Multiprocessing the Sieve of Eratosthenes
NASA Technical Reports Server (NTRS)
Bokhari, S.
1986-01-01
The Sieve of Eratosthenes for finding prime numbers in recent years has seen much use as a benchmark algorithm for serial computers while its intrinsically parallel nature has gone largely unnoticed. The implementation of a parallel version of this algorithm for a real parallel computer, the Flex/32, is described and its performance discussed. It is shown that the algorithm is sensitive to several fundamental performance parameters of parallel machines, such as spawning time, signaling time, memory access, and overhead of process switching. Because of the nature of the algorithm, it is impossible to get any speedup beyond 4 or 5 processors unless some form of dynamic load balancing is employed. We describe the performance of our algorithm with and without load balancing and compare it with theoretical lower bounds and simulated results. It is straightforward to understand this algorithm and to check the final results. However, its efficient implementation on a real parallel machine requires thoughtful design, especially if dynamic load balancing is desired. The fundamental operations required by the algorithm are very simple: this means that the slightest overhead appears prominently in performance data. The Sieve thus serves not only as a very severe test of the capabilities of a parallel processor but is also an interesting challenge for the programmer.
The parallel-sequential field subtraction techniques for nonlinear ultrasonic imaging
NASA Astrophysics Data System (ADS)
Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.
2018-04-01
Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage and have sensitivity to particularly closed defects. This study utilizes two modes of focusing: parallel, in which the elements are fired together with a delay law, and sequential, in which elements are fired independently. In the parallel focusing, a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded; with elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images formed from the coherent component of the field and use this to characterize nonlinearity of closed fatigue cracks. In particular we monitor the reduction in amplitude at the fundamental frequency at each focal point and use this metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g., back wall or large scatters) and allow damage to be detected at an early stage.
Parallel multiphase microflows: fundamental physics, stabilization methods and applications.
Aota, Arata; Mawatari, Kazuma; Kitamori, Takehiko
2009-09-07
Parallel multiphase microflows, which can integrate unit operations in a microchip under continuous flow conditions, are discussed. Fundamental physics, stabilization methods and some applications are shown.
Delta's Key to the Next Generation TOEFL[R] Test: Essential Grammar for the iBT
ERIC Educational Resources Information Center
Gallagher, Nancy
2012-01-01
Although the TOEFL iBT does not have a discrete grammar section, knowledge of English sentence structure is important throughout the test. Essential Grammar for the iBT reviews the skills that are fundamental to success on tests. Content includes noun and verb forms, clauses, agreement, parallel structure, punctuation, and much more. The book may…
NASA Technical Reports Server (NTRS)
Winske, D.; Thomas, V. A.; Omidi, N.; Quest, K. B.
1990-01-01
This paper continues the study of Thomas et al. (1990) in which hybrid simulations of quasi-parallel shocks were performed in one and two spatial dimensions. To identify the wave generation processes, the electromagnetic structure of the shock is examined by performing a number of one-dimensional hybrid simulations of quasi-parallel shocks for various upstream conditions. In addition, numerical experiments were carried out in which the backstreaming ions were removed from calculations to show their fundamental importance in reformation process. The calculations show that the waves are excited before ions can propagate far enough upstream to generate resonant modes. At some later times, the waves are regenerated at the leading edge of the interface, with properties like those of their initial interactions.
Fundamentals of Polarized Light
NASA Technical Reports Server (NTRS)
Mishchenko, Michael
2003-01-01
The analytical and numerical basis for describing scattering properties of media composed of small discrete particles is formed by the classical electromagnetic theory. Although there are several excellent textbooks outlining the fundamentals of this theory, it is convenient for our purposes to begin with a summary of those concepts and equations that are central to the subject of this book and will be used extensively in the following chapters. We start by formulating Maxwell's equations and constitutive relations for time- harmonic macroscopic electromagnetic fields and derive the simplest plane-wave solution that underlies the basic optical idea of a monochromatic parallel beam of light. This solution naturally leads to the introduction of such fundamental quantities as the refractive index and the Stokes parameters. Finally, we define the concept of a quasi-monochromatic beam of light and discuss its implications.
FoxP2 is a Parvocellular-Specific Transcription Factor in the Visual Thalamus of Monkeys and Ferrets
Iwai, Lena; Ohashi, Yohei; van der List, Deborah; Usrey, William Martin; Miyashita, Yasushi; Kawasaki, Hiroshi
2013-01-01
Although the parallel visual pathways are a fundamental basis of visual processing, our knowledge of their molecular properties is still limited. Here, we uncovered a parvocellular-specific molecule in the dorsal lateral geniculate nucleus (dLGN) of higher mammals. We found that FoxP2 transcription factor was specifically expressed in X cells of the adult ferret dLGN. Interestingly, FoxP2 was also specifically expressed in parvocellular layers 3–6 of the dLGN of adult old world monkeys, providing new evidence for a homology between X cells in the ferret dLGN and parvocellular cells in the monkey dLGN. Furthermore, this expression pattern was established as early as gestation day 140 in the embryonic monkey dLGN, suggesting that parvocellular specification has already occurred when the cytoarchitectonic dLGN layers are formed. Our results should help in gaining a fundamental understanding of the development, evolution, and function of the parallel visual pathways, which are especially prominent in higher mammals. PMID:22791804
NASA Astrophysics Data System (ADS)
Rogowski, B.
2015-05-01
The subject of the paper are Green's functions for the stress intensity factors of modes I, II and III. Green's functions are defined as a solution to the problem of an elastic, transversely isotropic solid with a penny-shaped or an external crack under general axisymmetric loadings acting along a circumference on the plane parallel to the crack plane. Exact solutions are presented in a closed form for the stress intensity factors under each type of axisymmetric ring forces as fundamental solutions. Numerical examples are employed and conclusions which can be utilized in engineering practice are formulated.
The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging
NASA Astrophysics Data System (ADS)
Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.
2018-06-01
Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage than was previously possible and have sensitivity to partially closed defects. This study explores a coherent imaging technique based on the subtraction of two modes of focusing: parallel, in which the elements are fired together with a delay law and sequential, in which elements are fired independently. In the parallel focusing a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded and post-processed to form an image. Under linear elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images and use this to characterise the nonlinearity of small closed fatigue cracks. In particular we monitor the change in relative phase and amplitude at the fundamental frequencies for each focal point and use this nonlinear coherent imaging metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g. back wall or large scatters) effectively when instrumentation noise compensation in applied, thereby allowing damage to be detected at an early stage (c. 15% of fatigue life) and reliably quantified in later fatigue life.
Characterization of Harmonic Signal Acquisition with Parallel Dipole and Multipole Detectors
NASA Astrophysics Data System (ADS)
Park, Sung-Gun; Anderson, Gordon A.; Bruce, James E.
2018-04-01
Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a powerful instrument for the study of complex biological samples due to its high resolution and mass measurement accuracy. However, the relatively long signal acquisition periods needed to achieve high resolution can serve to limit applications of FTICR-MS. The use of multiple pairs of detector electrodes enables detection of harmonic frequencies present at integer multiples of the fundamental cyclotron frequency, and the obtained resolving power for a given acquisition period increases linearly with the order of harmonic signal. However, harmonic signal detection also increases spectral complexity and presents challenges for interpretation. In the present work, ICR cells with independent dipole and harmonic detection electrodes and preamplifiers are demonstrated. A benefit of this approach is the ability to independently acquire fundamental and multiple harmonic signals in parallel using the same ions under identical conditions, enabling direct comparison of achieved performance as parameters are varied. Spectra from harmonic signals showed generally higher resolving power than spectra acquired with fundamental signals and equal signal duration. In addition, the maximum observed signal to noise (S/N) ratio from harmonic signals exceeded that of fundamental signals by 50 to 100%. Finally, parallel detection of fundamental and harmonic signals enables deconvolution of overlapping harmonic signals since observed fundamental frequencies can be used to unambiguously calculate all possible harmonic frequencies. Thus, the present application of parallel fundamental and harmonic signal acquisition offers a general approach to improve utilization of harmonic signals to yield high-resolution spectra with decreased acquisition time. [Figure not available: see fulltext.
SCaLeM: A Framework for Characterizing and Analyzing Execution Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Manzano Franco, Joseph B.; Krishnamoorthy, Sriram
2014-10-13
As scalable parallel systems evolve towards more complex nodes with many-core architectures and larger trans-petascale & upcoming exascale deployments, there is a need to understand, characterize and quantify the underlying execution models being used on such systems. Execution models are a conceptual layer between applications & algorithms and the underlying parallel hardware and systems software on which those applications run. This paper presents the SCaLeM (Synchronization, Concurrency, Locality, Memory) framework for characterizing and execution models. SCaLeM consists of three basic elements: attributes, compositions and mapping of these compositions to abstract parallel systems. The fundamental Synchronization, Concurrency, Locality and Memory attributesmore » are used to characterize each execution model, while the combinations of those attributes in the form of compositions are used to describe the primitive operations of the execution model. The mapping of the execution model’s primitive operations described by compositions, to an underlying abstract parallel system can be evaluated quantitatively to determine its effectiveness. Finally, SCaLeM also enables the representation and analysis of applications in terms of execution models, for the purpose of evaluating the effectiveness of such mapping.« less
GPU surface extraction using the closest point embedding
NASA Astrophysics Data System (ADS)
Kim, Mark; Hansen, Charles
2015-01-01
Isosurface extraction is a fundamental technique used for both surface reconstruction and mesh generation. One method to extract well-formed isosurfaces is a particle system; unfortunately, particle systems can be slow. In this paper, we introduce an enhanced parallel particle system that uses the closest point embedding as the surface representation to speedup the particle system for isosurface extraction. The closest point embedding is used in the Closest Point Method (CPM), a technique that uses a standard three dimensional numerical PDE solver on two dimensional embedded surfaces. To fully take advantage of the closest point embedding, it is coupled with a Barnes-Hut tree code on the GPU. This new technique produces well-formed, conformal unstructured triangular and tetrahedral meshes from labeled multi-material volume datasets. Further, this new parallel implementation of the particle system is faster than any known methods for conformal multi-material mesh extraction. The resulting speed-ups gained in this implementation can reduce the time from labeled data to mesh from hours to minutes and benefits users, such as bioengineers, who employ triangular and tetrahedral meshes
Fundamental physics issues of multilevel logic in developing a parallel processor.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Anirban; Miki, Kazushi
2007-06-01
In the last century, On and Off physical switches, were equated with two decisions 0 and 1 to express every information in terms of binary digits and physically realize it in terms of switches connected in a circuit. Apart from memory-density increase significantly, more possible choices in particular space enables pattern-logic a reality, and manipulation of pattern would allow controlling logic, generating a new kind of processor. Neumann's computer is based on sequential logic, processing bits one by one. But as pattern-logic is generated on a surface, viewing whole pattern at a time is a truly parallel processing. Following Neumann's and Shannons fundamental thermodynamical approaches we have built compatible model based on series of single molecule based multibit logic systems of 4-12 bits in an UHV-STM. On their monolayer multilevel communication and pattern formation is experimentally verified. Furthermore, the developed intelligent monolayer is trained by Artificial Neural Network. Therefore fundamental weak interactions for the building of truly parallel processor are explored here physically and theoretically.
Decoupled form and function in disparate herbivorous dinosaur clades
NASA Astrophysics Data System (ADS)
Lautenschlager, Stephan; Brassey, Charlotte A.; Button, David J.; Barrett, Paul M.
2016-05-01
Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.
Decoupled form and function in disparate herbivorous dinosaur clades.
Lautenschlager, Stephan; Brassey, Charlotte A; Button, David J; Barrett, Paul M
2016-05-20
Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.
An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects
NASA Astrophysics Data System (ADS)
Alcalá, J. M.; Stelzer, B.; Covino, E.; Cupani, G.; Natta, A.; Randich, S.; Rigliaco, E.; Spezzi, L.; Testi, L.; Bacciotti, F.; Bonito, R.; Covino, S.; Flaccomio, E.; Frasca, A.; Gandolfi, D.; Leone, F.; Micela, G.; Nisini, B.; Whelan, E.
2011-03-01
We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near-IR, avoiding ambiguities due to possible YSO variability. Based on observations collected at the European Southern Observatory, Chile, under Programmes 084.C-0269 and 085.C-0238.
Zeki, Semir
2016-10-01
Results from a variety of sources, some many years old, lead ineluctably to a re-appraisal of the twin strategies of hierarchical and parallel processing used by the brain to construct an image of the visual world. Contrary to common supposition, there are at least three 'feed-forward' anatomical hierarchies that reach the primary visual cortex (V1) and the specialized visual areas outside it, in parallel. These anatomical hierarchies do not conform to the temporal order with which visual signals reach the specialized visual areas through V1. Furthermore, neither the anatomical hierarchies nor the temporal order of activation through V1 predict the perceptual hierarchies. The latter shows that we see (and become aware of) different visual attributes at different times, with colour leading form (orientation) and directional visual motion, even though signals from fast-moving, high-contrast stimuli are among the earliest to reach the visual cortex (of area V5). Parallel processing, on the other hand, is much more ubiquitous than commonly supposed but is subject to a barely noticed but fundamental aspect of brain operations, namely that different parallel systems operate asynchronously with respect to each other and reach perceptual endpoints at different times. This re-assessment leads to the conclusion that the visual brain is constituted of multiple, parallel and asynchronously operating task- and stimulus-dependent hierarchies (STDH); which of these parallel anatomical hierarchies have temporal and perceptual precedence at any given moment is stimulus and task related, and dependent on the visual brain's ability to undertake multiple operations asynchronously. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Demi, Libertario; Viti, Jacopo; Kusters, Lieneke; Guidi, Francesco; Tortoli, Piero; Mischi, Massimo
2013-11-01
The speed of sound in the human body limits the achievable data acquisition rate of pulsed ultrasound scanners. To overcome this limitation, parallel beamforming techniques are used in ultrasound 2-D and 3-D imaging systems. Different parallel beamforming approaches have been proposed. They may be grouped into two major categories: parallel beamforming in reception and parallel beamforming in transmission. The first category is not optimal for harmonic imaging; the second category may be more easily applied to harmonic imaging. However, inter-beam interference represents an issue. To overcome these shortcomings and exploit the benefit of combining harmonic imaging and high data acquisition rate, a new approach has been recently presented which relies on orthogonal frequency division multiplexing (OFDM) to perform parallel beamforming in transmission. In this paper, parallel transmit beamforming using OFDM is implemented for the first time on an ultrasound scanner. An advanced open platform for ultrasound research is used to investigate the axial resolution and interbeam interference achievable with parallel transmit beamforming using OFDM. Both fundamental and second-harmonic imaging modalities have been considered. Results show that, for fundamental imaging, axial resolution in the order of 2 mm can be achieved in combination with interbeam interference in the order of -30 dB. For second-harmonic imaging, axial resolution in the order of 1 mm can be achieved in combination with interbeam interference in the order of -35 dB.
Job Management Requirements for NAS Parallel Systems and Clusters
NASA Technical Reports Server (NTRS)
Saphir, William; Tanner, Leigh Ann; Traversat, Bernard
1995-01-01
A job management system is a critical component of a production supercomputing environment, permitting oversubscribed resources to be shared fairly and efficiently. Job management systems that were originally designed for traditional vector supercomputers are not appropriate for the distributed-memory parallel supercomputers that are becoming increasingly important in the high performance computing industry. Newer job management systems offer new functionality but do not solve fundamental problems. We address some of the main issues in resource allocation and job scheduling we have encountered on two parallel computers - a 160-node IBM SP2 and a cluster of 20 high performance workstations located at the Numerical Aerodynamic Simulation facility. We describe the requirements for resource allocation and job management that are necessary to provide a production supercomputing environment on these machines, prioritizing according to difficulty and importance, and advocating a return to fundamental issues.
Regulatory logic of pan-neuronal gene expression in C. elegans
Stefanakis, Nikolaos; Carrera, Ines; Hobert, Oliver
2015-01-01
While neuronal cell types display an astounding degree of phenotypic diversity, most if not all neuron types share a core panel of terminal features. However, little is known about how pan-neuronal expression patterns are genetically programmed. Through an extensive analysis of the cis-regulatory control regions of a battery of pan-neuronal C.elegans genes, including genes involved in synaptic vesicle biology and neuropeptide signaling, we define a common organizational principle in the regulation of pan-neuronal genes in the form of a surprisingly complex array of seemingly redundant, parallel-acting cis-regulatory modules that direct expression to broad, overlapping domains throughout the nervous system. These parallel-acting cis-regulatory modules are responsive to a multitude of distinct trans-acting factors. Neuronal gene expression programs therefore fall into two fundamentally distinct classes. Neuron type-specific genes are generally controlled by discrete and non-redundantly acting regulatory inputs, while pan-neuronal gene expression is controlled by diverse, coincident and seemingly redundant regulatory inputs. PMID:26291158
Eidels, Ami; Houpt, Joseph W.; Altieri, Nicholas; Pei, Lei; Townsend, James T.
2011-01-01
Systems Factorial Technology is a powerful framework for investigating the fundamental properties of human information processing such as architecture (i.e., serial or parallel processing) and capacity (how processing efficiency is affected by increased workload). The Survivor Interaction Contrast (SIC) and the Capacity Coefficient are effective measures in determining these underlying properties, based on response-time data. Each of the different architectures, under the assumption of independent processing, predicts a specific form of the SIC along with some range of capacity. In this study, we explored SIC predictions of discrete-state (Markov process) and continuous-state (Linear Dynamic) models that allow for certain types of cross-channel interaction. The interaction can be facilitatory or inhibitory: one channel can either facilitate, or slow down processing in its counterpart. Despite the relative generality of these models, the combination of the architecture-oriented plus the capacity oriented analyses provide for precise identification of the underlying system. PMID:21516183
Eidels, Ami; Houpt, Joseph W; Altieri, Nicholas; Pei, Lei; Townsend, James T
2011-04-01
Systems Factorial Technology is a powerful framework for investigating the fundamental properties of human information processing such as architecture (i.e., serial or parallel processing) and capacity (how processing efficiency is affected by increased workload). The Survivor Interaction Contrast (SIC) and the Capacity Coefficient are effective measures in determining these underlying properties, based on response-time data. Each of the different architectures, under the assumption of independent processing, predicts a specific form of the SIC along with some range of capacity. In this study, we explored SIC predictions of discrete-state (Markov process) and continuous-state (Linear Dynamic) models that allow for certain types of cross-channel interaction. The interaction can be facilitatory or inhibitory: one channel can either facilitate, or slow down processing in its counterpart. Despite the relative generality of these models, the combination of the architecture-oriented plus the capacity oriented analyses provide for precise identification of the underlying system.
Scalable Static and Dynamic Community Detection Using Grappolo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halappanavar, Mahantesh; Lu, Hao; Kalyanaraman, Anantharaman
Graph clustering, popularly known as community detection, is a fundamental kernel for several applications of relevance to the Defense Advanced Research Projects Agency’s (DARPA) Hierarchical Identify Verify Exploit (HIVE) Pro- gram. Clusters or communities represent natural divisions within a network that are densely connected within a cluster and sparsely connected to the rest of the network. The need to compute clustering on large scale data necessitates the development of efficient algorithms that can exploit modern architectures that are fundamentally parallel in nature. How- ever, due to their irregular and inherently sequential nature, many of the current algorithms for community detectionmore » are challenging to parallelize. In response to the HIVE Graph Challenge, we present several parallelization heuristics for fast community detection using the Louvain method as the serial template. We implement all the heuristics in a software library called Grappolo. Using the inputs from the HIVE Challenge, we demonstrate superior performance and high quality solutions based on four parallelization heuristics. We use Grappolo on static graphs as the first step towards community detection on streaming graphs.« less
The structure and evolution of plankton communities
NASA Astrophysics Data System (ADS)
Longhurst, Alan R.
New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.
Reduced vibration motor winding arrangement
Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.
1997-11-11
An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.
Reduced vibration motor winding arrangement
Slavik, Charles J.; Rhudy, Ralph G.; Bushman, Ralph E.
1997-01-01
An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.
Shibuta, Yasushi; Sakane, Shinji; Miyoshi, Eisuke; Okita, Shin; Takaki, Tomohiro; Ohno, Munekazu
2017-04-05
Can completely homogeneous nucleation occur? Large scale molecular dynamics simulations performed on a graphics-processing-unit rich supercomputer can shed light on this long-standing issue. Here, a billion-atom molecular dynamics simulation of homogeneous nucleation from an undercooled iron melt reveals that some satellite-like small grains surrounding previously formed large grains exist in the middle of the nucleation process, which are not distributed uniformly. At the same time, grains with a twin boundary are formed by heterogeneous nucleation from the surface of the previously formed grains. The local heterogeneity in the distribution of grains is caused by the local accumulation of the icosahedral structure in the undercooled melt near the previously formed grains. This insight is mainly attributable to the multi-graphics processing unit parallel computation combined with the rapid progress in high-performance computational environments.Nucleation is a fundamental physical process, however it is a long-standing issue whether completely homogeneous nucleation can occur. Here the authors reveal, via a billion-atom molecular dynamics simulation, that local heterogeneity exists during homogeneous nucleation in an undercooled iron melt.
Parallel Signal Processing and System Simulation using aCe
NASA Technical Reports Server (NTRS)
Dorband, John E.; Aburdene, Maurice F.
2003-01-01
Recently, networked and cluster computation have become very popular for both signal processing and system simulation. A new language is ideally suited for parallel signal processing applications and system simulation since it allows the programmer to explicitly express the computations that can be performed concurrently. In addition, the new C based parallel language (ace C) for architecture-adaptive programming allows programmers to implement algorithms and system simulation applications on parallel architectures by providing them with the assurance that future parallel architectures will be able to run their applications with a minimum of modification. In this paper, we will focus on some fundamental features of ace C and present a signal processing application (FFT).
Parallel processing in finite element structural analysis
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1987-01-01
A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).
National Combustion Code: Parallel Performance
NASA Technical Reports Server (NTRS)
Babrauckas, Theresa
2001-01-01
This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.
Self-organised fractional quantisation in a hole quantum wire
NASA Astrophysics Data System (ADS)
Gul, Y.; Holmes, S. N.; Myronov, M.; Kumar, S.; Pepper, M.
2018-03-01
We have investigated hole transport in quantum wires formed by electrostatic confinement in strained germanium two-dimensional layers. The ballistic conductance characteristics show the regular staircase of quantum levels with plateaux at n2e 2/h, where n is an integer, e is the fundamental unit of charge and h is Planck’s constant. However as the carrier concentration is reduced, the quantised levels show a behaviour that is indicative of the formation of a zig-zag structure and new quantised plateaux appear at low temperatures. In units of 2e 2/h the new quantised levels correspond to values of n = 1/4 reducing to 1/8 in the presence of a strong parallel magnetic field which lifts the spin degeneracy but does not quantise the wavefunction. A further plateau is observed corresponding to n = 1/32 which does not change in the presence of a parallel magnetic field. These values indicate that the system is behaving as if charge was fractionalised with values e/2 and e/4, possible mechanisms are discussed.
Diet, embodiment, and virtue in the mechanical philosophy.
Smith, Justin E H
2012-06-01
This paper considers the relationship between diet, embodiment, nature and virtue in several seventeenth-century natural philosophers, all of whom sought to overcome or to radically reform inherited ideas about the self as a hylomorphic compound of form and matter, but who nonetheless were not entirely ready to discard the notion that the self is intimately united with the body. One implication of this intimate union, for them, is that what one does with the body, including what one puts into it, is directly relevant to the supreme end of achieving a virtuous life. I thus consider food--its preparation and its consumption--as a link between natural and moral philosophy in the early modern period, showing in particular the parallels between the search for the diet that is 'natural to man', on the one hand, and the project of establishing rules of virtue on the other. Key to discerning these parallels, I argue, is an understanding of early modern ideas about diet and eating as rooted in the Stoic notion of oikeiôsis, which may be translated as 'assimilation' or 'appropriation', and which, as recent work by Lisa Shapiro has shown, played an important role in early modern ideas about a bodily contribution to the human good. The most general thesis is that dietary questions were far more important in early modern philosophy than has yet been recognized: nearly every prominent natural philosopher was preoccupied with them. A narrower thesis is that this parallelism between natural philosophy and moral philosophy is reflected in the conception of cooking as both a fundamental physiological process ('coction') as well as the most basic form of social existence. Copyright © 2011 Elsevier Ltd. All rights reserved.
Vision-Based Navigation and Parallel Computing
1990-08-01
33 5.8. Behizad Kamgar-Parsi and Behrooz Karngar-Parsi,"On Problem 5- lving with Hopfield Neural Networks", CAR-TR-462, CS-TR...Second. the hypercube connections support logarithmic implementations of fundamental parallel algorithms. such as grid permutations and scan...the pose space. It also uses a set of virtual processors to represent an orthogonal projection grid , and projections of the six dimensional pose space
Kim, Seongkyun; Kim, Hyoungkyu; Kralik, Jerald D.; Jeong, Jaeseung
2016-01-01
Determining the fundamental architectural design of complex nervous systems will lead to significant medical and technological advances. Yet it remains unclear how nervous systems evolved highly efficient networks with near optimal sharing of pathways that yet produce multiple distinct behaviors to reach the organism’s goals. To determine this, the nematode roundworm Caenorhabditis elegans is an attractive model system. Progress has been made in delineating the behavioral circuits of the C. elegans, however, many details are unclear, including the specific functions of every neuron and synapse, as well as the extent the behavioral circuits are separate and parallel versus integrative and serial. Network analysis provides a normative approach to help specify the network design. We investigated the vulnerability of the Caenorhabditis elegans connectome by performing computational experiments that (a) “attacked” 279 individual neurons and 2,990 weighted synaptic connections (composed of 6,393 chemical synapses and 890 electrical junctions) and (b) quantified the effects of each removal on global network properties that influence information processing. The analysis identified 12 critical neurons and 29 critical synapses for establishing fundamental network properties. These critical constituents were found to be control elements—i.e., those with the most influence over multiple underlying pathways. Additionally, the critical synapses formed into circuit-level pathways. These emergent pathways provide evidence for (a) the importance of backward locomotion, avoidance behavior, and social feeding behavior to the organism; (b) the potential roles of specific neurons whose functions have been unclear; and (c) both parallel and serial design elements in the connectome—i.e., specific evidence for a mixed architectural design. PMID:27540747
Massively parallel GPU-accelerated minimization of classical density functional theory
NASA Astrophysics Data System (ADS)
Stopper, Daniel; Roth, Roland
2017-08-01
In this paper, we discuss the ability to numerically minimize the grand potential of hard disks in two-dimensional and of hard spheres in three-dimensional space within the framework of classical density functional and fundamental measure theory on modern graphics cards. Our main finding is that a massively parallel minimization leads to an enormous performance gain in comparison to standard sequential minimization schemes. Furthermore, the results indicate that in complex multi-dimensional situations, a heavy parallel minimization of the grand potential seems to be mandatory in order to reach a reasonable balance between accuracy and computational cost.
Veit, Lena; Pidpruzhnykova, Galyna; Nieder, Andreas
2015-01-01
The ability to form associations between behaviorally relevant sensory stimuli is fundamental for goal-directed behaviors. We investigated neuronal activity in the telencephalic area nidopallium caudolaterale (NCL) while two crows (Corvus corone) performed a delayed association task. Whereas some paired associates were familiar to the crows, novel associations had to be learned and mapped to the same target stimuli within a single session. We found neurons that prospectively encoded the chosen test item during the delay for both familiar and newly learned associations. These neurons increased their selectivity during learning in parallel with the crows' increased behavioral performance. Thus, sustained activity in the NCL actively processes information for the upcoming behavioral choice. These data provide new insights into memory representations of behaviorally meaningful stimuli in birds, and how such representations are formed during learning. The findings suggest that the NCL plays a role in learning arbitrary associations, a cornerstone of corvids’ remarkable behavioral flexibility and adaptability. PMID:26598669
UV-light-driven prebiotic synthesis of iron-sulfur clusters
NASA Astrophysics Data System (ADS)
Bonfio, Claudia; Valer, Luca; Scintilla, Simone; Shah, Sachin; Evans, David J.; Jin, Lin; Szostak, Jack W.; Sasselov, Dimitar D.; Sutherland, John D.; Mansy, Sheref S.
2017-12-01
Iron-sulfur clusters are ancient cofactors that play a fundamental role in metabolism and may have impacted the prebiotic chemistry that led to life. However, it is unclear whether iron-sulfur clusters could have been synthesized on prebiotic Earth. Dissolved iron on early Earth was predominantly in the reduced ferrous state, but ferrous ions alone cannot form polynuclear iron-sulfur clusters. Similarly, free sulfide may not have been readily available. Here we show that UV light drives the synthesis of [2Fe-2S] and [4Fe-4S] clusters through the photooxidation of ferrous ions and the photolysis of organic thiols. Iron-sulfur clusters coordinate to and are stabilized by a wide range of cysteine-containing peptides and the assembly of iron-sulfur cluster-peptide complexes can take place within model protocells in a process that parallels extant pathways. Our experiments suggest that iron-sulfur clusters may have formed easily on early Earth, facilitating the emergence of an iron-sulfur-cluster-dependent metabolism.
Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers
Cheary, R. W.; Coelho, A. A.; Cline, J. P.
2004-01-01
The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594
Russell, Thomas P.; Hong, Sung Woo; Lee, Doug Hyun; Park, Soojin; Xu, Ting
2015-10-13
A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Thomas P.; Hong, Sung Woo; Lee, Dong Hyun
A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.
Architecture-Adaptive Computing Environment: A Tool for Teaching Parallel Programming
NASA Technical Reports Server (NTRS)
Dorband, John E.; Aburdene, Maurice F.
2002-01-01
Recently, networked and cluster computation have become very popular. This paper is an introduction to a new C based parallel language for architecture-adaptive programming, aCe C. The primary purpose of aCe (Architecture-adaptive Computing Environment) is to encourage programmers to implement applications on parallel architectures by providing them the assurance that future architectures will be able to run their applications with a minimum of modification. A secondary purpose is to encourage computer architects to develop new types of architectures by providing an easily implemented software development environment and a library of test applications. This new language should be an ideal tool to teach parallel programming. In this paper, we will focus on some fundamental features of aCe C.
That Over-Used and Much-Abused 4-Letter Word: DATA
NASA Astrophysics Data System (ADS)
Griffin, Elizabeth M.
2015-08-01
In its prime state, DATA is a Latin word meaning "[things] given", a plural noun derived from the verb "To Give". Its singular form is DATUM. Modern conversation equates DATA with "Information", while modern philosophies on information management are getting entwined with parallel philosophies on knowledge management. In some ways that is a positive development, and is greatly assisted by Open Access and Internet policies, but in others it is more detrimental, by threatening to blur the essential distinction between objectivity and subjectivity in our science. We examine that essentialdistinction from the view-points of observers, authors (and publishers), and database managers, and suggest where, when and how the distinctiveness of their fundamental contributions to the communication and validation of research results should be respected and upheld.
That over-used and much abused 4-letter word: DATA
NASA Astrophysics Data System (ADS)
Griffin, Elizabeth
2016-10-01
In its prime state, DATA is a Latin word meaning ``[things] given'', a plural noun derived from the verb ``To Give''. Its singular form is DATUM. Modern conversation equates DATA with ``Information'', while modern philosophies on information management are getting entwined with parallel philosophies on knowledge management. In some ways that is a positive development, and is greatly assisted by Open Access and Internet policies, but in others it is more detrimental, by threatening to blur the essential distinction between objectivity and subjectivity in our science. We examine that essential distinction from the view-points of observers, authors (and publishers), and database managers, and suggest where, when and how the distinctiveness of their fundamental contributions to the communication and validation of research results should be respected and upheld.
An object-oriented approach to nested data parallelism
NASA Technical Reports Server (NTRS)
Sheffler, Thomas J.; Chatterjee, Siddhartha
1994-01-01
This paper describes an implementation technique for integrating nested data parallelism into an object-oriented language. Data-parallel programming employs sets of data called 'collections' and expresses parallelism as operations performed over the elements of a collection. When the elements of a collection are also collections, then there is the possibility for 'nested data parallelism.' Few current programming languages support nested data parallelism however. In an object-oriented framework, a collection is a single object. Its type defines the parallel operations that may be applied to it. Our goal is to design and build an object-oriented data-parallel programming environment supporting nested data parallelism. Our initial approach is built upon three fundamental additions to C++. We add new parallel base types by implementing them as classes, and add a new parallel collection type called a 'vector' that is implemented as a template. Only one new language feature is introduced: the 'foreach' construct, which is the basis for exploiting elementwise parallelism over collections. The strength of the method lies in the compilation strategy, which translates nested data-parallel C++ into ordinary C++. Extracting the potential parallelism in nested 'foreach' constructs is called 'flattening' nested parallelism. We show how to flatten 'foreach' constructs using a simple program transformation. Our prototype system produces vector code which has been successfully run on workstations, a CM-2, and a CM-5.
NASA Astrophysics Data System (ADS)
Heo, Joonseong; Kwon, Hyukjin J.; Jeon, Hyungkook; Kim, Bumjoo; Kim, Sung Jae; Lim, Geunbae
2014-07-01
Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation.Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00350k
The role of bed-parallel slip in the development of complex normal fault zones
NASA Astrophysics Data System (ADS)
Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros
2017-04-01
Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.
NASA Astrophysics Data System (ADS)
Zaretski, Aliaksandr V.; Marin, Brandon C.; Moetazedi, Herad; Dill, Tyler J.; Jibril, Liban; Kong, Casey; Tao, Andrea R.; Lipomi, Darren J.
2015-09-01
This paper describes a new technique, termed "metal-assisted exfoliation," for the scalable transfer of graphene from catalytic copper foils to flexible polymeric supports. The process is amenable to roll-to-roll manufacturing, and the copper substrate can be recycled. We then demonstrate the use of single-layer graphene as a template for the formation of sub-nanometer plasmonic gaps using a scalable fabrication process called "nanoskiving." These gaps are formed between parallel gold nanowires in a process that first produces three-layer thin films with the architecture gold/single-layer graphene/gold, and then sections the composite films with an ultramicrotome. The structures produced can be treated as two gold nanowires separated along their entire lengths by an atomically thin graphene nanoribbon. Oxygen plasma etches the sandwiched graphene to a finite depth; this action produces a sub-nanometer gap near the top surface of the junction between the wires that is capable of supporting highly confined optical fields. The confinement of light is confirmed by surface-enhanced Raman spectroscopy measurements, which indicate that the enhancement of the electric field arises from the junction between the gold nanowires. These experiments demonstrate nanoskiving as a unique and easy-to-implement fabrication technique that is capable of forming sub-nanometer plasmonic gaps between parallel metallic nanostructures over long, macroscopic distances. These structures could be valuable for fundamental investigations as well as applications in plasmonics and molecular electronics.
NASA Technical Reports Server (NTRS)
Miquel, J. (Editor); Economos, A. C. (Editor)
1982-01-01
Presentations are given which address the effects of space flght on the older person, the parallels between the physiological responses to weightlessness and the aging process, and experimental possibilities afforded by the weightless environment to fundamental research in gerontology and geriatrics.
Basic research planning in mathematical pattern recognition and image analysis
NASA Technical Reports Server (NTRS)
Bryant, J.; Guseman, L. F., Jr.
1981-01-01
Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.
pWeb: A High-Performance, Parallel-Computing Framework for Web-Browser-Based Medical Simulation.
Halic, Tansel; Ahn, Woojin; De, Suvranu
2014-01-01
This work presents a pWeb - a new language and compiler for parallelization of client-side compute intensive web applications such as surgical simulations. The recently introduced HTML5 standard has enabled creating unprecedented applications on the web. Low performance of the web browser, however, remains the bottleneck of computationally intensive applications including visualization of complex scenes, real time physical simulations and image processing compared to native ones. The new proposed language is built upon web workers for multithreaded programming in HTML5. The language provides fundamental functionalities of parallel programming languages as well as the fork/join parallel model which is not supported by web workers. The language compiler automatically generates an equivalent parallel script that complies with the HTML5 standard. A case study on realistic rendering for surgical simulations demonstrates enhanced performance with a compact set of instructions.
A Framework for Parallel Unstructured Grid Generation for Complex Aerodynamic Simulations
NASA Technical Reports Server (NTRS)
Zagaris, George; Pirzadeh, Shahyar Z.; Chrisochoides, Nikos
2009-01-01
A framework for parallel unstructured grid generation targeting both shared memory multi-processors and distributed memory architectures is presented. The two fundamental building-blocks of the framework consist of: (1) the Advancing-Partition (AP) method used for domain decomposition and (2) the Advancing Front (AF) method used for mesh generation. Starting from the surface mesh of the computational domain, the AP method is applied recursively to generate a set of sub-domains. Next, the sub-domains are meshed in parallel using the AF method. The recursive nature of domain decomposition naturally maps to a divide-and-conquer algorithm which exhibits inherent parallelism. For the parallel implementation, the Master/Worker pattern is employed to dynamically balance the varying workloads of each task on the set of available CPUs. Performance results by this approach are presented and discussed in detail as well as future work and improvements.
The formation of quasi-parallel shocks. [in space, solar and astrophysical plasmas
NASA Technical Reports Server (NTRS)
Cargill, Peter J.
1991-01-01
In a collisionless plasma, the coupling between a piston and the plasma must take place through either laminar or turbulent electromagnetic fields. Of the three types of coupling (laminar, Larmor and turbulent), shock formation in the parallel regime is dominated by the latter and in the quasi-parallel regime by a combination of all three, depending on the piston. In the quasi-perpendicular regime, there is usually a good separation between piston and shock. This is not true in the quasi-parallel and parallel regime. Hybrid numerical simulations for hot plasma pistons indicate that when the electrons are hot, a shock forms, but does not cleanly decouple from the piston. For hot ion pistons, no shock forms in the parallel limit: in the quasi-parallel case, a shock forms, but there is severe contamination from hot piston ions. These results suggest that the properties of solar and astrophysical shocks, such as particle acceleration, cannot be readily separated from their driving mechanism.
Optimistic barrier synchronization
NASA Technical Reports Server (NTRS)
Nicol, David M.
1992-01-01
Barrier synchronization is fundamental operation in parallel computation. In many contexts, at the point a processor enters a barrier it knows that it has already processed all the work required of it prior to synchronization. The alternative case, when a processor cannot enter a barrier with the assurance that it has already performed all the necessary pre-synchronization computation, is treated. The problem arises when the number of pre-sychronization messages to be received by a processor is unkown, for example, in a parallel discrete simulation or any other computation that is largely driven by an unpredictable exchange of messages. We describe an optimistic O(log sup 2 P) barrier algorithm for such problems, study its performance on a large-scale parallel system, and consider extensions to general associative reductions as well as associative parallel prefix computations.
Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Jensen, Mike
2018-01-01
A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical faculties to the retina, while the thalamus is the link that couples the retina to the rest of the brain through activity by gamma oscillations. This novel theory lays groundwork for further research by providing a theoretical understanding that expands upon the functions of the retina, photoreceptors, and retinal plexus to include parallel processing needed to form the internal visual space that we perceive as the external world. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fels, S S; Hinton, G E
1997-01-01
Glove-Talk II is a system which translates hand gestures to speech through an adaptive interface. Hand gestures are mapped continuously to ten control parameters of a parallel formant speech synthesizer. The mapping allows the hand to act as an artificial vocal tract that produces speech in real time. This gives an unlimited vocabulary in addition to direct control of fundamental frequency and volume. Currently, the best version of Glove-Talk II uses several input devices, a parallel formant speech synthesizer, and three neural networks. The gesture-to-speech task is divided into vowel and consonant production by using a gating network to weight the outputs of a vowel and a consonant neural network. The gating network and the consonant network are trained with examples from the user. The vowel network implements a fixed user-defined relationship between hand position and vowel sound and does not require any training examples from the user. Volume, fundamental frequency, and stop consonants are produced with a fixed mapping from the input devices. With Glove-Talk II, the subject can speak slowly but with far more natural sounding pitch variations than a text-to-speech synthesizer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.
Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samplesmore » is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.« less
NASA Astrophysics Data System (ADS)
Zhang, Qi; Wu, Biao
2018-01-01
We present a theoretical framework for the dynamics of bosonic Bogoliubov quasiparticles. We call it Lorentz quantum mechanics because the dynamics is a continuous complex Lorentz transformation in complex Minkowski space. In contrast, in usual quantum mechanics, the dynamics is the unitary transformation in Hilbert space. In our Lorentz quantum mechanics, three types of state exist: space-like, light-like and time-like. Fundamental aspects are explored in parallel to the usual quantum mechanics, such as a matrix form of a Lorentz transformation, and the construction of Pauli-like matrices for spinors. We also investigate the adiabatic evolution in these mechanics, as well as the associated Berry curvature and Chern number. Three typical physical systems, where bosonic Bogoliubov quasi-particles and their Lorentz quantum dynamics can arise, are presented. They are a one-dimensional fermion gas, Bose-Einstein condensate (or superfluid), and one-dimensional antiferromagnet.
Reduce, reuse, and recycle: developmental evolution of trait diversification.
Preston, Jill C; Hileman, Lena C; Cubas, Pilar
2011-03-01
A major focus of evolutionary developmental (evo-devo) studies is to determine the genetic basis of variation in organismal form and function, both of which are fundamental to biological diversification. Pioneering work on metazoan and flowering plant systems has revealed conserved sets of genes that underlie the bauplan of organisms derived from a common ancestor. However, the extent to which variation in the developmental genetic toolkit mirrors variation at the phenotypic level is an active area of research. Here we explore evidence from the angiosperm evo-devo literature supporting the frugal use of genes and genetic pathways in the evolution of developmental patterning. In particular, these examples highlight the importance of genetic pleiotropy in different developmental modules, thus reducing the number of genes required in growth and development, and the reuse of particular genes in the parallel evolution of ecologically important traits.
NASA Astrophysics Data System (ADS)
Zuza, A. V.; Yin, A.; Lin, J. C.
2015-12-01
Parallel evenly-spaced strike-slip faults are prominent in the southern San Andreas fault system, as well as other settings along plate boundaries (e.g., the Alpine fault) and within continental interiors (e.g., the North Anatolian, central Asian, and northern Tibetan faults). In southern California, the parallel San Jacinto, Elsinore, Rose Canyon, and San Clemente faults to the west of the San Andreas are regularly spaced at ~40 km. In the Eastern California Shear Zone, east of the San Andreas, faults are spaced at ~15 km. These characteristic spacings provide unique mechanical constraints on how the faults interact. Despite the common occurrence of parallel strike-slip faults, the fundamental questions of how and why these fault systems form remain unanswered. We address this issue by using the stress shadow concept of Lachenbruch (1961)—developed to explain extensional joints by using the stress-free condition on the crack surface—to present a mechanical analysis of the formation of parallel strike-slip faults that relates fault spacing and brittle-crust thickness to fault strength, crustal strength, and the crustal stress state. We discuss three independent models: (1) a fracture mechanics model, (2) an empirical stress-rise function model embedded in a plastic medium, and (3) an elastic-plate model. The assumptions and predictions of these models are quantitatively tested using scaled analogue sandbox experiments that show that strike-slip fault spacing is linearly related to the brittle-crust thickness. We derive constraints on the mechanical properties of the southern San Andreas strike-slip faults and fault-bounded crust (e.g., local fault strength and crustal/regional stress) given the observed fault spacing and brittle-crust thickness, which is obtained by defining the base of the seismogenic zone with high-resolution earthquake data. Our models allow direct comparison of the parallel faults in the southern San Andreas system with other similar strike-slip fault systems, both on Earth and throughout the solar system (e.g., the Tiger Stripe Fractures on Enceladus).
The Physical Elements of Onset of the Magnetospheric Substorm
NASA Technical Reports Server (NTRS)
Erickson, Gary M.
1997-01-01
During this reporting period effort continued in the areas: (1) understanding the mechanisms responsible for substorm onset, and (2) application of a fundamental description of field-aligned currents and parallel electric fields to the plasma-sheet boundary layer.
NASA Astrophysics Data System (ADS)
Akil, Mohamed
2017-05-01
The real-time processing is getting more and more important in many image processing applications. Image segmentation is one of the most fundamental tasks image analysis. As a consequence, many different approaches for image segmentation have been proposed. The watershed transform is a well-known image segmentation tool. The watershed transform is a very data intensive task. To achieve acceleration and obtain real-time processing of watershed algorithms, parallel architectures and programming models for multicore computing have been developed. This paper focuses on the survey of the approaches for parallel implementation of sequential watershed algorithms on multicore general purpose CPUs: homogeneous multicore processor with shared memory. To achieve an efficient parallel implementation, it's necessary to explore different strategies (parallelization/distribution/distributed scheduling) combined with different acceleration and optimization techniques to enhance parallelism. In this paper, we give a comparison of various parallelization of sequential watershed algorithms on shared memory multicore architecture. We analyze the performance measurements of each parallel implementation and the impact of the different sources of overhead on the performance of the parallel implementations. In this comparison study, we also discuss the advantages and disadvantages of the parallel programming models. Thus, we compare the OpenMP (an application programming interface for multi-Processing) with Ptheads (POSIX Threads) to illustrate the impact of each parallel programming model on the performance of the parallel implementations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A.
The North American industry has employed major solvent-extraction processes to support a wide range of separations including but not limited to chemical, metallurgical, nuclear, biochemical, pharmaceutical, and petroleum applications. The knowledge enabling these separations has been obtained through fundamental studies in academe, government and industry. The International Solvent Extraction Conferences have been and continue to be a major gathering of scientists, engineers, operators, and vendors from around the world, who present new findings since the last meeting, exchange ideas, make business contacts, and conduct collegial discussions. The ISEC 2008 program emphasizes fundamentals to industrial applications of solvent extraction, particularly howmore » this broad spectrum of activities is interconnected and has led to the implementation of novel processes. The oral and poster sessions have been organized into seven topics: Fundamentals; Novel Reagents, Materials and Techniques; Nuclear Fuel Reprocessing; Hydrometallurgy and Metals Extraction; Analytical and Preparative Applications; Biotechnology, Pharmaceuticals, Life-Science Products, and Organic Products; and Process Chemistry and Engineering. Over 350 abstracts were received, resulting in more than 260 manuscripts published in these proceedings. Five outstanding plenary presentations have been identified, with five parallel sessions for oral presentations and posters. In recognition of the major role solvent extraction (SX) plays in the hydrometallurgical and nuclear industries, these proceedings begin with sections focusing on hydrometallurgy, process chemistry, and engineering. More fundamental topics follow, including sections on novel reagents, materials, and techniques, featuring novel applications in analytical and biotechnology areas. Despite the diversity of topics and ideas represented, however, the primary focus of the ISEC community continues to be metals extraction. Four papers from these proceedings have been entered already in INIS in the form of individual reports. Among the remaining papers, 60 have been selected from the following sessions: Plenary Lectures, Hydrometallurgy and Metals Extraction, Nuclear Fuel Reprocessing, Analytical and Preparative Applications, Fundamentals, and Novel Reagents, Materials, and Techniques.« less
The mettle of moral fundamentalism: a reply to Robert Baker.
Beauchamp, Tom L
1998-12-01
This article is a reply to Robert Baker's attempt to rebut moral fundamentalism, while grounding international bioethics in a form of contractarianism. Baker is mistaken in several of his interpretations of the alleged moral fundamentalism and findings of the Advisory Committee on Human Radiation Experiments. He also misunderstands moral fundamentalism generally and wrongly categorizes it as morally bankrupt. His negotiated contract model is, in the final analysis, itself a form of the moral fundamentalism he declares bankrupt.
Stability of Iowa mutant and wild type Aβ-peptide aggregates
NASA Astrophysics Data System (ADS)
Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E.
2014-11-01
Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.
Bridging views in cinema: a review of the art and science of view integration.
Levin, Daniel T; Baker, Lewis J
2017-09-01
Recently, there has been a surge of interest in the relationship between film and cognitive science. This is reflected in a new science of cinema that can help us both to understand this art form, and to produce new insights about cognition and perception. In this review, we begin by describing how the initial development of cinema involved close observation of audience response. This allowed filmmakers to develop an informal theory of visual cognition that helped them to isolate and creatively recombine fundamental elements of visual experience. We review research exploring naturalistic forms of visual perception and cognition that have opened the door to a productive convergence between the dynamic visual art of cinema and science of visual cognition that can enrich both. In particular, we discuss how parallel understandings of view integration in cinema and in cognitive science have been converging to support a new understanding of meaningful visual experience. WIREs Cogn Sci 2017, 8:e1436. doi: 10.1002/wcs.1436 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
Evaluating Statistical Targets for Assembling Parallel Mixed-Format Test Forms
ERIC Educational Resources Information Center
Debeer, Dries; Ali, Usama S.; van Rijn, Peter W.
2017-01-01
Test assembly is the process of selecting items from an item pool to form one or more new test forms. Often new test forms are constructed to be parallel with an existing (or an ideal) test. Within the context of item response theory, the test information function (TIF) or the test characteristic curve (TCC) are commonly used as statistical…
Rinne test: does the tuning fork position affect the sound amplitude at the ear?
Butskiy, Oleksandr; Ng, Denny; Hodgson, Murray; Nunez, Desmond A
2016-03-24
Guidelines and text-book descriptions of the Rinne test advise orienting the tuning fork tines in parallel with the longitudinal axis of the external auditory canal (EAC), presumably to maximise the amplitude of the air conducted sound signal at the ear. Whether the orientation of the tuning fork tines affects the amplitude of the sound signal at the ear in clinical practice has not been previously reported. The present study had two goals: determine if (1) there is clinician variability in tuning fork placement when presenting the air-conduction stimulus during the Rinne test; (2) the orientation of the tuning fork tines, parallel versus perpendicular to the EAC, affects the sound amplitude at the ear. To assess the variability in performing the Rinne test, the Canadian Society of Otolaryngology - Head and Neck Surgery members were surveyed. The amplitudes of the sound delivered to the tympanic membrane with the activated tuning fork tines held in parallel, and perpendicular to, the longitudinal axis of the EAC were measured using a Knowles Electronics Mannequin for Acoustic Research (KEMAR) with the microphone of a sound level meter inserted in the pinna insert. 47.4 and 44.8% of 116 survey responders reported placing the fork parallel and perpendicular to the EAC respectively. The sound intensity (sound-pressure level) recorded at the tympanic membrane with the 512 Hz tuning fork tines in parallel with as opposed to perpendicular to the EAC was louder by 2.5 dB (95% CI: 1.35, 3.65 dB; p < 0.0001) for the fundamental frequency (512 Hz), and by 4.94 dB (95% CI: 3.10, 6.78 dB; p < 0.0001) and 3.70 dB (95% CI: 1.62, 5.78 dB; p = .001) for the two harmonic (non-fundamental) frequencies (1 and 3.15 kHz), respectively. The 256 Hz tuning fork in parallel with the EAC as opposed to perpendicular to was louder by 0.83 dB (95% CI: -0.26, 1.93 dB; p = 0.14) for the fundamental frequency (256 Hz), and by 4.28 dB (95% CI: 2.65, 5.90 dB; p < 0.001) and 1.93 dB (95% CI: 0.26, 3.61 dB; p = .02) for the two harmonic frequencies (500 and 4 kHz) respectively. Clinicians vary in their orientation of the tuning fork tines in relation to the EAC when performing the Rinne test. Placement of the tuning fork tines in parallel as opposed to perpendicular to the EAC results in a higher sound amplitude at the level of the tympanic membrane.
Peak-picking fundamental period estimation for hearing prostheses.
Howard, D M
1989-09-01
A real-time peak-picking fundamental period estimation device is described which is used in advanced hearing prostheses for the totally and profoundly deafened. The operation of the peak picker is compared with three well-established fundamental frequency estimation techniques: the electrolaryngograph, which is used as a "standard" hardware implementations of the cepstral technique, and the Gold/Rabiner parallel processing algorithm. These comparisons illustrate and highlight some of the important advantages and disadvantages that characterize the operation of these techniques. The special requirements of the hearing prostheses are discussed with respect to the operation of each device, and the choice of the peak picker is found to be felicitous in this application.
Seismic analysis of parallel structures coupled by lead extrusion dampers
NASA Astrophysics Data System (ADS)
Patel, C. C.
2017-06-01
In this paper, the response behaviors of two parallel structures coupled by Lead Extrusion Dampers (LED) under various earthquake ground motion excitations are investigated. The equation of motion for the two parallel, multi-degree-of-freedom (MDOF) structures connected by LEDs is formulated. To explore the viability of LED to control the responses, namely displacement, acceleration and shear force of parallel coupled structures, the numerical study is done in two parts: (1) two parallel MDOF structures connected with LEDs having same damper damping in all the dampers and (2) two parallel MDOF structures connected with LEDs having different damper damping. A parametric study is conducted to investigate the optimum damping of the dampers. Moreover, to limit the cost of the dampers, the study is conducted with only 50% of total dampers at optimal locations, instead of placing the dampers at all the floor level. Results show that LEDs connecting the parallel structures of different fundamental frequencies, the earthquake-induced responses of either structure can be effectively reduced. Further, it is not necessary to connect the two structures at all floors; however, lesser damper at appropriate locations can significantly reduce the earthquake response of the coupled system, thus reducing the cost of the dampers significantly.
Simultaneous chromatic and luminance human electroretinogram responses.
Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan
2012-07-01
The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats' ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing.
Kozhevnikov, V.; Valente-Feliciano, A. -M.; Curran, P. J.; ...
2017-05-17
The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has since been considered a well-established part of classical superconductivity. However, upon closer examination a number of fundamental issues arises that leads one to question this standard picture. To address these issues we studied equilibrium properties of niobium samples near and above the upper critical field H c2 in parallel and perpendicular magnetic fields. The samples investigated were very high quality films and single-crystal disks with the Ginzburg-Landau parameters 0.8 and 1.3, respectively. A range of complementary measurements has been performed, which include dcmore » magnetometry, electrical transport, muon spin rotation spectroscopy, and scanning Hall-probe microscopy. Contrary to the standard scenario, we observed that a superconducting phase is present in the sample bulk above H c2 and the field H c3 is the same in both parallel and perpendicular fields. Our findings suggest that above H c2 the superconducting phase forms filaments parallel to the field regardless of the field orientation. Near H c2 the filaments preserve the hexagonal structure of the preceding vortex lattice of the mixed state, and the filament density continuously falls to zero at H c3. Finally, our paper has important implications for the correct interpretation of the properties of type-II superconductors and can be essential for practical applications of these materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Weber, Gunther H.
2014-03-31
Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.
Fels, S S; Hinton, G E
1998-01-01
Glove-TalkII is a system which translates hand gestures to speech through an adaptive interface. Hand gestures are mapped continuously to ten control parameters of a parallel formant speech synthesizer. The mapping allows the hand to act as an artificial vocal tract that produces speech in real time. This gives an unlimited vocabulary in addition to direct control of fundamental frequency and volume. Currently, the best version of Glove-TalkII uses several input devices (including a Cyberglove, a ContactGlove, a three-space tracker, and a foot pedal), a parallel formant speech synthesizer, and three neural networks. The gesture-to-speech task is divided into vowel and consonant production by using a gating network to weight the outputs of a vowel and a consonant neural network. The gating network and the consonant network are trained with examples from the user. The vowel network implements a fixed user-defined relationship between hand position and vowel sound and does not require any training examples from the user. Volume, fundamental frequency, and stop consonants are produced with a fixed mapping from the input devices. One subject has trained to speak intelligibly with Glove-TalkII. He speaks slowly but with far more natural sounding pitch variations than a text-to-speech synthesizer.
Smirni, Daniela; Smirni, Pietro; Di Martino, Giovanni; Cipolotti, Lisa; Oliveri, Massimiliano; Turriziani, Patrizia
2018-05-04
In the neuropsychological assessment of several neurological conditions, recognition memory evaluation is requested. Recognition seems to be more appropriate than recall to study verbal and non-verbal memory, because interferences of psychological and emotional disorders are less relevant in the recognition than they are in recall memory paradigms. In many neurological disorders, longitudinal repeated assessments are needed to monitor the effectiveness of rehabilitation programs or pharmacological treatments on the recovery of memory. In order to contain the practice effect in repeated neuropsychological evaluations, it is necessary the use of parallel forms of the tests. Having two parallel forms of the same test, that kept administration procedures and scoring constant, is a great advantage in both clinical practice, for the monitoring of memory disorder, and in experimental practice, to allow the repeated evaluation of memory on healthy and neurological subjects. First aim of the present study was to provide normative values in an Italian sample (n = 160) for a parallel form of a verbal and non-verbal recognition memory battery. Multiple regression analysis revealed significant effects of age and education on recognition memory performance, whereas sex did not reach a significant probability level. Inferential cutoffs have been determined and equivalent scores computed. Secondly, the study aimed to validate the equivalence of the two parallel forms of the Recognition Memory Test. The correlations analyses between the total scores of the two versions of the test and correlation between the three subtasks revealed that the two forms are parallel and the subtasks are equivalent for difficulty.
Wang, Zi-Fu; Li, Ming-Hao; Chen, Wei-Wen; Hsu, Shang-Te Danny; Chang, Ta-Chau
2016-01-01
The folding topology of DNA G-quadruplexes (G4s) depends not only on their nucleotide sequences but also on environmental factors and/or ligand binding. Here, a G4 ligand, 3,6-bis(1-methyl-4-vinylpyridium iodide)-9-(1-(1-methyl-piperidinium iodide)-3,6,9-trioxaundecane) carbazole (BMVC-8C3O), can induce topological conversion of non-parallel to parallel forms in human telomeric DNA G4s. Nuclear magnetic resonance (NMR) spectroscopy with hydrogen-deuterium exchange (HDX) reveals the presence of persistent imino proton signals corresponding to the central G-quartet during topological conversion of Tel23 and Tel25 G4s from hybrid to parallel forms, implying that the transition pathway mainly involves local rearrangements. In contrast, rapid HDX was observed during the transition of 22-CTA G4 from an anti-parallel form to a parallel form, resulting in complete disappearance of all the imino proton signals, suggesting the involvement of substantial unfolding events associated with the topological transition. Site-specific imino proton NMR assignments of Tel23 G4 enable determination of the interconversion rates of individual guanine bases and detection of the presence of intermediate states. Since the rate of ligand binding is much higher than the rate of ligand-induced topological conversion, a three-state kinetic model was evoked to establish the associated energy diagram for the topological conversion of Tel23 G4 induced by BMVC-8C3O. PMID:26975658
Maximal clique enumeration with data-parallel primitives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lessley, Brenton; Perciano, Talita; Mathai, Manish
The enumeration of all maximal cliques in an undirected graph is a fundamental problem arising in several research areas. We consider maximal clique enumeration on shared-memory, multi-core architectures and introduce an approach consisting entirely of data-parallel operations, in an effort to achieve efficient and portable performance across different architectures. We study the performance of the algorithm via experiments varying over benchmark graphs and architectures. Overall, we observe that our algorithm achieves up to a 33-time speedup and 9-time speedup over state-of-the-art distributed and serial algorithms, respectively, for graphs with higher ratios of maximal cliques to total cliques. Further, we attainmore » additional speedups on a GPU architecture, demonstrating the portable performance of our data-parallel design.« less
Distributed Optimal Power Flow of AC/DC Interconnected Power Grid Using Synchronous ADMM
NASA Astrophysics Data System (ADS)
Liang, Zijun; Lin, Shunjiang; Liu, Mingbo
2017-05-01
Distributed optimal power flow (OPF) is of great importance and challenge to AC/DC interconnected power grid with different dispatching centres, considering the security and privacy of information transmission. In this paper, a fully distributed algorithm for OPF problem of AC/DC interconnected power grid called synchronous ADMM is proposed, and it requires no form of central controller. The algorithm is based on the fundamental alternating direction multiplier method (ADMM), by using the average value of boundary variables of adjacent regions obtained from current iteration as the reference values of both regions for next iteration, which realizes the parallel computation among different regions. The algorithm is tested with the IEEE 11-bus AC/DC interconnected power grid, and by comparing the results with centralized algorithm, we find it nearly no differences, and its correctness and effectiveness can be validated.
Biaxial ferromagnetic liquid crystal colloids
Liu, Qingkun; Ackerman, Paul J.; Lubensky, Tom C.; Smalyukh, Ivan I.
2016-01-01
The design and practical realization of composite materials that combine fluidity and different forms of ordering at the mesoscopic scale are among the grand fundamental science challenges. These composites also hold a great potential for technological applications, ranging from information displays to metamaterials. Here we introduce a fluid with coexisting polar and biaxial ordering of organic molecular and magnetic colloidal building blocks exhibiting the lowest symmetry orientational order. Guided by interactions at different length scales, rod-like organic molecules of this fluid spontaneously orient along a direction dubbed “director,” whereas magnetic colloidal nanoplates order with their dipole moments parallel to each other but pointing at an angle to the director, yielding macroscopic magnetization at no external fields. Facile magnetic switching of such fluids is consistent with predictions of a model based on competing actions of elastic and magnetic torques, enabling previously inaccessible control of light. PMID:27601668
3D calcite heterostructures for dynamic and deformable mineralized matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Jaeseok; Wang, Yucai; Jiang, Yuanwen
Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone. Individual calcite crystals exhibit asymmetrical dumbbell shapes and are prepared by a parallel tectonic approach under ambient conditions. Furthermore, the silicone matrix immobilizes the epitaxial nucleation sites through self-templated cavities, which enables symmetry breaking in reactionmore » dynamics and scalable manipulation of the mineral ensembles. With this platform, we devise several mineral-enabled dynamic surfaces and interfaces. For example, we show that the induced growth of minerals yields localized inorganic adhesion for biological tissue and reversible focal encapsulation for sensitive components in flexible electronics.« less
Intention, procedure, outcome and personhood in palliative sedation and euthanasia.
Materstvedt, Lars Johan
2012-03-01
Palliative sedation at the end of life has become an important last-resort treatment strategy for managing refractory symptoms as well as a topic of controversy within palliative care. Furthermore, palliative sedation is prominent in the public debate about the possible legalisation of voluntary assisted dying (physician-assisted suicide and euthanasia). This article attempts to demonstrate that palliative sedation is fundamentally different from euthanasia when it comes to intention, procedure, outcome and the status of the person. Nonetheless, palliative sedation in its most radical form of terminal deep sedation parallels euthanasia in one respect: both end the experience of suffering. However, only the latter intentionally ends life and also has this as its goal. There is the danger that deep sedation could bring death forward in time due to particular side effects of the treatment. Still that would, if it happens, not be intended, and accordingly is defensible in view of the doctrine of double effect.
Splitter target for controlling magnetic reconnection in relativistic laser plasma interactions
NASA Astrophysics Data System (ADS)
Gu, Y. J.; Bulanov, S. S.; Korn, G.; Bulanov, S. V.
2018-04-01
The utilization of a conical target irradiated by a high power laser is proposed to study fast magnetic reconnection in relativistic plasma interactions. Such target, placed in front of the near critical density gas jet, splits the laser pulse, forming two parallel laser pulses in the 2D case and a donut shaped pulse in the 3D case. The magnetic annihilation and reconnection occur in the density downramp region of the subsequent gas jet. The magnetic field energy is converted into the particle kinetic energy. As a result, a backward accelerated electron beam is obtained as a signature of reconnection. The above mechanisms are demonstrated using particle-in-cell simulations in both 2D and 3D cases. Facilitating the synchronization of two laser beams, the proposed approach can be used in designing the corresponding experiments on studying fundamental problems of relativistic plasma physics.
3D calcite heterostructures for dynamic and deformable mineralized matrices
Yi, Jaeseok; Wang, Yucai; Jiang, Yuanwen; ...
2017-09-11
Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone. Individual calcite crystals exhibit asymmetrical dumbbell shapes and are prepared by a parallel tectonic approach under ambient conditions. Furthermore, the silicone matrix immobilizes the epitaxial nucleation sites through self-templated cavities, which enables symmetry breaking in reactionmore » dynamics and scalable manipulation of the mineral ensembles. With this platform, we devise several mineral-enabled dynamic surfaces and interfaces. For example, we show that the induced growth of minerals yields localized inorganic adhesion for biological tissue and reversible focal encapsulation for sensitive components in flexible electronics.« less
Protocols for self-assembly and imaging of DNA nanostructures.
Sobey, Thomas L; Simmel, Friedrich C
2011-01-01
Programed molecular structures allow us to research and make use of physical, chemical, and biological effects at the nanoscale. They are an example of the "bottom-up" approach to nanotechnology, with structures forming through self-assembly. DNA is a particularly useful molecule for this purpose, and some of its advantages include parallel (as opposed to serial) assembly, naturally occurring "tools," such as enzymes and proteins for making modifications and attachments, and structural dependence on base sequence. This allows us to develop one, two, and three dimensional structures that are interesting for their fundamental physical and chemical behavior, and for potential applications such as biosensors, medical diagnostics, molecular electronics, and efficient light-harvesting systems. We describe five techniques that allow one to assemble and image such structures: concentration measurement by ultraviolet absorption, titration gel electrophoresis, thermal annealing, fluorescence microscopy, and atomic force microscopy in fluids.
NASA Astrophysics Data System (ADS)
Srivastava, D. P.; Sahni, V.; Satsangi, P. S.
2014-08-01
Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors "ket 0" and "ket 1" constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.
Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael
2012-06-01
We present l₁-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative self-consistent parallel imaging (SPIRiT). Like many iterative magnetic resonance imaging reconstructions, l₁-SPIRiT's image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing l₁-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of l₁-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT spoiled gradient echo (SPGR) sequence with up to 8× acceleration via Poisson-disc undersampling in the two phase-encoded directions.
Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael
2012-01-01
We present ℓ1-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the Wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative Self-Consistent Parallel Imaging (SPIRiT). Like many iterative MRI reconstructions, ℓ1-SPIRiT’s image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing ℓ1-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of ℓ1-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT Spoiled Gradient Echo (SPGR) sequence with up to 8× acceleration via poisson-disc undersampling in the two phase-encoded directions. PMID:22345529
[Amplitude modulation in sound signals by mammals].
Nikol'skiĭ, A A
2012-01-01
Periodic variations in amplitude of a signal, or amplitude modulation (AM), affect the structure of communicative messages spectrum. Within the spectrum of AM-signals, side frequencies are formed both above and below the carrier frequency that is subjected to modulation. In case of harmonic signal structure they are presented near fundamental frequency as well as near harmonics. Thus, AM may by viewed as a relatively simple mechanism for controlling the spectrum of messages transmitted by mammals. Examples of AM affecting the spectrum structure of functionally different sound signals are discussed as applied to representatives of four orders of mammals: rodents (Reodentia), duplicidentates (Lagomorpha), pinnipeds (Pinnipedia), and paridigitates (Artiodactia). For the first time, the classification of AM in animals' sound signals is given. Five forms of AM are picked out in sound signals by mammals: absence of AM, continuous AM, fragmented, heterogeneous, and multilevel one. AM presence/absence is related neither with belonging to any specific order nor with some particular function of a signal. Similar forms of AM can occur in different orders of mammals in parallel. On the contrary, different forms of AM can be detected in signals meant for similar functions. The assumption is made about AM-signals facilitating information encoding and jamprotection of messages transmitted by mammals. Preliminry analysis indicates that hard-driving amplitude modulation is incompatible with hard-driving frequency modulation.
Transverse conformal Killing forms on Kähler foliations
NASA Astrophysics Data System (ADS)
Jung, Seoung Dal
2015-04-01
On a closed, connected Riemannian manifold with a Kähler foliation of codimension q = 2 m, any transverse Killing r(≥ 2) -form is parallel (Jung and Jung, 2012). In this paper, we study transverse conformal Killing forms on Kähler foliations. In fact, if the foliation is minimal, then for any transverse conformal Killing r-form ϕ(2 ≤ r ≤ q - 2), Jϕ is parallel. Here J is defined in Section 4.
NASA Astrophysics Data System (ADS)
Shi, X.
2015-12-01
As NSF indicated - "Theory and experimentation have for centuries been regarded as two fundamental pillars of science. It is now widely recognized that computational and data-enabled science forms a critical third pillar." Geocomputation is the third pillar of GIScience and geosciences. With the exponential growth of geodata, the challenge of scalable and high performance computing for big data analytics become urgent because many research activities are constrained by the inability of software or tool that even could not complete the computation process. Heterogeneous geodata integration and analytics obviously magnify the complexity and operational time frame. Many large-scale geospatial problems may be not processable at all if the computer system does not have sufficient memory or computational power. Emerging computer architectures, such as Intel's Many Integrated Core (MIC) Architecture and Graphics Processing Unit (GPU), and advanced computing technologies provide promising solutions to employ massive parallelism and hardware resources to achieve scalability and high performance for data intensive computing over large spatiotemporal and social media data. Exploring novel algorithms and deploying the solutions in massively parallel computing environment to achieve the capability for scalable data processing and analytics over large-scale, complex, and heterogeneous geodata with consistent quality and high-performance has been the central theme of our research team in the Department of Geosciences at the University of Arkansas (UARK). New multi-core architectures combined with application accelerators hold the promise to achieve scalability and high performance by exploiting task and data levels of parallelism that are not supported by the conventional computing systems. Such a parallel or distributed computing environment is particularly suitable for large-scale geocomputation over big data as proved by our prior works, while the potential of such advanced infrastructure remains unexplored in this domain. Within this presentation, our prior and on-going initiatives will be summarized to exemplify how we exploit multicore CPUs, GPUs, and MICs, and clusters of CPUs, GPUs and MICs, to accelerate geocomputation in different applications.
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey
2001-01-01
A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between then NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Glenn Research Center (LeRC), and Pratt & Whitney (P&W). The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration. The development of the NCC beta version was essentially completed in June 1998. Technical details of the NCC elements are given in the Reference List. Elements such as the baseline flow solver, turbulence module, and the chemistry module, have been extensively validated; and their parallel performance on large-scale parallel systems has been evaluated and optimized. However the scalar PDF module and the Spray module, as well as their coupling with the baseline flow solver, were developed in a small-scale distributed computing environment. As a result, the validation of the NCC beta version as a whole was quite limited. Current effort has been focused on the validation of the integrated code and the evaluation/optimization of its overall performance on large-scale parallel systems.
ERIC Educational Resources Information Center
Watson, Joan Q.
These 24 self-contained competency-based modules are designed to acquaint Florida adult students with laws they will meet in everyday life; fundamentals of local, state, and federal governments; and the criminal and juvenile justice systems. (The 130 objectives are categorized in the first three levels of the Cognitive Domain and parallel the…
Practical Application of Fundamental Concepts in Exercise Physiology
ERIC Educational Resources Information Center
Ramsbottom R.; Kinch, R. F. T.; Morris, M. G.; Dennis, A. M.
2007-01-01
The collection of primary data in laboratory classes enhances undergraduate practical and critical thinking skills. The present article describes the use of a lecture program, running in parallel with a series of linked practical classes, that emphasizes classical or standard concepts in exercise physiology. The academic and practical program ran…
Synthetic consciousness: the distributed adaptive control perspective
2016-01-01
Understanding the nature of consciousness is one of the grand outstanding scientific challenges. The fundamental methodological problem is how phenomenal first person experience can be accounted for in a third person verifiable form, while the conceptual challenge is to both define its function and physical realization. The distributed adaptive control theory of consciousness (DACtoc) proposes answers to these three challenges. The methodological challenge is answered relative to the hard problem and DACtoc proposes that it can be addressed using a convergent synthetic methodology using the analysis of synthetic biologically grounded agents, or quale parsing. DACtoc hypothesizes that consciousness in both its primary and secondary forms serves the ability to deal with the hidden states of the world and emerged during the Cambrian period, affording stable multi-agent environments to emerge. The process of consciousness is an autonomous virtualization memory, which serializes and unifies the parallel and subconscious simulations of the hidden states of the world that are largely due to other agents and the self with the objective to extract norms. These norms are in turn projected as value onto the parallel simulation and control systems that are driving action. This functional hypothesis is mapped onto the brainstem, midbrain and the thalamo-cortical and cortico-cortical systems and analysed with respect to our understanding of deficits of consciousness. Subsequently, some of the implications and predictions of DACtoc are outlined, in particular, the prediction that normative bootstrapping of conscious agents is predicated on an intentionality prior. In the view advanced here, human consciousness constitutes the ultimate evolutionary transition by allowing agents to become autonomous with respect to their evolutionary priors leading to a post-biological Anthropocene. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431526
Synthetic consciousness: the distributed adaptive control perspective.
Verschure, Paul F M J
2016-08-19
Understanding the nature of consciousness is one of the grand outstanding scientific challenges. The fundamental methodological problem is how phenomenal first person experience can be accounted for in a third person verifiable form, while the conceptual challenge is to both define its function and physical realization. The distributed adaptive control theory of consciousness (DACtoc) proposes answers to these three challenges. The methodological challenge is answered relative to the hard problem and DACtoc proposes that it can be addressed using a convergent synthetic methodology using the analysis of synthetic biologically grounded agents, or quale parsing. DACtoc hypothesizes that consciousness in both its primary and secondary forms serves the ability to deal with the hidden states of the world and emerged during the Cambrian period, affording stable multi-agent environments to emerge. The process of consciousness is an autonomous virtualization memory, which serializes and unifies the parallel and subconscious simulations of the hidden states of the world that are largely due to other agents and the self with the objective to extract norms. These norms are in turn projected as value onto the parallel simulation and control systems that are driving action. This functional hypothesis is mapped onto the brainstem, midbrain and the thalamo-cortical and cortico-cortical systems and analysed with respect to our understanding of deficits of consciousness. Subsequently, some of the implications and predictions of DACtoc are outlined, in particular, the prediction that normative bootstrapping of conscious agents is predicated on an intentionality prior. In the view advanced here, human consciousness constitutes the ultimate evolutionary transition by allowing agents to become autonomous with respect to their evolutionary priors leading to a post-biological Anthropocene.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).
The emergence of the ecological mind in Hua-Yen/Kegon Buddhism and Jungian psychology.
Cambray, Joe
2017-02-01
The complexity associated with deep interconnectedness in nature is beginning to be articulated and elaborated in the field of ecological studies. While some parallels to the psyche have been made and the field of Eco-psychology has been developing, Jung's explicit contribution by way of the image of rhizomes has not been considered in detail. Philosopher Gilles Deleuze acknowledges borrowing the term from Jung, though he disagreed with Jung's Empedoclean use of the term. The paper presents some fundamental properties of rhizomes along with contemporary scientific research on mycorrhizal (fungal) networks. Comparisons are made, first with classical symbolic forms, demonstrating some overlap but also some differences. Then comparison of rhizomal networks is made to those found both in mammalian brains and in recent images of the 'cosmic web'. While no hard conclusions can be drawn from these images, their remarkable similarities are suggestive of a need to reconsider what is meant by 'intelligence'. The cosmic web is one of the largest structures in the known universe (clusters of galaxies which form into filaments and walls) with empty spaces in between. Exploration of the structure of this web leads to a discussion of dark matter and dark energy, current hot topics in science, probing into the mysteries of our 'Big-Bang' cosmology. An additional comparison of the emerging image of the universe as a whole with the ancient Chinese Buddhist cosmological vision from the Hua-Yen School (Kegon in Japan) again reveals profound parallels. The potential convergence of aspects of subjective, or meditative, explorations with objective scientific constructions is striking and offers links between East and West, as well as potential confirmation of the objective aspects of empathy. © 2017, The Society of Analytical Psychology.
NASA Astrophysics Data System (ADS)
Rastogi, Richa; Srivastava, Abhishek; Khonde, Kiran; Sirasala, Kirannmayi M.; Londhe, Ashutosh; Chavhan, Hitesh
2015-07-01
This paper presents an efficient parallel 3D Kirchhoff depth migration algorithm suitable for current class of multicore architecture. The fundamental Kirchhoff depth migration algorithm exhibits inherent parallelism however, when it comes to 3D data migration, as the data size increases the resource requirement of the algorithm also increases. This challenges its practical implementation even on current generation high performance computing systems. Therefore a smart parallelization approach is essential to handle 3D data for migration. The most compute intensive part of Kirchhoff depth migration algorithm is the calculation of traveltime tables due to its resource requirements such as memory/storage and I/O. In the current research work, we target this area and develop a competent parallel algorithm for post and prestack 3D Kirchhoff depth migration, using hybrid MPI+OpenMP programming techniques. We introduce a concept of flexi-depth iterations while depth migrating data in parallel imaging space, using optimized traveltime table computations. This concept provides flexibility to the algorithm by migrating data in a number of depth iterations, which depends upon the available node memory and the size of data to be migrated during runtime. Furthermore, it minimizes the requirements of storage, I/O and inter-node communication, thus making it advantageous over the conventional parallelization approaches. The developed parallel algorithm is demonstrated and analysed on Yuva II, a PARAM series of supercomputers. Optimization, performance and scalability experiment results along with the migration outcome show the effectiveness of the parallel algorithm.
Learning Quantitative Sequence-Function Relationships from Massively Parallel Experiments
NASA Astrophysics Data System (ADS)
Atwal, Gurinder S.; Kinney, Justin B.
2016-03-01
A fundamental aspect of biological information processing is the ubiquity of sequence-function relationships—functions that map the sequence of DNA, RNA, or protein to a biochemically relevant activity. Most sequence-function relationships in biology are quantitative, but only recently have experimental techniques for effectively measuring these relationships been developed. The advent of such "massively parallel" experiments presents an exciting opportunity for the concepts and methods of statistical physics to inform the study of biological systems. After reviewing these recent experimental advances, we focus on the problem of how to infer parametric models of sequence-function relationships from the data produced by these experiments. Specifically, we retrace and extend recent theoretical work showing that inference based on mutual information, not the standard likelihood-based approach, is often necessary for accurately learning the parameters of these models. Closely connected with this result is the emergence of "diffeomorphic modes"—directions in parameter space that are far less constrained by data than likelihood-based inference would suggest. Analogous to Goldstone modes in physics, diffeomorphic modes arise from an arbitrarily broken symmetry of the inference problem. An analytically tractable model of a massively parallel experiment is then described, providing an explicit demonstration of these fundamental aspects of statistical inference. This paper concludes with an outlook on the theoretical and computational challenges currently facing studies of quantitative sequence-function relationships.
Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method
ERIC Educational Resources Information Center
Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen
2008-01-01
In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…
NASA Astrophysics Data System (ADS)
Maitarad, Amphawan; Poomsuk, Nattawee; Vilaivan, Chotima; Vilaivan, Tirayut; Siriwong, Khatcharin
2018-04-01
Suitable conformations for peptide nucleic acid (PNA) self-hybrids with (2‧R,4‧R)- and (2‧R,4‧S)-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid backbones (namely, acpcPNA and epi-acpcPNA, respectively) were investigated based on molecular dynamics simulations. The results revealed that hybridization of the acpcPNA was observed only in the parallel direction, with a conformation close to the P-type structure. In contrast, self-hybrids of the epi-acpcPNA were formed in the antiparallel and parallel directions; the antiparallel duplex adopted the B-form conformation, and the parallel duplex was between B- and P-forms. The calculated binding energies and the experimental data indicate that the antiparallel epi-acpcPNA self-hybrid was more stable than the parallel duplex.
Corrugated megathrust revealed offshore from Costa Rica
NASA Astrophysics Data System (ADS)
Edwards, Joel H.; Kluesner, Jared W.; Silver, Eli A.; Brodsky, Emily E.; Brothers, Daniel S.; Bangs, Nathan L.; Kirkpatrick, James D.; Wood, Ruby; Okamoto, Kristina
2018-03-01
Exhumed faults are rough, often exhibiting topographic corrugations oriented in the direction of slip; such features are fundamental to mechanical processes that drive earthquakes and fault evolution. However, our understanding of corrugation genesis remains limited due to a lack of in situ observations at depth, especially at subducting plate boundaries. Here we present three-dimensional seismic reflection data of the Costa Rica subduction zone that image a shallow megathrust fault characterized by corrugated, and chaotic and weakly corrugated topographies. The corrugated surfaces extend from near the trench to several kilometres down-dip, exhibit high reflection amplitudes (consistent with high fluid content/pressure) and trend 11-18° oblique to subduction, suggesting 15 to 25 mm yr-1 of trench-parallel slip partitioning across the plate boundary. The corrugations form along portions of the megathrust with greater cumulative slip and may act as fluid conduits. In contrast, weakly corrugated areas occur adjacent to active plate bending faults where the megathrust has migrated up-section, forming a nascent fault surface. The variations in megathrust roughness imaged here suggest that abandonment and then reestablishment of the megathrust up-section transiently increases fault roughness. Analogous corrugations may exist along significant portions of subduction megathrusts globally.
Corrugated megathrust revealed offshore from Costa Rica
Edwards, Joel H.; Kluesner, Jared; Silver, Eli A.; Brodsky, Emily E.; Brothers, Daniel; Bangs, Nathan L.; Kirkpatrick, James D.; Wood, Ruby; Okamato, Kristina
2018-01-01
Exhumed faults are rough, often exhibiting topographic corrugations oriented in the direction of slip; such features are fundamental to mechanical processes that drive earthquakes and fault evolution. However, our understanding of corrugation genesis remains limited due to a lack of in situ observations at depth, especially at subducting plate boundaries. Here we present three-dimensional seismic reflection data of the Costa Rica subduction zone that image a shallow megathrust fault characterized by corrugated, and chaotic and weakly corrugated topographies. The corrugated surfaces extend from near the trench to several kilometres down-dip, exhibit high reflection amplitudes (consistent with high fluid content/pressure) and trend 11–18° oblique to subduction, suggesting 15 to 25 mm yr−1 of trench-parallel slip partitioning across the plate boundary. The corrugations form along portions of the megathrust with greater cumulative slip and may act as fluid conduits. In contrast, weakly corrugated areas occur adjacent to active plate bending faults where the megathrust has migrated up-section, forming a nascent fault surface. The variations in megathrust roughness imaged here suggest that abandonment and then reestablishment of the megathrust up-section transiently increases fault roughness. Analogous corrugations may exist along significant portions of subduction megathrusts globally.
Parallel Activation in Bilingual Phonological Processing
ERIC Educational Resources Information Center
Lee, Su-Yeon
2011-01-01
In bilingual language processing, the parallel activation hypothesis suggests that bilinguals activate their two languages simultaneously during language processing. Support for the parallel activation mainly comes from studies of lexical (word-form) processing, with relatively less attention to phonological (sound) processing. According to…
An Evaluation of Different Statistical Targets for Assembling Parallel Forms in Item Response Theory
Ali, Usama S.; van Rijn, Peter W.
2015-01-01
Assembly of parallel forms is an important step in the test development process. Therefore, choosing a suitable theoretical framework to generate well-defined test specifications is critical. The performance of different statistical targets of test specifications using the test characteristic curve (TCC) and the test information function (TIF) was investigated. Test length, the number of test forms, and content specifications are considered as well. The TCC target results in forms that are parallel in difficulty, but not necessarily in terms of precision. Vice versa, test forms created using a TIF target are parallel in terms of precision, but not necessarily in terms of difficulty. As sometimes the focus is either on TIF or TCC, differences in either difficulty or precision can arise. Differences in difficulty can be mitigated by equating, but differences in precision cannot. In a series of simulations using a real item bank, the two-parameter logistic model, and mixed integer linear programming for automated test assembly, these differences were found to be quite substantial. When both TIF and TCC are combined into one target with manipulation to relative importance, these differences can be made to disappear.
Simultaneous chromatic and luminance human electroretinogram responses
Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan
2012-01-01
The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats’ ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing. PMID:22586211
Hans Driesch and the problems of "normal psychology". Rereading his Crisis in Psychology (1925).
Allesch, Christian G
2012-06-01
In 1925, the German biologist and philosopher Hans Driesch published a booklet entitled The Crisis in Psychology. It was originally published in English and was based on lectures given at various universities in China, Japan and the USA. The "crisis" in psychology of that time, in Driesch's opinion, lies in the necessity to decide about "the road which psychology is to follow in the future". This necessity refers to five "critical points", namely (1) to develop the theory of psychic elements to a theory of meaning by phenomenological analysis, (2) the overcoming of association theory, (3) to acknowledge that the unconscious is a fact and a "normal" aspect of mental life, (4) to reject "psychomechanical parallelism" or any other epiphenomenalistic solution of the mind-body problem, and (5) the extension of psychical research to new facts as described by parapsychology, for instance. Driesch saw close parallels between the development of modern psychology and that of biology, namely in a theoretical shift from "sum-concepts" like association and mechanics, to "totality-concepts" like soul and entelechy. The German translation of 1926 was entitled Grundprobleme der Psychologie (Fundamental Problems of Psychology) while "the crisis in psychology" forms just the subtitle of this book. This underlines that Driesch's argumentation--in contrast to that of Buehler--dealt with ontological questions rather than with paradigms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Salas-Gismondi, Rodolfo; Flynn, John J.; Baby, Patrice; Tejada-Lara, Julia V.; Claude, Julien; Antoine, Pierre-Olivier
2016-01-01
Gavialoid crocodylians are the archetypal longirostrine archosaurs and, as such, understanding their patterns of evolution is fundamental to recognizing cranial rearrangements and reconstructing adaptive pathways associated with elongation of the rostrum (longirostry). The living Indian gharial Gavialis gangeticus is the sole survivor of the group, thus providing unique evidence on the distinctive biology of its fossil kin. Yet phylogenetic relationships and evolutionary ecology spanning ~70 million-years of longirostrine crocodylian diversification remain unclear. Analysis of cranial anatomy of a new proto-Amazonian gavialoid, Gryposuchus pachakamue sp. nov., from the Miocene lakes and swamps of the Pebas Mega-Wetland System reveals that acquisition of both widely separated and protruding eyes (telescoped orbits) and riverine ecology within South American and Indian gavialoids is the result of parallel evolution. Phylogenetic and morphometric analyses show that, in association with longirostry, circumorbital bone configuration can evolve rapidly for coping with trends in environmental conditions and may reflect shifts in feeding strategy. Our results support a long-term radiation of the South American forms, with taxa occupying either extreme of the gavialoid morphospace showing preferences for coastal marine versus fluvial environments. The early biogeographic history of South American gavialoids was strongly linked to the northward drainage system connecting proto-Amazonian wetlands to the Caribbean region. PMID:27097031
Fully accelerating quantum Monte Carlo simulations of real materials on GPU clusters
NASA Astrophysics Data System (ADS)
Esler, Kenneth
2011-03-01
Quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting the properties of matter from fundamental principles, combining very high accuracy with extreme parallel scalability. By solving the many-body Schrödinger equation through a stochastic projection, it achieves greater accuracy than mean-field methods and better scaling with system size than quantum chemical methods, enabling scientific discovery across a broad spectrum of disciplines. In recent years, graphics processing units (GPUs) have provided a high-performance and low-cost new approach to scientific computing, and GPU-based supercomputers are now among the fastest in the world. The multiple forms of parallelism afforded by QMC algorithms make the method an ideal candidate for acceleration in the many-core paradigm. We present the results of porting the QMCPACK code to run on GPU clusters using the NVIDIA CUDA platform. Using mixed precision on GPUs and MPI for intercommunication, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core CPUs alone, while reproducing the double-precision CPU results within statistical error. We discuss the algorithm modifications necessary to achieve good performance on this heterogeneous architecture and present the results of applying our code to molecules and bulk materials. Supported by the U.S. DOE under Contract No. DOE-DE-FG05-08OR23336 and by the NSF under No. 0904572.
Salas-Gismondi, Rodolfo; Flynn, John J; Baby, Patrice; Tejada-Lara, Julia V; Claude, Julien; Antoine, Pierre-Olivier
2016-01-01
Gavialoid crocodylians are the archetypal longirostrine archosaurs and, as such, understanding their patterns of evolution is fundamental to recognizing cranial rearrangements and reconstructing adaptive pathways associated with elongation of the rostrum (longirostry). The living Indian gharial Gavialis gangeticus is the sole survivor of the group, thus providing unique evidence on the distinctive biology of its fossil kin. Yet phylogenetic relationships and evolutionary ecology spanning ~70 million-years of longirostrine crocodylian diversification remain unclear. Analysis of cranial anatomy of a new proto-Amazonian gavialoid, Gryposuchus pachakamue sp. nov., from the Miocene lakes and swamps of the Pebas Mega-Wetland System reveals that acquisition of both widely separated and protruding eyes (telescoped orbits) and riverine ecology within South American and Indian gavialoids is the result of parallel evolution. Phylogenetic and morphometric analyses show that, in association with longirostry, circumorbital bone configuration can evolve rapidly for coping with trends in environmental conditions and may reflect shifts in feeding strategy. Our results support a long-term radiation of the South American forms, with taxa occupying either extreme of the gavialoid morphospace showing preferences for coastal marine versus fluvial environments. The early biogeographic history of South American gavialoids was strongly linked to the northward drainage system connecting proto-Amazonian wetlands to the Caribbean region.
Score Equating and Nominally Parallel Language Tests.
ERIC Educational Resources Information Center
Moy, Raymond
Score equating requires that the forms to be equated are functionally parallel. That is, the two test forms should rank order examinees in a similar fashion. In language proficiency testing situations, this assumption is often put into doubt because of the numerous tests that have been proposed as measures of language proficiency and the…
An Alternative Methodology for Creating Parallel Test Forms Using the IRT Information Function.
ERIC Educational Resources Information Center
Ackerman, Terry A.
The purpose of this paper is to report results on the development of a new computer-assisted methodology for creating parallel test forms using the item response theory (IRT) information function. Recently, several researchers have approached test construction from a mathematical programming perspective. However, these procedures require…
The Potential Impact of Not Being Able to Create Parallel Tests on Expected Classification Accuracy
ERIC Educational Resources Information Center
Wyse, Adam E.
2011-01-01
In many practical testing situations, alternate test forms from the same testing program are not strictly parallel to each other and instead the test forms exhibit small psychometric differences. This article investigates the potential practical impact that these small psychometric differences can have on expected classification accuracy. Ten…
The new landscape of parallel computer architecture
NASA Astrophysics Data System (ADS)
Shalf, John
2007-07-01
The past few years has seen a sea change in computer architecture that will impact every facet of our society as every electronic device from cell phone to supercomputer will need to confront parallelism of unprecedented scale. Whereas the conventional multicore approach (2, 4, and even 8 cores) adopted by the computing industry will eventually hit a performance plateau, the highest performance per watt and per chip area is achieved using manycore technology (hundreds or even thousands of cores). However, fully unleashing the potential of the manycore approach to ensure future advances in sustained computational performance will require fundamental advances in computer architecture and programming models that are nothing short of reinventing computing. In this paper we examine the reasons behind the movement to exponentially increasing parallelism, and its ramifications for system design, applications and programming models.
Update on Development of Mesh Generation Algorithms in MeshKit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay
2015-09-30
MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKitmore » are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.« less
Parallel language constructs for tensor product computations on loosely coupled architectures
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Van Rosendale, John
1989-01-01
A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. The authors focus on tensor product array computations, a simple but important class of numerical algorithms. They consider first the problem of programming one-dimensional kernel routines, such as parallel tridiagonal solvers, and then look at how such parallel kernels can be combined to form parallel tensor product algorithms.
Domains of Civic Engagement in a Constitutional Democracy.
ERIC Educational Resources Information Center
Harris, Will
This paper suggests that a well-composed scheme of civic education does not merely predispose the citizen to political engagement, but more fundamentally, the considered systematic design of civic education parallels the essentials of both the constitutionalism and the democracy to which it gives access and control. This paper aims to draw out…
NAS Applications and Advanced Algorithms
NASA Technical Reports Server (NTRS)
Bailey, David H.; Biswas, Rupak; VanDerWijngaart, Rob; Kutler, Paul (Technical Monitor)
1997-01-01
This paper examines the applications most commonly run on the supercomputers at the Numerical Aerospace Simulation (NAS) facility. It analyzes the extent to which such applications are fundamentally oriented to vector computers, and whether or not they can be efficiently implemented on hierarchical memory machines, such as systems with cache memories and highly parallel, distributed memory systems.
Using Reinforcement Learning to Examine Dynamic Attention Allocation during Reading
ERIC Educational Resources Information Center
Liu, Yanping; Reichle, Erik D.; Gao, Ding-Guo
2013-01-01
A fundamental question in reading research concerns whether attention is allocated strictly serially, supporting lexical processing of one word at a time, or in parallel, supporting concurrent lexical processing of two or more words (Reichle, Liversedge, Pollatsek, & Rayner, 2009). The origins of this debate are reviewed. We then report three…
The Potency of "READS" to Inform Students' Reading Ability
ERIC Educational Resources Information Center
Mohamed, Abdul Rashid; Eng, Lin Siew; Mohamed Ismail, Shaik Abdul Malik
2012-01-01
This paper shares an initiative conducted in Malaysia in terms of knowledge to gauge students' Reading Age and to inform teachers of their students' reading progress and learning. Ensuring teachers understand the needs of students' reading ability and preparing students to read and comprehend texts are the two most fundamental parallel tasks in…
Sleep EEG Changes during Adolescence: An Index of a Fundamental Brain Reorganization
ERIC Educational Resources Information Center
Feinberg, Irwin; Campbell, Ian G.
2010-01-01
Delta (1-4 Hz) EEG power in non-rapid eye movement (NREM) sleep declines massively during adolescence. This observation stimulated the hypothesis that during adolescence the human brain undergoes an extensive reorganization driven by synaptic elimination. The parallel declines in synaptic density, delta wave amplitude and cortical metabolic rate…
ERIC Educational Resources Information Center
McIlvane, William J.
2009-01-01
Throughout its history, laboratory research in the experimental analysis of behavior has been successful in elucidating and clarifying basic learning principles and processes in both humans and nonhumans. In parallel, applied behavior analysis has shown how fundamental behavior-analytic principles and procedures can be employed to promote…
Efficiency of parallel direct optimization
NASA Technical Reports Server (NTRS)
Janies, D. A.; Wheeler, W. C.
2001-01-01
Tremendous progress has been made at the level of sequential computation in phylogenetics. However, little attention has been paid to parallel computation. Parallel computing is particularly suited to phylogenetics because of the many ways large computational problems can be broken into parts that can be analyzed concurrently. In this paper, we investigate the scaling factors and efficiency of random addition and tree refinement strategies using the direct optimization software, POY, on a small (10 slave processors) and a large (256 slave processors) cluster of networked PCs running LINUX. These algorithms were tested on several data sets composed of DNA and morphology ranging from 40 to 500 taxa. Various algorithms in POY show fundamentally different properties within and between clusters. All algorithms are efficient on the small cluster for the 40-taxon data set. On the large cluster, multibuilding exhibits excellent parallel efficiency, whereas parallel building is inefficient. These results are independent of data set size. Branch swapping in parallel shows excellent speed-up for 16 slave processors on the large cluster. However, there is no appreciable speed-up for branch swapping with the further addition of slave processors (>16). This result is independent of data set size. Ratcheting in parallel is efficient with the addition of up to 32 processors in the large cluster. This result is independent of data set size. c2001 The Willi Hennig Society.
First-Principles Design of Novel Catalytic and Chemoresponsive Materials
NASA Astrophysics Data System (ADS)
Roling, Luke T.
An emerging trend in materials design is the use of computational chemistry tools to accelerate materials discovery and implementation. In particular, the parallel nature of computational models enables high-throughput screening approaches that would be laborious and time-consuming with experiments alone, and can be useful for identifying promising candidate materials for experimental synthesis and evaluation. Additionally, atomic-scale modeling allows researchers to obtain a detailed understanding of phenomena invisible to many current experimental techniques. In this thesis, we highlight mechanistic studies and successes in catalyst design for heterogeneous electrochemical reactions, discussing both anode and cathode chemistries. In particular, we evaluate the properties of a new class of Pd-Pt core-shell and hollow nanocatalysts toward the oxygen reduction reaction. We do not limit our study to electrochemical reactivity, but also consider these catalysts in a broader context by performing in-depth studies of their stability at elevated temperatures as well as investigating the mechanisms by which they are able to form. We also present fundamental surface science studies, investigating graphene formation and H2 dissociation, which are processes of both fundamental and practical interest in many catalytic applications. Finally, we extend our materials design paradigm outside the field of catalysis to develop and apply a model for the detection of small chemical analytes by chemoresponsive liquid crystals, and offer several predictions for improving the detection of small chemicals. A close connection between computation, synthesis, and experimental evaluation is essential to the work described herein, as computations are used to gain fundamental insight into experimental observations, and experiments and synthesis are in turn used to validate predictions of material activities from computational models.
[The parallelisms in of sound signal of domestic sheep and Northern fur seals].
Nikol'skiĭ, A A; Lisitsina, T Iu
2011-01-01
The parallelisms in communicative behavior of domestic sheep and Northern fur seals within a herd are accompanied by parallelisms in parameters of sound signal, the calling scream. This signal ensures ties between babies and their mothers at a long distance. The basis of parallelisms is formed by amplitude modulation at two levels: the one being a direct amplitude modulation of the carrier frequency and the other--modulation of the carrier frequency oscillation. Parallelisms in the signal oscillatory process result in corresponding parallelisms in the structure of its frequency spectrum.
Asymmetry in the Farley-Buneman dispersion relation caused by parallel electric fields
NASA Astrophysics Data System (ADS)
Forsythe, Victoriya V.; Makarevich, Roman A.
2016-11-01
An implicit assumption utilized in studies of E region plasma waves generated by the Farley-Buneman instability (FBI) is that the FBI dispersion relation and its solutions for the growth rate and phase velocity are perfectly symmetric with respect to the reversal of the wave propagation component parallel to the magnetic field. In the present study, a recently derived general dispersion relation that describes fundamental plasma instabilities in the lower ionosphere including FBI is considered and it is demonstrated that the dispersion relation is symmetric only for background electric fields that are perfectly perpendicular to the magnetic field. It is shown that parallel electric fields result in significant differences between the growth rates and phase velocities for propagation of parallel components of opposite signs. These differences are evaluated using numerical solutions of the general dispersion relation and shown to exhibit an approximately linear relationship with the parallel electric field near the E region peak altitude of 110 km. An analytic expression for the differences is also derived from an approximate version of the dispersion relation, with comparisons between numerical and analytic results agreeing near 110 km. It is further demonstrated that parallel electric fields do not change the overall symmetry when the full 3-D wave propagation vector is reversed, with no symmetry seen when either the perpendicular or parallel component is reversed. The present results indicate that moderate-to-strong parallel electric fields of 0.1-1.0 mV/m can result in experimentally measurable differences between the characteristics of plasma waves with parallel propagation components of opposite polarity.
Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim
2014-03-01
We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.
Parallel heuristics for scalable community detection
Lu, Hao; Halappanavar, Mahantesh; Kalyanaraman, Ananth
2015-08-14
Community detection has become a fundamental operation in numerous graph-theoretic applications. Despite its potential for application, there is only limited support for community detection on large-scale parallel computers, largely owing to the irregular and inherently sequential nature of the underlying heuristics. In this paper, we present parallelization heuristics for fast community detection using the Louvain method as the serial template. The Louvain method is an iterative heuristic for modularity optimization. Originally developed in 2008, the method has become increasingly popular owing to its ability to detect high modularity community partitions in a fast and memory-efficient manner. However, the method ismore » also inherently sequential, thereby limiting its scalability. Here, we observe certain key properties of this method that present challenges for its parallelization, and consequently propose heuristics that are designed to break the sequential barrier. For evaluation purposes, we implemented our heuristics using OpenMP multithreading, and tested them over real world graphs derived from multiple application domains. Compared to the serial Louvain implementation, our parallel implementation is able to produce community outputs with a higher modularity for most of the inputs tested, in comparable number or fewer iterations, while providing real speedups of up to 16x using 32 threads.« less
Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Lin, C. T.
1989-01-01
The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.
ERIC Educational Resources Information Center
Bae, Jungok; Lee, Yae-Sheik
2011-01-01
Pictures are widely used to elicit expressive language skills, and pictures must be established as parallel before changes in ability can be demonstrated by assessment using pictures prompts. Why parallel prompts are required and what it is necessary to do to ensure that prompts are in fact parallel is not widely known. To date, evidence of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otto, C., Thomas, G.A.; Peticolas, W.L.; Rippe, K.
Raman spectra of the parallel-stranded duplex formed from the deoxyoligonucleotides 5{prime}-d-((A){sub 10}TAATTTTAAATATTT)-3{prime} (D1) and 5{prime}-d((T){sub 10}ATTAAAATTTATAAA)-3{prime} (D2) in H{sub 2}O and D{sub 2}O have been acquired. The spectra of the parallel-stranded DNA are then compared to the spectra of the antiparallel double helix formed from the deoxyoligonucleotides D1 and 5{prime}-d(AAATATTTAAAATTA-(T){sub 10})-3{prime} (D3). The Raman spectra of the antiparallel-stranded (aps) duplex are reminiscent of the spectra of poly(d(A)){center dot}poly(d(T)) and a B-form structure similar to that adopted by the homopolymer duplex is assigned to the antiparallel double helix. The spectra of the parallel-stranded (ps) and antiparallel-stranded duplexes differ significantly due tomore » changes in helical organization, i.e., base pairing, base stacking, and backbone conformation. Large changes observed in the carbonyl stretching region implicate the involvement of the C(2) carbonyl of thymine in base pairing. The interaction of adenine with the C(2) carbonyl of thymine is consistent with formation of reverse Watson-Crick base pairing in parallel-stranded DNA. Phosphate-furanose vibrations similar to those observed for B-form DNA of heterogeneous sequence and high A,T content are observed at 843 and 1,092 cm{sup {minus}1} in the spectra of the parallel-stranded duplex.« less
NASA Astrophysics Data System (ADS)
Tellier, Gildas; Boisrobert, Christian
2007-11-01
The Maker fringes technique is commonly used for the determination of nonlinear optical coefficients. In this article, we present a new formulation of Maker fringes in parallel-surface samples, using boundary conditions taking into account the anisotropy of the crystal, the refractive-index dispersion, and the reflections of the fundamental and the second harmonic waves inside the material. Complete expressions for the generated second harmonic intensity are given for birefringent crystals for the case of no pump depletion. A comparison between theory and experimental results is made, showing the accuracy of our theoretical expressions.
Magnetic Reconfiguration in Explosive Solar Activity
NASA Technical Reports Server (NTRS)
Antiochos, Spiro K.
2008-01-01
A fundamental property of the Sun's corona i s that it is violently dynamic. The most spectacular and most energetic manifestations of this activity are the giant disruptions that give rise to coronal mass ejections (CME) and eruptive flares. These major events are of critical importance, because they drive the most destructive forms of space weather at Earth and in the solar system, and they provide a unique opportunity to study, in revealing detail, the interaction of magnetic field and matter, in particular, magnetohydrodynamic instability and nonequilibrium -- processes that are at the heart of laboratory and astrophysical plasma physics. Recent observations by a number of NASA space missions have given us new insights into the physical mechanisms that underlie coronal explosions. Furthermore, massively-parallel computation have now allowed us to calculate fully three-dimensional models for solar activity. In this talk I will present some of the latest observations of the Sun, including those from the just-launched Hinode and STEREO mission, and discuss recent advances in the theory and modeling of explosive solar activity.
"The Human Condition" as social ontology: Hannah Arendt on society, action and knowledge.
Walsh, Philip
2011-01-01
Hannah Arendt is widely regarded as a political theorist who sought to rescue politics from "society," and political theory from the social sciences. This conventional view has had the effect of distracting attention from many of Arendt's most important insights concerning the constitution of "society" and the significance of the social sciences. In this article, I argue that Hannah Arendt's distinctions between labor, work, and action, as these are discussed in "The Human Condition" and elsewhere, are best understood as a set of claims about the fundamental structures of human societies. Understanding Arendt in this way introduces interesting parallels between Arendt's work and both classical and contemporary sociology. From this I draw a number of conclusions concerning Arendt's conception of "society," and extend these insights into two contemporary debates within contemporary theoretical sociology: the need for a differentiated ontology of the social world, and the changing role that novel forms of knowledge play in contemporary society as major sources of social change and order.
The Death Valley turtlebacks reinterpreted as Miocene Pliocene folds of a major detachment surface
Holm, Daniel K.; Fleck, Robert J.; Lux, Daniel R.
1994-01-01
Determining the origin of extension parallel folds in metamorphic core complexes is fundamental to understanding the development of detachment faults. An excellent example of such a feature occurs in the Death Valley region of California where a major, undulatory, detachment fault is exposed along the well-known turtleback (antiformal) surfaces of the Black Mountains. In the hanging wall of this detachment fault are deformed strata of the Copper Canyon Formation. New age constraints indicate that the Copper Canyon Formation was deposited from ~6 to 3 Ma. The formation was folded during deposition into a SE-plunging syncline with an axial surface coplanar with that of a synform in the underlying detachment. This relation suggests the turtlebacks are a folded detachment surface formed during large-scale extension in an overall constrictional strain field. The present, more planar, Black Mountains frontal fault system may be the result of out-stepping of a normal fault system away from an older detachment fault that was deactivated by folding.
The Importance of the Assumption of Uncorrelated Errors in Psychometric Theory
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Patelis, Thanos
2015-01-01
A critical discussion of the assumption of uncorrelated errors in classical psychometric theory and its applications is provided. It is pointed out that this assumption is essential for a number of fundamental results and underlies the concept of parallel tests, the Spearman-Brown's prophecy and the correction for attenuation formulas as well as…
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The 135 clock-hour course for the 11th year consists of outlines for blocks of instruction on series resonant circuits, parallel resonant circuits, transformer theory and application, vacuum tube fundamentals, diode vacuum tubes, triode tube construction and parameters, vacuum tube tetrodes and pentodes, beam-power and multisection tubes, and…
NASA Technical Reports Server (NTRS)
Burke, J.
1985-01-01
The mechanisms of techno-scientific and philosophical change are examined and related to the nature and transformation of society and mankind himself. In parallel with the notion that the fundamental mechanism of change is the free juxtaposition of disparate phenomena, it is suggested that, with the tools that modern technology provides, we may be moving toward a no-paradigm culture.
Scalable parallel distance field construction for large-scale applications
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; ...
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less
Traditional Chinese medicine on the effects of low-intensity laser irradiation on cells
NASA Astrophysics Data System (ADS)
Liu, Timon C.; Duan, Rui; Li, Yan; Cai, Xiongwei
2002-04-01
In previous paper, process-specific times (PSTs) are defined by use of molecular reaction dynamics and time quantum theory established by TCY Liu et al., and the change of PSTs representing two weakly nonlinearly coupled bio-processes are shown to be parallel, which is called time parallel principle (TPP). The PST of a physiological process (PP) is called physiological time (PT). After the PTs of two PPs are compared with their Yin-Yang property of traditional Chinese medicine (TCM), the PST model of Yin and Yang (YPTM) was put forward: for two related processes, the process of small PST is Yin, and the other process is Yang. The Yin-Yang parallel principle (YPP) was put forward in terms of YPTM and TPP, which is the fundamental principle of TCM. In this paper, we apply it to study TCM on the effects of low intensity laser on cells, and successfully explained observed phenomena.
Scalable Parallel Distance Field Construction for Large-Scale Applications.
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.
Acoustooptic linear algebra processors - Architectures, algorithms, and applications
NASA Technical Reports Server (NTRS)
Casasent, D.
1984-01-01
Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.
Similarity of the Multidimensional Space Defined by Parallel Forms of a Mathematics Test.
ERIC Educational Resources Information Center
Reckase, Mark D.; And Others
The purpose of the paper is to determine whether test forms of the Mathematics Usage Test (AAP Math) of the American College Testing Program are parallel in a multidimensional sense. The AAP Math is an achievement test of mathematics concepts acquired by high school students by the end of their third year. To determine the dimensionality of the…
Evaluation of concurrent priority queue algorithms. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Q.
1991-02-01
The priority queue is a fundamental data structure that is used in a large variety of parallel algorithms, such as multiprocessor scheduling and parallel best-first search of state-space graphs. This thesis addresses the design and experimental evaluation of two novel concurrent priority queues: a parallel Fibonacci heap and a concurrent priority pool, and compares them with the concurrent binary heap. The parallel Fibonacci heap is based on the sequential Fibonacci heap, which is theoretically the most efficient data structure for sequential priority queues. This scheme not only preserves the efficient operation time bounds of its sequential counterpart, but also hasmore » very low contention by distributing locks over the entire data structure. The experimental results show its linearly scalable throughput and speedup up to as many processors as tested (currently 18). A concurrent access scheme for a doubly linked list is described as part of the implementation of the parallel Fibonacci heap. The concurrent priority pool is based on the concurrent B-tree and the concurrent pool. The concurrent priority pool has the highest throughput among the priority queues studied. Like the parallel Fibonacci heap, the concurrent priority pool scales linearly up to as many processors as tested. The priority queues are evaluated in terms of throughput and speedup. Some applications of concurrent priority queues such as the vertex cover problem and the single source shortest path problem are tested.« less
Architecture of interstitial nodal spaces in the rodent renal inner medulla.
Gilbert, Rebecca L; Pannabecker, Thomas L
2013-09-01
Every collecting duct (CD) of the rat inner medulla is uniformly surrounded by about four abutting ascending vasa recta (AVR) running parallel to it. One or two ascending thin limbs (ATLs) lie between and parallel to each abutting AVR pair, opposite the CD. These structures form boundaries of axially running interstitial compartments. Viewed in transverse sections, these compartments appear as four interstitial nodal spaces (INSs) positioned symmetrically around each CD. The axially running compartments are segmented by interstitial cells spaced at regular intervals. The pairing of ATLs and CDs bounded by an abundant supply of AVR carrying reabsorbed water, NaCl, and urea make a strong argument that the mixing of NaCl and urea within the INSs and countercurrent flows play a critical role in generating the inner medullary osmotic gradient. The results of this study fully support that hypothesis. We quantified interactions of all structures comprising INSs along the corticopapillary axis for two rodent species, the Munich-Wistar rat and the kangaroo rat. The results showed remarkable similarities in the configurations of INSs, suggesting that the structural arrangement of INSs is a highly conserved architecture that plays a fundamental role in renal function. The number density of INSs along the corticopapillary axis directly correlated with a loop population that declines exponentially with distance below the outer medullary-inner medullary boundary. The axial configurations were consistent with discrete association between near-bend loop segments and INSs and with upper loop segments lying distant from INSs.
Architecture of interstitial nodal spaces in the rodent renal inner medulla
Gilbert, Rebecca L.
2013-01-01
Every collecting duct (CD) of the rat inner medulla is uniformly surrounded by about four abutting ascending vasa recta (AVR) running parallel to it. One or two ascending thin limbs (ATLs) lie between and parallel to each abutting AVR pair, opposite the CD. These structures form boundaries of axially running interstitial compartments. Viewed in transverse sections, these compartments appear as four interstitial nodal spaces (INSs) positioned symmetrically around each CD. The axially running compartments are segmented by interstitial cells spaced at regular intervals. The pairing of ATLs and CDs bounded by an abundant supply of AVR carrying reabsorbed water, NaCl, and urea make a strong argument that the mixing of NaCl and urea within the INSs and countercurrent flows play a critical role in generating the inner medullary osmotic gradient. The results of this study fully support that hypothesis. We quantified interactions of all structures comprising INSs along the corticopapillary axis for two rodent species, the Munich-Wistar rat and the kangaroo rat. The results showed remarkable similarities in the configurations of INSs, suggesting that the structural arrangement of INSs is a highly conserved architecture that plays a fundamental role in renal function. The number density of INSs along the corticopapillary axis directly correlated with a loop population that declines exponentially with distance below the outer medullary-inner medullary boundary. The axial configurations were consistent with discrete association between near-bend loop segments and INSs and with upper loop segments lying distant from INSs. PMID:23825077
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollaber, Allan Benton
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
Self Help as an Adjunct to Psychotherapy: Issues of Awareness, Motivation, and Self Actualization.
ERIC Educational Resources Information Center
Desai, Hemant K.
The nature of the processes involved in the phenomena of psychological change and self-development as related to the concept of self-help and mutual aid are examined in this paper. Awareness, motivation, and self-actualization are seen as part of a fundamental process of growth and development. It is suggested that a parallel to the personal…
ERIC Educational Resources Information Center
Bowers, Jeffrey S.
2009-01-01
A fundamental claim associated with parallel distributed processing (PDP) theories of cognition is that knowledge is coded in a distributed manner in mind and brain. This approach rejects the claim that knowledge is coded in a localist fashion, with words, objects, and simple concepts (e.g. "dog"), that is, coded with their own dedicated…
America: The Trillion Dollar Lemonade Stand. Fundamentals of Free Enterprise, No. 1. Revised.
ERIC Educational Resources Information Center
American Fletcher National Bank and Trust Co., Indianapolis, IN.
Designed for high school economics students as a public service project of the American Fletcher National Bank, the booklet examines the American free enterprise system as it relates to the traditional lemonade stand and its ability to make a profit. The parallel is made by considering some basic principles: (1) the constant need for capital to…
NASA Astrophysics Data System (ADS)
Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.
2017-06-01
TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.
Spin-exchange relaxation-free magnetometer with nearly parallel pump and probe beams
Karaulanov, Todor; Savukov, Igor; Kim, Young Jin
2016-03-22
We constructed a spin-exchange relaxation-free (SERF) magnetometer with a small angle between the pump and probe beams facilitating a multi-channel design with a flat pancake cell. This configuration provides almost complete overlap of the beams in the cell, and prevents the pump beam from entering the probe detection channel. By coupling the lasers in multi-mode fibers, without an optical isolator or field modulation, we demonstrate a sensitivity of 10 fTmore » $$/\\sqrt{\\text{Hz}}$$ for frequencies between 10 Hz and 100 Hz. In addition to the experimental study of sensitivity, we present a theoretical analysis of SERF magnetometer response to magnetic fields for small-angle and parallel-beam configurations, and show that at optimal DC offset fields the magnetometer response is comparable to that in the orthogonal-beam configuration. Based on the analysis, we also derive fundamental and probe-limited sensitivities for the arbitrary non-orthogonal geometry. The expected practical and fundamental sensitivities are of the same order as those in the orthogonal geometry. As a result, we anticipate that our design will be useful for magnetoencephalography (MEG) and magnetocardiography (MCG) applications.« less
Rattner, J B; Matyas, J R; Barclay, L; Holowaychuk, S; Sciore, P; Lo, I K Y; Shrive, N G; Frank, C B; Achari, Y; Hart, D A
2011-08-01
Menisci help maintain the structural integrity of the knee. However, the poor healing potential of the meniscus following a knee injury can not only end a career in sports but lead to osteoarthritis later in life. Complete understanding of meniscal structure is essential for evaluating its risk for injury and subsequent successful repair. This study used novel approaches to elucidate meniscal architecture. The radial and circumferential collagen fibrils in the meniscus were investigated using novel tissue-preparative techniques for light and electron microscopic studies. The results demonstrate a unique architecture based on differences in the packaging of the fundamental collagen fibrils. For radial arrays, the collagen fibrils are arranged in parallel into ∼10 μm bundles, which associate laterally to form flat sheets of varying dimensions that bifurcate and come together to form a honeycomb network within the body of the meniscus. In contrast, the circumferential arrays display a complex network of collagen fibrils arranged into ∼5 μm bundles. Interestingly, both types of architectural organization of collagen fibrils in meniscus are conserved across mammalian species and are age and sex independent. These findings imply that disruptions in meniscal architecture following an injury contribute to poor prognosis for functional repair. © 2010 John Wiley & Sons A/S.
Against Fundamentalism, for Democracy: Towards a Pedagogy of Tolerance in Higher Education
ERIC Educational Resources Information Center
Badley, Graham
2005-01-01
Fundamentalism and democracy are presented as opposing forces in a world in conflict. Fundamentalism is described both as a threat to democracy itself and also to supposedly democratic institutions such as the university. First, fundamentalism is defined in its various guises: Christian, Islamic and economic. Each of these forms is pernicious in…
A parallel algorithm for the eigenvalues and eigenvectors for a general complex matrix
NASA Technical Reports Server (NTRS)
Shroff, Gautam
1989-01-01
A new parallel Jacobi-like algorithm is developed for computing the eigenvalues of a general complex matrix. Most parallel methods for this parallel typically display only linear convergence. Sequential norm-reducing algorithms also exit and they display quadratic convergence in most cases. The new algorithm is a parallel form of the norm-reducing algorithm due to Eberlein. It is proven that the asymptotic convergence rate of this algorithm is quadratic. Numerical experiments are presented which demonstrate the quadratic convergence of the algorithm and certain situations where the convergence is slow are also identified. The algorithm promises to be very competitive on a variety of parallel architectures.
A parallel form of the Gudjonsson Suggestibility Scale.
Gudjonsson, G H
1987-09-01
The purpose of this study is twofold: (1) to present a parallel form of the Gudjonsson Suggestibility Scale (GSS, Form 1); (2) to study test-retest reliabilities of interrogative suggestibility. Three groups of subjects were administered the two suggestibility scales in a counterbalanced order. Group 1 (28 normal subjects) and Group 2 (32 'forensic' patients) completed both scales within the same testing session, whereas Group 3 (30 'forensic' patients) completed the two scales between one week and eight months apart. All the correlations were highly significant, giving support for high 'temporal consistency' of interrogative suggestibility.
Parallel heat transport in integrable and chaotic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del-Castillo-Negrete, Diego B; Chacon, Luis
2012-01-01
The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve themore » local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.« less
NASA Technical Reports Server (NTRS)
Smith, Paul H.
1988-01-01
The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.
Introducing the Dimensional Continuous Space-Time Theory
NASA Astrophysics Data System (ADS)
Martini, Luiz Cesar
2013-04-01
This article is an introduction to a new theory. The name of the theory is justified by the dimensional description of the continuous space-time of the matter, energy and empty space, that gathers all the real things that exists in the universe. The theory presents itself as the consolidation of the classical, quantum and relativity theories. A basic equation that describes the formation of the Universe, relating time, space, matter, energy and movement, is deduced. The four fundamentals physics constants, light speed in empty space, gravitational constant, Boltzmann's constant and Planck's constant and also the fundamentals particles mass, the electrical charges, the energies, the empty space and time are also obtained from this basic equation. This theory provides a new vision of the Big-Bang and how the galaxies, stars, black holes and planets were formed. Based on it, is possible to have a perfect comprehension of the duality between wave-particle, which is an intrinsic characteristic of the matter and energy. It will be possible to comprehend the formation of orbitals and get the equationing of atomics orbits. It presents a singular comprehension of the mass relativity, length and time. It is demonstrated that the continuous space-time is tridimensional, inelastic and temporally instantaneous, eliminating the possibility of spatial fold, slot space, worm hole, time travels and parallel universes. It is shown that many concepts, like dark matter and strong forces, that hypothetically keep the cohesion of the atomics nucleons, are without sense.
NASA Technical Reports Server (NTRS)
Duran, R. S.
1995-01-01
The overall objective of this study was the description of the behavior of mesogen substituted acetylene monomers and polymers in monolayer films at the air/water interface and as multilayer films including the formation of such films. Fundamental knowledge to be gained would include the effect of balancing hydrophilic and hydrophobic tendencies in a molecule more complex than the classical fatty acids or lipids. The effect of molecular shape on the packing and thus the ultimate stability of monolayers formed from these new molecules was explored. The work takes on the challenge of preorienting monomers in well-ordered arrays prior to attempting polymerization with the hope that order would be preserved in any resulting polymer. New knowledge gained with regard to the acetylenic monomers includes processing of the acetylene monomer into multi-layer films, followed by the design and synthesis of a second generation of improved monomer structure for superior LBK film transfer properties. A third generation of acetylenic monomer was synthesized which approaches more closely the goal of solid state polymerization of these materials. A parallel study took a different approach. The materials are pre-formed poly(phenylene-acetylene) polymers so questions about reactivity are mute. The materials are a variation on the well-known hairy-rod polymers with regard to their Langmuir film-forming properties. Overall, the goal was to demonstrate that these polymers could be processed into NLO materials with novel polar order.
ARTS III/Parallel Processor Design Study
DOT National Transportation Integrated Search
1975-04-01
It was the purpose of this design study to investigate the feasibility, suitability, and cost-effectiveness of augmenting the ARTS III failsafe/failsoft multiprocessor system with a form of parallel processor to accomodate a large growth in air traff...
A Structure-Toxicity Study of Aß42 Reveals a New Anti-Parallel Aggregation Pathway
Vignaud, Hélène; Bobo, Claude; Lascu, Ioan; Sörgjerd, Karin Margareta; Zako, Tamotsu; Maeda, Mizuo; Salin, Benedicte; Lecomte, Sophie; Cullin, Christophe
2013-01-01
Amyloid beta (Aβ) peptides produced by APP cleavage are central to the pathology of Alzheimer’s disease. Despite widespread interest in this issue, the relationship between the auto-assembly and toxicity of these peptides remains controversial. One intriguing feature stems from their capacity to form anti-parallel ß-sheet oligomeric intermediates that can be converted into a parallel topology to allow the formation of protofibrillar and fibrillar Aβ. Here, we present a novel approach to determining the molecular aspects of Aß assembly that is responsible for its in vivo toxicity. We selected Aß mutants with varying intracellular toxicities. In vitro, only toxic Aß (including wild-type Aß42) formed urea-resistant oligomers. These oligomers were able to assemble into fibrils that are rich in anti-parallel ß-sheet structures. Our results support the existence of a new pathway that depends on the folding capacity of Aß . PMID:24244667
Parallelization of implicit finite difference schemes in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel
1990-01-01
Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.
Split-Waveguide Mounts For Submillimeter-Wave Multipliers And Harmonic Mixers
NASA Technical Reports Server (NTRS)
Raisanen, Antti; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.
1996-01-01
Novel variation of split-waveguide mount for millimeter-and submillimeter-wavelength frequency multipliers and harmonic mixers developed. Designed to offer wide range of available matching impedances, while maintaining relatively simple fabrication sequence. Wide tuning range achieved with separate series and parallel elements, consisting of two pairs of noncontacting sliding backshorts, at fundamental and harmonic frequencies. Advantages include ease of fabrication, reliability, and tunability.
2012-11-01
few sensors/complex computations, and many sensors/simple computation. II. CHALLENGES WITH NANO-ENABLED NEUROMORPHIC CHIPS A wide variety of...scenarios. Neuromorphic processors, which are based on the highly parallelized computing architecture of the mammalian brain, show great promise in...in the brain. This fundamentally different approach, frequently referred to as neuromorphic computing, is thought to be better able to solve fuzzy
ERIC Educational Resources Information Center
Scott, Mark
2004-01-01
Throughout the 1990s, Europe's rural areas increasingly embraced local action and local development solutions to face the challenge of the continued re-structuring of the agricultural industry. In parallel, in both the EU and the UK, a policy discourse has emerged which envisages a fundamental shift in support policies for rural areas from a…
NASA Astrophysics Data System (ADS)
Berghofer, Philipp
2018-05-01
Ontic structural realism refers to the novel, exciting, and widely discussed basic idea that the structure of physical reality is genuinely relational. In its radical form, the doctrine claims that there are, in fact, no objects but only structure, i.e., relations. More moderate approaches state that objects have only relational but no intrinsic properties. In its most moderate and most tenable form, ontic structural realism assumes that at the most fundamental level of physical reality there are only relational properties. This means that the most fundamental objects only possess relational but no non-reducible intrinsic properties. The present paper will argue that our currently best physics refutes even this most moderate form of ontic structural realism. More precisely, I will claim that 1) according to quantum field theory, the most fundamental objects of matter are quantum fields and not particles, and show that 2) according to the Standard Model, quantum fields have intrinsic non-relational properties.
GPU-based Parallel Application Design for Emerging Mobile Devices
NASA Astrophysics Data System (ADS)
Gupta, Kshitij
A revolution is underway in the computing world that is causing a fundamental paradigm shift in device capabilities and form-factor, with a move from well-established legacy desktop/laptop computers to mobile devices in varying sizes and shapes. Amongst all the tasks these devices must support, graphics has emerged as the 'killer app' for providing a fluid user interface and high-fidelity game rendering, effectively making the graphics processor (GPU) one of the key components in (present and future) mobile systems. By utilizing the GPU as a general-purpose parallel processor, this dissertation explores the GPU computing design space from an applications standpoint, in the mobile context, by focusing on key challenges presented by these devices---limited compute, memory bandwidth, and stringent power consumption requirements---while improving the overall application efficiency of the increasingly important speech recognition workload for mobile user interaction. We broadly partition trends in GPU computing into four major categories. We analyze hardware and programming model limitations in current-generation GPUs and detail an alternate programming style called Persistent Threads, identify four use case patterns, and propose minimal modifications that would be required for extending native support. We show how by manually extracting data locality and altering the speech recognition pipeline, we are able to achieve significant savings in memory bandwidth while simultaneously reducing the compute burden on GPU-like parallel processors. As we foresee GPU computing to evolve from its current 'co-processor' model into an independent 'applications processor' that is capable of executing complex work independently, we create an alternate application framework that enables the GPU to handle all control-flow dependencies autonomously at run-time while minimizing host involvement to just issuing commands, that facilitates an efficient application implementation. Finally, as compute and communication capabilities of mobile devices improve, we analyze energy implications of processing speech recognition locally (on-chip) and offloading it to servers (in-cloud).
Multinode acoustic focusing for parallel flow cytometry
Piyasena, Menake E.; Suthanthiraraj, Pearlson P. Austin; Applegate, Robert W.; Goumas, Andrew M.; Woods, Travis A.; López, Gabriel P.; Graves, Steven W.
2012-01-01
Flow cytometry can simultaneously measure and analyze multiple properties of single cells or particles with high sensitivity and precision. Yet, conventional flow cytometers have fundamental limitations with regards to analyzing particles larger than about 70 microns, analyzing at flow rates greater than a few hundred microliters per minute, and providing analysis rates greater than 50,000 per second. To overcome these limits, we have developed multi-node acoustic focusing flow cells that can position particles (as small as a red blood cell and as large as 107 microns in diameter) into as many as 37 parallel flow streams. We demonstrate the potential of such flow cells for the development of high throughput, parallel flow cytometers by precision focusing of flow cytometry alignment microspheres, red blood cells, and the analysis of CD4+ cellular immunophenotyping assay. This approach will have significant impact towards the creation of high throughput flow cytometers for rare cell detection applications (e.g. circulating tumor cells), applications requiring large particle analysis, and high volume flow cytometry. PMID:22239072
On the polymorphism of benzocaine; a low-temperature structural phase transition for form (II).
Chan, Eric J; Rae, A David; Welberry, T Richard
2009-08-01
A low-temperature structural phase transition has been observed for form (II) of benzocaine (BZC). Lowering the temperature doubles the b-axis repeat and changes the space group from P2(1)2(1)2(1) to P112(1) with gamma now 99.37 degrees. The structure is twinned, the twin rule corresponding to a 2(1) screw rotation parallel to a. The phase transition is associated with a sequential displacement parallel to a of zigzag bi-layers of ribbons perpendicular to b*. No similar phase transition was observed for form (I) and this was attributed to the different packing symmetries of the two room-temperature polymorphic forms.
Tunable high-q superconducting notch filter
Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.
1979-11-29
A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.
A Green's function method for local and non-local parallel transport in general magnetic fields
NASA Astrophysics Data System (ADS)
Del-Castillo-Negrete, Diego; Chacón, Luis
2009-11-01
The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), χ, and the perpendicular, χ, conductivities (χ/χ may exceed 10^10 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields. The numerical implementation employs a volume-preserving field-line integrator [Finn and Chac'on, Phys. Plasmas, 12 (2005)] for an accurate representation of the magnetic field lines regardless of the level of stochasticity. The general formalism and its algorithmic properties are discussed along with illustrative analytical and numerical examples. Problems of particular interest include: the departures from the Rochester--Rosenbluth diffusive scaling in the weak magnetic chaos regime, the interplay between non-locality and chaos, and the robustness of transport barriers in reverse shear configurations.
Design considerations for parallel graphics libraries
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.
1994-01-01
Applications which run on parallel supercomputers are often characterized by massive datasets. Converting these vast collections of numbers to visual form has proven to be a powerful aid to comprehension. For a variety of reasons, it may be desirable to provide this visual feedback at runtime. One way to accomplish this is to exploit the available parallelism to perform graphics operations in place. In order to do this, we need appropriate parallel rendering algorithms and library interfaces. This paper provides a tutorial introduction to some of the issues which arise in designing parallel graphics libraries and their underlying rendering algorithms. The focus is on polygon rendering for distributed memory message-passing systems. We illustrate our discussion with examples from PGL, a parallel graphics library which has been developed on the Intel family of parallel systems.
The openGL visualization of the 2D parallel FDTD algorithm
NASA Astrophysics Data System (ADS)
Walendziuk, Wojciech
2005-02-01
This paper presents a way of visualization of a two-dimensional version of a parallel algorithm of the FDTD method. The visualization module was created on the basis of the OpenGL graphic standard with the use of the GLUT interface. In addition, the work includes the results of the efficiency of the parallel algorithm in the form of speedup charts.
NASA Astrophysics Data System (ADS)
Teddy, Livian; Hardiman, Gagoek; Nuroji; Tudjono, Sri
2017-12-01
Indonesia is an area prone to earthquake that may cause casualties and damage to buildings. The fatalities or the injured are not largely caused by the earthquake, but by building collapse. The collapse of the building is resulted from the building behaviour against the earthquake, and it depends on many factors, such as architectural design, geometry configuration of structural elements in horizontal and vertical plans, earthquake zone, geographical location (distance to earthquake center), soil type, material quality, and construction quality. One of the geometry configurations that may lead to the collapse of the building is irregular configuration of non-parallel system. In accordance with FEMA-451B, irregular configuration in non-parallel system is defined to have existed if the vertical lateral force-retaining elements are neither parallel nor symmetric with main orthogonal axes of the earthquake-retaining axis system. Such configuration may lead to torque, diagonal translation and local damage to buildings. It does not mean that non-parallel irregular configuration should not be formed on architectural design; however the designer must know the consequence of earthquake behaviour against buildings with irregular configuration of non-parallel system. The present research has the objective to identify earthquake behaviour in architectural geometry with irregular configuration of non-parallel system. The present research was quantitative with simulation experimental method. It consisted of 5 models, where architectural data and model structure data were inputted and analyzed using the software SAP2000 in order to find out its performance, and ETAB2015 to determine the eccentricity occurred. The output of the software analysis was tabulated, graphed, compared and analyzed with relevant theories. For areas of strong earthquake zones, avoid designing buildings which wholly form irregular configuration of non-parallel system. If it is inevitable to design a building with building parts containing irregular configuration of non-parallel system, make it more rigid by forming a triangle module, and use the formula.A good collaboration is needed between architects and structural experts in creating earthquake architecture.
War and peace: morphemes and full forms in a noninteractive activation parallel dual-route model.
Baayen, H; Schreuder, R
This article introduces a computational tool for modeling the process of morphological segmentation in visual and auditory word recognition in the framework of a parallel dual-route model. Copyright 1999 Academic Press.
UNESCO's Programme of Fundamental Education, 1946-1959
ERIC Educational Resources Information Center
Watras, Joseph
2010-01-01
UNESCO formed the concept of fundamental education in hopes that the programme could end poverty, bring world peace and serve indigenous people. When UNESCO's first pilot project appeared to fail, the organisation developed centres where fundamental education workers learned to use such techniques as libraries, museum displays, films and radio,…
Security: An Emerging Fundamental Value in Educational Policy Making?
ERIC Educational Resources Information Center
DeMitchell, Todd A.
1994-01-01
Education, like other governmental activities, is characterized by a competition for scarce resources. Security, whether in the form of metal detectors or condom availability, is an additional fundamental value that has grabbed center stage in the struggle among competing fundamental values (efficiency, equity, liberty, and quality) in educational…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Kenji
A read/write head for a magnetic tape includes an elongated chip assembly and a tape running surface formed in the longitudinal direction of the chip assembly. A pair of substantially spaced parallel read/write gap lines for supporting read/write elements extend longitudinally along the tape running surface of the chip assembly. Also, at least one groove is formed on the tape running surface on both sides of each of the read/write gap lines and extends substantially parallel to the read/write gap lines.
Description of quantum coherence in thermodynamic processes requires constraints beyond free energy.
Lostaglio, Matteo; Jennings, David; Rudolph, Terry
2015-03-10
Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.
Description of quantum coherence in thermodynamic processes requires constraints beyond free energy
NASA Astrophysics Data System (ADS)
Lostaglio, Matteo; Jennings, David; Rudolph, Terry
2015-03-01
Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.
Characteristics of a high pressure gas proportional counter filled with xenon
NASA Technical Reports Server (NTRS)
Sakurai, H.; Ramsey, B. D.
1991-01-01
The characteristics of a conventional cylindrical geometry proportional counter filled with high pressure xenon gas up to 10 atm. were fundamentally investigated for use as a detector in hard X-ray astronomy. With a 2 percent methane gas mixture the energy resolutions at 10 atm. were 9.8 percent and 7.3 percent for 22 keV and 60 keV X-rays, respectively. From calculations of the Townsend ionization coefficient, it is shown that proportional counters at high pressure operate at weaker reduced electric field than low pressure counters. The characteristics of a parallel grid proportional counter at low pressure showed similar pressure dependence. It is suggested that this is the fundamental reason for the degradation of resolution observed with increasing pressure.
Description of quantum coherence in thermodynamic processes requires constraints beyond free energy
Lostaglio, Matteo; Jennings, David; Rudolph, Terry
2015-01-01
Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774
Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
Kundeti, Vamsi K; Rajasekaran, Sanguthevar; Dinh, Hieu; Vaughn, Matthew; Thapar, Vishal
2010-11-15
Assembling genomic sequences from a set of overlapping reads is one of the most fundamental problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories - based on the data structures which they employ. The first class uses an overlap/string graph and the second type uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn graphs are very essential in large sequencing projects based on short reads. In an earlier work, an O(n/p) time parallel algorithm has been given for this problem. Here n is the size of the input and p is the number of processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up generating Θ(nΣ) messages (Σ being the size of the alphabet). In this paper we present a Θ(n/p) time parallel algorithm with a communication complexity that is equal to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it even to the out-of-core model and in this case it has an optimal I/O complexity of Θ(nlog(n/B)Blog(M/B)) (M being the main memory size and B being the size of the disk block). We demonstrate the scalability of our parallel algorithm on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is faster--both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem. The bi-directed de Bruijn graph is a fundamental data structure for any sequence assembly program based on Eulerian approach. Our algorithms for constructing Bi-directed de Bruijn graphs are efficient in parallel and out of core settings. These algorithms can be used in building large scale bi-directed de Bruijn graphs. Furthermore, our algorithms do not employ any all-to-all communications in a parallel setting and perform better than the prior algorithms. Finally our out-of-core algorithm is extremely memory efficient and can replace the existing graph construction algorithm in VELVET.
Cellular automata with object-oriented features for parallel molecular network modeling.
Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan
2005-06-01
Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.
Proceedings of the workshop on Compilation of (Symbolic) Languages for Parallel Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, I.; Tick, E.
1991-11-01
This report comprises the abstracts and papers for the talks presented at the Workshop on Compilation of (Symbolic) Languages for Parallel Computers, held October 31--November 1, 1991, in San Diego. These unreferred contributions were provided by the participants for the purpose of this workshop; many of them will be published elsewhere in peer-reviewed conferences and publications. Our goal is planning this workshop was to bring together researchers from different disciplines with common problems in compilation. In particular, we wished to encourage interaction between researchers working in compilation of symbolic languages and those working on compilation of conventional, imperative languages. Themore » fundamental problems facing researchers interested in compilation of logic, functional, and procedural programming languages for parallel computers are essentially the same. However, differences in the basic programming paradigms have led to different communities emphasizing different species of the parallel compilation problem. For example, parallel logic and functional languages provide dataflow-like formalisms in which control dependencies are unimportant. Hence, a major focus of research in compilation has been on techniques that try to infer when sequential control flow can safely be imposed. Granularity analysis for scheduling is a related problem. The single- assignment property leads to a need for analysis of memory use in order to detect opportunities for reuse. Much of the work in each of these areas relies on the use of abstract interpretation techniques.« less
Efficient partitioning and assignment on programs for multiprocessor execution
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1993-01-01
The general problem studied is that of segmenting or partitioning programs for distribution across a multiprocessor system. Efficient partitioning and the assignment of program elements are of great importance since the time consumed in this overhead activity may easily dominate the computation, effectively eliminating any gains made by the use of the parallelism. In this study, the partitioning of sequentially structured programs (written in FORTRAN) is evaluated. Heuristics, developed for similar applications are examined. Finally, a model for queueing networks with finite queues is developed which may be used to analyze multiprocessor system architectures with a shared memory approach to the problem of partitioning. The properties of sequentially written programs form obstacles to large scale (at the procedure or subroutine level) parallelization. Data dependencies of even the minutest nature, reflecting the sequential development of the program, severely limit parallelism. The design of heuristic algorithms is tied to the experience gained in the parallel splitting. Parallelism obtained through the physical separation of data has seen some success, especially at the data element level. Data parallelism on a grander scale requires models that accurately reflect the effects of blocking caused by finite queues. A model for the approximation of the performance of finite queueing networks is developed. This model makes use of the decomposition approach combined with the efficiency of product form solutions.
Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.
Rianna, Carmela; Ventre, Maurizio; Cavalli, Silvia; Radmacher, Manfred; Netti, Paolo A
2015-09-30
Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincena, Stephen
The aim of the original proposal was a basic plasma study to experimentally investigate the fundamental physics of how dense, fast-flowing, and field-aligned jets of plasma couple energy and momentum to a much larger, ambient, magnetized plasma. Coupling channels that were explored included bulk plasma heating and flow generation; shock wave production; and wave radiation, particularly in the form of shear and compressional Alfvén waves. The wave radiation, particularly to shear Alfvén waves was successfully modeled using the 3D Particle-In-Cell code, OSIRIS. Experimentally, these jets were produced via pulsed Nd:YAG laser ablation of solid carbon (graphite) rods, which were immersedmore » in the main plasma column of the Large Plasma Device (LaPD) at UCLA’s Basic Plasma Science Facility (BaPSF.) The axial expansion of the laser-produced plasma (LPP) was supersonic and with parallel expansion speeds approximately equal to the Alfvén speed. The project was renewed and refocused efforts to then utilize the laser-produced plasmas as a tool for the disruption and reconnection of current sheets in magnetized plasmas« less
Fourth NASA Langley Formal Methods Workshop
NASA Technical Reports Server (NTRS)
Holloway, C. Michael (Compiler); Hayhurst, Kelly J. (Compiler)
1997-01-01
This publication consists of papers presented at NASA Langley Research Center's fourth workshop on the application of formal methods to the design and verification of life-critical systems. Topic considered include: Proving properties of accident; modeling and validating SAFER in VDM-SL; requirement analysis of real-time control systems using PVS; a tabular language for system design; automated deductive verification of parallel systems. Also included is a fundamental hardware design in PVS.
Algorithms for Data Intensive Applications on Intelligent and Smart Memories
2003-03-01
editors). Parallel Algorithms and Architectures. North Holland, 1986. [8] P. Diniz . USC ISI, Personal Communication, March, 2001. [9] M. Frigo, C. E ...hierarchy as well as the Translation Lookaside Buer TLB aect the e ectiveness of cache friendly optimizations These penalties vary among...processors and cause large variations in the e ectiveness of cache performance optimizations The area of graph problems is fundamental in a wide variety of
Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy Haggerty
2012-01-01
Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream...
The Red Book and clinical practice.
Bygott, Catherine
2012-09-01
Jung's work is fundamentally an experience, not an idea. From this perspective, I attempt to bridge conference, consulting room and living psyche by considering the influence of the 'Red Book' on clinical practice through the subtle and imaginal. Jung's journey as a man broadens out to have relevance for women. His story is individual but its archetypal foundation finds parallel expression in analytic practice today. © 2012, The Society of Analytical Psychology.
The Subordination of Aesthetic Fundamentals in College Art Instruction
ERIC Educational Resources Information Center
Lavender, Randall
2003-01-01
Opportunities for college students of art and design to study fundamentals of visual aesthetics, integrity of form, and principles of composition are limited today by a number of factors. With the well-documented prominence of postmodern critical theory in the world of contemporary art, the study of aesthetic fundamentals is largely subordinated…
Testing a model of intonation in a tone language.
Lindau, M
1986-09-01
Schematic fundamental frequency curves of simple statements and questions are generated for Hausa, a two-tone language of Nigeria, using a modified version of an intonational model developed by Gårding and Bruce [Nordic Prosody II, edited by T. Fretheim (Tapir, Trondheim, 1981), pp. 33-39]. In this model, rules for intonation and tones are separated. Intonation is represented as sloping grids of (near) parallel lines, inside which tones are placed. The tones are associated with turning points of the fundamental frequency contour. Local rules may also modify the exact placement of a tone within the grid. The continuous fundamental frequency contour is modeled by concatenating the tonal points using polynomial equations. Thus the final pitch contour is modeled as an interaction between global and local factors. The slope of the intonational grid lines depends at least on sentence type (statement or question), sentence length, and tone pattern. The model is tested by reference to data from nine speakers of Kano Hausa.
SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws
NASA Technical Reports Server (NTRS)
Cooke, Daniel; Rushton, Nelson
2013-01-01
With the introduction of new parallel architectures like the cell and multicore chips from IBM, Intel, AMD, and ARM, as well as the petascale processing available for highend computing, a larger number of programmers will need to write parallel codes. Adding the parallel control structure to the sequence, selection, and iterative control constructs increases the complexity of code development, which often results in increased development costs and decreased reliability. SequenceL is a high-level programming language that is, a programming language that is closer to a human s way of thinking than to a machine s. Historically, high-level languages have resulted in decreased development costs and increased reliability, at the expense of performance. In recent applications at JSC and in industry, SequenceL has demonstrated the usual advantages of high-level programming in terms of low cost and high reliability. SequenceL programs, however, have run at speeds typically comparable with, and in many cases faster than, their counterparts written in C and C++ when run on single-core processors. Moreover, SequenceL is able to generate parallel executables automatically for multicore hardware, gaining parallel speedups without any extra effort from the programmer beyond what is required to write the sequen tial/singlecore code. A SequenceL-to-C++ translator has been developed that automatically renders readable multithreaded C++ from a combination of a SequenceL program and sample data input. The SequenceL language is based on two fundamental computational laws, Consume-Simplify- Produce (CSP) and Normalize-Trans - pose (NT), which enable it to automate the creation of parallel algorithms from high-level code that has no annotations of parallelism whatsoever. In our anecdotal experience, SequenceL development has been in every case less costly than development of the same algorithm in sequential (that is, single-core, single process) C or C++, and an order of magnitude less costly than development of comparable parallel code. Moreover, SequenceL not only automatically parallelizes the code, but since it is based on CSP-NT, it is provably race free, thus eliminating the largest quality challenge the parallelized software developer faces.
CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED
This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter, and the power-law relationship between...
CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED
This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter , and the power-law relationship betwe...
Conversion between parallel and antiparallel β -sheets in wild-type and Iowa mutant Aβ40 fibrils
NASA Astrophysics Data System (ADS)
Xi, Wenhui; Hansmann, Ulrich H. E.
2018-01-01
Using a variant of Hamilton-replica-exchange, we study for wild type and Iowa mutant Aβ40 the conversion between fibrils with antiparallel β-sheets and such with parallel β-sheets. We show that wild type and mutant form distinct salt bridges that in turn stabilize different fibril organizations. The conversion between the two fibril forms leads to the release of small aggregates that in the Iowa mutant may shift the equilibrium from fibrils to more toxic oligomers.
Genomics of parallel adaptation at two timescales in Drosophila
Begun, David J.
2017-01-01
Two interesting unanswered questions are the extent to which both the broad patterns and genetic details of adaptive divergence are repeatable across species, and the timescales over which parallel adaptation may be observed. Drosophila melanogaster is a key model system for population and evolutionary genomics. Findings from genetics and genomics suggest that recent adaptation to latitudinal environmental variation (on the timescale of hundreds or thousands of years) associated with Out-of-Africa colonization plays an important role in maintaining biological variation in the species. Additionally, studies of interspecific differences between D. melanogaster and its sister species D. simulans have revealed that a substantial proportion of proteins and amino acid residues exhibit adaptive divergence on a roughly few million years long timescale. Here we use population genomic approaches to attack the problem of parallelism between D. melanogaster and a highly diverged conger, D. hydei, on two timescales. D. hydei, a member of the repleta group of Drosophila, is similar to D. melanogaster, in that it too appears to be a recently cosmopolitan species and recent colonizer of high latitude environments. We observed parallelism both for genes exhibiting latitudinal allele frequency differentiation within species and for genes exhibiting recurrent adaptive protein divergence between species. Greater parallelism was observed for long-term adaptive protein evolution and this parallelism includes not only the specific genes/proteins that exhibit adaptive evolution, but extends even to the magnitudes of the selective effects on interspecific protein differences. Thus, despite the roughly 50 million years of time separating D. melanogaster and D. hydei, and despite their considerably divergent biology, they exhibit substantial parallelism, suggesting the existence of a fundamental predictability of adaptive evolution in the genus. PMID:28968391
Active control of fan noise from a turbofan engine
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.
1993-01-01
A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.
Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils.
Pazos, Ileana M; Ma, Jianqiang; Mukherjee, Debopreeti; Gai, Feng
2018-06-08
While there are many studies on the subject of hydrogen bonding dynamics in biological systems, few, if any, have investigated this fundamental process in amyloid fibrils. Herein, we seek to add insight into this topic by assessing the dynamics of a hydrogen bond buried in the dry interface of amyloid fibrils. To prepare a suitable model peptide system for this purpose, we introduce two mutations into the amyloid-forming Aβ(16-22) peptide. The first one is a lysine analog at position 19, which is used to help form structurally homogeneous fibrils, and the second one is an aspartic acid derivative (DM) at position 17, which is intended (1) to be used as a site-specific infrared probe and (2) to serve as a hydrogen-bond acceptor to lysine so that an inter-β-sheet hydrogen bond can be formed in the fibrils. Using both infrared spectroscopy and atomic force microscopy, we show that (1) this mutant peptide indeed forms well defined fibrils, (2) when bulk solvent is removed, there is no detectable water present in the fibrils, (3) infrared results obtained with the DM probe are consistent with a protofibril structure that is composed of two antiparallel β-sheets stacked in a parallel fashion, leading to formation of the expected hydrogen bond. Using two-dimensional infrared spectroscopy, we further show that the dynamics of this hydrogen bond occur on a timescale of ~2.3 ps, which is attributed to the rapid rotation of the -NH3+ group of lysine around its Cε-Nζ bond. Taken together, these results suggest that (1) DM is a useful infrared marker in facilitating structure determination of amyloid fibrils and (2) even in the tightly packed core of amyloid fibrils certain amino acid sidechains can undergo ultrafast motions, hence contributing to the thermodynamic stability of the system.
Musical emotions: Functions, origins, evolution
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid
2010-03-01
Theories of music origins and the role of musical emotions in the mind are reviewed. Most existing theories contradict each other, and cannot explain mechanisms or roles of musical emotions in workings of the mind, nor evolutionary reasons for music origins. Music seems to be an enigma. Nevertheless, a synthesis of cognitive science and mathematical models of the mind has been proposed describing a fundamental role of music in the functioning and evolution of the mind, consciousness, and cultures. The review considers ancient theories of music as well as contemporary theories advanced by leading authors in this field. It addresses one hypothesis that promises to unify the field and proposes a theory of musical origin based on a fundamental role of music in cognition and evolution of consciousness and culture. We consider a split in the vocalizations of proto-humans into two types: one less emotional and more concretely-semantic, evolving into language, and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other theories in considering specific mechanisms of the mind-brain, which required the evolution of music parallel with the evolution of cultures and languages. Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional encumbrances. The opposite, no less powerful mechanisms required a compensatory evolution of music toward more differentiated and refined emotionality. The need for refined music in the process of cultural evolution is grounded in fundamental mechanisms of the mind. This is why today's human mind and cultures cannot exist without today's music. The reviewed hypothesis gives a basis for future analysis of why different evolutionary paths of languages were paralleled by different evolutionary paths of music. Approaches toward experimental verification of this hypothesis in psychological and neuroimaging research are reviewed.
NASA Technical Reports Server (NTRS)
Wheatley, Thomas E.; Michaloski, John L.; Lumia, Ronald
1989-01-01
Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored.
Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru
Particle tracing is a fundamental technique in flow field data visualization. In this work, we present a novel dynamic load balancing method for parallel particle tracing. Specifically, we employ a constrained k-d tree decomposition approach to dynamically redistribute tasks among processes. Each process is initially assigned a regularly partitioned block along with duplicated ghost layer under the memory limit. During particle tracing, the k-d tree decomposition is dynamically performed by constraining the cutting planes in the overlap range of duplicated data. This ensures that each process is reassigned particles as even as possible, and on the other hand the newmore » assigned particles for a process always locate in its block. Result shows good load balance and high efficiency of our method.« less
Seq-ing answers: uncovering the unexpected in global gene regulation.
Otto, George Maxwell; Brar, Gloria Ann
2018-04-19
The development of techniques for measuring gene expression globally has greatly expanded our understanding of gene regulatory mechanisms in depth and scale. We can now quantify every intermediate and transition in the canonical pathway of gene expression-from DNA to mRNA to protein-genome-wide. Employing such measurements in parallel can produce rich datasets, but extracting the most information requires careful experimental design and analysis. Here, we argue for the value of genome-wide studies that measure multiple outputs of gene expression over many timepoints during the course of a natural developmental process. We discuss our findings from a highly parallel gene expression dataset of meiotic differentiation, and those of others, to illustrate how leveraging these features can provide new and surprising insight into fundamental mechanisms of gene regulation.
Sourdin, Tania; Cornes, Richard
Robert Burt in, "The Yale School of Law and Psychoanalysis, from 1963 Onward", in this issue, explains and laments a decline in influence of psychoanalytic ideas in legal thinking. He notes "the fundamental similarity that both litigation and psychotherapy involve recollections of past events", buttressing his argument with eight parallels between the two. In this article we take up Burt's theme, first noting the relationship between therapeutic jurisprudence and psychoanalytic concepts before presenting an outline for a psychoanalytical understanding of the judicial role. We then consider the litigation process from the linked perspectives of therapeutic jurisprudence and psychoanalysis before closing with a reflection on the eight parallels elaborated by Burt. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parallel language constructs for tensor product computations on loosely coupled architectures
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Vanrosendale, John
1989-01-01
Distributed memory architectures offer high levels of performance and flexibility, but have proven awkard to program. Current languages for nonshared memory architectures provide a relatively low level programming environment, and are poorly suited to modular programming, and to the construction of libraries. A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. Tensor product array computations are focused on along with a simple but important class of numerical algorithms. The problem of programming 1-D kernal routines is focused on first, such as parallel tridiagonal solvers, and then how such parallel kernels can be combined to form parallel tensor product algorithms is examined.
Parallel computation using boundary elements in solid mechanics
NASA Technical Reports Server (NTRS)
Chien, L. S.; Sun, C. T.
1990-01-01
The inherent parallelism of the boundary element method is shown. The boundary element is formulated by assuming the linear variation of displacements and tractions within a line element. Moreover, MACSYMA symbolic program is employed to obtain the analytical results for influence coefficients. Three computational components are parallelized in this method to show the speedup and efficiency in computation. The global coefficient matrix is first formed concurrently. Then, the parallel Gaussian elimination solution scheme is applied to solve the resulting system of equations. Finally, and more importantly, the domain solutions of a given boundary value problem are calculated simultaneously. The linear speedups and high efficiencies are shown for solving a demonstrated problem on Sequent Symmetry S81 parallel computing system.
An approach to enhance pnetCDF performance in environmental modeling applications
Data intensive simulations are often limited by their I/O (input/output) performance, and "novel" techniques need to be developed in order to overcome this limitation. The software package pnetCDF (parallel network Common Data Form), which works with parallel file syste...
NASA Technical Reports Server (NTRS)
Schutz, Bob E.; Baker, Gregory A.
1997-01-01
The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.
NASA Astrophysics Data System (ADS)
Baker, Gregory Allen
The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.
NASA Technical Reports Server (NTRS)
Reif, John H.
1987-01-01
A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.
Parallelization and implementation of approximate root isolation for nonlinear system by Monte Carlo
NASA Astrophysics Data System (ADS)
Khosravi, Ebrahim
1998-12-01
This dissertation solves a fundamental problem of isolating the real roots of nonlinear systems of equations by Monte-Carlo that were published by Bush Jones. This algorithm requires only function values and can be applied readily to complicated systems of transcendental functions. The implementation of this sequential algorithm provides scientists with the means to utilize function analysis in mathematics or other fields of science. The algorithm, however, is so computationally intensive that the system is limited to a very small set of variables, and this will make it unfeasible for large systems of equations. Also a computational technique was needed for investigating a metrology of preventing the algorithm structure from converging to the same root along different paths of computation. The research provides techniques for improving the efficiency and correctness of the algorithm. The sequential algorithm for this technique was corrected and a parallel algorithm is presented. This parallel method has been formally analyzed and is compared with other known methods of root isolation. The effectiveness, efficiency, enhanced overall performance of the parallel processing of the program in comparison to sequential processing is discussed. The message passing model was used for this parallel processing, and it is presented and implemented on Intel/860 MIMD architecture. The parallel processing proposed in this research has been implemented in an ongoing high energy physics experiment: this algorithm has been used to track neutrinoes in a super K detector. This experiment is located in Japan, and data can be processed on-line or off-line locally or remotely.
Maintaining Genome Stability: The Role of Helicases and Deaminases
2008-07-01
deaminases. The cells response to different forms of damage is fundamental to its ability to repair itself when challenged by environmental or...Page 4 of 12 INTRODUCTION Genomic DNA stores all the information for living organisms. The faithful duplication the maintanance of DNA are...maturation of the immune system by modifying enzymes called deaminases. The cells response to different forms of damage is fundamental to its ability to
An intercalation-locked parallel-stranded DNA tetraplex
Tripathi, S.; Zhang, D.; Paukstelis, P. J.
2015-01-27
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less
Self-Determination and U.S. Support of Insurgents: A Policy-Analysis Model
1988-01-01
parallels the European Convention model. The American Convention on Human Rights21 is the basis for an Inter -American human rights system which has its...fundamental change takes place among states and in the context of state-initiated action.42 Although they do not necessarily have the same capacities as...ability to adapt to the ever- changing circumstances in which conflicts arise. The global experience, Stone suggested, has proven that literal
The Model of Complex Structure of Quark
NASA Astrophysics Data System (ADS)
Liu, Rongwu
2017-09-01
In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.
Nieder, Andreas; Miller, Earl K
2003-01-09
Whether cognitive representations are better conceived as language-based, symbolic representations or perceptually related, analog representations is a subject of debate. If cognitive processes parallel perceptual processes, then fundamental psychophysical laws should hold for each. To test this, we analyzed both behavioral and neuronal representations of numerosity in the prefrontal cortex of rhesus monkeys. The data were best described by a nonlinearly compressed scaling of numerical information, as postulated by the Weber-Fechner law or Stevens' law for psychophysical/sensory magnitudes. This nonlinear compression was observed on the neural level during the acquisition phase of the task and maintained through the memory phase with no further compression. These results suggest that certain cognitive and perceptual/sensory representations share the same fundamental mechanisms and neural coding schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Abdelaziz, Omar; Qu, Ming
This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. Themore » model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.« less
Distinct cytoskeleton populations and extensive crosstalk control Ciona notochord tubulogenesis.
Dong, Bo; Deng, Wei; Jiang, Di
2011-04-01
Cell elongation is a fundamental process that allows cells and tissues to adopt new shapes and functions. During notochord tubulogenesis in the ascidian Ciona intestinalis, a dramatic elongation of individual cells takes place that lengthens the notochord and, consequently, the entire embryo. We find a novel dynamic actin- and non-muscle myosin II-containing constriction midway along the anteroposterior aspect of each notochord cell during this process. Both actin polymerization and myosin II activity are required for the constriction and cell elongation. Discontinuous localization of myosin II in the constriction indicates that the actomyosin network produces local contractions along the circumference. This reveals basal constriction by the actomyosin network as a novel mechanism for cell elongation. Following elongation, the notochord cells undergo a mesenchymal-epithelial transition and form two apical domains at opposite ends. Extracellular lumens then form at the apical surfaces. We show that cortical actin and Ciona ezrin/radixin/moesin (ERM) are essential for lumen formation and that a polarized network of microtubules, which contributes to lumen development, forms in an actin-dependent manner at the apical cortex. Later in notochord tubulogenesis, when notochord cells initiate a bi-directional crawling movement on the notochordal sheath, the microtubule network rotates 90° and becomes organized as parallel bundles extending towards the leading edges of tractive lamellipodia. This process is required for the correct organization of actin-based protrusions and subsequent lumen coalescence. In summary, we establish the contribution of the actomyosin and microtubule networks to notochord tubulogenesis and reveal extensive crosstalk and regulation between these two cytoskeleton components.
Grossberg, Stephen
2014-01-01
Neural models of perception clarify how visual illusions arise from adaptive neural processes. Illusions also provide important insights into how adaptive neural processes work. This article focuses on two illusions that illustrate a fundamental property of global brain organization; namely, that advanced brains are organized into parallel cortical processing streams with computationally complementary properties. That is, in order to process certain combinations of properties, each cortical stream cannot process complementary properties. Interactions between these streams, across multiple processing stages, overcome their complementary deficiencies to compute effective representations of the world, and to thereby achieve the property of complementary consistency. The two illusions concern how illusory depth can vary with brightness, and how apparent motion of illusory contours can occur. Illusory depth from brightness arises from the complementary properties of boundary and surface processes, notably boundary completion and surface-filling in, within the parvocellular form processing cortical stream. This illusion depends upon how surface contour signals from the V2 thin stripes to the V2 interstripes ensure complementary consistency of a unified boundary/surface percept. Apparent motion of illusory contours arises from the complementary properties of form and motion processes across the parvocellular and magnocellular cortical processing streams. This illusion depends upon how illusory contours help to complete boundary representations for object recognition, how apparent motion signals can help to form continuous trajectories for target tracking and prediction, and how formotion interactions from V2-to-MT enable completed object representations to be continuously tracked even when they move behind intermittently occluding objects through time. PMID:25389399
Parallel protein secondary structure prediction based on neural networks.
Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi
2004-01-01
Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.
Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form.
Morrison, C L; Harvey, A W; Lavery, S; Tieu, K; Huang, Y; Cunningham, C W
2002-01-01
The repeated appearance of strikingly similar crab-like forms in independent decapod crustacean lineages represents a remarkable case of parallel evolution. Uncertainty surrounding the phylogenetic relationships among crab-like lineages has hampered evolutionary studies. As is often the case, aligned DNA sequences by themselves were unable to fully resolve these relationships. Four nested mitochondrial gene rearrangements--including one of the few reported movements of an arthropod protein-coding gene--are congruent with the DNA phylogeny and help to resolve a crucial node. A phylogenetic analysis of DNA sequences, and gene rearrangements, supported five independent origins of the crab-like form, and suggests that the evolution of the crab-like form may be irreversible. This result supports the utility of mitochondrial gene rearrangements in phylogenetic reconstruction. PMID:11886621
Parallel fabrication of macroporous scaffolds.
Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal
2018-07-01
Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.
Formation of organic layer on femtosecond laser-induced periodic surface structures
NASA Astrophysics Data System (ADS)
Yasumaru, Naoki; Sentoku, Eisuke; Kiuchi, Junsuke
2017-05-01
Two types of laser-induced periodic surface structures (LIPSS) formed on titanium by femtosecond (fs) laser pulses (λ = 800 nm, τ = 180 fs, ν = 1 kHz) in air were investigated experimentally. At a laser fluence F above the ablation threshold, LIPSS with a minimum mean spacing of D < λ⁄2 were observed perpendicular to the laser polarization direction. In contrast, for F slightly below than the ablation threshold, ultrafine LIPSS with a minimum value of D < λ/10 were formed parallel to the polarization direction. The surface roughness of the parallel-oriented LIPSS was almost the same as that of the non-irradiated surface, unlike the high roughness of the perpendicular-oriented LIPSS. In addition, although the surface state of the parallel-oriented LIPSS was the same as that of the non-irradiated surface, the perpendicular-oriented LIPSS were covered with an organic thin film similar to a cellulose derivative that cannot be easily formed by conventional chemical synthesis. The results of these surface analyses indicate that these two types of LIPSS are formed through different mechanisms. This fs-laser processing technique may become a new technology for the artificial synthesis of cellulose derivatives.
Who cares about Mid-Ocean Ridge Earthquakes? And Why?
NASA Astrophysics Data System (ADS)
Tolstoy, M.
2004-12-01
Every day the surface of our planet is being slowly ripped apart by the forces of plate tectonics. Much of this activity occurs underwater and goes unnoticed except for by a few marine seismologists who avidly follow the creaks and groans of the ocean floor in an attempt to understand the spreading and formation of oceanic crust. Are marine seismologists really the only ones that care? As it turns out, deep beneath the ocean surface, earthquakes play a fundamental role in a myriad of activity centered on mid-ocean ridges where new crust forms and breaks on a regular basis. This activity takes the form of exotic geological structures hosting roasting hot fluids and bizarre chemosynthetic life forms. One of the fundamental drivers for this other world on the seafloor is earthquakes. Earthquakes provide cracks that allow seawater to penetrate the rocks, heat up, and resurface as hydrothermal vent fluids, thus providing chemicals to feed a thriving biological community. Earthquakes can cause pressure changes along cracks that can fundamentally alter fluid flow rates and paths. Thus earthquakes can both cut off existing communities from their nutrient source and provide new oases on the seafloor around which life can thrive. This poster will present some of the fundamental physical principals of how earthquakes can impact fluid flow, and hence life on the seafloor. Using these other-wordly landscapes and alien-like life forms to woe the unsuspecting passerby, we will sneak geophysics into the picture and tell the story of why earthquakes are so fundamental to life on the seafloor, and perhaps life elsewhere in the universe.
Silicon-fiber blanket solar-cell array concept
NASA Technical Reports Server (NTRS)
Eliason, J. T.
1973-01-01
Proposed economical manufacture of solar-cell arrays involves parallel, planar weaving of filaments made of doped silicon fibers with diffused radial junction. Each filament is a solar cell connected either in series or parallel with others to form a blanket of deposited grids or attached electrode wire mesh screens.
Deep-sea tsunami deposits in the Miocene Nishizaki Formation of Boso Peninsula, Central Japan
NASA Astrophysics Data System (ADS)
Lee, I. T.; Ogawa, Y.
2003-12-01
Many sets of deep-sea deposits considered to be formed by return flow of tsunami were found from the middle Miocene Nishizaki Formation of Boso Peninsula, Central Japan, which is located near the convergent plate boundary at present as well as in the past, and has been frequently attacked by tsunami. The characteristics of the tsunami deposits in the Nishizaki Formation are as follows. Each set consists of 10-20 beds with parallel laminations formed under upper plane regime composed of alternated pumiceous beds in white and black colors. The white bed comprises coarse sands and pebbles with thickness of 5-10 cm. In contrast, the black bed is made of silts with thickness less than 1 cm. Among the 10-20 beds, the grain size is coarsest in the middle part of the set in general. The uppermost bed of each set shows cross-lamination formed by lower plane regime, gradually changing into finer graded bed on top. Sometimes, the lower part of the parallel laminated bed is associated with an underlying debrite or turbidite bed. Each set of these parallel-laminated beds is lenticular in shape thinning to the east in consistent with the generally eastward paleocurrent of the cross-lamination at the top. Such sedimentary characteristics are different from any event deposits reported in deep-sea but similar to the deep-sea K/T boundary deposits in the Caribbean region. Statistically, tsunami waves occur totally 12-13 times. Among them the height of 5-6th wave is known to be strongest. Interval time of each return flow is known to be 30-40 minutes, enough to settle the finer clastics at each bed top. The parallel-laminated parts have common dish structure and never trace fossils, indicating rather rapid deposition for the whole parts of the set. Consequently, the sedimentary characteristics shown from the parallel-laminated beds of the Nishizaki Formation are attributed to the return flow of tsunami to the deep-sea. We considered that such deep-sea parallel-laminated deposits of pumiceous clastics occur just after a large earthquake which forms the debrite or turbidite at the lowermost part.
Genetic Parallel Programming: design and implementation.
Cheang, Sin Man; Leung, Kwong Sak; Lee, Kin Hong
2006-01-01
This paper presents a novel Genetic Parallel Programming (GPP) paradigm for evolving parallel programs running on a Multi-Arithmetic-Logic-Unit (Multi-ALU) Processor (MAP). The MAP is a Multiple Instruction-streams, Multiple Data-streams (MIMD), general-purpose register machine that can be implemented on modern Very Large-Scale Integrated Circuits (VLSIs) in order to evaluate genetic programs at high speed. For human programmers, writing parallel programs is more difficult than writing sequential programs. However, experimental results show that GPP evolves parallel programs with less computational effort than that of their sequential counterparts. It creates a new approach to evolving a feasible problem solution in parallel program form and then serializes it into a sequential program if required. The effectiveness and efficiency of GPP are investigated using a suite of 14 well-studied benchmark problems. Experimental results show that GPP speeds up evolution substantially.
Growth of GaN- and ZnO-Based Nanorod Compound Structures
2013-08-16
parallel with or forming a 60o tilted angle with respect to the two parallel lateral sides of individual NRs. In the edge-to-edge pattern, the shortest...kV and a probe forming lens of Cs = 1.2 mm. 3. SEM and TEM Observations Figures 2(a)-2(f) show the plan-view SEM images of samples I-VI... angle annular dark field (HAADF) image in TEM observation of an InGaN/GaN QW NR of sample I. In this image, the three almost vertical bright lines
On Parallel Push-Relabel based Algorithms for Bipartite Maximum Matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langguth, Johannes; Azad, Md Ariful; Halappanavar, Mahantesh
2014-07-01
We study multithreaded push-relabel based algorithms for computing maximum cardinality matching in bipartite graphs. Matching is a fundamental combinatorial (graph) problem with applications in a wide variety of problems in science and engineering. We are motivated by its use in the context of sparse linear solvers for computing maximum transversal of a matrix. We implement and test our algorithms on several multi-socket multicore systems and compare their performance to state-of-the-art augmenting path-based serial and parallel algorithms using a testset comprised of a wide range of real-world instances. Building on several heuristics for enhancing performance, we demonstrate good scaling for themore » parallel push-relabel algorithm. We show that it is comparable to the best augmenting path-based algorithms for bipartite matching. To the best of our knowledge, this is the first extensive study of multithreaded push-relabel based algorithms. In addition to a direct impact on the applications using matching, the proposed algorithmic techniques can be extended to preflow-push based algorithms for computing maximum flow in graphs.« less
Cloud computing-based TagSNP selection algorithm for human genome data.
Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling
2015-01-05
Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wylie, Brian Neil; Moreland, Kenneth D.
Graphs are a vital way of organizing data with complex correlations. A good visualization of a graph can fundamentally change human understanding of the data. Consequently, there is a rich body of work on graph visualization. Although there are many techniques that are effective on small to medium sized graphs (tens of thousands of nodes), there is a void in the research for visualizing massive graphs containing millions of nodes. Sandia is one of the few entities in the world that has the means and motivation to handle data on such a massive scale. For example, homeland security generates graphsmore » from prolific media sources such as television, telephone, and the Internet. The purpose of this project is to provide the groundwork for visualizing such massive graphs. The research provides for two major feature gaps: a parallel, interactive visualization framework and scalable algorithms to make the framework usable to a practical application. Both the frameworks and algorithms are designed to run on distributed parallel computers, which are already available at Sandia. Some features are integrated into the ThreatView{trademark} application and future work will integrate further parallel algorithms.« less
Temperature Control with Two Parallel Small Loop Heat Pipes for GLM Program
NASA Technical Reports Server (NTRS)
Khrustalev, Dmitry; Stouffer, Chuck; Ku, Jentung; Hamilton, Jon; Anderson, Mark
2014-01-01
The concept of temperature control of an electronic component using a single Loop Heat Pipe (LHP) is well established for Aerospace applications. Using two LHPs is often desirable for redundancy/reliability reasons or for increasing the overall heat source-sink thermal conductance. This effort elaborates on temperature controlling operation of a thermal system that includes two small ammonia LHPs thermally coupled together at the evaporator end as well as at the condenser end and operating "in parallel". A transient model of the LHP system was developed on the Thermal Desktop (TradeMark) platform to understand some fundamental details of such parallel operation of the two LHPs. Extensive thermal-vacuum testing was conducted with two thermally coupled LHPs operating simultaneously as well as with only one LHP operating at a time. This paper outlines the temperature control procedures for two LHPs operating simultaneously with widely varying sink temperatures. The test data obtained during the thermal-vacuum testing, with both LHPs running simultaneously in comparison with only one LHP operating at a time, are presented with detailed explanations.
Predicting Flows of Rarefied Gases
NASA Technical Reports Server (NTRS)
LeBeau, Gerald J.; Wilmoth, Richard G.
2005-01-01
DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases -- especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuum-based equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation.
Cloud Computing-Based TagSNP Selection Algorithm for Human Genome Data
Hung, Che-Lun; Chen, Wen-Pei; Hua, Guan-Jie; Zheng, Huiru; Tsai, Suh-Jen Jane; Lin, Yaw-Ling
2015-01-01
Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used. PMID:25569088
Kinematics and dynamics of robotic systems with multiple closed loops
NASA Astrophysics Data System (ADS)
Zhang, Chang-De
The kinematics and dynamics of robotic systems with multiple closed loops, such as Stewart platforms, walking machines, and hybrid manipulators, are studied. In the study of kinematics, focus is on the closed-form solutions of the forward position analysis of different parallel systems. A closed-form solution means that the solution is expressed as a polynomial in one variable. If the order of the polynomial is less than or equal to four, the solution has analytical closed-form. First, the conditions of obtaining analytical closed-form solutions are studied. For a Stewart platform, the condition is found to be that one rotational degree of freedom of the output link is decoupled from the other five. Based on this condition, a class of Stewart platforms which has analytical closed-form solution is formulated. Conditions of analytical closed-form solution for other parallel systems are also studied. Closed-form solutions of forward kinematics for walking machines and multi-fingered grippers are then studied. For a parallel system with three three-degree-of-freedom subchains, there are 84 possible ways to select six independent joints among nine joints. These 84 ways can be classified into three categories: Category 3:3:0, Category 3:2:1, and Category 2:2:2. It is shown that the first category has no solutions; the solutions of the second category have analytical closed-form; and the solutions of the last category are higher order polynomials. The study is then extended to a nearly general Stewart platform. The solution is a 20th order polynomial and the Stewart platform has a maximum of 40 possible configurations. Also, the study is extended to a new class of hybrid manipulators which consists of two serially connected parallel mechanisms. In the study of dynamics, a computationally efficient method for inverse dynamics of manipulators based on the virtual work principle is developed. Although this method is comparable with the recursive Newton-Euler method for serial manipulators, its advantage is more noteworthy when applied to parallel systems. An approach of inverse dynamics of a walking machine is also developed, which includes inverse dynamic modeling, foot force distribution, and joint force/torque allocation.
Machine Learning Based Online Performance Prediction for Runtime Parallelization and Task Scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J; Ma, X; Singh, K
2008-10-09
With the emerging many-core paradigm, parallel programming must extend beyond its traditional realm of scientific applications. Converting existing sequential applications as well as developing next-generation software requires assistance from hardware, compilers and runtime systems to exploit parallelism transparently within applications. These systems must decompose applications into tasks that can be executed in parallel and then schedule those tasks to minimize load imbalance. However, many systems lack a priori knowledge about the execution time of all tasks to perform effective load balancing with low scheduling overhead. In this paper, we approach this fundamental problem using machine learning techniques first to generatemore » performance models for all tasks and then applying those models to perform automatic performance prediction across program executions. We also extend an existing scheduling algorithm to use generated task cost estimates for online task partitioning and scheduling. We implement the above techniques in the pR framework, which transparently parallelizes scripts in the popular R language, and evaluate their performance and overhead with both a real-world application and a large number of synthetic representative test scripts. Our experimental results show that our proposed approach significantly improves task partitioning and scheduling, with maximum improvements of 21.8%, 40.3% and 22.1% and average improvements of 15.9%, 16.9% and 4.2% for LMM (a real R application) and synthetic test cases with independent and dependent tasks, respectively.« less
Cameron, Chris; Ewara, Emmanuel; Wilson, Florence R; Varu, Abhishek; Dyrda, Peter; Hutton, Brian; Ingham, Michael
2017-11-01
Adaptive trial designs present a methodological challenge when performing network meta-analysis (NMA), as data from such adaptive trial designs differ from conventional parallel design randomized controlled trials (RCTs). We aim to illustrate the importance of considering study design when conducting an NMA. Three NMAs comparing anti-tumor necrosis factor drugs for ulcerative colitis were compared and the analyses replicated using Bayesian NMA. The NMA comprised 3 RCTs comparing 4 treatments (adalimumab 40 mg, golimumab 50 mg, golimumab 100 mg, infliximab 5 mg/kg) and placebo. We investigated the impact of incorporating differences in the study design among the 3 RCTs and presented 3 alternative methods on how to convert outcome data derived from one form of adaptive design to more conventional parallel RCTs. Combining RCT results without considering variations in study design resulted in effect estimates that were biased against golimumab. In contrast, using the 3 alternative methods to convert outcome data from one form of adaptive design to a format more consistent with conventional parallel RCTs facilitated more transparent consideration of differences in study design. This approach is more likely to yield appropriate estimates of comparative efficacy when conducting an NMA, which includes treatments that use an alternative study design. RCTs based on adaptive study designs should not be combined with traditional parallel RCT designs in NMA. We have presented potential approaches to convert data from one form of adaptive design to more conventional parallel RCTs to facilitate transparent and less-biased comparisons.
Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex
2017-01-01
Magnocellular versus parvocellular (M-P) streams are fundamental to the organization of macaque visual cortex. Segregated, paired M-P streams extend from retina through LGN into V1. The M stream extends further into area V5/MT, and parts of V2. However, elsewhere in visual cortex, it remains unclear whether M-P-derived information (1) becomes intermixed or (2) remains segregated in M-P-dominated columns and neurons. Here we tested whether M-P streams exist in extrastriate cortical columns, in 8 human subjects (4 female). We acquired high-resolution fMRI at high field (7T), testing for M- and P-influenced columns within each of four cortical areas (V2, V3, V3A, and V4), based on known functional distinctions in M-P streams in macaque: (1) color versus luminance, (2) binocular disparity, (3) luminance contrast sensitivity, (4) peak spatial frequency, and (5) color/spatial interactions. Additional measurements of resting state activity (eyes closed) tested for segregated functional connections between these columns. We found M- and P-like functions and connections within and between segregated cortical columns in V2, V3, and (in most experiments) area V4. Area V3A was dominated by the M stream, without significant influence from the P stream. These results suggest that M-P streams exist, and extend through, specific columns in early/middle stages of human extrastriate cortex. SIGNIFICANCE STATEMENT The magnocellular and parvocellular (M-P) streams are fundamental components of primate visual cortical organization. These streams segregate both anatomical and functional properties in parallel, from retina through primary visual cortex. However, in most higher-order cortical sites, it is unknown whether such M-P streams exist and/or what form those streams would take. Moreover, it is unknown whether M-P streams exist in human cortex. Here, fMRI evidence measured at high field (7T) and high resolution revealed segregated M-P streams in four areas of human extrastriate cortex. These results suggest that M-P information is processed in segregated parallel channels throughout much of human visual cortex; the M-P streams are more than a convenient sorting property in earlier stages of the visual system. PMID:28724749
Reliability models for dataflow computer systems
NASA Technical Reports Server (NTRS)
Kavi, K. M.; Buckles, B. P.
1985-01-01
The demands for concurrent operation within a computer system and the representation of parallelism in programming languages have yielded a new form of program representation known as data flow (DENN 74, DENN 75, TREL 82a). A new model based on data flow principles for parallel computations and parallel computer systems is presented. Necessary conditions for liveness and deadlock freeness in data flow graphs are derived. The data flow graph is used as a model to represent asynchronous concurrent computer architectures including data flow computers.
Adaptive parallel logic networks
NASA Technical Reports Server (NTRS)
Martinez, Tony R.; Vidal, Jacques J.
1988-01-01
Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.
Parallel Computing:. Some Activities in High Energy Physics
NASA Astrophysics Data System (ADS)
Willers, Ian
This paper examines some activities in High Energy Physics that utilise parallel computing. The topic includes all computing from the proposed SIMD front end detectors, the farming applications, high-powered RISC processors and the large machines in the computer centers. We start by looking at the motivation behind using parallelism for general purpose computing. The developments around farming are then described from its simplest form to the more complex system in Fermilab. Finally, there is a list of some developments that are happening close to the experiments.
Nonequilibrium thermodynamics and the transport phenomena in magnetically confined plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1987-09-01
The neoclassical theory of transport in magnetically confined plasmas is reviewed. The emphasis is laid on a set of relationships existing among the banana transport coefficients. The surface-averaged entropy production in such plasmas is evaluated. It is shown that neoclassical effects emerge from the entropy production due to parallel transport processes. The Pfirsch-Schlueter effect can be clearly interpreted as due to spatial fluctuations of parallel fluxes on a magnetic surface: the corresponding entropy production is the measure of these fluctuations. The banana fluxes can be formulated in a quasithermodynamic form in which the average entropy production is a bilinear formmore » in the parallel fluxes and the conjugate generalized stresses. A formulation as a quadratic form in the thermodynamic forces is also possible, but leads to anomalies, which are discussed in some detail.« less
Parallel Anisotropic Tetrahedral Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.
NASA Astrophysics Data System (ADS)
Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom
2016-06-01
Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy.
NASA Astrophysics Data System (ADS)
Yin, Guoyan; Zhang, Limin; Zhang, Yanqi; Liu, Han; Du, Wenwen; Ma, Wenjuan; Zhao, Huijuan; Gao, Feng
2018-02-01
Pharmacokinetic diffuse fluorescence tomography (DFT) can describe the metabolic processes of fluorescent agents in biomedical tissue and provide helpful information for tumor differentiation. In this paper, a dynamic DFT system was developed by employing digital lock-in-photon-counting with square wave modulation, which predominates in ultra-high sensitivity and measurement parallelism. In this system, 16 frequency-encoded laser diodes (LDs) driven by self-designed light source system were distributed evenly in the imaging plane and irradiated simultaneously. Meanwhile, 16 detection fibers collected emission light in parallel by the digital lock-in-photon-counting module. The fundamental performances of the proposed system were assessed with phantom experiments in terms of stability, linearity, anti-crosstalk as well as images reconstruction. The results validated the availability of the proposed dynamic DFT system.
Parallel-processing with surface plasmons, a new strategy for converting the broad solar spectrum
NASA Technical Reports Server (NTRS)
Anderson, L. M.
1982-01-01
A new strategy for efficient solar-energy conversion is based on parallel processing with surface plasmons: guided electromagnetic waves supported on thin films of common metals like aluminum or silver. The approach is unique in identifying a broadband carrier with suitable range for energy transport and an inelastic tunneling process which can be used to extract more energy from the more energetic carriers without requiring different materials for each frequency band. The aim is to overcome the fundamental 56-percent loss associated with mismatch between the broad solar spectrum and the monoenergetic conduction electrons used to transport energy in conventional silicon solar cells. This paper presents a qualitative discussion of the unknowns and barrier problems, including ideas for coupling surface plasmons into the tunnels, a step which has been the weak link in the efficiency chain.
Lattanzi; di Lauro C; Bürger; Mkadmi
2000-09-01
The rotational and torsional structure of the nu(7) and nu(9) degenerate fundamentals of (70)Ge(2)H(6) has been analyzed under high resolution. The torsional structure of both v(7) = 1 and v(9) = 1 states can be fitted by a simple one-parameter formula. The x,y-Coriolis interaction with the parallel nu(5) fundamental was accounted for in the analysis of nu(7). A strong perturbation of the J structure of the E(3s) torsional component of the KDeltaK = -2 subbranches of nu(9) can be explained by the resonance with an E(3s) excited level of the pure torsional manifold. The perturber is centered at 361.58 cm(-1), very close to the value estimated with a barrier height of 285 cm(-1). This confirms that the fundamental torsional wavenumber is close to 103 cm(-1), in good agreement with the "ab initio" prediction. The torsional splittings of all the infrared active degenerate fundamentals, nu(7), nu(8), and nu(9), follow the trend predicted by theory, and have been fitted by exploratory calculations accounting only for the torsional Coriolis-coupling mechanism of all degenerate vibrational fundamentals in several torsional states. This confirms that torsional Coriolis coupling is the dominant mechanism responsible for the decrease of the torsional splitting in the degenerate vibrational states. A higher value of the barrier had to be used for the nu(9) mode. Copyright 2000 Academic Press.
1985-02-19
effort to develop a govern- ment-wide integrated financial management structure. Such an effort must have a solid base of fundamental concepts to guide ...initiatives address many PPSSCC debt collection concerns The PPSSCC recommendations basically parallel our prior *- recommendations and ongoing OMB...PPSSCC recommended either selling the PMAs’ facilities or adjusting the PMAs’ user fees, ratemaking process, and pricina structure. In total, the PPSSCC
Consciousness weaves our internal view of the outside world.
Gur, Moshe
2016-01-01
Low-level consciousness is fundamental to our understanding of the world. Within the conscious field, the constantly changing external visual information is transformed into stable, object-based percepts. Remarkably, holistic objects are perceived while we are cognizant of all of the spatial details comprising the objects and of the relationship between individual elements. This parallel conscious association is unique to the brain. Conscious contributions to motor activity come after our understanding of the world has been established.
Sodickson, Daniel K.
2010-01-01
Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. PMID:17562047
Nanomechanical DNA origami pH sensors.
Kuzuya, Akinori; Watanabe, Ryosuke; Yamanaka, Yusei; Tamaki, Takuya; Kaino, Masafumi; Ohya, Yuichi
2014-10-16
Single-molecule pH sensors have been developed by utilizing molecular imaging of pH-responsive shape transition of nanomechanical DNA origami devices with atomic force microscopy (AFM). Short DNA fragments that can form i-motifs were introduced to nanomechanical DNA origami devices with pliers-like shape (DNA Origami Pliers), which consist of two levers of 170-nm long and 20-nm wide connected at a Holliday-junction fulcrum. DNA Origami Pliers can be observed as in three distinct forms; cross, antiparallel and parallel forms, and cross form is the dominant species when no additional interaction is introduced to DNA Origami Pliers. Introduction of nine pairs of 12-mer sequence (5'-AACCCCAACCCC-3'), which dimerize into i-motif quadruplexes upon protonation of cytosine, drives transition of DNA Origami Pliers from open cross form into closed parallel form under acidic conditions. Such pH-dependent transition was clearly imaged on mica in molecular resolution by AFM, showing potential application of the system to single-molecular pH sensors.
Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies
NASA Astrophysics Data System (ADS)
Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko
2018-04-01
Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.
NASA Astrophysics Data System (ADS)
Roche-Lima, Abiel; Thulasiram, Ruppa K.
2012-02-01
Finite automata, in which each transition is augmented with an output label in addition to the familiar input label, are considered finite-state transducers. Transducers have been used to analyze some fundamental issues in bioinformatics. Weighted finite-state transducers have been proposed to pairwise alignments of DNA and protein sequences; as well as to develop kernels for computational biology. Machine learning algorithms for conditional transducers have been implemented and used for DNA sequence analysis. Transducer learning algorithms are based on conditional probability computation. It is calculated by using techniques, such as pair-database creation, normalization (with Maximum-Likelihood normalization) and parameters optimization (with Expectation-Maximization - EM). These techniques are intrinsically costly for computation, even worse when are applied to bioinformatics, because the databases sizes are large. In this work, we describe a parallel implementation of an algorithm to learn conditional transducers using these techniques. The algorithm is oriented to bioinformatics applications, such as alignments, phylogenetic trees, and other genome evolution studies. Indeed, several experiences were developed using the parallel and sequential algorithm on Westgrid (specifically, on the Breeze cluster). As results, we obtain that our parallel algorithm is scalable, because execution times are reduced considerably when the data size parameter is increased. Another experience is developed by changing precision parameter. In this case, we obtain smaller execution times using the parallel algorithm. Finally, number of threads used to execute the parallel algorithm on the Breezy cluster is changed. In this last experience, we obtain as result that speedup is considerably increased when more threads are used; however there is a convergence for number of threads equal to or greater than 16.
Hierarchial parallel computer architecture defined by computational multidisciplinary mechanics
NASA Technical Reports Server (NTRS)
Padovan, Joe; Gute, Doug; Johnson, Keith
1989-01-01
The goal is to develop an architecture for parallel processors enabling optimal handling of multi-disciplinary computation of fluid-solid simulations employing finite element and difference schemes. The goals, philosphical and modeling directions, static and dynamic poly trees, example problems, interpolative reduction, the impact on solvers are shown in viewgraph form.
Scalable Parallel Algorithms for Multidimensional Digital Signal Processing
1991-12-31
Proceedings, San Diego CL., August 1989, pp. 132-146. 53 [13] A. L. Gorin, L. Auslander, and A. Silberger . Balanced computation of 2D trans- forms on a tree...Speech, Signal Processing. ASSP-34, Oct. 1986,pp. 1301-1309. [24] A. Norton and A. Silberger . Parallelization and performance analysis of the Cooley-Tukey
Li, Kenli; Zou, Shuting; Xv, Jin
2008-01-01
Elliptic curve cryptographic algorithms convert input data to unrecognizable encryption and the unrecognizable data back again into its original decrypted form. The security of this form of encryption hinges on the enormous difficulty that is required to solve the elliptic curve discrete logarithm problem (ECDLP), especially over GF(2(n)), n in Z+. This paper describes an effective method to find solutions to the ECDLP by means of a molecular computer. We propose that this research accomplishment would represent a breakthrough for applied biological computation and this paper demonstrates that in principle this is possible. Three DNA-based algorithms: a parallel adder, a parallel multiplier, and a parallel inverse over GF(2(n)) are described. The biological operation time of all of these algorithms is polynomial with respect to n. Considering this analysis, cryptography using a public key might be less secure. In this respect, a principal contribution of this paper is to provide enhanced evidence of the potential of molecular computing to tackle such ambitious computations.
Li, Kenli; Zou, Shuting; Xv, Jin
2008-01-01
Elliptic curve cryptographic algorithms convert input data to unrecognizable encryption and the unrecognizable data back again into its original decrypted form. The security of this form of encryption hinges on the enormous difficulty that is required to solve the elliptic curve discrete logarithm problem (ECDLP), especially over GF(2n), n ∈ Z+. This paper describes an effective method to find solutions to the ECDLP by means of a molecular computer. We propose that this research accomplishment would represent a breakthrough for applied biological computation and this paper demonstrates that in principle this is possible. Three DNA-based algorithms: a parallel adder, a parallel multiplier, and a parallel inverse over GF(2n) are described. The biological operation time of all of these algorithms is polynomial with respect to n. Considering this analysis, cryptography using a public key might be less secure. In this respect, a principal contribution of this paper is to provide enhanced evidence of the potential of molecular computing to tackle such ambitious computations. PMID:18431451
Solid oxide fuel cell having compound cross flow gas patterns
Fraioli, A.V.
1983-10-12
A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.
Solid oxide fuel cell having compound cross flow gas patterns
Fraioli, Anthony V.
1985-01-01
A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.
All-optical and broadband microwave fundamental/sub-harmonic I/Q down-converters.
Gao, Yongsheng; Wen, Aijun; Jiang, Wei; Fan, Yangyu; He, You
2018-03-19
Microwave I/Q down-converters are frequently used in image-reject super heterodyne receivers, zero intermediate frequency (zero-IF) receivers, and phase/frequency discriminators. However, due to the electronic bottleneck, conventional microwave I/Q mixers face a serious bandwidth limitation, I/Q imbalance, and even-order distortion. In this paper, photonic microwave fundamental and sub-harmonic I/Q down-converters are presented using a polarization division multiplexing dual-parallel Mach-Zehnder modulator (PDM-DPMZM). Thanks to all-optical manipulation, the proposed system features an ultra-wide operating band (7-40 GHz in the fundamental I/Q down-converter, and 10-40 GHz in the sub-harmonic I/Q down-converter) and an excellent I/Q balance (maximum 0.7 dB power imbalance and 1 degree phase imbalance). The conversion gain, noise figure (NF), even-order distortion, and spurious free dynamic range (SFDR) are also improved by LO power optimization and balanced detection. Using the proposed system, a high image rejection ratio is demonstrated for a super heterodyne receiver, and good EVMs over a wide RF power range is demonstrated for a zero-IF receiver. The proposed broadband photonic microwave fundamental and sub-harmonic I/Q down-converters may find potential applications in multi-band satellite, ultra-wideband radar and frequency-agile electronic warfare systems.
NASA Astrophysics Data System (ADS)
Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui
2017-05-01
Secondary magnetic islands may be generated in the vicinity of an X line during magnetic reconnection. In this paper, by performing two-dimensional (2-D) particle-in-cell simulations, we investigate the role of a secondary magnetic island in electron acceleration during magnetic reconnection with a guide field. The electron motions are found to be adiabatic, and we analyze the contributions of the parallel electric field and Fermi and betatron mechanisms to electron acceleration in the secondary island during the evolution of magnetic reconnection. When the secondary island is formed, electrons are accelerated by the parallel electric field due to the existence of the reconnection electric field in the electron current sheet. Electrons can be accelerated by both the parallel electric field and Fermi mechanism when the secondary island begins to merge with the primary magnetic island, which is formed simultaneously with the appearance of X lines. With the increase in the guide field, the contributions of the Fermi mechanism to electron acceleration become less and less important. When the guide field is sufficiently large, the contribution of the Fermi mechanism is almost negligible.
NASA Astrophysics Data System (ADS)
Xie, Zhengyang; Zheng, Xiaoping; Li, Shangyuan; Yan, Haozhe; Xiao, Xuedi; Xue, Xiaoxiao
2018-06-01
We propose an injection-locked optoelectronic oscillator (OEO) based wide-band frequency doubler, which is free from phase noise deterioration in electrical doubler, by using a dual-parallel Mach-Zehnder modulator (DPMZM). Through adjusting the optical phase shifts in different arms of the DPMZM, the doubling signal oscillates in the OEO loop while the fundamental signal takes on phase modulation over the light and vanishes at photo-detector (PD) output. By controlling power of fundamental signal the restriction of phase-noise deterioration rule in electrical doubler is totally canceled. Experimental results show that the doubler output has a better phase noise value of, for example, -117 dBc/Hz @ 10 kHz at 6 GHz with an improvement more than 17 dB and 23 dB compared with that of fundamental input and electrical doubler, respectively. Besides, the stability of this doubler output can reach to 1 . 5 × 10-14 at 1000 s averaging time. The frequency range of doubling signal is limited by the bandwidth of electrical amplifier in OEO loop.
Formation of Electrostatic Potential Drops in the Auroral Zone
NASA Technical Reports Server (NTRS)
Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.
2001-01-01
In order to examine the self-consistent formation of large-scale quasi-static parallel electric fields in the auroral zone on a micro/meso scale, a particle in cell simulation has been developed. The code resolves electron Debye length scales so that electron micro-processes are included and a variable grid scheme is used such that the overall length scale of the simulation is of the order of an Earth radii along the magnetic field. The simulation is electrostatic and includes the magnetic mirror force, as well as two types of plasmas, a cold dense ionospheric plasma and a warm tenuous magnetospheric plasma. In order to study the formation of parallel electric fields in the auroral zone, different magnetospheric ion and electron inflow boundary conditions are used to drive the system. It has been found that for conditions in the primary (upward) current region an upward directed quasi-static electric field can form across the system due to magnetic mirroring of the magnetospheric ions and electrons at different altitudes. For conditions in the return (downward) current region it is shown that a quasi-static parallel electric field in the opposite sense of that in the primary current region is formed, i.e., the parallel electric field is directed earthward. The conditions for how these different electric fields can be formed are discussed using satellite observations and numerical simulations.
Lithosperic rheology controls on oceanic spreading patterns
NASA Astrophysics Data System (ADS)
Gerya, T.
2012-04-01
Mid-ocean ridges sectioned by transform faults represent one of the most prominent surface expressions of terrestrial plate tectonics. A fundamental long standing problem of plate tectonics is how and why ridge-transform spreading patterns are formed and maintained. On the one hand, geometrical correspondence between mid-ocean ridges and respective rifted margins apparently suggests that many oceanic transform faults are inherited structures that persisted throughout the entire history of oceanic spreading. On the other hand, data from incipient oceanic spreading regions show that transform faults are not directly inherited from transverse rift structures and start to develop as or after oceanic spreading nucleate. Based on self-consistent 3D thermomechanical numerical model of oceanic spreading we demonstrate that only limited range of oceanic lithosphere rheologies can reproduce natural spreading patterns. In particular, spontaneous formation and long-term stability of orthogonal ridge-transform spreading pattern requires visco-brittle/plastic rheology of plates with strong dynamic weakening of spontaneously forming faults. Our, numerical models of incipient oceanic spreading demonstrate that one or several oceanic transform faults can form gradually within broad non-transform accommodation zones connecting initially offset spreading centers. Orientation of transform faults and spreading centers changes exponentially with time as the result of new oceanic crust growth. The resulting orthogonal ridge-transform system is established within few millions of years after the beginning of oceanic spreading. By its fundamental physical origin, this system is a crustal growth pattern governed by space accommodation and not a plate breakup pattern governed by stress distribution. It is demonstrated that the characteristic extension-parallel orientation of oceanic transform faults can be obtained from space accommodation criteria as a steady state orientation of a strike-slip fault sustaining in between simultaneously growing offset crustal segments. Numerical models also suggest that transform faults can develop at single straight ridge as the result of dynamical instability of constructive plate boundaries caused by weakening of forming brittle/plastic fractures. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps. Degree of asymmetric plate accretion increases with increasing degree of brittle/plastic weakening. It is also strongly dependent on the brittle/plastic yielding criterion and is notably reduced in models with pressure-dependent brittle/plastic plate strength compared to models with pressure-independent strength.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.
The Grade 7 Science course of study was prepared in two parallel forms. A short form designed for students who had achieved a high measure of success in previous science courses; the long form for those who have not been able to maintain the pace. Both forms contain similar content. The Grade 7 guide is the first in a three-year sequence for…
Lineation-parallel c-axis Fabric of Quartz Formed Under Water-rich Conditions
NASA Astrophysics Data System (ADS)
Wang, Y.; Zhang, J.; Li, P.
2014-12-01
The crystallographic preferred orientation (CPO) of quartz is of great significance because it records much valuable information pertinent to the deformation of quartz-rich rocks in the continental crust. The lineation-parallel c-axis CPO (i.e., c-axis forming a maximum parallel to the lineation) in naturally deformed quartz is generally considered to form under high temperature (> ~550 ºC) conditions. However, most laboratory deformation experiments on quartzite failed to produce such a CPO at high temperatures up to 1200 ºC. Here we reported a new occurrence of the lineation-parallel c-axis CPO of quartz from kyanite-quartz veins in eclogite. Optical microstructural observations, fourier transform infrared (FTIR) and electron backscattered diffraction (EBSD) techniques were integrated to illuminate the nature of quartz CPOs. Quartz exhibits mostly straight to slightly curved grain boundaries, modest intracrystalline plasticity, and significant shape preferred orientation (SPO) and CPOs, indicating dislocation creep dominated the deformation of quartz. Kyanite grains in the veins are mostly strain-free, suggestive of their higher strength than quartz. The pronounced SPO and CPOs in kyanite were interpreted to originate from anisotropic crystal growth and/or mechanical rotation during vein-parallel shearing. FTIR results show quartz contains a trivial amount of structurally bound water (several tens of H/106 Si), while kyanite has a water content of 384-729 H/106 Si; however, petrographic observations suggest quartz from the veins were practically deformed under water-rich conditions. We argue that the observed lineation-parallel c-axis fabric in quartz was inherited from preexisting CPOs as a result of anisotropic grain growth under stress facilitated by water, but rather than due to a dominant c-slip. The preservation of the quartz CPOs probably benefited from the preexisting quartz CPOs which renders most quartz grains unsuitably oriented for an easy a-slip at lower temperatures and the weak deformation during subsequent exhumation. This hypothesis provides a reasonable explanation for the observations that most lineation-parallel c-axis fabrics of quartz were found in veins and that deformation experiments on quartz-rich rocks at high temperature failed to produce such CPOs.
Non-Cartesian Parallel Imaging Reconstruction
Wright, Katherine L.; Hamilton, Jesse I.; Griswold, Mark A.; Gulani, Vikas; Seiberlich, Nicole
2014-01-01
Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be employed to reconstruct images from undersampled Cartesian data, non-Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the non-homogeneous sensitivities of multi-coil phased arrays. This review will begin with an overview of non-Cartesian k-space trajectories and their sampling properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging algorithms. Three representative non-Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non-Cartesian GRAPPA, and Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non-Cartesian parallel imaging will be covered. PMID:24408499
Parallel family trees for transfer matrices in the Potts model
NASA Astrophysics Data System (ADS)
Navarro, Cristobal A.; Canfora, Fabrizio; Hitschfeld, Nancy; Navarro, Gonzalo
2015-02-01
The computational cost of transfer matrix methods for the Potts model is related to the question in how many ways can two layers of a lattice be connected? Answering the question leads to the generation of a combinatorial set of lattice configurations. This set defines the configuration space of the problem, and the smaller it is, the faster the transfer matrix can be computed. The configuration space of generic (q , v) transfer matrix methods for strips is in the order of the Catalan numbers, which grows asymptotically as O(4m) where m is the width of the strip. Other transfer matrix methods with a smaller configuration space indeed exist but they make assumptions on the temperature, number of spin states, or restrict the structure of the lattice. In this paper we propose a parallel algorithm that uses a sub-Catalan configuration space of O(3m) to build the generic (q , v) transfer matrix in a compressed form. The improvement is achieved by grouping the original set of Catalan configurations into a forest of family trees, in such a way that the solution to the problem is now computed by solving the root node of each family. As a result, the algorithm becomes exponentially faster than the Catalan approach while still highly parallel. The resulting matrix is stored in a compressed form using O(3m ×4m) of space, making numerical evaluation and decompression to be faster than evaluating the matrix in its O(4m ×4m) uncompressed form. Experimental results for different sizes of strip lattices show that the parallel family trees (PFT) strategy indeed runs exponentially faster than the Catalan Parallel Method (CPM), especially when dealing with dense transfer matrices. In terms of parallel performance, we report strong-scaling speedups of up to 5.7 × when running on an 8-core shared memory machine and 28 × for a 32-core cluster. The best balance of speedup and efficiency for the multi-core machine was achieved when using p = 4 processors, while for the cluster scenario it was in the range p ∈ [ 8 , 10 ] . Because of the parallel capabilities of the algorithm, a large-scale execution of the parallel family trees strategy in a supercomputer could contribute to the study of wider strip lattices.
Origins and nature of non-Fickian transport through fractures
NASA Astrophysics Data System (ADS)
Wang, L.; Cardenas, M. B.
2014-12-01
Non-Fickian transport occurs across all scales within fractured and porous geological media. Fundamental understanding and appropriate characterization of non-Fickian transport through fractures is critical for understanding and prediction of the fate of solutes and other scalars. We use both analytical and numerical modeling, including direct numerical simulation and particle tracking random walk, to investigate the origin of non-Fickian transport through both homogeneous and heterogeneous fractures. For the simple homogenous fracture case, i.e., parallel plates, we theoretically derived a formula for dynamic longitudinal dispersion (D) within Poiseuille flow. Using the closed-form expression for the theoretical D, we quantified the time (T) and length (L) scales separating preasymptotic and asymptotic dispersive transport, with T and L proportional to aperture (b) of parallel plates to second and fourth orders, respectively. As for heterogeneous fractures, the fracture roughness and correlation length are closely associated with the T and L, and thus indicate the origin for non-Fickian transport. Modeling solute transport through 2D rough-walled fractures with continuous time random walk with truncated power shows that the degree of deviation from Fickian transport is proportional to fracture roughness. The estimated L for 2D rough-walled fractures is significantly longer than that derived from the formula within Poiseuille flow with equivalent b. Moreover, we artificially generated normally distributed 3D fractures with fixed correlation length but different fracture dimensions. Solute transport through 3D fractures was modeled with a particle tracking random walk algorithm. We found that transport transitions from non-Fickian to Fickian with increasing fracture dimensions, where the estimated L for the studied 3D fractures is related to the correlation length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuoka, Daiki; Takahashi, Hideaki, E-mail: hideaki@m.tohoku.ac.jp; Morita, Akihiro
2014-04-07
We developed a perturbation approach to compute solvation free energy Δμ within the framework of QM (quantum mechanical)/MM (molecular mechanical) method combined with a theory of energy representation (QM/MM-ER). The energy shift η of the whole system due to the electronic polarization of the solute is evaluated using the second-order perturbation theory (PT2), where the electric field formed by surrounding solvent molecules is treated as the perturbation to the electronic Hamiltonian of the isolated solute. The point of our approach is that the energy shift η, thus obtained, is to be adopted for a novel energy coordinate of the distributionmore » functions which serve as fundamental variables in the free energy functional developed in our previous work. The most time-consuming part in the QM/MM-ER simulation can be, thus, avoided without serious loss of accuracy. For our benchmark set of molecules, it is demonstrated that the PT2 approach coupled with QM/MM-ER gives hydration free energies in excellent agreements with those given by the conventional method utilizing the Kohn-Sham SCF procedure except for a few molecules in the benchmark set. A variant of the approach is also proposed to deal with such difficulties associated with the problematic systems. The present approach is also advantageous to parallel implementations. We examined the parallel efficiency of our PT2 code on multi-core processors and found that the speedup increases almost linearly with respect to the number of cores. Thus, it was demonstrated that QM/MM-ER coupled with PT2 deserves practical applications to systems of interest.« less
NASA Technical Reports Server (NTRS)
Mulac, Richard A.; Celestina, Mark L.; Adamczyk, John J.; Misegades, Kent P.; Dawson, Jef M.
1987-01-01
A procedure is outlined which utilizes parallel processing to solve the inviscid form of the average-passage equation system for multistage turbomachinery along with a description of its implementation in a FORTRAN computer code, MSTAGE. A scheme to reduce the central memory requirements of the program is also detailed. Both the multitasking and I/O routines referred to are specific to the Cray X-MP line of computers and its associated SSD (Solid-State Disk). Results are presented for a simulation of a two-stage rocket engine fuel pump turbine.
Schmucker, Andreas; Abberger, Birgit; Boecker, Maren; Baumeister, Harald
2017-11-26
To develop and validate parallel short forms for the assessment of activities of daily living in cardiac rehabilitation patients (PADL-cardio I & II). PADL-cardio I & II were developed based on a sample of 106 patients [mean age = 57.6; standard deviation (SD) = 11.1; 72.6% males] using Rasch analysis and validated with a sample of 81 patients (mean age = 59.1; SD = 11.1; 88.9% males). All patients answered PADL-cardio and the Short Form 12 Health Survey. Both versions of PADL-cardio are composed of 10 items. The fit to the Rasch model was given documented by a non-significant Item-trait interaction score (PADL-cardio I: χ 2 = 31.08, df = 30, p = 0.41; PADL-cardio II: χ 2 = 45.6, df = 40, p = 0.25). The two versions were free of differential item functioning. Person-separation reliability was 0.72/0.78 and unidimensionality was given. The two versions correlated with r = 0.98 and the correlation between PADL-cardio and the underlying item bank was 0.99 for both versions. Concurrent validity is indicated through correlations with the Short Form 12 Health Survey (r = -0.37 to -0.40). PADL-cardio provides a short and psychometrically sound option for the assessment of activities of daily living in cardiovascular rehabilitation patients. The two versions of PADL-cardio are equivalent. Hence, they can be used to reduce practice and retest effects in repeated measurement, facilitating the longitudinal assessment of activities of daily living. Implications for Rehabilitation New parallel test forms for the assessment of activities of daily living in cardiac rehabilitation (PADL-cardio I & PADL-cardio II) are available. PADL-cardio I & II consist of 10 items and are therefore especially timesaving. Concurrent validity is given through correlations with the Short Form Health Survey 12. Therapeutic success could be determined more precisely by the parallel forms reducing practice and retest effects.
NASA Astrophysics Data System (ADS)
Martinez, Anna Victoria; Małolepsza, Edyta; Rivera, Eva; Lu, Qing; Straub, John E.
2014-12-01
Knowledge of how intermolecular interactions of amyloid-forming proteins cause protein aggregation and how those interactions are affected by sequence and solution conditions is essential to our understanding of the onset of many degenerative diseases. Of particular interest is the aggregation of the amyloid-β (Aβ) peptide, linked to Alzheimer's disease, and the aggregation of the Sup35 yeast prion peptide, which resembles the mammalian prion protein linked to spongiform encephalopathies. To facilitate the study of these important peptides, experimentalists have identified small peptide congeners of the full-length proteins that exhibit amyloidogenic behavior, including the KLVFFAE sub-sequence, Aβ16-22, and the GNNQQNY subsequence, Sup357-13. In this study, molecular dynamics simulations were used to examine these peptide fragments encapsulated in reverse micelles (RMs) in order to identify the fundamental principles that govern how sequence and solution environment influence peptide aggregation. Aβ16-22 and Sup357-13 are observed to organize into anti-parallel and parallel β-sheet arrangements. Confinement in the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles is shown to stabilize extended peptide conformations and enhance peptide aggregation. Substantial fluctuations in the reverse micelle shape are observed, in agreement with earlier studies. Shape fluctuations are found to facilitate peptide solvation through interactions between the peptide and AOT surfactant, including direct interaction between non-polar peptide residues and the aliphatic surfactant tails. Computed amide I IR spectra are compared with experimental spectra and found to reflect changes in the peptide structures induced by confinement in the RM environment. Furthermore, examination of the rotational anisotropy decay of water in the RM demonstrates that the water dynamics are sensitive to the presence of peptide as well as the peptide sequence. Overall, our results demonstrate that the RM is a complex confining environment where substantial direct interaction between the surfactant and peptides plays an important role in determining the resulting ensemble of peptide conformations. By extension the results suggest that similarly complex sequence-dependent interactions may determine conformational ensembles of amyloid-forming peptides in a cellular environment.
Schwarcz, Henry P; McNally, Elizabeth A; Botton, Gianluigi A
2014-12-01
In a previous study we showed that most of the mineral in bone is present in the form of "mineral structures", 5-6nm-thick, elongated plates which surround and are oriented parallel to collagen fibrils. Using dark-field transmission electron microscopy, we viewed mineral structures in ion-milled sections of cortical human bone cut parallel to the collagen fibrils. Within the mineral structures we observe single crystals of apatite averaging 5.8±2.7nm in width and 28±19nm in length, their long axes oriented parallel to the fibril axis. Some appear to be composite, co-aligned crystals as thin as 2nm. From their similarity to TEM images of crystals liberated from deproteinated bone we infer that we are viewing sections through platy crystals of apatite that are assembled together to form the mineral structures. Copyright © 2014 Elsevier Inc. All rights reserved.
Laboratory glassware rack for seismic safety
NASA Technical Reports Server (NTRS)
Cohen, M. M. (Inventor)
1985-01-01
A rack for laboratory bottles and jars for chemicals and medicines has been designed to provide the maximum strength and security to the glassware in the event of a significant earthquake. The rack preferably is rectangular and may be made of a variety of chemically resistant materials including polypropylene, polycarbonate, and stainless steel. It comprises a first plurality of parallel vertical walls, and a second plurality of parallel vertical walls, perpendicular to the first. These intersecting vertical walls comprise a self-supporting structure without a bottom which sits on four legs. The top surface of the rack is formed by the top edges of all the vertical walls, which are not parallel but are skewed in three dimensions. These top edges form a grid matrix having a number of intersections of the vertical walls which define a number of rectangular compartments having varying widths and lengths and varying heights.
Parallel Regulation of Memory and Emotion Supports the Suppression of Intrusive Memories
Anderson, Michael C.
2017-01-01
Intrusive memories often take the form of distressing images that emerge into a person's awareness, unbidden. A fundamental goal of clinical neuroscience is to understand the mechanisms allowing people to control these memory intrusions and reduce their emotional impact. Mnemonic control engages a right frontoparietal network that interrupts episodic retrieval by modulating hippocampal activity; less is known, however, about how this mechanism contributes to affect regulation. Here we report evidence in humans (males and females) that stopping episodic retrieval to suppress an unpleasant image triggers parallel inhibition of mnemonic and emotional content. Using fMRI, we found that regulation of both mnemonic and emotional content was driven by a shared frontoparietal inhibitory network and was predicted by a common profile of medial temporal lobe downregulation involving the anterior hippocampus and the amygdala. Critically, effective connectivity analysis confirmed that reduced amygdala activity was not merely an indirect consequence of hippocampal suppression; rather, both the hippocampus and the amygdala were targeted by a top-down inhibitory control signal originating from the dorsolateral prefrontal cortex. This negative coupling was greater when unwanted memories intruded into awareness and needed to be purged. Together, these findings support the broad principle that retrieval suppression is achieved by regulating hippocampal processes in tandem with domain-specific brain regions involved in reinstating specific content, in an activity-dependent fashion. SIGNIFICANCE STATEMENT Upsetting events sometimes trigger intrusive images that cause distress and that may contribute to psychiatric disorders. People often respond to intrusions by suppressing their retrieval, excluding them from awareness. Here we examined whether suppressing aversive images might also alter emotional responses to them, and the mechanisms underlying such changes. We found that the better people were at suppressing intrusions, the more it reduced their emotional responses to suppressed images. These dual effects on memory and emotion originated from a common right prefrontal cortical mechanism that downregulated the hippocampus and amygdala in parallel. Thus, suppressing intrusions affected emotional content. Importantly, participants who did not suppress intrusions well showed increased negative affect, suggesting that suppression deficits render people vulnerable to psychiatric disorders. PMID:28559378
Parallel integrated frame synchronizer chip
NASA Technical Reports Server (NTRS)
Solomon, Jeffrey Michael (Inventor); Ghuman, Parminder Singh (Inventor); Bennett, Toby Dennis (Inventor)
2000-01-01
A parallel integrated frame synchronizer which implements a sequential pipeline process wherein serial data in the form of telemetry data or weather satellite data enters the synchronizer by means of a front-end subsystem and passes to a parallel correlator subsystem or a weather satellite data processing subsystem. When in a CCSDS mode, data from the parallel correlator subsystem passes through a window subsystem, then to a data alignment subsystem and then to a bit transition density (BTD)/cyclical redundancy check (CRC) decoding subsystem. Data from the BTD/CRC decoding subsystem or data from the weather satellite data processing subsystem is then fed to an output subsystem where it is output from a data output port.
A New Parallel Corpus Approach to Japanese Learners' English, Using Their Corrected Essays
ERIC Educational Resources Information Center
Miki, Nozomi
2010-01-01
This research introduces unique parallel corpora to uncover linguistic behaviors in L2 argumentative writing in the exact correspondence to their appropriate forms provided by English native speakers (NSs). The current paper targets at the mysterious behavior of I think in argumentative prose. I think is regarded as arguably problematic and…
ERIC Educational Resources Information Center
Thornton, Billy W.; And Others
The idea that educators would differ from business managers on Herzberg's motivation factors and Blum's security orientations was posited. Parallel questionnaires were used to measure the motivational variables. The sample was composed of 432 teachers, 118 administrators, and 192 industrial managers. Data were analyzed using multivariate and…
Syntactic Change in the Parallel Architecture: The Case of Parasitic Gaps
ERIC Educational Resources Information Center
Culicover, Peter W.
2017-01-01
In Jackendoff's Parallel Architecture, the well-formed expressions of a language are licensed by correspondences between phonology, syntax, and conceptual structure. I show how this architecture can be used to make sense of the existence of parasitic gap constructions. A parasitic gap is one that is rendered acceptable because of the presence of…
Growth of large aluminum nitride single crystals with thermal-gradient control
Bondokov, Robert T; Rao, Shailaja P; Gibb, Shawn Robert; Schowalter, Leo J
2015-05-12
In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.
Growth of large aluminum nitride single crystals with thermal-gradient control
Bondokov, Robert T.; Rao, Shailaja P.; Schowalter, Leo J.
2017-02-28
In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.
Repetitive resonant railgun power supply
Honig, E.M.; Nunnally, W.C.
1985-06-19
A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.
We describe an inexpensive, compact parallel plate diffusion denuder coupled capillary IC system for the determination of soluble ionogenic atmospheric trace gases. The active sampling area (0.6×10 cm) of the denuder is formed in a novel manner by thermally bonding silica ge...
Repetitive resonant railgun power supply
Honig, Emanuel M.; Nunnally, William C.
1988-01-01
A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.
Methodologies and Tools for Tuning Parallel Programs: 80% Art, 20% Science, and 10% Luck
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Bailey, David (Technical Monitor)
1996-01-01
The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessors. However, without effective means to monitor (and analyze) program execution, tuning the performance of parallel programs becomes exponentially difficult as program complexity and machine size increase. In the past few years, the ubiquitous introduction of performance tuning tools from various supercomputer vendors (Intel's ParAide, TMC's PRISM, CRI's Apprentice, and Convex's CXtrace) seems to indicate the maturity of performance instrumentation/monitor/tuning technologies and vendors'/customers' recognition of their importance. However, a few important questions remain: What kind of performance bottlenecks can these tools detect (or correct)? How time consuming is the performance tuning process? What are some important technical issues that remain to be tackled in this area? This workshop reviews the fundamental concepts involved in analyzing and improving the performance of parallel and heterogeneous message-passing programs. Several alternative strategies will be contrasted, and for each we will describe how currently available tuning tools (e.g. AIMS, ParAide, PRISM, Apprentice, CXtrace, ATExpert, Pablo, IPS-2) can be used to facilitate the process. We will characterize the effectiveness of the tools and methodologies based on actual user experiences at NASA Ames Research Center. Finally, we will discuss their limitations and outline recent approaches taken by vendors and the research community to address them.
Dhont, J K; Wagner, N J
2001-02-01
The interpretation of superposition rheology data is still a matter of debate due to lack of understanding of viscoelastic superposition response on a microscopic level. So far, only phenomenological approaches have been described, which do not capture the shear induced microstructural deformation, which is responsible for the viscoelastic behavior to the superimposed flow. Experimentally there are indications that there is a fundamental difference between the viscoelastic response to an orthogonally and a parallel superimposed shear flow. We present theoretical predictions, based on microscopic considerations, for both orthogonal and parallel viscoelastic response functions for a colloidal system of attractive particles near their gas-liquid critical point. These predictions extend to values of the stationary shear rate where the system is nonlinearly perturbed, and are based on considerations on the colloidal particle level. The difference in response to orthogonal and parallel superimposed shear flow can be understood entirely in terms of microstructural distortion, where the anisotropy of the microstructure under shear flow conditions is essential. In accordance with experimental observations we find pronounced negative values for response functions in case of parallel superposition for an intermediate range of frequencies, provided that microstructure is nonlinearly perturbed by the stationary shear component. For the critical colloidal systems considered here, the Kramers-Kronig relations for the superimposed response functions are found to be valid. It is argued, however, that the Kramers-Kronig relations may be violated for systems where the stationary shear flow induces a considerable amount of new microstructure.
Cyclotron maser instability and its applications
NASA Astrophysics Data System (ADS)
Wu, C. S.
The possible application of cyclotron maser theory to a variety of radio sources is considered, with special attention given to the theory of auroral kilometric radiation (AKR) of Wu and Lee (1979). The AKR model assumes a loss-cone distribution function for the reflected electrons, along with the depletion of low-energy electrons by the parallel electric field. Other topics considered include fundamental AKR, second-harmonic AKR, the generation of Z-mode radiation, and the application of maser instability to other sources than AKR.
Optimization of coupled systems: A critical overview of approaches
NASA Technical Reports Server (NTRS)
Balling, R. J.; Sobieszczanski-Sobieski, J.
1994-01-01
A unified overview is given of problem formulation approaches for the optimization of multidisciplinary coupled systems. The overview includes six fundamental approaches upon which a large number of variations may be made. Consistent approach names and a compact approach notation are given. The approaches are formulated to apply to general nonhierarchic systems. The approaches are compared both from a computational viewpoint and a managerial viewpoint. Opportunities for parallelism of both computation and manpower resources are discussed. Recommendations regarding the need for future research are advanced.
Processing Cones: A Computational Structure for Image Analysis.
1981-12-01
image analysis applications, referred to as a processing cone, is described and sample algorithms are presented. A fundamental characteristic of the structure is its hierarchical organization into two-dimensional arrays of decreasing resolution. In this architecture, a protypical function is defined on a local window of data and applied uniformly to all windows in a parallel manner. Three basic modes of processing are supported in the cone: reduction operations (upward processing), horizontal operations (processing at a single level) and projection operations (downward
Density-matrix-based algorithm for solving eigenvalue problems
NASA Astrophysics Data System (ADS)
Polizzi, Eric
2009-03-01
A fast and stable numerical algorithm for solving the symmetric eigenvalue problem is presented. The technique deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms) or other Davidson-Jacobi techniques and takes its inspiration from the contour integration and density-matrix representation in quantum mechanics. It will be shown that this algorithm—named FEAST—exhibits high efficiency, robustness, accuracy, and scalability on parallel architectures. Examples from electronic structure calculations of carbon nanotubes are presented, and numerical performances and capabilities are discussed.
Keldysh formalism for multiple parallel worlds
NASA Astrophysics Data System (ADS)
Ansari, M.; Nazarov, Y. V.
2016-03-01
We present a compact and self-contained review of the recently developed Keldysh formalism for multiple parallel worlds. The formalism has been applied to consistent quantum evaluation of the flows of informational quantities, in particular, to the evaluation of Renyi and Shannon entropy flows. We start with the formulation of the standard and extended Keldysh techniques in a single world in a form convenient for our presentation. We explain the use of Keldysh contours encompassing multiple parallel worlds. In the end, we briefly summarize the concrete results obtained with the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumaker, Dana E.; Steefel, Carl I.
The code CRUNCH_PARALLEL is a parallel version of the CRUNCH code. CRUNCH code version 2.0 was previously released by LLNL, (UCRL-CODE-200063). Crunch is a general purpose reactive transport code developed by Carl Steefel and Yabusake (Steefel Yabsaki 1996). The code handles non-isothermal transport and reaction in one, two, and three dimensions. The reaction algorithm is generic in form, handling an arbitrary number of aqueous and surface complexation as well as mineral dissolution/precipitation. A standardized database is used containing thermodynamic and kinetic data. The code includes advective, dispersive, and diffusive transport.
Multiple resonant railgun power supply
Honig, E.M.; Nunnally, W.C.
1985-06-19
A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.
Keldysh formalism for multiple parallel worlds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansari, M.; Nazarov, Y. V., E-mail: y.v.nazarov@tudelft.nl
We present a compact and self-contained review of the recently developed Keldysh formalism for multiple parallel worlds. The formalism has been applied to consistent quantum evaluation of the flows of informational quantities, in particular, to the evaluation of Renyi and Shannon entropy flows. We start with the formulation of the standard and extended Keldysh techniques in a single world in a form convenient for our presentation. We explain the use of Keldysh contours encompassing multiple parallel worlds. In the end, we briefly summarize the concrete results obtained with the method.
Multiple resonant railgun power supply
Honig, Emanuel M.; Nunnally, William C.
1988-01-01
A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.
Awe, T. J.; Yu, E. P.; Yates, K. C.; ...
2017-02-21
Ultrafast optical microscopy of metal z-pinch rods pulsed with megaampere current is contributing new data and critical insight into what provides the fundamental seed for the magneto-Rayleigh-Taylor (MRT) instability. A two-frame near infrared/visible intensified-charge-coupled device gated imager with 2-ns temporal resolution and 3-μm spatial resolution captured emissions from the nonuniformly Joule heated surfaces of ultrasmooth aluminum (Al) rods. Nonuniform surface emissions are consistently first observed from discrete, 10-μm scale, subelectronvolt spots. Aluminum 6061 alloy, with micrometer-scale nonmetallic resistive inclusions, forms several times more spots than 99.999% pure Al 5N; 5-10 ns later, azimuthally stretched elliptical spots and distinct strata (40-100more » μm wide by 10 μm tall) are observed on Al 6061, but not on Al 5N. In such overheat strata, aligned parallel to the magnetic field, we find that they are highly effective seeds for MRT instability growth. Our data give credence to the hypothesis that early nonuniform Joule heating, such as the electrothermal instability, may provide the dominant seed for MRT.« less
Morphological and molecular analysis of the collagen fibers in inflammatory process
NASA Astrophysics Data System (ADS)
de Carvalho, Luis Felipe das Chagas e. Silva; Alves, Mônica Ghislaine Oliveira; Soares, Carlos Alexandre; Almeida, Janete Dias; da Silva Martinho, Herculano
2011-07-01
Collagen makes up one third of the total protein in humans, being formed by the connection of three polypeptide chains arranged in a triple helix. This protein has fundamental importance in the formation of extracellular matrix of connective tissue. This study aimed to analyze the structural changes of collagen, which are resulting from inflammatory processes in oral mucosa, and to make the comparative analysis between the histopathology and the Raman spectra. The samples of tissues with inflammatory fibrous hyperplasia (IFH) and normal mucosa (NM) were evaluated by Raman Spectroscopy, hematoxylin-eosin and Massons trichrome stain. The histological analysis in both stains showed differences in collagen fibers, which was presented as thin fibers and arranged in parallel direction in NM and as collagen fibers are thick, mature and not organized, showing that these types of stain show morphological changes of collagen in IFH. The Raman Spectroscopy discriminate the groups of NM and IFH based on vibrational modes of proline, hydroxiproline and CH3, CH2. The histological stains only shows information from morphological data, and can be complemented by Raman spectra. This technique could demonstrate that inflammatory process caused some changes in collagen structure which is related to aminoacids such as proline and hidroxyproline.
Visual representation of spatiotemporal structure
NASA Astrophysics Data System (ADS)
Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.
1998-07-01
The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drell, D.W.; Metting, F.B. Jr.; Wuy, L.D.
1996-11-01
This document summarizes the proceedings of a workshop on Bioremediation and Its Societal Implications and Concerns (BASIC) held July 18-19, 1996 at the Airlie Center near Warrenton, Virginia. The workshop was sponsored by the Office of Health and Environmental Research (OHER), U.S. Department of Energy (DOE), as part of its fundamental research program in Natural and Accelerated Bioremediation Research (NABIR). The information summarized in these proceedings represents the general conclusions of the workshop participants, and not the opinions of workshop organizers or sponsors. Neither are they consensus opinions, as opinions differed among participants on a number of points. The generalmore » conclusions presented below were reached through a review, synthesis, and condensation of notes taken by NABIR Program Office staff and OHER program managers throughout the workshop. Specific contributions by participants during breakout sessions are recorded in bullet form in the appropriate sections, without attribution to the contributors. These contributions were transcribed as faithfully as possible from notes about the original discussions. They were edited only to make them grammatically correct, parallel in structure, and understandable to someone not familiar with the NABIR Program or BASIC element.« less
NASA Astrophysics Data System (ADS)
Wallace, P.; McCallum, K.; Barnard, C. L. R.; Clement, C.; Marshall, J.; Carroll, J.
2007-03-01
A single bubble was generated and levitated in a high-intensity sound field within a spherical flask excited in its fundamental mode. Under optimum experimental conditions the bubble was observed to emit light in the form of short flashes. This phenomenon is known as single bubble sonoluminescence (SBSL). Using this process, the emitted light from the bubble was monitored when solutions containing fluorescein, quinine and sodium, potassium and copper salts were placed in the cell. The results obtained indicated that reproducible signals related directly to the concentration of the species present in solution could be achieved using single bubble sonoluminescence. The results for the molecular species were compared with those obtained by fluorescence spectroscopy and, in the case of quinine, parallel determinations of concentration in a test solution were performed with consistent results. SBSL signals were also observed to exhibit a linear correlation with the concentration of several trace metal salts introduced to the solution in the measurement cell. However, it was not possible to demonstrate that the SBSL signals were derived from stimulated atomic emission or fluorescence, and it was concluded that the effect may result from an indirect effect involving the bubble excitation mechanism.
A Digitally Programmable Cytomorphic Chip for Simulation of Arbitrary Biochemical Reaction Networks.
Woo, Sung Sik; Kim, Jaewook; Sarpeshkar, Rahul
2018-04-01
Prior work has shown that compact analog circuits can faithfully represent and model fundamental biomolecular circuits via efficient log-domain cytomorphic transistor equivalents. Such circuits have emphasized basis functions that are dominant in genetic transcription and translation networks and deoxyribonucleic acid (DNA)-protein binding. Here, we report a system featuring digitally programmable 0.35 μm BiCMOS analog cytomorphic chips that enable arbitrary biochemical reaction networks to be exactly represented thus enabling compact and easy composition of protein networks as well. Since all biomolecular networks can be represented as chemical reaction networks, our protein networks also include the former genetic network circuits as a special case. The cytomorphic analog protein circuits use one fundamental association-dissociation-degradation building-block circuit that can be configured digitally to exactly represent any zeroth-, first-, and second-order reaction including loading, dynamics, nonlinearity, and interactions with other building-block circuits. To address a divergence issue caused by random variations in chip fabrication processes, we propose a unique way of performing computation based on total variables and conservation laws, which we instantiate at both the circuit and network levels. Thus, scalable systems that operate with finite error over infinite time can be built. We show how the building-block circuits can be composed to form various network topologies, such as cascade, fan-out, fan-in, loop, dimerization, or arbitrary networks using total variables. We demonstrate results from a system that combines interacting cytomorphic chips to simulate a cancer pathway and a glycolysis pathway. Both simulations are consistent with conventional software simulations. Our highly parallel digitally programmable analog cytomorphic systems can lead to a useful design, analysis, and simulation tool for studying arbitrary large-scale biological networks in systems and synthetic biology.
Biological and environmental interactions of emerging two-dimensional nanomaterials
Wang, Zhongying; Zhu, Wenpeng; Qiu, Yang; Yi, Xin; von dem Bussche, Annette; Kane, Agnes; Gao, Huajian; Koski, Kristie; Hurt, Robert
2016-01-01
Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the “bio-nanosheet” interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials. PMID:26923057
Anti-parallel EUV Flows Observed along Active Region Filament Threads with Hi-C
NASA Astrophysics Data System (ADS)
Alexander, Caroline E.; Walsh, Robert W.; Régnier, Stéphane; Cirtain, Jonathan; Winebarger, Amy R.; Golub, Leon; Kobayashi, Ken; Platt, Simon; Mitchell, Nick; Korreck, Kelly; DePontieu, Bart; DeForest, Craig; Weber, Mark; Title, Alan; Kuzin, Sergey
2013-09-01
Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from Hα and cool extreme-ultraviolet (EUV) lines (e.g., 304 Å) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of "counter-steaming" flows has previously been inferred from these cool plasma observations, but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). In this work, we present observations of an AR filament observed with the High-resolution Coronal Imager (Hi-C) that exhibits anti-parallel flows along adjacent filament threads. Complementary data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km s-1) and gives an indication of the resolvable thickness of the individual strands (0.''8 ± 0.''1). The temperature of the plasma flows was estimated to be log T (K) = 5.45 ± 0.10 using Emission Measure loci analysis. We find that SDO/AIA cannot clearly observe these anti-parallel flows or measure their velocity or thread width due to its larger pixel size. We suggest that anti-parallel/counter-streaming flows are likely commonplace within all filaments and are currently not observed in EUV due to current instrument spatial resolution.
Some Notes on Information Theory and Its Applications
Information is in the purest sense one of the most fundamental quantities in nature, and the study of information can often yield fundamental insights that cannot otherwise be obtained. For example, starting from a form of information arising from the work of the statistician R....
NASA Astrophysics Data System (ADS)
Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander
2017-01-01
The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.
Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander
2017-01-01
The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies. PMID:28112214
One Step Closer to Mars with Aquaponics: Cultivating Citizen Science in K12 Schools
NASA Technical Reports Server (NTRS)
Kolattukudy, Maria; Puranik, Niyati; Sane, Nishant; Bisht, Kritika; Saffat, Nabeeha; Gupta, Anika; McHugh, Anne; Detweiler, Angela; Bebout, Brad; Everroad, R. Craig
2017-01-01
The Microbial Ecology and Biogeochemistry Research Laboratory at NASA Ames Research Center focuses primarily on the nutrient cycling and diversity of complex microbial communities. NASA is interested in the composition and functioning of microbial mat communities as these processes fundamentally shape the form and function of these analogs for the earliest forms of life on Earth (3.6 billion years ago), and likely will on other planets as well. Aquaponics systems are supported by microbial communities who perform many complex ecosystem services, including cycling nitrogen. Microbes are integral to the stability and productivity of aquaponics systems, which are analogous to microbial communities in food production systems that are essential for building efficient life support systems for long-distance space travel. Students at Meadow Park Middle School created 10 parallel aquaponics systems and took temporal microbial samples to characterize whether any macro-ecology variables impacted or changed the microbial diversity of these systems. Students additionally created a website so that other classrooms can pursue similar projects in their own schools (https://go.nasa.gov/2uJhxmF). Our lab at NASA Ames has sequenced water samples from each of the 10 tanks at 3 timepoints using a MinION sequencer. MPMS students will be involved in the analysis of the bioinformatics data generated through this collaboration. Our ongoing collaboration aims to collect and analyze data in the classroom setting that has utility for research scientists, while involving students as collaborators in the research process.
Stability and free energy calculation of LNA modified quadruplex: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Chaubey, Amit Kumar; Dubey, Kshatresh Dutta; Ojha, Rajendra Prasad
2012-03-01
Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, which are the fundamental in protecting the cell from recombination and degradation. Telomeric DNA sequences can form four stranded quadruplex structures, which are involved in the structure of telomere ends. The formation and stabilization of telomeric quadruplexes has been shown to inhibit the activity of telomerase, thus establishing telomeric DNA quadrulex as an attractive target for cancer therapeutic intervention. Molecular dynamic simulation offers the prospects of detailed description of the dynamical structure with ion and water at molecular level. In this work we have taken a oligomeric part of human telomeric DNA, d(TAGGGT) to form different monomeric quadruplex structures d(TAGGGT)4. Here we report the relative stabilities of these structures under K+ ion conditions and binding interaction between the strands, as determined by molecular dynamic simulations followed by energy calculation. We have taken locked nucleic acid (LNA) in this study. The free energy molecular mechanics Poission Boltzman surface area calculations are performed for the determination of most stable complex structure between all modified structures. We calculated binding free energy for the combination of different strands as the ligand and receptor for all structures. The energetic study shows that, a mixed hybrid type quadruplex conformation in which two parallel strands are bind with other two antiparallel strands, are more stable than other conformations. The possible mechanism for the inhibition of the cancerous growth has been discussed. Such studies may be helpful for the rational drug designing.
A massively parallel computational approach to coupled thermoelastic/porous gas flow problems
NASA Technical Reports Server (NTRS)
Shia, David; Mcmanus, Hugh L.
1995-01-01
A new computational scheme for coupled thermoelastic/porous gas flow problems is presented. Heat transfer, gas flow, and dynamic thermoelastic governing equations are expressed in fully explicit form, and solved on a massively parallel computer. The transpiration cooling problem is used as an example problem. The numerical solutions have been verified by comparison to available analytical solutions. Transient temperature, pressure, and stress distributions have been obtained. Small spatial oscillations in pressure and stress have been observed, which would be impractical to predict with previously available schemes. Comparisons between serial and massively parallel versions of the scheme have also been made. The results indicate that for small scale problems the serial and parallel versions use practically the same amount of CPU time. However, as the problem size increases the parallel version becomes more efficient than the serial version.
Supercomputing on massively parallel bit-serial architectures
NASA Technical Reports Server (NTRS)
Iobst, Ken
1985-01-01
Research on the Goodyear Massively Parallel Processor (MPP) suggests that high-level parallel languages are practical and can be designed with powerful new semantics that allow algorithms to be efficiently mapped to the real machines. For the MPP these semantics include parallel/associative array selection for both dense and sparse matrices, variable precision arithmetic to trade accuracy for speed, micro-pipelined train broadcast, and conditional branching at the processing element (PE) control unit level. The preliminary design of a FORTRAN-like parallel language for the MPP has been completed and is being used to write programs to perform sparse matrix array selection, min/max search, matrix multiplication, Gaussian elimination on single bit arrays and other generic algorithms. A description is given of the MPP design. Features of the system and its operation are illustrated in the form of charts and diagrams.
NASA Astrophysics Data System (ADS)
Lee, Jungpyo; Smithe, David; Wright, John; Bonoli, Paul
2018-02-01
In this paper, the analytical form of the quasilinear diffusion coefficients is modified from the Kennel-Engelmann diffusion coefficients to guarantee the positive definiteness of its bounce average in a toroidal geometry. By evaluating the parallel inhomogeneity of plasmas and magnetic fields in the trajectory integral, we can ensure the positive definiteness and help illuminate some non-resonant toroidal effects in the quasilinear diffusion. When the correlation length of the plasma-wave interaction is comparable to the magnetic field variation length, the variation becomes important and the parabolic variation at the outer-midplane, the inner-midplane, and trapping tips can be evaluated by Airy functions. The new form allows the coefficients to include both resonant and non-resonant contributions, and the correlations between the consecutive resonances and in many poloidal periods. The positive-definite form is implemented in a wave code TORIC and we present an example for ITER using this form.
Method for protecting chip corners in wet chemical etching of wafers
Hui, Wing C.
1994-01-01
The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible.
Method for protecting chip corners in wet chemical etching of wafers
Hui, W.C.
1994-02-15
The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible. 63 figures.
Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials
NASA Astrophysics Data System (ADS)
Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.
2017-06-01
In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.
Networks of lexical borrowing and lateral gene transfer in language and genome evolution
List, Johann-Mattis; Nelson-Sathi, Shijulal; Geisler, Hans; Martin, William
2014-01-01
Like biological species, languages change over time. As noted by Darwin, there are many parallels between language evolution and biological evolution. Insights into these parallels have also undergone change in the past 150 years. Just like genes, words change over time, and language evolution can be likened to genome evolution accordingly, but what kind of evolution? There are fundamental differences between eukaryotic and prokaryotic evolution. In the former, natural variation entails the gradual accumulation of minor mutations in alleles. In the latter, lateral gene transfer is an integral mechanism of natural variation. The study of language evolution using biological methods has attracted much interest of late, most approaches focusing on language tree construction. These approaches may underestimate the important role that borrowing plays in language evolution. Network approaches that were originally designed to study lateral gene transfer may provide more realistic insights into the complexities of language evolution. PMID:24375688
Simultaneous G-Quadruplex DNA Logic.
Bader, Antoine; Cockroft, Scott L
2018-04-03
A fundamental principle of digital computer operation is Boolean logic, where inputs and outputs are described by binary integer voltages. Similarly, inputs and outputs may be processed on the molecular level as exemplified by synthetic circuits that exploit the programmability of DNA base-pairing. Unlike modern computers, which execute large numbers of logic gates in parallel, most implementations of molecular logic have been limited to single computing tasks, or sensing applications. This work reports three G-quadruplex-based logic gates that operate simultaneously in a single reaction vessel. The gates respond to unique Boolean DNA inputs by undergoing topological conversion from duplex to G-quadruplex states that were resolved using a thioflavin T dye and gel electrophoresis. The modular, addressable, and label-free approach could be incorporated into DNA-based sensors, or used for resolving and debugging parallel processes in DNA computing applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Particle-In-Cell simulations of high pressure plasmas using graphics processing units
NASA Astrophysics Data System (ADS)
Gebhardt, Markus; Atteln, Frank; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Mertmann, Philipp; Awakowicz, Peter
2009-10-01
Particle-In-Cell (PIC) simulations are widely used to understand the fundamental phenomena in low-temperature plasmas. Particularly plasmas at very low gas pressures are studied using PIC methods. The inherent drawback of these methods is that they are very time consuming -- certain stability conditions has to be satisfied. This holds even more for the PIC simulation of high pressure plasmas due to the very high collision rates. The simulations take up to very much time to run on standard computers and require the help of computer clusters or super computers. Recent advances in the field of graphics processing units (GPUs) provides every personal computer with a highly parallel multi processor architecture for very little money. This architecture is freely programmable and can be used to implement a wide class of problems. In this paper we present the concepts of a fully parallel PIC simulation of high pressure plasmas using the benefits of GPU programming.
NASA Technical Reports Server (NTRS)
Eckardt, Robert C.; Byer, Robert L.; Masuda, Hisashi; Fan, Yuan Xuan
1990-01-01
Both absolute and relative nonlinear optical coefficients of six nonlinear materials measured by second-harmonic generation are discussed. A single-mode, injection-seeded, Q-switched Nd:YAG laser with spatially filtered output was used to generate the 1.064-micron fundamental radiation. The following results were obtained: d36(KDP) = 0.38 pm/V, d36(KD/asterisk/P) = 0.37 pm/V, (parallel)d22(BaB2O4)(parallel) = 2.2 pm/V, d31(LiIO3) = -4.1 pm/V, d31(5 percentMgO:MgO LiNbO3) = -4.7 pm/V, and d(eff)(KTP) = 3.2 pm/V. The accuracy of these measurements is estimated to be better than 10 percent.
Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer
NASA Astrophysics Data System (ADS)
Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang
2018-05-01
In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.
Omoto, Jaison Jiro; Keleş, Mehmet Fatih; Nguyen, Bao-Chau Minh; Bolanos, Cheyenne; Lovick, Jennifer Kelly; Frye, Mark Arthur; Hartenstein, Volker
2017-04-24
The Drosophila central brain consists of stereotyped neural lineages, developmental-structural units of macrocircuitry formed by the sibling neurons of single progenitors called neuroblasts. We demonstrate that the lineage principle guides the connectivity and function of neurons, providing input to the central complex, a collection of neuropil compartments important for visually guided behaviors. One of these compartments is the ellipsoid body (EB), a structure formed largely by the axons of ring (R) neurons, all of which are generated by a single lineage, DALv2. Two further lineages, DALcl1 and DALcl2, produce neurons that connect the anterior optic tubercle, a central brain visual center, with R neurons. Finally, DALcl1/2 receive input from visual projection neurons of the optic lobe medulla, completing a three-legged circuit that we call the anterior visual pathway (AVP). The AVP bears a fundamental resemblance to the sky-compass pathway, a visual navigation circuit described in other insects. Neuroanatomical analysis and two-photon calcium imaging demonstrate that DALcl1 and DALcl2 form two parallel channels, establishing connections with R neurons located in the peripheral and central domains of the EB, respectively. Although neurons of both lineages preferentially respond to bright objects, DALcl1 neurons have small ipsilateral, retinotopically ordered receptive fields, whereas DALcl2 neurons share a large excitatory receptive field in the contralateral hemifield. DALcl2 neurons become inhibited when the object enters the ipsilateral hemifield and display an additional excitation after the object leaves the field of view. Thus, the spatial position of a bright feature, such as a celestial body, may be encoded within this pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.
Subhas, S; Rupesh, P L; Devanna, R; Kumar, D R V; Paliwal, A; Solanki, P
2017-04-01
The aim of the study is to compare the relationship of the occlusal plane to 3 different ala-tragal lines, namely the superior, middle and inferior lines, in individuals having different head forms and its relation to the Frankfort horizontal plane. A total of 75 lateral cephalometric radiographs of subjects with natural dentition, having full complement of teeth, between the age group of 18-25 were screened and selected. Lateral cephalogram were made for each subjects in an open mouth position. Prior to making the lateral cephalogram, radiopaque markers were placed on the superior, middle and inferior tragus points and on the inferior border of the ala of the nose. Cephalometric tracing was done over each cephalogram. In mesiocephalic head form the middle ala-tragal line was most parallel to the occlusal plane having a mean angle of (1.96°). In dolichocephalic headform, the superior ala-tragal line was most parallel to the occlusal plane having a mean angle of (0.48°). In brachycephalic head form, the middle ala-tragal line was most parallel to the occlusal plane having a mean angle of (2.08°). The mean angulations of occlusal plane to FH plane is 11.04°, 10.16° and 10.60° in mesiocephalic, dolichocephalic and brachycephalic head forms, respectively. The study concludes that the middle ala-tragal line can be used as a reference for the mesiocephalic head form and the superior ala-tragal line for the dolichocephalic and brachycephalic head form as a reference to establish the occlusal plane. Copyright © 2016. Published by Elsevier Masson SAS.
Method of electroforming a rocket chamber
NASA Technical Reports Server (NTRS)
Fortini, A. (Inventor)
1974-01-01
A transpiration cooled rocket chamber is made by forming a porous metal wall on a suitably shaped mandrel. The porous wall may be made of sintered powdered metal, metal fibers sintered on the mandrel or wires woven onto the mandrel and then sintered to bond the interfaces of the wires. Intersecting annular and longitudinal ribs are then electroformed on the porous wall. An interchamber wall having orifices therein is then electroformed over the annular and longitudinal ribs. Parallel longitudinal ribs are then formed on the outside surface of the interchamber wall after which an annular jacket is electroformed over the parallel ribs to form distribution passages therewith. A feed manifold communicating with the distribution passages may be fabricated and welded to the rocket chamber or the feed manifold may be electroformed in place.
5-Methylpyrazine-2-carboxamide
Rillema, D. Paul; Senaratne, Nilmini K.; Moore, Curtis; ...
2017-07-28
The title compound, C 6H 7N 3O, is nearly planar, with a dihedral angle of 2.14 (11)° between the pyrazine ring and the mean plane of the carboxamide group [C—C(=O)—N]. In the crystal, molecules are linked via pairs of N—H...O hydrogen bonds forming inversion dimers with an R 2 2 (8) ring motif. These dimers are further linked by a pair of N—H...N hydrogen bonds, enclosing an R 2 2 (10) ring motif, and C—H...O hydrogen bonds, forming ribbons lying parallel to the ab plane. The ribbons are linked by offset π–π interactions [intercentroid distance = 3.759(1)Å], forming two setsmore » of mutually perpendicular slabs parallel to planes (110) and (1-10).« less
Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock
NASA Technical Reports Server (NTRS)
Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.
2014-01-01
Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.
NASA Astrophysics Data System (ADS)
Platt, Sean P.; Attah, Isaac K.; Aziz, Saadullah; El-Shall, M. Samy
2015-05-01
Dimer radical cations of aromatic and polycyclic aromatic molecules are good model systems for a fundamental understanding of photoconductivity and ferromagnetism in organic materials which depend on the degree of charge delocalization. The structures of the dimer radical cations are difficult to determine theoretically since the potential energy surface is often very flat with multiple shallow minima representing two major classes of isomers adopting the stacked parallel or the T-shape structure. We present experimental results, based on mass-selected ion mobility measurements, on the gas phase structures of the naphthalene+ṡ ṡ naphthalene homodimer and the naphthalene+ṡ ṡ benzene heterodimer radical cations at different temperatures. Ion mobility studies reveal a persistence of the stacked parallel structure of the naphthalene+ṡ ṡ naphthalene homodimer in the temperature range 230-300 K. On the other hand, the results reveal that the naphthalene+ṡ ṡ benzene heterodimer is able to exhibit both the stacked parallel and T-shape structural isomers depending on the experimental conditions. Exploitation of the unique structural motifs among charged homo- and heteroaromatic-aromatic interactions may lead to new opportunities for molecular design and recognition involving charged aromatic systems.
Algorithms and programming tools for image processing on the MPP:3
NASA Technical Reports Server (NTRS)
Reeves, Anthony P.
1987-01-01
This is the third and final report on the work done for NASA Grant 5-403 on Algorithms and Programming Tools for Image Processing on the MPP:3. All the work done for this grant is summarized in the introduction. Work done since August 1986 is reported in detail. Research for this grant falls under the following headings: (1) fundamental algorithms for the MPP; (2) programming utilities for the MPP; (3) the Parallel Pascal Development System; and (4) performance analysis. In this report, the results of two efforts are reported: region growing, and performance analysis of important characteristic algorithms. In each case, timing results from MPP implementations are included. A paper is included in which parallel algorithms for region growing on the MPP is discussed. These algorithms permit different sized regions to be merged in parallel. Details on the implementation and peformance of several important MPP algorithms are given. These include a number of standard permutations, the FFT, convolution, arbitrary data mappings, image warping, and pyramid operations, all of which have been implemented on the MPP. The permutation and image warping functions have been included in the standard development system library.
Parallel algorithms for quantum chemistry. I. Integral transformations on a hypercube multiprocessor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteside, R.A.; Binkley, J.S.; Colvin, M.E.
1987-02-15
For many years it has been recognized that fundamental physical constraints such as the speed of light will limit the ultimate speed of single processor computers to less than about three billion floating point operations per second (3 GFLOPS). This limitation is becoming increasingly restrictive as commercially available machines are now within an order of magnitude of this asymptotic limit. A natural way to avoid this limit is to harness together many processors to work on a single computational problem. In principle, these parallel processing computers have speeds limited only by the number of processors one chooses to acquire. Themore » usefulness of potentially unlimited processing speed to a computationally intensive field such as quantum chemistry is obvious. If these methods are to be applied to significantly larger chemical systems, parallel schemes will have to be employed. For this reason we have developed distributed-memory algorithms for a number of standard quantum chemical methods. We are currently implementing these on a 32 processor Intel hypercube. In this paper we present our algorithm and benchmark results for one of the bottleneck steps in quantum chemical calculations: the four index integral transformation.« less
NASA Astrophysics Data System (ADS)
Blasevski, D.; Del-Castillo-Negrete, D.
2012-10-01
Heat transport in magnetized plasmas is a problem of fundamental interest in controlled fusion. In Ref.footnotetext D. del-Castillo-Negrete, and L. Chac'on, Phys. Rev. Lett., 106, 195004 (2011); Phys. Plasmas 19, 056112 (2012). we proposed a Lagrangian-Green's function (LG) method to study this problem in the strongly anisotropic (χ=0) regime. The LG method bypasses the need to discretize the transport operators on a grid and it is applicable to general parallel flux closures and 3-D magnetic fields. Here we apply the LG method to parallel transport (with local and nonlocal parallel flux closures) in reversed shear magnetic field configurations known to exhibit robust transport barriers in the vicinity of the extrema of the q-profile. By shearless Cantori (SC) we mean the invariant Cantor sets remaining after the destruction of toroidal flux surfaces with zero magnetic shear, q^'=0. We provide numerical evidence of the role of SC in the anomalously slow relaxation of radial temperature gradients in chaotic magnetic fields with no transport barriers. The spatio-temporal evolution of temperature pulses localized in the reversed shear region exhibits non-diffusive self-similar evolution and nonlocal effective radial transport.
Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chiou, Jin-Chern
1990-01-01
Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.
14 CFR 29.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the... formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
14 CFR 23.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the... formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
Sawyer, William C.
1995-01-01
An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum.
Sawyer, W.C.
1995-08-15
An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum. 6 figs.
Exploring the Sensitivity of Horn's Parallel Analysis to the Distributional Form of Random Data
ERIC Educational Resources Information Center
Dinno, Alexis
2009-01-01
Horn's parallel analysis (PA) is the method of consensus in the literature on empirical methods for deciding how many components/factors to retain. Different authors have proposed various implementations of PA. Horn's seminal 1965 article, a 1996 article by Thompson and Daniel, and a 2004 article by Hayton, Allen, and Scarpello all make assertions…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, S.; Zhang, D.; Paukstelis, P. J.
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less
On the suitability of the connection machine for direct particle simulation
NASA Technical Reports Server (NTRS)
Dagum, Leonard
1990-01-01
The algorithmic structure was examined of the vectorizable Stanford particle simulation (SPS) method and the structure is reformulated in data parallel form. Some of the SPS algorithms can be directly translated to data parallel, but several of the vectorizable algorithms have no direct data parallel equivalent. This requires the development of new, strictly data parallel algorithms. In particular, a new sorting algorithm is developed to identify collision candidates in the simulation and a master/slave algorithm is developed to minimize communication cost in large table look up. Validation of the method is undertaken through test calculations for thermal relaxation of a gas, shock wave profiles, and shock reflection from a stationary wall. A qualitative measure is provided of the performance of the Connection Machine for direct particle simulation. The massively parallel architecture of the Connection Machine is found quite suitable for this type of calculation. However, there are difficulties in taking full advantage of this architecture because of lack of a broad based tradition of data parallel programming. An important outcome of this work has been new data parallel algorithms specifically of use for direct particle simulation but which also expand the data parallel diction.
Parallel-SymD: A Parallel Approach to Detect Internal Symmetry in Protein Domains.
Jha, Ashwani; Flurchick, K M; Bikdash, Marwan; Kc, Dukka B
2016-01-01
Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10-15% of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD (symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of computing processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was achieved on a parallel system with 100 processors.
Parallel-SymD: A Parallel Approach to Detect Internal Symmetry in Protein Domains
Jha, Ashwani; Flurchick, K. M.; Bikdash, Marwan
2016-01-01
Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10–15% of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD (symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of computing processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was achieved on a parallel system with 100 processors. PMID:27747230
Parallel-vector unsymmetric Eigen-Solver on high performance computers
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Jiangning, Qin
1993-01-01
The popular QR algorithm for solving all eigenvalues of an unsymmetric matrix is reviewed. Among the basic components in the QR algorithm, it was concluded from this study, that the reduction of an unsymmetric matrix to a Hessenberg form (before applying the QR algorithm itself) can be done effectively by exploiting the vector speed and multiple processors offered by modern high-performance computers. Numerical examples of several test cases have indicated that the proposed parallel-vector algorithm for converting a given unsymmetric matrix to a Hessenberg form offers computational advantages over the existing algorithm. The time saving obtained by the proposed methods is increased as the problem size increased.
NASA Astrophysics Data System (ADS)
Mirza, Arshad M.; Masood, W.
2011-12-01
Nonlinear equations governing the dynamics of finite amplitude drift-ion acoustic-waves are derived by taking into account sheared ion flows parallel and perpendicular to the ambient magnetic field in a quantum magnetoplasma comprised of electrons and ions. It is shown that stationary solution of the nonlinear equations can be represented in the form of a tripolar vortex for specific profiles of the equilibrium sheared flows. The tripolar vortices are, however, observed to form on very short scales in dense quantum plasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.
NASA Technical Reports Server (NTRS)
Mulac, Richard A.; Celestina, Mark L.; Adamczyk, John J.; Misegades, Kent P.; Dawson, Jef M.
1987-01-01
A procedure is outlined which utilizes parallel processing to solve the inviscid form of the average-passage equation system for multistage turbomachinery along with a description of its implementation in a FORTRAN computer code, MSTAGE. A scheme to reduce the central memory requirements of the program is also detailed. Both the multitasking and I/O routines referred to in this paper are specific to the Cray X-MP line of computers and its associated SSD (Solid-state Storage Device). Results are presented for a simulation of a two-stage rocket engine fuel pump turbine.
Wheelock, C.W.; Baumeister, E.B.
1961-09-01
A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.
NASA Astrophysics Data System (ADS)
di Lauro, Carlo; D'Amico, Giuseppe; Snels, Marcel
2009-04-01
High resolution infrared spectra (0.001 cm -1 FWHM) have been measured for mixtures of 1-chloro-1,1-difluoroethane in Ne, expanded in a supersonic planar jet. The ν6 fundamental, infrared active with a dominant parallel transition moment, exhibits a remarkable splitting of about 0.035 cm -1 for both 35Cl and 37Cl isotopomers. Several mechanisms of interaction of ν6 with states with high torsional excitation are critically examined to explain the observed effect. It is concluded that the observed torsional splitting patterns can be explained in terms of a torsional Coriolis interaction between ν6 and a highly excited torsional mode, 6 ν18. A full numerical analysis, performed including a torsional Coriolis term in the Hamiltonian, shows that the interaction mechanism requires a torsional barrier height of about 1270 cm -1.
Protein Science by DNA Sequencing: How Advances in Molecular Biology Are Accelerating Biochemistry.
Higgins, Sean A; Savage, David F
2018-01-09
A fundamental goal of protein biochemistry is to determine the sequence-function relationship, but the vastness of sequence space makes comprehensive evaluation of this landscape difficult. However, advances in DNA synthesis and sequencing now allow researchers to assess the functional impact of every single mutation in many proteins, but challenges remain in library construction and the development of general assays applicable to a diverse range of protein functions. This Perspective briefly outlines the technical innovations in DNA manipulation that allow massively parallel protein biochemistry and then summarizes the methods currently available for library construction and the functional assays of protein variants. Areas in need of future innovation are highlighted with a particular focus on assay development and the use of computational analysis with machine learning to effectively traverse the sequence-function landscape. Finally, applications in the fundamentals of protein biochemistry, disease prediction, and protein engineering are presented.
Piezoelectric ribbons printed onto rubber for flexible energy conversion.
Qi, Yi; Jafferis, Noah T; Lyons, Kenneth; Lee, Christine M; Ahmad, Habib; McAlpine, Michael C
2010-02-10
The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.
A thermosensory pathway that controls body temperature
Nakamura, Kazuhiro; Morrison, Shaun F.
2008-01-01
Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions governed by the nervous system. Here we show a novel somatosensory pathway, which essentially constitutes the afferent arm of the thermoregulatory reflex triggered by cutaneous sensation of environmental temperature changes. Using rat in vivo electrophysiological and anatomical approaches, we revealed that lateral parabrachial neurons play a pivotal role in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this ‘thermoregulatory afferent’ pathway exists in parallel with the spinothalamocortical somatosensory pathway mediating temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis—two mechanisms fundamental to the nervous system and to our survival. PMID:18084288
Free Mesh Method: fundamental conception, algorithms and accuracy study
YAGAWA, Genki
2011-01-01
The finite element method (FEM) has been commonly employed in a variety of fields as a computer simulation method to solve such problems as solid, fluid, electro-magnetic phenomena and so on. However, creation of a quality mesh for the problem domain is a prerequisite when using FEM, which becomes a major part of the cost of a simulation. It is natural that the concept of meshless method has evolved. The free mesh method (FMM) is among the typical meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, especially on parallel processors. FMM is an efficient node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm for the finite element calculations. In this paper, FMM and its variation are reviewed focusing on their fundamental conception, algorithms and accuracy. PMID:21558752
Organic Solar Cells beyond One Pair of Donor-Acceptor: Ternary Blends and More.
Yang, Liqiang; Yan, Liang; You, Wei
2013-06-06
Ternary solar cells enjoy both an increased light absorption width, and an easy fabrication process associated with their simple structures. Significant progress has been made for such solar cells with demonstrated efficiencies over 7%; however, their fundamental working principles are still under investigation. This Perspective is intended to offer our insights on the three major governing mechanisms in these intriguing ternary solar cells: charge transfer, energy transfer, and parallel-linkage. Through careful analysis of exemplary cases, we summarize the advantages and limitations of these three major mechanisms and suggest future research directions. For example, incorporating additional singlet fission or upconversion materials into the energy transfer dominant ternary solar cells has the potential to break the theoretical efficiency limit in single junction organic solar cells. Clearly, a feedback loop between fundamental understanding and materials selection is in urgent need to accelerate the efficiency improvement of these ternary solar cells.
A thermosensory pathway that controls body temperature.
Nakamura, Kazuhiro; Morrison, Shaun F
2008-01-01
Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.
"Genetically Engineered" Nanoelectronics
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas
2000-01-01
The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.
Detection principles of biological and chemical FET sensors.
Kaisti, Matti
2017-12-15
The seminal importance of detecting ions and molecules for point-of-care tests has driven the search for more sensitive, specific, and robust sensors. Electronic detection holds promise for future miniaturized in-situ applications and can be integrated into existing electronic manufacturing processes and technology. The resulting small devices will be inherently well suited for multiplexed and parallel detection. In this review, different field-effect transistor (FET) structures and detection principles are discussed, including label-free and indirect detection mechanisms. The fundamental detection principle governing every potentiometric sensor is introduced, and different state-of-the-art FET sensor structures are reviewed. This is followed by an analysis of electrolyte interfaces and their influence on sensor operation. Finally, the fundamentals of different detection mechanisms are reviewed and some detection schemes are discussed. In the conclusion, current commercial efforts are briefly considered. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Fundamental absorption edge of NiO nanocrystals
NASA Astrophysics Data System (ADS)
Sokolov, V. I.; Druzhinin, A. V.; Kim, G. A.; Gruzdev, N. B.; Yermakov, A. Ye.; Uimin, M. A.; Byzov, I. V.; Shchegoleva, N. N.; Vykhodets, V. B.; Kurennykh, T. E.
2013-12-01
NiO nanocrystals with the average size of 5, 10 and 25 nm were synthesized by gas-condensation method. The well-defined increase of the optical density D near the fundamental absorption edge of NiO nanocrystals in the range of 3.5-4.0 eV observed after the annealing in air is caused by the oxygen content growth. It is the direct experimental evidence of the fact that p-d charge transfer transitions form the fundamental absorption edge.
Querying databases of trajectories of differential equations 2: Index functions
NASA Technical Reports Server (NTRS)
Grossman, Robert
1991-01-01
Suppose that a large number of parameterized trajectories (gamma) of a dynamical system evolving in R sup N are stored in a database. Let eta is contained R sup N denote a parameterized path in Euclidean space, and let parallel to center dot parallel to denote a norm on the space of paths. A data structures and indices for trajectories are defined and algorithms are given to answer queries of the following forms: Query 1. Given a path eta, determine whether eta occurs as a subtrajectory of any trajectory gamma from the database. If so, return the trajectory; otherwise, return null. Query 2. Given a path eta, return the trajectory gamma from the database which minimizes the norm parallel to eta - gamma parallel.
This School System Ensures that Reading Stays Fundamental.
ERIC Educational Resources Information Center
Thompson, Margery
1985-01-01
Reading Is Fundamental (RIF), Incorporated, has distributed over 57 million books in its 18 years. RIF programs have raised children's interest in reading and their levels of reading achievement, and have increased library use and parent involvement. The national RIF organization offers several forms of support for local programs. (PGD)
Spin dependent structure function g1 of the deuteron and the proton
NASA Astrophysics Data System (ADS)
Klostermann, L.
1995-05-01
This thesis presents a study on the spin structure of the nucleon, via deep inelastic scattering (DIS) of polarized muons on polarized proton and deuterium targets. The work was done in the Spin Muon Collaboration (SMC) at CERN in Geneva. From the asymmetry in the scattering cross section for nucleon and lepton spins parallel and anti-parallel, one can determine the spin dependent structure function g(sub 1), which contains information on the quark and gluon spin distribution functions. The interpretation in the frame work of the quark parton model (QPM) of earlier results on g(sub 1, sup d) by the European Muon Collaboration (EMC), gave an indication that only a small fraction of the proton spin, compatible with zero, is carried by the spins of the constituent quarks. The SMC was set up to check this unexpected result with improved accuracy, and to combine measurements of g(sub 1, sup p) and g(sub 1, sup d) to test a fundamental sum rule in quantum chromodynamics (QCD), the Bjorken sum rule. The SMC results presented in this thesis are based on data taken in 1992 using a polarized deuterium target and polarized muons with an incident energy of 100 GeV, and 1993 data with a proton target and an incident muon energy of 190 GeV. Using all available data, the fundamental Bjorken sum rule has now been verified at the one standard deviation level to within 16% of its theoretical value.
Active control of fan noise from a turbofan engine
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.
1994-01-01
A three-channel active control system is applied to an operational turbofan engine to reduce tonal noise produced by both the fan and the high-pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provide blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. To minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three-channel controller by up to 16 dB over a +/- 30-deg angle about the engine axis. A single-channel controller could produce reduction over a +/- 15-deg angle. The experimental results show the control to be robust. Outside of the areas contolled, the levels of the tone actually increased due to the generation of radial modes by the control sources. Simultaneous control of two tones is achieved with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high-pressure compressor fundamental tones.
Geramita, Matthew A; Burton, Shawn D; Urban, Nathan N
2016-01-01
Splitting sensory information into parallel pathways is a common strategy in sensory systems. Yet, how circuits in these parallel pathways are composed to maintain or even enhance the encoding of specific stimulus features is poorly understood. Here, we have investigated the parallel pathways formed by mitral and tufted cells of the olfactory system in mice and characterized the emergence of feature selectivity in these cell types via distinct lateral inhibitory circuits. We find differences in activity-dependent lateral inhibition between mitral and tufted cells that likely reflect newly described differences in the activation of deep and superficial granule cells. Simulations show that these circuit-level differences allow mitral and tufted cells to best discriminate odors in separate concentration ranges, indicating that segregating information about different ranges of stimulus intensity may be an important function of these parallel sensory pathways. DOI: http://dx.doi.org/10.7554/eLife.16039.001 PMID:27351103
Slepoy, A; Peters, M D; Thompson, A P
2007-11-30
Molecular dynamics and other molecular simulation methods rely on a potential energy function, based only on the relative coordinates of the atomic nuclei. Such a function, called a force field, approximately represents the electronic structure interactions of a condensed matter system. Developing such approximate functions and fitting their parameters remains an arduous, time-consuming process, relying on expert physical intuition. To address this problem, a functional programming methodology was developed that may enable automated discovery of entirely new force-field functional forms, while simultaneously fitting parameter values. The method uses a combination of genetic programming, Metropolis Monte Carlo importance sampling and parallel tempering, to efficiently search a large space of candidate functional forms and parameters. The methodology was tested using a nontrivial problem with a well-defined globally optimal solution: a small set of atomic configurations was generated and the energy of each configuration was calculated using the Lennard-Jones pair potential. Starting with a population of random functions, our fully automated, massively parallel implementation of the method reproducibly discovered the original Lennard-Jones pair potential by searching for several hours on 100 processors, sampling only a minuscule portion of the total search space. This result indicates that, with further improvement, the method may be suitable for unsupervised development of more accurate force fields with completely new functional forms. Copyright (c) 2007 Wiley Periodicals, Inc.
Parallel-plate heat pipe apparatus having a shaped wick structure
Rightley, Michael J.; Adkins, Douglas R.; Mulhall, James J.; Robino, Charles V.; Reece, Mark; Smith, Paul M.; Tigges, Chris P.
2004-12-07
A parallel-plate heat pipe is disclosed that utilizes a plurality of evaporator regions at locations where heat sources (e.g. semiconductor chips) are to be provided. A plurality of curvilinear capillary grooves are formed on one or both major inner surfaces of the heat pipe to provide an independent flow of a liquid working fluid to the evaporator regions to optimize heat removal from different-size heat sources and to mitigate the possibility of heat-source shadowing. The parallel-plate heat pipe has applications for heat removal from high-density microelectronics and laptop computers.
Formation of interconnections to microfluidic devices
Matzke, Carolyn M [Los Lunas, NM; Ashby, Carol I. H. [Edgewood, NM; Griego, Leonardo [Tijeras, NM
2003-07-29
A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-14
... specified Internet site.\\3\\ \\1\\ See 74 FR 4546 (January 26, 2009). The final rule adopted, among other things, parallel amendments to SEC Form N-1A (the registration form for mutual funds) and to Rule 498...
Local Norms and Test Characteristics for Selected Forms of the M.A.A. Placement Test.
ERIC Educational Resources Information Center
Melancon, Janet G.; Thompson, Bruce
The psychometric integrity of selected items from the Mathematics Association of America (MAA) placement tests for college students was investigated. Two alternative and parallel versions of the test were developed (Form A and Form B) for this study. Data for 539 students seeking admission into an undergraduate mathematics curriculum at a private…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... for parallel processing and re-submitted in final form as part of the State's September 17, 2012... characters, any form of encryption, and be free of any defects or viruses. For additional information about... the Internet and will be publicly available only in hard copy form. Publicly available docket...
Linking Competencies in Educational Settings and Measuring Growth. Research Report. ETS RR-06-12
ERIC Educational Resources Information Center
von Davier, Alina A.; Carstensen, Claus H.; von Davier, Matthias
2006-01-01
Measuring and linking competencies require special instruments, special data collection designs, and special statistical models. The measurement instruments are tests or tests forms, which can be used in the following situations: The same test can be given repeatedly; two or more parallel tests forms (i.e., forms intended to be similar in…
Laser weld jig. [Patent application
Van Blarigan, P.; Haupt, D.L.
1980-12-05
A system is provided for welding a workpiece along a predetermined weld line that may be of irregular shape, which includes the step of forming a lip on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members. Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reusable jig forming the lip, and with the jig constructed to detachably hold parts to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.
McWhannell, Nicola; Henaghan, Jayne L.
2018-01-01
This paper outlines the implementation of a programme of work that started with the development of a population-level children’s health, fitness and lifestyle study in 1996 (SportsLinx) leading to selected interventions one of which is described in detail: the Active City of Liverpool, Active Schools and SportsLinx (A-CLASS) Project. The A-CLASS Project aimed to quantify the effectiveness of structured and unstructured physical activity (PA) programmes on children’s PA, fitness, body composition, bone health, cardiac and vascular structures, fundamental movement skills, physical self-perception and self-esteem. The study was a four-arm parallel-group school-based cluster randomised controlled trial (clinical trials no. NCT02963805), and compared different exposure groups: a high intensity PA (HIPA) group, a fundamental movement skill (FMS) group, a PA signposting (PASS) group and a control group, in a two-schools-per-condition design. Baseline findings indicate that children’s fundamental movement skill competence levels are low-to-moderate, yet these skills are inversely associated with percentage body fat. Outcomes of this project will make an important contribution to the design and implementation of children’s PA promotion initiatives.
Anderson, J.B.
1960-01-01
A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.
ERIC Educational Resources Information Center
Chen, Pei-Hua; Chang, Hua-Hua; Wu, Haiyan
2012-01-01
Two sampling-and-classification-based procedures were developed for automated test assembly: the Cell Only and the Cell and Cube methods. A simulation study based on a 540-item bank was conducted to compare the performance of the procedures with the performance of a mixed-integer programming (MIP) method for assembling multiple parallel test…
Zeeman effect in sulfur monoxide: A tool to probe magnetic fields in star forming regions.
Cazzoli, Gabriele; Lattanzi, Valerio; Coriani, Sonia; Gauss, Jürgen; Codella, Claudio; Ramos, Andrés Asensio; Cernicharo, José; Puzzarini, Cristina
2017-09-01
Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of atomic and molecular lines. However, a direct measurement of the Zeeman spectral pattern from interstellar molecular species is challenging due to the high sensitivity and high spectral resolution required. So far, the Zeeman effect has been detected unambiguously in star forming regions for very few non-masing species, such as OH and CN. We decided to investigate the suitability of sulfur monoxide (SO), which is one of the most abundant species in star forming regions, for probing the intensity of magnetic fields via the Zeeman effect. We investigated the Zeeman effect for several rotational transitions of SO in the (sub-)mm spectral regions by using a frequency-modulated, computer-controlled spectrometer, and by applying a magnetic field parallel to the radiation propagation (i.e., perpendicular to the oscillating magnetic field of the radiation). To support the experimental determination of the g factors of SO, a systematic quantum-chemical investigation of these parameters for both SO and O 2 has been carried out. An effective experimental-computational strategy for providing accurate g factors as well as for identifying the rotational transitions showing the strongest Zeeman effect has been presented. Revised g factors have been obtained from a large number of SO rotational transitions between 86 and 389 GHz. In particular, the rotational transitions showing the largest Zeeman shifts are: N , J = 2, 2 ← 1, 1 (86.1 GHz), N , J = 4, 3 ← 3, 2 (159.0 GHz), N , J = 1, 1 ← 0, 1 (286.3 GHz), N , J = 2, 2 ← 1, 2 (309.5 GHz), and N , J = 2, 1 ← 1, 0 (329.4 GHz). Our investigation supports SO as a good candidate for probing magnetic fields in high-density star forming regions.
Zeeman effect in sulfur monoxide: A tool to probe magnetic fields in star forming regions⋆
Cazzoli, Gabriele; Lattanzi, Valerio; Coriani, Sonia; Gauss, Jürgen; Codella, Claudio; Ramos, Andrés Asensio; Cernicharo, José; Puzzarini, Cristina
2017-01-01
Context Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of atomic and molecular lines. However, a direct measurement of the Zeeman spectral pattern from interstellar molecular species is challenging due to the high sensitivity and high spectral resolution required. So far, the Zeeman effect has been detected unambiguously in star forming regions for very few non-masing species, such as OH and CN. Aims We decided to investigate the suitability of sulfur monoxide (SO), which is one of the most abundant species in star forming regions, for probing the intensity of magnetic fields via the Zeeman effect. Methods We investigated the Zeeman effect for several rotational transitions of SO in the (sub-)mm spectral regions by using a frequency-modulated, computer-controlled spectrometer, and by applying a magnetic field parallel to the radiation propagation (i.e., perpendicular to the oscillating magnetic field of the radiation). To support the experimental determination of the g factors of SO, a systematic quantum-chemical investigation of these parameters for both SO and O2 has been carried out. Results An effective experimental-computational strategy for providing accurate g factors as well as for identifying the rotational transitions showing the strongest Zeeman effect has been presented. Revised g factors have been obtained from a large number of SO rotational transitions between 86 and 389 GHz. In particular, the rotational transitions showing the largest Zeeman shifts are: N, J = 2, 2 ← 1, 1 (86.1 GHz), N, J = 4, 3 ← 3, 2 (159.0 GHz), N, J = 1, 1 ← 0, 1 (286.3 GHz), N, J = 2, 2 ← 1, 2 (309.5 GHz), and N, J = 2, 1 ← 1, 0 (329.4 GHz). Our investigation supports SO as a good candidate for probing magnetic fields in high-density star forming regions. PMID:29151607
Instrumentation Automation for Concrete Structures; Report 1: Instrumentation Automation Techniques
1986-12-01
The internat.i..onal measuring system sets up independent standards for t:hese fundamental quanti ties. All other quanti ties (force, acceleration...measurement systems are typically composed of several fundamental performing a special function (Figure 1). 3 accuracy of a quantitative measurement is...equiJ2.ID_g_:)1t 2 J, A fundament ’’ J function of ~" i1 ’r. ’’i::rumentation system is to prese~t desired measurement data to Lne user in a form that
Fundamental monogamy relation between contextuality and nonlocality.
Kurzyński, Paweł; Cabello, Adán; Kaszlikowski, Dagomir
2014-03-14
We show that the no-disturbance principle imposes a tradeoff between locally contextual correlations violating the Klyachko-Can-Biniciogˇlu-Shumovski inequality and spatially separated correlations violating the Clauser-Horne-Shimony-Holt inequality. The violation of one inequality forbids the violation of the other. We also obtain the corresponding monogamy relation imposed by quantum theory for a qutrit-qubit system. Our results show the existence of fundamental monogamy relations between contextuality and nonlocality that suggest that entanglement might be a particular form of a more fundamental resource.
Neural network architecture for form and motion perception (Abstract Only)
NASA Astrophysics Data System (ADS)
Grossberg, Stephen
1991-08-01
Evidence is given for a new neural network theory of biological motion perception, a motion boundary contour system. This theory clarifies why parallel streams V1 yields V2 and V1 yields MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. The motion boundary contour system consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a motion oriented contrast (MOC) filter, for preprocessing moving images; and a cooperative-competitive feedback (CC) loop, for generating emergent boundary segmentations of the filtered signals. The present work uses the MOC filter to explain a variety of classical and recent data about short-range and long- range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed- up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte''s Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90 degree(s), whereas opposite directions differ by 180 degree(s), and why a cortical stream V1 yields V2 yields MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the motion boundary contour system design.
Kinnison, Michael T.
2017-01-01
Abstract Phenotypic plasticity is often an adaptation of organisms to cope with temporally or spatially heterogenous landscapes. Like other adaptations, one would predict that different species, populations, or sexes might thus show some degree of parallel evolution of plasticity, in the form of parallel reaction norms, when exposed to analogous environmental gradients. Indeed, one might even expect parallelism of plasticity to repeatedly evolve in multiple traits responding to the same gradient, resulting in integrated parallelism of plasticity. In this study, we experimentally tested for parallel patterns of predator-mediated plasticity of size, shape, and behavior of 2 species and sexes of mosquitofish. Examination of behavioral trials indicated that the 2 species showed unique patterns of behavioral plasticity, whereas the 2 sexes in each species showed parallel responses. Fish shape showed parallel patterns of plasticity for both sexes and species, albeit males showed evidence of unique plasticity related to reproductive anatomy. Moreover, patterns of shape plasticity due to predator exposure were broadly parallel to what has been depicted for predator-mediated population divergence in other studies (slender bodies, expanded caudal regions, ventrally located eyes, and reduced male gonopodia). We did not find evidence of phenotypic plasticity in fish size for either species or sex. Hence, our findings support broadly integrated parallelism of plasticity for sexes within species and less integrated parallelism for species. We interpret these findings with respect to their potential broader implications for the interacting roles of adaptation and constraint in the evolutionary origins of parallelism of plasticity in general. PMID:29491997
Compton Scattering Cross Sections in Strong Magnetic Fields: Advances for Neutron Star Applications
NASA Astrophysics Data System (ADS)
Eiles, Matthew; Gonthier, P. L.; Baring, M. G.; Wadiasingh, Z.
2013-04-01
Various telescopes including RXTE, INTEGRAL and Suzaku have detected non-thermal X-ray emission in the 10 - 200 keV band from strongly magnetic neutron stars. Inverse Compton scattering, a quantum-electrodynamical process, is believed to be a leading candidate for the production of this intense X-ray radiation. Magnetospheric conditions are such that electrons may well possess ultra-relativistic energies, which lead to attractive simplifications of the cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths and Sokolov & Ternov (ST) basis states, focusing specifically on ground state-to-ground state scattering. However, inverse Compton scattering can cool electrons down to mildly-relativistic energies, necessitating the development of a more general case where the incoming photons acquire nonzero incident angles relative to the field in the rest frame of the electron, and the intermediate state can be excited to arbitrary Landau levels. In this paper, we develop results pertaining to this general case using ST formalism, and treating the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Four possible scattering modes (parallel-parallel, perpendicular-perpendicular, parallel-perpendicular, and perpendicular-parallel) encapsulate the polarization dependence of the cross section. We present preliminary analytic and numerical investigations of the magnitude of the extra Landau state contributions to obtain the full cross section, and compare these new analytic developments with the spin-averaged cross sections, which we develop in parallel. Results will find application to various neutron star problems, including computation of Eddington luminosities in the magnetospheres of magnetars. We express our gratitude for the generous support of the Michigan Space Grant Consortium, of the National Science Foundation (REU and RUI), and the NASA Astrophysics Theory and Fundamental Program.
Accuracy analysis and design of A3 parallel spindle head
NASA Astrophysics Data System (ADS)
Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan
2016-03-01
As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.
ANTI-PARALLEL EUV FLOWS OBSERVED ALONG ACTIVE REGION FILAMENT THREADS WITH HI-C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Caroline E.; Walsh, Robert W.; Régnier, Stéphane
Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from Hα and cool extreme-ultraviolet (EUV) lines (e.g., 304 Å) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of 'counter-steaming' flows has previously been inferred from these cool plasma observations, but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). In this work, wemore » present observations of an AR filament observed with the High-resolution Coronal Imager (Hi-C) that exhibits anti-parallel flows along adjacent filament threads. Complementary data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km s{sup –1}) and gives an indication of the resolvable thickness of the individual strands (0.''8 ± 0.''1). The temperature of the plasma flows was estimated to be log T (K) = 5.45 ± 0.10 using Emission Measure loci analysis. We find that SDO/AIA cannot clearly observe these anti-parallel flows or measure their velocity or thread width due to its larger pixel size. We suggest that anti-parallel/counter-streaming flows are likely commonplace within all filaments and are currently not observed in EUV due to current instrument spatial resolution.« less
al3c: high-performance software for parameter inference using Approximate Bayesian Computation.
Stram, Alexander H; Marjoram, Paul; Chen, Gary K
2015-11-01
The development of Approximate Bayesian Computation (ABC) algorithms for parameter inference which are both computationally efficient and scalable in parallel computing environments is an important area of research. Monte Carlo rejection sampling, a fundamental component of ABC algorithms, is trivial to distribute over multiple processors but is inherently inefficient. While development of algorithms such as ABC Sequential Monte Carlo (ABC-SMC) help address the inherent inefficiencies of rejection sampling, such approaches are not as easily scaled on multiple processors. As a result, current Bayesian inference software offerings that use ABC-SMC lack the ability to scale in parallel computing environments. We present al3c, a C++ framework for implementing ABC-SMC in parallel. By requiring only that users define essential functions such as the simulation model and prior distribution function, al3c abstracts the user from both the complexities of parallel programming and the details of the ABC-SMC algorithm. By using the al3c framework, the user is able to scale the ABC-SMC algorithm in parallel computing environments for his or her specific application, with minimal programming overhead. al3c is offered as a static binary for Linux and OS-X computing environments. The user completes an XML configuration file and C++ plug-in template for the specific application, which are used by al3c to obtain the desired results. Users can download the static binaries, source code, reference documentation and examples (including those in this article) by visiting https://github.com/ahstram/al3c. astram@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Optimized Hypervisor Scheduler for Parallel Discrete Event Simulations on Virtual Machine Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S
2013-01-01
With the advent of virtual machine (VM)-based platforms for parallel computing, it is now possible to execute parallel discrete event simulations (PDES) over multiple virtual machines, in contrast to executing in native mode directly over hardware as is traditionally done over the past decades. While mature VM-based parallel systems now offer new, compelling benefits such as serviceability, dynamic reconfigurability and overall cost effectiveness, the runtime performance of parallel applications can be significantly affected. In particular, most VM-based platforms are optimized for general workloads, but PDES execution exhibits unique dynamics significantly different from other workloads. Here we first present results frommore » experiments that highlight the gross deterioration of the runtime performance of VM-based PDES simulations when executed using traditional VM schedulers, quantitatively showing the bad scaling properties of the scheduler as the number of VMs is increased. The mismatch is fundamental in nature in the sense that any fairness-based VM scheduler implementation would exhibit this mismatch with PDES runs. We also present a new scheduler optimized specifically for PDES applications, and describe its design and implementation. Experimental results obtained from running PDES benchmarks (PHOLD and vehicular traffic simulations) over VMs show over an order of magnitude improvement in the run time of the PDES-optimized scheduler relative to the regular VM scheduler, with over 20 reduction in run time of simulations using up to 64 VMs. The observations and results are timely in the context of emerging systems such as cloud platforms and VM-based high performance computing installations, highlighting to the community the need for PDES-specific support, and the feasibility of significantly reducing the runtime overhead for scalable PDES on VM platforms.« less
An annealed chaotic maximum neural network for bipartite subgraph problem.
Wang, Jiahai; Tang, Zheng; Wang, Ronglong
2004-04-01
In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.
Earth's field NMR; a surface moisture detector?
NASA Astrophysics Data System (ADS)
Fukushima, Eiichi; Altobelli, Stephen; McDowell, Andrew; Zhang, Tongsheng
2012-10-01
Earth's field NMR (EFNMR), being free of magnets, would be an ideal teaching medium as well as a mobile NMR technique except for its weak S/N. The common EFNMR apparatus uses a powerful prepolarization field to enhance the spin magnetization before the experiment. We introduce a coil design geared to larger but manageable samples with sufficient sensitivity without prepolarization to move EFNMR closer to routine use and to provide an inexpensive teaching tool. Our coil consists of parallel wires spread out on a plywood to form a current sheet with the current return wires separated so they will not influence the main part of the coil assembly. The sensitive region is a relatively thin region parallel to the coil and close to it. A single turn of the coil is wound to be topologically equivalent to a figure-8. The two crossing segments in the center of a figure-8 form two of the parallel wires of the flat coil. Thus, a two-turn figure-8 has four crossing wires so its topologically equivalent coil will have four parallel wires with currents in phase. Together with the excellent sensitivity, this coil offers outstanding interference rejection because of the figure-8 geometry. An example of such a coil has 328 parallel wires covering a ˜1 meter square plywood which yields a good NMR signal from 26 liters of water spread out roughly over the area of the coil in less than one minute in a nearby park.
Jagged Tiling for Intra-tile Parallelism and Fine-Grain Multithreading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Sunil; Manzano Franco, Joseph B.; Marquez, Andres
In this paper, we have developed a novel methodology that takes into consideration multithreaded many-core designs to better utilize memory/processing resources and improve memory residence on tileable applications. It takes advantage of polyhedral analysis and transformation in the form of PLUTO, combined with a highly optimized finegrain tile runtime to exploit parallelism at all levels. The main contributions of this paper include the introduction of multi-hierarchical tiling techniques that increases intra tile parallelism; and a data-flow inspired runtime library that allows the expression of parallel tiles with an efficient synchronization registry. Our current implementation shows performance improvements on an Intelmore » Xeon Phi board up to 32.25% against instances produced by state-of-the-art compiler frameworks for selected stencil applications.« less
NASA Technical Reports Server (NTRS)
Baxter, G. I.
1976-01-01
Contoured-stiffened 63 by 337 inch 2124 aluminum alloy panels are machined in-the-flat to make integral, tapered T-capped stringers, parallel with longitudinal centerline. Aging fixture, which includes net contour formers made from lofted contour templates, has eggcrate-like structure for use in forming and checking panels.
Augmenting The HST Pure Parallel Observations
NASA Astrophysics Data System (ADS)
Patterson, Alan; Soutchkova, G.; Workman, W.
2012-05-01
Pure Parallel (PP) programs, designated GO/PAR, are a subgroup of General Observer (GO) programs. PP execute simultaneously with prime GO observations to which they are "attached". The PP observations can be performed with ACS/WFC, WFC3/UVIS or WFC3/IR and can be attached only to GO visits in which the instruments are either COS or STIS. The current HST Parallel Observation Processing System (POPS) was introduced after the Servicing Mission 4. It increased the HST productivity by 10% in terms of the utilization of HST prime orbits and was highly appreciated by the HST observers, allowing them to design efficient, multi-orbit survey projects for collecting large amounts of data on identifiable targets. The results of the WFC3 Infrared Spectroscopic Parallel Survey (WISP), Hubble Infrared Pure Parallel Imaging Extragalactic Survey (HIPPIES), and The Brightest-of-Reionizing Galaxies Pure Parallel Survey (BoRG) exemplify this benefit. In Cycle 19, however, the full advantage of GO/PARs came under risk. Whereas each of the previous cycles provided over one million seconds of exposure time for PP, in Cycle 19 that number reduced to 680,000 seconds. This dramatic decline occurred because of fundamental changes in the construction of COS prime observations. To preserve the science output of PP, the PP Working Group was tasked to find a way to recover the lost time and maximize the total time available for PP observing. The solution was to expand the definition of a PP opportunity to allow PP exposures to span one or more primary exposure readouts. So starting in HST Cycle 20, PP opportunities will no longer be limited to GO visits with a single uninterrupted exposure in an orbit. The resulting enhancements in HST Cycle 20 to the PP opportunity identification and matching process are expected to restore the PP time to previously achieved and possibly even greater levels.
Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph
2011-02-10
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.
Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C.; Dehio, Christoph
2011-01-01
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment. PMID:21347280
Direct drive digital servo press with high parallel control
NASA Astrophysics Data System (ADS)
Murata, Chikara; Yabe, Jun; Endou, Junichi; Hasegawa, Kiyoshi
2013-12-01
Direct drive digital servo press has been developed as the university-industry joint research and development since 1998. On the basis of this result, 4-axes direct drive digital servo press has been developed and in the market on April of 2002. This servo press is composed of 1 slide supported by 4 ball screws and each axis has linearscale measuring the position of each axis with high accuracy less than μm order level. Each axis is controlled independently by servo motor and feedback system. This system can keep high level parallelism and high accuracy even with high eccentric load. Furthermore the 'full stroke full power' is obtained by using ball screws. Using these features, new various types of press forming and stamping have been obtained by development and production. The new stamping and forming methods are introduced and 'manufacturing' need strategy of press forming with high added value and also the future direction of press forming are also introduced.
No more CKY two-forms in the NHEK
NASA Astrophysics Data System (ADS)
Mitsuka, Yoshihiro; Moutsopoulos, George
2012-02-01
We show that in the near-horizon limit of a Kerr-NUT-AdS black hole, the space of conformal Killing-Yano two-forms does not enhance and remains of dimension 2. The same holds for an analogous polar limit in the case of extremal NUT charge. We also derive the conformal Killing-Yano p-form equation for any background in an arbitrary dimension in the form of parallel transport.
A sampling and classification item selection approach with content balancing.
Chen, Pei-Hua
2015-03-01
Existing automated test assembly methods typically employ constrained combinatorial optimization. Constructing forms sequentially based on an optimization approach usually results in unparallel forms and requires heuristic modifications. Methods based on a random search approach have the major advantage of producing parallel forms sequentially without further adjustment. This study incorporated a flexible content-balancing element into the statistical perspective item selection method of the cell-only method (Chen et al. in Educational and Psychological Measurement, 72(6), 933-953, 2012). The new method was compared with a sequential interitem distance weighted deviation model (IID WDM) (Swanson & Stocking in Applied Psychological Measurement, 17(2), 151-166, 1993), a simultaneous IID WDM, and a big-shadow-test mixed integer programming (BST MIP) method to construct multiple parallel forms based on matching a reference form item-by-item. The results showed that the cell-only method with content balancing and the sequential and simultaneous versions of IID WDM yielded results comparable to those obtained using the BST MIP method. The cell-only method with content balancing is computationally less intensive than the sequential and simultaneous versions of IID WDM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Brian W.; Hemmert, K. Scott; Underwood, Keith Douglas
Achieving the next three orders of magnitude performance increase to move from petascale to exascale computing will require a significant advancements in several fundamental areas. Recent studies have outlined many of the challenges in hardware and software that will be needed. In this paper, we examine these challenges with respect to high-performance networking. We describe the repercussions of anticipated changes to computing and networking hardware and discuss the impact that alternative parallel programming models will have on the network software stack. We also present some ideas on possible approaches that address some of these challenges.
1948-01-01
and pulsating jet engines: to study (1) measurements of temperature dependence of conductivity and heat capacity of steels and other materials... steel rod which was rapidly heated by current from a storage battery. Four six-volt storage batteries in series-parallel arrangement were...shorted through a steel (AISI-C 1040) rod 3 mm. in diameter and 20 cm. long. Heproducible rates of rise of temperature as high as 1000 C/sec. were
NASA Astrophysics Data System (ADS)
Bogdanov, Alexander; Khramushin, Vasily
2016-02-01
The architecture of a digital computing system determines the technical foundation of a unified mathematical language for exact arithmetic-logical description of phenomena and laws of continuum mechanics for applications in fluid mechanics and theoretical physics. The deep parallelization of the computing processes results in functional programming at a new technological level, providing traceability of the computing processes with automatic application of multiscale hybrid circuits and adaptive mathematical models for the true reproduction of the fundamental laws of physics and continuum mechanics.
Numerical modeling of exciton-polariton Bose-Einstein condensate in a microcavity
NASA Astrophysics Data System (ADS)
Voronych, Oksana; Buraczewski, Adam; Matuszewski, Michał; Stobińska, Magdalena
2017-06-01
A novel, optimized numerical method of modeling of an exciton-polariton superfluid in a semiconductor microcavity was proposed. Exciton-polaritons are spin-carrying quasiparticles formed from photons strongly coupled to excitons. They possess unique properties, interesting from the point of view of fundamental research as well as numerous potential applications. However, their numerical modeling is challenging due to the structure of nonlinear differential equations describing their evolution. In this paper, we propose to solve the equations with a modified Runge-Kutta method of 4th order, further optimized for efficient computations. The algorithms were implemented in form of C++ programs fitted for parallel environments and utilizing vector instructions. The programs form the EPCGP suite which has been used for theoretical investigation of exciton-polaritons. Catalogue identifier: AFBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD-3 No. of lines in distributed program, including test data, etc.: 2157 No. of bytes in distributed program, including test data, etc.: 498994 Distribution format: tar.gz Programming language: C++ with OpenMP extensions (main numerical program), Python (helper scripts). Computer: Modern PC (tested on AMD and Intel processors), HP BL2x220. Operating system: Unix/Linux and Windows. Has the code been vectorized or parallelized?: Yes (OpenMP) RAM: 200 MB for single run Classification: 7, 7.7. Nature of problem: An exciton-polariton superfluid is a novel, interesting physical system allowing investigation of high temperature Bose-Einstein condensation of exciton-polaritons-quasiparticles carrying spin. They have brought a lot of attention due to their unique properties and potential applications in polariton-based optoelectronic integrated circuits. This is an out-of-equilibrium quantum system confined within a semiconductor microcavity. It is described by a set of nonlinear differential equations similar in spirit to the Gross-Pitaevskii (GP) equation, but their unique properties do not allow standard GP solving frameworks to be utilized. Finding an accurate and efficient numerical algorithm as well as development of optimized numerical software is necessary for effective theoretical investigation of exciton-polaritons. Solution method: A Runge-Kutta method of 4th order was employed to solve the set of differential equations describing exciton-polariton superfluids. The method was fitted for the exciton-polariton equations and further optimized. The C++ programs utilize OpenMP extensions and vector operations in order to fully utilize the computer hardware. Running time: 6h for 100 ps evolution, depending on the values of parameters
Generation mechanisms of fundamental rogue wave spatial-temporal structure.
Ling, Liming; Zhao, Li-Chen; Yang, Zhan-Ying; Guo, Boling
2017-08-01
We discuss the generation mechanism of fundamental rogue wave structures in N-component coupled systems, based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our analysis discloses that the pattern of a fundamental rogue wave is determined by the evolution energy and growth rate of the resonant perturbation that is responsible for forming the rogue wave. This finding allows one to predict the rogue wave pattern without the need to solve the N-component coupled nonlinear Schrödinger equation. Furthermore, our results show that N-component coupled nonlinear Schrödinger systems may possess N different fundamental rogue wave patterns at most. These results can be extended to evaluate the type and number of fundamental rogue wave structure in other coupled nonlinear systems.
NASA Technical Reports Server (NTRS)
Voellmer, George
1992-01-01
Compliant element for robot wrist accepts small displacements in one direction only (to first approximation). Three such elements combined to obtain translational compliance along three orthogonal directions, without rotational compliance along any of them. Element is double-blade flexure joint in which two sheets of spring steel attached between opposing blocks, forming rectangle. Blocks moved parallel to each other in one direction only. Sheets act as double cantilever beams deforming in S-shape, keeping blocks parallel.
NASA Technical Reports Server (NTRS)
Eliason, J. T. (Inventor)
1976-01-01
A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.
Spontaneous Hot Flow Anomalies at Quasi-Parallel Shocks: 2. Hybrid Simulations
NASA Technical Reports Server (NTRS)
Omidi, N.; Zhang, H.; Sibeck, D.; Turner, D.
2013-01-01
Motivated by recent THEMIS observations, this paper uses 2.5-D electromagnetic hybrid simulations to investigate the formation of Spontaneous Hot Flow Anomalies (SHFA) upstream of quasi-parallel bow shocks during steady solar wind conditions and in the absence of discontinuities. The results show the formation of a large number of structures along and upstream of the quasi-parallel bow shock. Their outer edges exhibit density and magnetic field enhancements, while their cores exhibit drops in density, magnetic field, solar wind velocity and enhancements in ion temperature. Using virtual spacecraft in the simulation, we show that the signatures of these structures in the time series data are very similar to those of SHFAs seen in THEMIS data and conclude that they correspond to SHFAs. Examination of the simulation data shows that SHFAs form as the result of foreshock cavitons interacting with the bow shock. Foreshock cavitons in turn form due to the nonlinear evolution of ULF waves generated by the interaction of the solar wind with the backstreaming ions. Because foreshock cavitons are an inherent part of the shock dissipation process, the formation of SHFAs is also an inherent part of the dissipation process leading to a highly non-uniform plasma in the quasi-parallel magnetosheath including large scale density and magnetic field cavities.
Zhao, Dan; Dong, Xiongwei; Jiang, Nan; Zhang, Dan; Liu, Changlin
2014-01-01
G-quadruplexes (G4) have been found increasing potential in applications, such as molecular therapeutics, diagnostics and sensing. Both Thioflavin T (ThT) and N-Methyl mesoporphyrin IX (NMM) become fluorescent in the presence of most G4, but thrombin-binding aptamer (TBA) has been reported as the only exception of the known G4-forming oligonucleotides when ThT is used as a high-throughput assay to identify G4 formation. Here, we investigate the interactions between ThT/NMM and TBA through fluorescence spectroscopy, circular dichroism and molecular docking simulation experiments in the absence or presence of cations. The results display that a large ThT fluorescence enhancement can be observed only when ThT bind to the parallel TBA quadruplex, which is induced to form by ThT in the absence of cations. On the other hand, great promotion in NMM fluorescence can be obtained only in the presence of anti-parallel TBA quadruplex, which is induced to fold by K+ or thrombin. The highly selective recognition of TBA quadruplex with different topologies by the two probes may be useful to investigate the interactions between conformation-specific G4 and the associated proteins, and could also be applied in label-free fluorescent sensing of other biomolecules. PMID:25245945
A Variational Method in Out-of-Equilibrium Physical Systems
Pinheiro, Mario J.
2013-01-01
We propose a new variational principle for out-of-equilibrium dynamic systems that are fundamentally based on the method of Lagrange multipliers applied to the total entropy of an ensemble of particles. However, we use the fundamental equation of thermodynamics on differential forms, considering U and S as 0-forms. We obtain a set of two first order differential equations that reveal the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. From this approach, a topological torsion current emerges of the form , where Aj and ωk denote the components of the vector potential (gravitational and/or electromagnetic) and where ω denotes the angular velocity of the accelerated frame. We derive a special form of the Umov-Poynting theorem for rotating gravito-electromagnetic systems. The variational method is then applied to clarify the working mechanism of particular devices. PMID:24316718
Correlation techniques to determine model form in robust nonlinear system realization/identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1991-01-01
The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
Neutron Scattering Studies of Vortex Matter in Type-II Superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xinsheng Ling
2012-02-02
The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phasemore » transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases and phase transitions in condensed matter systems with random pinning. The broader impact of the program includes the training of future generation of neutron scientists, and further development of neutron scattering and complementary techniques for studies of superconducting materials. The graduate and undergraduate students participating in this project will learn the state-of-the-art neutron scattering techniques, acquire a wide range of materials research experiences, and participate in the frontier research of superconductivity. This should best prepare the students for future careers in academia, industry, or government.« less
García-Calvo, Raúl; Guisado, JL; Diaz-del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco
2018-01-01
Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs). PMID:29662297
García-Calvo, Raúl; Guisado, J L; Diaz-Del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco
2018-01-01
Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes-master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)-is carried out for this problem. Several procedures that optimize the use of the GPU's resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs).
Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Liu, Shu-Guang; Nichols, Erin; Haga, Jim; Maddox, Brian; Bilderback, Chris; Feller, Mark; Homer, George
2001-01-01
The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost, personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting information science research into parallel computing systems and applications.
Re-forming supercritical quasi-parallel shocks. I - One- and two-dimensional simulations
NASA Technical Reports Server (NTRS)
Thomas, V. A.; Winske, D.; Omidi, N.
1990-01-01
The process of reforming supercritical quasi-parallel shocks is investigated using one-dimensional and two-dimensional hybrid (particle ion, massless fluid electron) simulations both of shocks and of simpler two-stream interactions. It is found that the supercritical quasi-parallel shock is not steady. Instread of a well-defined shock ramp between upstream and downstream states that remains at a fixed position in the flow, the ramp periodically steepens, broadens, and then reforms upstream of its former position. It is concluded that the wave generation process is localized at the shock ramp and that the reformation process proceeds in the absence of upstream perturbations intersecting the shock.
Van Blarigan, Peter; Haupt, David L.
1982-01-01
A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.
Enviroplan—a summary methodology for comprehensive environmental planning and design
Robert Allen Jr.; George Nez; Fred Nicholson; Larry Sutphin
1979-01-01
This paper will discuss a comprehensive environmental assessment methodology that includes a numerical method for visual management and analysis. This methodology employs resource and human activity units as a means to produce a visual form unit which is the fundamental unit of the perceptual environment. The resource unit is based on the ecosystem as the fundamental...
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath
NASA Astrophysics Data System (ADS)
Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.
Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun
2015-11-01
Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.
Jeltsch, Albert
2018-01-01
Genome targeting of restriction enzymes and DNA methyltransferases has many important applications including genome and epigenome editing. 15–20 years ago, my group was involved in the development of approaches for programmable genome targeting, aiming to connect enzymes with an oligodeoxynucleotide (ODN), which could form a sequence-specific triple helix at the genomic target site. Importantly, the target site of such enzyme-ODN conjugate could be varied simply by altering the ODN sequence promising great applicative values. However, this approach was facing many problems including the preparation and purification of the enzyme-ODN conjugates, their efficient delivery into cells, slow kinetics of triple helix formation and the requirement of a poly-purine target site sequence. Hence, for several years genome and epigenome editing approaches mainly were based on Zinc fingers and TAL proteins as targeting devices. More recently, CRISPR/Cas systems were discovered, which use a bound RNA for genome targeting that forms an RNA/DNA duplex with one DNA strand of the target site. These systems combine all potential advantages of the once imagined enzyme-ODN conjugates and avoid all main disadvantageous. Consequently, the application of CRISPR/Cas in genome and epigenome editing has exploded in recent years. We can draw two important conclusions from this example of research history. First, evolution still is the better bioengineer than humans and, whenever tested in parallel, natural solutions outcompete engineered ones. Second, CRISPR/Cas system were discovered in pure, curiosity driven, basic research, highlighting that it is basic, bottom-up research paving the way for fundamental innovation. PMID:29434619
A New Kinematic Model for Polymodal Faulting: Implications for Fault Connectivity
NASA Astrophysics Data System (ADS)
Healy, D.; Rizzo, R. E.
2015-12-01
Conjugate, or bimodal, fault patterns dominate the geological literature on shear failure. Based on Anderson's (1905) application of the Mohr-Coulomb failure criterion, these patterns have been interpreted from all tectonic regimes, including normal, strike-slip and thrust (reverse) faulting. However, a fundamental limitation of the Mohr-Coulomb failure criterion - and others that assume faults form parallel to the intermediate principal stress - is that only plane strain can result from slip on the conjugate faults. However, deformation in the Earth is widely accepted as being three-dimensional, with truly triaxial stresses and strains. Polymodal faulting, with three or more sets of faults forming and slipping simultaneously, can generate three-dimensional strains from truly triaxial stresses. Laboratory experiments and outcrop studies have verified the occurrence of the polymodal fault patterns in nature. The connectivity of polymodal fault networks differs significantly from conjugate fault networks, and this presents challenges to our understanding of faulting and an opportunity to improve our understanding of seismic hazards and fluid flow. Polymodal fault patterns will, in general, have more connected nodes in 2D (and more branch lines in 3D) than comparable conjugate (bimodal) patterns. The anisotropy of permeability is therefore expected to be very different in rocks with polymodal fault patterns in comparison to conjugate fault patterns, and this has implications for the development of hydrocarbon reservoirs, the genesis of ore deposits and the management of aquifers. In this contribution, I assess the published evidence and models for polymodal faulting before presenting a novel kinematic model for general triaxial strain in the brittle field.
Powley, Terry L.; Hudson, Cherie N.; McAdams, Jennifer L.; Baronowsky, Elizabeth A.; Phillips, Robert J.
2016-01-01
The fundamental roles that the stomach plays in ingestion and digestion notwithstanding, little morphological information is available on vagal intramuscular arrays (IMAs), the afferents that innervate gastric smooth muscle. To characterize IMAs better, rats were given injections of dextran biotin in the nodose ganglia, and, after tracer transport, stomach whole mounts were collected. Specimens were processed for avidin–biotin permanent labeling, and subsets of the whole mounts were immunohistochemically processed for c-Kit or stained with cuprolinic blue. IMAs (n = 184) were digitized for morphometry and mapping. Throughout the gastric muscle wall, IMAs possessed common phenotypic features. Each IMA was generated by a parent neurite arborizing extensively, forming an array of multiple (mean = 212) branches averaging 193 μm in length. These branches paralleled, and coursed in apposition with, bundles of muscle fibers and interstitial cells of Cajal. Individual arrays averaged 4.3 mm in length and innervated volumes of muscle sheet, presumptive receptive fields, averaging 0.1 mm3. Evaluated by region and by muscle sheet, IMAs displayed architectural adaptations to the different loci. A subset (32%) of circular muscle IMAs issued specialized polymorphic collaterals to myenteric ganglia, and a subset (41%) of antral longitudinal muscle IMAs formed specialized net endings associated with the serosal boundary. IMAs were concentrated in regional patterns that correlated with the unique biomechanical adaptations of the stomach, specifically proximal stomach reservoir functions and antral emptying operations. Overall, the structural adaptations and distributions of the IMAs were consonant with the hypothesized stretch receptor roles of the afferents. PMID:26355387
Real science at the petascale.
Saksena, Radhika S; Boghosian, Bruce; Fazendeiro, Luis; Kenway, Owain A; Manos, Steven; Mazzeo, Marco D; Sadiq, S Kashif; Suter, James L; Wright, David; Coveney, Peter V
2009-06-28
We describe computational science research that uses petascale resources to achieve scientific results at unprecedented scales and resolution. The applications span a wide range of domains, from investigation of fundamental problems in turbulence through computational materials science research to biomedical applications at the forefront of HIV/AIDS research and cerebrovascular haemodynamics. This work was mainly performed on the US TeraGrid 'petascale' resource, Ranger, at Texas Advanced Computing Center, in the first half of 2008 when it was the largest computing system in the world available for open scientific research. We have sought to use this petascale supercomputer optimally across application domains and scales, exploiting the excellent parallel scaling performance found on up to at least 32 768 cores for certain of our codes in the so-called 'capability computing' category as well as high-throughput intermediate-scale jobs for ensemble simulations in the 32-512 core range. Furthermore, this activity provides evidence that conventional parallel programming with MPI should be successful at the petascale in the short to medium term. We also report on the parallel performance of some of our codes on up to 65 636 cores on the IBM Blue Gene/P system at the Argonne Leadership Computing Facility, which has recently been named the fastest supercomputer in the world for open science.
NASA Astrophysics Data System (ADS)
Ozeren, M. S.; Sengor, A. M. C.; Acar, D.; Ülgen, S. C.; Onsel, I. E.
2014-12-01
Valles Marineris is the most significant near-linear depression on Mars. It is some 4000 km long, up to about 200 km wide and some 7 km deep. Although its margins look parallel at first sight, the entire structure has a long spindle shape with significant enlargement in its middle (Melas Chasma) caused by cuspate slope retreat mechanisms. Farther to its north is Hebes Chasma which is an entirely closed depression with a more pronounced spindle shape. Tithonium Chasma is a parallel, but much narrower depression to its northeast. All these chasmae have axes parallel with one another and such structures occur nowhere else on Mars. A scabland surface exists to the east of the Valles Marineris and the causative water mass seems to have issued from it. The great resemblance of these chasmae on mars to poljes in the karstic regions on earth have led us to assume that they owed their existence to dissolution of rock layers underlying them. We assumed that the dissolving layer consisted of water ice forming substantial layers, in fact entirely frozen seas of several km depth. We have simulated this geometry by using bentonite and flour layers (in different experiments) overlying layers of ice in which a resistant coil was used to simulate a dyke. We used different thicknesses of bentonite and flour overlying ice layers again of various thicknesses. The flour seems to simulate the Martian crust better because on Mars, g is only about 3/8ths of its value on Earth, so (for equal crustal density) the depth to which the cohesion term C remains important in the Mohr-Coulomb shear failure criterion is about 8/3 times greater. As examples we show two of those experiments in which both the rock analogue and ice layers were of 1.5 cm. thick. Perfect analogues of the Valles Marineris formed above the dyke analogue thermal source complete with the near-linear structure, overall flat spindle shape, cuspate margins, a central ridge, parallel side faults, parallel depressions resembling the Tithonium Chasma. When water was allowed to drain from the beginning, closed depressions formed that have an amazing resemblance to Hebes chasma. We postulate that the entire system of chasmae here discussed formed atop a major dyke swarm some 4000 km length, not dissimilar to the 3500 km long Mesoproterozoic (Ectasian) dyke swarm disrupting the Canadian Shield.
14 CFR 25.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first... two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the... axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
14 CFR 27.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first... two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
Molecular structures of amyloid and prion fibrils: consensus versus controversy.
Tycko, Robert; Wickner, Reed B
2013-07-16
Many peptides and proteins self-assemble into amyloid fibrils. Examples include mammalian and fungal prion proteins, polypeptides associated with human amyloid diseases, and proteins that may have biologically functional amyloid states. To understand the propensity for polypeptides to form amyloid fibrils and to facilitate rational design of amyloid inhibitors and imaging agents, it is necessary to elucidate the molecular structures of these fibrils. Although fibril structures were largely mysterious 15 years ago, a considerable body of reliable structural information about amyloid fibril structures now exists, with essential contributions from solid state nuclear magnetic resonance (NMR) measurements. This Account reviews results from our laboratories and discusses several structural issues that have been controversial. In many cases, the amino acid sequences of amyloid fibrils do not uniquely determine their molecular structures. Self-propagating, molecular-level polymorphism complicates the structure determination problem and can lead to apparent disagreements between results from different laboratories, particularly when different laboratories study different polymorphs. For 40-residue β-amyloid (Aβ₁₋₄₀) fibrils associated with Alzheimer's disease, we have developed detailed structural models from solid state NMR and electron microscopy data for two polymorphs. These polymorphs have similar peptide conformations, identical in-register parallel β-sheet organizations, but different overall symmetry. Other polymorphs have also been partially characterized by solid state NMR and appear to have similar structures. In contrast, cryo-electron microscopy studies that use significantly different fibril growth conditions have identified structures that appear (at low resolution) to be different from those examined by solid state NMR. Based on solid state NMR and electron paramagnetic resonance (EPR) measurements, the in-register parallel β-sheet organization found in β-amyloid fibrils also occurs in many other fibril-forming systems. We attribute this common structural motif to the stabilization of amyloid structures by intermolecular interactions among like amino acids, including hydrophobic interactions and polar zippers. Surprisingly, we have recently identified and characterized antiparallel β-sheets in certain fibrils that are formed by the D23N mutant of Aβ₁₋₄₀, a mutant that is associated with early-onset, familial neurodegenerative disease. Antiparallel D23N-Aβ₁₋₄₀ fibrils are metastable with respect to parallel structures and, therefore, represent an off-pathway intermediate in the amyloid fibril formation process. Other methods have recently produced additional evidence for antiparallel β-sheets in other amyloid-formation intermediates. As an alternative to simple parallel and antiparallel β-sheet structures, researchers have proposed β-helical structural models for some fibrils, especially those formed by mammalian and fungal prion proteins. Solid state NMR and EPR data show that fibrils formed in vitro by recombinant PrP have in-register parallel β-sheet structures. However, the structure of infectious PrP aggregates is not yet known. The fungal HET-s prion protein has been shown to contain a β-helical structure. However, all yeast prions studied by solid state NMR (Sup35p, Ure2p, and Rnq1p) have in-register parallel β-sheet structures, with their Gln- and Asn-rich N-terminal segments forming the fibril core.
Fast parallel molecular algorithms for DNA-based computation: factoring integers.
Chang, Weng-Long; Guo, Minyi; Ho, Michael Shan-Hui
2005-06-01
The RSA public-key cryptosystem is an algorithm that converts input data to an unrecognizable encryption and converts the unrecognizable data back into its original decryption form. The security of the RSA public-key cryptosystem is based on the difficulty of factoring the product of two large prime numbers. This paper demonstrates to factor the product of two large prime numbers, and is a breakthrough in basic biological operations using a molecular computer. In order to achieve this, we propose three DNA-based algorithms for parallel subtractor, parallel comparator, and parallel modular arithmetic that formally verify our designed molecular solutions for factoring the product of two large prime numbers. Furthermore, this work indicates that the cryptosystems using public-key are perhaps insecure and also presents clear evidence of the ability of molecular computing to perform complicated mathematical operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David H.
The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, althoughmore » the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage over vector supercomputers, and, if so, which of the parallel offerings would be most useful in real-world scientific computation. In part to draw attention to some of the performance reporting abuses prevalent at the time, the present author wrote a humorous essay 'Twelve Ways to Fool the Masses,' which described in a light-hearted way a number of the questionable ways in which both vendor marketing people and scientists were inflating and distorting their performance results. All of this underscored the need for an objective and scientifically defensible measure to compare performance on these systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maki, Arthur G.; Price, Joseph E.; Harzan, J.
he high-resolution infrared absorption spectrum of spiropentane (C5H8) has been measured from 200 to 4000 cm 1, and a detailed analysis is presented for eight bands in the region from 700 to 2200 cm 1. Two fundamental perpendicular bands were analyzed, m22 and m24 near 1050 and 780 cm 1, respectively, along with two fundamental parallel bands, m14 and m16 near 1540 and 990 cm1, respectively. Two other fundamentals, m17 and m23, are seen as intense overlapping bands near 880 cm*1 and are Coriolis-coupled, producing a complex mixture in which only P-branch transitions could be tentatively assigned for m17. Inmore » addition, three binary combination bands were fit at about 1570, 2082, and 2098 cm*1 which are assigned as either 2m24 or m5 + m16 in the first case, m4 + m22 in the second case, and 2m22 in the latter case. The two l-type resonance constants, q+ and q*, were determined for each of the two perpendicular fundamentals m22 and m24. Those two constants were also responsible for splittings observed in the K = 3 levels of m24. For the ground state the order of the split K = 2 B1/B2 levels has been reversed from that reported previously, based on the measurements and assignments for the m24 band. Rovibrational parameters deduced from the analyses are compared with those obtained from density functional Gaussian calculations at the anharmonic level.« less
Probing soil C metabolism in response to temperature: results from experiments and modeling
NASA Astrophysics Data System (ADS)
Dijkstra, P.; Dalder, J.; Blankinship, J.; Selmants, P. C.; Schwartz, E.; Koch, G. W.; Hart, S.; Hungate, B. A.
2010-12-01
C use efficiency (CUE) is one of the least understood aspects of soil C cycling, has a very large effect on soil respiration and C sequestration, and decreases with elevated temperature. CUE is directly related to substrate partitioning over energy production and biosynthesis. The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We have developed a new stable isotope approach using position-specific 13C-labeled metabolic tracers to measure these fundamental metabolic processes in intact soil communities (1). We use this new approach, combined with models of soil metabolic flux patterns, to analyze the response of microbial energy production, biosynthesis, and CUE to temperature. The method consists of adding small but precise amounts of position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through various metabolic pathways. A simplified metabolic model consisting of 23 reactions is iteratively solved using results of the metabolic tracer experiments and information on microbial precursor demand under different temperatures. This new method enables direct study of fundamental aspects of microbial energy production, C use efficiency, and soil organic matter formation in response to temperature. (1) Dijkstra P, Blankinship JC, Selmants PC, Hart SC, Koch GW, Schwarz E and Hungate BA. Probing metabolic flux patterns of soil microbial communities using parallel position-specific tracer labeling. Soil Biology and Biochemistry (accepted)
Buenrostro, Jason D.; Chircus, Lauren M.; Araya, Carlos L.; Layton, Curtis J.; Chang, Howard Y.; Snyder, Michael P.; Greenleaf, William J.
2015-01-01
RNA-protein interactions drive fundamental biological processes and are targets for molecular engineering, yet quantitative and comprehensive understanding of the sequence determinants of affinity remains limited. Here we repurpose a high-throughput sequencing instrument to quantitatively measure binding and dissociation of MS2 coat protein to >107 RNA targets generated on a flow-cell surface by in situ transcription and inter-molecular tethering of RNA to DNA. We decompose the binding energy contributions from primary and secondary RNA structure, finding that differences in affinity are often driven by sequence-specific changes in association rates. By analyzing the biophysical constraints and modeling mutational paths describing the molecular evolution of MS2 from low- to high-affinity hairpins, we quantify widespread molecular epistasis, and a long-hypothesized structure-dependent preference for G:U base pairs over C:A intermediates in evolutionary trajectories. Our results suggest that quantitative analysis of RNA on a massively parallel array (RNAMaP) relationships across molecular variants. PMID:24727714
Observation of the Chiral and Achiral Hexatic Phases of Self-assembled Micellar polymers
Pal, Antara; Kamal, Md. Arif; Raghunathan, V. A.
2016-01-01
We report the discovery of a thermodynamically stable line hexatic (N + 6) phase in a three-dimensional (3D) system made up of self-assembled polymer-like micelles of amphiphilic molecules. The experimentally observed phase transition sequence nematic (N) N + 6 two-dimensional hexagonal (2D-H) is in good agreement with the theoretical predictions. Further, the present study also brings to light the effect of chirality on the N + 6 phase. In the chiral N + 6 phase the bond-orientational order within each “polymer” bundle is found to be twisted about an axis parallel to the average polymer direction. This structure is consistent with the theoretically envisaged Moiré state, thereby providing the first experimental demonstration of the Moiré structure. In addition to confirming the predictions of fundamental theories of two-dimensional melting, these results are relevant in a variety of situations in chemistry, physics and biology, where parallel packing of polymer-like objects are encountered. PMID:27577927
Efficient Delaunay Tessellation through K-D Tree Decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Peterka, Tom
Delaunay tessellations are fundamental data structures in computational geometry. They are important in data analysis, where they can represent the geometry of a point set or approximate its density. The algorithms for computing these tessellations at scale perform poorly when the input data is unbalanced. We investigate the use of k-d trees to evenly distribute points among processes and compare two strategies for picking split points between domain regions. Because resulting point distributions no longer satisfy the assumptions of existing parallel Delaunay algorithms, we develop a new parallel algorithm that adapts to its input and prove its correctness. We evaluatemore » the new algorithm using two late-stage cosmology datasets. The new running times are up to 50 times faster using k-d tree compared with regular grid decomposition. Moreover, in the unbalanced data sets, decomposing the domain into a k-d tree is up to five times faster than decomposing it into a regular grid.« less
Electron parallel closures for various ion charge numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jeong-Young, E-mail: j.ji@usu.edu; Held, Eric D.; Kim, Sang-Kyeun
2016-03-15
Electron parallel closures for the ion charge number Z = 1 [J.-Y. Ji and E. D. Held, Phys. Plasmas 21, 122116 (2014)] are extended for 1 ≤ Z ≤ 10. Parameters are computed for various Z with the same form of the Z = 1 kernels adopted. The parameters are smoothly varying in Z and hence can be used to interpolate parameters and closures for noninteger, effective ion charge numbers.
NASA Astrophysics Data System (ADS)
Abdollahi, Azita; Shams, Mehrzad; Abdollahi, Anita
2018-01-01
One of methods available to increase the rate of heat transfer in channels with parallel plates is making grooves in them. But, the fundamental problem of this method is the formation of stagnation zone in the grooves and as a result formation a zone with low energy transfer. In this paper, the effect of placing curved deflectors (geometries with elliptical forms) in channel on thermal and hydraulic characteristic of the fluid flow- with the aim of directing of the flow into the grooves and as a result increasing the rate of heat transfer in this zone- are investigated and heat transfer coefficient and pressure drop are calculated for different values of Reynolds number and geometrical parameters of the deflector (its small and large radiuses). The results show that the presence of the deflector in the channel significantly increases the heat transfer rate compare to the channel without deflector. Of course, it should be noted that this work also increases the pressure drop. So, finally in order to determine configurations of the deflector causing minimum pressure drop, maximum Nusselt number or a balance between them, optimization algorithm consisting of artificial neural network and multi-objective genetic algorithm was utilized to calculate the optimal values of these parameters.
Effect of anode material on the breakdown in low-pressure helium gas
NASA Astrophysics Data System (ADS)
Demidov, V. I.; Adams, S. F.; Kudryavtsev, A. A.; Kurlyandskaya, I. P.; Miles, J. A.; Tolson, B. A.
2017-10-01
The electric breakdown of gases is one of the fundamental phenomena of gas discharge physics. It has been studied for a long time but still attracts incessant interest of researchers. Besides the interesting physics, breakdown is important for many applications including development of reliable electric insulation in electric grids and the study of different aspects of gas discharge physics. In this work an experimental study of the electric breakdown in helium gas for the plane-parallel electrode configuration has been conducted using a copper cathode and a variety of anode materials: copper, aluminum, stainless steel, graphite, platinum-plated aluminum and gold-plated aluminum. According to the Paschen law for studied electrode configuration, the breakdown voltage is a function of the product of gas pressure and inter-electrode gap. The breakdown processes on the left, lower pressure side of the Paschen curve have been the subject of this investigation. For those pressures, the Paschen curve may become multi-valued, where any given pressure corresponds to three breakdown voltage values. It was experimentally demonstrated that the form of the Paschen curve might strongly depend on the material of the anode and the cleanness of the anode surface. A possible explanation for this phenomenon is that electrons streaming from the cathode are reflected by the surface of the anode.
In Situ TEM Study of Interaction between Dislocations and a Single Nanotwin under Nanoindentation.
Wang, Bo; Zhang, Zhenyu; Cui, Junfeng; Jiang, Nan; Lyu, Jilei; Chen, Guoxin; Wang, Jia; Liu, Zhiduo; Yu, Jinhong; Lin, Chengte; Ye, Fei; Guo, Dongming
2017-09-06
Nanotwinned (nt) materials exhibit excellent mechanical properties, and have been attracting much more attention of late. Nevertheless, the fundamental mechanism of interaction between dislocations and a single nanotwin is not understood. In this study, in situ transmission electron microscopy (TEM) nanoindentation is performed, on a specimen of a nickel (Ni) alloy containing a single nanotwin of 89 nm in thickness. The specimen is prepared using focused ion beam (FIB) technique from an nt surface, which is formed by a novel approach under indentation using a developed diamond panel with tips array. The stiffness of the specimen is ten times that of the pristine counterparts during loading. The ultrahigh stiffness is attributed to the generation of nanotwins and the impediment of the single twin to the dislocations. Two peak loads are induced by the activation of a new slip system and the penetration of dislocations over the single nanotwin, respectively. One slip band is parallel to the single nanotwin, indicating the slip of dislocations along the nanotwin. In situ TEM observation of nanoindentation reveals a new insight for the interaction between dislocations and a single nanotwin. This paves the way for design and preparation of high-performance nt surfaces of Ni alloys used for aircraft engines, gas turbines, turbocharger components, ducts, and absorbers.
Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock
NASA Astrophysics Data System (ADS)
Desai, M. I.; Burch, J. L.; Fuselier, S. A.; Genestreti, K. J.; Torbert, R. B.; Ergun, R.; Russell, C.; Wei, H.; Phan, T.; Giles, B. L.; Chen, L. J.; Mauk, B.
2016-12-01
Collisionless shocks are a major producer of suprathermal and energetic particles throughout space and astrophysical plasma environments. Theoretical studies combined with in-situ observations during the space age have significantly advanced our understanding of how such shocks are formed, the manner in which they evolve and dissipate their energy, and the physical mechanisms by which they heat the local plasma and accelerate the energetic particles. Launched in March 2015, NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft separated between 10-40 km and equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. Serendipitously, during Phase 1a, the MMS mission also encountered and crossed the Earth's bow shock more than 300 times. In this paper, we combine and analyze the highest available time resolution MMS burst data during 140 bow shock crossings from October 2015 through December 31, 2015 to shed new light on key open questions regarding the formation, evolution, dissipation, and particle injection and energization at collisionless shocks. In particular, we compare and contrast the differences in shock dissipation and particle acceleration mechanisms at quasi-parallel and quasi-perpendicular shocks.
ELIPS: Toward a Sensor Fusion Processor on a Chip
NASA Technical Reports Server (NTRS)
Daud, Taher; Stoica, Adrian; Tyson, Thomas; Li, Wei-te; Fabunmi, James
1998-01-01
The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) processor is developed to seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor in compact low power VLSI. The first demonstration of the ELIPS concept targets interceptor functionality; other applications, mainly in robotics and autonomous systems are considered for the future. The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main primitives of an "intelligent" processor. Thus, in the same way classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog hardware. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy set preprocessor, a rule-based fuzzy system and a neural network) have been fabricated in analog VLSI hardware and demonstrated microsecond-processing times.
NASA Astrophysics Data System (ADS)
Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H.
2015-10-01
An electric field screen is a physical device used to exclude pest insects from greenhouses and warehouses to protect crop production and storage. The screen consists of iron insulated conductor wires (ICWs) arrayed in parallel and linked to each other, an electrostatic DC voltage generator used to supply a negative charge to the ICWs, and an earthed stainless net placed on one side of the ICW layer. The ICW was negatively charged to polarize the earthed net to create a positive charge on the ICW side surface, and an electric field formed between the opposite charges of the ICW and earthed net. The current study focused on the ability of the screen to repel insects reaching the screen net. This repulsion was a result of the insect's behaviour, i.e., the insects were deterred from entering the electric field of the screen. In fact, when the screen was negatively charged with the appropriate voltages, the insects placed their antennae inside the screen and then flew away without entering. Obviously, the insects recognized the electric field using their antennae and thereby avoided entering. Using a wide range of insects and spiders belonging to different taxonomic groups, we confirmed that the avoidance response to the electric field was common in these animals.
von Laßberg, Christoph; Rapp, Walter; Krug, Jürgen
2014-06-01
In a prior study with high level gymnasts we could demonstrate that the neuromuscular activation pattern during the "whip-like" leg acceleration phases (LAP) in accelerating movement sequences on high bar, primarily runs in a consecutive succession from the bar (punctum fixum) to the legs (punctum mobile). The current study presents how the neuromuscular activation is represented during movement sequences that immediately follow the LAP by the antagonist muscle chain to generate an effective transfer of momentum for performing specific elements, based on the energy generated by the preceding LAP. Thirteen high level gymnasts were assessed by surface electromyography during high performance elements on high bar and parallel bars. The results show that the neuromuscular succession runs primarily from punctum mobile towards punctum fixum for generating the transfer of momentum. Additionally, further principles of neuromuscular interactions between the anterior and posterior muscle chain during such movement sequences are presented. The findings complement the understanding of neuromuscular activation patterns during rotational movements around fixed axes and will help to form the basis of more direct and better teaching methods regarding earlier optimization and facilitation of the motor learning process concerning fundamental movement requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarang, Som; Ishihara, Hidetaka; Tung, Vincent; Ghosh, Sayantani
Utilizing a Marangoni flow inspired electrospraying technique, we synthesize hybrid perovskite (PVSK) thin films with broad absorption spectrum and high crystallinity. The precursor solvents are electrosprayed onto an indium tin oxide (ITO) substrate, resulting in a gradient force developing between the droplet surface and the bulk due to the varying vapor pressure in the bi-solvent system. This gradient force helps the droplets propagate and merge with surrounding ones, forming a uniform thin film with excellent morphological and topological characteristics, as evident from the average power conversion efficiency (PCE) of 16%. In parallel, we use low temperature static and dynamic photoluminescence spectroscopy to probe the grain boundaries and defects in the synthesized PVSK thin films. At 120 K, the emergence of the low temperature orthorhombic phase is accompanied by reduction in lifetimes by an order of magnitude, a result attributed to charge transfer between the orthorhombic and tetragonal domains, as well as due to a crossover from free charge carrier to excitonic recombination. Our fabrication technique and optical studies help in advancement of PVSK based technology by providing unique insights into the fundamental physics of these novel materials. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.
Exploring the free energy landscape of a model β-hairpin peptide and its isoform.
Narayanan, Chitra; Dias, Cristiano L
2014-10-01
Secondary structural transitions from α-helix to β-sheet conformations are observed in several misfolding diseases including Alzheimer's and Parkinson's. Determining factors contributing favorably to the formation of each of these secondary structures is therefore essential to better understand these disease states. β-hairpin peptides form basic components of anti-parallel β-sheets and are suitable model systems for characterizing the fundamental forces stabilizing β-sheets in fibrillar structures. In this study, we explore the free energy landscape of the model β-hairpin peptide GB1 and its E2 isoform that preferentially adopts α-helical conformations at ambient conditions. Umbrella sampling simulations using all-atom models and explicit solvent are performed over a large range of end-to-end distances. Our results show the strong preference of GB1 and the E2 isoform for β-hairpin and α-helical conformations, respectively, consistent with previous studies. We show that the unfolded states of GB1 are largely populated by misfolded β-hairpin structures which differ from each other in the position of the β-turn. We discuss the energetic factors contributing favorably to the formation of α-helix and β-hairpin conformations in these peptides and highlight the energetic role of hydrogen bonds and non-bonded interactions. © 2014 Wiley Periodicals, Inc.
On the origin of the hierarchy of color names.
Loreto, Vittorio; Mukherjee, Animesh; Tria, Francesca
2012-05-01
One of the fundamental problems in cognitive science is how humans categorize the visible color spectrum. The empirical evidence of the existence of universal or recurrent patterns in color naming across cultures is paralleled by the observation that color names begin to be used by individual cultures in a relatively fixed order. The origin of this hierarchy is largely unexplained. Here we resort to multiagent simulations, where a population of individuals, subject to a simple perceptual constraint shared by all humans, namely the human Just Noticeable Difference, categorizes and names colors through a purely cultural negotiation in the form of language games. We found that the time needed for a population to reach consensus on a color name depends on the region of the visible color spectrum. If color spectrum regions are ranked according to this criterion, a hierarchy with [red, (magenta)-red], [violet], [green/yellow], [blue], [orange], and [cyan], appearing in this order, is recovered, featuring an excellent quantitative agreement with the empirical observations of the WCS. Our results demonstrate a clear possible route to the emergence of hierarchical color categories, confirming that the theoretical modeling in this area has now attained the required maturity to make significant contributions to the ongoing debates concerning language universals.
Optimal Super Dielectric Material
2015-09-01
INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated...containing liquid with dissolved ionic species will form large dipoles, polarized opposite the applied field. Large dipole SDM placed between the...electrodes of a parallel plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with
Geometrization of the Dirac theory of the electron
NASA Technical Reports Server (NTRS)
Fock, V.
1977-01-01
Using the concept of parallel displacement of a half vector, the Dirac equations are generally written in invariant form. The energy tensor is formed and both the macroscopic and quantum mechanic equations of motion are set up. The former have the usual form: divergence of the energy tensor equals the Lorentz force and the latter are essentially identical with those of the geodesic line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamburov, D.; Mueed, M. A.; Jo, I.
2014-12-01
We report ballistic transport commensurability minima in the magnetoresistance of nu = 3/2 composite fermions (CFs). The CFs are formed in high-quality two-dimensional electron systems confined to wide GaAs quantum wells and subjected to an in-plane, unidirectional periodic potential modulation. We observe a slight asymmetry of the CF commensurability positions with respect to nu = 3/2, which we explain quantitatively by comparing three CF density models and concluding that the nu = 3/2 CFs are likely formed by the minority carriers in the upper energy spin state of the lowest Landau level. Our data also allow us to probe themore » shape and size of the CF Fermi contour. At a fixed electron density of similar or equal to 1.8x10(11) cm(-2), as the quantum well width increases from 30 to 60 nm, the CFs show increasing spin polarization. We attribute this to the enhancement of the Zeeman energy relative to the Coulomb energy in wider wells where the latter is softened because of the larger electron layer thickness. The application of an additional parallel magnetic field (B-parallel to) leads to a significant distortion of the CF Fermi contour as B-parallel to couples to the CFs' out-of-plane orbital motion. The distortion is much more severe compared to the nu = 1/2 CF case at comparable B-parallel to. Moreover, the applied B-parallel to further spin-polarizes the nu = 3/2 CFs as deduced from the positions of the commensurability minima.« less
Parallel computation of multigroup reactivity coefficient using iterative method
NASA Astrophysics Data System (ADS)
Susmikanti, Mike; Dewayatna, Winter
2013-09-01
One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.
Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Y.; Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Nanjing 210008; Cao, J. B.
2015-06-15
Two-dimensional MHD simulations were performed to study the evolution of the Kelvin-Helmholtz (KH) instability at the Venusian ionopause in response to the strong flow shear in presence of the in-plane magnetic field parallel to the flow direction. The physical behavior of the KH instability as well as the triggering and occurrence conditions for highly rolled-up vortices are characterized through several physical parameters, including Alfvén Mach number on the upper side of the layer, the density ratio, and the ratio of parallel magnetic fields between two sides of the layer. Using these parameters, the simulations show that both the high densitymore » ratio and the parallel magnetic field component across the boundary layer play a role of stabilizing the instability. In the high density ratio case, the amount of total magnetic energy in the final quasi-steady status is much more than that in the initial status, which is clearly different from the case with low density ratio. We particularly investigate the nonlinear development of the case that has a high density ratio and uniform magnetic field. Before the instability saturation, a single magnetic island is formed and evolves into two quasi-steady islands in the non-linear phase. A quasi-steady pattern eventually forms and is embedded within a uniform magnetic field and a broadened boundary layer. The estimation of loss rates of ions from Venus indicates that the stabilizing effect of the parallel magnetic field component on the KH instability becomes strong in the case of high density ratio.« less
NASA Technical Reports Server (NTRS)
Fijany, Amir
1993-01-01
In this paper, parallel O(log n) algorithms for computation of rigid multibody dynamics are developed. These parallel algorithms are derived by parallelization of new O(n) algorithms for the problem. The underlying feature of these O(n) algorithms is a drastically different strategy for decomposition of interbody force which leads to a new factorization of the mass matrix (M). Specifically, it is shown that a factorization of the inverse of the mass matrix in the form of the Schur Complement is derived as M(exp -1) = C - B(exp *)A(exp -1)B, wherein matrices C, A, and B are block tridiagonal matrices. The new O(n) algorithm is then derived as a recursive implementation of this factorization of M(exp -1). For the closed-chain systems, similar factorizations and O(n) algorithms for computation of Operational Space Mass Matrix lambda and its inverse lambda(exp -1) are also derived. It is shown that these O(n) algorithms are strictly parallel, that is, they are less efficient than other algorithms for serial computation of the problem. But, to our knowledge, they are the only known algorithms that can be parallelized and that lead to both time- and processor-optimal parallel algorithms for the problem, i.e., parallel O(log n) algorithms with O(n) processors. The developed parallel algorithms, in addition to their theoretical significance, are also practical from an implementation point of view due to their simple architectural requirements.
Plagiarism Detection for Indonesian Language using Winnowing with Parallel Processing
NASA Astrophysics Data System (ADS)
Arifin, Y.; Isa, S. M.; Wulandhari, L. A.; Abdurachman, E.
2018-03-01
The plagiarism has many forms, not only copy paste but include changing passive become active voice, or paraphrasing without appropriate acknowledgment. It happens on all language include Indonesian Language. There are many previous research that related with plagiarism detection in Indonesian Language with different method. But there are still some part that still has opportunity to improve. This research proposed the solution that can improve the plagiarism detection technique that can detect not only copy paste form but more advance than that. The proposed solution is using Winnowing with some addition process in pre-processing stage. With stemming processing in Indonesian Language and generate fingerprint in parallel processing that can saving time processing and produce the plagiarism result on the suspected document.
Ethyl 2-[(carbamothioyl-amino)-imino]-propano-ate.
Corrêa, Charlane C; Graúdo, José Eugênio J C; de Oliveira, Luiz Fernando C; de Almeida, Mauro V; Diniz, Renata
2011-08-01
The title compound, C(6)H(11)N(3)O(2)S, consists of a roughly planar mol-ecule (r.m.s deviation from planarity = 0.077 Å for the non-H atoms) and has the S atom in an anti position to the imine N atom. This N atom is the acceptor of a strongly bent inter-nal N-H⋯N hydrogen bond donated by the amino group. In the crystal, mol-ecules are arranged in undulating layers parallel to (010). The mol-ecules are linked via inter-molecular amino-carboxyl N-H⋯O hydrogen bonds, forming chains parallel to [001]. The chains are cross-linked by N(carbazone)-H⋯S and C-H⋯S inter-actions, forming infinite sheets.
Jin, Zheng; Shiomura, Kimihiro; Jiang, Lizhu
2015-02-01
Love, sex, and money are the most direct cues involved in the fundamental forms of mate preferences. These fundamental forms are not mutually exclusive but are interrelated. As a result, humans base their mate choices on multiple cues. In this study, 62 undergraduate women (M age = 20.4 yr., SD = 1.4) from China and Japan served as the participants. They performed a variation of the semantic priming task, in which they were instructed to decide by means of a key-press whether the target was human or non-human. The primes were images that portrayed potent evolutionary factors for mate preference (i.e., love, sex, and money), and the manipulation was based on whether the prime and target matched regarding gender, independent of the target decision task (human vs non-human). Participants gave faster responses to male targets than to female targets under priming. The results generally supported the evolutionary premises that assume mate preference is determined by fundamental forms of providing emotional (love), material (money), and fertility support (sex). The money priming effect was stronger in the Chinese women than in the Japanese women, suggesting that social context may influence mate preferences.
Cold-mode Accretion: Driving the Fundamental Mass-Metallicity Relation at z ~ 2
NASA Astrophysics Data System (ADS)
Kacprzak, Glenn G.; van de Voort, Freeke; Glazebrook, Karl; Tran, Kim-Vy H.; Yuan, Tiantian; Nanayakkara, Themiya; Allen, Rebecca J.; Alcorn, Leo; Cowley, Michael; Labbé, Ivo; Spitler, Lee; Straatman, Caroline; Tomczak, Adam
2016-07-01
We investigate the star formation rate (SFR) dependence on the stellar mass and gas-phase metallicity relation at z = 2 with MOSFIRE/Keck as part of the ZFIRE survey. We have identified 117 galaxies (1.98 ≤ z ≤ 2.56), with 8.9 ≤ log(M/M ⊙) ≤ 11.0, for which we can measure gas-phase metallicities. For the first time, we show a discernible difference between the mass-metallicity relation, using individual galaxies, when dividing the sample by low (<10 M ⊙ yr-1) and high (>10 M ⊙ yr-1) SFRs. At fixed mass, low star-forming galaxies tend to have higher metallicity than high star-forming galaxies. Using a few basic assumptions, we further show that the gas masses and metallicities required to produce the fundamental mass-metallicity relation and its intrinsic scatter are consistent with cold-mode accretion predictions obtained from the OWLS hydrodynamical simulations. Our results from both simulations and observations are suggestive that cold-mode accretion is responsible for the fundamental mass-metallicity relation at z = 2 and it demonstrates the direct relationship between cosmological accretion and the fundamental properties of galaxies.
Exploiting Data Sparsity in Parallel Matrix Powers Computations
2013-05-03
2013 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour...matrices of the form A = D+USV H, where D is sparse and USV H has low rank but may be dense. Matrices of this form arise in many practical applications...methods numerical partial di erential equation solvers, and preconditioned iterative methods. If A has this form , our algorithm enables a communication
Choi, Byunghee; Han, Dongwoon; Na, Seonsam; Lim, Byungmook
2017-06-01
This study aims to examine the characteristics and behavioral patterns of patients with chronic conditions behind their parallel use of the conventional medicine (CM) and the complementary and alternative medicine (CAM) that includes traditional Korean Medicine (KM). This cross-sectional study used the self-administered anonymous survey method to obtain the results from inpatients who were staying in three hospitals in Gyeongnam province in Korea. Of the 423 participants surveyed, 334 participants (79.0%) used some form of CAM among which KM therapies were the most common modalities. The results of a logistic regression analysis showed that the parallel use pattern was most apparent in the groups aged over 40. Patients with hypertension or joint diseases were seen to have higher propensity to show the parallel use patterns, whereas patients with diabetes were not. In addition, many sociodemographic and health-related characteristics are related to the patterns of the parallel use of CAM and CM. In the rural area of Korea, most inpatients who used CM for the management of chronic conditions used CAM in parallel. KM was the most common in CAM modalities, and the aspect of parallel use varied according to the disease conditions.
NASA Astrophysics Data System (ADS)
Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj; Pask, John E.
2018-03-01
We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method for O(N) Kohn-Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw-Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw-Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. We further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect O(N) scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.
2012-01-01
Little research has examined different dimensions of narcissism that may parallel psychopathy facets in criminally-involved individuals. The present study examined the pattern of relationships between grandiose and vulnerable narcissism, assessed using the Narcissistic Personality Inventory-16 and the Hypersensitive Narcissism Scale, respectively, and the four facets of psychopathy (interpersonal, affective, lifestyle, and antisocial) assessed via the Psychopathy Checklist: Screening Version (PCL:SV). As predicted, grandiose and vulnerable narcissism showed differential relationships to psychopathy facets, with grandiose narcissism relating positively to the interpersonal facet of psychopathy and vulnerable narcissism relating positively to the lifestyle facet of psychopathy. Paralleling existing psychopathy research, vulnerable narcissism showed stronger associations than grandiose narcissism to 1) other forms of psychopathology, including internalizing and substance use disorders, and 2) self- and other-directed aggression, measured using the Life History of Aggression and the Forms of Aggression Questionnaire. Grandiose narcissism was nonetheless associated with social dysfunction marked by a manipulative and deceitful interpersonal style and unprovoked aggression. Potentially important implications for uncovering etiological pathways and developing treatment interventions for these disorders in externalizing adults are discussed. PMID:22448731
Real-time multi-mode neutron multiplicity counter
Rowland, Mark S; Alvarez, Raymond A
2013-02-26
Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.
Equivalent circuit for the characterization of the resonance mode in piezoelectric systems
NASA Astrophysics Data System (ADS)
Fernández-Afonso, Y.; García-Zaldívar, O.; Calderón-Piñar, F.
2015-12-01
The impedance properties in polarized piezoelectric can be described by electric equivalent circuits. The classic circuit used in the literature to describe real systems is formed by one resistor (R), one inductance (L) and one capacitance C connected in series and one capacity (C0) connected in parallel with the formers. Nevertheless, the equation that describe the resonance and anti-resonance frequencies depends on a complex manner of R, L, C and C0. In this work is proposed a simpler model formed by one inductance (L) and one capacity (C) in series; one capacity (C0) in parallel; one resistor (RP) in parallel and one resistor (RS) in series with other components. Unlike the traditional circuit, the equivalent circuit elements in the proposed model can be simply determined by knowing the experimental values of the resonance frequency fr, anti-resonance frequency fa, impedance module at resonance frequency |Zr|, impedance module at anti-resonance frequency |Za| and low frequency capacitance C0, without fitting the impedance experimental data to the obtained equation.
Miyoshi, Daisuke; Ueda, Yu-Mi; Shimada, Naohiko; Nakano, Shu-Ichi; Sugimoto, Naoki; Maruyama, Atsushi
2014-09-01
Electrostatic interactions play a major role in protein-DNA interactions. As a model system of a cationic protein, herein we focused on a comb-type copolymer of a polycation backbone and dextran side chains, poly(L-lysine)-graft-dextran (PLL-g-Dex), which has been reported to form soluble interpolyelectrolyte complexes with DNA strands. We investigated the effects of PLL-g-Dex on the conformation and thermodynamics of DNA oligonucleotides forming various secondary structures. Thermodynamic analysis of the DNA structures showed that the parallel conformations involved in both DNA duplexes and triplexes were significantly and specifically stabilized by PLL-g-Dex. On the basis of thermodynamic parameters, it was further possible to design DNA switches that undergo structural transition responding to PLL-g-Dex from an antiparallel duplex to a parallel triplex even with mismatches in the third strand hybridization. These results suggest that polycationic molecules are able to induce structural polymorphism of DNA oligonucleotides, because of the conformation-selective stabilization effects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal stability of G-rich anti-parallel DNA triplexes upon insertion of LNA and α-L-LNA.
Kosbar, Tamer R; Sofan, Mamdouh A; Abou-Zeid, Laila; Pedersen, Erik B
2015-05-14
G-rich anti-parallel DNA triplexes were modified with LNA or α-L-LNA in their Watson-Crick and TFO strands. The triplexes were formed by targeting a pyrimidine strand to a putative hairpin formed by Hoogsteen base pairing in order to use the UV melting method to evaluate the stability of the triplexes. Their thermal stability was reduced when the TFO strand was modified with LNA or α-L-LNA. The same trend was observed when the TFO strand and the purine Watson-Crick strand both were modified with LNA. When all triad components were modified with α-L-LNA and LNA in the middle of the triplex, the thermal melting was increased. When the pyrimidine sequence was modified with a single insertion of LNA or α-L-LNA the ΔTm increased. Moreover, increasing the number of α-L-LNA in the pyrimidine target sequence to six insertions, leads to a high increase in the thermal stability. The conformational S-type structure of α-L-LNA in anti-parallel triplexes is preferable for triplex stability.
Sigmund Freud-early network theories of the brain.
Surbeck, Werner; Killeen, Tim; Vetter, Johannes; Hildebrandt, Gerhard
2018-06-01
Since the early days of modern neuroscience, psychological models of brain function have been a key component in the development of new knowledge. These models aim to provide a framework that allows the integration of discoveries derived from the fundamental disciplines of neuroscience, including anatomy and physiology, as well as clinical neurology and psychiatry. During the initial stages of his career, Sigmund Freud (1856-1939), became actively involved in these nascent fields with a burgeoning interest in functional neuroanatomy. In contrast to his contemporaries, Freud was convinced that cognition could not be localised to separate modules and that the brain processes cognition not in a merely serial manner but in a parallel and dynamic fashion-anticipating fundamental aspects of current network theories of brain function. This article aims to shed light on Freud's seminal, yet oft-overlooked, early work on functional neuroanatomy and his reasons for finally abandoning the conventional neuroscientific "brain-based" reference frame in order to conceptualise the mind from a purely psychological perspective.
Lee, Soo Chan; Idnurm, Alexander
2017-03-01
Although at the level of resolution of genes and molecules most information about mating in fungi is from a single lineage, the Dikarya, many fundamental discoveries about mating in fungi have been made in the earlier branches of the fungi. These are nonmonophyletic groups that were once classified into the chytrids and zygomycetes. Few species in these lineages offer the potential of genetic tractability, thereby hampering the ability to identify the genes that underlie those fundamental insights. Research performed during the past decade has now established the genes required for mating type determination and pheromone synthesis in some species in the phylum Mucoromycota, especially in the order Mucorales. These findings provide striking parallels with the evolution of mating systems in the Dikarya fungi. Other discoveries in the Mucorales provide the first examples of sex-cell type identity being driven directly by a gene that confers mating type, a trait considered more of relevance to animal sex determination but difficult to investigate in animals. Despite these discoveries, there remains much to be gleaned about mating systems from these fungi.
Using Invention to Change How Students Tackle Problems
Smith, Karen M.; van Stolk, Adrian P.; Spiegelman, George B.
2010-01-01
Invention activities challenge students to tackle problems that superficially appear unrelated to the course material but illustrate underlying fundamental concepts that are fundamental to material that will be presented. During our invention activities in a first-year biology class, students were presented with problems that are parallel to those that living cells must solve, in weekly sessions over a 13-wk term. We compared students who participated in the invention activities sessions with students who participated in sessions of structured problem solving and with students who did not participate in either activity. When faced with developing a solution to a challenging and unfamiliar biology problem, invention activity students were much quicker to engage with the problem and routinely provided multiple reasonable hypotheses. In contrast the other students were significantly slower in beginning to work on the problem and routinely produced relatively few ideas. We suggest that the invention activities develop a highly valuable skill that operates at the initial stages of problem solving. PMID:21123697
ICRF heating in a straight, helically symmetric stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaeger, E.F.; Weitzner, H.; Batchelor, D.B.
1987-07-01
Experimental observations of direct ion cyclotron resonant frequency (ICRF) heating at fundamental ion cyclotron resonance on the L-2 stellarator have stimulated interest in the theoretical basis for such heating. In this paper, global solutions for the ICRF wave fields in a helically symmetric, straight stellarator are calculated in the cold plasma limit. The component of the wave electric field parallel to B-vector is assumed zero. Helical symmetry allows Fourier decomposition in the longitudinal (z) direction. The two remaining partial differential equations in tau and phi identical to THETA - hz (h is the helical pitch) are solved by finite differencing.more » Energy absorption and antenna impedance are calculated from an ad hoc collision model. Results for parameters typical of the L-2 and Advanced Toroidal Facility (ATF) stellarators show that direct resonant absorption of the fundamental ion cyclotron resonance occurs mainly near the plasma edge. The magnitude of the absorption is about half that for minority heating at the two-ion hybrid resonance.« less
Unconventional Current Scaling and Edge Effects for Charge Transport through Molecular Clusters
2017-01-01
Metal–molecule–metal junctions are the key components of molecular electronics circuits. Gaining a microscopic understanding of their conducting properties is central to advancing the field. In the present contribution, we highlight the fundamental differences between single-molecule and ensemble junctions focusing on the fundamentals of transport through molecular clusters. In this way, we elucidate the collective behavior of parallel molecular wires, bridging the gap between single molecule and large-area monolayer electronics, where even in the latter case transport is usually dominated by finite-size islands. On the basis of first-principles charge-transport simulations, we explain why the scaling of the conductivity of a junction has to be distinctly nonlinear in the number of molecules it contains. Moreover, transport through molecular clusters is found to be highly inhomogeneous with pronounced edge effects determined by molecules in locally different electrostatic environments. These effects are most pronounced for comparably small clusters, but electrostatic considerations show that they prevail also for more extended systems. PMID:29043825
Modeling complex tone perception: grouping harmonics with combination-sensitive neurons.
Medvedev, Andrei V; Chiao, Faye; Kanwal, Jagmeet S
2002-06-01
Perception of complex communication sounds is a major function of the auditory system. To create a coherent precept of these sounds the auditory system may instantaneously group or bind multiple harmonics within complex sounds. This perception strategy simplifies further processing of complex sounds and facilitates their meaningful integration with other sensory inputs. Based on experimental data and a realistic model, we propose that associative learning of combinations of harmonic frequencies and nonlinear facilitation of responses to those combinations, also referred to as "combination-sensitivity," are important for spectral grouping. For our model, we simulated combination sensitivity using Hebbian and associative types of synaptic plasticity in auditory neurons. We also provided a parallel tonotopic input that converges and diverges within the network. Neurons in higher-order layers of the network exhibited an emergent property of multifrequency tuning that is consistent with experimental findings. Furthermore, this network had the capacity to "recognize" the pitch or fundamental frequency of a harmonic tone complex even when the fundamental frequency itself was missing.
Hyperspectral data analysis procedures with reduced sensitivity to noise
NASA Technical Reports Server (NTRS)
Landgrebe, David A.
1993-01-01
Multispectral sensor systems have become steadily improved over the years in their ability to deliver increased spectral detail. With the advent of hyperspectral sensors, including imaging spectrometers, this technology is in the process of taking a large leap forward, thus providing the possibility of enabling delivery of much more detailed information. However, this direction of development has drawn even more attention to the matter of noise and other deleterious effects in the data, because reducing the fundamental limitations of spectral detail on information collection raises the limitations presented by noise to even greater importance. Much current effort in remote sensing research is thus being devoted to adjusting the data to mitigate the effects of noise and other deleterious effects. A parallel approach to the problem is to look for analysis approaches and procedures which have reduced sensitivity to such effects. We discuss some of the fundamental principles which define analysis algorithm characteristics providing such reduced sensitivity. One such analysis procedure including an example analysis of a data set is described, illustrating this effect.
VizieR Online Data Catalog: Be star rotational velocities distribution (Zorec+, 2016)
NASA Astrophysics Data System (ADS)
Zorec, J.; Fremat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.
2016-06-01
Table 1 contains apparent fundamental parameters of the 233 Galactic Be stars. For each Be star is given the HD number, the effective temperature, effective surface gravity and bolometric luminosity. They correspond to the parameters of a plan parallel model of stellar atmosphere that fits the energy distribution of the stellar apparent hemisphere rotationally deformed. In Table 1 are also given the color excess E(B-V) and the vsini rotation parameter determined with model atmospheres of rigidly rotating stars. For each parameter is given the 1sigma uncertainty. In the notes are given the authors that produced some reported the data or the methods used to obtain the data. Table 4 contains parent-non-rotating-counterpart fundamental parameters of 233 Be stars: effective temperature, effective surface gravity, bolometric luminosity in solar units, stellar mass in solar units, fractional main-sequence stellar age, pnrc-apparent rotational velocity, critical velocity, ratio of centrifugal-force to gravity in the equator, inclination angle of the rotational axis. (2 data files).
NASA Astrophysics Data System (ADS)
Zimovets, Artem; Matviychuk, Alexander; Ushakov, Vladimir
2016-12-01
The paper presents two different approaches to reduce the time of computer calculation of reachability sets. First of these two approaches use different data structures for storing the reachability sets in the computer memory for calculation in single-threaded mode. Second approach is based on using parallel algorithms with reference to the data structures from the first approach. Within the framework of this paper parallel algorithm of approximate reachability set calculation on computer with SMP-architecture is proposed. The results of numerical modelling are presented in the form of tables which demonstrate high efficiency of parallel computing technology and also show how computing time depends on the used data structure.
Fluorous Parallel Synthesis of A Hydantoin/Thiohydantoin Library
Lu, Yimin; Zhang, Wei
2007-01-01
Fluorous tagging strategy is applied to solution-phase parallel synthesis of a library containing hydantoin and thiohydantoin analogs. Two perfluoroalkyl (Rf)-tagged α-amino esters each react with 6 aromatic aldehydes under reductive amination conditions. Twelve amino esters then each react with 10 isocyanates and isothiocyanates in parallel. The resulting 120 ureas and thioureas undergo spontaneous cyclization to form the corresponding hydantoins and thiohydantoins. The intermediate and final product purifications are performed with solid-phase extraction (SPE) over FluoroFlash™ cartridges, no chromatography is required. Using standard instruments and straightforward SPE technique, one chemist accomplished the 120-member library synthesis in less than 5 working days, including starting material synthesis and product analysis. PMID:15789556
Parallel algorithms for computation of the manipulator inertia matrix
NASA Technical Reports Server (NTRS)
Amin-Javaheri, Masoud; Orin, David E.
1989-01-01
The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.
NASA Astrophysics Data System (ADS)
Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David
2014-03-01
Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.
Probes of Fundamental Physics using X-ray Polarimetry
NASA Astrophysics Data System (ADS)
Baring, Matthew G.
2016-04-01
The advent of X-ray polarimetry as an astronomical discipline is on the near horizon. Prospects of Explorer class missions currently under study in the NASA SMEX program, the Xipe mission under ESA study in Europe, and beyond to initiatives under development in Asia, indicate that the worldwide high energy astrophysics community view this as a high priority. The focal goal of X-ray polarization measurements is often to discern the geometry of a source, for example an accreting black hole, pulsing neutron star or a relativistic jet; these are addressed in other talks in this HEAD special session. In this talk, I discuss a parallel agenda, to employ X-ray polarimetry to glean insights into fundamental physics that is presently difficult or impossible to test in laboratory settings. Much of this is centered around neutron stars, and I willaddress theoretically-expected signatures of vacuum birefringence and photon splitting, predictions of QED theory in the strong magnetic fields possessed by pulsars and magnetars. Of particular note is that time-dependent polarimetry coupled with spectroscopy can help disentangle purely geometrical effects and fundamental physics ones. A brief discussion of possible tests of Lorentz invariance violation, expected in some theories of quantum gravity, will also be presented. Instrument requirements to realize such science goals will also be briefly covered.
Abel's theorem in the noncommutative case
NASA Astrophysics Data System (ADS)
Leitenberger, Frank
2004-03-01
We define noncommutative binary forms. Using the typical representation of Hermite we prove the fundamental theorem of algebra and we derive a noncommutative Cardano formula for cubic forms. We define quantized elliptic and hyperelliptic differentials of the first kind. Following Abel we prove Abel's theorem.
Extreme Forms of Child Labour in Turkey
ERIC Educational Resources Information Center
Degirmencioglu, Serdar M.; Acar, Hakan; Acar, Yuksel Baykara
2008-01-01
Two little known forms of child labour in Turkey are examined. The process through which these children are made to work has parallels with the experiences of slaves. First, a long-standing practice from Northwestern Turkey of parents hiring children to better-off farmers is examined. Further, a more recent problem is examined where children are…
Large boron--epoxy filament-wound pressure vessels
NASA Technical Reports Server (NTRS)
Jensen, W. M.; Bailey, R. L.; Knoell, A. C.
1973-01-01
Advanced composite material used to fabricate pressure vessel is prepeg (partially cured) consisting of continuous, parallel boron filaments in epoxy resin matrix arranged to form tape. To fabricate chamber, tape is wound on form which must be removable after composite has been cured. Configuration of boron--epoxy composite pressure vessel was determined by computer program.
David W. Green; Robert H. White; Antoni TenWolde; William Simpson; Joseph Murphy; Robert J. Ross; Roland Hernandez; Stan T. Lebow
2006-01-01
Wood is a naturally formed organic material consisting essentially of elongated tubular elements called cells arranged in a parallel manner for the most part. These cells vary in dimensions and wall thickness with position in the tree, age, conditions of growth, and kind of tree. The walls of the cells are formed principally of chain molecules of cellulose, polymerized...
NASA Astrophysics Data System (ADS)
Braybrook, A. L.; Heywood, B. R.; Jackson, R. A.; Pitt, K.
2002-08-01
Crystal growth can be controlled by the incorporation of dopant ions into the lattice and yet the question of how such substituents affect the morphology has not been addressed. This paper describes the forms of calcite (CaCO 3) which arise when the growth assay is doped with cobalt. Distinct and specific morphological changes are observed; the calcite crystals adopt a morphology which is dominated by the {01.1} family of faces. These experimental studies paralleled the development of computational methods for the analysis of crystal habit as a function of dopant concentration. In this case, the predicted defect morphology also argued for the dominance of the (01.1) face in the growth form. The appearance of this face was related to the preferential segregation of the dopant ions to the crystal surface. This study confirms the evolution of a robust computational model for the analysis of calcite growth forms under a range of environmental conditions and presages the use of such tools for the predictive development of crystal morphologies in those applications where chemico-physical functionality is linked closely to a specific crystallographic form.
NASA Astrophysics Data System (ADS)
Zhu, Dan; Shang, Jing; Ye, Xiaodong; Shen, Jian
2016-12-01
The understanding of macromolecular structures and interactions is important but difficult, due to the facts that a macromolecules are of versatile conformations and aggregate states, which vary with environmental conditions and histories. In this work two polyamides with parallel or anti-parallel dipoles along the linear backbone, named as ABAB (parallel) and AABB (anti-parallel) have been studied. By using a combination of methods, the phase behaviors of the polymers during the aggregate and gelation, i.e., the forming or dissociation processes of nuclei and fibril, cluster of fibrils, and cluster-cluster aggregation have been revealed. Such abundant phase behaviors are dominated by the inter-chain interactions, including dispersion, polarity and hydrogen bonding, and correlatd with the solubility parameters of solvents, the temperature, and the polymer concentration. The results of X-ray diffraction and fast-mode dielectric relaxation indicate that AABB possesses more rigid conformation than ABAB, and because of that AABB aggregates are of long fibers while ABAB is of hairy fibril clusters, the gelation concentration in toluene is 1 w/v% for AABB, lower than the 3 w/v% for ABAB.
P-HARP: A parallel dynamic spectral partitioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, A.; Biswas, R.; Simon, H.D.
1997-05-01
Partitioning unstructured graphs is central to the parallel solution of problems in computational science and engineering. The authors have introduced earlier the sequential version of an inertial spectral partitioner called HARP which maintains the quality of recursive spectral bisection (RSB) while forming the partitions an order of magnitude faster than RSB. The serial HARP is known to be the fastest spectral partitioner to date, three to four times faster than similar partitioners on a variety of meshes. This paper presents a parallel version of HARP, called P-HARP. Two types of parallelism have been exploited: loop level parallelism and recursive parallelism.more » P-HARP has been implemented in MPI on the SGI/Cray T3E and the IBM SP2. Experimental results demonstrate that P-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.25 seconds on a 64-processor T3E. Experimental results further show that P-HARP can give nearly a 20-fold speedup on 64 processors. These results indicate that graph partitioning is no longer a major bottleneck that hinders the advancement of computational science and engineering for dynamically-changing real-world applications.« less
Sensor Fusion, Prognostics, Diagnostics and Failure Mode Control for Complex Aerospace Systems
2010-10-01
algorithm and to then tune the candidates individually using known metaheuristics . As will be...parallel. The result of this arrangement is that the processing is a form that is analogous to standard parallel genetic algorithms , and as such...search algorithm then uses the hybrid of fitness data to rank the results. The ETRAS controller is developed using pre-selection, showing that a
Vehicular impact absorption system
NASA Technical Reports Server (NTRS)
Knoell, A. C.; Wilson, A. H. (Inventor)
1978-01-01
An improved vehicular impact absorption system characterized by a plurality of aligned crash cushions of substantially cubic configuration is described. Each consists of a plurality of voided aluminum beverage cans arranged in substantial parallelism within a plurality of superimposed tiers and a covering envelope formed of metal hardware cloth. A plurality of cables is extended through the cushions in substantial parallelism with an axis of alignment for the cushions adapted to be anchored at each of the opposite end thereof.
Makran Mountain Range, Indus River Valley, Pakistan, India
NASA Technical Reports Server (NTRS)
1984-01-01
The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.
Multicoil resonance-based parallel array for smart wireless power delivery.
Mirbozorgi, S A; Sawan, M; Gosselin, B
2013-01-01
This paper presents a novel resonance-based multicoil structure as a smart power surface to wirelessly power up apparatus like mobile, animal headstage, implanted devices, etc. The proposed powering system is based on a 4-coil resonance-based inductive link, the resonance coil of which is formed by an array of several paralleled coils as a smart power transmitter. The power transmitter employs simple circuit connections and includes only one power driver circuit per multicoil resonance-based array, which enables higher power transfer efficiency and power delivery to the load. The power transmitted by the driver circuit is proportional to the load seen by the individual coil in the array. Thus, the transmitted power scales with respect to the load of the electric/electronic system to power up, and does not divide equally over every parallel coils that form the array. Instead, only the loaded coils of the parallel array transmit significant part of total transmitted power to the receiver. Such adaptive behavior enables superior power, size and cost efficiency then other solutions since it does not need to use complex detection circuitry to find the location of the load. The performance of the proposed structure is verified by measurement results. Natural load detection and covering 4 times bigger area than conventional topologies with a power transfer efficiency of 55% are the novelties of presented paper.
Many-to-one form-to-function mapping weakens parallel morphological evolution.
Thompson, Cole J; Ahmed, Newaz I; Veen, Thor; Peichel, Catherine L; Hendry, Andrew P; Bolnick, Daniel I; Stuart, Yoel E
2017-11-01
Evolutionary ecologists aim to explain and predict evolutionary change under different selective regimes. Theory suggests that such evolutionary prediction should be more difficult for biomechanical systems in which different trait combinations generate the same functional output: "many-to-one mapping." Many-to-one mapping of phenotype to function enables multiple morphological solutions to meet the same adaptive challenges. Therefore, many-to-one mapping should undermine parallel morphological evolution, and hence evolutionary predictability, even when selection pressures are shared among populations. Studying 16 replicate pairs of lake- and stream-adapted threespine stickleback (Gasterosteus aculeatus), we quantified three parts of the teleost feeding apparatus and used biomechanical models to calculate their expected functional outputs. The three feeding structures differed in their form-to-function relationship from one-to-one (lower jaw lever ratio) to increasingly many-to-one (buccal suction index, opercular 4-bar linkage). We tested for (1) weaker linear correlations between phenotype and calculated function, and (2) less parallel evolution across lake-stream pairs, in the many-to-one systems relative to the one-to-one system. We confirm both predictions, thus supporting the theoretical expectation that increasing many-to-one mapping undermines parallel evolution. Therefore, sole consideration of morphological variation within and among populations might not serve as a proxy for functional variation when multiple adaptive trait combinations exist. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Parallel block schemes for large scale least squares computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golub, G.H.; Plemmons, R.J.; Sameh, A.
1986-04-01
Large scale least squares computations arise in a variety of scientific and engineering problems, including geodetic adjustments and surveys, medical image analysis, molecular structures, partial differential equations and substructuring methods in structural engineering. In each of these problems, matrices often arise which possess a block structure which reflects the local connection nature of the underlying physical problem. For example, such super-large nonlinear least squares computations arise in geodesy. Here the coordinates of positions are calculated by iteratively solving overdetermined systems of nonlinear equations by the Gauss-Newton method. The US National Geodetic Survey will complete this year (1986) the readjustment ofmore » the North American Datum, a problem which involves over 540 thousand unknowns and over 6.5 million observations (equations). The observation matrix for these least squares computations has a block angular form with 161 diagnonal blocks, each containing 3 to 4 thousand unknowns. In this paper parallel schemes are suggested for the orthogonal factorization of matrices in block angular form and for the associated backsubstitution phase of the least squares computations. In addition, a parallel scheme for the calculation of certain elements of the covariance matrix for such problems is described. It is shown that these algorithms are ideally suited for multiprocessors with three levels of parallelism such as the Cedar system at the University of Illinois. 20 refs., 7 figs.« less
Smart Optical Material Characterization System and Method
NASA Technical Reports Server (NTRS)
Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)
2015-01-01
Disclosed is a system and method for characterizing optical materials, using steps and equipment for generating a coherent laser light, filtering the light to remove high order spatial components, collecting the filtered light and forming a parallel light beam, splitting the parallel beam into a first direction and a second direction wherein the parallel beam travelling in the second direction travels toward the material sample so that the parallel beam passes through the sample, applying various physical quantities to the sample, reflecting the beam travelling in the first direction to produce a first reflected beam, reflecting the beam that passes through the sample to produce a second reflected beam that travels back through the sample, combining the second reflected beam after it travels back though the sample with the first reflected beam, sensing the light beam produced by combining the first and second reflected beams, and processing the sensed beam to determine sample characteristics and properties.
Parallel Adaptive Mesh Refinement Library
NASA Technical Reports Server (NTRS)
Mac-Neice, Peter; Olson, Kevin
2005-01-01
Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.
Automated Vectorization of Decision-Based Algorithms
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.
Discrete sensitivity derivatives of the Navier-Stokes equations with a parallel Krylov solver
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Taylor, Arthur C., III
1994-01-01
This paper solves an 'incremental' form of the sensitivity equations derived by differentiating the discretized thin-layer Navier Stokes equations with respect to certain design variables of interest. The equations are solved with a parallel, preconditioned Generalized Minimal RESidual (GMRES) solver on a distributed-memory architecture. The 'serial' sensitivity analysis code is parallelized by using the Single Program Multiple Data (SPMD) programming model, domain decomposition techniques, and message-passing tools. Sensitivity derivatives are computed for low and high Reynolds number flows over a NACA 1406 airfoil on a 32-processor Intel Hypercube, and found to be identical to those computed on a single-processor Cray Y-MP. It is estimated that the parallel sensitivity analysis code has to be run on 40-50 processors of the Intel Hypercube in order to match the single-processor processing time of a Cray Y-MP.
Equilibrium Sampling in Biomolecular Simulation
2015-01-01
Equilibrium sampling of biomolecules remains an unmet challenge after more than 30 years of atomistic simulation. Efforts to enhance sampling capability, which are reviewed here, range from the development of new algorithms to parallelization to novel uses of hardware. Special focus is placed on classifying algorithms — most of which are underpinned by a few key ideas — in order to understand their fundamental strengths and limitations. Although algorithms have proliferated, progress resulting from novel hardware use appears to be more clear-cut than from algorithms alone, partly due to the lack of widely used sampling measures. PMID:21370970
Science, art and geometrical imagination
NASA Astrophysics Data System (ADS)
Luminet, Jean-Pierre
2011-06-01
From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental rôle of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Dürer, Kepler, Escher, Grisey or the author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as on beauty, conciseness and an emotional approach of the world.
Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud
Griffith, Malachi; Walker, Jason R.; Spies, Nicholas C.; Ainscough, Benjamin J.; Griffith, Obi L.
2015-01-01
Massively parallel RNA sequencing (RNA-seq) has rapidly become the assay of choice for interrogating RNA transcript abundance and diversity. This article provides a detailed introduction to fundamental RNA-seq molecular biology and informatics concepts. We make available open-access RNA-seq tutorials that cover cloud computing, tool installation, relevant file formats, reference genomes, transcriptome annotations, quality-control strategies, expression, differential expression, and alternative splicing analysis methods. These tutorials and additional training resources are accompanied by complete analysis pipelines and test datasets made available without encumbrance at www.rnaseq.wiki. PMID:26248053
Fundamental Understanding of the Impact High Pulsed Power Loading has on a MicroGrid’s DC or AC Bus
2013-06-12
The lithium - ion battery module is made up of two parallel stacks of six 4.1 V GALA 27 Ah cells providing a 54 Ah, 24.4 V source voltage with a -3.0...100 Ah Gel cell lead-acid (left) and 54 Ah GALA lithium - ion battery (right) energy storage modules. During each experiment, the output of the buck...batteries are used. Because the lithium - ion battery ESR is lower than that of the lead-acid, it contributes more to the rise time of the discharge
A review of the promises and challenges of micro-concentrator photovoltaics
NASA Astrophysics Data System (ADS)
Domínguez, César; Jost, Norman; Askins, Steve; Victoria, Marta; Antón, Ignacio
2017-09-01
Micro concentrator photovoltaics (micro-CPV) is an unconventional approach for developing high-efficiency low-cost PV systems. The micrifying of cells and optics brings about an increase of efficiency with respect to classical CPV, at the expense of some fundamental challenges at mass production. The large costs linked to miniaturization under conventional serial-assembly processes raise the need for the development of parallel manufacturing technologies. In return, the tiny sizes involved allows exploring unconventional optical architectures or revisiting conventional concepts that were typically discarded because of large material consumption or high bulk absorption at classical CPV sizes.
NASA Astrophysics Data System (ADS)
Gong, Weiwei; Zhou, Xu
2017-06-01
In Computer Science, the Boolean Satisfiability Problem(SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. SAT is one of the first problems that was proven to be NP-complete, which is also fundamental to artificial intelligence, algorithm and hardware design. This paper reviews the main algorithms of the SAT solver in recent years, including serial SAT algorithms, parallel SAT algorithms, SAT algorithms based on GPU, and SAT algorithms based on FPGA. The development of SAT is analyzed comprehensively in this paper. Finally, several possible directions for the development of the SAT problem are proposed.
Vehicle Charging And Potential (VCAP)
NASA Astrophysics Data System (ADS)
Roberts, B.
1986-01-01
The vehicle charging and potential (VCAP) payload includes a small electron accelerator capable of operating in a pulsed mode with firing pulses ranging from 600 nanoseconds to 107 seconds (100 milliamps at 1000 volts), a spherical retarding potential analyzer - Langmuir probe, and charge current probes. This instrumentation will support studies of beam plasma interactions and the electrical charging of the spacecraft. Active experiments may also be performed to investigate the fundamental processes of artificial aurora and ionospheric perturbations. In addition, by firing the beam up the geomagnetic field lines of force (away from the Earth) investigations of parallel electric field may be performed.
Vehicle Charging And Potential (VCAP)
NASA Astrophysics Data System (ADS)
Roberts, W. T.
The vehicle charging and potential (VCAP) payload includes a small electron accelerator capable of operating in a pulsed mode with firing pulses ranging from 600 nanoseconds to 107 seconds (100 milliamps at 1000 volts), a spherical retarding potential analyzer - Langmuir probe, and charge current probes. This instrumentation will support studies of beam plasma interactions and the electrical charging of the spacecraft. Active experiments may also be performed to investigate the fundamental processes of artificial aurora and ionospheric perturbations. In addition, by firing the beam up the geomagnetic field lines of force (away from the Earth) investigations of parallel electric field may be performed.
The petrographic microscope: Evolution of a mineralogical research instrument
Kile, D.E.
2003-01-01
The petrographic microscope, designed to observe and measure the optical properties of minerals as a means of identifying them, has provided a foundation for mineralogical and petrological research for more than 120 years. Much of what is known today in these fields is attributable to this instrument, the development of which paralleled an evolution of fundamental optical theory and its correlation with mineral structure and composition. This instrument and its related accessories have evolved through a range of models and designs, which are in themselves distinctive for their scientific function and elegant construction, and are today prized by collectors of scientific instruments.
Excitonic and band-band transitions of Cu2ZnSiS4 determined from reflectivity spectra
NASA Astrophysics Data System (ADS)
Guc, M.; Levcenko, S.; Dermenji, L.; Gurieva, G.; Schorr, S.; Syrbu, N. N.; Arushanov, E.
2014-07-01
Exciton spectra of Cu2ZnSiS4 single crystals are investigated by reflection spectroscopy at 10 and 300 K for light polarized perpendicular (E⊥c) and parallel (E∥c) to the optical axis. The parameters of the excitons and dielectric constant are determined. The free carriers effective masses have been estimated. The room temperature reflectivity spectra at photon energies higher than the fundamental band gap in the polarization Е⊥с and E∥с were measured and related to the electronic band structure of Cu2ZnSiS4.
Haimovich, Adrian D.; Muir, Paul; Isaacs, Farren J.
2016-01-01
Next-generation DNA sequencing has revealed the complete genome sequences of numerous organisms, establishing a fundamental and growing understanding of genetic variation and phenotypic diversity. Engineering at the gene, network and whole-genome scale aims to introduce targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. Expansion of these approaches into massively parallel platforms establishes the ability to generate targeted genome modifications, elucidating causal links between genotype and phenotype, as well as the ability to design and reprogramme organisms. In this Review, we explore techniques and applications in genome engineering, outlining key advances and defining challenges. PMID:26260262
The sun and heliosphere at solar maximum
NASA Technical Reports Server (NTRS)
Smith, E. J.; Marsden, R. G.; Balogh, A.; Gloeckler, G.; Geiss, J.; McComas, D. J.; McKibben, R. B.; MacDowall, R. J.; Lanzerotti, L. J.; Krupp, N.;
2003-01-01
Recent Ulysses observations from the Sun's equator to the poles reveal fundamental properties of the three-dimensional heliosphere at the maximum in solar activity. The heliospheric magnetic field originates from a magnetic dipole oriented nearly perpendicular to, instead of nearly parallel to, the Sun'rotation axis. Magnetic fields, solar wind, and energetic charged particles from low-latitude sources reach all latitudes, including the polar caps. The very fast high-latitude wind and polar coronal holes disappear and reappear together. Solar wind speed continues to be inversely correlated with coronal temperature. The cosmic ray flux is reduced symmetrically at all latitudes.
Design of one-kilometer-long antenna sticks and support structure for a geosynchronous satellite
NASA Astrophysics Data System (ADS)
Freeman, Janet Elizabeth
This study develops a preliminary structural design for three one-kilometer-long antenna sticks and an antenna support structure for a geosynchronous earth-imaging satellite. On each of the antenna sticks is mounted a linear array of over 16,000 antenna elements. The antenna sticks are parallel to each other, and are spaced 1 km apart so that they form the corners of an imaginary triangular tube. This tube is spinning about its long axis. Antenna performance requires that the position of each antenna element be known to an accuracy of 0.5 cm, and that the spacecraft's spin axis be parallel to the earth's spin axis within one degree. Assuming that the position of each joint on each antenna stick is known, the antenna sticks are designed as beams under a uniformly distributed acceleration (due to spacecraft spin) to meet the displacement accuracy requirements for the antenna elements. Both a thin-walled round tube and a three-longeron double-laced truss are considered for the antenna stick structure. A spacecraft spinrate is chosen by considering the effects of environmental torques on the precession of a simplified spacecraft. A preliminary truss-like support structure configuration is chosen, and analyzed in quasi-static equilibrium with control thrusters firing to estimate the axial loads in the structural members. The compressive loads found by this analysis are used to design the support structure members to be buckling-critical three-longeron double-laced truss columns. Some tension-only members consisting of Kevlar cord are included in the design to eliminate the need for bulkier members. The lateral vibration modes of the individual structural members are found by conventional analysis -- the fundamental frequencies are as low as 0.0066 Hz. Finite element dynamic analyses of the structure in free vibration confirm that simplified models of the structure and members can be used to determine the structural modes and natural frequencies for design purposes.
Suchetan, P A; Suneetha, V; Naveen, S; Lokanath, N K; Krishna Murthy, P
2016-04-01
The title compounds, C10H11BrO4, (I), and C9H9BrO4, (II), are derivatives of bromo-hy-droxy-benzoic acids. Compound (II) crystallizes with two independent mol-ecules (A and B) in the asymmetric unit. In both (I) and (II), the O-CH2-O-CH3 side chain is not in its fully extended conformation; the O-C-O-C torsion angle is 67.3 (3) ° in (I), and -65.8 (3) and -74.1 (3)° in mol-ecules A and B, respectively, in compound (II). In the crystal of (I), mol-ecules are linked by C-H⋯O hydrogen bonds, forming C(5) chains along [010]. The chains are linked by short Br⋯O contacts [3.047 (2) Å], forming sheets parallel to the bc plane. The sheets are linked via C-H⋯π inter-actions, forming a three-dimensional architecture. In the crystal of (II), mol-ecules A and B are linked to form R 2 (2)(8) dimers via two strong O-H⋯O hydrogen bonds. These dimers are linked into ⋯A-B⋯A-B⋯A-B⋯ [C 2 (2)(15)] chains along [011] by C-H⋯O hydrogen bonds. The chains are linked by slipped parallel π-π inter-actions [inter-centroid distances = 3.6787 (18) and 3.8431 (17) Å], leading to the formation of slabs parallel to the bc plane.