. Hybrid photomultiplier tube and photodiode parallel detection array for wideband optical spectroscopy of the breast guided by magnetic resonance imaging

    PubMed Central

    Mastanduno, Michael A.; Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.

    2013-01-01

    Abstract. A new optical parallel detection system of hybrid frequency and continuous-wave domains was developed to improve the data quality and accuracy in recovery of all breast optical properties. This new system was deployed in a previously existing system for magnetic resonance imaging (MRI)-guided spectroscopy, and allows incorporation of additional near-infrared wavelengths beyond 850 nm, with interlaced channels of photomultiplier tubes (PMTs) and silicon photodiodes (PDs). The acquisition time for obtaining frequency-domain data at six wavelengths (660, 735, 785, 808, 826, and 849 nm) and continuous-wave data at three wavelengths (903, 912, and 948 nm) is 12 min. The dynamic ranges of the detected signal are 105 and 106 for PMT and PD detectors, respectively. Compared to the previous detection system, the SNR ratio of frequency-domain detection was improved by nearly 103 through the addition of an RF amplifier and the utilization of programmable gain. The current system is being utilized in a clinical trial imaging suspected breast cancer tumors as detected by contrast MRI scans. PMID:23979460

  15. High-speed frequency-domain terahertz coherence tomography.

    PubMed

    Yahng, Ji Sang; Park, Choon-Su; Lee, Hwi Don; Kim, Chang-Seok; Yee, Dae-Su

    2016-01-25

    High-speed frequency-domain terahertz (THz) coherence tomography is demonstrated using frequency sweeping of continuous-wave THz radiation and beam steering. For axial scanning, THz frequency sweeping with a kHz sweep rate and a THz sweep range is executed using THz photomixing with an optical beat source consisting of a wavelength-swept laser and a distributed feedback laser diode. During the frequency sweep, frequency-domain THz interferograms are measured using coherent homodyne detection employing signal averaging for noise reduction and used as axial-scan data via fast Fourier transform. Axial-scan data are acquired while scanning a transverse range of 100 × 100 mm(2) by use of a THz beam scanner with moving neither sample nor THz transmitter/receiver unit. It takes 100 s to acquire axial-scan data for 100 × 100 points with 5 averaged traces at a sweep rate of 1 kHz. THz tomographic images of a glass fiber reinforced polymer sample with artificial internal defects are presented, acquired using the tomography system.

  16. Laser Safety Method For Duplex Open Loop Parallel Optical Link

    DOEpatents

    Baumgartner, Steven John; Hedin, Daniel Scott; Paschal, Matthew James

    2003-12-02

    A method and apparatus are provided to ensure that laser optical power does not exceed a "safe" level in an open loop parallel optical link in the event that a fiber optic ribbon cable is broken or otherwise severed. A duplex parallel optical link includes a transmitter and receiver pair and a fiber optic ribbon that includes a designated number of channels that cannot be split. The duplex transceiver includes a corresponding transmitter and receiver that are physically attached to each other and cannot be detached therefrom, so as to ensure safe, laser optical power in the event that the fiber optic ribbon cable is broken or severed. Safe optical power is ensured by redundant current and voltage safety checks.

  17. Materials characterization using frequency domain photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Balogun, Oluwaseyi Oladeinde

    A frequency domain photoacoustic microscopy system is developed for the characterization of micro- and nanoscale materials. An amplified, intensity modulated continuous wave (CW) laser source is used to generate narrow-bandwidth acoustic waves through the thermoelastic effect. The displacement resulting from acoustic wave interaction with material boundaries is measured using a path-stabilized Michelson interferometer. The signal from the interferometer is coupled to a RF lock-in amplifier or vector network analyzer, allowing for the bandwidth of the detection system to be matched to that of the acoustic signals. Measurements are made over an extremely narrow bandwidth by modulating the excitation laser source on the sample surface over a long time interval and selecting a corresponding integration time for the detection system. An analysis of the signal-to-noise ratio (SNR) of this system indicates that it offers substantial improvements over existing systems that incorporate pulsed laser sources to generate broad bandwidth acoustic waves. Using a bandwidth of 1.0 Hz, for instance, experimental results show a minimum detectable displacement of 3.1 fm. Extracting quantitative material parameters from the complex acoustic spectrum can be difficult when multiple acoustic modes are excited, or in the presence of reflections from sample boundaries. Two techniques are used to process the measured signals. In the first technique, the modulation frequency of the excitation laser is scanned over the bandwidth of interest, and a transient sample response is constructed from the frequency domain data. Acoustic arrivals that are separated in the time domain are time gated for further analysis. In the second approach, the modulation frequency of the excitation laser is fixed, but the source to receiver distance is varied. The spatial frequencies of the acoustic modes are found by analyzing the spatial variation of the phase, allowing for the velocity of each mode generated at

  18. Frequency Domain Calculations Of Acoustic Propagation

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Two complex geometry problems are solved using the linearized Euler equations. The impedance mismatch method1 is used to impose the solid surfaces without the need to use a body-fitted grid. The problem is solved in the frequency domain to avoid long run times. Although the harmonic assumption eliminates all time dependence, a pseudo-time term is added to allow conventional iterative methods to be employed. A Jameson type, Runge-Kutta scheme is used to advance the solution in pseudo time. The spatial operator is based on a seven-point, sixth-order finite difference. Constant coefficient, sixth-derivative artificial dissipation is used throughout the domain. A buffer zone technique employing a complex frequency to damp all waves near the boundaries is used to minimize reflections. The results show that the method is capable of capturing the salient features of the scattering, but an excessive number of grid points are required to resolve the phenomena in the vicinity of the solid bodies because the wavelength of the acoustics is relatively short compared with the size of the bodies. Smoothly transitioning into the immersed boundary condition alleviates the difficulties, but a fine mesh is still required.

  19. Thermal property microscopy with frequency domain thermoreflectance.

    PubMed

    Yang, Jia; Maragliano, Carlo; Schmidt, Aaron J

    2013-10-01

    A thermal property microscopy technique based on frequency domain thermoreflectance (FDTR) is presented. In FDTR, a periodically modulated laser locally heats a sample while a second probe beam monitors the surface reflectivity, which is related to the thermal properties of the sample with an analytical model. Here, we extend FDTR into an imaging technique capable of producing micrometer-scale maps of several thermophysical properties simultaneously. Thermal phase images are recorded at multiple frequencies chosen for maximum sensitivity to thermal properties of interest according to a thermal model of the sample. The phase versus frequency curves are then fit point-by-point to obtain quantitative thermal property images of various combinations of thermal properties in multilayer samples, including the in-plane and cross-plane thermal conductivities, heat capacity, thermal interface conductance, and film thickness. An FDTR microscope based on two continuous-wave lasers is described, and a sensitivity analysis of the technique to different thermal properties is carried out. As a demonstration, we image ~3 nm of patterned titanium under 100 nm of gold on a silicon substrate, and simultaneously create maps of the thermal interface conductance and substrate thermal conductivity. Results confirm the potential of our technique for imaging and quantifying thermal properties of buried layers, indicating its utility for mapping thermal properties in integrated circuits.

  20. 2-GHz frequency-domain fluorometer

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Laczko, Gabor; Gryczynski, Ignacy

    1986-10-01

    We developed a frequency-domain fluorometer which operates from 4 to 2000 MHz. The modulated excitation is provided by the harmonic content of a laser pulse train (3.76 MHz, 5 ps) from a synchronously pumped and cavity dumped dye laser. The phase angle and modulation of the emission are measured with a microchannel-plate photomultiplier (PMT). Cross-correlation detection is performed outside the PMT. The high-frequency signals for cross correlation were obtained by multiplication of the output from a 500-MHz frequency synthesizer. The performance was verified in several ways, including measurement of known time delays and examination of standard fluorophores. The detector displayed no detectable color effect, with the 300-600-nm difference being less than 5 ps. The precision of the measurements is adequate to detect differences of 20 ps for decay times of 500 ps. A correlation time of 53 ps was found for indole in water at 20 °C. The shortest correlation time we measured was 15 ps for indole in methanol/water (75/25) at 40 °C. Also, the 2-GHz data reveal the time-dependent ((t)1/2) terms found in the presence of collisional quenching. The degree of random error is about 0.3° of phase and 0.005 in modulation throughout the frequency range.

  1. Visible spatial frequency domain imaging with a digital light microprojector

    PubMed Central

    Lin, Alexander J.; Ponticorvo, Adrien; Konecky, Soren D.; Cui, Haotian; Rice, Tyler B.; Choi, Bernard; Durkin, Anthony J.

    2013-01-01

    Abstract. There is a need for cost effective, quantitative tissue spectroscopy and imaging systems in clinical diagnostics and pre-clinical biomedical research. A platform that utilizes a commercially available light-emitting diode (LED) based projector, cameras, and scaled Monte Carlo model for calculating tissue optical properties is presented. These components are put together to perform spatial frequency domain imaging (SFDI), a model-based reflectance technique that measures and maps absorption coefficients (μa) and reduced scattering coefficients (μs′) in thick tissue such as skin or brain. We validate the performance of the flexible LED and modulation element (FLaME) system at 460, 530, and 632 nm across a range of physiologically relevant μa values (0.07 to 1.5  mm−1) in tissue-simulating intralipid phantoms, showing an overall accuracy within 11% of spectrophotometer values for μa and 3% for μs′. Comparison of oxy- and total hemoglobin fits between the FLaME system and a spectrophotometer (450 to 1000 nm) is differed by 3%. Finally, we acquire optical property maps of a mouse brain in vivo with and without an overlying saline well. These results demonstrate the potential of FLaME to perform tissue optical property mapping in visible spectral regions and highlight how the optical clearing effect of saline is correlated to a decrease in μs′ of the skull. PMID:24005154

  2. Parallel optical logic operations on reversible networks

    NASA Astrophysics Data System (ADS)

    Shamir, Joseph

    2013-03-01

    A generic optical network architecture is proposed for the implementation of programmable logic operations. Based on reversible optical gate elements the processor is highly energy efficient and intrinsically fast. In this architecture the whole logic operation is executed by light propagating through the system with no energy dissipation. Energy must be spent only at the input interface and at discrete locations where the logic operation results are to be detected. As a consequence, the theoretical lower limit for energy dissipation in logic operations must be reconsidered. The strength of this approach is demonstrated by examples showing the implementation of various lossless logic operations, including Half Adder and Full Adder.

  3. Model-based compressed sensing of fiber Bragg grating arrays in the frequency domain

    NASA Astrophysics Data System (ADS)

    Werzinger, Stefan; Gottinger, Michael; Gussner, Sandra; Bergdolt, Sven; Engelbrecht, Rainer; Schmauss, Bernhard

    2017-04-01

    We propose a model-based compressed sensing (MBCS) of FBG arrays (FBGA), interrogated with wavelength scanning incoherent optical frequency domain reflectometry. This method measures the frequency response of a FBGA with an electrical vector network analyzer combined with a tunable laser. Instead of the usual inverse discrete Fourier transform (IDFT), we apply a direct estimation of the grating reflectivities with a simple frequency domain model. A reconstruction of 10 gratings spaced by 20 cm is demonstrated. MBCS allows to reduce the number of measurement frequencies from 120 to 8, compared to an IDFT, while using a bandwidth of just 500 MHz.

  4. AU-FREDI - AUTONOMOUS FREQUENCY DOMAIN IDENTIFICATION

    NASA Technical Reports Server (NTRS)

    Yam, Y.

    1994-01-01

    The Autonomous Frequency Domain Identification program, AU-FREDI, is a system of methods, algorithms and software that was developed for the identification of structural dynamic parameters and system transfer function characterization for control of large space platforms and flexible spacecraft. It was validated in the CALTECH/Jet Propulsion Laboratory's Large Spacecraft Control Laboratory. Due to the unique characteristics of this laboratory environment, and the environment-specific nature of many of the software's routines, AU-FREDI should be considered to be a collection of routines which can be modified and reassembled to suit system identification and control experiments on large flexible structures. The AU-FREDI software was originally designed to command plant excitation and handle subsequent input/output data transfer, and to conduct system identification based on the I/O data. Key features of the AU-FREDI methodology are as follows: 1. AU-FREDI has on-line digital filter design to support on-orbit optimal input design and data composition. 2. Data composition of experimental data in overlapping frequency bands overcomes finite actuator power constraints. 3. Recursive least squares sine-dwell estimation accurately handles digitized sinusoids and low frequency modes. 4. The system also includes automated estimation of model order using a product moment matrix. 5. A sample-data transfer function parametrization supports digital control design. 6. Minimum variance estimation is assured with a curve fitting algorithm with iterative reweighting. 7. Robust root solvers accurately factorize high order polynomials to determine frequency and damping estimates. 8. Output error characterization of model additive uncertainty supports robustness analysis. The research objectives associated with AU-FREDI were particularly useful in focusing the identification methodology for realistic on-orbit testing conditions. Rather than estimating the entire structure, as is

  5. AU-FREDI - AUTONOMOUS FREQUENCY DOMAIN IDENTIFICATION

    NASA Technical Reports Server (NTRS)

    Yam, Y.

    1994-01-01

    The Autonomous Frequency Domain Identification program, AU-FREDI, is a system of methods, algorithms and software that was developed for the identification of structural dynamic parameters and system transfer function characterization for control of large space platforms and flexible spacecraft. It was validated in the CALTECH/Jet Propulsion Laboratory's Large Spacecraft Control Laboratory. Due to the unique characteristics of this laboratory environment, and the environment-specific nature of many of the software's routines, AU-FREDI should be considered to be a collection of routines which can be modified and reassembled to suit system identification and control experiments on large flexible structures. The AU-FREDI software was originally designed to command plant excitation and handle subsequent input/output data transfer, and to conduct system identification based on the I/O data. Key features of the AU-FREDI methodology are as follows: 1. AU-FREDI has on-line digital filter design to support on-orbit optimal input design and data composition. 2. Data composition of experimental data in overlapping frequency bands overcomes finite actuator power constraints. 3. Recursive least squares sine-dwell estimation accurately handles digitized sinusoids and low frequency modes. 4. The system also includes automated estimation of model order using a product moment matrix. 5. A sample-data transfer function parametrization supports digital control design. 6. Minimum variance estimation is assured with a curve fitting algorithm with iterative reweighting. 7. Robust root solvers accurately factorize high order polynomials to determine frequency and damping estimates. 8. Output error characterization of model additive uncertainty supports robustness analysis. The research objectives associated with AU-FREDI were particularly useful in focusing the identification methodology for realistic on-orbit testing conditions. Rather than estimating the entire structure, as is

  6. Dual-thread parallel control strategy for ophthalmic adaptive optics.

    PubMed

    Yu, Yongxin; Zhang, Yuhua

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope.

  7. Application of bistable optical logic gate arrays to all-optical digital parallel processing

    NASA Astrophysics Data System (ADS)

    Walker, A. C.

    1986-05-01

    Arrays of bistable optical gates can form the basis of an all-optical digital parallel processor. Two classes of signal input geometry exist - on- and off-axis - and lead to distinctly different device characteristics. The optical implementation of multisignal fan-in to an array of intrinsically bistable optical gates using the more efficient off-axis option is discussed together with the construction of programmable read/write memories from optically bistable devices. Finally the design of a demonstration all-optical parallel processor incorporating these concepts is presented.

  8. Polarized spatial frequency domain imaging of heart valve fiber structure

    NASA Astrophysics Data System (ADS)

    Goth, Will; Yang, Bin; Lesicko, John; Allen, Alicia; Sacks, Michael S.; Tunnell, James W.

    2016-03-01

    Our group previously introduced Polarized Spatial Frequency Domain Imaging (PSFDI), a wide-field, reflectance imaging technique which we used to empirically map fiber direction in porcine pulmonary heart valve leaflets (PHVL) without optical clearing or physical sectioning of the sample. Presented is an extended analysis of our PSFDI results using an inverse Mueller matrix model of polarized light scattering that allows additional maps of fiber orientation distribution, along with instrumentation permitting increased imaging speed for dynamic PHVL fiber measurements. We imaged electrospun fiber phantoms with PSFDI, and then compared these measurements to SEM data collected for the same phantoms. PHVL was then imaged and compared to results of the same leaflets optically cleared and imaged with small angle light scattering (SALS). The static PHVL images showed distinct regional variance of fiber orientation distribution, matching our SALS results. We used our improved imaging speed to observe bovine tendon subjected to dynamic loading using a biaxial stretching device. Our dynamic imaging experiment showed trackable changes in the fiber microstructure of biological tissue under loading. Our new PSFDI analysis model and instrumentation allows characterization of fiber structure within heart valve tissues (as validated with SALS measurements), along with imaging of dynamic fiber remodeling. The experimental data will be used as inputs to our constitutive models of PHVL tissue to fully characterize these tissues' elastic behavior, and has immediate application in determining the mechanisms of structural and functional failure in PHVLs used as bio-prosthetic implants.

  9. POLARIZED SPATIAL FREQUENCY DOMAIN IMAGING OF HEART VALVE FIBER STRUCTURE

    PubMed Central

    Goth, Will; Yang, Bin; Lesicko, John; Allen, Alicia; Sacks, Michael S.; Tunnell, James W.

    2017-01-01

    Our group previously introduced Polarized Spatial Frequency Domain Imaging (PSFDI), a wide-field, reflectance imaging technique which we used to empirically map fiber direction in porcine pulmonary heart valve leaflets (PHVL) without optical clearing or physical sectioning of the sample. Presented is an extended analysis of our PSFDI results using an inverse Mueller matrix model of polarized light scattering that allows additional maps of fiber orientation distribution, along with instrumentation permitting increased imaging speed for dynamic PHVL fiber measurements. We imaged electrospun fiber phantoms with PSFDI, and then compared these measurements to SEM data collected for the same phantoms. PHVL was then imaged and compared to results of the same leaflets optically cleared and imaged with small angle light scattering (SALS). The static PHVL images showed distinct regional variance of fiber orientation distribution, matching our SALS results. We used our improved imaging speed to observe bovine tendon subjected to dynamic loading using a biaxial stretching device. Our dynamic imaging experiment showed trackable changes in the fiber microstructure of biological tissue under loading. Our new PSFDI analysis model and instrumentation allows characterization of fiber structure within heart valve tissues (as validated with SALS measurements), along with imaging of dynamic fiber remodeling. The experimental data will be used as inputs to our constitutive models of PHVL tissue to fully characterize these tissues’ elastic behavior, and has immediate application in determining the mechanisms of structural and functional failure in PHVLs used as bio-prosthetic implants. PMID:28775394

  10. A frequency domain based rigid motion artifact reduction algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Hai; Huang, Xiaojie; Pan, Wenyu; Zhou, Heqin; Feng, Huanqing

    2009-10-01

    During a CT scan, patients' conscious or unconscious motions would result in motion artifacts which undermine the image quality and hamper doctors' accurate diagnosis and therapy. It is desirable to develop a precise motion estimation and artifact reduction method in order to produce high-resolution images. Rigid motion can be decomposed into two components: translational motion and rotational motion. Since considering the rotation and translation simultaneously is very difficult, most former studies on motion artifact reduction ignore rotation. The extended HLCC based method considering the rotation and translation simultaneously relies on a searching algorithm which leads to expensive computing cost. Therefore, a novel method which does not rely on searching is desirable. In this paper, we focus on parallel-beam CT. We first propose a frequency domain based method to estimate rotational motion, which is not affected by translational motion. It realizes the separation of rotation estimation and translation estimation. Then we combine this method with the HLCC based method to construct a new method for general rigid motion called separative estimation and collective correction method. Furthermore, we present numerical simulation results to show the accuracy and robustness of our approach.

  11. Ultrasound breast imaging using frequency domain reverse time migration

    NASA Astrophysics Data System (ADS)

    Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.

    2016-04-01

    Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.

  12. A practical implementation of multifrequency widefield frequency-domain fluorescence lifetime imaging microscopy.

    PubMed

    Chen, Hongtao; Gratton, Enrico

    2013-03-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Herein, we describe a practical implementation of multifrequency widefield FD-FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine-wave modulation. This allows parallel multifrequency FLIM measurement using the Fast Fourier Transform and the cross-correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restores the loss of optical resolution caused by the defocusing effect when the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit-free lifetime analysis of FLIM images. Here, our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multifrequency FLIM system is a valuable and simple tool in fluorescence imaging studies. Copyright © 2013 Wiley Periodicals, Inc.

  13. Characterization of nonmelanoma skin cancer for light therapy using spatial frequency domain imaging

    PubMed Central

    Rohrbach, Daniel J.; Zeitouni, Nathalie C.; Muffoletto, Daniel; Saager, Rolf; Tromberg, Bruce J.; Sunar, Ulas

    2015-01-01

    The dosimetry of light-based therapies critically depends on both optical and vascular parameters. We utilized spatial frequency domain imaging to quantify optical and vascular parameters, as well as estimated light penetration depth from 17 nonmelanoma skin cancer patients. Our data indicates that there exist substantial spatial variations in these parameters. Characterization of these parameters may inform understanding and optimization of the clinical response of light-based therapies. PMID:26137378

  14. Parallel optical interconnects - Implementation of optoelectronics in multiprocessor architectures

    NASA Astrophysics Data System (ADS)

    Frietman, E. E. E.; Dekker, L.; van Nifterick, W.; Jongeling, T. J. M.

    1990-03-01

    Optoelectronic logic element circuitries are described which can be used for the implementation of a wide variety of interconnection schemes. Particular attention is given to the design, construction, and application of an electrooptic communication system (EOCS) using dedicated free space multiple data distributors and integrated optically writable input buffer arrays with fully parallel access. Some experimental results obtained on the complete EOCS are presented.

  15. Parallel optical trap assisted nanopatterning on rough surfaces.

    PubMed

    Tsai, Y C; Leitz, K H; Fardel, R; Otto, A; Schmidt, M; Arnold, C B

    2012-04-27

    There exist many optical lithography techniques for generating nanostructures on hard, flat surfaces over large areas. However, few techniques are able to create such patterns on soft materials or surfaces with pre-existing structure. To address this need, we demonstrate the use of parallel optical trap assisted nanopatterning (OTAN) to provide an efficient and robust direct-write method of producing nanoscale features without the need for focal plane adjustment. Parallel patterning on model surfaces of polyimide with vertical steps greater than 1.5 µm shows a feature size uncertainty better than 4% across the step and lateral positional accuracy of 25 nm. A Brownian motion model is used to describe the positional accuracy enabling one to predict how variation in system parameters will affect the nanopatterning results. These combined results suggest that OTAN is a viable technique for massively parallel direct-write nanolithography on non-traditional surfaces.

  16. Parallel optical trap assisted nanopatterning on rough surfaces

    NASA Astrophysics Data System (ADS)

    Tsai, Y.-C.; Leitz, K.-H.; Fardel, R.; Otto, A.; Schmidt, M.; Arnold, C. B.

    2012-04-01

    There exist many optical lithography techniques for generating nanostructures on hard, flat surfaces over large areas. However, few techniques are able to create such patterns on soft materials or surfaces with pre-existing structure. To address this need, we demonstrate the use of parallel optical trap assisted nanopatterning (OTAN) to provide an efficient and robust direct-write method of producing nanoscale features without the need for focal plane adjustment. Parallel patterning on model surfaces of polyimide with vertical steps greater than 1.5 µm shows a feature size uncertainty better than 4% across the step and lateral positional accuracy of 25 nm. A Brownian motion model is used to describe the positional accuracy enabling one to predict how variation in system parameters will affect the nanopatterning results. These combined results suggest that OTAN is a viable technique for massively parallel direct-write nanolithography on non-traditional surfaces.

  17. Communication issues in parallel systems with optical interconnections

    NASA Astrophysics Data System (ADS)

    Berthome, Pascal; Ferreira, A.

    1995-02-01

    In classical massively parallel computers, the complexity of the interconnection networks is much higher than the complexity of the processing elements themselves. Optical interconnections may provide a way to reconsider very large parallel architectures. We compare some optically interconnected parallel multicomputer models with regard to their communication capabilities. We first establish a distinction of such systems, based on the independence of the communication elements embedded in the processors (transmitters and receivers). Then, motivated by the fact that in multicomputers some communication operations have to be very efficiently performed, we study two fundamental communication problems, namely, one-to-all and all-to-all, under the hypothesis of bounded fanout. Our results take also into account a bounded number of available wavelengths.

  18. Adaptive optics parallel near-confocal scanning ophthalmoscopy.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-08-15

    We present an adaptive optics parallel near-confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high-speed line camera to acquire the image and using adaptive optics to compensate the ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy.

  19. Parallel optics technology assessment for the versatile link project

    SciTech Connect

    Chramowicz, J.; Kwan, S.; Rivera, R.; Prosser, A.; /Fermilab

    2011-01-01

    This poster describes the assessment of commercially available and prototype parallel optics modules for possible use as back end components for the Versatile Link common project. The assessment covers SNAP12 transmitter and receiver modules as well as optical engine technologies in dense packaging options. Tests were performed using vendor evaluation boards (SNAP12) as well as custom evaluation boards (optical engines). The measurements obtained were used to compare the performance of these components with single channel SFP+ components operating at a transmission wavelength of 850 nm over multimode fibers.

  20. Radiation-hard/high-speed parallel optical links

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Buchholz, P.; Heidbrink, S.; Kagan, H. P.; Kass, R. D.; Moore, J.; Smith, D. S.; Vogt, M.; Ziolkowski, M.

    2016-09-01

    We have designed and fabricated a compact parallel optical engine for transmitting data at 5 Gb/s. The device consists of a 4-channel ASIC driving a VCSEL (Vertical Cavity Surface Emitting Laser) array in an optical package. The ASIC is designed using only core transistors in a 65 nm CMOS process to enhance the radiation-hardness. The ASIC contains an 8-bit DAC to control the bias and modulation currents of the individual channels in the VCSEL array. The performance of the optical engine up at 5 Gb/s is satisfactory.

  1. Adaptive Optics Parallel Near-Confocal Scanning Ophthalmoscopy

    PubMed Central

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2016-01-01

    We present an adaptive optics parallel confocal scanning ophthalmoscope (AOPCSO) using a digital micromirror device (DMD). The imaging light is modulated to be a line of point sources by the DMD, illuminating the retina simultaneously. By using a high speed line camera to acquire the image and using adaptive optics to compensate ocular wave aberration, the AOPCSO can image the living human eye with cellular level resolution at the frame rate of 100 Hz. AOPCSO has been demonstrated with improved spatial resolution in imaging of the living human retina compared with adaptive optics line scan ophthalmoscopy. PMID:27519106

  2. Frequency-Domain Eigenbeam-SDM and Equalization for Single-Carrier Transmissions

    NASA Astrophysics Data System (ADS)

    Ozaki, Kazuyuki; Nakajima, Akinori; Adachi, Fumiyuki

    In mobile communications, the channel consists of many resolvable paths with different time delays, resulting in a severely frequency-selective fading channel. The frequency-domain equalization (FDE) can take advantage of the channel selectivity and improve the bit error rate (BER) performance of the single-carrier (SC) transmission. Recently, multi-input multi-output (MIMO) multiplexing is gaining much attention for achieving very high speed data transmissions with the limited bandwidth. Eigenbeam space division multiplexing (E-SDM) is known as one of MIMO multiplexing techniques. In this paper, we propose frequency-domain SC E-SDM for SC transmission. In frequency-domain SC E-SDM, the orthogonal transmission channels to transmit different data in parallel are constructed at each orthogonal frequency. At a receiver, FDE is used to suppress the inter-symbol interference (ISI). In this paper, the transmit power allocation and adaptive modulation based on the equivalent channel gains after performing FDE are applied. The BER performance of the frequency-domain SC E-SDM in a severe frequency-selective Rayleigh fading channel is evaluated by computer simulation.

  3. Real-time spatial frequency domain imaging by single snapshot multiple frequency demodulation technique

    NASA Astrophysics Data System (ADS)

    Cao, Zili; Lin, Weihao; Chen, Xinlin; Zeng, Bixin; Xu, Min

    2017-02-01

    We have presented a novel Single Snapshot Multiple Frequency Demodulation (SSMD) method enabling single snapshot wide field imaging of optical properties of turbid media in the Spatial Frequency Domain. SSMD makes use of the orthogonality of harmonic functions and extracts the modulation transfer function (MTF) at multiple modulation frequencies and of arbitrary orientations and amplitudes simultaneously from a single structured-illuminated image at once. SSMD not only increases significantly the data acquisition speed and reduces motion artifacts but also exhibits excellent noise suppression in imaging as well. The performance of SSMD-SFDI is demonstrated with experiments on both tissue mimicking phantoms and in vivo for recovering optical properties. SSMD is ideal in the implementation of a real-time spatial frequency domain imaging platform, which will open up SFDI for vast applications in, for example, mapping the optical properties of a dynamic turbid medium or monitoring fast temporal evolutions.

  4. Frequency domain fluorometry with pulsed light-emitting diodes.

    PubMed

    Herman, Petr; Vecer, Jaroslav

    2008-01-01

    We present a simple way to extend the time resolution of a standard frequency domain (FD) fluorometer by use of pulsed light-emitting diodes (LEDs) as an excitation source. High temporal resolution of the multifrequency FD method requires the excitation light to be modulated up to the highest possible frequencies with high modulation depth. We used harmonic content of subnanosecond-pulsed LEDs for generation of modulated excitation light. By a replacement of the light source, the upper frequency limit increased to 500-600 MHz, which is almost triple the frequency limit of the standard FD fluorometer equipped with an ordinary photomultiplier tube and an electro-optical modulator. Besides the increased time resolution, this approach allowed for elimination of a light modulator with an associated synthesizer and radio frequency power amplifier that are normally required for FD measurements with continuous wave light sources. Performance of the instrument with pulsed LED excitation is demonstrated on several examples of ultraviolet-excited fluorescence decays. We show that pulsed LEDs can serve as an inexpensive alternative to pulsed laser sources for FD fluorescence spectroscopy.

  5. In vivo spatial frequency domain spectroscopy of two layer media

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Nguyen, John Quan M.; Durkin, Anthony J.

    2012-10-01

    Monitoring of tissue blood volume and local oxygen saturation can inform the assessment of tissue health, healing, and dysfunction. These quantities can be estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in skin can be confounded by the strong absorption of melanin in the epidermis and epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. Therefore, a method is desired that decouples the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. A previously developed inverse method based on a neural network forward model was applied to simulated spatial frequency domain reflectance of skin for multiple wavelengths in the near infrared. It is demonstrated that the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis can be determined independently and with minimal coupling. Then, the same inverse method was applied to reflectance measurements from a tissue simulating phantom and in vivo human skin. Oxygen saturation and total hemoglobin concentrations were estimated from the volar forearms of weakly and strongly pigmented subjects using a standard homogeneous model and the present two layer model.

  6. Frequency domain fluorescence diffuse tomography of small animals

    NASA Astrophysics Data System (ADS)

    Orlova, Anna G.; Turchin, Ilya V.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Balalaeva, Irina V.; Sergeeva, Ekaterina A.; Shirmanova, Marina V.; Kleshnin, Michail S.

    2007-05-01

    Fluorescent compounds for selective cancer cell marking are used for development of novel medical diagnostic methods, investigation of the influence of external factors on tumor growth, regress and metastasis. Only special tools for turbid media imaging, such as optical diffusion tomography permit noninvasive monitoring of fluorescent-labeled tumor alterations deep in animal tissue. In this work, the results of preliminary experiments utilizing frequency-domain fluorescent diffusion tomography (FD FDT) experimental setup in small animal are presented. Low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the wavelength of 532 nm was used in the setup. The transilluminative planar configuration was used in the setup. A series of model experiments has been conducted and show good agreement between theoretical and experimental fluorescence intensity. Models of deep tumors were created by two methods: (1) glass capsules containing fluorophore solution were inserted into esophagus of small animals to simulate marked tumors; (2) a suspension of transfected HEΚ293-Turbo-RFP cells was subcutaneously injected to small animal. The conducted experiments have shown that FD FDT allows one to detect the presence of labeled tumor cells in small animals, to determine the volume of an experimental tumor, to perform 3D tumor reconstruction, as well as to conduct monitoring investigations. The obtained results demonstrate the potential capability of the FD FDT method for noninvasive whole-body imaging in cancer studies, diagnostics and therapy.

  7. Frequency domain optoacoustic tomography using amplitude and phase

    PubMed Central

    Mohajerani, Pouyan; Kellnberger, Stephan; Ntziachristos, Vasilis

    2014-01-01

    We introduce optoacoustic tomographic imaging using intensity modulated light sources and collecting amplitude and phase information in the frequency domain. Imaging is performed at multiple modulation frequencies. The forward modeling uses the Green's function solution to the pressure wave equation in frequency domain and the resulting inverse problem is solved using regularized least squares minimization. We study the effect of the number of frequencies and of the bandwidth employed on the image quality achieved. The possibility of employing an all-frequency domain optoacoustic imaging for experimental measurements is studied as a function of noise. We conclude that frequency domain optoacoustic tomography may evolve to a practical experimental method using light intensity modulated sources, with advantages over time-domain optoacoustics. PMID:25431755

  8. A statistical package for computing time and frequency domain analysis

    NASA Technical Reports Server (NTRS)

    Brownlow, J.

    1978-01-01

    The spectrum analysis (SPA) program is a general purpose digital computer program designed to aid in data analysis. The program does time and frequency domain statistical analyses as well as some preanalysis data preparation. The capabilities of the SPA program include linear trend removal and/or digital filtering of data, plotting and/or listing of both filtered and unfiltered data, time domain statistical characterization of data, and frequency domain statistical characterization of data.

  9. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, W.B.; DuBois, D.H.

    1996-12-03

    Disclosed is a system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway. 7 figs.

  10. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, Wallace B.; DuBois, David H.

    1996-01-01

    A system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway.

  11. Frequency Domain Electroretinography in Retinitis Pigmentosa versus Normal Eyes.

    PubMed

    Hassan-Karimi, Homa; Jafarzadehpur, Ebrahim; Blouri, Bahram; Hashemi, Hassan; Sadeghi, Arash Zare; Mirzajani, Ali

    2012-01-01

    To compare electroretinogram (ERG) characteristics in patients with retinitis pigmentosa (RP) and normal subjects using frequency domain analysis. Five basic ERG recordings were performed in normal subjects and patients with a clinical diagnosis of RP according to the ISCEV (International Society of Clinical Electrophysiology of Vision) protocol. Frequency domain analysis was performed by MATLAB software. Different frequency domain parameters were compared between the study groups. Peak frequency (Fmod) of flicker and oscillatory responses in RP patients showed significant (P<0.0001) high pass response as compared to normal controls. Peak frequency (Fmod) of the other responses was not significantly different between the two groups. In addition to conventional ERG using time domain methods, frequency domain analysis may be useful for diagnosis of RP. Oscillatory and flicker responses may be analyzed in frequency domain. Fast Fourier transform may reveal two distinct high pass responses (shift to higher frequencies) in Fmod. Time and frequency domain analyses may be performed simultaneously with many modern ERG machines and may therefore be recommended in RP patients.

  12. Parallel optical interconnects: implementation of optoelectronics in multiprocessor architectures.

    PubMed

    Frietman, E E; van Nifterick, W; Dekker, L; Jongeling, T J

    1990-03-10

    Performance and efficiency of multiple processor computers depend strongly on the network that interconnects the distinct collaborating processors. Constrained connectivity forces much of the potential computing speed to be used to compensate for the limitation in connections. The availability of a multiple parallel I/O connections allows full unrestricted connectivity and is an essential prerequisite for an interprocessor network that is able to meet the ever growing communication demands. This paper emphasizes the design, building and application of an electrooptic communication system [EOCS]. The EOCS uses dedicated free space multiple data distributors and integrated optically writable inputbuffer arrays with fully parallel access.

  13. Transmissive Nanohole Arrays for Massively-Parallel Optical Biosensing

    PubMed Central

    2015-01-01

    A high-throughput optical biosensing technique is proposed and demonstrated. This hybrid technique combines optical transmission of nanoholes with colorimetric silver staining. The size and spacing of the nanoholes are chosen so that individual nanoholes can be independently resolved in massive parallel using an ordinary transmission optical microscope, and, in place of determining a spectral shift, the brightness of each nanohole is recorded to greatly simplify the readout. Each nanohole then acts as an independent sensor, and the blocking of nanohole optical transmission by enzymatic silver staining defines the specific detection of a biological agent. Nearly 10000 nanoholes can be simultaneously monitored under the field of view of a typical microscope. As an initial proof of concept, biotinylated lysozyme (biotin-HEL) was used as a model analyte, giving a detection limit as low as 0.1 ng/mL. PMID:25530982

  14. Transmissive Nanohole Arrays for Massively-Parallel Optical Biosensing.

    PubMed

    Wang, Yanan; Kar, Archana; Paterson, Andrew; Kourentzi, Katerina; Le, Han; Ruchhoeft, Paul; Willson, Richard; Bao, Jiming

    2014-03-19

    A high-throughput optical biosensing technique is proposed and demonstrated. This hybrid technique combines optical transmission of nanoholes with colorimetric silver staining. The size and spacing of the nanoholes are chosen so that individual nanoholes can be independently resolved in massive parallel using an ordinary transmission optical microscope, and, in place of determining a spectral shift, the brightness of each nanohole is recorded to greatly simplify the readout. Each nanohole then acts as an independent sensor, and the blocking of nanohole optical transmission by enzymatic silver staining defines the specific detection of a biological agent. Nearly 10000 nanoholes can be simultaneously monitored under the field of view of a typical microscope. As an initial proof of concept, biotinylated lysozyme (biotin-HEL) was used as a model analyte, giving a detection limit as low as 0.1 ng/mL.

  15. Parallel multichannel optical correlator for frequency subband decomposition

    NASA Astrophysics Data System (ADS)

    Barbe, J.; Campos, Juan; Iemmi, Claudio C.; Nicolas, Josep

    2001-08-01

    Many applications require a complex processing, using for it a bank of filters. Different architectures have been proposed of optical processors to perform a parallel filtering. We prose a new multichannel architecture based in the translation Fourier Transform properties. These properties allowed us to design multichannels phase filters. The architecture does not need the introduction of any additional modification in the optical processor. We developed an application for texture classification in real time. We obtain excellent results in the texture classification process, 99 percent of images have been correctly classified.

  16. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-06-24

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  17. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-09-02

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  18. Parallel beam optical tomography apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajic, Nikola; Doran, Simon J.

    2005-06-01

    Since the discovery of X rays radiotherapy has had the same aim - to deliver a precisely measured dose of radiation to a defined tumour volume with minimal damage to surrounding healthy tissue. Recent developments in radiotherapy such as intensity modulated radiotherapy (IMRT) can generate complex shapes of dose distributions. Until recently it has not been possible to verify that the delivered dose matches the planned dose. However, one often wants to know the real three-dimensional dose distribution. Three-dimensional radiation dosimeters have been developed since the early 1980s. Most chemical formulations involve a radiosensitive species immobilised in space by gelling agent. Magnetic Resonance Imaging (MRI) and optical techniques have been the most successful gel scanning techniques so far. Optical techniques rely on gels changing colour once irradiated. Parallel beam optical tomography has been developed at the University of Surrey since the late 1990s. The apparatus involves light emitting diode light source collimated to a wide (12cm) parallel beam. The beam is attenuated or scattered (depending on the chemical formulation) as it passes through the gel. Focusing optics projects the beam onto a CCD chip. The dosimeter sits on a rotation stage. The tomography scan involves continuously rotating the dosimeter and taking CCD images. Once the dosimeter has been rotated over 180 degrees the images are processed by filtered back projection. The work presented discusses the optics of the apparatus in more detail.

  19. Parallel approach to MEMS and micro-optics interferometric testing

    NASA Astrophysics Data System (ADS)

    Kujawińska, M.; Beer, S.; Gastinger, K.; Gorecki, C.; Haugholt, K. H.; Józwik, M.; Lambelet, P.; Paris, R.; Styk, A.; Zeitner, U.

    2011-08-01

    The paper presents the novel approach to an interferometric, quantitative, massive parallel inspection of MicroElectroMechanicalSystems (MEMS), MicroOptoElectroMechanical Systems (MOEMS) and microoptics arrays. The basic idea is to adapt a micro-optical probing wafer to the M(O)EMS wafer under test. The probing wafer is exchangeable and contains one of the micro-optical interferometer arrays based on: (1) a low coherent interferometer array based on a Mirau configuration or (2) a laser interferometer array based on a Twyman-Green configuration. The optical, mechanical, and electro-optical design of the system and data analysis concept based on this approach is presented. The interferometer arrays are developed and integrated at a standard test station for micro-fabrication together with the illumination and imaging modules and special mechanics which includes scanning and electrostatic excitation systems. The smart-pixel approach is applied for massive parallel electro-optical detection and data reduction. The first results of functional tests of the system are presented. The concept is discussed in reference to the future M(O)EMS and microoptics manufacturers needs and requirements.

  20. High-resolution parallel optical coherence tomography in scattering samples

    NASA Astrophysics Data System (ADS)

    Laubscher, M.; Ducros, Mathieu G.; Karamata, Boris; Bourquin, Stephane; Lasser, Theo

    2001-11-01

    Parallel optical coherence tomography in scattering samples is demonstrated using a 58 by 58 smart-pixel detector array. A femtosecond mode-locked Ti:Sapphire laser in combination with a free space Michelson interferometer was employed to achieve 4micrometers longitudinal resolution and 9mm transverse resolution on a 260x260 micrometers 2 field of view. We imaged a resolution target covered by an intralipid solution with different scattering coefficients as well as onion cells.

  1. Frequency-domain photoacoustic phased array probe for biomedical imaging applications.

    PubMed

    Telenkov, Sergey; Alwi, Rudolf; Mandelis, Andreas; Worthington, Arthur

    2011-12-01

    We report the development of a frequency-domain biomedical photoacoustic imaging system that utilizes a continuous-wave laser source with a custom intensity modulation pattern, ultrasonic phased array for signal detection, and processing coupled with a beam-forming algorithm for reconstruction of photoacoustic correlation images. Sensitivity to optical contrast was demonstrated using tissue-mimicking phantoms and in-vivo tissue samples.

  2. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  3. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  4. Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains

    NASA Astrophysics Data System (ADS)

    Telenkov, Sergey; Mandelis, Andreas

    2010-12-01

    Sensitivity analysis of photoacoustic measurements is conducted using estimates of the signal-to-noise ratio (SNR) achieved under two different modes of optical excitation. The standard pulsed time-domain photoacoustic imaging is compared to the frequency-domain counterpart with a modulated optical source. The feasibility of high-SNR continuous wave depth-resolved photoacoustics with frequency-swept (chirp) modulation pattern has been demonstrated. Utilization of chirped modulation waveforms achieves dramatic SNR increase of the periodic signals and preserves axial resolution comparable to the time-domain method. Estimates of the signal-to-noise ratio were obtained using typical parameters of piezoelectric transducers and optical properties of tissue.

  5. Parallel optical interconnects utilizing VLSI/FLC spatial light modulators

    NASA Astrophysics Data System (ADS)

    Genco, Sheryl M.

    1991-12-01

    Interconnection architectures are a cornerstone of parallel computing systems. However, interconnections can be a bottleneck in conventional computer architectures because of queuing structures that are necessary to handle the traffic through a switch at very high data rates and bandwidths. These issues must find new solutions to advance the state of the art in computing beyond the fundamental limit of silicon logic technology. Today's optoelectronic (OE) technology in particular VLSI/FLC spatial light modulators (SLMs) can provide a unique and innovative solution to these issues. This paper reports on the motivations for the system, describes the major areas of architectural requirements, discusses interconnection topologies and processor element alternatives, and documents an optical arbitration (i.e., control) scheme using `smart' SLMs and optical logic gates. The network topology is given in section 2.1 `Architectural Requirements -- Networks,' but it should be noted that the emphasis is on the optical control scheme (section 2.4) and the system.

  6. Velocity measurement using frequency domain interferometer and chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2017-02-01

    An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.

  7. 1060-nm VCSEL-based parallel-optical modules for optical interconnects

    NASA Astrophysics Data System (ADS)

    Nishimura, N.; Nagashima, K.; Kise, T.; Rizky, A. F.; Uemura, T.; Nekado, Y.; Ishikawa, Y.; Nasu, H.

    2015-03-01

    The capability of mounting a parallel-optical module onto a PCB through solder-reflow process contributes to reduce the number of piece parts, simplify its assembly process, and minimize a foot print for both AOC and on-board applications. We introduce solder-reflow-capable parallel-optical modules employing 1060-nm InGaAs/GaAs VCSEL which leads to the advantages of realizing wider modulation bandwidth, longer transmission distance, and higher reliability. We demonstrate 4-channel parallel optical link performance operated at a bit stream of 28 Gb/s 231-1 PRBS for each channel and transmitted through a 50-μm-core MMF beyond 500 m. We also introduce a new mounting technology of paralleloptical module to realize maintaining good coupling and robust electrical connection during solder-reflow process between an optical module and a polymer-waveguide-embedded PCB.

  8. Frequency Domain Tomography Of Evolving Laser-Plasma Accelerator Structures

    SciTech Connect

    Dong Peng; Reed, Stephen; Kalmykov, Serguei; Shvets, Gennady; Downer, Mike

    2009-01-22

    Frequency Domain Holography (FDH), a technique for visualizing quasistatic objects propagating near the speed of light, has produced 'snapshots' of laser wakefields, but they are averaged over structural variations that occur during propagation through the plasma medium. Here we explore via simulations a generalization of FDH--that we call Frequency Domain Tomography (FDT)--that can potentially record a time sequence of quasistatic snapshots, like the frames of a movie, of the wake structure as it propagates through the plasma. FDT utilizes a several probe-reference pulse pairs that propagate obliquely to the drive pulse and wakefield, along with tomographic reconstruction algorithms similar to those used in medical CAT scans.

  9. Frequency domain simultaneous algebraic reconstruction techniques: algorithm and convergence

    NASA Astrophysics Data System (ADS)

    Wang, Jiong; Zheng, Yibin

    2005-03-01

    We propose a simultaneous algebraic reconstruction technique (SART) in the frequency domain for linear imaging problems. This algorithm has the advantage of efficiently incorporating pixel correlations in an a priori image model. First it is shown that the generalized SART algorithm converges to the weighted minimum norm solution of a weighted least square problem. Then an implementation in the frequency domain is described. The performance of the new algorithm is demonstrated with fan beam computed tomography (CT) examples. Compared to the traditional SART and its major alternative ART, the new algorithm offers superior image quality and potential application to other modalities.

  10. A Simple Physical Optics Algorithm Perfect for Parallel Computing

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Cwik, T.

    1993-01-01

    One of the simplest reflector antenna computer programs is based upon a discrete approximation of the radiation integral. This calculation replaces the actual reflector surface with a triangular facet representation so that the reflector resembles a geodesic dome. The Physical Optics (PO) current is assumed to be constant in magnitude and phase over each facet so the radiation integral is reduced to a simple summation. This program has proven to be surprisingly robust and useful for the analysis of arbitrary reflectors, particularly when the near-field is desired and surface derivatives are not known. Because of its simplicity, the algorithm has proven to be extremely easy to adapt to the parallel computing architecture of a modest number of large-grain computing elements such as are used in the Intel iPSC and Touchstone Delta parallel machines.

  11. A Simple Physical Optics Algorithm Perfect for Parallel Computing

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Cwik, T.

    1993-01-01

    One of the simplest reflector antenna computer programs is based upon a discrete approximation of the radiation integral. This calculation replaces the actual reflector surface with a triangular facet representation so that the reflector resembles a geodesic dome. The Physical Optics (PO) current is assumed to be constant in magnitude and phase over each facet so the radiation integral is reduced to a simple summation. This program has proven to be surprisingly robust and useful for the analysis of arbitrary reflectors, particularly when the near-field is desired and surface derivatives are not known. Because of its simplicity, the algorithm has proven to be extremely easy to adapt to the parallel computing architecture of a modest number of large-grain computing elements such as are used in the Intel iPSC and Touchstone Delta parallel machines.

  12. Massively parallel processor networks with optical express channels

    SciTech Connect

    Deri, R.J.; Brooks, E.D. III; Haigh, R.E.; DeGroot, A.J.

    1999-08-24

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination. 3 figs.

  13. Massively parallel processor networks with optical express channels

    SciTech Connect

    Deri, Robert J.; Brooks, III, Eugene D.; Haigh, Ronald E.; DeGroot, Anthony J.

    1999-01-01

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination.

  14. Massively parallel processor networks with optical express channels

    DOEpatents

    Deri, R.J.; Brooks, E.D. III; Haigh, R.E.; DeGroot, A.J.

    1999-08-24

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination. 3 figs.

  15. Channel Arrangement for optical communication subsystems with 12 parallel channels

    NASA Astrophysics Data System (ADS)

    Chen, Xiong-Bin; Jia, Jiu-Chun; Zhou, Yi; Tang, Jun; Pei, Wei-Hua; Liu, Bo; Chen, Hong-Da

    2006-07-01

    This paper devoted to report the design and the achievement of an optical communication subsystem with 12 parallel channels in one chip. The system is capable of transmitting 10 Gbps bidirectional date over hundreds of meters. It can provide error detection and correction by using 8B/10B encoding and Cyclical Redundancy Checking (CRC) encoding when only single-channel fails. The design scheme has already passed the simulation in FPGA. This technique is useful to enhance the capability and the reliability of the very short reach (VSR) transmission systems.

  16. Higher order statistical frequency domain decomposition for operational modal analysis

    NASA Astrophysics Data System (ADS)

    Nita, G. M.; Mahgoub, M. A.; Sharyatpanahi, S. G.; Cretu, N. C.; El-Fouly, T. M.

    2017-02-01

    Experimental methods based on modal analysis under ambient vibrational excitation are often employed to detect structural damages of mechanical systems. Many of such frequency domain methods, such as Basic Frequency Domain (BFD), Frequency Domain Decomposition (FFD), or Enhanced Frequency Domain Decomposition (EFFD), use as first step a Fast Fourier Transform (FFT) estimate of the power spectral density (PSD) associated with the response of the system. In this study it is shown that higher order statistical estimators such as Spectral Kurtosis (SK) and Sample to Model Ratio (SMR) may be successfully employed not only to more reliably discriminate the response of the system against the ambient noise fluctuations, but also to better identify and separate contributions from closely spaced individual modes. It is shown that a SMR-based Maximum Likelihood curve fitting algorithm may improve the accuracy of the spectral shape and location of the individual modes and, when combined with the SK analysis, it provides efficient means to categorize such individual spectral components according to their temporal dynamics as coherent or incoherent system responses to unknown ambient excitations.

  17. Frequency-Domain Methods for Characterization of Pulsed Power Diagnostics

    SciTech Connect

    White, A D; Anderson, R A; Ferriera, T J; Goerz, D A

    2009-07-27

    This paper discusses methods of frequency-domain characterization of pulsed power sensors using vector network analyzer and spectrum analyzer techniques that offer significant simplification over time-domain methods, while mitigating or minimizing the effect of the difficulties present in time domain characterization. These methods are applicable to characterization of a wide variety of sensors.

  18. Frequency Domain Detection of Biomolecules using Silicon Nanowire Biosensors

    PubMed Central

    Zheng, Gengfeng; Gao, Xuan P. A.; Lieber, Charles M.

    2010-01-01

    We demonstrate a new protein detection methodology based upon frequency domain electrical measurement using silicon nanowire field-effect transistor (SiNW FET) biosensors. The power spectral density of voltage from a current-biased SiNW FET shows 1/f-dependence in frequency domain for measurements of antibody functionalized SiNW devices in buffer solution or in the presence of protein not specific to the antibody receptor. In the presence of protein (antigen) recognized specifically by the antibody-functionalized SiNW FET, the frequency spectrum exhibits a Lorentzian shape with a characteristic frequency of several kHz. Frequency and conventional time domain measurements carried out with the same device as a function of antigen concentration show more than 10-fold increase in detection sensitivity in the frequency domain data. These concentration dependent results together with studies of antibody receptor density effect further address possible origins of the Lorentzian frequency spectrum. Our results show that frequency domain measurements can be used as a complementary approach to conventional time domain measurements for ultra-sensitive electrical detection of proteins and other biomolecules using nanoscale FETs. PMID:20698634

  19. Improvement of matrix condition of Hybrid, space variant optics by the means of parallel optics design.

    PubMed

    Klapp, Iftach; Mendlovic, David

    2009-07-06

    The problem of image restoration of space variant blur is common and important. One of the most useful descriptions of this problem is in its algebraic form I=H*O, where O is the object represented as a column vector, I is the blur image represented as a column vector and H is the PSF matrix that represents the optical system. When inverting the problem to restore the geometric object from the blurred image and the known system matrix, restoration is limited in speed and quality by the system condition. Current optical design methods focus on image quality, therefore if additional image processing is needed the matrix condition is taken "as is". In this paper we would like to present a new optical approach which aims to improve the system condition by proper optical design. In this new method we use Singular Value Decomposition (SVD) to define the weak parts of the matrix condition. We design a second optical system based on those weak SVD parts and then we add the second system parallel to the first one. The original and second systems together work as an improved parallel optics system. Following that, we present a method for designing such a "parallel filter" for systems with a spread SVD pattern. Finally we present a study case in which by using our new method we improve a space variant image system with an initial condition number of 8.76e4, down to a condition number of 2.29e3. We use matrix inversion to simulate image restoration. Results show that the new parallel optics immunity to Additive White Gaussian Noise (AWGN) is much better then that of the original simple lens. Comparing the original and the parallel optics systems, the parallel optics system crosses the MSEIF=0 [db] limit in SNR value which is more than 50db lower then the SNR value in the case of the original simple lens. The new parallel optics system performance is also compared to another method based on the MTF approach.

  20. Frequency-domain stimulated and spontaneous light emission signals at molecular junctions

    SciTech Connect

    Harbola, Upendra; Agarwalla, Bijay Kumar; Mukamel, Shaul

    2014-08-21

    Using a diagrammatic superoperator formalism we calculate optical signals at molecular junctions where a single molecule is coupled to two metal leads which are held at different chemical potentials. The molecule starts in a nonequilibrium steady state whereby it continuously exchanges electrons with the leads with a constant electron flux. Expressions for frequency domain optical signals measured in response to continuous laser fields are derived by expanding the molecular correlation functions in terms of its many-body states. The nonunitary evolution of molecular states is described by the quantum master equation.

  1. Frequency-domain stimulated and spontaneous light emission signals at molecular junctions

    NASA Astrophysics Data System (ADS)

    Harbola, Upendra; Agarwalla, Bijay Kumar; Mukamel, Shaul

    2014-08-01

    Using a diagrammatic superoperator formalism we calculate optical signals at molecular junctions where a single molecule is coupled to two metal leads which are held at different chemical potentials. The molecule starts in a nonequilibrium steady state whereby it continuously exchanges electrons with the leads with a constant electron flux. Expressions for frequency domain optical signals measured in response to continuous laser fields are derived by expanding the molecular correlation functions in terms of its many-body states. The nonunitary evolution of molecular states is described by the quantum master equation.

  2. Hybrid Optoelectronic Bistability in Frequency-Domain and Its Potential Application in FBG Sensors

    NASA Astrophysics Data System (ADS)

    Ye, Hong-An; Liu, Chun-Yu; Lv, Guo-Hui; Xin, Hai-Ying; Zhu, Xiao-Liang

    2008-12-01

    We propose a novel optical bistable device (OBD) in frequency-domain with which we can perform optical bistable operations in a number of fibre Bragg gratings (FBGs) which are included in the same OBD. Such an OBD may bring more opportunities in applications and, as an example, we show the possibility of using it in an FBG sensor demodulating system. By use of a tunable light source, consisting of a broad band source and a scanning fibre F-P (FFP), we demonstrate the above-mentioned operations experimentally.

  3. Acousto-optic parallel read/write head for optical disk data storage.

    PubMed

    McLeod, Robert R; Walter, Sarah K

    2006-09-20

    Parallel read and write of optical disks has traditionally used a static grating for read or a linear array of independent lasers for read and write. Depending on the implementation, these systems suffer from coherent cross talk, excessive space between spots, and an inability to independently track. We show that a dynamic acousto-optic grating can generate multiple parallel read/write spots on the disk, each of which can be independently modulated and tracked and all of which are incoherent in less that a bit period. The resulting disk pickup can potentially reach gigabit per second transfer rates with only a modest increase in the drive complexity.

  4. Acousto-optic parallel read/write head for optical disk data storage

    NASA Astrophysics Data System (ADS)

    McLeod, Robert R.; Walter, Sarah K.

    2006-09-01

    Parallel read and write of optical disks has traditionally used a static grating for read or a linear array of independent lasers for read and write. Depending on the implementation, these systems suffer from coherent cross talk, excessive space between spots, and an inability to independently track. We show that a dynamic acousto-optic grating can generate multiple parallel read/write spots on the disk, each of which can be independently modulated and tracked and all of which are incoherent in less that a bit period. The resulting disk pickup can potentially reach gigabit per second transfer rates with only a modest increase in the drive complexity.

  5. Image-based tracking of optically detunable parallel resonant circuits.

    PubMed

    Eggers, Holger; Weiss, Steffen; Boernert, Peter; Boesiger, Peter

    2003-06-01

    In this work strategies for the robust localization of parallel resonant circuits are investigated. These strategies are based on the subtraction of two images, which ideally differ in signal intensity at the positions of the devices only. To modulate their signal amplification, and thereby generate the local variations, the parallel resonant circuits are alternately detuned and retuned during the acquisition. The integration of photodiodes into the devices permits their fast optical switching. Radial and spiral imaging sequences are modified to provide the data for the two images in addition to those for a conventional image in the same acquisition time. The strategies were evaluated by phantom experiments with stationary and moving catheter-borne devices. In particular, rapid detuning and retuning during the sampling of single profiles is shown to lead to a robust localization. Moreover, this strategy eliminates most of the drawbacks usually associated with image-based tracking, such as low temporal resolution. Image-based tracking may thus become a competitive (if not superior) alternative to projection-based tracking of parallel resonant circuits.

  6. Dynamic spectrum in frequency domain on nonnvasive in vivo measurement of blood spectrum

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxia; Li, Gang; Lin, Ling; Liu, Yuliang; Wang, Yan; Zhang, Yunfeng

    2005-01-01

    Near-IR spectroscopy holds great promise for non-invasive concentration measurements of blood on the basis of its potential for reagent-less, nondestructive, and noninvasive measurements. The main difficulty for determining absolute or even exact relative concentrations is the scattering behavior of the tissue. This leads to significant differences in the ideal Lambert Beer's law. In this paper, the approach of the Dynamic Spectrum in the frequency domain was proposed by Professor LI Gang etc. is shown, it is based on Photo-plethysmography (PPG) with fast Fourier transforms. The magnitude of fundamental wave of the pulse wave at each wavelength divided by the peak value of the pulse wave, get the natural logarithm of quotient at each wavelength and then the Dynamic Spectrum in the frequency domain is got. Evaluating only the pulsatile part of the entire optical signal, this approach is rather independent of individual or time changes in scattering or absorption characteristics of the tissue. Because of the noise and the resolution of the spectrometer, the Dynamic Spectrum is very difficult to get. In this paper, a series of measures is taken, and high-precision Dynamic Spectrum in the frequency domain is got with the experiment. The approach is verified. The advantage of getting Dynamic Spectrum in the frequency domain is analyzed, and compared with the Dynamic Spectrum in the time domain. The paper shows that the technique enables high precision measurement of changes in tissue absorbance caused by blood pulsation. It is very important in the non-invasive in vivo concentration measurement of blood.

  7. Parallel optical-path-length-shifting digital holography.

    PubMed

    Awatsuji, Yasuhiro; Koyama, Takamasa; Tahara, Tatsuki; Ito, Kenichi; Shimozato, Yuki; Kaneko, Atsushi; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2009-12-01

    The authors propose an optical-path-length-shifting digital holography as a technique capable of single-shot recording of three-dimensional information of objects. With a single image sensor, the proposed technique can simultaneously record all of the holograms required for the in-line digital holography that reconstruct the image of an object from two intensity measurements at different planes. The technique can be optically implemented by using an optical-path-length-shifting array device located in the common path of the reference and object waves. The array device has periodic structure of two-step optical-path difference. The configuration of the array device of the proposed technique is simpler than the phase-shifting array device required for parallel phase-shifting digital holographies. Therefore, the optical system of the proposed technique is more suitable for the realization of a single-shot in-line digital holography system that removes the conjugate image from the reconstructed image. The authors conducted both a numerical simulation and a preliminary experiment of the proposed technique. The reconstructed images were quantitatively evaluated by using root mean squared error. In comparison to single-shot digital holography using the Fresnel transform alone, with the proposed technique the root mean squared errors of the technique were reduced to less than 1/6 in amplitude and 1/3 in phase. Also the results of the simulation and experiment agreed well with the images of an object. Thus the effectiveness of the proposed technique is verified.

  8. Microresonator-based solitons for massively parallel coherent optical communications.

    PubMed

    Marin-Palomo, Pablo; Kemal, Juned N; Karpov, Maxim; Kordts, Arne; Pfeifle, Joerg; Pfeiffer, Martin H P; Trocha, Philipp; Wolf, Stefan; Brasch, Victor; Anderson, Miles H; Rosenberger, Ralf; Vijayan, Kovendhan; Freude, Wolfgang; Kippenberg, Tobias J; Koos, Christian

    2017-06-07

    Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs-one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers

  9. Microresonator-based solitons for massively parallel coherent optical communications

    NASA Astrophysics Data System (ADS)

    Marin-Palomo, Pablo; Kemal, Juned N.; Karpov, Maxim; Kordts, Arne; Pfeifle, Joerg; Pfeiffer, Martin H. P.; Trocha, Philipp; Wolf, Stefan; Brasch, Victor; Anderson, Miles H.; Rosenberger, Ralf; Vijayan, Kovendhan; Freude, Wolfgang; Kippenberg, Tobias J.; Koos, Christian

    2017-06-01

    Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs—one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers

  10. Identification of characteristic components in frequency domain from signal singularities

    NASA Astrophysics Data System (ADS)

    Miao, Qiang; Wang, Dong; Huang, Hong-Zhong

    2010-03-01

    In rotating machinery condition monitoring, identification of characteristic components is fundamental in many engineering applications so as to obtain fault sensitive features for fault detection and diagnosis. This paper proposed a novel method for the identification of characteristic components in frequency domain based on singularity analysis. In this process, Lipschitz exponent function is constructed from the signal through wavelet-based singularity analysis. In order to highlight the periodic phenomena, autocorrelation transform is employed to extract the periodic exponents and Fourier transform is used to map the time-domain information into frequency domain. Case study with rolling element bearing vibration data shows that the proposed has very excellent capability for the identification of characteristic components compared with traditional methods.

  11. Identification of characteristic components in frequency domain from signal singularities.

    PubMed

    Miao, Qiang; Wang, Dong; Huang, Hong-Zhong

    2010-03-01

    In rotating machinery condition monitoring, identification of characteristic components is fundamental in many engineering applications so as to obtain fault sensitive features for fault detection and diagnosis. This paper proposed a novel method for the identification of characteristic components in frequency domain based on singularity analysis. In this process, Lipschitz exponent function is constructed from the signal through wavelet-based singularity analysis. In order to highlight the periodic phenomena, autocorrelation transform is employed to extract the periodic exponents and Fourier transform is used to map the time-domain information into frequency domain. Case study with rolling element bearing vibration data shows that the proposed has very excellent capability for the identification of characteristic components compared with traditional methods.

  12. Multivariable frequency domain identification via 2-norm minimization

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1992-01-01

    The author develops a computational approach to multivariable frequency domain identification, based on 2-norm minimization. In particular, a Gauss-Newton (GN) iteration is developed to minimize the 2-norm of the error between frequency domain data and a matrix fraction transfer function estimate. To improve the global performance of the optimization algorithm, the GN iteration is initialized using the solution to a particular sequentially reweighted least squares problem, denoted as the SK iteration. The least squares problems which arise from both the SK and GN iterations are shown to involve sparse matrices with identical block structure. A sparse matrix QR factorization method is developed to exploit the special block structure, and to efficiently compute the least squares solution. A numerical example involving the identification of a multiple-input multiple-output (MIMO) plant having 286 unknown parameters is given to illustrate the effectiveness of the algorithm.

  13. Asymptotic Waveform Evaluation (AWE) Technique for Frequency Domain Electromagnetic Analysis

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, F. B.

    1996-01-01

    The Asymptotic Waveform Evaluation (AWE) technique is applied to a generalized frequency domain electromagnetic problem. Most of the frequency domain techniques in computational electromagnetics result in a matrix equation, which is solved at a single frequency. In the AWE technique, the Taylor series expansion around that frequency is applied to the matrix equation. The coefficients of the Taylor's series are obtained in terms of the frequency derivatives of the matrices evaluated at the expansion frequency. The coefficients hence obtained will be used to predict the frequency response of the system over a frequency range. The detailed derivation of the coefficients (called 'moments') is given along with an illustration for electric field integral equation (or Method of Moments) technique. The radar cross section (RCS) frequency response of a square plate is presented using the AWE technique and is compared with the exact solution at various frequencies.

  14. Solution to the indexing problem of frequency domain simulation experiments

    NASA Technical Reports Server (NTRS)

    Mitra, Mousumi; Park, Stephen K.

    1991-01-01

    A frequency domain simulation experiment is one in which selected system parameters are oscillated sinusoidally to induce oscillations in one or more system statistics of interest. A spectral (Fourier) analysis of these induced oscillations is then performed. To perform this spectral analysis, all oscillation frequencies must be referenced to a common, independent variable - an oscillation index. In a discrete-event simulation, the global simulation clock is the most natural choice for the oscillation index. However, past efforts to reference all frequencies to the simulation clock generally yielded unsatisfactory results. The reason for these unsatisfactory results is explained in this paper and a new methodology which uses the simulation clock as the oscillation index is presented. Techniques for implementing this new methodology are demonstrated by performing a frequency domain simulation experiment for a network of queues.

  15. Multifunction tests of a frequency domain based flutter suppression system

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Adams, William M., Jr.

    1992-01-01

    The process is described of analysis, design, digital implementation, and subsonic testing of an active control flutter suppression system for a full span, free-to-roll wind tunnel model of an advanced fighter concept. The design technique uses a frequency domain representation of the plant and used optimization techniques to generate a robust multi input/multi output controller. During testing in a fixed-in-roll configuration, simultaneous suppression of both symmetric and antisymmetric flutter was successfully shown. For a free-to-roll configuration, symmetric flutter was suppressed to the limit of the tunnel test envelope. During aggressive rolling maneuvers above the open-loop flutter boundary, simultaneous flutter suppression and maneuver load control were demonstrated. Finally, the flutter damping controller was reoptimized overnight during the test using combined experimental and analytical frequency domain data, resulting in improved stability robustness.

  16. The Peltier driven frequency domain approach in thermal analysis.

    PubMed

    De Marchi, Andrea; Giaretto, Valter

    2014-10-01

    The merits of Frequency Domain analysis as a tool for thermal system characterization are discussed, and the complex thermal impedance approach is illustrated. Pure AC thermal flux generation with negligible DC component is possible with a Peltier device, differently from other existing methods in which a significant DC component is intrinsically attached to the generated AC flux. Such technique is named here Peltier Driven Frequency Domain (PDFD). As a necessary prerequisite, a novel one-dimensional analytical model for an asymmetrically loaded Peltier device is developed, which is general enough to be useful in most practical situations as a design tool for measurement systems and as a key for the interpretation of experimental results. Impedance analysis is possible with Peltier devices by the inbuilt Seebeck effect differential thermometer, and is used in the paper for an experimental validation of the analytical model. Suggestions are then given for possible applications of PDFD, including the determination of thermal properties of materials.

  17. The Peltier driven frequency domain approach in thermal analysis

    NASA Astrophysics Data System (ADS)

    Marchi, Andrea De; Giaretto, Valter

    2014-10-01

    The merits of Frequency Domain analysis as a tool for thermal system characterization are discussed, and the complex thermal impedance approach is illustrated. Pure AC thermal flux generation with negligible DC component is possible with a Peltier device, differently from other existing methods in which a significant DC component is intrinsically attached to the generated AC flux. Such technique is named here Peltier Driven Frequency Domain (PDFD). As a necessary prerequisite, a novel one-dimensional analytical model for an asymmetrically loaded Peltier device is developed, which is general enough to be useful in most practical situations as a design tool for measurement systems and as a key for the interpretation of experimental results. Impedance analysis is possible with Peltier devices by the inbuilt Seebeck effect differential thermometer, and is used in the paper for an experimental validation of the analytical model. Suggestions are then given for possible applications of PDFD, including the determination of thermal properties of materials.

  18. Autonomous Frequency-Domain System-Identification Program

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Mettler, Edward; Bayard, David S.; Hadaegh, Fred Y.; Milman, Mark H.; Scheid, Robert E.

    1993-01-01

    Autonomous Frequency Domain Identification (AU-FREDI) computer program implements system of methods, algorithms, and software developed for identification of parameters of mathematical models of dynamics of flexible structures and characterization, by use of system transfer functions, of such models, dynamics, and structures regarded as systems. Software considered collection of routines modified and reassembled to suit system-identification and control experiments on large flexible structures.

  19. Autonomous Frequency-Domain System-Identification Program

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Mettler, Edward; Bayard, David S.; Hadaegh, Fred Y.; Milman, Mark H.; Scheid, Robert E.

    1993-01-01

    Autonomous Frequency Domain Identification (AU-FREDI) computer program implements system of methods, algorithms, and software developed for identification of parameters of mathematical models of dynamics of flexible structures and characterization, by use of system transfer functions, of such models, dynamics, and structures regarded as systems. Software considered collection of routines modified and reassembled to suit system-identification and control experiments on large flexible structures.

  20. Terahertz grayscale imaging using spatial frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Lv, Zhihui; Sun, Lin; Zhang, Dongwen; Yuan, Jianmin

    2011-11-01

    We reported a technology of gray-scale imaging using broadband terahertz pulse. Utilizing the spatial distribution of different frequency content, image information can be acquired from the terahertz frequency domain analysis. Unlike CCDs(charge-coupled devices) or spot scanning technology are used in conversional method, a single-pixels detector with single measurement can meet the demand of our scheme. And high SNR terahertz imaging with fast velocity is believed.

  1. Terahertz grayscale imaging using spatial frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Lv, Zhihui; Sun, Lin; Zhang, Dongwen; Yuan, Jianmin

    2012-03-01

    We reported a technology of gray-scale imaging using broadband terahertz pulse. Utilizing the spatial distribution of different frequency content, image information can be acquired from the terahertz frequency domain analysis. Unlike CCDs(charge-coupled devices) or spot scanning technology are used in conversional method, a single-pixels detector with single measurement can meet the demand of our scheme. And high SNR terahertz imaging with fast velocity is believed.

  2. Three-dimensional phantoms for curvature correction in spatial frequency domain imaging

    PubMed Central

    Nguyen, Thu T. A.; Le, Hanh N. D.; Vo, Minh; Wang, Zhaoyang; Luu, Long; Ramella-Roman, Jessica C.

    2012-01-01

    The sensitivity to surface profile of non-contact optical imaging, such as spatial frequency domain imaging, may lead to incorrect measurements of optical properties and consequently erroneous extrapolation of physiological parameters of interest. Previous correction methods have focused on calibration-based, model-based, and computation-based approached. We propose an experimental method to correct the effect of surface profile on spectral images. Three-dimensional (3D) phantoms were built with acrylonitrile butadiene styrene (ABS) plastic using an accurate 3D imaging and an emergent 3D printing technique. In this study, our method was utilized for the correction of optical properties (absorption coefficient μa and reduced scattering coefficient μs′) of objects obtained with a spatial frequency domain imaging system. The correction method was verified on three objects with simple to complex shapes. Incorrect optical properties due to surface with minimum 4 mm variation in height and 80 degree in slope were detected and improved, particularly for the absorption coefficients. The 3D phantom-based correction method is applicable for a wide range of purposes. The advantages and drawbacks of the 3D phantom-based correction methods are discussed in details. PMID:22741068

  3. Frequency-domain multiscale quantum mechanics/electromagnetics simulation method

    SciTech Connect

    Meng, Lingyi; Yin, Zhenyu; Yam, ChiYung E-mail: ghc@everest.hku.hk; Koo, SiuKong; Chen, GuanHua E-mail: ghc@everest.hku.hk; Chen, Quan; Wong, Ngai

    2013-12-28

    A frequency-domain quantum mechanics and electromagnetics (QM/EM) method is developed. Compared with the time-domain QM/EM method [Meng et al., J. Chem. Theory Comput. 8, 1190–1199 (2012)], the newly developed frequency-domain QM/EM method could effectively capture the dynamic properties of electronic devices over a broader range of operating frequencies. The system is divided into QM and EM regions and solved in a self-consistent manner via updating the boundary conditions at the QM and EM interface. The calculated potential distributions and current densities at the interface are taken as the boundary conditions for the QM and EM calculations, respectively, which facilitate the information exchange between the QM and EM calculations and ensure that the potential, charge, and current distributions are continuous across the QM/EM interface. Via Fourier transformation, the dynamic admittance calculated from the time-domain and frequency-domain QM/EM methods is compared for a carbon nanotube based molecular device.

  4. Finding the Secret of Image Saliency in the Frequency Domain.

    PubMed

    Li, Jia; Duan, Ling-Yu; Chen, Xiaowu; Huang, Tiejun; Tian, Yonghong

    2015-12-01

    There are two sides to every story of visual saliency modeling in the frequency domain. On the one hand, image saliency can be effectively estimated by applying simple operations to the frequency spectrum. On the other hand, it is still unclear which part of the frequency spectrum contributes the most to popping-out targets and suppressing distractors. Toward this end, this paper tentatively explores the secret of image saliency in the frequency domain. From the results obtained in several qualitative and quantitative experiments, we find that the secret of visual saliency may mainly hide in the phases of intermediate frequencies. To explain this finding, we reinterpret the concept of discrete Fourier transform from the perspective of template-based contrast computation and thus develop several principles for designing the saliency detector in the frequency domain. Following these principles, we propose a novel approach to design the saliency detector under the assistance of prior knowledge obtained through both unsupervised and supervised learning processes. Experimental results on a public image benchmark show that the learned saliency detector outperforms 18 state-of-the-art approaches in predicting human fixations.

  5. A frequency domain blind deconvolution algorithm in acoustics

    NASA Astrophysics Data System (ADS)

    Gramann, Mark R.; Erling, Josh G.; Roan, Michael J.

    2003-10-01

    It is common in acoustics to measure a signal that has been corrupted by an unknown filtering function during propagation from an unknown source. Blind deconvolution is a technique for learning and applying the inverse of the unknown channel impulse response in order to recover the original source signal. One approach to accomplishing this task is based on an adaptive nonlinear algorithm using mutual information as a cost function [A. J. Bell and T. J. Sejnowski, Neural Comput. 7, 1129-1159 (1995)]. A new frequency domain implementation of this algorithm is presented which greatly reduces computational cost. The frequency domain approach allows adaptive learning rates to be applied individually to each frequency bin of the inverse filter. This technique can lead to improved convergence times for filters with a large spread of frequency response magnitudes. Preliminary results suggest that a factor of two reduction in convergence time and a factor of ten reduction in computational cost can be attained. Experimental results for several simple acoustical systems are presented comparing the performance of the pre-existing time domain algorithm and the new frequency domain implementation. [Work supported by Dr. David Drumheller, ONR Code 333, Contract No. N00014-00-G-0058.

  6. Frequency-domain synthetic aperture focusing for helical ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Jin, H.; Chen, J.; Wu, E.; Yang, K.

    2017-04-01

    The synthetic aperture focusing technique (SAFT) is widely used to provide significant improvement in the lateral resolution of ultrasonic images. Frequency-domain SAFT has shown higher accuracy and greater efficiency than time-domain SAFT. However, frequency-domain SAFT should be helix-based for ultrasonic scanning of cylindrical structures such as pipes and axletrees. In this study, a frequency-domain SAFT is proposed for 3D helical ultrasonic imaging applications. This technique adjusts the phase spectra of the images to complete the synthetic aperture focusing process. The focused image is precise because the proposed algorithm is established on the basis of the wave equation in a helical coordinate system. In addition, the algorithm can efficiently separate out point scatterers and present volume scatterers. The experimental results show that the proposed algorithm yields lower side lobes and enhances the angular resolution of the ultrasonic image to approximately 1°- 1.5°, which is much better than the performance of time-domain SAFT. The maximum deviations are only 0.6 mm, 0.5°, and 0.4 mm along the r-axes, θ-axes, and z-axes, respectively, which are appropriate for normal ultrasonic nondestructive testing.

  7. Scalable multiplexing for parallel imaging with interleaved optical coherence tomography

    PubMed Central

    Lee, Hee Yoon; Marvdashti, Tahereh; Duan, Lian; Khan, Saara A.; Ellerbee, Audrey K.

    2014-01-01

    We demonstrate highly parallel imaging with interleaved optical coherence tomography (iOCT) using an in-house-fabricated, air-spaced virtually-imaged phased array (VIPA). The air-spaced VIPA performs spectral encoding of the interferograms from multiple lateral points within a single sweep of the source and allows us to tune and balance several imaging parameters: number of multiplexed points, ranging depth, and sensitivity. In addition to a thorough discussion of the parameters and operating principles of the VIPA, we experimentally demonstrate the effect of different VIPA designs on the multiplexing potential of iOCT. Using a 200-kHz light source, we achieve an effective A-scan rate of 3.2-MHz by multiplexing 16 lateral points onto a single wavelength sweep. The improved sensitivity of this system is demonstrated for 3D imaging of biological samples such as a human finger and a fruit fly. PMID:25401031

  8. Application of frequency-domain-method to rotorcraft aerodynamics

    NASA Astrophysics Data System (ADS)

    Kumar, Manish

    A formulation is developed to compute the flow around a helicopter rotor in the frequency domain combined with computational fluid dynamics software. The solution in frequency domain is obtained using a harmonic balance method. This approach is found to be very suitable for problems involving periodic flow like oscillating airfoils and wings. Helicopter rotor in forward flight encounters periodic flow variation around the azimuth and therefore lends itself very well to frequency-domain-based solution methods. In the frequency-domain approach, the periodicity is enforced in the solution methodology as opposed to traditional time-domain approaches, where periodicity evolves after transients are damped out during the solution procedure. This leads to a huge leap in efficiency for the frequency-domain approach as compared to the time-domain approach. The solution can also be obtained using a single blade with phase-shifted periodic boundary conditions. This reduction in domain leads to an increase in efficiency by a factor equal to the number of blades in the rotor. In the current work, the feasibility as well as potential advantages of obtaining helicopter flow solution in multiblade coordinates is also explored. The process of transformation of flow equations from a conventional rotor coordinate system to a multiblade coordinate system leads to the cancellation of harmonics other than those at the blade passage frequencies. Therefore, a reduced number of time locations per revolution are required to capture the retained harmonics. This further reduces the processing time and storage memory requirements. Another advantage of multiblade coordinate system is the simplicity of coupled aeroelastic formulation due to a direct relation between rotor aerodynamic forces and rotor motion parameters. The developed software implements the formulation based on Euler equations and incorporates a structured grid generation method. A distributed programming technique is implemented

  9. Fiber sensor identification based on incoherent Rayleigh backscatter measurements in the frequency domain

    NASA Astrophysics Data System (ADS)

    Koeppel, Max; Engelbrecht, Rainer; Werzinger, Stefan; Schmauss, Bernhard

    2017-04-01

    In this work, a fiber identification method based on incoherent optical frequency domain reflectometry (IOFDR) measurements is introduced. The proposed method uses the characteristic interference pattern of IOFDR Rayleigh backscatter measurements with a broadband light source to unambiguously recognize different initially scanned fiber segments. The recognition is achieved by cross-correlating the spatially resolved Rayleigh backscatter profile of the fiber segment under test with a initially measured and stored backscatter profile. This profile was found to be relatively insensitive to temperature changes. It is shown that identification is possible even if the fiber segment in question is installed subsequent to 300m of lead fiber.

  10. Blurred and noisy image pairs in parallel optics.

    PubMed

    Klapp, Iftach; Sochen, Nir; Mendlovic, David

    2014-11-01

    In previous works we have shown that parallel optics (PO) architecture can be used to improve the system matrix condition, which results in improving its immunity to additive noise in the image restoration process. PO is composed of a "main" system and an "auxiliary" system. Previously, we suggested the "trajectories" method to realize PO. In that method, a required auxiliary system is composed from auxiliary optics with a pixel confined response, followed by signal processing. In this paper, we emphasize the important secondary effects of the trajectories method. We show that in such a system, where the postprocessing comes after the detection, the postprocessing acts as a noise filter, hence allowing us to work with noisy data in the auxiliary channel. Roughly speaking, the SNR of an imaging system depends on the numerical aperture (NA). It follows that the main system, which typically has a higher NA, also has a higher SNR. Hence in the PO system, the ratio between the NA values of the main and auxiliary systems is expected to dictate the gap between their SNR values. In this paper, we show that when the system is implemented by the trajectories method, this expectation is too conservative. It is shown that due to the noise filtering, the auxiliary system can be noisier than expected. This claim is proved analytically and verified and exemplified by using experimental measurements.

  11. 3D frequency-domain finite-difference modeling of acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Operto, S.; Virieux, J.

    2006-12-01

    We present a 3D frequency-domain finite-difference method for acoustic wave propagation modeling. This method is developed as a tool to perform 3D frequency-domain full-waveform inversion of wide-angle seismic data. For wide-angle data, frequency-domain full-waveform inversion can be applied only to few discrete frequencies to develop reliable velocity model. Frequency-domain finite-difference (FD) modeling of wave propagation requires resolution of a huge sparse system of linear equations. If this system can be solved with a direct method, solutions for multiple sources can be computed efficiently once the underlying matrix has been factorized. The drawback of the direct method is the memory requirement resulting from the fill-in of the matrix during factorization. We assess in this study whether representative problems can be addressed in 3D geometry with such approach. We start from the velocity-stress formulation of the 3D acoustic wave equation. The spatial derivatives are discretized with second-order accurate staggered-grid stencil on different coordinate systems such that the axis span over as many directions as possible. Once the discrete equations were developed on each coordinate system, the particle velocity fields are eliminated from the first-order hyperbolic system (following the so-called parsimonious staggered-grid method) leading to second-order elliptic wave equations in pressure. The second-order wave equations discretized on each coordinate system are combined linearly to mitigate the numerical anisotropy. Secondly, grid dispersion is minimized by replacing the mass term at the collocation point by its weighted averaging over all the grid points of the stencil. Use of second-order accurate staggered- grid stencil allows to reduce the bandwidth of the matrix to be factorized. The final stencil incorporates 27 points. Absorbing conditions are PML. The system is solved using the parallel direct solver MUMPS developed for distributed

  12. Development of a finger joint phantom for evaluation of frequency domain measurement systems.

    PubMed

    Netz, Uwe J; Scheel, Alexander K; Beuthan, Jürgen; Hielscher, Andreas H

    2006-01-01

    For development and test of new optical imaging devices, phantoms are widely used to emulate the tissue to be imaged. Phantom design gets more difficult the more complex the tissue is structured. We report on developing and testing a solid, stable finger joint phantom to simulate transillumination of finger joints in frequency-domain imaging systems. The phantom consists of the bone, capsule, skin, the capsule volume, and the joint gap. Silicone was used to build the solid parts and a glycerol-water solution for the fluid in the capsule volume and joint gap. The system to test the phantom is an optical frequency-domain scanning set-up. Different stages of joint inflammation as they occur in rheumatoid arthritis (BA) were emulated by assembling the phantom with capsule and fluid having different optical properties. Reliability of the phantom measurement was investigated by repeated assembling. The results show clear discrimination between different stages of joints within the signal deviation due to reassembling of the phantom.

  13. Design and realization of photoelectric instrument binocular optical axis parallelism calibration system

    NASA Astrophysics Data System (ADS)

    Ying, Jia-ju; Chen, Yu-dan; Liu, Jie; Wu, Dong-sheng; Lu, Jun

    2016-10-01

    The maladjustment of photoelectric instrument binocular optical axis parallelism will affect the observe effect directly. A binocular optical axis parallelism digital calibration system is designed. On the basis of the principle of optical axis binocular photoelectric instrument calibration, the scheme of system is designed, and the binocular optical axis parallelism digital calibration system is realized, which include four modules: multiband parallel light tube, optical axis translation, image acquisition system and software system. According to the different characteristics of thermal infrared imager and low-light-level night viewer, different algorithms is used to localize the center of the cross reticle. And the binocular optical axis parallelism calibration is realized for calibrating low-light-level night viewer and thermal infrared imager.

  14. Digitalized detection of optical axes' parallelism in multi-optical axes system

    NASA Astrophysics Data System (ADS)

    Liu, Bingqi; Ling, Jun; Zhou, Bing; Zhao, Xilin

    2002-09-01

    Automation and intelligent function in performance testing of optical instrument are the key problems in modern detection technology. In this paper a testing system based on the detection in laboratory is proposed and has successfully realized the detection of multi-optical axes" parallelism. This system is on the base of optics, mechanics and electricity, and combines the modern computer technology to gather and process the data obtained in the experiment, finally high-precision quantified results can be gotten, so these results can provide reliable data for the alignment of optical axes. The paper introduces the whole testing system"s design options, system composition, operational principle and software design in detail, and it"s technical difficulties and emphases are also analyzed and discussed.

  15. Single SQUID frequency-domain multiplexer for large bolometer arrays

    SciTech Connect

    Yoon, Jongsoo; Clarke, John; Gildemeister, J.M.; Lee, Adrian T.; Myers, M.J.; Skidmore, J.T.; Richards, P.L.; Spieler, H.G.

    2001-08-20

    We describe the development of a frequency-domain superconducting quantum interference device (SQUID) multiplexer which monitors a row of low-temperature sensors simultaneously with a single SQUID. Each sensor is ac biased with a unique frequency and all the sensor currents are added in a superconducting summing loop. A single SQUID measures the current in the summing loop, and the individual signals are lock-in detected after the room temperature SQUID electronics. The current in the summing loop is nulled by feedback to eliminate direct crosstalk. We have built an eight-channel prototype and demonstrated channel separation and signal recovery.

  16. SPA- STATISTICAL PACKAGE FOR TIME AND FREQUENCY DOMAIN ANALYSIS

    NASA Technical Reports Server (NTRS)

    Brownlow, J. D.

    1994-01-01

    The need for statistical analysis often arises when data is in the form of a time series. This type of data is usually a collection of numerical observations made at specified time intervals. Two kinds of analysis may be performed on the data. First, the time series may be treated as a set of independent observations using a time domain analysis to derive the usual statistical properties including the mean, variance, and distribution form. Secondly, the order and time intervals of the observations may be used in a frequency domain analysis to examine the time series for periodicities. In almost all practical applications, the collected data is actually a mixture of the desired signal and a noise signal which is collected over a finite time period with a finite precision. Therefore, any statistical calculations and analyses are actually estimates. The Spectrum Analysis (SPA) program was developed to perform a wide range of statistical estimation functions. SPA can provide the data analyst with a rigorous tool for performing time and frequency domain studies. In a time domain statistical analysis the SPA program will compute the mean variance, standard deviation, mean square, and root mean square. It also lists the data maximum, data minimum, and the number of observations included in the sample. In addition, a histogram of the time domain data is generated, a normal curve is fit to the histogram, and a goodness-of-fit test is performed. These time domain calculations may be performed on both raw and filtered data. For a frequency domain statistical analysis the SPA program computes the power spectrum, cross spectrum, coherence, phase angle, amplitude ratio, and transfer function. The estimates of the frequency domain parameters may be smoothed with the use of Hann-Tukey, Hamming, Barlett, or moving average windows. Various digital filters are available to isolate data frequency components. Frequency components with periods longer than the data collection interval

  17. Frequency domain quantum optimal control under multiple constraints

    NASA Astrophysics Data System (ADS)

    Shu, Chuan-Cun; Ho, Tak-San; Xing, Xi; Rabitz, Herschel

    2016-03-01

    Optimal control of quantum systems with complex constrained external fields is one of the longstanding theoretical and numerical challenges at the frontier of quantum control research. Here, we present a theoretical method that can be utilized to optimize the control fields subject to multiple constraints while guaranteeing monotonic convergence towards desired physical objectives. This optimization method is formulated in the frequency domain in line with the current ultrafast pulse shaping technique, providing the possibility for performing quantum optimal control simulations and experiments in a unified fashion. For illustrations, this method is successfully employed to perform multiple constraint spectral-phase-only optimization for maximizing resonant multiphoton transitions with desired pulses.

  18. Pole-zero form fractional model identification in frequency domain

    SciTech Connect

    Mansouri, R.; Djamah, T.; Djennoune, S.; Bettayeb, M.

    2009-03-05

    This paper deals with system identification in the frequency domain using non integer order models given in the pole-zero form. The usual identification techniques cannot be used in this case because of the non integer orders of differentiation which makes the problem strongly nonlinear. A general identification method based on Levenberg-Marquardt algorithm is developed and allows to estimate the (2n+2m+1) parameters of the model. Its application to identify the ''skin effect'' of a squirrel cage induction machine modeling is then presented.

  19. Frequency domain multiplexing for large-scale bolometer arrays

    SciTech Connect

    Spieler, Helmuth

    2002-05-31

    The development of planar fabrication techniques for superconducting transition-edge sensors has brought large-scale arrays of 1000 pixels or more to the realm of practicality. This raises the problem of reading out a large number of sensors with a tractable number of connections. A possible solution is frequency-domain multiplexing. I summarize basic principles, present various circuit topologies, and discuss design trade-offs, noise performance, cross-talk and dynamic range. The design of a practical device and its readout system is described with a discussion of fabrication issues, practical limits and future prospects.

  20. Frequency domain, waveform inversion of laboratory crosswell radar data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  1. Pole-zero form fractional model identification in frequency domain

    NASA Astrophysics Data System (ADS)

    Mansouri, R.; Djamah, T.; Bettayeb, M.; Djennoune, S.

    2009-03-01

    This paper deals with system identification in the frequency domain using non integer order models given in the pole-zero form. The usual identification techniques cannot be used in this case because of the non integer orders of differentiation which makes the problem strongly nonlinear. A general identification method based on Levenberg-Marquardt algorithm is developed and allows to estimate the (2n+2m+1) parameters of the model. Its application to identify the "skin effect" of a squirrel cage induction machine modeling is then presented.

  2. SPA- STATISTICAL PACKAGE FOR TIME AND FREQUENCY DOMAIN ANALYSIS

    NASA Technical Reports Server (NTRS)

    Brownlow, J. D.

    1994-01-01

    The need for statistical analysis often arises when data is in the form of a time series. This type of data is usually a collection of numerical observations made at specified time intervals. Two kinds of analysis may be performed on the data. First, the time series may be treated as a set of independent observations using a time domain analysis to derive the usual statistical properties including the mean, variance, and distribution form. Secondly, the order and time intervals of the observations may be used in a frequency domain analysis to examine the time series for periodicities. In almost all practical applications, the collected data is actually a mixture of the desired signal and a noise signal which is collected over a finite time period with a finite precision. Therefore, any statistical calculations and analyses are actually estimates. The Spectrum Analysis (SPA) program was developed to perform a wide range of statistical estimation functions. SPA can provide the data analyst with a rigorous tool for performing time and frequency domain studies. In a time domain statistical analysis the SPA program will compute the mean variance, standard deviation, mean square, and root mean square. It also lists the data maximum, data minimum, and the number of observations included in the sample. In addition, a histogram of the time domain data is generated, a normal curve is fit to the histogram, and a goodness-of-fit test is performed. These time domain calculations may be performed on both raw and filtered data. For a frequency domain statistical analysis the SPA program computes the power spectrum, cross spectrum, coherence, phase angle, amplitude ratio, and transfer function. The estimates of the frequency domain parameters may be smoothed with the use of Hann-Tukey, Hamming, Barlett, or moving average windows. Various digital filters are available to isolate data frequency components. Frequency components with periods longer than the data collection interval

  3. A frequency domain approach to handling qualities design

    NASA Technical Reports Server (NTRS)

    Wolovich, W. A.

    1978-01-01

    A method for designing linear multivariable feedback control systems based on desired closed loop transfer matrix information is introduced. The technique which was employed to achieve the final design was based on a theoretical result, known as the structure theorem. The structure theorem was a frequency domain relationship which simplified the expression for the transfer matrix (matrix of transfer functions) of a linear time-invariant multivariable system. The effect of linear state variable feedback on the closed loop transfer matrix of the system was also clarified.

  4. Baseband feedback for SAFARI-SPICA using Frequency Domain Multiplexing

    NASA Astrophysics Data System (ADS)

    Bounab, A.; de Korte, P.; Cros, A.; van der Kuur, J.; van Leeuwen, B. J.; Monna, B.; Mossel, R.; Nieuwenhuizen, A.; Ravera, L.

    We report on the performance of the digital baseband feedback circuit developed to readout and process signals from arrays of transition edge sensors for SPICA-SAFARI in frequency domain multiplexing (FDM). The standard procedure to readout the SQUID current amplifiers is to use a feedback loop (flux-locked loop: FLL). However the achievable FFL bandwidth is limited by the cable transport delay t_d, which makes standard feedback inconvenient. A much better approach is to use baseband feedback. We have developed a model of the electronic readout chain for SPICA-SAFARI instrument by using an Anlog-digital co-simulation based on Simulink-System Generator environment.

  5. REVIEW ARTICLE: Frequency domain complex permittivity measurements at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy

    2006-06-01

    Overview of frequency domain measurement techniques of the complex permittivity at microwave frequencies is presented. The methods are divided into two categories: resonant and non-resonant ones. In the first category several methods are discussed such as cavity resonator techniques, dielectric resonator techniques, open resonator techniques and resonators for non-destructive testing. The general theory of measurements of different materials in resonant structures is presented showing mathematical background, sources of uncertainties and theoretical and experimental limits. Methods of measurement of anisotropic materials are presented. In the second category, transmission-reflection techniques are overviewed including transmission line cells as well as free-space techniques.

  6. Experimental analysis of hydraulic discharge line in the frequency domain

    NASA Astrophysics Data System (ADS)

    Klarecki, K.; Rabsztyn, D.; Hetmanczyk, M. P.

    2017-08-01

    The article presents the results of the experimental test of the pressure pulsation propagation across hydraulic line. The tests have been conducted in the form of a complete two-level experiment, having selected the following parameter variables: flexible hose type (1 or 2-wire hose), pressure value in the pressure line, rotational speed of the pump shaft, pressure line length. The series of pressure runs were analysed in frequency domain using FFT method. The results confirmed the prediction that the discharge line should be treated as a hydraulic transmission line (similar to the long transmission line) with distributed parameters, which variously attenuates pressure pulses of different frequencies.

  7. Parallel processing using an optical delay-based reservoir computer

    NASA Astrophysics Data System (ADS)

    Van der Sande, Guy; Nguimdo, Romain Modeste; Verschaffelt, Guy

    2016-04-01

    Delay systems subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By implementing a neuro-inspired computational scheme relying on the transient response to optical data injection, high processing speeds have been demonstrated. However, reservoir computing systems based on delay dynamics discussed in the literature are designed by coupling many different stand-alone components which lead to bulky, lack of long-term stability, non-monolithic systems. Here we numerically investigate the possibility of implementing reservoir computing schemes based on semiconductor ring lasers. Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. We demonstrate that two independent machine learning tasks , even with different nature of inputs with different input data signals can be simultaneously computed using a single photonic nonlinear node relying on the parallelism offered by photonics. We illustrate the performance on simultaneous chaotic time series prediction and a classification of the Nonlinear Channel Equalization. We take advantage of different directional modes to process individual tasks. Each directional mode processes one individual task to mitigate possible crosstalk between the tasks. Our results indicate that prediction/classification with errors comparable to the state-of-the-art performance can be obtained even with noise despite the two tasks being computed simultaneously. We also find that a good performance is obtained for both tasks for a broad range of the parameters. The results are discussed in detail in [Nguimdo et al., IEEE Trans. Neural Netw. Learn. Syst. 26, pp. 3301-3307, 2015

  8. Frequency-domain light intensity spectrum analyzer based on temporal convolution.

    PubMed

    Chen, Liao; Duan, Yuhua; Zhang, Chi; Zhang, Xinliang

    2017-07-15

    We propose and experimentally demonstrate a new type of all-optical radio frequency (RF) spectrum analyzer based on temporal convolution and cross-phase modulation (XPM) that can be regarded as the frequency-domain counterpart of a conventional light intensity spectrum analyzer (LISA). The XPM effect converts the intensity envelope of an optical signal to the phase of the probe signal, while the temporal convolution helps to enable the RF spectrum to be temporally resolved with a high frame rate. This frequency-domain LISA (f-LISA) has experimentally demonstrated an 800-GHz observation bandwidth with 1.25-GHz resolution (1 GHz for a single frequency) and a 94-MHz frame rate. To showcase its potential applications, this analyzer has successfully characterized the dynamic RF spectrum of an ultrafast wavelength-switching signal with a 10-ns switching interval. We believe that it is promising for some ultrafast dynamic RF spectrum acquisition applications, e.g., fast tuning lasers and real-time channel monitoring.

  9. Optical Digital Parallel Truth-Table Look-Up Processing

    NASA Astrophysics Data System (ADS)

    Mirsalehi, Mir Mojtaba

    During the last decade, a number of optical digital processors have been proposed that combine the parallelism and speed of optics with the accuracy and flexibility of a digital representation. In this thesis, two types of such processors (an EXCLUSIVE OR-based processor and a NAND-based processor) that function as content-addressable memories (CAM's) are analyzed. The main factors that affect the performance of the EXCLUSIVE OR-based processor are found to be the Gaussian nature of the reference beam and the finite square aperture of the crystal. A quasi-one-dimensional model is developed to analyze the effect of the Gaussian reference beam, and a circular aperture is used to increase the dynamic range in the output power. The main factors that affect the performance of the NAND-based processor are found to be the variations in the amplitudes and the relative phase of the laser beams during the recording process. A mathematical model is developed for analyzing the probability of error in the output of the processor. Using this model, the performance of the processor for some practical cases is analyzed. Techniques that have been previously used to reduce the number of reference patterns in a CAM include: using the residue number system and applying logical minimization methods. In the present work, these and additional techniques are investigated. A systematic procedure is developed for selecting the optimum set of moduli. The effect of coding is investigated and it is shown that multi-level coding, when used in conjunction with logical minimization techniques, significantly reduces the number of reference patterns. The Quine-McCluskey method is extended to multiple -valued logic and a computer program based on this extension is used for logical minimization. The results show that for moduli expressable as p('n), where p is a prime number and n is an integer greater than one, p-level coding provides significant reduction. The NAND-based processor is modified for

  10. Frequency Domain Beamforming for a Deep Space Network Downlink Array

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2012-01-01

    This paper describes a frequency domain beamformer to array up to 8 antennas of NASA's Deep Space Network currently in development. The objective of this array is to replace and enhance the capability of the DSN 70m antennas with multiple 34m antennas for telemetry, navigation and radio science use. The array will coherently combine the entire 500 MHz of usable bandwidth available to DSN receivers. A frequency domain beamforming architecture was chosen over a time domain based architecture to handle the large signal bandwidth and efficiently perform delay and phase calibration. The antennas of the DSN are spaced far enough apart that random atmospheric and phase variations between antennas need to be calibrated out on an ongoing basis in real-time. The calibration is done using measurements obtained from a correlator. This DSN Downlink Array expands upon a proof of concept breadboard array built previously to develop the technology and will become an operational asset of the Deep Space Network. Design parameters for frequency channelization, array calibration and delay corrections will be presented as well a method to efficiently calibrate the array for both wide and narrow bandwidth telemetry.

  11. Blind separation of multiple vehicle signatures in frequency domain

    NASA Astrophysics Data System (ADS)

    Azimi-Sadjadi, M. R.; Srinivasan, S.

    2005-05-01

    This paper considers the problem of classifying ground vehicles using their acoustic signatures recorded by unattended passive acoustic sensors. Using these sensors, acoustic signatures of a wide variety of sources such as trucks, tanks, personnel, and airborne targets can be recorded. Additionally, interference sources such as wind noise and ambient noise are typically present. The proposed approach in this paper relies on the blind source separation of the recorded signatures of various sources. Two different frequency domain source separation methods have been employed to separate the vehicle signatures that overlap both spectrally and temporally. These methods rely on the frequency domain extension of the independent component analysis (ICA) method and a joint diagonalization of the time varying spectra. Spectral and temporal-dependent features are then extracted from the separated sources using a new feature extraction method and subsequently used for target classification using a three-layer neural network. The performance of the developed algorithms are demonstrated on a subset of a real acoustic signature database acquired from the US Army TACOM-ARDEC, Picatinny Arsenal, NJ.

  12. Phasor plotting with frequency-domain flow cytometry

    PubMed Central

    Cao, Ruofan; Jenkins, Patrick; Peria, William; Sands, Bryan; Naivar, Mark; Brent, Roger; Houston, Jessica P.

    2016-01-01

    Interest in time resolved flow cytometry is growing. In this paper, we collect time-resolved flow cytometry data and use it to create polar plots showing distributions that are a function of measured fluorescence decay rates from individual fluorescently-labeled cells and fluorescent microspheres. Phasor, or polar, graphics are commonly used in fluorescence lifetime imaging microscopy (FLIM). In FLIM measurements, the plotted points on a phasor graph represent the phase-shift and demodulation of the frequency-domain fluorescence signal collected by the imaging system for each image pixel. Here, we take a flow cytometry cell counting system, introduce into it frequency-domain optoelectronics, and process the data so that each point on a phasor plot represents the phase shift and demodulation of an individual cell or particle. In order to demonstrate the value of this technique, we show that phasor graphs can be used to discriminate among populations of (i) fluorescent microspheres, which are labeled with one fluorophore type; (ii) Chinese hamster ovary (CHO) cells labeled with one and two different fluorophore types; and (iii) Saccharomyces cerevisiae cells that express combinations of fluorescent proteins with different fluorescence lifetimes. The resulting phasor plots reveal differences in the fluorescence lifetimes within each sample and provide a distribution from which we can infer the number of cells expressing unique single or dual fluorescence lifetimes. These methods should facilitate analysis time resolved flow cytometry data to reveal complex fluorescence decay kinetics. PMID:27410612

  13. Phasor plotting with frequency-domain flow cytometry.

    PubMed

    Cao, Ruofan; Jenkins, Patrick; Peria, William; Sands, Bryan; Naivar, Mark; Brent, Roger; Houston, Jessica P

    2016-06-27

    Interest in time resolved flow cytometry is growing. In this paper, we collect time-resolved flow cytometry data and use it to create polar plots showing distributions that are a function of measured fluorescence decay rates from individual fluorescently-labeled cells and fluorescent microspheres. Phasor, or polar, graphics are commonly used in fluorescence lifetime imaging microscopy (FLIM). In FLIM measurements, the plotted points on a phasor graph represent the phase-shift and demodulation of the frequency-domain fluorescence signal collected by the imaging system for each image pixel. Here, we take a flow cytometry cell counting system, introduce into it frequency-domain optoelectronics, and process the data so that each point on a phasor plot represents the phase shift and demodulation of an individual cell or particle. In order to demonstrate the value of this technique, we show that phasor graphs can be used to discriminate among populations of (i) fluorescent microspheres, which are labeled with one fluorophore type; (ii) Chinese hamster ovary (CHO) cells labeled with one and two different fluorophore types; and (iii) Saccharomyces cerevisiae cells that express combinations of fluorescent proteins with different fluorescence lifetimes. The resulting phasor plots reveal differences in the fluorescence lifetimes within each sample and provide a distribution from which we can infer the number of cells expressing unique single or dual fluorescence lifetimes. These methods should facilitate analysis time resolved flow cytometry data to reveal complex fluorescence decay kinetics.

  14. An implementation of synthetic aperture focusing technique in frequency domain.

    PubMed

    Stepinski, Tadeusz

    2007-07-01

    A new implementation of a synthetic aperture focusing technique (SAFT) based on concepts used in synthetic aperture radar and sonar is presented in the paper. The algorithm, based on the convolution model of the imaging system developed in frequency domain, accounts for the beam pattern of the finite-sized transducer used in the synthetic aperture. The 2D fast Fourier transform (FFT) is used for the calculation of a 2D spectrum of the ultrasonic data. The spectrum is then interpolated to convert the polar coordinate system used for the acquisition of ultrasonic signals to the rectangular coordinates used for the presentation of imaging results. After compensating the transducer lobe amplitude profile using a Wiener filter, the transformed spectrum is subjected to the 2D inverse Fourier transform to get the time-domain image again. The algorithm is computationally attractive due to the use of 2D FFT. The performance of the proposed frequency-domain algorithm and the classical time-domain SAFT are compared in the paper using simulated and real ultrasonic data.

  15. Frequency domain analysis of triggered lightning return stroke luminosity velocity

    NASA Astrophysics Data System (ADS)

    Carvalho, F. L.; Uman, M. A.; Jordan, D. M.; Moore, R. C.

    2017-02-01

    Fourier analysis is applied to time domain return stroke luminosity signals to calculate the phase and group velocities and the amplitude of the luminosity signals as a function of frequency measured between 4 m and 115 m during 12 triggered lightning strokes. We show that pairs of time domain luminosity signals measured at different heights can be interpreted as the input and the output of a system whose frequency domain transfer function can be determined from the measured time domain signals. From the frequency domain transfer function phase we find the phase and group velocities, and luminosity amplitude as a function of triggered lightning channel height and signal frequency ranging from 50 kHz to 300 kHz. We show that higher-frequency luminosity components propagate faster than the lower frequency components and that higher-frequency luminosity components attenuate more rapidly than lower frequency components. Finally, we calculate time domain return stroke velocities as a function of channel height using two time delay techniques: (1) measurement at the 20% amplitude level and (2) cross correlation.

  16. Remote sensing image fusion based on frequency domain segmenting

    NASA Astrophysics Data System (ADS)

    Li, Deren; Li, Linyi; Yu, Xin

    2006-10-01

    Remote sensing image fusion has become one of hotspots in the researches and applications of Geoinformatics in recent years. It has been widely used to integrate low-resolution multispectral images with high-resolution panchromatic images. In order to obtain good fusion effects, high frequency components of panchromatic images and low frequency components of multispectral images should be identified and combined in a reasonable way. However, it is very difficult due to complex processes of remote sensing image formation. In order to solve this problem, a new remote sensing image fusion method based on frequency domain segmenting is proposed in this paper. Discrete wavelet packet transform is used as the mathematical tool to segment the frequency domain of remote sensing images after analyzing the frequency relationship between high-resolution panchromatic images and low-resolution multispectral images. And several wavelet packet coefficient features are extracted and combined as the fusion decision criteria. Besides visual perception and some statistical parameters, classification accuracy parameters are also used to evaluate the fusion effects in the experiment. And the results show that fused images by the proposed method are not only suitable for human perception but also suitable for some computer applications such as remote sensing image classification.

  17. Quantitative analysis of a frequency-domain nonlinearity indicator.

    PubMed

    Reichman, Brent O; Gee, Kent L; Neilsen, Tracianne B; Miller, Kyle G

    2016-05-01

    In this paper, quantitative understanding of a frequency-domain nonlinearity indicator is developed. The indicator is derived from an ensemble-averaged, frequency-domain version of the generalized Burgers equation, which can be rearranged in order to directly compare the effects of nonlinearity, absorption, and geometric spreading on the pressure spectrum level with frequency and distance. The nonlinear effect is calculated using pressure-squared-pressure quadspectrum. Further theoretical development has given an expression for the role of the normalized quadspectrum, referred to as Q/S by Morfey and Howell [AIAA J. 19, 986-992 (1981)], in the spatial rate of change of the pressure spectrum level. To explore this finding, an investigation of the change in level for initial sinusoids propagating as plane waves through inviscid and thermoviscous media has been conducted. The decibel change with distance, calculated through Q/S, captures the growth and decay of the harmonics and indicates that the most significant changes in level occur prior to sawtooth formation. At large distances, the inviscid case results in a spatial rate of change that is uniform across all harmonics. For thermoviscous media, large positive nonlinear gains are observed but offset by absorption, which leads to a greater overall negative spatial rate of change for higher harmonics.

  18. Parametric study of the frequency-domain thermoreflectance technique

    NASA Astrophysics Data System (ADS)

    Xing, C.; Jensen, C.; Hua, Z.; Ban, H.; Hurley, D. H.; Khafizov, M.; Kennedy, J. R.

    2012-11-01

    Without requiring regression for parameter determination, one-dimensional (1D) analytical models are used by many research groups to extract the thermal properties in frequency-domain thermoreflectance measurements. Experimentally, this approach involves heating the sample with a pump laser and probing the temperature response with spatially coincident probe laser. Micron order lateral resolution can be obtained by tightly focusing the pump and probe lasers. However, small laser beam spot sizes necessarily bring into question the assumptions associated with 1D analytical models. In this study, we analyzed the applicability of 1D analytical models by comparing to 2D analytical and fully numerical models. Specifically, we considered a generic n-layer two-dimensional (2D), axisymmetric analytical model including effects of volumetric heat absorption, contact resistance, and anisotropic properties. In addition, a finite element numerical model was employed to consider nonlinear effects caused by temperature dependent thermal conductivity. Nonlinearity is of germane importance to frequency domain approaches because the experimental geometry is such that the probe is always sensing the maximum temperature fluctuation. To quantify the applicability of the 1D model, parametric studies were performed considering the effects of: film thickness, heating laser size, probe laser size, substrate-to-film effusivity ratio, interfacial thermal resistance between layers, volumetric heating, substrate thermal conductivity, nonlinear boundary conditions, and anisotropic and temperature dependent thermal conductivity.

  19. Parametric Study of the Frequency-Domain Thermoreflectance Technique

    SciTech Connect

    C. Xing; C. Jensen; Z. Hua; H. Ban; D. H. Hurley; M. Khafizov; J. Rory Kennedy

    2012-11-01

    Without requiring regression for parameter determination, one-dimensional (1D) analytical models are used by many research groups to extract the thermal properties in frequency-domain thermoreflectance measurements. Experimentally, this approach involves heating the sample with a pump laser and probing the temperature response with spatially coincident probe laser. Micron order lateral resolution can be obtained by tightly focusing the pump and probe lasers. However, small laser beam spot sizes necessarily bring into question the assumptions associated with 1D analytical models. In this study, we analyzed the applicability of 1D analytical models by comparing to 2D analytical and fully numerical models. Specifically, we considered a generic nlayer two-dimensional (2D), axisymmetric analytical model including effects of volumetric heat absorption, contact resistance, and anisotropic properties. In addition, a finite element numerical model was employed to consider nonlinear effects caused by temperature dependent thermal conductivity. Nonlinearity is of germane importance to frequency domain approaches because the experimental geometry is such that the probe is always sensing the maximum temperature fluctuation. To quantify the applicability of the 1D model, parametric studies were performed considering the effects of: film thickness, heating laser size, probe laser size, substrate-to-film effusivity ratio, interfacial thermal resistance between layers, volumetric heating, substrate thermal conductivity, nonlinear boundary conditions, and anisotropic and temperature dependent thermal conductivity.

  20. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM).

    PubMed Central

    Clayton, Andrew H A; Hanley, Quentin S; Arndt-Jovin, Donna J; Subramaniam, Vinod; Jovin, Thomas M

    2002-01-01

    We describe a novel variant of fluorescence lifetime imaging microscopy (FLIM), denoted anisotropy-FLIM or rFLIM, which enables the wide-field measurement of the anisotropy decay of fluorophores on a pixel-by-pixel basis. We adapted existing frequency-domain FLIM technology for rFLIM by introducing linear polarizers in the excitation and emission paths. The phase delay and intensity ratios (AC and DC) between the polarized components of the fluorescence signal are recorded, leading to estimations of rotational correlation times and limiting anisotropies. Theory is developed that allows all the parameters of the hindered rotator model to be extracted from measurements carried out at a single modulation frequency. Two-dimensional image detection with a sensitive CCD camera provides wide-field imaging of dynamic depolarization with parallel interrogation of different compartments of a complex biological structure such as a cell. The concepts and technique of rFLIM are illustrated with a fluorophore-solvent (fluorescein-glycerol) system as a model for isotropic rotational dynamics and with bacteria expressing enhanced green fluorescent protein (EGFP) exhibiting depolarization due to homotransfer of electronic excitation energy (emFRET). The frequency-domain formalism was extended to cover the phenomenon of emFRET and yielded data consistent with a concentration depolarization mechanism resulting from the high intracellular concentration of EGFP. These investigations establish rFLIM as a powerful tool for cellular imaging based on rotational dynamics and molecular proximity. PMID:12202387

  1. 3D micro profile measurement with the method of spatial frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yongxiang

    2015-10-01

    3D micro profiles are often needed for measurement in many fields, e.g., binary optics, electronic industry, mechanical manufacturing, aeronautic and space industry, etc. In the case where height difference between two neighboring points of a test profile is equal to or greater than λ / 4, microscopic interferometry based on laser source will no longer be applicable because of the uncertainty in phase unwrapping. As white light possesses the characteristic of interference length approximate to zero, applying it for micro profilometry can avoid the trouble and can yield accurate results. Using self-developed Mirau-type scanning interference microscope, a step-like sample was tested twice, with 128 scanning interferograms recorded for each test. To process each set of the interferograms, the method of spatial frequency domain analysis was adopted. That is, for each point, by use of Furrier transform, white-light interference intensities were decomposed in spatial frequency domain, thus obtaining phase values corresponding to different wavenumbers; by using least square fitting on phases and wave numbers, a group-velocity OPD was gained for the very point; and finally in terms of the relation between relative height and the group-velocity OPD, the profile of the test sample was obtained. Two tests yielded same profile result for the sample, and step heights obtained were 50.88 nm and 50.94 nm, respectively. Meantime, the sample was also measured with a Zygo Newview 7200 topography instrument, with same profile result obtained and step height differing by 0.9 nm. In addition, data processing results indicate that chromatic dispersion equal to and higher than 2nd order is negligible when applying spatial frequency domain analysis method.

  2. A scheme of optical interconnection for super high speed parallel computer

    NASA Astrophysics Data System (ADS)

    Mao, Youju; Lv, Yi; Liu, Jiang; Dang, Mingrui

    2004-11-01

    An optical cross connection network which adopts coarse wavelength division multiplexing (CWDM) and data packet is introduced. It can be used to realize communication between multi-CPU and multi-MEM in parallel computing system. It provides an effective way to upgrade the capability of parallel computer by combining optical wavelength division multiplexing (WDM) and data packet switching technology. CWDM used in network construction, optical cross connection (OXC) based on optical switch arrays, and data packet format used in network construction were analyzed. We have also done the optimizing analysis of the number of optical switches needed in different scales of network in this paper. The architecture of the optical interconnection for 8 wavelength channels and 128 bits parallel transmission has been researched. Finally, a parallel transmission system with 4 nodes, 8 channels per node, has been designed.

  3. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Wagner, Norman; Lünenschloß, Peter; Toepfer, Hannes; Dietrich, Peter; Kaliorias, Andreas; Bumberger, Jan

    2015-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric

  4. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan

    2016-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric

  5. Determine electric field directions at semiconductor surfaces by femtosecond frequency domain interferometric second harmonic (FDISH) generation

    NASA Astrophysics Data System (ADS)

    Nelson, C. A.; Zhu, X.-Y.

    2016-10-01

    Optical excitations at semiconductor surfaces or interfaces are accompanied by transient interfacial electric fields due to charge redistribution or transfer. While such transient fields may be probed by time-resolved second harmonic generation (TR-SHG), it is difficult to determine the field direction, which is invaluable to unveiling the underlying physics. Here we apply a time-resolved frequency domain interferometric second harmonic (TR-FDISH) generation technique to determine the phase relationship between the SH field emitted from bulk GaAs(1 0 0) and the transient SH field from the space charge region. The interference between these two SH fields allow us to unambiguously determine the directions of transient electric fields. Since SH fields from a static bulk contribution and a changing electric field contribution are present at most semiconductor surfaces or interfaces under optical excitation, the TR-FDISH technique is of general significance to probing the dynamics of interfacial charge transfer/redistribution.

  6. Angle correction for small animal tumor imaging with spatial frequency domain imaging (SFDI)

    PubMed Central

    Zhao, Yanyu; Tabassum, Syeda; Piracha, Shaheer; Nandhu, Mohan Sobhana; Viapiano, Mariano; Roblyer, Darren

    2016-01-01

    Spatial frequency domain imaging (SFDI) is a widefield imaging technique that allows for the quantitative extraction of tissue optical properties. SFDI is currently being explored for small animal tumor imaging, but severe imaging artifacts occur for highly curved surfaces (e.g. the tumor edge). We propose a modified Lambertian angle correction, adapted from the Minnaert correction method for satellite imagery, to account for tissue surface angles up to 75°. The method was tested in a hemisphere phantom study as well as a small animal tumor model. The proposed method reduced µa and µs` extraction errors by an average of 64% and 16% respectively compared to performing no angle correction, and provided more physiologically agreeable optical property and chromophore values on tumors. PMID:27375952

  7. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  8. Modeling of thermoacoustic systems using the nonlinear frequency domain method.

    PubMed

    de Jong, J A; Wijnant, Y H; Wilcox, D; de Boer, A

    2015-09-01

    When modeling thermoacoustic (TA) devices at high amplitude, nonlinear effects such as time-average mass flows, and the generation of higher harmonics can no longer be neglected. Thus far, modeling these effects in TA devices required a generally computationally costly time integration of the nonlinear governing equations. In this paper, a fast one-dimensional nonlinear model for TA devices is presented, which omits this costly time integration by directly solving the periodic steady state. The model is defined in the frequency domain, which eases the implementation of phase delays due to viscous resistance and thermoacoustic heat exchange. As a demonstration, the model is used to solve an experimental standing wave thermoacoustic engine. The obtained results agree with experimental results, as well as with results from a nonlinear time domain model from the literature. The low computational cost of this model opens the possibility to do optimization studies using a nonlinear TA model.

  9. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  10. Frequency domain identification for robust large space structure control design

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Scheid, R. E.

    1991-01-01

    A methodology is demonstrated for frequency domain identification of large space structures which systematically transforms experimental raw data into a form required for synthesizing H(infinity) controllers using modern robust control design software (e.g., Matlab Toolboxes). A unique feature of this approach is that the additive uncertainty is characterized to a specified statistic confidence rather than with hard bounds. In this study, the difference in robust performance is minimal between the two levels of confidence. In general cases, the present methodology provides a tool for performance/confidence level tradeoff studies. For simplicity, the additive uncertainty on a frequency grid is considered and the interpolation error in between grid points is neglected.

  11. Ion mobility spectrometer using frequency-domain separation

    DOEpatents

    Martin, Stephen J.; Butler, Michael A.; Frye, Gregory C.; Schubert, W. Kent

    1998-01-01

    An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).

  12. Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.

  13. Frequency domain stress intensity calibration of damped cracked panels

    NASA Technical Reports Server (NTRS)

    Doyle, James F.; Rizzi, Stephen A.

    1993-01-01

    This paper discusses two schemes for doing finite element K calibration in the frequency domain. The baseline scheme uses the definition of K as a limit toward the crack tip. The limiting process requires using a very fine mesh around the crack tip making the scheme computationally very expensive. It is shown that the behavior of K as a function of frequency is very similar to a modal response. Taking advantage of this, a more efficient scheme involves a modal analysis of the cracked sheet and scaling the response to that of the static stress intensity. In this way, only a static K calibration need be performed. All the examples shown are for a frequency range spanning multiple resonances and with two levels of damping.

  14. Accurate reconstruction of digital holography using frequency domain zero padding

    NASA Astrophysics Data System (ADS)

    Shin, Jun Geun; Kim, Ju Wan; Lee, Jae Hwi; Lee, Byeong Ha

    2017-04-01

    We propose an image reconstruction method of digital holography for getting more accurate reconstruction. Digital holography provides both the light amplitude and the phase of a specimen through recording the interferogram. Since the Fresenl diffraction can be efficiently implemented by the Fourier transform, zero padding technique can be applied to obtain more accurate information. In this work, we report the method of frequency domain zero padding (FDZP). Both in computer-simulation and in experiment made with a USAF 1951 resolution chart and target, the FDZD gave the more accurate rconstruction images. Even though, the FDZD asks more processing time, with the help of graphics processing unit (GPU), it can find good applications in digital holography for 3-D profile imaging.

  15. Ion mobility spectrometer using frequency-domain separation

    DOEpatents

    Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.

    1998-08-04

    An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.

  16. Frequency-domain ultrasound waveform tomography breast attenuation imaging

    NASA Astrophysics Data System (ADS)

    Sandhu, Gursharan Yash Singh; Li, Cuiping; Roy, Olivier; West, Erik; Montgomery, Katelyn; Boone, Michael; Duric, Neb

    2016-04-01

    Ultrasound waveform tomography techniques have shown promising results for the visualization and characterization of breast disease. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, we have previously reconstructed the sound speed distributions of breasts of varying densities with different types of breast disease including benign and malignant lesions. By allowing the sound speed to have an imaginary component, we can model the intrinsic attenuation of a medium. We can similarly recover the imaginary component of the velocity and thus the attenuation. In this paper, we will briefly review ultrasound waveform tomography techniques, discuss attenuation and its relations to the imaginary component of the sound speed, and provide both numerical and ex vivo examples of waveform tomography attenuation reconstructions.

  17. Acoustic viscoelastic modeling by frequency-domain boundary element method

    NASA Astrophysics Data System (ADS)

    Guan, Xizhu; Fu, Li-Yun; Sun, Weijia

    2017-04-01

    Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element methods. Targeted at viscoelastic numerical modeling for multilayered media, the constant- Q acoustic wave equation is transformed into the corresponding wave integral representation with its Green's function accounting for viscoelastic coefficients. An efficient alternative for full-waveform solution to the integral equation is proposed in this article by extending conventional frequency-domain boundary element methods to viscoelastic media. The viscoelastic boundary element method enjoys a distinct characteristic of the explicit use of boundary continuity conditions of displacement and traction, leading to a semi-analytical solution with sufficient accuracy for simulating the viscoelastic effect across irregular interfaces. Numerical experiments to study the viscoelastic absorption of different Q values demonstrate the accuracy and applicability of the method.

  18. Face identification with frequency domain matched filtering in mobile environments

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Su; Woo, Yong-Hyun; Yeom, Seokwon; Kim, Shin-Hwan

    2012-06-01

    Face identification at a distance is very challenging since captured images are often degraded by blur and noise. Furthermore, the computational resources and memory are often limited in the mobile environments. Thus, it is very challenging to develop a real-time face identification system on the mobile device. This paper discusses face identification based on frequency domain matched filtering in the mobile environments. Face identification is performed by the linear or phase-only matched filter and sequential verification stages. The candidate window regions are decided by the major peaks of the linear or phase-only matched filtering outputs. The sequential stages comprise a skin-color test and an edge mask filtering test, which verify color and shape information of the candidate regions in order to remove false alarms. All algorithms are built on the mobile device using Android platform. The preliminary results show that face identification of East Asian people can be performed successfully in the mobile environments.

  19. Calibration and filtering strategies for frequency domain electromagnetic data

    USGS Publications Warehouse

    Minsley, Burke J.; Smith, Bruce D.; Hammack, Richard; Sams, James I.; Veloski, Garret

    2010-01-01

    echniques for processing frequency-domain electromagnetic (FDEM) data that address systematic instrument errors and random noise are presented, improving the ability to invert these data for meaningful earth models that can be quantitatively interpreted. A least-squares calibration method, originally developed for airborne electromagnetic datasets, is implemented for a ground-based survey in order to address systematic instrument errors, and new insights are provided into the importance of calibration for preserving spectral relationships within the data that lead to more reliable inversions. An alternative filtering strategy based on principal component analysis, which takes advantage of the strong correlation observed in FDEM data, is introduced to help address random noise in the data without imposing somewhat arbitrary spatial smoothing.Read More: http://library.seg.org/doi/abs/10.4133/1.3445431

  20. Frequency domain identification for robust large space structure control design

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Scheid, R. E.

    1991-01-01

    A methodology is demonstrated for frequency domain identification of large space structures which systematically transforms experimental raw data into a form required for synthesizing H(infinity) controllers using modern robust control design software (e.g., Matlab Toolboxes). A unique feature of this approach is that the additive uncertainty is characterized to a specified statistic confidence rather than with hard bounds. In this study, the difference in robust performance is minimal between the two levels of confidence. In general cases, the present methodology provides a tool for performance/confidence level tradeoff studies. For simplicity, the additive uncertainty on a frequency grid is considered and the interpolation error in between grid points is neglected.

  1. Frequency domain identification experiment on a large flexible structure

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Hadaegh, F. Y.; Yam, Y.; Scheid, R. E.; Mettler, E.; Milman, M. H.

    1989-01-01

    Recent experiences in the field of flexible structure control in space have indicated a need for on-orbit system identification to support robust control redesign to avoid in-flight instabilities and maintain high spacecraft performance. The authors highlight an automated frequency domain system identification methodology recently developed to fill this need. The methodology supports (1) the estimation of system quantities useful for robust control analysis and design, (2) experiment design tailored to performing system identification in a typically constrained on-orbit environment, and (3) the automation of operations to reduce human-in-the-loop requirements. A basic overview of the methodology is presented first, followed by an experimental verification of the approach performed on the JPL/AFAL testbed facility.

  2. Frequency-domain imaging of thick tissues using a CCD

    NASA Astrophysics Data System (ADS)

    French, Todd E.; Gratton, Enrico; Maier, John S.

    1992-04-01

    Imaging of thick tissue has been an area of active research during the past several years. Among the methods proposed to deal with the high scattering of biological tissues, the time resolution of a short light probe traversing a tissue seems to be the most promising. Time resolution can be achieved in the time domain using correlated single photon counting techniques or in the frequency domain using phase resolved methods. We have developed a CCD camera system which provides ultra high time resolution on the entire field of view. The phase of the photon diffusion wave traveling in the highly turbid medium can be measured with an accuracy of about one degree at each pixel. The camera has been successfully modulated at frequencies on the order of 100 MHz. At this frequency, one degree of phase shift corresponds to about 30 ps maximum time resolution. Powerful image processing software displays in real time the phase resolved image on the computer screen.

  3. Advancements in frequency-domain methods for rotorcraft system identification

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1989-01-01

    A new method for frequency-domain identification of rotorcraft dynamics is presented. Nonparametric frequency-response identification and parametric transfer-function modeling methods are extended to allow the extraction of state-space (stability and control derivative) representations. An interactive computer program DERIVID is described for the iterative solution of the multi-input/multi-output frequency-response matching approach used in the identification. Theoretical accuracy methods are used to determine the appropriate model structure and degree-of-confidence in the identified parameters. The method is applied to XV-15 tilt-rotor aircraft data in hover. Bare-airframe stability and control derivatives for the lateral/directional dynamics are shown to compare favorably with models previously obtained using time-domain identification methods and the XV-15 simulation program.

  4. Advancements in frequency-domain methods for rotorcraft system identification

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1988-01-01

    A new method for frequency-domain identification of rotorcraft dynamics is presented. Nonparametric frequency-response identification and parametric tranfer-function modeling methods are extended to allow the extraction of state-space (stability and control derivative) representations. An interactive computer program DERIVID is described for the iterative solution of the multi-input/multi-output frequency-response matching approach used in the identification. Theoretical accuracy methods are used to determine the appropriate model structure and degree-of-confidence in the identified parameters. The method is applied to XV-15 tilt-rotor aircraft data in hover. Bare-airframe stability and control derivatives for the lateral/directional dynamics are shown to compare favorably with models previously obtained using time-domain identification methods and the XV-15 simulation program.

  5. Modeling of photon density waves in the frequency domain

    NASA Astrophysics Data System (ADS)

    Kuzmin, V. L.; Zubkov, L. A.; Papazoglou, E.

    2012-08-01

    We have described the transfer of modulated radiation in a random medium in terms of the Bethe-Salpeter equation. Based on the obtained expression for the scattering intensity, we have developed an original technique of modeling the photon density waves in terms of the Monte Carlo method. Expressions for measurable parameters in the frequency domain have been derived, and, based on them, the amplitude and phase of the photon density waves have been calculated. We have studied how the parameters of the photon density waves depend on the scattering anisotropy for model states with the Henyey-Greenstein phase function. The range of applicability of the diffusion approximation for the interpretation of signals of photon density waves has been investigated.

  6. Noise characteristics of heterodyne/homodyne frequency-domain measurements

    PubMed Central

    Kupinski, Matthew A.

    2012-01-01

    Abstract. We theoretically develop and experimentally validate the noise characteristics of heterodyne and/or homodyne measurements that are widely used in frequency-domain diffusive imaging. The mean and covariance of the modulated heterodyne output are derived by adapting the random amplification of a temporal point process. A multinomial selection rule is applied to the result of the temporal noise analysis to additionally model the spatial distribution of intensified photons measured by a charge-coupled device (CCD), which shows that the photon detection efficiency of CCD pixels plays an important role in the noise property of detected photons. The approach of using a multinomial probability law is validated from experimental results. Also, experimentally measured characteristics of means and variances of homodyne outputs are in agreement with the developed theory. The developed noise model can be applied to all photon amplification processes. PMID:22352646

  7. Recursive least-squares algorithms for fast discrete frequency domain equalization

    NASA Astrophysics Data System (ADS)

    Picchi, G.; Prati, G.

    A simple least-squares initialization algorithm (IA) is defined for use with a self-orthogonalizing equalization algorithm in the discrete frequency domain (DFD). A parallel recursive relation is formulated for updating the Kalman vector in the Kalman/Godard algorithm. The DFD is shown to be a modified LS algorithm, thus permitting an exact solution of the LS problem during the equalizer fill-up stage when the data correlation matrix is singular. The solution to the LS problem provides a basis for initialization of the DFD equalizer coefficients. The results of a simulation of on-line initialization of a DFD equalizer with a recursive initialization algorithm demonstrate a weighting capability that minimizes the effects of mean square errors of poorly estimated small-value taps.

  8. Quantifying online visuomotor feedback utilization in the frequency domain.

    PubMed

    de Grosbois, John; Tremblay, Luc

    2016-12-01

    The utilization of sensory information during activities of daily living is ubiquitous both prior to and during movements (i.e., related to planning and online control, respectively). Because of the overlapping nature of online corrective processes, the quantification of feedback utilization has proven difficult. In the present study, we primarily sought to evaluate the utility of a novel analysis in the frequency domain for identifying visuomotor feedback utilization (i.e., online control). A second goal was to compare the sensitivity of the frequency analysis to that of currently utilized measures of online control. Participants completed reaching movements to targets located 27, 30, and 33 cm from a start position. During these reaches, vision of the environment was either provided or withheld. Performance was assessed across contemporary measures of online control. For the novel frequency analysis presented in this study, the acceleration profiles of reaching movements were detrended with a 5th-order polynomial fit, and the proportional power spectra were computed from the residuals of these fits. The results indicated that the use of visual feedback during reaching movements increased the contribution of the 4.68-Hz frequency to the residuals of the acceleration profiles. Comparisons across all measures of online control showed that the most sensitive measure was the squared Fisher transform of the correlation between the positions at 75 % and 100 % of the movement time. However, because such correlational measures can be contaminated by offline control processes, the frequency-domain analysis proposed herein represents a viable and promising alternative to detect changes in online feedback utilization.

  9. Clinical skin imaging using color spatial frequency domain imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Lesicko, John; Moy, Austin J.; Reichenberg, Jason; Tunnell, James W.

    2016-02-01

    Skin diseases are typically associated with underlying biochemical and structural changes compared with normal tissues, which alter the optical properties of the skin lesions, such as tissue absorption and scattering. Although widely used in dermatology clinics, conventional dermatoscopes don't have the ability to selectively image tissue absorption and scattering, which may limit its diagnostic power. Here we report a novel clinical skin imaging technique called color spatial frequency domain imaging (cSFDI) which enhances contrast by rendering color spatial frequency domain (SFD) image at high spatial frequency. Moreover, by tuning spatial frequency, we can obtain both absorption weighted and scattering weighted images. We developed a handheld imaging system specifically for clinical skin imaging. The flexible configuration of the system allows for better access to skin lesions in hard-to-reach regions. A total of 48 lesions from 31 patients were imaged under 470nm, 530nm and 655nm illumination at a spatial frequency of 0.6mm^(-1). The SFD reflectance images at 470nm, 530nm and 655nm were assigned to blue (B), green (G) and red (R) channels to render a color SFD image. Our results indicated that color SFD images at f=0.6mm-1 revealed properties that were not seen in standard color images. Structural features were enhanced and absorption features were reduced, which helped to identify the sources of the contrast. This imaging technique provides additional insights into skin lesions and may better assist clinical diagnosis.

  10. A Simple Physical Optics Algorithm Perfect for Parallel Computing Architecture

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Cwik, T.

    1994-01-01

    A reflector antenna computer program based upon a simple discreet approximation of the radiation integral has proven to be extremely easy to adapt to the parallel computing architecture of the modest number of large-gain computing elements such as are used in the Intel iPSC and Touchstone Delta parallel machines.

  11. A Simple Physical Optics Algorithm Perfect for Parallel Computing Architecture

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Cwik, T.

    1994-01-01

    A reflector antenna computer program based upon a simple discreet approximation of the radiation integral has proven to be extremely easy to adapt to the parallel computing architecture of the modest number of large-gain computing elements such as are used in the Intel iPSC and Touchstone Delta parallel machines.

  12. Parallel Changes in Structural and Functional Measures of Optic Nerve Myelination after Optic Neuritis

    PubMed Central

    van der Walt, Anneke; Kolbe, Scott; Mitchell, Peter; Wang, Yejun; Butzkueven, Helmut; Egan, Gary; Yiannikas, Con; Graham, Stuart; Kilpatrick, Trevor; Klistorner, Alexander

    2015-01-01

    Introduction Visual evoked potential (VEP) latency prolongation and optic nerve lesion length after acute optic neuritis (ON) corresponds to the degree of demyelination, while subsequent recovery of latency may represent optic nerve remyelination. We aimed to investigate the relationship between multifocal VEP (mfVEP) latency and optic nerve lesion length after acute ON. Methods Thirty acute ON patients were studied at 1,3,6 and 12 months using mfVEP and at 1 and 12 months with optic nerve MRI. LogMAR and low contrast visual acuity were documented. By one month, the mfVEP amplitude had recovered sufficiently for latency to be measured in 23 (76.7%) patients with seven patients having no recordable mfVEP in more than 66% of segments in at least one test. Only data from these 23 patients was analysed further. Results Both latency and lesion length showed significant recovery during the follow-up period. Lesion length and mfVEP latency were highly correlated at 1 (r = 0.94, p = <0.0001) and 12 months (r = 0.75, p < 0.001). Both measures demonstrated a similar trend of recovery. Speed of latency recovery was faster in the early follow-up period while lesion length shortening remained relatively constant. At 1 month, latency delay was worse by 1.76ms for additional 1mm of lesion length while at 12 months, 1mm of lesion length accounted for 1.94ms of latency delay. Conclusion A strong association between two putative measures of demyelination in early and chronic ON was found. Parallel recovery of both measures could reflect optic nerve remyelination. PMID:26020925

  13. Parallel changes in structural and functional measures of optic nerve myelination after optic neuritis.

    PubMed

    van der Walt, Anneke; Kolbe, Scott; Mitchell, Peter; Wang, Yejun; Butzkueven, Helmut; Egan, Gary; Yiannikas, Con; Graham, Stuart; Kilpatrick, Trevor; Klistorner, Alexander

    2015-01-01

    Visual evoked potential (VEP) latency prolongation and optic nerve lesion length after acute optic neuritis (ON) corresponds to the degree of demyelination, while subsequent recovery of latency may represent optic nerve remyelination. We aimed to investigate the relationship between multifocal VEP (mfVEP) latency and optic nerve lesion length after acute ON. Thirty acute ON patients were studied at 1, 3, 6 and 12 months using mfVEP and at 1 and 12 months with optic nerve MRI. LogMAR and low contrast visual acuity were documented. By one month, the mfVEP amplitude had recovered sufficiently for latency to be measured in 23 (76.7%) patients with seven patients having no recordable mfVEP in more than 66% of segments in at least one test. Only data from these 23 patients was analysed further. Both latency and lesion length showed significant recovery during the follow-up period. Lesion length and mfVEP latency were highly correlated at 1 (r = 0.94, p = <0.0001) and 12 months (r = 0.75, p < 0.001). Both measures demonstrated a similar trend of recovery. Speed of latency recovery was faster in the early follow-up period while lesion length shortening remained relatively constant. At 1 month, latency delay was worse by 1.76 ms for additional 1mm of lesion length while at 12 months, 1mm of lesion length accounted for 1.94 ms of latency delay. A strong association between two putative measures of demyelination in early and chronic ON was found. Parallel recovery of both measures could reflect optic nerve remyelination.

  14. Parallel optical Walsh expansion in a pattern recognition preprocessor using planar microlens array

    NASA Astrophysics Data System (ADS)

    Murashige, Kimio; Akiba, Atsushi; Baba, Toshihiko; Iga, Kenichi

    1992-05-01

    A parallel optical processor developed for a pattern recognition system using a planar microlens array and a Walsh orthogonal expansion spatial filter is developed. The parallel optical Walsh expansion of multiple images made by the planar microlens array with good accuracy, which assures 99-percent recognition of simple numeral characters in the system, is demonstrated. A novel selection method of Walsh expansion coefficients is proposed in order to enlarge the tolerance of the recognition rate against the deformation of input patterns.

  15. The three-layered mismatched media diffusion equation in frequency domain

    NASA Astrophysics Data System (ADS)

    Wang, Xichang; Wang, Shumei; Meng, Zhaokun; Yang, Shangming

    2006-09-01

    Near-IR radiation has great potential in medical diagnosis and therapy because of the non-invasive nature of light and the selectively poisonous effect to tumors of photodynarnic treatment. Therefore, Near-IR light propagation in highly scattering biological tissue must be understudied for basic research and clinical application of biomedical optics. A tissue is multi-layered mismatched medium, but many investigators only study the diffusion equation of matched medium. they take the tissue as the same refractive index. In order to understand the light transport in tissue, We analyze the diffusion of photons three-layered mismatched medium and set up the solution of Green's function in frequency domain, we employ the extrapolated boundary condition to set up a solution of the diffusion equation. At the same time, we utilize the diffuse equation to calculate the phase in different situation

  16. Higher-order modulations of fs laser pulses for GHz frequency domain photon migration system.

    PubMed

    Lin, Huang-Yi; Cheng, Nanyu; Tseng, Sheng-Hao; Chan, Ming-Che

    2014-02-24

    Except the fundamental modulation frequency, by higher-order-harmonic modulations of mode-locked laser pulses and a simple frequency demodulation circuit, a novel approach to GHz frequency-domain-photon-migration (FDPM) system was reported. With this novel approach, a wide-band modulation frequency comb is available without any external modulation devices and the only electronics to extract the optical attenuation and phase properties at a selected modulation frequency in FDPM systems are good mixers and lock-in devices. This approach greatly expands the frequency range that could be achieved by conventional FDPM systems and suggests that our system could extract much more information from biological tissues than the conventional FDPM systems. Moreover, this demonstration will be beneficial for discerning the minute change of tissue properties.

  17. Parallelized unscented Kalman filters for carrier recovery in coherent optical communication.

    PubMed

    Jignesh, Jokhakar; Corcoran, Bill; Lowery, Arthur

    2016-07-15

    We show that unscented Kalman filters can be used to mitigate local oscillator phase noise and to compensate carrier frequency offset in coherent single-carrier optical communication systems. A parallel processing architecture implementing the unscented Kalman filter is proposed, improving upon a previous parallelized linear Kalman filter (LKF) implementation.

  18. Experience with parallel optical link for the CDF silicon detector

    SciTech Connect

    S. Hou

    2003-04-11

    The Dense Optical Interface Module (DOIM) is a byte-wide optical link developed for the Run II upgrade of the CDF silicon tracking system [1]. The module consists of a transmitter with a laser-diode array for conversion of digitized detector signals to light outputs, a 22 m optical fiber ribbon cable for light transmission, and a receiver converting the light pulses back to electrical signals. We report on the design feature, characteristics, and radiation tolerance.

  19. Multielevation calibration of frequency-domain electromagnetic data

    USGS Publications Warehouse

    Minsley, Burke J.; Kass, M. Andy; Hodges, Greg; Smith, Bruce D.

    2014-01-01

    Systematic calibration errors must be taken into account because they can substantially impact the accuracy of inverted subsurface resistivity models derived from frequency-domain electromagnetic data, resulting in potentially misleading interpretations. We have developed an approach that uses data acquired at multiple elevations over the same location to assess calibration errors. A significant advantage is that this method does not require prior knowledge of subsurface properties from borehole or ground geophysical data (though these can be readily incorporated if available), and is, therefore, well suited to remote areas. The multielevation data were used to solve for calibration parameters and a single subsurface resistivity model that are self consistent over all elevations. The deterministic and Bayesian formulations of the multielevation approach illustrate parameter sensitivity and uncertainty using synthetic- and field-data examples. Multiplicative calibration errors (gain and phase) were found to be better resolved at high frequencies and when data were acquired over a relatively conductive area, whereas additive errors (bias) were reasonably resolved over conductive and resistive areas at all frequencies. The Bayesian approach outperformed the deterministic approach when estimating calibration parameters using multielevation data at a single location; however, joint analysis of multielevation data at multiple locations using the deterministic algorithm yielded the most accurate estimates of calibration parameters. Inversion results using calibration-corrected data revealed marked improvement in misfit, lending added confidence to the interpretation of these models.

  20. An analog filter approach to frequency domain fluorescence spectroscopy

    DOE PAGES

    Trainham, Clifford P.; O'Neill, Mary D.; McKenna, Ian J.

    2015-10-01

    The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modeled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as Spicea can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modeling of the entiremore » system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. Furthermore, the techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response.« less

  1. Frequency domain identification of grinding stiffness and damping

    NASA Astrophysics Data System (ADS)

    Leonesio, Marco; Parenti, Paolo; Bianchi, Giacomo

    2017-09-01

    As equivalent stiffness and damping of the grinding process dominate cutting stability, their identification is essential to predict and avoid detrimental chatter occurrence. The identification of these process constants is not easy in large cylindrical grinding machines, e.g. roll grinders, since there are no practical ways to measure cutting force normal component. This paper presents a novel frequency domain approach for identifying these process parameters, exploiting in-process system response, measured via impact testing. This method adopts a sub-structuring approach to couple the wheel-workpiece relative dynamic compliance with a two-dimensional grinding force model that entails both normal and tangential directions. The grinding specific energy and normal force ratio, that determine grinding stiffness and damping, are identified by fitting the closed loop FRF (Frequency Response Function) measured during specific plunge-grinding tests. The fitting quality supports the predictive capability of the model. Eventually, the soundness of the proposed identification procedure is further assessed by comparing the grinding specific energy identified through standard cutting power measurements.

  2. An analog filter approach to frequency domain fluorescence spectroscopy

    SciTech Connect

    Trainham, Clifford P.; O'Neill, Mary D.; McKenna, Ian J.

    2015-10-01

    The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modeled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as Spicea can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modeling of the entire system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. Furthermore, the techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response.

  3. Calibration and filtering strategies for frequency domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Minsley, Burke J.; Smith, Bruce D.; Hammack, Richard; Sams, James I.; Veloski, Garret

    2012-05-01

    Repeat frequency-domain electromagnetic (FDEM) surveys have been acquired over agricultural fields in the Powder River Basin (PRB), Wyoming, where subsurface drip irrigation is being utilized for the beneficial dispersal of coalbed methane produced water. The purpose of the FDEM surveys is to monitor changes in subsurface electrical properties due to the injection of the produced water. In order to quantitatively interpret the data, however, both systematic and random errors must be accounted for. A calibration procedure, adapted from airborne geophysical data processing, corrects for systematic errors by making the FDEM data consistent with the results of a direct current resistivity survey that is coincident with a portion of the FDEM data. Calibration is shown to improve the inter-frequency relationships within the data, resulting in reduced misfit when the data are inverted and therefore added confidence in the inversion results. A filtering approach that is based on principal component analysis is used to attenuate random errors in the data. This type of filter is advantageous because it has a physical-basis in the fact that FDEM data are highly correlated across frequencies, and does not require an arbitrarily-defined spatial filter window length. The calibration and filtering methods are successfully applied to approximately 15 line-km of data in the PRB. It is apparent, however, that calibration parameters may drift in time and should be re-assessed at regular intervals throughout a survey.

  4. 3D frequency-domain ultrasound waveform tomography breast imaging

    NASA Astrophysics Data System (ADS)

    Sandhu, Gursharan Yash; West, Erik; Li, Cuiping; Roy, Olivier; Duric, Neb

    2017-03-01

    Frequency-domain ultrasound waveform tomography is a promising method for the visualization and characterization of breast disease. It has previously been shown to accurately reconstruct the sound speed distributions of breasts of varying densities. The reconstructed images show detailed morphological and quantitative information that can help differentiate different types of breast disease including benign and malignant lesions. The attenuation properties of an ex vivo phantom have also been assessed. However, the reconstruction algorithms assumed a 2D geometry while the actual data acquisition process was not. Although clinically useful sound speed images can be reconstructed assuming this mismatched geometry, artifacts from the reconstruction process exist within the reconstructed images. This is especially true for registration across different modalities and when the 2D assumption is violated. For example, this happens when a patient's breast is rapidly sloping. It is also true for attenuation imaging where energy lost or gained out of the plane gets transformed into artifacts within the image space. In this paper, we will briefly review ultrasound waveform tomography techniques, give motivation for pursuing the 3D method, discuss the 3D reconstruction algorithm, present the results of 3D forward modeling, show the mismatch that is induced by the violation of 3D modeling via numerical simulations, and present a 3D inversion of a numerical phantom.

  5. A new image cipher in time and frequency domains

    NASA Astrophysics Data System (ADS)

    Abd El-Latif, Ahmed A.; Niu, Xiamu; Amin, Mohamed

    2012-10-01

    Recently, various encryption techniques based on chaos have been proposed. However, most existing chaotic encryption schemes still suffer from fundamental problems such as small key space, weak security function and slow performance speed. This paper introduces an efficient encryption scheme for still visual data that overcome these disadvantages. The proposed scheme is based on hybrid Linear Feedback Shift Register (LFSR) and chaotic systems in hybrid domains. The core idea is to scramble the pixel positions based on 2D chaotic systems in frequency domain. Then, the diffusion is done on the scrambled image based on cryptographic primitive operations and the incorporation of LFSR and chaotic systems as round keys. The hybrid compound of LFSR, chaotic system and cryptographic primitive operations strengthen the encryption performance and enlarge the key space required to resist the brute force attacks. Results of statistical and differential analysis show that the proposed algorithm has high security for secure digital images. Furthermore, it has key sensitivity together with a large key space and is very fast compared to other competitive algorithms.

  6. Frequency-domain analysis for pulsating combustion of gaseous fuel

    NASA Astrophysics Data System (ADS)

    Berg, I. A.; Porshnev, S. V.; Oshchepkova, V. Y.; Medvedev, A. N.

    2017-06-01

    Pulsating combustion is among combustion control methods used to suppress formation of NOx. Past experiments showed that the dependency of NOx content from pulsation rate has a minimum. A measuring unit was set up to study torch behavior in infrared band. To study pulsating combustion of gaseous fuel a thermographic camera was used. Thermographic sequences were recorded using the instrument FLIR 7700M with the resolution of 320×240 pixels at the frame rate of 412 Hz. The experiments resulted in obtaining thermographic sequences radiation intensity fields in the longitudinal section of the torch at different pulsation rates. The obtained raw data was preprocessed to obtain distributions of quantities of pixels corresponding to temperatures in each frame, as well as time-domain series for changes of the torch core longitudinal section area. Frequency-domain analysis was run for each time-domain series using Fast Fourier transform (FFT). The results demonstrate that the first maximum of spectral density coincides with the control action rate. The spectrum also contains pronounced second and third harmonics. For each spectrum of the time-domain series signal-to-noise ratio (SNR) was calculated. Comparison of different SNR shows that maximum impact of pulsation control on torch radiation intensity takes place at the on/off valve opening rate of 4 Hz. This method of torch diagnostics can be helpful for future studies and development of pulsating combustion control systems.

  7. Patellofemoral pain syndrome: electromyography in a frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Catelli, D. S.; Kuriki, H. U.; Polito, L. F.; Azevedo, F. M.; Negrão Filho, R. F.; Alves, N.

    2011-09-01

    The Patellofemoral Pain Syndrome (PFPS), has a multifactorial etiology and affects approximately 7 to 15% of the population, mostly women, youth, adults and active persons. PFPS causes anterior or retropatelar pain that is exacerbated during functional motor gestures, such as up and down stairs or spending long periods of time sitting, squatting or kneeling. As the diagnostic evaluation of this syndrome is still indirect, different mechanisms and methodologies try to make a classification that distinguishes patients with PFPS in relation to asymptomatic. Thereby, the purpose of this investigation was to determine the characteristics of the electromyographic (EMG) signal in the frequency domain of the vastus medialis oblique (VMO) and vastus lateralis (VL) in patients with PFPS, during the ascent of stairs. 33 young women (22 control group and 11 PFPS group), were evaluated by EMG during ascent of stairs. The VMO mean power frequency (MPF) and the VL frequency 95% (F95) were lower in symptomatic individuals. This may be related to the difference in muscle recruitment strategy exerted by each muscle in the PFPS group compared to the control group.

  8. Frequency domain analysis of noise in autoregulated gene circuits

    PubMed Central

    Simpson, Michael L.; Cox, Chris D.; Sayler, Gary S.

    2003-01-01

    We describe a frequency domain technique for the analysis of intrinsic noise within negatively autoregulated gene circuits. This approach is based on the transfer function around the feedback loop (loop transmission) and the equivalent noise bandwidth of the system. The loop transmission, T, is shown to be a determining factor of the dynamics and the noise behavior of autoregulated gene circuits, and this T-based technique provides a simple and flexible method for the analysis of noise arising from any source within the gene circuit. We show that negative feedback not only reduces the variance of the noise in the protein concentration, but also shifts this noise to higher frequencies where it may have a negligible effect on the noise behavior of following gene circuits within a cascade. This predicted effect is demonstrated through the exact stochastic simulation of a two-gene cascade. The analysis elucidates important aspects of gene circuit structure that control functionality, and may provide some insights into selective pressures leading to this structure. The resulting analytical relationships have a simple form, making them especially useful as synthetic gene circuit design equations. With the exception of the linearization of Hill kinetics, this technique is general and may be applied to the analysis or design of networks of higher complexity. This utility is demonstrated through the exact stochastic simulation of an autoregulated two-gene cascade operating near instability. PMID:12671069

  9. A development of a generalized frequency - domain transient program - FTP

    SciTech Connect

    Nagaoka, N.; Ametani, A. )

    1988-10-01

    A generalized frequency-domain transient program (FTP) is developed in the paper. The FTP is based on a frequency-time transform method adopting nodal analysis, admittance parameter and modal theories. Discontinuous and nonlinear elements are solved as initial condition problems using a piece-wise linear approximation of the nonlinear characteristics. The FTP is used to solve the transient and steady states of a network composed of an arbitrary interconnection of basic circuit elements. The FTP is structured to be compatible with the EMTP so that the same input data and output formats are those of the EMTP can be used. The present version of the FTP can deal with a network with over a hundred of nodes and branches. Comparisons of calculated results by the FTP with field test results and calculated results by the EMTP confirm a high accuracy and a satisfactory efficiency of the FTP. The FTP is of great advantage to offer the most accurate or theoretically exact solutions of transients on distributed-parameter lines.

  10. A Frequency-Domain Substructure System Identification Algorithm

    NASA Technical Reports Server (NTRS)

    Blades, Eric L.; Craig, Roy R., Jr.

    1996-01-01

    A new frequency-domain system identification algorithm is presented for system identification of substructures, such as payloads to be flown aboard the Space Shuttle. In the vibration test, all interface degrees of freedom where the substructure is connected to the carrier structure are either subjected to active excitation or are supported by a test stand with the reaction forces measured. The measured frequency-response data is used to obtain a linear, viscous-damped model with all interface-degree of freedom entries included. This model can then be used to validate analytical substructure models. This procedure makes it possible to obtain not only the fixed-interface modal data associated with a Craig-Bampton substructure model, but also the data associated with constraint modes. With this proposed algorithm, multiple-boundary-condition tests are not required, and test-stand dynamics is accounted for without requiring a separate modal test or finite element modeling of the test stand. Numerical simulations are used in examining the algorithm's ability to estimate valid reduced-order structural models. The algorithm's performance when frequency-response data covering narrow and broad frequency bandwidths is used as input is explored. Its performance when noise is added to the frequency-response data and the use of different least squares solution techniques are also examined. The identified reduced-order models are also compared for accuracy with other test-analysis models and a formulation for a Craig-Bampton test-analysis model is also presented.

  11. Color-signal filtering in the Fourier-frequency domain.

    PubMed

    Romero, Javier; Valero, Eva; Hernández-Andrés, Javier; Nieves, Juan L

    2003-09-01

    We have analyzed the Fourier-frequency content of spectral power distributions deriving from three types of illuminants (daylight, incandescent, and fluorescent) and the color signals from both biochrome and nonbiochrome surfaces lit by these illuminants. As far as daylight and the incandescent illuminant are concerned, after filtering the signals through parabolic (low-pass) filters in the Fourier-frequency domain and then reconstructing them, we found that most of the spectral information was contained below 0.016 c/nm. When fluorescent illuminants were involved, we were unable to recover either the original illuminants or color signals to any satisfactory degree. We also used the spectral modulation sensitivity function, which is related to the human visual system's color discrimination thresholds, as a Fourier-frequency filter and obtained consistently less reliable results than with low-pass filtering. We provide comparative results for daylight signals recovered by three different methods. We found reconstructions based on linear models to be the most effective.

  12. Simulation of DLA grating structures in the frequency domain

    NASA Astrophysics Data System (ADS)

    Egenolf, T.; Boine-Frankenheim, O.; Niedermayer, U.

    2017-07-01

    Dielectric laser accelerators (DLA) driven by ultrashort laser pulses can reach orders of magnitude larger gradients than contemporary RF electron accelerators. A new implemented field solver based on the finite element method in the frequency domain allows the efficient calculation of the structure constant, i.e. the ratio of energy gain to laser peak amplitude. We present the maximization of this ratio as a parameter study looking at a single grating period only. Based on this optimized shape the entire design of a beta-matched grating is completed in an iterative process. The period length of a beta-matched grating increases due to the increasing velocity of the electron when a subrelativistic beam is accelerated. The determination of the optimal length of each grating period thus requires the knowledge of the energy gain within all so far crossed periods. Furthermore, we outline to reverse the excitation in the presented solver for beam coupling impedance calculations and an estimation of the beam loading intensity limit.

  13. Damping identification in frequency domain using integral method

    NASA Astrophysics Data System (ADS)

    Guo, Zhiwei; Sheng, Meiping; Ma, Jiangang; Zhang, Wulin

    2015-03-01

    A new method for damping identification of linear system in frequency domain is presented, by using frequency response function (FRF) with integral method. The FRF curve is firstly transformed to other type of frequency-related curve by changing the representations of horizontal and vertical axes. For the newly constructed frequency-related curve, integral is conducted and the area forming from the new curve is used to determine the damping. Three different methods based on integral are proposed in this paper, which are called FDI-1, FDI-2 and FDI-3 method, respectively. For a single degree of freedom (Sdof) system, the formulated relation of each method between integrated area and loss factor is derived theoretically. The numeral simulation and experiment results show that, the proposed integral methods have high precision, strong noise resistance and are very stable in repeated measurements. Among the three integral methods, FDI-3 method is the most recommended because of its higher accuracy and simpler algorithm. The new methods are limited to linear system in which modes are well separated, and for closely spaced mode system, mode decomposition process should be conducted firstly.

  14. A parallel implementation of the optical Gabor-wavelet transform

    NASA Astrophysics Data System (ADS)

    Navarro, Rafael; Vargas, A.; Campos, J.

    1999-03-01

    We present the architecture for a multichannel parallel correlator to apply a set of Gabor filters to the input image simultaneously. The basic features are: (a) a liquid crystal spatial light modulator displays the input scene, its pixelated structure produces several replicas of the Fourier transform of the object that are used for parallel filtering; (b) the filters consist of a pair of centre-symmetric Gaussians (even Gabor filter); (c) specially designed prisms are located in front of the filters to separate spatially the resulting filtered images on the recording plane. Examples of applications to texture discrimination and oriented edge extraction are included.

  15. A simple method for converting frequency domain aerodynamics to the time domain

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.

    1980-01-01

    A simple, direct procedure was developed for converting frequency domain aerodynamics into indicial aerodynamics. The data required for aerodynamic forces in the frequency domain may be obtained from any available (linear) theory. The method retains flexibility for the analyst and is based upon the particular character of the frequency domain results. An evaluation of the method was made for incompressible, subsonic, and transonic two dimensional flows.

  16. Cerebral and muscle oxygen saturation measurement by a frequency-domain near-infrared spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Ferrari, Marco; De Blasi, Roberto A.; Fantini, Sergio; Franceschini, Maria-Angela; Barbieri, Beniamino B.; Quaresima, Valentina; Gratton, Enrico

    1995-05-01

    Absorption and reduced scattering coefficients at 715 and 825 nm as well as hemoglobin saturation and content of the forehead and the forearm were measured by a 110 MHz frequency-domain multisource instrument. The absolute data obtained by the frequency- domain spectrometer were compared with oxygenation changes measured by a continuous wave instrument during quadriceps ischemia and postural changes. These preliminary results indicate that portable frequency-domain instruments could be very helpful to investigate brain and muscle pathophysiology.

  17. Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance.

    PubMed

    Pham, T H; Spott, T; Svaasand, L O; Tromberg, B J

    2000-09-01

    Noncontact, frequency-domain measurements of diffusely reflected light are used to quantify optical properties of two-layer tissuelike turbid media. The irradiating source is a sinusoidal intensity-modulated plane wave, with modulation frequencies ranging from 10 to 1500 MHz. Frequency-dependent phase and amplitude of diffusely reflected photon density waves are simultaneously fitted to a diffusion-based two-layer model to quantify absorption (mu(a)) and reduced scattering (mu(s)') parameters of each layer as well as the upper-layer thickness (l). Study results indicate that the optical properties of two-layer media can be determined with a percent accuracy of the order of +/-9% and +/-5% for mu(a) and mu(s)', respectively. The accuracy of upper-layer thickness (l) estimation is as good as +/-6% when optical properties of upper and lower layers are known. Optical property and layer thickness prediction accuracy degrade significantly when more than three free parameters are extracted from data fits. Problems with convergence are encountered when all five free parameters (mu(a) and mu(s)' of upper and lower layers and thickness l) must be deduced.

  18. Microwave signal processing in two-frequency domain for ROF systems implementation: training course

    NASA Astrophysics Data System (ADS)

    Morozov, Oleg G.; Morozov, Gennady A.

    2014-04-01

    This article is presented materials from two tutorials: "Optical two-frequency domain reflectometry1, 2" and "Microwave technologies in industry, living systems and telecommunications3". These materials were prepared for master training courses and listed in the "SPIE Optical Education Directory" for 2013/2014. The main its theme is microwave photonics. Microwave photonics has been defined as the study of photonic devices operating at microwave frequencies and their application to microwave and optical systems. Its initial rationale was to use the advantages of photonic technologies to provide functions in microwave systems that are very complex or even impossible to carry out directly in the radiofrequency domain. But microwave photonics is also succeeding in incorporating a variety of techniques used in microwave engineering to improve the performance of photonic communication networks and systems. Three parts of this chapter are devoted to applications and construction principles of systems forming microwave photonic filters, measuring instantaneous frequency of microwave heterodyne signals and characterizing stimulated Mandelstam- Brillouin scattering spectrum in ROF systems. The main emphasis is on the use of the two-frequency symmetric radiation, generated by the Il'in-Morozov's method4, in given systems. It is forming radiation for the synthesis of optical filters coefficients, it's application and processing determine the increase in the signal-to-noise ratio during heterodyne frequencies monitoring and characterization of nonlinear effects spectrum.

  19. Frequency-domain sensitivity analysis for small imaging domains using the equation of radiative transfer.

    PubMed

    Gu, Xuejun; Ren, Kui; Hielscher, Andreas H

    2007-04-01

    Optical tomography of small imaging domains holds great promise as the signal-to-noise ratio is usually high, and the achievable spatial resolution is much better than in large imaging domains. Emerging applications range from the imaging of joint diseases in human fingers to monitoring tumor growth or brain activity in small animals. In these cases, the diameter of the tissue under investigation is typically smaller than 3 cm, and the optical path length is only a few scattering mean-free paths. It is well known that under these conditions the widely applied diffusion approximation to the equation of radiative transfer (ERT) is of limited applicability. To accurately model light propagation in these small domains, the ERT has to be solved directly. We use the frequency-domain ERT to perform a sensitivity study for small imaging domains. We found optimal source-modulation frequencies for which variations in optical properties, size, and location of a tissue inhomogeneity lead to maximal changes in the amplitude and phase of the measured signal. These results will be useful in the design of experiments and optical tomographic imaging systems that probe small tissue volumes.

  20. Frequency Domain Magnetic Measurements from Kilohertz to Gigahertz

    NASA Astrophysics Data System (ADS)

    Gregg, John F.

    "......we applied much prolonged labor on investigating the magnetical forces; so wonderful indeed are they, compared with the forces in all other minerals, surpassing even the virtues of all bodies around us. Nor have we found this labor idle or unfruitful; since daily in our experimenting new unexpected properties came to light."William Gilbert, De Magnete, 1600Abstract. This review deals with practical aspects of making frequency-domain measurements of magnetic susceptibility and magnetic losses from 200 kHz up to 10 GHz. It sets out the types of measurement concerned, distinguishing resonant from nonresonant phenomena. The techniques available are categorized according to suitability for the different frequency regimes and types of investigation. Practical recipes are provided for undertaking such experiments across the entire frequency range. Marginal oscillator spectrometry is discussed which is applicable across the whole frequency range. Different instruments are presented, and particular emphasis is placed on designs which function on the Robinson principle. Analysis of oscillation condition and signal-to-noise performance is dealt with, also sample considerations such as filling factor. Practical circuits are presented and their merits and demerits evaluated. Layout and radio-frequency design considerations are dealt with. Ultrahigh/microwave frequency marginal oscillator spectrometry is given special treatment and several practical designs are given. The essentials of good microwave design are emphasized. A general discussion of resonant structures is included which treats multiple layer coil design, slow wave line structures, stripline and cavities. Unusual cavity designs such as the rhumbatron are treated. Use of striplines with microwave marginal spectrometry is described and compared with conventional network-analysis techniques. The use of parameter matrices for high-frequency analysis is alluded to. Some details of good construction practice are

  1. Spatial and temporal frequency domain laser-ultrasound applied in the direct measurement of dispersion relations of surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Grünsteidl, Clemens; Veres, István A.; Roither, Jürgen; Burgholzer, Peter; Murray, Todd W.; Berer, Thomas

    2013-01-01

    We present a laser-ultrasound measurement technique which combines adjustable spatial and temporal modulation of the excitation laser beam. Our method spreads the intensity of an amplitude modulated continuous wave laser over a micro-scale pattern on the sample surface to excite surface acoustic waves. The excitation pattern consists of parallel, equidistant lines and the waves generated from the individual lines interfere on the sample surface. Measurement is done in the spatial-temporal frequency domain allowing the direct determination of dispersion relations. The technique performs with high signal-to-noise-ratios and low peak power densities on the sample.

  2. Parallel optical fuzzy logic inference using improved fuzzy associative memories

    NASA Astrophysics Data System (ADS)

    Zhang, ShuQun; Karim, Mohammad A.

    1999-10-01

    A new optoelectronic fuzzy inference system is proposed for processing a large number of fuzzy rules in parallel. The proposed system using spatial light modulator implements various membership functions as well as max-min inference. It has the features of easy implementation and large data processing capability. The membership function decomposition method in the improved fuzzy associative memory is used to save both space bandwidth and accommodate multiple-input fuzzy inference.

  3. Spatial Frequency Domain Imaging: Applications in Preclinical Models of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Lin, Alexander Justin

    A clinical challenge in Alzheimer's disease (AD) is diagnosing and treating patients earlier, before symptoms of cognitive dysfunction occur. A good screening test would be sensitive to the AD brain pathology, safe, and cost-effective. Diffuse optical imaging, which measures how non-ionizing light is absorbed and scattered in tissue, may fulfill these three parameters. We imaged the brains of transgenic AD mouse models in vivo with a quantitative, camera-based, diffuse optical imaging technology called spatial frequency domain imaging (SFDI) to characterize near-infrared (650-970nm) optical biomarkers of AD. Compared to age-matched control mice, we found a decrease in light absorption --- due to lower oxygenated and total hemoglobin concentrations in the brain --- correlating to decreased blood vessel volume and density in histology. Light scattering also increased in AD mice, correlating to brain structural changes caused by neuron loss and activation of inflammatory cells. Furthermore, inhaled gas challenges revealed brain vascular function was diminished. To investigate how AD affects the small changes in blood perfusion caused by increased brain activity, we built a new SFDI system from a commercial light-emitting diode microprojector and off-the-shelf optical components and cameras to measure optical properties in the visible range (460-632nm). Our measurements showed a reduced amplitude and duration of blood vessel dilation to increased brain activity in the AD mice. Altogether, this work increased our understanding of AD pathogenesis, explored optical biomarkers of AD, and improved technology access to other research labs. These results and technologies can further be used to facilitate longitudinal drug therapy trials in mice and provide a roadmap to diffuse optical spectroscopy studies in humans.

  4. Frequency domain fluorescence lifetime microwell-plate platform for respirometry measurements

    NASA Astrophysics Data System (ADS)

    Chatni, M. R.; Yale, G.; Van Ryckeghem, A.; Porterfield, D. M.

    2010-04-01

    Traditionally micro-well plate based platforms used in biology utilize fluorescence intensity based methods to measure processes of biological relevance. However, fluorescence intensity measurements suffer from calibration drift due to a variety of factors. Photobleaching and self-quenching of the fluorescent dyes cause the intensity signal to drop over the lifetime of sensor immobilized inside the well. Variation in turbidity of the sample during the course of the measurement affects the measured fluorescence intensity. In comparison, fluorescence lifetime measurements are not significantly affected by these factors because fluorescence lifetime is a physico-chemical property of the fluorescent dye. Reliable and inexpensive frequency domain fluorescence lifetime instrumentation platforms are possible because the greater tolerance for optical alignment, and because they can be performed using inexpensive light sources such as LEDs. In this paper we report the development of a frequency domain fluorescence lifetime well-plate platform utilizing an oxygen sensitive transition-metal ligand complex fluorophore with a lifetime in the microsecond range. The fluorescence lifetime dye is incorporated in a polymer matrix and immobilized on the base of micro-well of a 60 well micro-well plate. Respiration measurements are performed in both aqueous and non-aqueous environment. Respirometry measurements were recorded from single Daphnia magna egg in hard water. Daphnia is an aquatic organism, important in environmental toxicology as a standard bioassay and early warning indicator for water quality monitoring. Also respirometry measurements were recorded from Tribolium castaneum eggs, which are common pests in the processed flour industry. These eggs were subjected to mitochondrial electron transport chain inhibitor such as potassium cyanide (KCN) and its effects on egg respiration were measured in real-time.

  5. Evaluation of emerging parallel optical link technology for high energy physics

    SciTech Connect

    Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.; /Fermilab

    2012-01-01

    Modern particle detectors utilize optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from industry advancements in transceiver technology. Supporting data transfers of up to 120 Gbps in each direction, optical engines permit assembly of the optical transceivers in close proximity to ASICs and FPGAs. Test results of some of these parallel components will be presented including the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.

  6. Parallel optical information, concept, and response evolver: POINCARE

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John; Caulfield, Kimberly

    1991-08-01

    It is now possible to build a nonlinear adaptive system which will incorporate many of the properties of the human mind, such as true originality in such skills as reasoning by analogy and reasoning by retrodiction, including literally unpredictable thoughts; and development of individual styles, personalities, expertise, etc. Like humans, these optical processors will have a rich `subconscious'' experience. Like humans, they will be clonable, but clones will develop differently as they experience the world differently, make different decisions, develop different habits, etc. In short, powerful optical processors with some of the properties normally associated with human intelligence can be made. This approach can result in a powerful optical processor with those properties. A demonstration chosen for simplicity of implementation is suggested. This could be the first computer of any type which uses quantum indeterminacy in an integral and important way.

  7. High-speed spatial frequency domain imaging with temporally modulated light

    NASA Astrophysics Data System (ADS)

    Applegate, Matthew B.; Roblyer, Darren

    2017-07-01

    Spatial frequency domain imaging (SFDI) is a wide-field diffuse optical technique used to obtain optical properties and chromophore concentrations in highly scattering media, such as biological tissue. Here, we present a method for rapidly acquiring multispectral SFDI data by modulating each illumination wavelength at a different temporal frequency. In the remitted signal, each wavelength is temporally demodulated and processed using conventional SFDI techniques. We demonstrate a proof-of-concept system capable of acquiring wide-field maps (2048×1536 pixels, 8.5×6.4 cm) of optical properties at three wavelengths in under 2.5 s. Data acquired by this method show a good agreement with a commercial SFDI imaging system (with an average error of 13% in absorption and 8% in scattering). Additionally, we show that this strategy is insensitive to ambient lighting conditions, making it more practical for clinical translation. In the future, this technique could be expanded to tens or hundreds of wavelengths without increasing acquisition time.

  8. Dynamics of low-frequency phonons in the YBa2Cu3O7-x superconductor studied by time- and frequency-domain spectroscopies

    NASA Astrophysics Data System (ADS)

    Misochko, O. V.; Kisoda, K.; Sakai, K.; Nakashima, S.

    2000-02-01

    We have investigated the temperature dependence of the optical reflectivity at femtosecond scale in YBa2Cu3O7-x superconductors. In both normal and superconducting states, we detect the oscillations associated with two A1g metal-ion modes and compare the phonon dynamics to those obtained by frequency-domain (Raman) spectroscopy. Apart from the considerable increase of amplitude for low-frequency mode in the superconducting state, we observe that its initial phase in the time domain is approximately π/4 shifted by the superconductivity, whereas for the high-frequency mode the initial phase shift is almost two times larger. Even though similar lattice anomalies are observed in both time and frequency domains, the systematic analysis shows that the coherent lattice dynamics is different from the ordinary (thermal state) dynamics probed by frequency-domain spectroscopy.

  9. Electromagnetic coupling in frequency domain induced polarisation data

    NASA Astrophysics Data System (ADS)

    Routh, Partha Sarathi

    2000-11-01

    Frequency domain induced polarization (IP) surveys are commonly carried out to provide information about the chargeability structure of the earth. The goals might be as diverse as trying to delineate a mineralized and/or alteration zone for mineral exploration, or to find a region of contaminants for an environmental problem. Unfortunately, the measured responses can have contributions from inductive and galvanic effects of the ground. The inductive components are called EM coupling effects. They are considered to be ``noise'' and much of this thesis is devoted towards either removing these effects, or reformulating the inverse problem so that inductive effects are part of the ``signal''. If the forward modeling is based on galvanic responses only, then the inductive responses must first be removed from the data. The motivation for attacking the problem in this manner is that it is easier to solve D.C. resistivity equation than the full Maxwell's equation. The separation of the inductive response from the total response is derived by expressing the total electric field as a product of an IP response function, and an electric field which depends on EM coupling response. This enables me to generate formulae to obtain IP amplitude (PFE) and phase response from the raw data. The data can then be inverted, using a galvanic forward modeling. I illustrate this with 1D and 3D synthetic examples. To handle field data sets, I have developed an approximate method for estimating the EM coupling effects based upon the assumption that the earth is locally 1D. The 1D conductivity is obtained from a 2D inversion of the low frequency DC resistivity data. Application of this method to a field data set has shown encouraging results. I also examine the EM coupling problem in terms of complex conductivity. I show that if the forward modeling is carried out with full Maxwell's equation, then there is no need to remove EM coupling. I illustrate this with 1D synthetic example. In summary

  10. IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook

    2016-12-01

    Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.

  11. Applications of Emerging Parallel Optical Link Technology to High Energy Physics Experiments

    SciTech Connect

    Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.; /Fermilab

    2011-09-01

    Modern particle detectors depend upon optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from the telecommunications and storage area network market segments. These links support data transfers in each direction at rates up to 120 Gbps in packages that minimize or even eliminate edge connector requirements. Emerging products include a class of devices known as optical engines which permit assembly of the optical transceivers in close proximity to the electrical interfaces of ASICs and FPGAs which handle the data in parallel electrical format. Such assemblies will reduce required printed circuit board area and minimize electromagnetic interference and susceptibility. We will present test results of some of these parallel components and report on the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.

  12. A review of snapshot multidimensional optical imaging: measuring photon tags in parallel

    PubMed Central

    Gao, Liang; Wang, Lihong V.

    2015-01-01

    Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons’ spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition—also dubbed snapshot imaging—has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications. PMID:27134340

  13. A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Wang, Lihong V.

    2016-02-01

    Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons' spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition-also dubbed snapshot imaging-has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications.

  14. Simulation of optically encoded multiplexing for parallel multipoint sensing.

    PubMed

    Babu Rao, C; Chelliah, Pandian; Sahoo, Trilochan

    2015-06-20

    Spectral emission/absorption-based sensors are commonly used to monitor explosives, narcotics, and other restricted materials in high-security zones such as airports. Monitoring a broad range of spectral wavelengths with high spectral resolution would increase the repertoire of chemicals that can be monitored. However, a portable unit will have limitations in meeting these requirements. Optical fibers can be employed for collecting and transmitting spectral signals from portable sensor heads (PSHs) to a sensitive central spectral analyzer. However, simultaneous detection by sensors in multiple PSHs needs to be differentiated for identifying individual PSHs. An optical encoding method is presented in this paper for use of a portable unit for highly sensitive measurement. The methodology is demonstrated through a simulation using MATLAB Simulink.

  15. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, Wallace B.; DuBois, David H.

    1998-08-11

    A digital system provides sending and receiving gateways for HIPPI interfaces. Electronic logic circuitry formats data signals and overhead signals in a data frame that is suitable for transmission over a connecting fiber optic link. Multiplexers route the data and overhead signals to a framer module. The framer module allocates the data and overhead signals to a plurality of 9-byte words that are arranged in a selected protocol. The formatted words are stored in a storage register for output through the gateway.

  16. Visual saliency: a biologically plausible contourlet-like frequency domain approach.

    PubMed

    Bian, Peng; Zhang, Liming

    2010-09-01

    In this paper we propose a fast frequency domain saliency detection method that is also biologically plausible, referred to as frequency domain divisive normalization (FDN). We show that the initial feature extraction stage, common to all spatial domain approaches, can be simplified to a Fourier transform with a contourlet-like grouping of coefficients, and saliency detection can be achieved in frequency domain. Specifically, we show that divisive normalization, a model of cortical surround inhibition, can be conducted in frequency domain. Since Fourier coefficients are global in space, we extend to this model by conducting piecewise FDN (PFDN) using overlapping local patches to provide better biological plausibility. Not only do FDN and PFDN outperform current state-of-the-art methods in eye fixation prediction, they are also faster. Speed and simplicity are advantages of our frequency domain approach, and its biological plausibility is the main contribution of our paper.

  17. Analysis of frequency domain frame detection and synchronization in OQAM-OFDM systems

    NASA Astrophysics Data System (ADS)

    Thein, Christoph; Schellmann, Malte; Peissig, Jürgen

    2014-12-01

    For future communication systems, filter bank multicarrier schemes offer the flexibility to increase spectrum utilization in heterogeneous wireless environments by good separation of signals in the frequency domain. To fully exploit this property for frame detection and synchronization, the advantage of the filter bank should be taken at the receiver side. In this work, the concept of frequency domain processing for frame detection and synchronization is analyzed and a suitable preamble design as well as corresponding estimation algorithms is discussed. The theoretical performance of the detection and estimation schemes is derived and compared with simulation-based assessments. The results show that, even though the frequency domain algorithms are sensitive to carrier frequency offsets, satisfactory frame detection and synchronization can be achieved in the frequency domain. In comparison to time domain synchronization methods, the computational complexity increases; however, enhanced robustness in shared spectrum access scenarios is gained in case the described frequency domain approach is utilized.

  18. Optical coupling and splitting with two parallel waveguide tapers.

    PubMed

    Tao, S H

    2011-01-17

    A coupling and splitting device comprising a width taper and a spatial-modulated subwavelength grating waveguide (SSGW) is proposed. The width taper is a waveguide with increasing width and the SSGW is a waveguide grating whose width and thickness are constant but the filling factor increases along the light propagation. Thus, the effective index of the subwavelength grating increases according to the effective medium theory. Light of orthogonal polarizations from a single-mode fiber can be coupled efficiently with the two parallel tapers. Furthermore, the coupled lights of orthogonal polarizations in the two tapers can be further split with connecting bent waveguides. Fabrication of the device is fully compatible with current complementary metal oxide semiconductor technology.

  19. Building the analytical response in frequency domain of AC biased bolometers. Application to Planck/HFI

    NASA Astrophysics Data System (ADS)

    Sauvé, Alexandre; Montier, Ludovic

    2016-12-01

    Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν < 1 Hz, and secondly the Analog To digital Converter (ADC) component had been insufficiently characterized on-ground. These two problems require an exquisite knowledge of detector response. However bolometers have highly nonlinear characteristics, coming from their electrical and thermal coupling making them very difficult to model. Goal: We present a method to build the analytical transfer function in frequency domain which describe the voltage response of an Alternative Current (AC) biased bolometer to optical excitation, based on the standard bolometer model. This model is built using the setup of the Planck/HFI instrument and offers the major improvement of being based on a physical model rather than the currently in use had-hoc model based on Direct Current (DC) bolometer theory. Method: The analytical transfer function expression will be presented in matrix form. For this purpose, we build linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. Results: The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.

  20. Parallel lensless optical correlator based on two phase-only spatial light modulators.

    PubMed

    Zeng, Xu; Inoue, Takashi; Fukuchi, Norihiro; Bai, Jian

    2011-06-20

    In this paper, we proposed a parallel phase-only lensless optical correlator based on two pieces of Liquid Crystal on Silicon Spatial Light Modulators. Phase Fresnel Lens Array and specialized grating are implemented to realize multi-channel and multiplexed LOC. Experimental results of Chinese characters' recognitions are given as demonstration of proposed technique. High uniformity of processing channels has been verified by autocorrelation process of four same Chinese characters. The technique is programmable and adjustment of optical path could be realized without changing of optical setup. The implementations could be performed on the same configuration as single channel optical correlator without mechanical alternation.

  1. Efficient parallel algorithms for optical computing with the discrete Fourier transform (DFT) primitive

    NASA Astrophysics Data System (ADS)

    Reif, John H.; Tyagi, Akhilesh

    1997-10-01

    Optical-computing technology offers new challenges to algorithm designers since it can perform an n -point discrete Fourier transform (DFT) computation in only unit time. Note that the DFT is a nontrivial computation in the parallel random-access machine model, a model of computing commonly used by parallel-algorithm designers. We develop two new models, the DFT VLSIO (very-large-scale integrated optics) and the DFT circuit, to capture this characteristic of optical computing. We also provide two paradigms for developing parallel algorithms in these models. Efficient parallel algorithms for many problems, including polynomial and matrix computations, sorting, and string matching, are presented. The sorting and string-matching algorithms are particularly noteworthy. Almost all these algorithms are within a polylog factor of the optical-computing (VLSIO) lower bounds derived by Barakat and Reif Appl. Opt. 26, 1015 (1987) and by Tyagi and Reif Proceedings of the Second IEEE Symposium on Parallel and Distributed Processing (Institute of Electrical and Electronics Engineers, New York, 1990) p. 14 .

  2. Effects of error sources on the parallelism of an optical matrix-vector processor

    NASA Technical Reports Server (NTRS)

    Perlee, Caroline J.; Casasent, David P.

    1990-01-01

    The error sources in a high accuracy optical matrix-vector processor are analyzed by numerical simulation in terms of their effects on the parallelism and speed of the processor. These effects are detailed for radices -2, -4 and -8. Radix -4 is shown to provide maximum parallel processing capabilities under the effects of the system's error sources. Processing speed is shown to be a function of matrix partitioning and the number of parallel processing channels. Consequently, radix -4 operation provides a higher processing speed than radix -2 and -8 for most matrix-vector multiplications when error source effects are considered.

  3. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity

    PubMed Central

    Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard

    2013-01-01

    Abstract. Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns. PMID:23764696

  4. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity

    NASA Astrophysics Data System (ADS)

    Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard; Durkin, Anthony J.

    2013-06-01

    Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns.

  5. Sub-diffusive spatial frequency domain imaging: light scattering as a biomarker (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McClatchy, David M.; Rizzo, Elizabeth J.; Kanick, Stephen C.; Krishnaswamy, Venkataramanan; Elliott, Jonathan T.; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.

    2017-02-01

    In spatial frequency domain imaging (SFDI), a spatially modulated intensity pattern is projected on to tissue, with the demodulated reflectance having more superficial sensitivity with increasing spatial modulation frequency. With sub-diffusive SFDI, very high (>0.5 mm-1) spatial modulation frequencies are projected yielding sensitivity to the directionality of light scattering with only few scattering events occurring and sub-millimeter penetration depth and spatial resolution. This technique has been validated in a series of phantom experiments, where fractal distributions of polystyrene spheres were imaged, and through a model based inversion, the size scale distribution versus overall density of these particles could be separated and visualized in spatially resolved maps. With sensitivity to localized light scattering over a wide field of view (11 cm x 14 cm), this technique is being translated for the application of intraoperative breast tumor margin assessment. To test sensitivity to changes in human breast tissue morphology, a cohort of over 30 freshly excised human breast tissue specimens, including adipose, fibroglandular, fibroadenoma, and invasive carcinoma, have been imaged and co-registered to whole specimen histology. Statistical analysis of the distributions of both textual raw reflectance parameters and model based optical properties for each type of tissue will be presented. Furthermore, classification algorithm development and analysis to predicted likelihood of cancer on the surface of the tissue will also be presented. Reflectance maps, optical property maps, and probability likelihood maps of spatially heterogeneous samples with multiple tissue types will also be shown.

  6. High-Throughput, Protein-Targeted Biomolecular Detection Using Frequency-Domain Faraday Rotation Spectroscopy.

    PubMed

    Murdock, Richard J; Putnam, Shawn A; Das, Soumen; Gupta, Ankur; Chase, Elyse D Z; Seal, Sudipta

    2017-01-16

    A clinically relevant magneto-optical technique (fd-FRS, frequency-domain Faraday rotation spectroscopy) for characterizing proteins using antibody-functionalized magnetic nanoparticles (MNPs) is demonstrated. This technique distinguishes between the Faraday rotation of the solvent, iron oxide core, and functionalization layers of polyethylene glycol polymers (spacer) and model antibody-antigen complexes (anti-BSA/BSA, bovine serum albumin). A detection sensitivity of ≈10 pg mL(-1) and broad detection range of 10 pg mL(-1) ≲ cBSA ≲ 100 µg mL(-1) are observed. Combining this technique with predictive analyte binding models quantifies (within an order of magnitude) the number of active binding sites on functionalized MNPs. Comparative enzyme-linked immunosorbent assay (ELISA) studies are conducted, reproducing the manufacturer advertised BSA ELISA detection limits from 1 ng mL(-1) ≲ cBSA ≲ 500 ng mL(-1) . In addition to the increased sensitivity, broader detection range, and similar specificity, fd-FRS can be conducted in less than ≈30 min, compared to ≈4 h with ELISA. Thus, fd-FRS is shown to be a sensitive optical technique with potential to become an efficient diagnostic in the chemical and biomolecular sciences.

  7. Frequency domain approach for time-resolved pump-probe microscopy using intensity modulated laser diodes

    NASA Astrophysics Data System (ADS)

    Miyazaki, J.; Kawasumi, K.; Kobayashi, T.

    2014-09-01

    We present a scheme for time-resolved pump-probe microscopy using intensity modulated laser diodes. The modulation frequencies of the pump and probe beams are varied up to 500 MHz with fixed frequency detuning typically set at 15 kHz. The frequency response of the pump-probe signal is detected using a lock-in amplifier referenced at the beat frequency. This frequency domain method is capable of characterizing the nanosecond to picosecond relaxation dynamics of sample species without the use of a high speed detector or a high frequency lock-in amplifier. Furthermore, as the pump-probe signal is based on the nonlinear interaction between the two laser beams and the sample, our scheme provides better spatial resolution than the conventional diffraction-limited optical microscopes. Time-resolved pump-probe imaging of fluorescence beads and aggregates of quantum dots demonstrates that this method is useful for the microscopic analysis of optoelectronic devices. The system is implemented using compact and low-cost laser diodes, and thus has a broad range of applications in the fields of photochemistry, optical physics, and biological imaging.

  8. Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging.

    PubMed

    McClatchy, David M; Rizzo, Elizabeth J; Wells, Wendy A; Cheney, Philip P; Hwang, Jeeseong C; Paulsen, Keith D; Pogue, Brian W; Kanick, Stephen C

    2016-06-20

    Localized measurements of scattering in biological tissue provide sensitivity to microstructural morphology but have limited utility to wide-field applications, such as surgical guidance. This study introduces sub-diffusive spatial frequency domain imaging (sd-SFDI), which uses high spatial frequency illumination to achieve wide-field sampling of localized reflectances. Model-based inversion recovers macroscopic variations in the reduced scattering coefficient [Formula: see text] and the phase function backscatter parameter (γ). Measurements in optical phantoms show quantitative imaging of user-tuned phase-function-based contrast with accurate decoupling of parameters that define both the density and the size-scale distribution of scatterers. Measurements of fresh ex vivo breast tissue samples revealed, for the first time, unique clustering of sub-diffusive scattering properties for different tissue types. The results support that sd-SFDI provides maps of microscopic structural biomarkers that cannot be obtained with diffuse wide-field imaging and characterizes spatial variations not resolved by point-based optical sampling.

  9. Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques

    NASA Astrophysics Data System (ADS)

    Saager, Rolf B.; Dang, An N.; Huang, Samantha S.; Kelly, Kristen M.; Durkin, Anthony J.

    2017-09-01

    Spatial Frequency Domain Spectroscopy (SFDS) is a technique for quantifying in-vivo tissue optical properties. SFDS employs structured light patterns that are projected onto tissues using a spatial light modulator, such as a digital micromirror device. In combination with appropriate models of light propagation, this technique can be used to quantify tissue optical properties (absorption, μa, and scattering, μs', coefficients) and chromophore concentrations. Here we present a handheld implementation of an SFDS device that employs line (one dimensional) imaging. This instrument can measure 1088 spatial locations that span a 3 cm line as opposed to our original benchtop SFDS system that only collects a single 1 mm diameter spot. This imager, however, retains the spectral resolution (˜1 nm) and range (450-1000 nm) of our original benchtop SFDS device. In the context of homogeneous turbid media, we demonstrate that this new system matches the spectral response of our original system to within 1% across a typical range of spatial frequencies (0-0.35 mm-1). With the new form factor, the device has tremendously improved mobility and portability, allowing for greater ease of use in a clinical setting. A smaller size also enables access to different tissue locations, which increases the flexibility of the device. The design of this portable system not only enables SFDS to be used in clinical settings but also enables visualization of properties of layered tissues such as skin.

  10. Parallel optical image processing with image-logic algebra and a polynomial approach.

    PubMed

    Bhattacharya, P

    1994-09-10

    An interesting relationship between an optical parallel-processing single-instruction-multiple-data generic language, called image-logic algebra, and a polynomial approach for processing binary images by electronic computers is shown. Using only two basic operations of the ILA, one can reformulate a number of algorithms developed earlier in the polynomial approach into algorithms in the ILA environment. Thus a large number of new algorithms for parallel optical processing of binary images can be developed in the ILA environment that are fast and efficient.

  11. A testing method of optical axes parallelism of shipboard photoelectrical theodolite

    NASA Astrophysics Data System (ADS)

    Zou, Hui-hui; Wu, Hong-bing; Zhou, Lu-jun

    2016-09-01

    A testing method of optical axes parallelism of shipboard photoelectrical theodolite (short for theodolite) was proposed which based on image processing by comparing disadvantages of the conventional method. Owing to the application of this method, the testing process of optical axes parallelism of theodolite was optimized as well as the adaptability of the testing method was enhanced. The trial result indicated that this method could improve the efficiency and accuracy, and it also could reduce the human vision which is the main factor affected the detection results and had some actual application values.

  12. Architectures for parallel DSP-based adaptive optics feedback control

    NASA Astrophysics Data System (ADS)

    McCarthy, Daniel F.

    1999-11-01

    We have developed a digital image processing system for real-time digital image processing feedback control of adaptive optics systems and simulation of optical image processing algorithms. The system uses multi-computer architecture to capture data from an imaging device such as a charge coupled device camera, process the image data, and control a spatial light-modulator, typically a liquid crystal modulator or a micro-electro mechanical system. The system is a Windows NT Pentium-based system combined with a commercial off-the-shelf peripheral component interconnect bus multi-processor system. The multi-processor is based on the Analog Devices super Harvard architecture computer (SHARC) processor, and field programmable gate arrays (FPGAs). The SHARCs provide a scalable reconfigurable C language-based digital signal processing (DSP) development environment. The FPGAs are typically used as reprogrammable interface controllers designed to integrate several off-the- shelf and custom imagers and light modulators into the system. The FPGAs can also be used in concert with the SHARCs for implementation of application-specific high-speed DSP algorithms.

  13. Multipactor radiation analysis within a waveguide region based on a frequency-domain representation of the dynamics of charged particles.

    PubMed

    Gimeno, B; Sorolla, E; Anza, S; Vicente, C; Gil, J; Pérez, A M; Boria, V E; Pérez-Soler, F J; Quesada, F; Alvarez, A; Raboso, D

    2009-04-01

    A technique for the accurate computation of the electromagnetic fields radiated by a charged particle moving within a parallel-plate waveguide is presented. Based on a transformation of the time-varying current density of the particle into a time-harmonic current density, this technique allows the evaluation of the radiated electromagnetic fields both in the frequency and time domains, as well as in the near- and far-field regions. For this purpose, several accelerated versions of the parallel-plate Green's function in the frequency domain have been considered. The theory has been successfully applied to the multipactor discharge occurring within a two metal-plates region. The proposed formulation has been tested with a particle-in-cell code based on the finite-difference time-domain method, obtaining good agreement.

  14. Multipactor radiation analysis within a waveguide region based on a frequency-domain representation of the dynamics of charged particles

    NASA Astrophysics Data System (ADS)

    Gimeno, B.; Sorolla, E.; Anza, S.; Vicente, C.; Gil, J.; Pérez, A. M.; Boria, V. E.; Pérez-Soler, F. J.; Quesada, F.; Álvarez, A.; Raboso, D.

    2009-04-01

    A technique for the accurate computation of the electromagnetic fields radiated by a charged particle moving within a parallel-plate waveguide is presented. Based on a transformation of the time-varying current density of the particle into a time-harmonic current density, this technique allows the evaluation of the radiated electromagnetic fields both in the frequency and time domains, as well as in the near- and far-field regions. For this purpose, several accelerated versions of the parallel-plate Green’s function in the frequency domain have been considered. The theory has been successfully applied to the multipactor discharge occurring within a two metal-plates region. The proposed formulation has been tested with a particle-in-cell code based on the finite-difference time-domain method, obtaining good agreement.

  15. Voltage-clamp frequency domain analysis of NMDA-activated neurons.

    PubMed

    Moore, L E; Hill, R H; Grillner, S

    1993-02-01

    1. Voltage and current-clamp steps were added to a sum of sine waves to measure the tetrodotoxin-insensitive membrane properties of neurons in the intact lamprey spinal cord. A systems analysis in the frequency domain was carried out on two types of cells that have very different morphologies in order to investigate the structural dependence of their electrophysiological properties. The method explicitly takes into account the geometrical shapes of (i) nearly spherical dorsal cells with one or two processes and (ii) motoneurons and interneurons that have branched dendritic structures. Impedance functions were analysed to obtain the cable properties of these in situ neurons. These measurements show that branched neurons are not isopotential and, therefore, a conventional voltage-clamp analysis is not valid. 2. The electrophysiological data from branched neurons were curve-fitted with a lumped soma-equivalent cylinder model consisting of eight equal compartments coupled to an isopotential cell body to obtain membrane parameters for both passive and active properties. The analysis provides a quantitative description of both the passive electrical properties imposed by the geometrical structure of neurons and the voltage-dependent ionic conductances determined by ion channel kinetics. The model fitting of dorsal cells was dominated by a one-compartment resistance and capacitance in parallel (RC) corresponding to the spherical, non-branched shape of these cells. Branched neurons required a model that contained both an RC compartment and a cable that reflected the structure of the cells. At rest, the electrotonic length of the cable was about two. Uniformly distributed voltage-dependent ionic conductance sites were adequate to describe the data at different membrane potentials. 3. The frequency domain admittance method in conjunction with a step voltage clamp was used to control and measure the oscillatory behavior induced by N-methyl-D-aspartate (NMDA) on lamprey spinal

  16. OC-192 very short reach (VSR) parallel optical interconnect demonstrated system

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjun; Cao, Mingcui; Luo, Fengguang; Luo, Zhixiang; Xu, Jun; Yuan, Jing

    2004-05-01

    This paper describes the design of an OIF-approved 10Gbps very short reach parallel optical interconnect demonstrated system. It is a 12x1.25Gb/s channel parallel optics solution, leveraging the low cost transceiver (850nm VCSEL), and CMOS (SERDES) technologies originally developed for Gigabit Ethernet. The demonstrator comprises of SONET/SDH serial OC-192 interface, CPLD based convert IC, 1.25Gbps 12-channel parallel optical transmitter and receiver. The transmitter includes a 12-channel array of 850nm VCSEL, a 12-channel VCSEL driver LSI, and a precise coupling structure for 12 multi-mode-fibers ribbon. The receiver consists of a 12-channel array of pin-PDs, a 12-channel receiver LSI, and a precise coupling structure for 12 multi-mode-fibers ribbon. A CPLD chip, which maps the OC-192 framer onto the parallel optical links, and reassembles it after detection, has been developed. We also present the coupling package configuration for VCSEL arrays to fiber ribbon.

  17. Tissue blood flow and oxygen consumption measured with near-infrared frequency-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Paunescu, Lelia Adelina

    2001-12-01

    For decades, researchers have contributed with new ways of applying physics' principles to medicine. Moreover, researchers were involved in developing new, non-invasive instrumentation for medical applications. Recently, application of optical techniques in biology and medicine became an important field. Researchers found a non- invasive approach of using visible and near-infrared light as a probe for tissue investigation. Optical methods can contribute to medicine by offering the possibility of rapid, low-resolution, functional images and real-time devices. Near-infrared spectroscopy (NIRS) is a useful technique for the investigation of biological tissues because of the relatively low absorption of water and high absorption of oxy- and deoxy-hemoglobin in the near- infrared region of 750-900 nm. Due to these properties, the near-infrared light can penetrate biological tissues in the range of 0.5-2 cm, offering investigation possibility of deep tissues and differentiate among healthy and diseased tissues. This work represents the initial steps towards understanding and improving of the promising near- infrared frequency-domain technique. This instrument has a very important advantage: it can be used non-invasively to investigate many parts of the human body, including the brain. My research consists primarily of in vivo measurements of optical parameters such as absorption and reduced scattering coefficients and consequently, blood parameters such as oxy, deoxy, and total hemoglobin concentrations, tissue oxygen saturation, blood flow and oxygen consumption of skeletal muscle of healthy and diseased subjects. This research gives a solid background towards a ready- to-use instrument that can continuously, in real-time, measure blood parameters and especially blood oxygenation. This is a very important information in emergency medicine, for persons under intensive care, or undergoing surgery, organ transplant or other interventions.

  18. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging

    PubMed Central

    Singh-Moon, Rajinder P.; Roblyer, Darren M.; Bigio, Irving J.; Joshi, Shailendra

    2014-01-01

    Abstract. We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a cross-correlation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies. PMID:25199058

  19. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging

    NASA Astrophysics Data System (ADS)

    Singh-Moon, Rajinder P.; Roblyer, Darren M.; Bigio, Irving J.; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a cross-correlation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.

  20. Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements.

    PubMed

    Chandler, Danielle E; Majumdar, Zigurts K; Heiss, Gregor J; Clegg, Robert M

    2006-11-01

    We present experiments that are convenient and educational for measuring fluorescence lifetimes with both time- and frequency-domain methods. The sample is ruby crystal, which has a lifetime of about 3.5 milliseconds, and is easy to use as a class-room demonstration. The experiments and methods of data analysis are used in the lab section of a class on optical spectroscopy, where we go through the theory and applications of fluorescence. Because the fluorescence decay time of ruby is in the millisecond region, the instrumentation for this experiment can be constructed easily and inexpensively compared to the nanosecond-resolved instrumentation required for most fluorescent compounds, which have nanosecond fluorescence lifetimes. The methods are applicable to other luminescent compounds with decay constants from microseconds and longer, such as transition metal and lanthanide complexes and phosphorescent samples. The experiments, which clearly demonstrate the theory and methods of measuring temporally resolved fluorescence, are instructive and demonstrate what the students have learned in the lectures without the distraction of highly sophisticated instrumentation.

  1. Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures

    PubMed Central

    Yang, Bin; Lesicko, John; Sharma, Manu; Hill, Michael; Sacks, Michael S.; Tunnell, James W.

    2015-01-01

    The measurement of soft tissue fiber orientation is fundamental to pathophysiology and biomechanical function in a multitude of biomedical applications. However, many existing techniques for quantifying fiber structure rely on transmitted light, limiting general applicability and often requiring tissue processing. Herein, we present a novel wide-field reflectance-based imaging modality, which combines polarized light imaging (PLI) and spatial frequency domain imaging (SFDI) to rapidly quantify preferred fiber orientation on soft collagenous tissues. PLI utilizes the polarization dependent scattering property of fibers to determine preferred fiber orientation; SFDI imaging at high spatial frequency is introduced to reject the highly diffuse photons and to control imaging depth. As a result, photons scattered from the superficial layer of a multi-layered sample are highlighted. Thus, fiber orientation quantification can be achieved for the superficial layer with optical sectioning. We demonstrated on aortic heart valve leaflet that, at spatial frequency of f = 1mm−1, the diffuse background can be effectively rejected and the imaging depth can be limited, thus improving quantification accuracy. PMID:25909033

  2. Inspection of functionally graded coating materials using frequency domain photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Steen, Thomas Lowell

    A frequency domain photoacoustic microscopy system has been developed for the inspection of functionally graded mullite coatings deposited on SiC substrates. Narrow-bandwidth surface acoustic waves (SAWs) are generated with an amplitude modulated laser source. A photorefractive crystal based interferometer coupled to a lock-in amplifier is used for the detection of the resulting surface displacements. The complex displacement field is mapped over a source-to-receiver distance of approximately 500mum in order to extract the wavelengths of SAWs at a given excitation frequency, from which the phase velocities are determined. SAW dispersion characteristics are sensitive to the elastic properties of the near surface region. The measured SAW dispersion is compared to a theoretical model in order to extract the elastic properties and thickness of the coatings. Frequency domain photoacoustic microscopy allows for the rapid, non-contact characterization of graded coatings and is potentially suitable for in-situ process control. The velocities of SAWs propagating in graded materials are found using the reflectance function technique combined with a transfer matrix approach. Theoretical results demonstrate that SAW dispersion in micron-scale functionally graded coatings over the 100-200 MHz frequency range is most sensitive to the mean elastic modulus of the coating and the coating thickness. In addition, the dispersion behavior is also influenced by the form of the elastic property variation through the coating thickness and can, in some cases, be used to determine the elastic property distribution. The photoacoustic microscopy technique was used to measure SAW dispersion on as-grown mullite coatings, and a simplex optimization algorithm was used to determine the mean elastic modulus and thickness through minimization of the error between measured and calculated SAW velocities. The results show agreement with independent measurements of the mean elastic modulus and thickness

  3. Frequency domain analysis and synthesis of lumped parameter systems using nonlinear least squares techniques

    NASA Technical Reports Server (NTRS)

    Hays, J. R.

    1969-01-01

    Lumped parametric system models are simplified and computationally advantageous in the frequency domain of linear systems. Nonlinear least squares computer program finds the least square best estimate for any number of parameters in an arbitrarily complicated model.

  4. Optical Trapping Enabled Parallel Delivery of Biological Stimuli with High Spatial and Temporal Resolution

    PubMed Central

    Burnham, Daniel R.; Schneider, Thomas; Chiu, Daniel T.

    2013-01-01

    We have developed a method that employs nanocapsules, optical trapping, and single-pulse laser photolysis for delivering bioactive molecules to cells with both high spatial and temporal resolutions. This method is particularly suitable for a cell-culture setting, in which a single nanocapsule can be optically trapped and positioned at a pre-defined location next to the cell, followed by single-pulse laser photolysis to release the contents of the nanocapsule onto the cell. To parallelize this method such that a large array of nanocapsules can be manipulated, positioned, and photolyzed simultaneously, we have turned to the use of spatial light modulators and holographic beam shaping techniques. This paper outlines the progress we have made so far and details the issues we had to address in order to achieve efficient parallel optical manipulations of nanocapsules and particles. PMID:24465114

  5. Optical, mechanical, and electro-optical design of an interferometric test station for massive parallel inspection of MEMS and MOEMS

    NASA Astrophysics Data System (ADS)

    Gastinger, Kay; Haugholt, Karl Henrik; Kujawinska, Malgorzata; Jozwik, Michal; Schaeffel, Christoph; Beer, Stephan

    2009-06-01

    The paper presents the optical, mechanical, and electro-optical design of an interferometric inspection system for massive parallel inspection of MicroElectroMechanicalSystems (MEMS) and MicroOptoElectroMechanicalSystems (MOEMS). The basic idea is to adapt a micro-optical probing wafer to the M(O)EMS wafer under test. The probing wafer is exchangeable and contains a micro-optical interferometer array. A low coherent and a laser interferometer array are developed. Two preliminary interferometer designs are presented; a low coherent interferometer array based on a Mirau configuration and a laser interferometer array based on a Twyman-Green configuration. The optical design focuses on the illumination and imaging concept for the interferometer array. The mechanical design concentrates on the scanning system and the integration in a standard test station for micro-fabrication. Models of single channel low coherence and laser interferometers and preliminary measurement results are presented. The smart-pixel approach for massive parallel electro-optical detection and data reduction is discussed.

  6. Controller design for flexible, distributed parameter mechanical arms via combined state space and frequency domain techniques

    NASA Technical Reports Server (NTRS)

    Book, W. J.; Majett, M.

    1982-01-01

    The potential benefits of the ability to control more flexible mechanical arms are discussed. A justification is made in terms of speed of movement. A new controller design procedure is then developed to provide this capability. It uses both a frequency domain representation and a state variable representation of the arm model. The frequency domain model is used to update the modal state variable model to insure decoupled states. The technique is applied to a simple example with encouraging results.

  7. Algorithm for solving the equation of radiative transfer in the frequency domain.

    PubMed

    Ren, Kui; Abdoulaev, Gassan S; Bal, Guillaume; Hielscher, Andreas H

    2004-03-15

    We present an algorithm that provides a frequency-domain solution of the equation of radiative transfer (ERT) for heterogeneous media of arbitrary shape. Although an ERT is more accurate than a diffusion equation, no ERT code for the widely employed frequency-domain case has been developed to date. In this work the ERT is discretized by a combination of discrete-ordinate and finite-volume methods. Two numerical simulations are presented.

  8. Evaluation of emerging parallel optical link technology for high energy physics

    NASA Astrophysics Data System (ADS)

    Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.

    2012-01-01

    Modern particle detectors utilize optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from industry advancements in transceiver technology. Supporting data transfers of up to 120 Gbps in each direction, optical engines permit assembly of the optical transceivers in close proximity to ASICs and FPGAs. Test results of some of these parallel components will be presented including the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN. This work was supported by the U.S. Department of Energy, operated by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  9. Characterization of an intraluminal differential frequency-domain photoacoustics system

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Son, Jungik; Liang, Simon; Castelino, Robin; Foster, F. Stuart; Courtney, Brian; Mandelis, Andreas

    2016-03-01

    Cardiovascular related diseases are ranked as the second highest cause of death in Canada. Among the most important cardiovascular diseases is atherosclerosis. Current methods of diagnosis of atherosclerosis consist of angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). None of these methods possesses adequate sensitivity, as the ideal technique should be capable of both depth profiling, as well as functional imaging. An alternative technique is photoacoustics (PA) which can perform deep imaging and spectroscopy. The presented study explores the application of wavelength-modulated differential photoacoustic radar (WM-DPAR) for characterizing arterial vessels. The wavelength-modulated differential photoacoustic technique was shown to be able to substantially increase the dynamic range and sensitivity of hemoglobin oxygenation level detection. In this work the differential PA technique was used with a very high frequency modulation range. To perform spectroscopic PA imaging, at least two wavelengths are required. The selected wavelengths for this work are 1210 nm and 980 nm. 1210 nm corresponds to the maximum optical absorption coefficient of cholesterol and cholesteryl esters which are the main constituents of plaques. Since water, elastin and collagen also have high absorption coefficients at 1210 nm, this wavelength alone cannot provide very high sensitivity and specificity. The additional wavelength, 980 nm corresponds to high absorption coefficient of those constituents of healthy artery tissue. The simultaneous application of the abovementioned wavelengths can provide higher sensitivity and improved specificity in detecting lipids in the arterial vessels.

  10. Optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling

    NASA Astrophysics Data System (ADS)

    Li, Y.; Han, B.; Métivier, L.; Brossier, R.

    2016-09-01

    We investigate an optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling. An anti-lumped mass strategy is incorporated to minimize the numerical dispersion. The optimal finite-difference coefficients and the mass weighting coefficients are obtained by minimizing the misfit between the normalized phase velocities and the unity. An iterative damped least-squares method, the Levenberg-Marquardt algorithm, is utilized for the optimization. Dispersion analysis shows that the optimal fourth-order scheme presents less grid dispersion and anisotropy than the conventional fourth-order scheme with respect to different Poisson's ratios. Moreover, only 3.7 grid-points per minimum shear wavelength are required to keep the error of the group velocities below 1%. The memory cost is then greatly reduced due to a coarser sampling. A parallel iterative method named CARP-CG is used to solve the large ill-conditioned linear system for the frequency-domain modeling. Validations are conducted with respect to both the analytic viscoacoustic and viscoelastic solutions. Compared with the conventional fourth-order scheme, the optimal scheme generates wavefields having smaller error under the same discretization setups. Profiles of the wavefields are presented to confirm better agreement between the optimal results and the analytic solutions.

  11. A new principle technic for the transformation from frequency domain to time domain

    NASA Astrophysics Data System (ADS)

    Gao, Ben-Qing

    2017-03-01

    A principle technic for the transformation from frequency domain to time domain is presented. Firstly, a special type of frequency domain transcendental equation is obtained for an expected frequency domain parameter which is a rational or irrational fraction expression. Secondly, the inverse Laplace transformation is performed. When the two time-domain factors corresponding to the two frequency domain factors at two sides of frequency domain transcendental equation are known quantities, a time domain transcendental equation is reached. At last, the expected time domain parameter corresponding to the expected frequency domain parameter can be solved by the inverse convolution process. Proceeding from rational or irrational fraction expression, all solving process is provided. In the meantime, the property of time domain sequence is analyzed and the strategy for choosing the parameter values is described. Numerical examples are presented to verify the proposed theory and technic. Except for rational or irrational fraction expressions, examples of complex relative permittivity of water and plasma are used as verification method. The principle method proposed in the paper can easily solve problems which are difficult to be solved by Laplace transformation.

  12. 2D multi-parameter elastic seismic imaging by frequency-domain L1-norm full waveform inversion

    NASA Astrophysics Data System (ADS)

    Brossier, Romain; Operto, Stéphane; Virieux, Jean

    2010-05-01

    Full waveform inversion (FWI) is becoming a powerful and efficient tool to derive high-resolution quantitative models of the subsurface. In the frequency-domain, computationally efficient FWI algorithms can be designed for wide-aperture acquisition geometries by limiting inversion to few discrete frequencies. However, FWI remains an ill-posed and highly non-linear data-fitting procedure that is sensitive to noise, inaccuracies of the starting model and definition of multiparameter classes. The footprint of the noise in seismic imaging is conventionally mitigated by stacking highly redundant multifold data. However, when the data redundancy is decimated in the framework of efficient frequency-domain FWI, it is essential to assess the sensitivity of the inversion to noise. The impact of the noise in FWI, when applied to decimated data sets, has been marginally illustrated in the past and least-squares minimisation has remained the most popular approach. We investigate in this study the sensitivity of frequency-domain elastic FWI to noise for realistic onshore and offshore synthetic data sets contaminated by ambient random white noise. Four minimisation functionals are assessed in the framework of frequency domain FWI of decimated data: the classical least-square norm (L2), the least-absolute-values norm (L1), and some combinations of both (the Huber and the so-called Hybrid criteria). These functionals are implemented in a massively-parallel, 2D elastic frequency-domain FWI algorithm. A two-level hierarchical algorithm is implemented to mitigate the non-linearity of the inversion in complex environments. The first outer level consists of successive inversions of frequency groups of increasing high-frequency content. This level defines a multi-scale approach while preserving some data redundancy by means of simultaneous inversion of multiple frequencies. The second inner level used complex-valued frequencies for data preconditioning. This preconditioning controls the

  13. Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert Edward

    1999-09-01

    In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of

  14. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    SciTech Connect

    Heath, Robert M. Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H.; Webster, Mark G.; San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H.; Warburton, Richard J.

    2014-02-10

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime.

  15. Low-cost high-efficiency optical coupling using through-silicon-hole in parallel optical transceiver module

    NASA Astrophysics Data System (ADS)

    Li, Baoxia; Wan, Lixi; Lv, Yao; Gao, Wei; Yang, Chengyue; Li, Zhihua; Zhang, Xu

    2009-06-01

    We present a cost-efficient parallel optical transceiver module based on a 1×4 VCSEL array, a 1×4 PD array, and a 12-wide multimode fiber ribbon for very-short-reach application. A passive alignment technique using through-silicon-hole (TSH) has been developed to realize high-efficient butt-coupling between optoelectronic arrays and multimode fibers. In this paper, the detail optical coupling structure, misalignment tolerance, micro-assembly process, and measurement results are mainly discussed. Finally, lensed multimode fibers formed by chemical etching are proposed, which exhibit a great potential for further improvement of coupling performance.

  16. Development of a portable frequency-domain angle-resolved low coherence interferometry system

    NASA Astrophysics Data System (ADS)

    Pyhtila, John W.; Wax, Adam

    2007-02-01

    Improved methods for detecting dysplasia, or pre-cancerous growth, are a current clinical need. Random biopsy and subsequent diagnosis through histological analysis is the current gold standard in endoscopic surveillance for dysplasia. However, this approach only allows limited examination of the at-risk tissue and has the drawback of a long delay in time-to-diagnosis. In contrast, optical scattering spectroscopy methods offer the potential to assess cellular structure and organization in vivo, thus allowing for instantaneous diagnosis and increased coverage of the at-risk tissue. Angle-resolved low coherence interferometry (a/LCI), a novel scattering spectroscopy technique, combines the ability of low-coherence interferometry to isolate scattered light from sub-surface tissue layers with the ability of light scattering spectroscopy to obtain structural information on sub-wavelength scales, specifically by analyzing the angular distribution of the backscattered light. In application to examining tissue, a/LCI enables depthresolved quantitative measurements of changes in the size and texture of cell nuclei, which are characteristic biomarkers of dysplasia. The capabilities of a/LCI were demonstrated initially by detecting pre-cancerous changes in epithelial cells within intact, unprocessed, animal tissues. Recently, we have developed a new frequency-domain a/LCI system, with sub-second acquisition time and a novel fiber optic probe. Preliminary results using the fa/LCI system to examine human esophageal tissue in Barrett's esophagus patients demonstrate the clinical viability of the approach. In this paper, we present a new portable system which improves upon the design of the fa/LCI system to allow for higher quality data to be collected in the clinic. Accurate sizing of polystyrene microspheres and cell nuclei from ex vivo human esophageal tissue is presented. These results demonstrate the promise of a/LCI as a clinically viable diagnostic tool.

  17. Noninvasive absolute cerebral oximetry with frequency-domain near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan

    Near-infrared spectroscopy (NIRS) measurements of absolute concentrations of oxy-hemoglobin and deoxy-hemoglobin in the human brain can provide critical information about cerebral physiology in terms of cerebral blood volume, blood flow, oxygen delivery, and metabolic rate of oxygen. We developed several frequency domain NIRS data acquisition and analysis methods aimed at absolute measurements of hemoglobin concentration and saturation in cerebral tissue of adult human subjects. Extensive experimental investigations were carried out in various homogenous and two-layered tissue-mimicking phantoms, and biological tissues. The advantages and limitations of commonly used homogenous models and inversion strategies were thoroughly investigated. Prior to human subjects, extensive studies were carried out in in vivo animal models. In rabbits, absolute hemoglobin oxygen desaturation was shown to depend strongly on surgically induced testicular torsion. Methods developed in this study were then adapted for measurements in the rat brain. Absolute values were demonstrated to discern cerebrovascular impairment in a rat model of diet-induced vascular cognitive impairment. These results facilitated the development of clinically useful optical measures of cerebrovascular health. In a large group of human subjects, employing a homogeneous model for absolute measurements was shown to be reliable and robust. However, it was also shown to be limited due to the relatively thick extracerebral tissue. The procedure we develop in this work and the thesis thereof performs a nonlinear inversion procedure with six unknown parameters with no other prior knowledge for the retrieval of the optical coefficients and top layer thickness with high accuracy on two-layered media. Our absolute measurements of cerebral hemoglobin concentration and saturation are based on the discrimination of extracerebral and cerebral tissue layers, and they can enhance the impact of NIRS for cerebral hemodynamics and

  18. Postoperative Quantitative Assessment of Reconstructive Tissue Status in Cutaneous Flap Model using Spatial Frequency Domain Imaging

    PubMed Central

    Yafi, Amr; Vetter, Thomas S; Scholz, Thomas; Patel, Sarin; Saager, Rolf B; Cuccia, David J; Evans, Gregory R; Durkin, Anthony J

    2010-01-01

    Background The purpose of this study is to investigate the capabilities of a novel optical wide-field imaging technology known as Spatial Frequency Domain Imaging (SFDI) to quantitatively assess reconstructive tissue status. Methods Twenty two cutaneous pedicle flaps were created on eleven rats based on the inferior epigastric vessels. After baseline measurement, all flaps underwent vascular ischemia, induced by clamping the supporting vessels for two hours (either arterio-venous or selective venous occlusions) normal saline was injected to the control flap, and hypertonic hyperoncotic saline solution to the experimental flap. Flaps were monitored for two hours after reperfusion. The SFDI system was used for quantitative assessment of flap status over the duration of the experiment. Results All flaps demonstrated a significant decline in oxy-hemoglobin and tissue oxygen saturation in response to occlusion. Total hemoglobin and deoxy-hemoglobin were markedly increased in the selective venous occlusion group. After reperfusion and the solutions were administered, oxy-hemoglobin and tissue oxygen saturation in those flaps that survived gradually returned to the baseline levels. However, flaps for which oxy-hemoglobin and tissue oxygen saturation didn’t show any signs of recovery appeared to be compromised and eventually became necrotic within 24–48 hours in both occlusion groups. Conclusion SFDI technology provides a quantitative, objective method to assess tissue status. This study demonstrates the potential of this optical technology to assess tissue perfusion in a very precise and quantitative way, enabling wide-field visualization of physiological parameters. The results of this study suggest that SFDI may provide a means for prospectively identifying dysfunctional flaps well in advance of failure. PMID:21200206

  19. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.

    PubMed

    Pan, Tianshu; Rasmussen, John C; Lee, Jae Hoon; Sevick-Muraca, Eva M

    2007-04-01

    Recently, we have presented and experimentally validated a unique numerical solver of the coupled radiative transfer equations (RTEs) for rapidly computing time-dependent excitation and fluorescent light propagation in small animal tomography. Herein, we present a time-dependent Monte Carlo algorithm to validate the forward RTE solver and investigate the impact of physical parameters upon transport-limited measurements in order to best direct the development of the RTE solver for optical tomography. Experimentally, the Monte Carlo simulations for both transport-limited and diffusion-limited propagations are validated using frequency domain photon migration measurements for 1.0%, 0.5%, and 0.2% intralipid solutions containing 1 microM indocyanine green in a 49 cm3 cylindrical phantom corresponding to the small volume employed in small animal tomography. The comparisons between Monte Carlo simulations and the numerical solutions result in mean percent error in amplitude and the phase shift less than 5.0% and 0.7 degrees, respectively, at excitation and emission wavelengths for varying anisotropic factors, lifetimes, and modulation frequencies. Monte Carlo simulations indicate that the accuracy of the forward model is enhanced using (i) suitable source models of photon delivery, (ii) accurate anisotropic factors, and (iii) accurate acceptance angles of collected photons. Monte Carlo simulations also show that the accuracy of the diffusion approximation in the small phantom depends upon (i) the ratio d(phantom)/l(tr), where d(phantom) is the phantom diameter and l(tr) is the transport mean free path; and (ii) the anisotropic factor of the medium. The Monte Carlo simulations validates and guides the future development of an appropriate RTE solver for deployment in small animal optical tomography.

  20. Development of an optical parallel logic device and a half-adder circuit for digital optical processing

    NASA Technical Reports Server (NTRS)

    Athale, R. A.; Lee, S. H.

    1978-01-01

    The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.

  1. Development of an optical parallel logic device and a half-adder circuit for digital optical processing

    NASA Technical Reports Server (NTRS)

    Athale, R. A.; Lee, S. H.

    1978-01-01

    The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.

  2. Monochromatic subdiffusive spatial frequency domain imaging provides in-situ sensitivity to intratumoral morphological heterogeneity in a murine model

    PubMed Central

    McClatchy, David M.; Hoopes, P. Jack; Pogue, Brian W.; Kanick, Stephen Chad

    2016-01-01

    For the first time, spatially resolved quantitative metrics of light scattering recovered with sub-diffusive spatial frequency domain imaging (sd-SFDI) are shown to be sensitive to changes in intratumoral morphology and viability by direct comparison to histopathological analysis. Two freshly excised subcutaneous murine tumor cross-sections were measured with sd-SFDI, and recovered optical scatter parameter maps were co-registered to whole mount histology. Unique clustering of the optical scatter parameters μs′ vs. γ (i.e. diffuse scattering vs. relative backscattering) evaluated at a single wavelength showed complete separation between regions of viable tumor, aggresive tumor with stromal growth, varying levels of necrotic tumor, and also peritumor muscle. The results suggest that with further technical development, sd-SFDI may represent a non-destructive screening tool for analysis of excised tissue or a non-invasive approach to investigate suspicious lesions without the need for exogenous labels or spectrally resolved imaging. PMID:27807933

  3. Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows

    NASA Astrophysics Data System (ADS)

    Gizon, Laurent; Barucq, Hélène; Duruflé, Marc; Hanson, Chris S.; Leguèbe, Michael; Birch, Aaron C.; Chabassier, Juliette; Fournier, Damien; Hohage, Thorsten; Papini, Emanuele

    2017-04-01

    Context. Local helioseismology has so far relied on semi-analytical methods to compute the spatial sensitivity of wave travel times to perturbations in the solar interior. These methods are cumbersome and lack flexibility. Aims: Here we propose a convenient framework for numerically solving the forward problem of time-distance helioseismology in the frequency domain. The fundamental quantity to be computed is the cross-covariance of the seismic wavefield. Methods: We choose sources of wave excitation that enable us to relate the cross-covariance of the oscillations to the Green's function in a straightforward manner. We illustrate the method by considering the 3D acoustic wave equation in an axisymmetric reference solar model, ignoring the effects of gravity on the waves. The symmetry of the background model around the rotation axis implies that the Green's function can be written as a sum of longitudinal Fourier modes, leading to a set of independent 2D problems. We use a high-order finite-element method to solve the 2D wave equation in frequency space. The computation is embarrassingly parallel, with each frequency and each azimuthal order solved independently on a computer cluster. Results: We compute travel-time sensitivity kernels in spherical geometry for flows, sound speed, and density perturbations under the first Born approximation. Convergence tests show that travel times can be computed with a numerical precision better than one millisecond, as required by the most precise travel-time measurements. Conclusions: The method presented here is computationally efficient and will be used to interpret travel-time measurements in order to infer, e.g., the large-scale meridional flow in the solar convection zone. It allows the implementation of (full-waveform) iterative inversions, whereby the axisymmetric background model is updated at each iteration.

  4. Parallel processing demonstrator with plug-on-top free-space interconnect optics

    NASA Astrophysics Data System (ADS)

    Berger, Christoph; Wang, Xiaoqing; Ekman, Jeremy T.; Marchand, Philippe J.; Spaanenburg, Henk; Wang, Mark M.; Kiamilev, Fouad E.; Esener, Sadik C.

    2001-05-01

    We demonstrate a setup with 10 optically interconnected chips,k which can perform a distributed radix-2-butterfly calculation for fast Fourier transformation. The setup consists of a motherboard, five multi-chip-modules (MCMs, with processor/transceiver chips and laser/detector chips), four plug-on-top optics modules that provide the bi- directional optical links between the MCMs, and external control electronics. The design of the optics and optomechanics satisfies numerous real-world constraints, such as compact size (< 1 inch thick), suitability for mass-production, suitability for large arrays (up to 103 parallel channels), compatibility with standard electronics fabrication and packaging technology, and potential for active misalignment compensation by integrating MEMS technology.

  5. Parallel force measurement with a polymeric microbeam array using an optical microscope and micromanipulator.

    PubMed

    Sasoglu, F Mert; Bohl, Andrew J; Allen, Kathleen B; Layton, Bradley E

    2009-01-01

    An image analysis method and its validation are presented for tracking the displacements of parallel mechanical force sensors. Force is measured using a combination of beam theory, optical microscopy, and image analysis. The primary instrument is a calibrated polymeric microbeam array mounted on a micromanipulator with the intended purpose of measuring traction forces on cell cultures or cell arrays. One application is the testing of hypotheses involving cellular mechanotransduction mechanisms. An Otsu-based image analysis code calculates displacement and force on cellular or other soft structures by using edge detection and image subtraction on digitally captured optical microscopy images. Forces as small as 250+/-50 nN and as great as 25+/-2.5 microN may be applied and measured upon as few as one or as many as hundreds of structures in parallel. A validation of the method is provided by comparing results from a rigid glass surface and a compliant polymeric surface.

  6. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Li, Xinyang

    2011-04-01

    Optimizing the system performance metric directly is an important method for correcting wavefront aberrations in an adaptive optics (AO) system where wavefront sensing methods are unavailable or ineffective. An appropriate "Deformable Mirror" control algorithm is the key to successful wavefront correction. Based on several stochastic parallel optimization control algorithms, an adaptive optics system with a 61-element Deformable Mirror (DM) is simulated. Genetic Algorithm (GA), Stochastic Parallel Gradient Descent (SPGD), Simulated Annealing (SA) and Algorithm Of Pattern Extraction (Alopex) are compared in convergence speed and correction capability. The results show that all these algorithms have the ability to correct for atmospheric turbulence. Compared with least squares fitting, they almost obtain the best correction achievable for the 61-element DM. SA is the fastest and GA is the slowest in these algorithms. The number of perturbation by GA is almost 20 times larger than that of SA, 15 times larger than SPGD and 9 times larger than Alopex.

  7. Constant-time parallel sorting algorithm and its optical implementation using smart pixels.

    PubMed

    Louri, A; Hatch, J A; Na, J

    1995-06-10

    Sorting is a fundamental operation that has important implications in a vast number of areas. For instance, sorting is heavily utilized in applications such as database machines, in which hashing techniques are used to accelerate data-processing algorithms. It is also the basis for interprocessor message routing and has strong implications in video telecommunications. However, high-speed electronic sorting networks are difficult to implement with VLSI technology because of the dense, global connectivity required. Optics eliminates this bottleneck by offering global interconnects, massive parallelism, and noninterfering communications. We present a parallel sorting algorithm and its efficient optical implementation. The algorithm sorts n data elements in few steps, independent of the number of elements to be sorted. Thus it is a constant-time sorting algorithm [i.e., O(1) time]. We also estimate the system's performance to show that the proposed sorting algorithm can provide at least 2 orders of magnitude improvement in execution time over conventional electronic algorithms.

  8. Implementation of a high-speed face recognition system that uses an optical parallel correlator.

    PubMed

    Watanabe, Eriko; Kodate, Kashiko

    2005-02-10

    We implement a fully automatic fast face recognition system by using a 1000 frame/s optical parallel correlator designed and assembled by us. The operational speed for the 1:N (i.e., matching one image against N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 s, including the preprocessing and postprocessing times. The binary real-only matched filter is devised for the sake of face recognition, and the system is optimized by the false-rejection rate (FRR) and the false-acceptance rate (FAR), according to 300 samples selected by the biometrics guideline. From trial 1:N identification experiments with the optical parallel correlator, we acquired low error rates of 2.6% FRR and 1.3% FAR. Facial images of people wearing thin glasses or heavy makeup that rendered identification difficult were identified with this system.

  9. Noninvasive assessment of testicular torsion in rabbits using frequency-domain near-infrared spectroscopy: prospects for pediatric urology.

    PubMed

    Hallacoglu, Bertan; Matulewicz, Richard S; Paltiel, Harriet J; Padua, Horacio; Gargollo, Patricio; Cannon, Glenn; Alomari, Ahmad; Sassaroli, Angelo; Fantini, Sergio

    2009-01-01

    We present a quantitative near-IR spectroscopy study of the absolute values of oxygen saturation of hemoglobin before and after surgically induced testicular torsion in adult rabbits. Unilateral testicular torsions (0, 540, or 720 deg) on experimental testes and contralateral sham surgery on control testes are performed in four adult rabbits. A specially designed optical probe for measurements at multiple source-detector distances and a commercial frequency-domain tissue spectrometer are used to measure absolute values of testicular hemoglobin saturation. Our results show: (1) a consistent baseline absolute tissue hemoglobin saturation value of 78+/-5%, (2) a comparable tissue hemoglobin saturation of 77+/-6% after sham surgery, and (3) a significantly lower tissue hemoglobin saturation of 36+/-2% after 540- and 720-deg testicular torsion surgery. Our findings demonstrate the feasibility of performing frequency-domain, multidistance near-IR spectroscopy for absolute testicular oximetry in the assessment of testicular torsion. We conclude that near-IR spectroscopy has potential to serve as a clinical diagnostic and monitoring tool for the assessment of absolute testicular hemoglobin desaturation caused by torsion, with the possibility of serving as a complement to conventional color and spectral Doppler ultrasonography.

  10. Noninvasive assessment of testicular torsion in rabbits using frequency-domain near-infrared spectroscopy: prospects for pediatric urology

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan; Matulewicz, Richard S.; Paltiel, Harriet J.; Padua, Horacio; Gargollo, Patricio; Cannon, Glenn; Alomari, Ahmad; Sassaroli, Angelo; Fantini, Sergio

    2009-09-01

    We present a quantitative near-IR spectroscopy study of the absolute values of oxygen saturation of hemoglobin before and after surgically induced testicular torsion in adult rabbits. Unilateral testicular torsions (0, 540, or 720 deg) on experimental testes and contralateral sham surgery on control testes are performed in four adult rabbits. A specially designed optical probe for measurements at multiple source-detector distances and a commercial frequency-domain tissue spectrometer are used to measure absolute values of testicular hemoglobin saturation. Our results show: (1) a consistent baseline absolute tissue hemoglobin saturation value of 78+/-5%, (2) a comparable tissue hemoglobin saturation of 77+/-6% after sham surgery, and (3) a significantly lower tissue hemoglobin saturation of 36+/-2% after 540- and 720-deg testicular torsion surgery. Our findings demonstrate the feasibility of performing frequency-domain, multidistance near-IR spectroscopy for absolute testicular oximetry in the assessment of testicular torsion. We conclude that near-IR spectroscopy has potential to serve as a clinical diagnostic and monitoring tool for the assessment of absolute testicular hemoglobin desaturation caused by torsion, with the possibility of serving as a complement to conventional color and spectral Doppler ultrasonography.

  11. Dental depth profilometry using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence for the diagnosis of dental caries

    NASA Astrophysics Data System (ADS)

    Nicolaides, Lena; Garcia, Jose A.; Mandelis, Andreas; Abrams, Stephen H.

    2001-04-01

    Frequency-domain IR photothermal radiometry is introduced as a dynamic dental diagnostic tool and its main features are compared with modulated laser luminescence for quantifying sound and carious enamel or dentin. Dental caries found in the fissures or grooves of teeth is very difficult to diagnose or quantify with the present clinical techniques. Visual examination and dental radiographs do not detect the presence of decay until there has been significant carious destruction of the tooth. A high-spatial-resolution dynamic experimental imaging set-up, which can provide simultaneous measurements of laser-induced frequency-domain IR photothermal radiometric and luminescence signals form defects in teeth, was developed. Following optical absorption of laser photons, the new set-up can monitor simultaneously and independently the non-radiative conversion, and the radiative de-excitation in turbid media such as hard dental tissue. This work is intended to show the complementarity between modulated luminescence and photothermal frequency scans in detecting carious lesions in teeth. A sound extracted molar with a dentin-enamel interface was introduced to examine the depth profilometric abilities of the method. Occlusal surfaces of teeth with potential areas of demineralization or carious destruction in the fissures were examined and compared to the signals produced by the sound enamel establishing the depth profilometric abilities of the method. The significance to clinical dentistry lies in the potential of this technique to detect and monitor early carious lesions in the pits and fissures of teeth.

  12. A lower bound for routing on a completely connected optical communication parallel computer

    SciTech Connect

    Goldberg, L.A.; Jerrum, M.; MacKenzie, P.D.

    1993-08-03

    The task of routing a 2-relation on an n-processor completely connected optical communication parallel computer (OCPC) is considered. A lower bound is presented that applies to any randomized distributed algorithm for this task: specifically, it is shown that the expected number of steps required to route a 2-relation is {Omega}({radical} log log n) in the worst case. For comparison, the best upper bound known is O(log log n).

  13. Optical binary de Bruijn networks for massively parallel computing: design methodology and feasibility study

    NASA Astrophysics Data System (ADS)

    Louri, Ahmed; Sung, Hongki

    1995-10-01

    The interconnection network structure can be the deciding and limiting factor in the cost and the performance of parallel computers. One of the most popular point-to-point interconnection networks for parallel computers today is the hypercube. The regularity, logarithmic diameter, symmetry, high connectivity, fault tolerance, simple routing, and reconfigurability (easy embedding of other network topologies) of the hypercube make it a very attractive choice for parallel computers. Unfortunately the hypercube possesses a major drawback, which is the links per node increases as the network grows in size. As an alternative to the hypercube, the binary de Bruijn (BdB) network has recently received much attention. The BdB not only provides a logarithmic diameter, fault tolerance, and simple routing but also requires fewer links than the hypercube for the same network size. Additionally, a major advantage of the BdB edges per node is independent of the network size. This makes it very desirable for large-scale parallel systems. However, because of its asymmetrical nature and global connectivity, it poses a major challenge for VLSI technology. Optics, owing to its three-dimensional and global-connectivity nature, seems to be very suitable for implementing BdB networks. We present an implementation methodology for optical BdB networks. The distinctive feature of the proposed implementation methodology is partitionability of the network into a few primitive operations that can be implemented efficiently. We further show feasibility of the

  14. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    NASA Astrophysics Data System (ADS)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The

  15. Efficient uncertainty quantification of large two-dimensional optical systems with a parallelized stochastic Galerkin method.

    PubMed

    Zubac, Z; Fostier, J; De Zutter, D; Vande Ginste, D

    2015-11-30

    It is well-known that geometrical variations due to manufacturing tolerances can degrade the performance of optical devices. In recent literature, polynomial chaos expansion (PCE) methods were proposed to model this statistical behavior. Nonetheless, traditional PCE solvers require a lot of memory and their computational complexity leads to prohibitively long simulation times, making these methods non-tractable for large optical systems. The uncertainty quantification (UQ) of various types of large, two-dimensional lens systems is presented in this paper, leveraging a novel parallelized Multilevel Fast Multipole Method (MLFMM) based Stochastic Galerkin Method (SGM). It is demonstrated that this technique can handle large optical structures in reasonable time, e.g., a stochastic lens system with more than 10 million unknowns was solved in less than an hour by using 3 compute nodes. The SGM, which is an intrusive PCE method, guarantees the accuracy of the method. By conjunction with MLFMM, usage of a preconditioner and by constructing and implementing a parallelized algorithm, a high efficiency is achieved. This is demonstrated with parallel scalability graphs. The novel approach is illustrated for different types of lens system and numerical results are validated against a collocation method, which relies on reusing a traditional deterministic solver. The last example concerns a Cassegrain system with five random variables, for which a speed-up of more than 12× compared to a collocation method is achieved.

  16. Spectral element method for elastic and acoustic waves in frequency domain

    NASA Astrophysics Data System (ADS)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei; Liu, Na; Liu, Qing Huo

    2016-12-01

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  17. Maximum likelihood method for estimating airplane stability and control parameters from flight data in frequency domain

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1980-01-01

    A frequency domain maximum likelihood method is developed for the estimation of airplane stability and control parameters from measured data. The model of an airplane is represented by a discrete-type steady state Kalman filter with time variables replaced by their Fourier series expansions. The likelihood function of innovations is formulated, and by its maximization with respect to unknown parameters the estimation algorithm is obtained. This algorithm is then simplified to the output error estimation method with the data in the form of transformed time histories, frequency response curves, or spectral and cross-spectral densities. The development is followed by a discussion on the equivalence of the cost function in the time and frequency domains, and on advantages and disadvantages of the frequency domain approach. The algorithm developed is applied in four examples to the estimation of longitudinal parameters of a general aviation airplane using computer generated and measured data in turbulent and still air. The cost functions in the time and frequency domains are shown to be equivalent; therefore, both approaches are complementary and not contradictory. Despite some computational advantages of parameter estimation in the frequency domain, this approach is limited to linear equations of motion with constant coefficients.

  18. Time-Domain vs. Frequency-Domain CSEM: Implications for Marine Exploration

    NASA Astrophysics Data System (ADS)

    Connell, D. M.; Key, K. W.

    2010-12-01

    The frequency-domain marine controlled source electromagnetic (CSEM) method is now routinely applied to map resistive hydrocarbons buried beneath the seabed in deepwater. Alternatively, it has been suggested that time-domain CSEM methods may offer improved resolution of difficult targets such as deeply buried reservoirs. Furthermore, time-domain methods may overcome a sensitivity limitation imposed by the airwave saturation that is experienced for shallow-water frequency-domain CSEM. In order to examine and test these claims, we have developed a modeling code for computing time-domain responses for layered 1D models with arbitrarily located and oriented transmitters and receivers. Our code extends the open-source frequency domain code Dipole1D by efficiently computing the time-domain step-on and impulse responses by Fourier transformation of the frequency-domain kernels. By applying a realistic noise model to synthetic data generated from this code, we systematically examine the sensitivity and resolution of time-domain and frequency-domain CSEM to representative targets of interest for offshore hydrocarbon exploration and exploration surveys of seafloor volcanic and hydrothermal systems. These studies have practical implications for marine EM survey systems that use either towed or stationary transmitters and receivers.

  19. Spectral element method for elastic and acoustic waves in frequency domain

    SciTech Connect

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei; Liu, Na; Liu, Qing Huo

    2016-12-15

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  20. A nonlinear causality measure in the frequency domain: nonlinear partial directed coherence with applications to EEG.

    PubMed

    He, Fei; Billings, Stephen A; Wei, Hua-Liang; Sarrigiannis, Ptolemaios G

    2014-03-30

    Frequency domain Granger causality measures have been proposed and widely applied in analyzing rhythmic neurophysiological and biomedical signals. Almost all these measures are based on linear time domain regression models, and therefore can only detect linear causal effects in the frequency domain. A frequency domain causality measure, the partial directed coherence, is explicitly linked with the frequency response function concept of linear systems. By modeling the nonlinear relationships between time series using nonlinear models and employing corresponding frequency-domain analysis techniques (i.e., generalized frequency response functions), a new nonlinear partial directed coherence method is derived. The advantages of the new method are illustrated via a numerical example of a nonlinear physical system and an application to electroencephalogram signals from a patient with childhood absence epilepsy. The new method detects both linear and nonlinear casual effects between bivariate signals in the frequency domain, while the existing measures can only detect linear effects. The proposed new method has important advantages over the classical linear measures, because detecting nonlinear dependencies has become more and more important in characterizing functional couplings in neuronal and biological systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Hardware efficient frequency domain equalization in few-mode fiber coherent transmission systems

    NASA Astrophysics Data System (ADS)

    Pan, Z.; He, Xuan; Weng, Yi

    2013-12-01

    Few-mode fiber (FMF) transmission system has become an emerging technology to overcome next capacity crunch. To compensate the large accumulated differential mode group delay (DMGD) and random mode coupling in FMF transmission systems, frequency domain least mean square (FD-LMS) algorithm has been proposed and proven as the most hardware efficient approach. Except for the hardware complexity, convergence speed is another major consideration of adaptive FD-LMS algorithm, especially in FMF system with large accumulated DMGD. We propose two algorithms to improve the convergence speed of the adaptive FD-LMS in FMF transmission systems. One is signal power spectrum density (PSD) dependent adaptive algorithm, which adopts variable step size that is the reciprocal of the power level in each frequency bin. The other is noise power directed adaptive FD-LMS algorithm, which adopts the step size of each frequency bin rendering the posterior errors that will converge to background noise in additive white Gaussian noise channel. Our simulation results show that, in a 3000 km FMF transmission system with 35-ps/km DMGD and optical signal to noise ratio (OSNR) of 14 dB, the noise power directed algorithm and PSD dependent algorithm can improve the convergence speed by 54% and 35% over conventional adaptive FD-LMS algorithm with negligible increase in hardware complexity. We also proposed a complexity reduced single-stage adaptive equalizer for compensating both chromatic dispersion (CD) and DMGD simultaneously. The single-stage method can save 6% complex multiplication over conventional two-stage equalization method in a 1000 km FMF transmission system with 76-ps/km DMGD.

  2. Frequency domain phase noise analysis of dual injection-locked optoelectronic oscillators.

    PubMed

    Jahanbakht, Sajad

    2016-10-01

    Dual injection-locked optoelectronic oscillators (DIL-OEOs) have been introduced as a means to achieve very low-noise microwave oscillations while avoiding the large spurious peaks that occur in the phase noise of the conventional single-loop OEOs. In these systems, two OEOs are inter-injection locked to each other. The OEO with the longer optical fiber delay line is called the master OEO, and the other is called the slave OEO. Here, a frequency domain approach for simulating the phase noise spectrum of each of the OEOs in a DIL-OEO system and based on the conversion matrix approach is presented. The validity of the new approach is verified by comparing its results with previously published data in the literature. In the new approach, first, in each of the master or slave OEOs, the power spectral densities (PSDs) of two white and 1/f noise sources are optimized such that the resulting simulated phase noise of any of the master or slave OEOs in the free-running state matches the measured phase noise of that OEO. After that, the proposed approach is able to simulate the phase noise PSD of both OEOs at the injection-locked state. Because of the short run-time requirements, especially compared to previously proposed time domain approaches, the new approach is suitable for optimizing the power injection ratios (PIRs), and potentially other circuit parameters, in order to achieve good performance regarding the phase noise in each of the OEOs. Through various numerical simulations, the optimum PIRs for achieving good phase noise performance are presented and discussed; they are in agreement with the previously published results. This further verifies the applicability of the new approach. Moreover, some other interesting results regarding the spur levels are also presented.

  3. System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues

    NASA Astrophysics Data System (ADS)

    Laughney, Ashley M.; Krishnaswamy, Venkataramanan; Rice, Tyler B.; Cuccia, David J.; Barth, Richard J.; Tromberg, Bruce J.; Paulsen, Keith D.; Pogue, Brian W.; Wells, Wendy A.

    2013-03-01

    The feasibility of spatial frequency domain imaging (SFDI) for breast surgical margin assessment was evaluated in tissue-simulating phantoms and in fully intact lumpectomy specimens at the time of surgery. Phantom data was evaluated according to contrast-detail resolution, quantitative accuracy and model-data goodness of fit, where optical parameters were estimated by minimizing the residual sum of squares between the measured modulation amplitude and its solutions, modeled according to diffusion and scaled-Monte Carlo simulations. In contrast-detail phantoms, a 1.25-mm-diameter surface inclusion was detectable for scattering contrast >28% a fraction of this scattering contrast (7%) was detectable for a 10 mm surface inclusion and at least 33% scattering contrast was detected up to 1.5 mm below the phantom surface, a probing depth relevant to breast surgical margin assessment. Recovered hemoglobin concentrations were insensitive to changes in scattering, except for overestimation at visible wavelengths for total hemoglobin concentrations <15 μM. The scattering amplitude increased linearly with scattering concentration, but the scattering slope depended on both the particle size and number density. Goodness of fit was comparable for the diffusion and scaled-Monte Carlo models of transport in spatially modulated, near-infrared reflectance acquired from 47 lumpectomy tissues, but recovered absorption parameters varied more linearly with expected hemoglobin concentration in liquid phantoms for the scaled-Monte Carlo forward model. SFDI could potentially reduce the high secondary excision rate associated with breast conserving surgery; its clinical translation further requires reduced image reconstruction time and smart inking strategies.

  4. Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns.

    PubMed

    Liu, Guixiong; Chen, Dongxue; Peng, Yanhua; Zeng, Qilin

    2016-08-01

    In order to avoid the detrimental effects of excessive noise in the phase fringe patterns of a laser digital interferometer over the accuracy of phase unwrapping and the successful detection of mechanical fatigue defects, an effective method of adaptive multidirectional frequency domain filtering is introduced based on the characteristics of the energy spectrum of localized wrapped phase patterns. Not only can this method automatically set the cutoff frequency, but it can also effectively filter out noise while preserving the image edge information. Compared with the sine and cosine transform filtering and the multidirectional frequency domain filtering, the experimental results demonstrate that the image filtered by our method has the fewest number of residues and is the closest to the noise-free image, compared to the two aforementioned methods, demonstrating the effectiveness of this adaptive multidirectional frequency domain filter.

  5. Bubble Pulse Cancelation in the Time-Frequency Domain Using Warping Operators

    NASA Astrophysics Data System (ADS)

    Niu, Hai-Qiang; Zhang, Ren-He; Li, Zheng-Lin; Guo, Yong-Gang; He, Li

    2013-08-01

    The received shock waves produced by explosive charges are often polluted by bubble pulses in underwater acoustic experiments. A method based on warping operators is proposed to cancel the bubble pulses in the time-frequency domain. This is applied to the explosive data collected during the Yellow Sea experiment in November 2000. The original received signal is first transformed into a warped signal by warping operators. Then, the warped signal is analyzed in the time-frequency domain. Due to the different features between the shock waves and the bubble pulses in the time-frequency domain for the warped signal, the bubble pulses can be easily filtered out. Furthermore, the shock waves in the original time domain can be retrieved by the inverse warping transformation. The autocorrelation functions and the time-frequency representation show that the bubble pulses can be canceled effectively.

  6. Demultiplexing based on frequency-domain joint decision MMA for MDM system

    NASA Astrophysics Data System (ADS)

    Caili, Gong; Li, Li; Guijun, Hu

    2016-06-01

    In this paper, we propose a demultiplexing method based on frequency-domain joint decision multi-modulus algorithm (FD-JDMMA) for mode division multiplexing (MDM) system. The performance of FD-JDMMA is compared with frequency-domain multi-modulus algorithm (FD-MMA) and frequency-domain least mean square (FD-LMS) algorithm. The simulation results show that FD-JDMMA outperforms FD-MMA in terms of BER and convergence speed in the cases of mQAM (m=4, 16 and 64) formats. And it is also demonstrated that FD-JDMMA achieves better BER performance and converges faster than FD-LMS in the cases of 16QAM and 64QAM. Furthermore, FD-JDMMA maintains similar computational complexity as the both equalization algorithms.

  7. Parallel optical evaluation of double-exposure records in optical metrology.

    PubMed

    Arnold, W; Hinsch, K D

    1989-02-15

    The evaluation of double-exposure records in optical metrology (speckle photography or particle image velocimetry) is simplified by using two-step optical processing that is performed on many interrogation areas simultaneously by a 2-D array of narrow focused light beams. A first application of this procedure to the original record, if dimensioned properly, produces an array of small nonoverlapping Young's fringe systems. The photographic record of these patterns is subjected to the same operation once more, each beam illuminating precisely one pattern. The resulting output is an array of autocorrelation functions that are a direct representation of the displacement field since the spacing of respective side peaks gives the displacement. A single whole-field interrogation of the array of fringe systems produces an optical representation of accumulated displacement values thus rendering the statistics of the displacement field. The required matrix of light beams is generated by holographic optical elements.

  8. Massively parallel data processing for quantitative total flow imaging with optical coherence microscopy and tomography

    NASA Astrophysics Data System (ADS)

    Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo

    2017-08-01

    We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU

  9. FOCEX: A fiber-optic extender for a high speed parallel RS485 data cable

    NASA Astrophysics Data System (ADS)

    Meadows, J. T.; Anderson, J. T.; Cooper, P. S.; Engelfried, J.; Franzen, J. W.; Forster, B. G.; Levinson, F.; Rawls, J.; Haber, S.

    1995-05-01

    For longer-distant, high speed data links, optical fiber becomes most cost-effective than copper or other hard wire cable systems. Fermilab supplied to Finisar Corp. of Menlo Park, CA, a set of specifications for card functions, sizes and interconnector pin assignments. Finisar designed and assembled a set of fiber optical P.C. cards using 100 megabyte/sec commercial optoelectronics and a serialization and deserialization HOT-ROD chipset designed by GAZELLE Microcircuits, Inc. (A Tri Quint Semiconductors company). The cooperative effort between Fermilab and Finisar has allowed Fermilab to created a reliable 50 Megabytes/sec (40 bit parallel RS485 DART data bus) cable to cable extender using a virtually invisible Fiber Channel point-to-point(FC-0) fiber optical single-simplex system. The system is easily capable of sustaining a 50 megabytes/sec of data, control and status line throughput at distances of 1625 feet (500 meters) using standard multi-mode fiber.

  10. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    DOEpatents

    Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  11. Method of optical coherence tomography with parallel depth-resolved signal reception and fibre-optic phase modulators

    SciTech Connect

    Morozov, A N; Turchin, I V

    2013-12-31

    The method of optical coherence tomography with the scheme of parallel reception of the interference signal (P-OCT) is developed on the basis of spatial paralleling of the reference wave by means of a phase diffraction grating producing the appropriate time delay in the Mach–Zehnder interferometer. The absence of mechanical variation of the optical path difference in the interferometer essentially reduces the time required for 2D imaging of the object internal structure, as compared to the classical OCT that uses the time-domain method of the image construction, the sensitivity and the dynamic range being comparable in both approaches. For the resulting field of the interfering object and reference waves an analytical expression is derived that allows the calculation of the autocorrelation function in the plane of photodetectors. For the first time a method of linear phase modulation by 2π is proposed for P-OCT systems, which allows the use of compact high-frequency (a few hundred kHz) piezoelectric cell-based modulators. For the demonstration of the P-OCT method an experimental setup was created, using which the images of the inner structure of biological objects at the depth up to 1 mm with the axial spatial resolution of 12 μm were obtained. (optical coherence tomography)

  12. Feasibility study of spatial frequency domain imaging using a handheld miniaturized projector and rigid endoscope

    NASA Astrophysics Data System (ADS)

    Nandy, Sreyankar; Erfanzadeh, Mohsen; Zhou, Feifei; Zhu, Quing

    2017-02-01

    Initial feasibility of a spatial frequency domain imaging system was studied consisting of a hand held miniaturized projector and a rigid endoscope. Three wavelengths and two spatial frequencies were used for imaging. The system was calibrated using tissue mimicking phantoms. In vivo imaging was performed on five live mouse tumor models, and the absorption, scattering, hemoglobin oxygen saturation was measured. The initial promising results indicate that the spatial frequency domain imaging can a very useful tool for quantitative wide field tissue evaluation during minimally invasive image guided surgery.

  13. Application of frequency domain line edge roughness characterization methodology in lithography

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Wang, Wenhui; Beique, Genevieve; Wood, Obert; Kim, Ryoung-Han

    2015-03-01

    A frequency domain 3 sigma LER characterization methodology combining the standard deviation and power spectral density (PSD) methods is proposed. In the new method, the standard deviation is calculated in the frequency domain instead of the spatial domain as in the conventional method. The power spectrum of the LER is divided into three regions: low frequency (LF), middle frequency (MF) and high frequency (HF) regions. The frequency region definition is based on process visual comparisons. Three standard deviation numbers are used to characterize the LER in the three frequency regions. Pattern wiggling can be detected quantitatively with a wiggling factor which is also proposed in this paper.

  14. Consensus for Linear Multiagent Systems With Time-Varying Delays: A Frequency Domain Perspective.

    PubMed

    Chen, Yuanye; Shi, Yang

    2016-07-27

    This paper investigates the consensus problem for multiagent systems with time-varying delays. The bounded delays can be arbitrarily fast time-varying. The communication topology is assumed to be undirected and fixed. With general linear dynamics under average state feedback protocols, the consensus problem is then transformed into the robust control problem. Further, sufficient frequency domain criteria are established in terms of small gain theorem by analyzing the delay dependent gains for both continuous-time and discrete-time systems. The controller synthesis problems can be solved by applying the frequency domain design methods. Numerical examples are demonstrated to verify the effectiveness of the proposed approaches.

  15. The capability of time- and frequency-domain algorithms for bistatic SAR processing

    NASA Astrophysics Data System (ADS)

    Vu, Viet T.; Sjögren, Thomas K.; Pettersson, Mats I.

    2013-05-01

    The paper presents a study of the capability of time- and frequency-domain algorithms for bistatic SAR processing. Two typical algorithms, Bistatic Fast Backprojection (BiFBP) and Bistatic Range Doppler (BiRDA), which are both available for general bistatic geometry, are selected as the examples of time- and frequency-domain algorithms in this study. Their capability is evaluated based on some criteria such as processing time required by the algorithms to reconstruct SAR images from bistatic SAR data and the quality assessments of those SAR images.

  16. Combined failure acoustical diagnosis based on improved frequency domain blind deconvolution

    NASA Astrophysics Data System (ADS)

    Pan, Nan; Wu, Xing; Chi, YiLin; Liu, Xiaoqin; Liu, Chang

    2012-05-01

    According to gear box combined failure extraction in complex sound field, an acoustic fault detection method based on improved frequency domain blind deconvolution was proposed. Follow the frequency-domain blind deconvolution flow, the morphological filtering was firstly used to extract modulation features embedded in the observed signals, then the CFPA algorithm was employed to do complex-domain blind separation, finally the J-Divergence of spectrum was employed as distance measure to resolve the permutation. Experiments using real machine sound signals was carried out. The result demonstrate this algorithm can be efficiently applied to gear box combined failure detection in practice.

  17. Massively parallel manipulation of single cells and microparticles using optical images

    NASA Astrophysics Data System (ADS)

    Chiou, Pei Yu; Ohta, Aaron T.; Wu, Ming C.

    2005-07-01

    The ability to manipulate biological cells and micrometre-scale particles plays an important role in many biological and colloidal science applications. However, conventional manipulation techniques-including optical tweezers, electrokinetic forces (electrophoresis, dielectrophoresis, travelling-wave dielectrophoresis), magnetic tweezers, acoustic traps and hydrodynamic flows-cannot achieve high resolution and high throughput at the same time. Optical tweezers offer high resolution for trapping single particles, but have a limited manipulation area owing to tight focusing requirements; on the other hand, electrokinetic forces and other mechanisms provide high throughput, but lack the flexibility or the spatial resolution necessary for controlling individual cells. Here we present an optical image-driven dielectrophoresis technique that permits high-resolution patterning of electric fields on a photoconductive surface for manipulating single particles. It requires 100,000 times less optical intensity than optical tweezers. Using an incoherent light source (a light-emitting diode or a halogen lamp) and a digital micromirror spatial light modulator, we have demonstrated parallel manipulation of 15,000 particle traps on a 1.3 × 1.0mm2 area. With direct optical imaging control, multiple manipulation functions are combined to achieve complex, multi-step manipulation protocols.

  18. Massively parallel manipulation of single cells and microparticles using optical images.

    PubMed

    Chiou, Pei Yu; Ohta, Aaron T; Wu, Ming C

    2005-07-21

    The ability to manipulate biological cells and micrometre-scale particles plays an important role in many biological and colloidal science applications. However, conventional manipulation techniques--including optical tweezers, electrokinetic forces (electrophoresis, dielectrophoresis, travelling-wave dielectrophoresis), magnetic tweezers, acoustic traps and hydrodynamic flows--cannot achieve high resolution and high throughput at the same time. Optical tweezers offer high resolution for trapping single particles, but have a limited manipulation area owing to tight focusing requirements; on the other hand, electrokinetic forces and other mechanisms provide high throughput, but lack the flexibility or the spatial resolution necessary for controlling individual cells. Here we present an optical image-driven dielectrophoresis technique that permits high-resolution patterning of electric fields on a photoconductive surface for manipulating single particles. It requires 100,000 times less optical intensity than optical tweezers. Using an incoherent light source (a light-emitting diode or a halogen lamp) and a digital micromirror spatial light modulator, we have demonstrated parallel manipulation of 15,000 particle traps on a 1.3 x 1.0 mm2 area. With direct optical imaging control, multiple manipulation functions are combined to achieve complex, multi-step manipulation protocols.

  19. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    PubMed

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  20. Efficiency analysis of parallelized wavelet-based FDTD model for simulating high-index optical devices

    NASA Astrophysics Data System (ADS)

    Ren, Rong; Wang, Jin; Jiang, Xiyan; Lu, Yunqing; Xu, Ji

    2014-10-01

    The finite-difference time-domain (FDTD) method, which solves time-dependent Maxwell's curl equations numerically, has been proved to be a highly efficient technique for numerous applications in electromagnetic. Despite the simplicity of the FDTD method, this technique suffers from serious limitations in case that substantial computer resource is required to solve electromagnetic problems with medium or large computational dimensions, for example in high-index optical devices. In our work, an efficient wavelet-based FDTD model has been implemented and extended in a parallel computation environment, to analyze high-index optical devices. This model is based on Daubechies compactly supported orthogonal wavelets and Deslauriers-Dubuc interpolating functions as biorthogonal wavelet bases, and thus is a very efficient algorithm to solve differential equations numerically. This wavelet-based FDTD model is a high-spatial-order FDTD indeed. Because of the highly linear numerical dispersion properties of this high-spatial-order FDTD, the required discretization can be coarser than that required in the standard FDTD method. In our work, this wavelet-based FDTD model achieved significant reduction in the number of cells, i.e. used memory. Also, as different segments of the optical device can be computed simultaneously, there was a significant gain in computation time. Substantially, we achieved speed-up factors higher than 30 in comparisons to using a single processor. Furthermore, the efficiency of the parallelized computation such as the influence of the discretization and the load sharing between different processors were analyzed. As a conclusion, this parallel-computing model is promising to analyze more complicated optical devices with large dimensions.