Sample records for parallel gap welding

  1. Attachment of lead wires to thin film thermocouples mounted on high temperature materials using the parallel gap welding process

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Kim, Walter S.; Pencil, Eric; Groth, Mary; Danzey, Gerald A.

    1990-01-01

    Parallel gap resistance welding was used to attach lead wires to sputtered thin film sensors. Ranges of optimum welding parameters to produce an acceptable weld were determined. The thin film sensors were Pt13Rh/Pt thermocouples; they were mounted on substrates of MCrAlY-coated superalloys, aluminum oxide, silicon carbide and silicon nitride. The entire sensor system is designed to be used on aircraft engine parts. These sensor systems, including the thin-film-to-lead-wire connectors, were tested to 1000 C.

  2. Effects of gap width on droplet transfer behavior in ultra-narrow gap laser welding of high strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Song, Chaoqun; Dong, Shiyun; Yan, Shixing; He, Jiawu; Xu, Binshi; He, Peng

    2017-10-01

    Ultra-narrow gap laser welding is a novel method for thick high strength aluminum alloy plate for its lower heat input, less deformation and higher efficiency. To obtain a perfect welding quality, it is vital to control the more complex droplet transfer behavior under the influence of ultra-narrow gap groove. This paper reports the effects of gap width of groove on droplet transfer behavior in ultra-narrow gap laser welding of 7A52 aluminum alloy plates by a high speed camera, using an ER 5356 filler wire. The results showed that the gap width had directly effects on droplet transfer mode and droplet shape. The droplet transfer modes were, in order, both-sidewall transfer, single-sidewall transfer, globular droplet transfer and bridging transfer, with different droplet shape and transition period, as the gap width increased from 2 mm to 3.5mm. The effect of gap width on lack of fusion was also studied to analyze the cause for lack of fusion at the bottom and on the sidewall of groove. Finally, with a 2.5 mm U-type parallel groove, a single-pass joint with no lack of fusion and other macro welding defects was successfully obtained in a single-sidewall transfer mode.

  3. Welding Wires To Thin Thermocouple Films

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Kim, Walter S.; Danzey, Gerald A.; Pencil, Eric; Wadel, Mary

    1993-01-01

    Parallel-gap resistance welding yields joints surviving temperatures of about 1,000 degrees C. Much faster than thermocompression bonding. Also exceeds conductive-paste bonding and sputtering thin films through porous flame-sprayed insulation on prewelded lead wires. Introduces no foreign material into thermocouple circuit and does not require careful control of thickness of flame-sprayed material.

  4. SLAM examination of solar cells and solar cell welds. [Scanning Laser Acoustic Microscope

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Vorres, C. L.; Yuhas, D. E.

    1981-01-01

    The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.

  5. Flexible, FEP-Teflon covered solar cell module development

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.; Cannady, M. D.

    1976-01-01

    Techniques and equipment were developed for the large scale, low-cost fabrication of lightweight, roll-up and fold-up, FEP-Teflon encapsulated solar cell modules. Modules were fabricated by interconnecting solderless single-crystal silicon solar cells and heat laminating them at approximately 300 C between layers of optically clear FEP and to a loadbearing Kapton substrate sheet. Modules were fabricated from both conventional and wraparound contact solar cells. A heat seal technique was developed for mechanically interconnecting modules into an array. The electrical interconnections for both roll-up and fold-up arrays were also developed. The use of parallel-gap resistance welding, ultrasonic bonding, and thermocompression bonding processes for attaching interconnects to solar cells were investigated. Parallel-gap welding was found to be best suited for interconnecting the solderless solar cells into modules. Details of the fabrication equipment, fabrication processes, module and interconnect designs, environmental test equipment, and test results are presented.

  6. Stitch-bond parallel-gap welding for IC circuits

    NASA Technical Reports Server (NTRS)

    Chvostal, P.; Tuttle, J.; Vanderpool, R.

    1980-01-01

    Stitch-bonded flatpacks are superior to soldered dual-in-lines where size, weight, and reliability are important. Results should interest designers of packaging for complex high-reliability electronics, such as that used in security systems, industrial process control, and vehicle electronics.

  7. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1985-01-01

    A program was conducted to demonstrate the cycle life capability of welded solar cell modules relative to a soldered solar cell module in a simulated low earth orbit thermal environment. A total of five 18-cell welded (parallel gap resistance welding) modules, three 18-cell soldered modules, and eighteen single cell samples were fabricated using 2 x 4 cm silicon solar cells from ASEC, fused silica cover glass from OCLI, silver plated Invar interconnectors, DC 93-500 adhesive, and Kapton-Kevlar-Kapton flexible substrate material. Zero degree pull strength ranged from 2.4 to 5.7 lbs for front welded contacts (40 samples), and 3.5 to 6.2 lbs for back welded contacts (40 samples). Solar cell cross sections show solid state welding on both front and rear contacts. The 18-cell welded modules have a specific power of 124 W/kg and an area power density of 142 W/sq m (both at 28 C). Three welded and one soldered module were thermal cycle tested in a thermal vacuum chamber simulating a low earth orbit thermal environment.

  8. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    DOEpatents

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  9. Influence of the Gap Width on the Geometry of the Welded Joint in Hybrid Laser-Arc Welding

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Mildebrath, M.; Hassel, T.

    The aim of this research was the experimental investigation of the influence of the gap width and speed of the welding wire on the changes of the geometry in the welded joint in the hybrid laser-arc welding of shipbuilding steel RS E36. The research was divided into three parts. First, in order to understand the influence of the gap width on the welded joint geometry, experimental research was done using continuous wave fiber laser IPG YLS-15000 with arc rectifier VDU-1500DC. The second part involved study of the geometry of the welded joint and hardness test results. Three macrosections from each welded joint were obtained. Influence of the gap width and welding wire speed on the welded joint geometry was researched in the three lines: in the right side of the plates, middle welded joint and in the root welded joint.

  10. High temperature - low mass solar blanket

    NASA Technical Reports Server (NTRS)

    Mesch, H. G.

    1979-01-01

    Interconnect materials and designs for use with ultrathin silicon solar cells are discussed, as well as the results of an investigation of the applicability of parallel-gap resistance welding for interconnecting these cells. Data relating contact pull strength and cell electrical degradation to variations in welding parameters such as time, voltage and pressure are presented. Methods for bonding ultrathin cells to flexible substances and for bonding thin (75 micrometers) covers to these cells are described. Also, factors influencing fabrication yield and approaches for increasing yield are discussed. The results of vacuum thermal cycling and thermal soak tests on prototype ultrathin cell test coupons and one solar module blanket are presented.

  11. Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.

    DTIC Science & Technology

    1983-03-31

    evaluated on the Narrow Gap welding system. By using the combinational qas shielding assembly, it is now possible to reduce the gas flow rates to a value...AD-A145 496 DESIGN CONSTRUCTION DEMONSTRATION AND DE IVER OF AN AUTOMATED NARROW GAP WELDING SYSTEM(U) CRC AUTOMATIC WELDING CO HODSTON SX 31 MAR 83...STANDARDS-963 - A CRC REPORT NO. NAV A/W 7 0PHASE 3 REPORT ON SDESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF AN AUTOMATED NARROW GAP WELDING

  12. Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.

    DTIC Science & Technology

    1982-06-29

    DESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF WE DA4I &NARROW GAP CONTRACT NO. NOOGOO-81-C-E923 TO DAVID TAYLOR NAVAL RESEARCH AND DEVELOPMENT...the automated * Narrow Gap welding process, is the narrow (3/8 - inch), square-butt joint *design. This narrow joint greatly reduces the volume of weld...AD-i45 495 DESIGN CONSTRUCTION DEMONSTRATION AiND DELIVERY OF RN 1/j AUrOMATED NARROW GAP WELDING SYSTEMI() CRC AUTOMATIC WELDING CO HOUSTON TX 29

  13. Microstructure and Mechanical Properties of Narrow Gap Laser-Arc Hybrid Welded 40 mm Thick Mild Steel.

    PubMed

    Zhang, Chen; Li, Geng; Gao, Ming; Zeng, XiaoYan

    2017-01-26

    Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV 0.2 , indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections.

  14. Microstructure and Mechanical Properties of Narrow Gap Laser-Arc Hybrid Welded 40 mm Thick Mild Steel

    PubMed Central

    Zhang, Chen; Li, Geng; Gao, Ming; Zeng, XiaoYan

    2017-01-01

    Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV0.2, indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections. PMID:28772469

  15. Autocorrelation Function for Monitoring the Gap between The Steel Plates During Laser Welding

    NASA Astrophysics Data System (ADS)

    Mrna, Libor; Hornik, Petr

    Proper alignment of the plates prior to laser welding represents an important factor that determines the quality of the resulting weld. A gap between the plates in a butt or overlap joint affects the oscillations of the keyhole and the surrounding weld pool. We present an experimental study of the butt and overlap welds with the artificial gap of the different thickness of the plates. The welds were made on a 2 kW fiber laser machine for the steel plates and the various welding parameters settings. The eigenfrequency of the keyhole oscillations and its changes were determined from the light emissions of the plasma plume using an autocorrelation function. As a result, we describe the relations between the autocorrelation characteristics, the thickness of the gap between plates and the weld geometry.

  16. Progress in developing ultrathin solar cell blanket technology

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Mesch, H. G.; Scott-Monck, J.

    1984-01-01

    A program was conducted to develop technologies for welding interconnects to three types of 50-micron-thick, 2 by 2-cm solar cells. Parallel-gap resistance welding was used for interconnect attachment. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Six 48-cell modules were assembled with 50-micron (nominal) thick cells, frosted fused-silica covers, silver-plated Invar interconnectors, and four different substrate designs. Three modules (one for each cell type) have single-layer Kapton (50-micron-thick) substrates. The other three modules each have a different substrate (Kapton-Kevlar-Kapton, Kapton-graphite-Kapton, and Kapton-graphite-aluminum honeycomb-graphite). All six modules were subjected to 4112 thermal cycles from -175 to 65 C (corresponding to over 40 years of simulated geosynchronous orbit thermal cycling) and experienced only negligible electrical degradation (1.1 percent average of six 48-cell modules).

  17. Influence of the Strength Mismatch of a Narrow Gap Welded Joint of SA508 on the Plastic η Factor

    NASA Astrophysics Data System (ADS)

    Koo, J. M.; Huh, Y.; Seok, C. S.

    2012-11-01

    In this article, the influence of the strength mismatch of a narrow gap welded joint of SA508 on the η factor was evaluated. The η factor is the principal parameter that determines the plastic portion of the J-integral. The specimens for tensile and hardness tests were collected from piping with narrow gap welding and the stress-strain curve and hardness were obtained from those. From these results, the Ramberg-Osgood (R-O) constant was obtained. Also, the finite element analysis was performed with variations in the strength mismatch and the weld width. The η factor equation considering the strength mismatch and the weld width of a narrow gap welded joint was suggested.

  18. Improving fatigue performance of rail thermite welds

    NASA Astrophysics Data System (ADS)

    Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.

    2010-06-01

    Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.

  19. Testing of wide-gap welds at eastern mega site.

    DOT National Transportation Integrated Search

    2013-08-01

    In 2005, Transportation Technology Center, Inc. (TTCI) and Norfolk Southern Railway (NS) began a test of wide-gap welds (WGWs) at the eastern mega site near Bluefield, WV. : WGWs enable the repair of weld or railhead defects with a single weld instea...

  20. Fast, Nonspattering Inert-Gas Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Proposed welding technique combines best features of metal (other than tungsten)/inert-gas welding, plasma arc welding, and tungsten/inert-gas welding. Advantages include: wire fed to weld joint preheated, therefore fed at high speed without spattering; high-frequency energy does not have to be supplied to workpiece to initiate welding; size of arc gap not critical, power-supply control circuit adjusts voltage across gap to compensate for changes; only low gas-flow rate needed; welding electrode replaced easily as prefabricated assembly; external wire-feeding manipulator not needed; and welding process relatively forgiving of operator error.

  1. Mechanical properties of thin films of laser-welded titanium and their associated welding defects.

    PubMed

    Wu, Yulu; Xin, Haitao; Zhang, Chunbao; Tang, Zhongbin; Zhang, Zhiyuan; Wang, Weifeng

    2014-11-01

    The aim of this study was to evaluate the mechanical properties of thin films of laser-welded cast titanium using an interference strain/displacement gauge (ISDG) and to analyze factors that affect laser welding. Dog-bone-shaped small specimens of cast titanium were prepared by wire cutting after they were laser-welded. The specimens were divided into three groups according to the gap distance of the laser weld; the control was non-welded titanium. Small specimens without cast defects detected by X-ray screening were measured by a tensile test machine using ISDG, and stress-strain curves were drawn. Finally, the fracture texture was analyzed. The ultimate tensile strengths (UTSs) of specimens with a gap distance of 0.00, 0.25, and 0.50 mm were 492.16 ± 33.19, 488.09 ± 43.18, and 558.45 ± 10.80 MPa, respectively. There were no significant differences in UTS between the test groups and the control group (p > 0.05). However, the plastic deformation and the percent elongation increased as the gap distance increased. Incomplete penetration defects appeared in groups that had small gap distances, which may have affected the properties of the laser-welded titanium. However, the welding material was still pure titanium. These results suggest that an appropriate gap distance should be maintained to improve the application of dental laser welding.

  2. Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; Chen, Yuquan; You, Deyong; Xiao, Zhenlin; Chen, Xiaohui

    2017-02-01

    An approach for seam tracking of micro gap weld whose width is less than 0.1 mm based on magneto optical (MO) imaging technique during butt-joint laser welding of steel plates is investigated. Kalman filtering(KF) technology with radial basis function(RBF) neural network for weld detection by an MO sensor was applied to track the weld center position. Because the laser welding system process noises and the MO sensor measurement noises were colored noises, the estimation accuracy of traditional KF for seam tracking was degraded by the system model with extreme nonlinearities and could not be solved by the linear state-space model. Also, the statistics characteristics of noises could not be accurately obtained in actual welding. Thus, a RBF neural network was applied to the KF technique to compensate for the weld tracking errors. The neural network can restrain divergence filter and improve the system robustness. In comparison of traditional KF algorithm, the RBF with KF was not only more effectively in improving the weld tracking accuracy but also reduced noise disturbance. Experimental results showed that magneto optical imaging technique could be applied to detect micro gap weld accurately, which provides a novel approach for micro gap seam tracking.

  3. Analysis of Welding Zinc Coated Steel Sheets in Zero Gap Configuration by 3D Simulations and High Speed Imaging

    NASA Astrophysics Data System (ADS)

    Koch, Holger; Kägeler, Christian; Otto, Andreas; Schmidt, Michael

    Welding of zinc coated sheets in zero gap configuration is of eminent interest for the automotive industry. This Laser welding process would enable the automotive industry to build auto bodies with a high durability in a plain manufacturing process. Today good welding results can only be achieved by expensive constructive procedures such as clamping devices to ensure a defined gad. The welding in zero gap configuration is a big challenge because of the vaporised zinc expelled from the interface between the two sheets. To find appropriate welding parameters for influencing the keyhole and melt pool dynamics, a three dimensional simulation and a high speed imaging system for laser keyhole welding have been developed. The obtained results help to understand the process of the melt pool perturbation caused by vaporised zinc.

  4. Arc-starting aid for GTA welding

    NASA Technical Reports Server (NTRS)

    Whiffen, E. L.

    1977-01-01

    Three-in-one handtool combining arc-gap gage, electrode tip sander, and electrode projection gate, effectively improves initiation on gas tungsten arc (GTA), automatic skate-welding machines. Device effects ease in polishing electrode tips and setting exactly initial arc gap before each weld pass.

  5. Molecular dynamics study on welding a defected graphene by a moving fullerene

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Wan, Jing; Yu, Jingzhou; Cai, Haifang; Qin, Qinghua

    2016-07-01

    When a composite nanostructure is fabricated through van der Waals interaction only, the interaction among components may be sensitive to environmental conditions. To endow such a structure with relative stability, new covalent bonds should be applied. In this paper, a welding method for welding a circular graphene with a defect gap through a moving fullerene (C240 or C540 buckyball) is presented. When the buckyball moves above the gap, the two faces of the gap are attracted to each other and the distance between the two faces is shortened. When the dangling carbon atoms on both faces of the gap are excited to form new normal sp2-sp2 carbon bonds, the gap can be sewn up quickly. Molecular dynamics simulations are presented to demonstrate the welding process. When the gap is a sector, an ideal cone can be fabricated using the present method.

  6. Laser weld jig. [Patent application

    DOEpatents

    Van Blarigan, P.; Haupt, D.L.

    1980-12-05

    A system is provided for welding a workpiece along a predetermined weld line that may be of irregular shape, which includes the step of forming a lip on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members. Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reusable jig forming the lip, and with the jig constructed to detachably hold parts to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  7. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.

    1984-01-01

    A long duration test was conducted for comparing various methods of attaching electrical interconnects to solar cells for near Earth orbit spacecraft. Representative solar array modules were thermally cycled for 36,000 cycles between -80 and +80 C. The environmental stress of more than 6 years on a near Earth spacecraft as it cycles in and out of the earth's shadow was simulated. Evaluations of the integrity of these modules were made by visual and by electrical examinations before starting the cycling and then at periodic intervals during the cycling tests. Modules included examples of parallel gap and of ultrasonic welding, as well as soldering. The materials and fabrication processes are state of the art, suitable for forming large solar arrays of spacecraft quality. The modules survived this extensive cycling without detectable degradation in their ability to generate power under sunlight illumination.

  8. Laser weld jig

    DOEpatents

    Van Blarigan, Peter; Haupt, David L.

    1982-01-01

    A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  9. Lightweight Materials for Vehicles: Needs, Goals, and Future Technologies

    DTIC Science & Technology

    2010-08-01

    during heating, cooling, and deformation - Developing an improved understanding of the kinetics and mechanisms for tranisition Friction Stir Welding ...technology worthiness - Identify new gaps and opportunities Pre- competitive Research Solicitations and Demonstrations - Identify technology gaps...or processing . Key Technology Gaps Active Research . Gap: Microstructural damage during welding limits potential usefulness - Many

  10. Effects of joint configuration for the arc welding of cast Ti-6Al-4V alloy rods in argon.

    PubMed

    Taylor, J C; Hondrum, S O; Prasad, A; Brodersen, C A

    1998-03-01

    Titanium and its alloys are more commonly used in prosthodontics and welding has become the most common modality for their joining. Studies on the welding of titanium and its alloys have not quantified this value, though its importance has been suggested. This study compared the strength and properties of the joint achieved at various butt joint gaps by the arc-welding of cast Ti-6Al-4V alloy tensile bars in an argon atmosphere. Forty of 50 specimens were sectioned and welded at four gaps. All specimens underwent tensile testing to determine ultimate tensile strength and percentage elongation, then oxygen analysis and scanning electron microscopy. As no more than 3 samples in any group of 10 actually fractured in the weld itself, a secondary analysis that involved fracture location was initiated. There were no differences in ultimate tensile strength or percentage elongation between specimens with weld gaps of 0.25, 0.50, 0.75, and 1.00 mm and the as-cast specimens. There were no differences in ultimate tensile strength between specimens fracturing in the weld and those fracturing in the gauge in welded specimens; however, as-cast specimens demonstrated a higher ultimate tensile strength than welded specimens that fractured in the weld. Specimens that fractured in the weld site demonstrated less ductility than those that fractured in the gauge in both welded and as-cast specimens, as confirmed by scanning electron microscopy examination. The weld wire showed an oxygen scavenging effect from the as-cast parent alloy. The effects of the joint gap were not significant, whereas the characteristics of the joint itself were, which displayed slightly lower strength and significantly lower ductility (and thus decreased toughness). The arc-welding of cast titanium alloy in argon atmosphere appears to be a reliable and efficient prosthodontic laboratory modality producing predictable results, although titanium casting and joining procedures must be closely controlled to minimize heat effects and oxygen contamination.

  11. Reduced heat input keyhole welding through improved joint design

    NASA Technical Reports Server (NTRS)

    Sanders, John M. (Inventor); Harwig, Dennis D. (Inventor)

    1993-01-01

    An improved high energy density welding method for reducing input keyhole welding prepares the weld joint (8) between two edges (10, 14) of at least one member by separating the edges (10, 14) of the member (12, 16) with a controllable gap (22) by a projecting portion (24) selectively positioned on one edge (10, 14) of the member (12, 16). The projecting portion (24) closely abuts the other edge of the member for maintaining the controlled distance (d) of the controllable gap (22) to enhance the welding method.

  12. Characteristics of Extra Narrow Gap Weld of HSLA Steel Welded by Single-Seam per Layer Pulse Current GMA Weld Deposition

    NASA Astrophysics Data System (ADS)

    Agrawal, B. P.; Ghosh, P. K.

    2017-03-01

    Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.

  13. Laser penetration spike welding: a welding tool enabling novel process and design opportunities

    NASA Astrophysics Data System (ADS)

    Dijken, Durandus K.; Hoving, Willem; De Hosson, J. Th. M.

    2002-06-01

    A novel method for laser welding for sheet metal. is presented. This laser spike welding method is capable of bridging large gaps between sheet metal plates. Novel constructions can be designed and manufactured. Examples are light weight metal epoxy multi-layers and constructions having additional strength with respect to rigidity and impact resistance. Its capability to bridge large gaps allows higher dimensional tolerances in production. The required laser systems are commercially available and are easily implemented in existing production lines. The lasers are highly reliable, the resulting spike welds are quickly realized and the cost price per weld is very low.

  14. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.

    1984-01-01

    A long duration test has been conducted for comparing various methods of attaching electrical interconnects to solar cells for near Earth orbit spacecraft. Representative solar array modules have been thermally cycled for 36,000 cycles between -80 and +80 C on this JPL and NASA Lewis Research Center sponsored work. This test simulates the environmental stress of more than 6 years on a near Earth spacecraft as it cycles in and out of the Earth's shadow. Evaluations of the integrity of these modules were made by visual and by electrical examinations before starting the cycling and then at periodic intervals during the cycling tests. Modules included examples of parallel gap and of ultrasonic welding, as well as soldering. The materials and fabrication processes are state of the art, suitable for forming large solar arrays of spacecraft quality. The modules survived his extensive cycling without detectable degradation in their ability to generate power under sunlight illumination.

  15. Development of strain gages for use to 1311 K (1900 F)

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1974-01-01

    A high temperature electric resistance strain gage system was developed and evaluated to 1366 K (2000 F) for periods of at least one hour. Wire fabricated from a special high temperature strain gage alloy (BCL-3), was used to fabricate the gages. Various joining techniques (NASA butt welding, pulse arc, plasma needle arc, and dc parallel gap welding) were investigated for joining gage filaments to each other, gage filaments to lead-tab ribbons, and lead-tab ribbons to lead wires. The effectiveness of a clad-wire concept as a means of minimizing apparent strain of BCL-3 strain gages was investigated by sputtering platinum coatings of varying thicknesses on wire samples and establishing the optimum coating thickness--in terms of minimum resistivity changes with temperature. Finally, the moisture-proofing effectiveness of barrier coatings subjected to elevated temperatures was studied, and one commercial barrier coating (BLH Barrier H Waterproofing) was evaluated.

  16. Surface separation investigation of ultrafast pulsed laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Jianyong; Carter, Richard M.; Thomson, Robert R.; Hand, Duncan P.

    2016-03-01

    Techniques for joining materials, especially optical materials such as glass to structural materials such as metals, or to other optical materials, while maintaining their surface and optical properties are essential for a wide range of industrial applications. Adhesive bonding is commonly used but leads to many issues including optical surface contamination and outgassing. It is possible to generate welds using an ultra-short pulsed laser process, whereby two flat material surfaces are brought into close contact and the laser is focused through the optical material onto the interface. Highly localised melting and rapid resolidification form a strong bond between the two surfaces whilst avoiding significant heating of the surrounding material, which is important for joining materials with different thermal expansion coefficients. Previous reports on ultrafast laser welding have identified a requirement for the surface separation gap to be less than 500nm in order to avoid cracking or ablation at the interface. We have investigated techniques for increasing this gap (to reduce weld fit-up problems), and tested by bonding two surfaces with a weld-controlled gap. These gaps were generated either by a series of etched grooves on the surface of one of the substrates, or by using a cylindrical lens as a substrate. By careful optimisation of parameters such as laser power, process speed and focal position, we were able to demonstrate successful welding with a gap of up to 3μm.

  17. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  18. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  19. Wire-Guide Manipulator For Automated Welding

    NASA Technical Reports Server (NTRS)

    Morris, Tim; White, Kevin; Gordon, Steve; Emerich, Dave; Richardson, Dave; Faulkner, Mike; Stafford, Dave; Mccutcheon, Kim; Neal, Ken; Milly, Pete

    1994-01-01

    Compact motor drive positions guide for welding filler wire. Drive part of automated wire feeder in partly or fully automated welding system. Drive unit contains three parallel subunits. Rotations of lead screws in three subunits coordinated to obtain desired motions in three degrees of freedom. Suitable for both variable-polarity plasma arc welding and gas/tungsten arc welding.

  20. Ultrasonically-assisted Thermal Stir Welding System

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  1. Fatigue strength of socket welded pipe joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuchi, Makoto; Hayashi, Makoto; Yamauchi, Takayoshi

    1995-12-01

    Fully reversed four point bending fatigue tests were carried out on small diameter socket welded joints made of carbon steels. Experimental parameters were pipe diameter, thicknesses of pipe and socket wall, throat depth and shape of fillet welds, slip-on and diametral gaps in the socket welding, lack of penetration at the root of fillet welds, and peening of fillet welds. In most cases a fatigue crack started from the root of the fillet, but in the case of higher stress amplitude, it tended to start from the toe of fillet. The standard socket welded joint for a pipe with amore » 50 mm nominal diameter showed a relatively low fatigue strength of 46 MPa in stress amplitude at the 10{sup 7} cycles failure life. This value corresponds to about 1/5 of that for the smoothed base metal specimens in axial fatigue. The fatigue strength decreased with increasing pipe diameter, and increased with increasing thickness of the pipe and socket wall. The effects of throat depth and shape of fillet welds on fatigue strength were not significant. Contrary to expectation, the fatigue strength of a socket welded joint without slip-on gap is Higher than that of the joint with a normal gap. A lack of penetration at the root deleteriously reduced fatigue strength, showing 14 MPa in stress amplitude at the 10{sup 7} cycles failure life for the 50 mm diameter socket joint.« less

  2. Fatigue crack growth of 316NG austenitic stainless steel welds at 325 °C

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Xiao, J.; Chen, Y.; Zhou, J.; Qiu, S. Y.; Xu, Q.

    2018-02-01

    316NG austenitic stainless steel is a commonly-used material for primary coolant pipes of pressurized water reactor systems. These pipes are usually joined together by automated narrow gap welding process. In this study, welds were prepared by narrow gap welding on 316NG austenitic stainless steel pipes, and its microstructure of the welds was characterized. Then, fatigue crack growth tests were conducted at 325 °C. Precipitates enriched with Mn and Si were found in the fusion zone. The fatigue crack path was out of plane and secondary cracks initiated from the precipitate/matrix interface. A moderate acceleration of crack growth was also observed at 325°Cair and water (DO = ∼10 ppb) with f = 2 Hz.

  3. Pre-resistance-welding resistance check

    DOEpatents

    Destefan, Dennis E.; Stompro, David A.

    1991-01-01

    A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

  4. Thermoplastic welding apparatus and method

    DOEpatents

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  5. Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints

    NASA Astrophysics Data System (ADS)

    Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael

    Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.

  6. Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA

    NASA Astrophysics Data System (ADS)

    Rong, Youmin; Zhang, Zhen; Zhang, Guojun; Yue, Chen; Gu, Yafei; Huang, Yu; Wang, Chunming; Shao, Xinyu

    2015-04-01

    The laser brazing (LB) is widely used in the automotive industry due to the advantages of high speed, small heat affected zone, high quality of welding seam, and low heat input. Welding parameters play a significant role in determining the bead geometry and hence quality of the weld joint. This paper addresses the optimization of the seam shape in LB process with welding crimping butt of 0.8 mm thickness using back propagation neural network (BPNN) and genetic algorithm (GA). A 3-factor, 5-level welding experiment is conducted by Taguchi L25 orthogonal array through the statistical design method. Then, the input parameters are considered here including welding speed, wire speed rate, and gap with 5 levels. The output results are efficient connection length of left side and right side, top width (WT) and bottom width (WB) of the weld bead. The experiment results are embed into the BPNN network to establish relationship between the input and output variables. The predicted results of the BPNN are fed to GA algorithm that optimizes the process parameters subjected to the objectives. Then, the effects of welding speed (WS), wire feed rate (WF), and gap (GAP) on the sum values of bead geometry is discussed. Eventually, the confirmation experiments are carried out to demonstrate the optimal values were effective and reliable. On the whole, the proposed hybrid method, BPNN-GA, can be used to guide the actual work and improve the efficiency and stability of LB process.

  7. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  8. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  9. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  10. Weld Nugget Temperature Control in Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  11. Pulsed welding plasma source

    NASA Astrophysics Data System (ADS)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.

    2016-04-01

    It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.

  12. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  13. Volume gratings and welding of glass/plastic by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru

    2018-01-01

    Femtosecond laser direct writing is used to fabricate diffractive optical elements in three dimensions and to weld glass and/or plastic. In this paper, we review volume gratings in plastics and welding of glass/plastic by femtosecond laser direct writing. Volume gratings were embedded inside polymethyl methacrylate (PMMA) by femtosecond laser pulses. The diffraction efficiency of the gratings increased after fabrication and reached the maximum. After an initial slow decrease within first several days after the fabrication, the efficiency increased again. This phenomena was called regeneration of the grating. We also demonstrate welding of PMMA by dendrite pattern using femtosecond laser pulses. Laser pulses are focused at the interface of two PMMA substrates with an air gap and melted materials in laser-irradiated region spread within a gap of the substrates and dendrite morphology of melted PMMA was observed outside the laser irradiated area. Finally, we show welding of glass/plastic and metal.

  14. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  15. Automatic welding systems for large ship hulls

    NASA Astrophysics Data System (ADS)

    Arregi, B.; Granados, S.; Hascoet, JY.; Hamilton, K.; Alonso, M.; Ares, E.

    2012-04-01

    Welding processes represents about 40% of the total production time in shipbuilding. Although most of the indoor welding work is automated, outdoor operations still require the involvement of numerous operators. To automate hull welding operations is a priority in large shipyards. The objective of the present work is to develop a comprehensive welding system capable of working with several welding layers in an automated way. There are several difficulties for the seam tracking automation of the welding process. The proposed solution is the development of a welding machine capable of moving autonomously along the welding seam, controlling both the position of the torch and the welding parameters to adjust the thickness of the weld bead to the actual gap between the hull plates.

  16. Improved Abutting Edges For Welding In Keyhole Mode

    NASA Technical Reports Server (NTRS)

    Harwing, Dennis D.; Sanders, John M.

    1994-01-01

    Welds of better quality made, and/or heat input reduced. Improved shapes devised for abutting edges of metal pieces to be joined by plasma arc welding in keyhole mode, in which gas jet maintains molten hole ("keyhole") completely through thickness of weld joint. Edges of metal pieces to be welded together machined to provide required combination gap and shaped, thin sections. Shapes and dimensions chosen to optimize weld in various respects; e.g., to enhance penetration of keyhole or reduce heat input to produce joint of given thickness.

  17. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    NASA Astrophysics Data System (ADS)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  18. Influence of laser beam incidence angle on laser lap welding quality of galvanized steels

    NASA Astrophysics Data System (ADS)

    Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan

    2017-11-01

    Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.

  19. Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Zhang, Jianchao; Yang, Jiaoxi; Lu, Junxia; Liao, Hongbin; Wang, Xiaoyu

    2018-05-01

    Reduced activation ferritic martensitic (RAFM) steel is chosen as a structural material for test blanket modules (TBMs) to be constructed in International Thermonuclear Experimental Reactor (ITER) and China Fusion Engineering Test Reactor (CFETR). Chinese specific RAFM steel named with CLF-1 has been developed for CFETR. In this paper, a narrow-gap groove laser multi-pass welding of CLF-1 steel with thickness of 35 mm is conduced by YLS-15000 fiber laser. Further, the microstructures of different regions in the weld joint were characterized, and tensile impact and micro-hardness tests were carried out for evaluating the mecharical properties. The results show that the butt weld joint of CLF-1 steel with a thickness of 35 mm was well-formed using the optimal narrow-gap laser filler wire welding and no obvious defects was found such as incomplete fusion cracks and pores. The microstructures of backing layer is dominated by lath martensites and the Heat-Affected Zone (HAZ) was mainly filled with two-phase hybrid structures of secondary-tempering sorbites and martensites. The filler layer is similar to the backing layer in microstructures. In tensile tests, the tensile samples from different parts of the joint all fractured at base metal (BM). The micro-hardness of weld metal (WM) was found to be higher than that of BM and the Heat-Affected Zone (HAZ) exhibited no obvious softening. After post weld heat treatment (PWHT), it can be observed that the fusion zone of the autogenous welding bead and the upper filling beads mainly consist of lath martensites which caused the lower impact absorbing energy. The HAZ mainly included two-phase hybrid structures of secondary-tempering sorbites and martensites and exhibited favorable impact toughness.

  20. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    NASA Astrophysics Data System (ADS)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  1. Heat flux instrumentation for Hyflite thermal protection system

    NASA Technical Reports Server (NTRS)

    Diller, T. E.

    1994-01-01

    Using Thermal Protection Tile core samples supplied by NASA, the surface characteristics of the FRCI, TUFI, and RCG coatings were evaluated. Based on these results, appropriate methods of surface preparation were determined and tested for the required sputtering processes. Sample sensors were fabricated on the RCG coating and adhesion was acceptable. Based on these encouraging results, complete Heat Flux Microsensors were fabricated on the RCG coating. The issue of lead attachment was addressed with the annnealing and welding methods developed at NASA Lewis. Parallel gap welding appears to be the best method of lead attachment with prior heat treatment of the sputtered pads. Sample Heat Flux Microsensors were submitted for testing in the NASA Ames arc jet facility. Details of the project are contained in two attached reports. One additional item of interest is contained in the attached AIAA paper, which gives details of the transient response of a Heat Flux Microsensors in a shock tube facility at Virginia Tech. The response of the heat flux sensor was measured to be faster than 10 micro-s.

  2. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  3. Hybrid/Tandem Laser-Arc Welding of Thick Low Carbon Martensitic Stainless Steel Plates =

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh

    High efficiency and long-term life of hydraulic turbines and their assemblies are of utmost importance for the hydropower industry. Usually, hydroelectric turbine components are made of thick-walled low carbon martensitic stainless steels. The assembly of large hydroelectric turbine components has been a great challenge. The use of conventional welding processes involves typical large groove design and multi-pass welding to fill the groove which exposes the weld to a high heat input creating relatively large fusion zone and heat affected zone. The newly-developed hybrid/tandem laser-arc welding technique is believed to offer a highly competitive solution to improve the overall hydro-turbine performance by combining the high energy density and fast welding speed of the laser welding technology with the good gap bridging and feeding ability of the gas metal arc welding process to increase the productivity and reduce the consumable material. The main objective of this research work is to understand different challenges appearing during hybrid laser-arc welding (HLAW) of thick gauge assemblies of low carbon 13%Cr- 4%Ni martensitic stainless steel and find a practical solution by adapting and optimizing this relatively new welding process in order to reduce the number of welding passes necessary to fill the groove gap. The joint integrity was evaluated in terms of microstructure, defects and mechanical properties in both as-welded and post-welded conditions. A special focus was given to the hybrid and tandem laser-arc welding technique for the root pass. Based on the thickness of the low carbon martensitic stainless steel plates, this work is mainly focused on the following two tasks: • Single pass hybrid laser-arc welding of 10-mm thick low carbon martensitic stainless steel. • Multi-pass hybrid/tandem laser-arc welding of 25-mm thick martensitic stainless steel.

  4. Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-05-01

    The effect of surface oxide layer existing at the lap-joint faying surface of magnesium sheets is investigated on the keyhole dynamics of the weld pool and weld bead qualities. It is observed that by removing the oxide layer from the faying surface of the lap joint, a high quality weld can be achieved in the laser welding process. However, the presence of an oxide layer deteriorates the quality of the weld by forming pores at the interface of the two overlapped sheets. The purpose of this paper is to identify the correlation between the integrity of the weld and the interaction between the laser and material. A spectroscopy sensor was applied to detect the spectra emitted from a plasma plume during the laser welding of AZ31B magnesium alloy in a zero-gap lap joint configuration. The electron temperature was calculated by applying a Boltzmann plot method based on the detected spectra, and the correlation between the pore formation and the spectral signals was studied. The laser molten pool and the keyhole condition were monitored in real-time by a high speed charge-coupled device (CCD) camera. A green laser was used as an illumination source in order to detect the influence of the oxide layer on the dynamic behavior of the molten pool. Results revealed that the detected spectrum and weld defects had a meaningful correlation for real-time monitoring of the weld quality during laser welding of magnesium alloys.

  5. 76 FR 30241 - Pipeline Safety: Notice of Public Meetings on Managing Challenges With Pipeline Seam Welds and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... involving seam weld anomalies and gaps in data and recordkeeping are driving a stronger focus on better... measures. These public meetings are designed to provide an open forum for exchanging information on the... determining the nature and extent of the seam weld issue from industry and government data. 2. Presenting...

  6. Effect of Inverter Power Source Characteristics on Welding Stability and Heat Affected Zone Dimensions

    NASA Astrophysics Data System (ADS)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Mamadaliev, R. A.

    2018-01-01

    The paper presents results the research in the effect of power sources dynamic characteristics on stability of melting and electrode metal transfer to the weld pool shielded metal arc welding. It is proved that when applying inverter-type welding power sources, heat and mass transfer characteristics change, arc gap short-circuit time and drop generation time are reduced. This leads to reduction of weld pool heat content and contraction of the heat-affected zone by 36% in comparison the same parameters obtained using a diode rectifier.

  7. Comparison of joint designs for laser welding of cast metal plates and wrought wires.

    PubMed

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2013-01-01

    The purpose of the present study was to compare joint designs for the laser welding of cast metal plates and wrought wire, and to evaluate the welded area internally using X-ray micro-focus computerized tomography (micro-CT). Cast metal plates (Ti, Co-Cr) and wrought wires (Ti, Co-Cr) were welded using similar metals. The specimens were welded using four joint designs in which the wrought wires and the parent metals were welded directly (two designs) or the wrought wires were welded to the groove of the parent metal from one or both sides (n = 5). The porosity and gap in the welded area were evaluated by micro-CT, and the maximum tensile load of the welded specimens was measured with a universal testing machine. An element analysis was conducted using an electron probe X-ray microanalyzer. The statistical analysis of the results was performed using Bonferroni's multiple comparisons (α = 0.05). The results included that all the specimens fractured at the wrought wire when subjected to tensile testing, although there were specimens that exhibited gaps due to the joint design. The wrought wires were affected by laser irradiation and observed to melt together and onto the filler metal. Both Mo and Sn elements found in the wrought wire were detected in the filler metal of the Ti specimens, and Ni was detected in the filler metal of the Co-Cr specimens. The four joint designs simulating the designs used clinically were confirmed to have adequate joint strength provided by laser welding.

  8. Charpy V-notch properties and microstructures of narrow gap ferritic welds of a quenched and tempered steel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.L.F.; Herfurth, G.

    1998-11-01

    Multipass welds of quenched and tempered 50-mm-thick steel plate have been deposited by a single wire narrow gap process using both gas metal arc welding (GMAW) and submerged arc welding (SAW). Of the five welds, two reported much lower Charpy V-notch (CVN) values when tested at {minus} 20 C. The CVN toughness did not correlate with either the welding process or whether the power source was pulsed or nonpulsed. The only difference in the ferritic microstructure between the two welds of low Charpy values and the three of high values was the percentage of acicular ferrite. There was no effectmore » of the percentage of as-deposited reheated zones intersected by the Charpy notch or the microhardness of the intercellular-dendritic regions. In all welds, austenite was the microconstituent between the ferrite laths. The percentage of acicular ferrite correlated with the presence of MnO, TiO{sub 2}, {gamma} Al{sub 2}O{sub 3}, or MnO. Al{sub 2}O{sub 3} as the predominant crystalline compound in the oxide inclusions. In turn, the crystalline compound depended on the aluminum-to-titanium ratio in both the weld deposits and the oxide inclusions. In addition to the presence of less acicular ferrite, the two welds that showed lower Charpy values also reported more oxide inclusions greater than 1 {micro}m in diameter. The combination of more oxide inclusions greater than 1 {micro}m and less acicular ferrite is considered to be the explanation for the lower Charpy values.« less

  9. Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes

    PubMed Central

    Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng

    2017-01-01

    Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed. PMID:28335425

  10. Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes.

    PubMed

    Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng

    2017-03-14

    Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed.

  11. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    PubMed

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  12. Heavy-section welding with very high power laser beams: the challenge

    NASA Astrophysics Data System (ADS)

    Goussain, Jean-Claude; Becker, Ahim; Chehaibou, A.; Leca, P.

    1997-08-01

    The 45 kW CO2 laser system of Institut de Soudure was used to evaluate and explore the possibilities offered by the high power laser beams for welding different materials in various thickness and in different welding positions. Stainless steels, low carbon steels, aluminum and titanium alloys were studied. Butt joints in 10 to 35 mm thick plates were achieved and evaluated by radiographic, metallurgical and mechanical tests. Gaps and alignment tolerances were determined with and without filler wire in order to obtain acceptable welds concerning the weld geometry, the aspect on front and end root sides. The main problem raised by heavy section welding concerns weld porosity in the weld which increases drastically with the thickness of the weld. Indications are given on their origin and the way to proceed in order to better control them. Lastly some large parts, recently welded on the system, are presented and discussed before drawing some conclusions on the prospects of very high power laser welding.

  13. Remote Laser Welding of Zinc Coated Steel Sheets in an Edge Lap Configuration with Zero Gap

    NASA Astrophysics Data System (ADS)

    Roos, Christian; Schmidt, Michael

    Remote Laser Welding (RLW) of zinc-coated steel sheets is a great challenge for the automotive industry but offers high potentials with respect to flexibility and costs. In state of the art applications, sheets are joined in overlap configuration with a preset gap for a stable zinc degassing. This paper investigates RLW of fillets without a preset gap and conditions for a stable process. The influence of process parameters on weld quality and process stability is shown. Experimental data give evidence, that the degassing of zinc through the capillary and the rear melt pool are the major degassing mechanisms. Furthermore the paper gives experimental validation of the zinc degassing in advance of the process zone to the open side of the fillet. Chemical analysis of the hot-dip galvanized zinc coating proof the iron-zinc-alloys to be the reason for a limited effectiveness of this mechanism in comparison to pure zinc as intermediate.

  14. Optimization of laser welding thin-gage galvanized steel via response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhao, Yangyang; Zhang, Yansong; Hu, Wei; Lai, Xinmin

    2012-09-01

    The increasing demand of light weight and durability makes thin-gage galvanized steels (<0.6 mm) attractive for future automotive applications. Laser welding, well known for its deep penetration, high speed and small heat affected zone, provides a potential solution for welding thin-gage galvanized steels in automotive industry. In this study, the effect of the laser welding parameters (i.e. laser power, welding speed, gap and focal position) on the weld bead geometry (i.e. weld depth, weld width and surface concave) of 0.4 mm-thick galvanized SAE1004 steel in a lap joint configuration has been investigated by experiments. The process windows of the concerned process parameters were therefore determined. Then, response surface methodology (RSM) was used to develop models to predict the relationship between the processing parameters and the laser weld bead profile and identify the correct and optimal combination of the laser welding input variables to obtain superior weld joint. Under the optimal welding parameters, defect-free weld were produced, and the average aspect ratio increased about 30%, from 0.62 to 0.83.

  15. Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel

    NASA Astrophysics Data System (ADS)

    Kutsuna, Muneharu; Chen, Liang

    2003-03-01

    Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).

  16. T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses

    NASA Astrophysics Data System (ADS)

    Spina, R.; Sorgente, D.; Palumbo, G.; Scintilla, L. D.; Brandizzi, M.; Satriano, A. A.; Tricarico, L.

    2012-03-01

    Titanium alloys are characterized by high mechanical properties and elevated corrosion resistance. The combination of laser welding with MIG/GMAW has proven to improve beneficial effects of both processes (keyhole, gap-bridging ability) while limiting their drawbacks (high thermal gradient, low mechanical resistance) In this paper, the hybrid Laser-GMAW welding of Ti-6Al-4V 3-mm thick sheets is investigated using a specific designed trailing shield. The joint geometry was the double fillet welded T-joint. Bead morphologies, microstructures and mechanical properties (micro-hardness) of welds were evaluated and compared to those achieved for the base metals.

  17. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method

    NASA Astrophysics Data System (ADS)

    Li, Ruoyang; Wang, Tianjiao; Wang, Chunming; Yan, Fei; Shao, Xinyu; Hu, Xiyuan; Li, Jianmin

    2014-12-01

    This paper details a new method that combines laser autogenous welding, laser wire filling welding and hybrid laser-GMAW welding to weld 30 mm thick plate using a multi-layer, multi-pass process. A “Y” shaped groove was used to create the joint. Research was also performed to optimize the groove size and the processing parameters. Laser autogenous welding is first used to create the backing weld. The lower, narrowest part of the groove is then welded using laser wire filling welding. Finally, the upper part of the groove is welded using laser-GMAW hybrid welding. Additionally, the wire feeding and droplet transfer behaviors are observed by high speed photography. The two main conclusions from this work are: the wire is often biased towards the side walls, resulting in a lack of fusion at the joint and the creation of other defects for larger groove sizes. Additionally, this results in the droplet transfer behavior becoming unstable, leading to a poor weld appearance for smaller groove sizes.

  18. Engineering approximations in welding: Bridging the gap between the speculation and simulation

    DOE PAGES

    Robino, Charles V.

    2016-01-15

    During the course of their careers, welding engineers and welding metallurgists are often confronted with questions regarding welding process and properties that on the surface appear to be simple and direct, but are in fact quite challenging. These questions generally mask an underlying complexity whose underpinnings in scientific and applied research predate even the founding of the American Welding Society, and previous Comfort A. Adams lectures provide ample and fascinating evidence of the breadth and depth of this complexity. Using these studies or their own experiences and investigations as a basis, most welding and materials engineers have developed engineering toolsmore » to provide working approaches to these day-to-day questions and problems. In this article several examples of research into developing working approaches to welding problems are presented.« less

  19. Engineering approximations in welding: Bridging the gap between the speculation and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robino, Charles V.

    During the course of their careers, welding engineers and welding metallurgists are often confronted with questions regarding welding process and properties that on the surface appear to be simple and direct, but are in fact quite challenging. These questions generally mask an underlying complexity whose underpinnings in scientific and applied research predate even the founding of the American Welding Society, and previous Comfort A. Adams lectures provide ample and fascinating evidence of the breadth and depth of this complexity. Using these studies or their own experiences and investigations as a basis, most welding and materials engineers have developed engineering toolsmore » to provide working approaches to these day-to-day questions and problems. In this article several examples of research into developing working approaches to welding problems are presented.« less

  20. Chamber free fusion welding root side purging method and apparatus

    NASA Technical Reports Server (NTRS)

    Mcgee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1993-01-01

    A method and apparati are presented for non-chamber root side purging in fusion welding of oxygen reactive metals which require that the molten weld zone and local solid areas of the weld seam remaining at high temperatures be shielded from normal atmosphere to prevent degradation of the welded area. The apparati provide an inert atmosphere to the root side of a weld joint through a porous medium whereby the jet-like thrust of the plasma arc actually draws the continuously supplied inert atmosphere into the path of the molten or high temperature solid weld zone. The porous medium is configured so it can be placed at the borders of the weld seam and substantially parallel to the seam without restricting the view of the root side of the seam. The inert gas is dispersed evenly through the porous media and across the weld seam, at the point of arc penetration and in front of and behind the arc. The apparati can be constructed so as to limit the amount of inert gas flow and can be mobile and travel synchronously with the welding arc.

  1. Chamber free fusion welding root side purging method and apparatus

    NASA Technical Reports Server (NTRS)

    Dailey, J. R. (Inventor); Mcgee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1995-01-01

    A method and apparati are presented for non-chamber root side purging in fusion welding of oxygen reactive metals which require that the molten weld zone and local solid areas of the weld seam remaining at high temperatures be shielded from normal atmosphere to prevent degradation of the welded area. The apparati provide an inert atmosphere to the root side of a weld joint through a porous medium whereby the jet-like thrust of the plasma arc actually draws the continuously supplied inert atmosphere into the path of the molten or high temperature solid weld zone. The porous medium is configured so it can be placed at the borders of the weld seam and substantially parallel to the seam without restricting the view of the root side of the seam. The inert gas is dispersed evenly through the porous media and across the weld seam, at the point of arc penetration and in front of and behind the arc. The apparati can be constructed so as to limit the amount of inert gas flow and can be mobile and travel synchronously with the welding arc.

  2. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  3. Hot-wire Laser Welding of Deep and Wide Gaps

    NASA Astrophysics Data System (ADS)

    Näsström, J.; Frostevarg, J.; Silver, T.

    Heavy section Gas Metal Arc Welding (GMAW) usually requires special edge preparation and several passes. One alternative for increased performance is Laser Arc Hybrid Welding (LAHW). For very thick sheets however, imperfections like root drops or solidification cracks can occur. In this study, other techniques are also studied, including multi-pass filling of deep gaps with wire deposition. A laser is then used to melt the filler and base material. The hot- and cold wire laser welding processes are highly sensitive to wire-laser positioning, where controlled melting of the wire is essential. Apart from a comprehensive literature survey, preliminary experiments were also performed in order to find a novel method variant that can successfully fill deep and wide gaps. The method applied uses a defocused laser that generates the melt pool. A resistance heated wire is fed into the melt pool front in a leading position. This is similar to additive manufacturing techniques such as laser direct metal deposition with wire. A layer height of several millimeters can be achieved and rather low laser power can be chosen. The preliminary experiments were observed using high speed imaging and briefly evaluated by visual examination of the resulting beads. Using a defocused laser beam turned out to have two major advantages; 1. It adds heat to the melt pool in a manner that properly fuses the bottom and walls of the base material. 2. It counteracts difficulties due to an irregularly oscillating filler wire. These early results show that this can be a promising technique for joining thick steels with wide gaps.

  4. Hybrid laser arc welding: State-of-art review

    NASA Astrophysics Data System (ADS)

    Acherjee, Bappa

    2018-02-01

    Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.

  5. 46 CFR 54.05-10 - Certification of material toughness tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... specimens shall have the major axis parallel to the length of pipe or tube. In the case of welding fittings... forming. Such specimens shall be normalized before testing. (2) One set of specimens may represent each five (5) short tons, or less, of the pipe, tubes, or welding fittings produced from one heat of steel...

  6. Coupling of Laser with Plasma Arc to Facilitate Hybrid Welding of Metallic Materials: A Review

    NASA Astrophysics Data System (ADS)

    Zhiyong, Li; Srivatsan, T. S.; Yan, LI; Wenzhao, Zhang

    2013-02-01

    Hybrid laser arc welding combines the advantages of laser welding and arc welding. Ever since its origination in the late 1970s, this technique has gained gradual attention and progressive use due to a combination of high welding speed, better formation of weld bead, gap tolerance, and increased penetration coupled with less distortion. In hybrid laser arc welding, one of the reasons for the observed improvement is an interaction or coupling effect between the plasma arc, laser beam, droplet transfer, and the weld pool. Few researchers have made an attempt to study different aspects of the process to facilitate a better understanding. It is difficult to get a thorough understanding of the process if only certain information in a certain field is provided. In this article, an attempt to analyze the coupling effect of the process was carried out based on a careful review of the research work that has been done which provides useful information from a different prospective.

  7. Shimmed electron beam welding process

    DOEpatents

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  8. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud

    It is advantageous for the transportation industry to use lightweight components in the structure in order to save mass and reduce CO2 emissions. One of the lightest structural metals, magnesium, fulfills the need for mass reduction within the automotive industry. Many of the body structure components in the automotive industry are assembled using joining processes such as fusion welding. Furthermore, laser welding offers a low heat impact, high process rate, joining method which is becoming increasingly popular as the cost for laser systems continues to decrease. However, there is a limited body of work investigating the laser welding of magnesium and therefore, in the current study, different techniques and methods for laser welding of magnesium alloys are numerically and experimentally studied in order to optimize process parameters to achieve high quality welds. A feasibility study was designed in order to study the effect of various laser welding process parameters (such as laser power levels and welding speeds) on weld quality. Three regression models were developed to find the best fit model that relates process parameters to the shear load of the weld. Furthermore, to understand the effect of laser welding parameters on temperature distribution in laser welding of AZ31B magnesium alloy, a numerical model was developed. A rotary Gaussian volumetric body heat source was applied in this study to obtain the temperature history during the laser welding process. Cross-sectional views of the weld beads, temperature history recorded by thermocouples, and temperature history recorded by infrared camera were used to validate the numerical model. In order to study the real-time dynamic behavior of the molten pool and the keyhole during the welding process, a high speed charge-coupled device (CCD) assisted with a green laser as an illumination source was used. In order to observe the presence of pores, prior studies destructively evaluated the weld bead however; in the current study a non-destructive evaluation method based on spectroscopy is proposed to detect the presence of pores in the lap joint of laser welded AZ31B magnesium alloy. The electron temperature that is calculated by the Boltzmann plot method is correlated to the presence of pores in the weld bead. A separate series of experiments was performed to evaluate the effect of an oxide coating layer on the dynamic behavior of the molten pool in the laser welding of an AZ31B magnesium alloy in a zero-gap lap joint configuration. A high speed CCD camera assisted with a green laser as an illumination source was selected to record the weld pool dynamics. Another technique used in this study was two-pass laser welding process to join AZ31B magnesium sheet in a zero-gap, lap-shear configuration. Two groups of samples including one pass laser welding (OPLW) and two pass laser welding (TPLW) were studied. In the two pass laser welding procedure, the first pass is performed by a defocused laser beam on the top of the two overlapped sheets in order to preheat the faying surface prior to laser welding, while the second pass is applied to melt and eventually weld the samples. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. A spectrometer was also used in real-time to correlate pore formation with calculated electron temperature using the Boltzmann plot method. The results of calculated electron temperature confirmed the previous results in earlier chapter. Magnesium and aluminum are two alloys which are used in different industries mainly due to their light weight. The main use of these two alloys is in automotive industry. Since different parts of the automobiles can be manufactured with each of these two alloys, it is essential to evaluate the joining feasibility of dissimilar metals such as aluminum to magnesium. A 4 kW fiber laser is used to join AZ31B magnesium alloy to AA 6014 using an overlap joint configuration. Two different methods including focused beam laser welding (FBLW) and defocused beam laser welding (DBLW) are performed. The cross-sections of the welds were studied using an optical microscope, scanning electron microscope (SEM) as well as energy-dispersive X-ray spectroscopy (EDS) to reveal the quality of the obtained dissimilar welds. The mechanical properties of the welds were studied using a tensile test and microhardness testing machines. The results show that the defocused laser welding process could help to achieve a better quality of weld. (Abstract shortened by UMI.)

  9. Experimental and Numerical Study on the Strength of Aluminum Extrusion Welding.

    PubMed

    Bingöl, Sedat; Bozacı, Atilla

    2015-07-17

    The quality of extrusion welding in the extruded hollow shapes is influenced significantly by the pressure and effective stress under which the material is being joined inside the welding chamber. However, extrusion welding was not accounted for in the past by the developers of finite element software packages. In this study, the strength of hollow extrusion profile with seam weld produced at different ram speeds was investigated experimentally and numerically. The experiments were performed on an extruded hollow aluminum profile which was suitable to obtain the tensile tests specimens from its seam weld's region at both parallel to extrusion direction and perpendicular to extrusion direction. A new numerical modeling approach, which was recently proposed in literature, was used for numerical analyses of the study. The simulation results performed at different ram speeds were compared with the experimental results, and a good agreement was obtained.

  10. Depiction of interfacial morphology in impact welded Ti/Cu bimetallic systems using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Nassiri, Ali; Vivek, Anupam; Abke, Tim; Liu, Bert; Lee, Taeseon; Daehn, Glenn

    2017-06-01

    Numerical simulations of high-velocity impact welding are extremely challenging due to the coupled physics and highly dynamic nature of the process. Thus, conventional mesh-based numerical methodologies are not able to accurately model the process owing to the excessive mesh distortion close to the interface of two welded materials. A simulation platform was developed using smoothed particle hydrodynamics, implemented in a parallel architecture on a supercomputer. Then, the numerical simulations were compared to experimental tests conducted by vaporizing foil actuator welding. The close correspondence of the experiment and modeling in terms of interface characteristics allows the prediction of local temperature and strain distributions, which are not easily measured.

  11. Development of the weld-braze joining process

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1973-01-01

    A joining process, designated weld-brazing, was developed which combines resistance spot welding and brazing. Resistance spot welding is used to position and aline the parts, as well as to establish a suitable faying-surface gap for brazing. Fabrication is then completed at elevated temperature by capillary flow of the braze alloy into the joint. The process was used successfully to fabricate Ti-6Al-4V alloy joints by using 3003 aluminum braze alloy and should be applicable to other metal-braze systems. Test results obtained on single-overlap and hat-stiffened panel specimens show that weld-brazed joints were superior in tensile shear, stress rupture, fatigue, and buckling compared with joints fabricated by conventional means. Another attractive feature of the process is that the brazed joint is hermetically sealed by the braze material, which may eliminate many of the sealing problems encountered with riveted or spot welded structures. The relative ease of fabrication associated with the weld-brazing process may make it cost effective over conventional joining techniques.

  12. Formation of Oxides in the Interior of Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Chen, Po; Nunes, Arthur C., Jr.

    2016-01-01

    In friction stir welding (FSWing) the actual solid state joining takes place between the faying surfaces which form the weld seam. Thus the seam trace is often investigated for clues when the strength of the weld is reduced. Aluminum and its alloys are known to form a native, protective oxide on the surface. If these native surface oxides are not sufficiently broken up during the FSW process, they are reported to remain in the FSW interior and weaken the bond strength. This type of weld defect has been referred to as a lazy "S", lazy "Z", joint line defect, kissing bond, or residual oxide defect. Usually these defects are mitigated by modification of the process parameters, such as increased tool rotation rate, which causes a finer breakup of the native oxide particles. This study proposes that there may be an alternative mechanism for formation of oxides found within the weld nugget. As the oxidation rate increases at elevated temperatures above 400ºC, it may be possible for enhanced oxidation to occur on the interior surfaces during the FSW process from entrained air entering the seam gap. Normally, FSWs of aluminum alloys are made without a purge gas and it is unknown how process parameters and initial fit up could affect a potential air path into the interior during the processing. In addition, variations in FSW parameters, such as the tool rotation, are known to have a strong influence on the FSW temperature which may affect the oxidation rate if internal surfaces are exposed to entrained air. A series of FSWs were made in 3 different thickness panels of AA2219 (0.95, 1.27 and 1.56 cm) at 2 different weld pitches. As the thickness of the panels increased, there was an increased tendency for a gap to form in advance of the weld tool. If sufficient air is able to enter the workpiece gap prior to consolidation, the weld temperature can increase the oxidation rate on the interior surfaces. These oxidation rates would also be accelerated in areas of localized liquation. Metallographs from the weld panels showed indications of liquation at the grain boundaries. In FSWs of thicker panels, these regions of liquation were found to be heavily oxidized. The quality of the FSWs was evaluated from tensile testing at room temperature. As the panel thickness increased, a slight decrease in tensile strength was observed which was attributed to the presence of oxides. No oxide formation was observed in the thinner workpieces, although there were indications of localized liquation at the grain boundaries. Results from this study will assist in a better understand of the mechanisms of oxide formation in FSW interiors and provide methodology for minimizing their occurrence.

  13. Rapid thermal cycling of new technology solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  14. Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Lin; Dong, Shiyun; Crowther, Dave; Thompson, Alan

    2017-04-01

    The microstructural characteristics and mechanical properties, including micro-hardness, tensile properties, three-point bending properties and Charpy impact toughness at different test temperatures of 8 mm thick S960 high strength steel plates were investigated following their joining by multi-pass ultra-narrow gap laser welding (NGLW) and gas metal arc welding (GMAW) techniques. It was found that the microstructure in the fusion zone (FZ) for the ultra-NGLW joint was predominantly martensite mixed with some tempered martensite, while the FZ for the GMAW joint was mainly consisted of ferrite with some martensite. The strength of the ultra-NGLW specimens was comparable to that of the base material (BM), with all welded specimens failed in the BM in the tensile tests. The tensile strength of the GMAW specimens was reduced approximately by 100 MPa when compared with the base material by a broad and soft heat affected zone (HAZ) with failure located in the soft HAZ. Both the ultra-NGLW and GMAW specimens performed well in three-point bending tests. The GMAW joints exhibited better impact toughness than the ultra-NGLW joints.

  15. Fracture toughness of ultrashort pulse-bonded fused silica

    NASA Astrophysics Data System (ADS)

    Richter, S.; Naumann, F.; Zimmermann, F.; Tünnermann, A.; Nolte, S.

    2016-02-01

    We determined the bond interface strength of ultrashort pulse laser-welded fused silica for different processing parameters. To this end, we used a high repetition rate ultrashort pulse laser system to inscribe parallel welding lines with a specific V-shaped design into optically contacted fused silica samples. Afterward, we applied a micro-chevron test to measure the fracture toughness and surface energy of the laser-inscribed welding seams. We analyzed the influence of different processing parameters such as laser repetition rate and line separation on the fracture toughness and fracture surface energy. Welding the entire surface a fracture toughness of 0.71 {MPa} {m}^{1/2}, about 90 % of the pristine bulk material ({≈ } 0.8 {MPa} {m}^{1/2}), is obtained.

  16. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    NASA Astrophysics Data System (ADS)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  17. Hybrid Welding of 45 mm High Strength Steel Sections

    NASA Astrophysics Data System (ADS)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.

    Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.

  18. Experimental and numerical analysis on aluminum/steel pipe using magnetic pulse welding

    NASA Astrophysics Data System (ADS)

    Shim, J. Y.; Kim, I. S.; Lee, K. J.; Kang, B. Y.

    2011-12-01

    Recently, there has been a trend in the automotive industry to focus on the improvement of lightweight materials, such as aluminum and magnesium because the welding of dissimilar metals causes many welding defects. Magnetic pulse welding (MPW), one of the solid state welding technologies, uses electromagnetic force from current discharged through a working coil which develops a repulsive force between the induced currents flowing parallel and in the opposite direction in the tube to be welded. The objective of this paper is to develop a numerical model for analysis of the interaction between the outer pipe and the working coil using a finite element method (FEM) in the MPW process. Four Maxwell equations are solved using a general electromagnetic mechanics computer program, ANSYS/EMAG code. Experiments were also carried out with a W-MPW60 machine manufactured by WELMATE CO., LTD. with the Al1070 and SM45C for Al pipe and steel bar respectively. The calculated and measured results were compared to verify the proposed model.

  19. Pipe weld crown removal device

    DOEpatents

    Sword, Charles K.; Sette, Primo J.

    1992-01-01

    A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

  20. Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates

    NASA Astrophysics Data System (ADS)

    Mousavi, S. A. A. Akbari; Zareie, H. R.

    2011-01-01

    The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

  1. Improving Fatigue Performance of AHSS Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Yu, Xinghua; Erdman, III, Donald L.

    Reported herein is technical progress on a U.S. Department of Energy CRADA project with industry cost-share aimed at developing the technical basis and demonstrate the viability of innovative in-situ weld residual stresses mitigation technology that can substantially improve the weld fatigue performance and durability of auto-body structures. The developed technology would be costeffective and practical in high-volume vehicle production environment. Enhancing weld fatigue performance would address a critical technology gap that impedes the widespread use of advanced high-strength steels (AHSS) and other lightweight materials for auto body structure light-weighting. This means that the automotive industry can take full advantage ofmore » the AHSS in strength, durability and crashworthiness without the concern of the relatively weak weld fatigue performance. The project comprises both technological innovations in weld residual stress mitigation and due-diligence residual stress measurement and fatigue performance evaluation. Two approaches were investigated. The first one was the use of low temperature phase transformation (LTPT) weld filler wire, and the second focused on novel thermo-mechanical stress management technique. Both technical approaches have resulted in considerable improvement in fatigue lives of welded joints made of high-strength steels. Synchrotron diffraction measurement confirmed the reduction of high tensile weld residual stresses by the two weld residual stress mitigation techniques.« less

  2. One-step femtosecond laser welding and internal machining of three glass substrates

    NASA Astrophysics Data System (ADS)

    Tan, Hua; Duan, Ji'an

    2017-05-01

    In this paper, it demonstrated one-step femtosecond laser welding and internal machining of three fused silica substrates in the optical- and non-optical-contact regimes by focusing 1030-nm laser pulses at the middle of the second substrate. Focusing laser pulses within the second glass in optical-contact and non-optical-contact samples induces permanent internal structural modification, leading to the three glass substrates bonding together simultaneously. The bonding mechanism is based on the internal modification of glass, and this mechanism is different from that of ordinary glass welding at the interface. Welding-spot size is affected by not only the gap distance (ablation effect) and heat transmission, but also by gravity through examining the sizes of the welding spots on the four contact welding surfaces. The maximum bonding strength of the lower interface (56.2 MPa) in the optical-contact regime is more than double that (27.6 MPa) in the non-optical-contact regime.

  3. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  4. Effect of Segregation of Secondary Phase Particles and "S" Line on Tensile Fracture Behavior of Friction Stir-Welded 2024Al-T351 Joints

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Xiao, B. L.; Ma, Z. Y.

    2013-09-01

    A 5-mm-thick 2024Al-T351 plate was friction stir welded (FSWed) at welding speeds of 100, 200, and 400 mm min-1 with a constant rotation rate of 800 rpm, and the microstructure and tensile fracture behavior of the joints were investigated in detail. FSW resulted in the redistribution of secondary phase particles along the recrystallized grain boundaries at the nugget zone (NZ), forming linear segregation bands consisting of secondary phase particles. The segregation bands, mainly present in the shoulder-driven zone, were believed to result from periodic material flow, with the average band spacing on the longitudinal and horizontal cross sections equal to the tool advancement per revolution. At a low welding speed of 100 mm min-1, in spite of the highest density of segregation bands, the FSWed 2024Al-T351 joint fractured along the low hardness zone (LHZ) of the heat-affected zone because of large hardness gap between NZ and LHZ. Increasing the welding speed to 200 and 400 mm min-1 reduced both the hardness gap between NZ and LHZ and the density of segregation bands. In this case, the segregation bands played a role, resulting in unusual fracture of the joints along the segregation bands. The "S" line originated from the oxide film on the initial butting surfaces and did not affect the fracture behavior of the FSWed 2024Al-T351 joints.

  5. The seam visual tracking method for large structures

    NASA Astrophysics Data System (ADS)

    Bi, Qilin; Jiang, Xiaomin; Liu, Xiaoguang; Cheng, Taobo; Zhu, Yulong

    2017-10-01

    In this paper, a compact and flexible weld visual tracking method is proposed. Firstly, there was the interference between the visual device and the work-piece to be welded when visual tracking height cannot change. a kind of weld vision system with compact structure and tracking height is researched. Secondly, according to analyze the relative spatial pose between the camera, the laser and the work-piece to be welded and study with the theory of relative geometric imaging, The mathematical model between image feature parameters and three-dimensional trajectory of the assembly gap to be welded is established. Thirdly, the visual imaging parameters of line structured light are optimized by experiment of the weld structure of the weld. Fourth, the interference that line structure light will be scatters at the bright area of metal and the area of surface scratches will be bright is exited in the imaging. These disturbances seriously affect the computational efficiency. The algorithm based on the human eye visual attention mechanism is used to extract the weld characteristics efficiently and stably. Finally, in the experiment, It is verified that the compact and flexible weld tracking method has the tracking accuracy of 0.5mm in the tracking of large structural parts. It is a wide range of industrial application prospects.

  6. Optimization of operator and physical parameters for laser welding of dental materials.

    PubMed

    Bertrand, C; le Petitcorps, Y; Albingre, L; Dupuis, V

    2004-04-10

    Interactions between lasers and materials are very complex phenomena. The success of laser welding procedures in dental metals depends on the operator's control of many parameters. The aims of this study were to evaluate factors relating to the operator's dexterity and the choice of the welding parameters (power, pulse duration and therefore energy), which are recognized determinants of weld quality. In vitro laboratory study. FeNiCr dental drawn wires were chosen for these experiments because their properties are well known. Different diameters of wires were laser welded, then tested in tension and compared to the control material as extruded, in order to evaluate the quality of the welding. Scanning electron microscopy of the fractured zone and micrograph observations perpendicular and parallel to the wire axis were also conducted in order to analyse the depth penetration and the quality of the microstructure. Additionally, the micro-hardness (Vickers type) was measured both in the welded and the heat-affected zones and then compared to the non-welded alloy. Adequate combination of energy and pulse duration with the power set in the range between 0.8 to 1 kW appears to improve penetration depth of the laser beam and success of the welding procedure. Operator skill is also an important variable. The variation in laser weld quality in dental FeNiCr wires attributable to operator skill can be minimized by optimization of the physical welding parameters.

  7. Dual beam Nd:YAG laser welding: influence of lubricants to lap joint welding of steel sheets

    NASA Astrophysics Data System (ADS)

    Geiger, M.; Merklein, M.; Otto, A.; Blankl, A.

    2007-05-01

    Laser welding is applied in large-volume production since the late eighties and has revolutionized the possibilities of designing and engineering products. Nevertheless, problems appear during application because the operational conditions in industrial environments fluctuate and can influence the welding process negatively. Contaminations, like lubricants and organic solids, are an example of changing conditions in laser beam welding. If a lap joint is welded, these materials have to be removed from the sheets, otherwise pores and surface failures may appear due to keyhole instabilities induced by uncontrolled outgassing. One possibility for solving this problem is the use of two separate laser beams. For producing these two beams several systems are available for all different kind of lasers. A bifocal optic is such a solution for an Nd:YAG laser. By using this system, the laser beam is divided after collimation with a prism. Afterwards the two beams are focussed with a lens to the surface of the sheet and two single spots are produced. If the distance between the two spots is low, one common, elliptical keyhole is created. With this system two different welding strategies are possible. The spots can be oriented parallel or normal to the feed direction. For stabilizing the laser welding of contaminated steel sheets the parallel arrangement is better, because the amount of contamination is nearly the same as in single spot welding but the total volume of the keyhole is greater and so pressure variations due to uncontrolled evaporation of contaminations are lower. In order to prove this theory and to determine the exact effects some investigations were made at the Chair of Manufacturing Technology of the University of Erlangen-Nuremberg. A 4 kW Nd:YAG laser with a beam parameter product of 25 mm*mrad and a focal distance of 200 mm was used to weld two 1 mm DC04 steel sheets together with a lap joint. Between the sheets a deep drawing lubricant, Castrol FST 6, was used to simulate the contaminations. The sheets were welded with mono- and bifocal optic, whereas with bifocal the power distribution between the two beams was varied. After welding, the seams were qualified by analyzing surface defects and mechanical properties. The results of the investigations show that the adoption of a bifocal optic can increase the stability of the welding process. The distribution between the two single spots has an essential influence on the welding result. In order to get a higher penetration and failure free seams, a 30 % to 70 % distribution between the two spots is better. Furthermore the blade angle has another slight impact on the welding result. For monofocus and bifocus a towing angle between the sheets and the beam produces better welding results. Considering these results it can be resumed that the application of a bifocal optic is a possibility to increase the quality and the stability of lap joint welding but the parameter settings for good results can only be varied in a tight tolerance zone.

  8. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  9. Exposure to Inhalable, Respirable, and Ultrafine Particles in Welding Fume

    PubMed Central

    Pesch, Beate

    2012-01-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m−3 for inhalable and 1.29 mg m−3 for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m−3). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements

  10. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements

  11. Characteristics of AZ31 Mg alloy joint using automatic TIG welding

    NASA Astrophysics Data System (ADS)

    Liu, Hong-tao; Zhou, Ji-xue; Zhao, Dong-qing; Liu, Yun-teng; Wu, Jian-hua; Yang, Yuan-sheng; Ma, Bai-chang; Zhuang, Hai-hua

    2017-01-01

    The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.

  12. Atomic-scale bonding of bulk metallic glass to crystalline aluminum

    NASA Astrophysics Data System (ADS)

    Liu, K. X.; Liu, W. D.; Wang, J. T.; Yan, H. H.; Li, X. J.; Huang, Y. J.; Wei, X. S.; Shen, J.

    2008-08-01

    A Ti40Zr25Cu12Ni3Be20 bulk metallic glass (BMG) was welded to a crystalline aluminum by the parallel plate explosive welding method. Experimental evidence and numerical simulation show that atomic-scale bonding between the BMG and the crystalline aluminum can be achieved, and the weldment on the BMG side can retain its amorphous state without any indication of crystallization in the welding process. Nanoindentation tests reveal that the interface of the explosive joints exhibits a significant increase in hardness compared to the matrix on its two sides. The joining of BMG and crystalline materials opens a window to the applications of BMGs in engineering.

  13. Room-Temperature Chemical Welding and Sintering of Metallic Nanostructures by Capillary Condensation.

    PubMed

    Yoon, Sung-Soo; Khang, Dahl-Young

    2016-06-08

    Room-temperature welding and sintering of metal nanostructures, nanoparticles and nanowires, by capillary condensation of chemical vapors have successfully been demonstrated. Nanoscale gaps or capillaries that are abundant in layers of metal nanostructures have been found to be the preferred sites for the condensation of chemically oxidizing vapor, H2O2 in this work. The partial dissolution and resolidification at such nanogaps completes the welding/sintering of metal nanostructures within ∼10 min at room-temperature, while other parts of nanostructures remain almost intact due to negligible amount of condensation on there. The welded networks of Ag nanowires have shown much improved performances, such as high electrical conductivity, mechanical flexibility, optical transparency, and chemical stability. Chemically sintered layers of metal nanoparticles, such as Ag, Cu, Fe, Ni, and Co, have also shown orders of magnitude increase in electrical conductivity and improved environmental stability, compared to nontreated ones. Pertinent mechanisms involved in the chemical welding/sintering process have been discussed. Room-temperature welding and sintering of metal nanostructures demonstrated here may find widespread application in diverse fields, such as displays, deformable electronics, wearable heaters, and so forth.

  14. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    NASA Astrophysics Data System (ADS)

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  15. Fatigue properties of dissimilar metal laser welded lap joints

    NASA Astrophysics Data System (ADS)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  16. Process characteristics of the combination of laser beam- and gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalla, G.; Neuenhahn, J.; Koerber, C.

    1994-12-31

    In this presentation, experiences regarding the combination of laser beam-and gas metal arc welding are discussed. The combination of both techniques offers the possibility of using the specific advantages include the deep penetration effect and the concentrated heat input. Additionally, the gas metal arc welding (GMAW) process is characterized by several advantages, such as high thermal efficiency and good gap-bridging ability. Beyond these characteristics, the combination leads to additional advantages concerning process, technique, and quality. Improvement of seam quality and properties are of special note. Adaptation of the GMAW parameters reduces the hardness of the seam weld at increasing weldingmore » speed. This is possible by adapting the efficiency of metal deposition and by the suitable choice of wire material composition. Another advantage is an improvement of surface topology. The surface of the weld seam and the connection to the base material are very smooth. This leads to advantages with regard to the fatigue strength of the seam.« less

  17. Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lévesque, D.; Rousseau, G.; Monchalin, J.-P.

    2014-02-18

    The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated thatmore » the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.« less

  18. Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel

    NASA Astrophysics Data System (ADS)

    Lévesque, D.; Rousseau, G.; Wanjara, P.; Cao, X.; Monchalin, J.-P.

    2014-02-01

    The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated that the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korinko, P.; Howard, S.; Maxwell, D.

    During final preparations for start of the PDCF Inner Can (IC) qualification effort, welding was performed on an automated weld system known as the PICN. During the initial weld, using a pedigree canister and plug, a weld defect was observed. The defect resulted in a hole in the sidewall of the canister, and it was observed that the plug sidewall had not been consumed. This was a new type of failure not seen during development and production of legacy Bagless Transfer Cans (FB-Line/Hanford). Therefore, a team was assembled to determine the root cause and to determine if the process couldmore » be improved. After several brain storming sessions (MS and T, R and D Engineering, PDC Project), an evaluation matrix was established to direct this effort. The matrix identified numerous activities that could be taken and then prioritized those activities. This effort was limited by both time and resources (the number of canisters and plugs available for testing was limited). A discovery process was initiated to evaluate the Vendor's IC fabrication process relative to legacy processes. There were no significant findings, however, some information regarding forging/anneal processes could not be obtained. Evaluations were conducted to compare mechanical properties of the PDC canisters relative to the legacy canisters. Some differences were identified, but mechanical properties were determined to be consistent with legacy materials. A number of process changes were also evaluated. A heat treatment procedure was established that could reduce the magnetic characteristics to levels similar to the legacy materials. An in-situ arc annealing process was developed that resulted in improved weld characteristics for test articles. Also several tack welds configurations were addressed, it was found that increasing the number of tack welds (and changing the sequence) resulted in decreased can to plug gaps and a more stable weld for test articles. Incorporating all of the process improvements for the actual can welding process, however, did not result in an improved weld geometry. Several possibilities for the lack of positive response exist, some of which are that (1) an insufficient number of test articles were welded under prototypic conditions, (2) the process was not optimized so that significant improvements were observable over the 'noise', and (3) the in-situ arc anneal closed the gap down too much so the can was unable to exhaust pressure ahead of the weld. Several operational and mechanical improvements were identified. The weld clamps were changed to a design consistent with those used in the legacy operations. A helium puff operation was eliminated; it is believed that this operation was the cause of the original weld defect. Also, timing of plug mast movement was found to correspond with weld irregularities. The timing of the movement was changed to occur during weld head travel between tacks. In the end a three sequential tack weld process followed by a pulse weld at the same current and travel speed as was used for the legacy processes was suggested for use during the IC qualification effort. Relative to legacy welds, the PDC IC weld demonstrates greater fluctuation in the region of the weld located between tack welds. However, canister weld response (canister to canister) is consistent and with the aid of the optical mapping system (for targeting the cut position) is considered adequate. DR measurements and METs show the PDC IC welds to have sufficient ligament length to ensure adequate canister pressure/impact capacity and to ensure adequate stub function. The PDC welding process has not been optimized as a result of this effort. Differences remain between the legacy BTC welds and the PDC IC weld, but these differences are not sufficient to prevent resumption of the current PDC IC qualification effort. During the PDC IC qualification effort, a total of 17 cans will be welded and a variety of tests/inspections will be performed. The extensive data collected during that qualification effort should be of a sufficient population to determine if additional weld process optimization is necessary prior to production release.« less

  20. Study on the residual stress relaxation in girth-welded steel pipes under bending load using diffraction methods

    DOE PAGES

    Hempel, Nico; Bunn, Jeffrey R.; Nitschke-Pagel, Thomas; ...

    2017-02-02

    This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that notmore » only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.« less

  1. Study on the residual stress relaxation in girth-welded steel pipes under bending load using diffraction methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hempel, Nico; Bunn, Jeffrey R.; Nitschke-Pagel, Thomas

    This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that notmore » only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.« less

  2. Fluid Flow Characteristics and Porosity Behavior in Full Penetration Laser Welding of a Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Chang, Baohua; Allen, Chris; Blackburn, Jon; Hilton, Paul; Du, Dong

    2015-04-01

    In this paper, a computational fluid mechanics model is developed for full penetration laser welding of titanium alloy Ti6Al4V. This has been used to analyze possible porosity formation mechanisms, based on predictions of keyhole behavior and fluid flow characteristics in the weld pool. Numerical results show that when laser welding 3 mm thickness titanium alloy sheets with given laser beam focusing optics, keyhole depth oscillates before a full penetration keyhole is formed, but thereafter keyhole collapses are not predicted numerically. For lower power, lower speed welding, the fluid flow behind the keyhole is turbulent and unstable, and vortices are formed. Molten metal is predicted to flow away from the center plane of the weld pool, and leave a gap or void within the weld pool behind the keyhole. For higher power, higher speed welding, fluid flow is less turbulent, and such vortices are not formed. Corresponding experimental results show that porosity was absent in the melt runs made at higher power and higher welding speed. In contrast, large pores were present in melt runs made at lower power and lower welding speed. Based on the combination of experimental results and numerical predictions, it is proposed that porosity formation when keyhole laser welding may result from turbulent fluid flow behind the keyhole, with the larger the value of associated Reynolds number, the higher the possibility of porosity formation. For such fluid flow controlled porosities, measures to decrease Reynolds number of the fluid flow close to the keyhole could prove effective in reducing or avoiding porosity.

  3. Formation of porous inner architecture at the interface of magnetic pulse welded Al/Cu joints

    NASA Astrophysics Data System (ADS)

    Sapanathan, T.; Raoelison, R. N.; Yang, K.; Buiron, N.; Rachik, M.

    2016-10-01

    Porous inner architecture has been revealed at the interface of magnetic pulse welded aluminum/copper (Al/Cu) joints. These materials could serve the purpose of heterogeneous architectured materials, while their makeup of inner architecture of porous interface with the pore sizes of sub-micron to a few microns, could offer potential attributes in energy storage application. Two welding cases with various impact intensities are compared. An input voltage of 6.5 kV with an initial air gap of 1.5 mm and a higher voltage of 7.5 kV with a large initial air gap of 5 mm are respectively considered as two cases with low and high velocity impacts. Overall morphology of the porous medium was revealed at the interface either in layered or pocketed structures. The allocation of the porous zone and pore sizes vary with the impact condition. The low velocity impact welding conditions also produces smaller pores compared to the high velocity impact case, where the pore sizes varies in submicron to a few microns (<10μm). By investigating the potential mechanism of the porous zone formation, it was identified that a combined phenomena of cavitation and coalescence play a major role in nucleation and growth of the pores where a rapid cooling that eventually freezes the porous structure at the interface.

  4. Effect of Preheating on the Inertia Friction Welding of the Dissimilar Superalloys Mar-M247 and LSHR

    NASA Astrophysics Data System (ADS)

    Senkov, O. N.; Mahaffey, D. W.; Semiatin, S. L.

    2016-12-01

    Differences in the elevated temperature mechanical properties of cast Mar-M247 and forged LSHR make it difficult to produce sound joints of these alloys by inertia friction welding (IFW). While extensive plastic upset occurs on the LSHR side, only a small upset is typically developed on the Mar-M247 side. The limited plastic flow of Mar-M247 thus restricts the extent of "self-cleaning" and mechanical mixing of the mating surfaces, so that defects remain at the bond line after welding. In the present work, the effect of local preheating of Mar-M247 immediately prior to IFW on the welding behavior of Mar-M247/LSHR couples was determined. An increase in the preheat temperature enhanced the plastic flow of Mar-M247 during IFW, which resulted in extensive mechanical mixing with LSHR at the weld interface, the formation of extensive flash on both the Mar-M247 and LSHR sides, and a sound bond. Performed in parallel with the experimental work, finite-element-method (FEM) simulations showed that higher temperatures are achieved within the preheated sample during IFW relative to its non-preheated counterpart, and plastic flow is thus facilitated within it. Microstructure and post-weld mechanical properties of the welded samples were also established.

  5. Weldability of Weldalite (tm) 049 with and without TiB2 reinforcement

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The effects are assessed of TiB2 reinforcement and parent alloy Li content on the weldability of Weldalite (tm) 049 type alloys. Welding trials were performed using either AC or DC polarity gas tungsten arc (GTA) welding according to described procedures. The welding was performed under conditions of high restraint on 5 cm (2 in) wide x 25.4 cm (10 in) long plates machined from the 0.952 cm (0.375 in) extruded bar parallel to the extrusion direction. A 37.5 deg bevel was machined on the center edge of the extruded bar. Cut rod filler wire was machined from three alloys, and one commercially available 2319 filler wire was also used. The preliminary assessment of the weldability revealed no propensity for hot cracking under conditions of high restraint. This result is significant, because hot cracking has been reported for all other leading aluminum lithium alloys welded with certain conventional filler alloys. The strengths for Weldalite parent welded with parent filler obtained were higher than those for alloys used in launch systems, such as 2219 and 2014 welded with 2319 and 4043 fillers, respectively. Even higher values were obtained by variable polarity plasma arc welding (e.g., 54 ksi (372 MPa) mean tensile strength).

  6. Development of electromagnetic welding facility of flat plates for nuclear industry

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Sahoo, Subhanarayan; Sarkar, Biswanath; Shyam, Anurag

    2017-04-01

    Electromagnetic pulse welding (EMPW) process, one of high speed welding process uses electromagnetic force from discharged current through working coil, which develops a repulsive force between the induced current flowing parallel and in opposite direction. For achieving the successful weldment using this process the design of working coil is the most important factor due to high magnetic field on surface of work piece. In case of high quality flat plate welding factors such as impact velocity, angle of impact standoff distance, thickness of flyer and overlap length have to be chosen carefully. EMPW has wide applications in nuclear industry, automotive industry, aerospace, electrical industries. However formability and weldability still remain major issues. Due to ease in controlling the magnetic field enveloped inside tubes, the EMPW has been widely used for tube welding. In case of flat components control of magnetic field is difficult. Hence the application of EMPW gets restricted. The present work attempts to make a novel contribution by investigating the effect of process parameters on welding quality of flat plates. The work emphasizes the approaches and engineering calculations required to effectively use of actuator in EMPW of flat components.

  7. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOEpatents

    Susemihl, Ingo

    1990-01-01

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut.

  8. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOEpatents

    Susemihl, I.

    1990-03-13

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut. 7 figs.

  9. Avoidance of crack inducement when laser welding hot-formed car body components - a variable analysis

    NASA Astrophysics Data System (ADS)

    Larsson, Johnny K.

    The Volvo XC60 car body contains numerous parts in Ultra High Strength Steels (UHSS) in order to guarantee the structural integrity of the car in the event of a crash situation. Most of the parts are manufactured in a hot-forming process, so called presshardening, resulting in component tensile strength in the range of 1,500 MPa. As this type of material also presents fairly high carbon content (˜0.22%) it brings a challenge when it comes to welding. The Volvo XC60 car body is at the same time to a large extent assembled by laser welding technology. In early development stages of the project (Y413), it was observed that laser welding of hot-formed components presented a number of challenges due to the unique conditions offered by this welding method. The presentation will thoroughly describe the modes of procedure how to avoid crack inducement during the welding operation. A variable analysis approach was used based on the present circumstances at the production facility in the Gent plant. Crucial variables at laser welding such as gap between sheets, focal point position, welding speed and laser weld position relative to the flange edge were included in a test matrix and welding trials were carried out accordingly in the Pilot Plant in Gothenburg. The paper will discuss those welding results, the subsequent analysis and plausible theoretic explanations. From the lessons learnt in this research, the optimum laser welding parameters were then transferred to the laser welding stations in the Gent plant. There it has been proven, that also at high volume automotive manufacturing, it is possible to provide an outstanding weld quality also at such difficult pre-conditions. The presentation ends with some facts and figures and experiences from high volume series production, which also includes aspects on quality assurance.

  10. Thermo-Mechanical Modeling of Laser-Mig Hybrid Welding (lmhw)

    NASA Astrophysics Data System (ADS)

    Kounde, Ludovic; Engel, Thierry; Bergheau, Jean-Michel; Boisselier, Didier

    2011-01-01

    Hybrid welding is a combination of two different technologies such as laser (Nd: YAG, CO2…) and electric arc welding (MIG, MAG / TIG …) developed to assemble thick metal sheets (over 3 mm) in order to reduce the required laser power. As a matter of fact, hybrid welding is a lso used in the welding of thin materials to benefit from process, deep penetration and gap limit. But the thermo-mechanical behaviour of thin parts assembled by LMHW technology for railway cars production is far from being controlled the modeling and simulation contribute to the assessment of the causes and effects of the thermo mechanical behaviour in the assembled parts. In order to reproduce the morphology of melted and heat-affected zones, two analytic functions were combined to model the heat source of LMHW. On one hand, we applied a so-called "diaboloïd" (DB) which is a modified hyperboloid, based on experimental parameters and the analysis of the macrographs of the welds. On the other hand, we used a so-called "double ellipsoïd" (DE) which takes the MIG only contribution including the bead into account. The comparison between experimental result and numerical result shows a good agreement.

  11. High power laser welding of thick steel plates in a horizontal butt joint configuration

    NASA Astrophysics Data System (ADS)

    Atabaki, M. Mazar; Yazdian, N.; Ma, J.; Kovacevic, R.

    2016-09-01

    In this investigation, two laser-based welding techniques, autogenous laser welding (ALW) and laser welding assisted with a cold wire (LWACW), were applied to join thick plates of a structural steel (A36) in a horizontal narrow gap butt joint configuration. The main practical parameters including welding method and laser power were varied to get the sound weld with a requirement to achieve a full penetration with the reinforcement at the back side of weld in just one pass. The weld-bead shape, cross-section and mechanical properties were evaluated by profilometer, micro-hardness test and optical microscope. In order to investigate the stability of laser-induced plasma plume, the emitted optical spectra was detected and analyzed by the spectroscopy analysis. It was found that at the laser power of 7 kW a fully penetrated weld with a convex back side of weld could be obtained by the LWACW. The microstructural examinations showed that for the ALW the acicular ferrite and for the LWACW the pearlite were formed in the heat affected zone (HAZ). The prediction of microstructure based on continuous cooling transformation (CCT) diagram and cooling curves obtained by thermocouple measurement were in good agreement with each other. According to the plasma ionization values obtained from the spectroscopy analysis the plume for both processes was recognized as dominated weakly ionized plasma including the main vaporized elemental composition. At the optimum welding condition (LWACW at the laser power of 7 kW) the fluctuation of the electron temperature was reduced. The spectroscopy analysis demonstrated that at the higher laser power more of the elemental compositions such as Mn and Fe were evaporated.

  12. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  13. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  14. Effects of beam configurations on wire melting and transfer behaviors in dual beam laser welding with filler wire

    NASA Astrophysics Data System (ADS)

    Ma, Guolong; Li, Liqun; Chen, Yanbin

    2017-06-01

    Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.

  15. Syntactic Change in the Parallel Architecture: The Case of Parasitic Gaps

    ERIC Educational Resources Information Center

    Culicover, Peter W.

    2017-01-01

    In Jackendoff's Parallel Architecture, the well-formed expressions of a language are licensed by correspondences between phonology, syntax, and conceptual structure. I show how this architecture can be used to make sense of the existence of parasitic gap constructions. A parasitic gap is one that is rendered acceptable because of the presence of…

  16. Mechanisms of hydrogen-assisted fracture in austenitic stainless steel welds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balch, Dorian K.; Sofronis, Petros; Somerday, Brian P.

    2005-03-01

    The objective of this study was to quantify the hydrogen-assisted fracture susceptibility of gas-tungsten arc (GTA) welds in the nitrogen-strengthened, austenitic stainless steels 21Cr-6Ni-9Mn (21-6-9) and 22Cr-13Ni-5Mn (22-13-5). In addition, mechanisms of hydrogen-assisted fracture in the welds were identified using electron microscopy and finite-element modeling. Elastic-plastic fracture mechanics experiments were conducted on hydrogen-charged GTA welds at 25 C. Results showed that hydrogen dramatically lowered the fracture toughness from 412 kJ/m{sup 2} to 57 kJ/m{sup 2} in 21-6-9 welds and from 91 kJ/m{sup 2} to 26 kJ/m{sup 2} in 22-13-5 welds. Microscopy results suggested that hydrogen served two roles in themore » fracture of welds: it promoted the nucleation of microcracks along the dendritic structure and accelerated the link-up of microcracks by facilitating localized deformation. A continuum finite-element model was formulated to test the notion that hydrogen could facilitate localized deformation in the ligament between microcracks. On the assumption that hydrogen decreased local flow stress in accordance with the hydrogen-enhanced dislocation mobility argument, the finite-element results showed that deformation was localized in a narrow band between two parallel, overlapping microcracks. In contrast, in the absence of hydrogen, the finite-element results showed that deformation between microcracks was more uniformly distributed.« less

  17. Predicting mesoscale microstructural evolution in electron beam welding

    DOE PAGES

    Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena; ...

    2016-03-16

    Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. As a result, the simulations provide anmore » opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.« less

  18. Giant Enhancement in Radiative Heat Transfer in Sub-30 nm Gaps of Plane Parallel Surfaces.

    PubMed

    Fiorino, Anthony; Thompson, Dakotah; Zhu, Linxiao; Song, Bai; Reddy, Pramod; Meyhofer, Edgar

    2018-06-13

    Radiative heat transfer rates that exceed the blackbody limit by several orders of magnitude are expected when the gap size between plane parallel surfaces is reduced to the nanoscale. To date, experiments have only realized enhancements of ∼100 fold as the smallest gap sizes in radiative heat transfer studies have been limited to ∼50 nm by device curvature and particle contamination. Here, we report a 1,200-fold enhancement with respect to the far-field value in the radiative heat flux between parallel planar silica surfaces separated by gaps as small as ∼25 nm. Achieving such small gap sizes and the resultant dramatic enhancement in near-field energy flux is critical to achieve a number of novel near-field based nanoscale energy conversion systems that have been theoretically predicted but remain experimentally unverified.

  19. Effect of Heat-Affected Zone on Spot Weldability in Automotive Ultra High Strength Steel Sheet

    NASA Astrophysics Data System (ADS)

    Nagasaka, Akihiko; Naito, Junya; Chinzei, Shota; Hojo, Tomohiko; Horiguchi, Katsumi; Shimizu, Yuki; Furusawa, Takuro; Kitahara, Yu

    Effect of heat-affected zone (HAZ) on spot weldability in automotive hot stamping (HS) steel sheet was investigated for automotive applications. Tensile test was performed on a tensile testing machine at a crosshead speed of 3 mm/min, using spot welded test specimen (Parallel length: 60 mm, Width: 20 mm, Thickness: 1.4 mm, Tab: 20×20 mm). The spot welding test was carried out using spot welded test specimen with welding current (I) of 6.3 kA to 9.5 kA. Hardness was measured with the dynamic ultra micro Vickers hardness tester. In HS steel, has very high strength of 1 500 MPa, tensile strength (TS) and total elongation (TEl) of the spot welded test specimen of HS steel were lower than those of base metal test specimen. The spot welded test specimen broke in the weld. The Vickers hardnesses (HVs) of base metal and fusion zone of hot stamping steel were around HV500. In addition, the hardness of HAZ was under HV300. The difference of hardness between fusion zone and HAZ was around HV200. The hardness distribution acted as a notch. On the other hand, in dual phase (DP) steel, has low strength of 590 MPa, the TS of spot welded test specimen of DP steel was the same as the base metal test specimen because of the breaking of base metal. The TEl of the spot welded test specimen of DP steel was smaller than that of base metal test specimen. In the spot welded test specimen of DP steel, the hardness of base metal was around HV200 and the fusion zone was around HV500. The hardness distribution did not act as a notch. The difference in hardness between base metal and HAZ acted on a crack initiation at HAZ softening.

  20. Advanced Boundary Electrode Modeling for tES and Parallel tES/EEG.

    PubMed

    Pursiainen, Sampsa; Agsten, Britte; Wagner, Sven; Wolters, Carsten H

    2018-01-01

    This paper explores advanced electrode modeling in the context of separate and parallel transcranial electrical stimulation (tES) and electroencephalography (EEG) measurements. We focus on boundary condition-based approaches that do not necessitate adding auxiliary elements, e.g., sponges, to the computational domain. In particular, we investigate the complete electrode model (CEM) which incorporates a detailed description of the skin-electrode interface including its contact surface, impedance, and normal current distribution. The CEM can be applied for both tES and EEG electrodes which are advantageous when a parallel system is used. In comparison to the CEM, we test two important reduced approaches: the gap model (GAP) and the point electrode model (PEM). We aim to find out the differences of these approaches for a realistic numerical setting based on the stimulation of the auditory cortex. The results obtained suggest, among other things, that GAP and GAP/PEM are sufficiently accurate for the practical application of tES and parallel tES/EEG, respectively. Differences between CEM and GAP were observed mainly in the skin compartment, where only CEM explains the heating effects characteristic to tES.

  1. Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E, J. C.; Huang, J. Y.; Bie, B. X.

    Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less

  2. Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study

    DOE PAGES

    E, J. C.; Huang, J. Y.; Bie, B. X.; ...

    2016-08-02

    Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less

  3. Inspection criteria ensure quality control of parallel gap soldering

    NASA Technical Reports Server (NTRS)

    Burka, J. A.

    1968-01-01

    Investigation of parallel gap soldering of electrical leads resulted in recommendation on material preparation, equipment, process control, and visual inspection criteria to ensure reliable solder joints. The recommendations will minimize problems in heat-dwell time, amount of solder, bridging conductors, and damage of circuitry.

  4. Trilateral Design and Test Code for Military Bridging and Gap-Crossing Equipment

    DTIC Science & Technology

    2005-05-01

    Property data should be provided for individual lamina and for the ( laminat - ed) composite . The required lamina properties are identified in...Resistance Welding ....... a Brazing ......................... X Machining ..................... a Chemical Composition : Element... Machining .................. b Chemical Composition : Element % Si .................................. 0.2 max Fe

  5. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    NASA Astrophysics Data System (ADS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-02-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 °C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  6. An Investigation into Stress Corrosion Cracking of Dissimilar Metal Welds with 304L Stainless Steel and Alloy 82 in High Temperature Pure Water

    NASA Astrophysics Data System (ADS)

    Yeh, Tsung-Kuang; Huang, Guan-Ru; Tsai, Chuen-Horng; Wang, Mei-Ya

    For a better understanding toward stress corrosion cracking (SCC) in dissimilar metal welds with 304L stainless steel and Alloy 82, the SCC growth behavior in the transition regions of weld joints was investigated via slow strain rate tensile (SSRT) tests in 280 oC pure water with a dissolve oxygen level of 300 ppb. Prior to the SSRT tests, samples with dissimilar metal welds were prepared and underwent various pretreatments, including post-weld heat treatment (PWHT), shot peening, solution annealing, and mechanical grinding. In addition to the SSRT tests, measurements of degree of sensitization and micro-hardness on the transition regions of the metal welds were also conducted. According to the test results, the samples having undergone PWHTs exhibited relatively high degrees of sensitization. Distinct decreases in hardness were observed in the heat-affected zones of the base metals in all samples. Furthermore, the fracture planes of all samples after the SSRT tests were located at the stainless steel sides and were in parallel with the fusion lines. Among the treating conditions investigated in this study, a PWHT would pose a detrimental effect on the samples in the aspects of mechanical property and degree of SCC. Solution annealing would lead to the greatest improvement in ductility and SCC retardation, and shot peening would provide the treated samples with a positive improvement in ductility and corrosion retardation, but not to a great extent.

  7. Investigations on laser transmission welding of absorber-free thermoplastics

    NASA Astrophysics Data System (ADS)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  8. Parallel Fast Multipole Method For Molecular Dynamics

    DTIC Science & Technology

    2007-06-01

    Parallel Fast Multipole Method For Molecular Dynamics THESIS Reid G. Ormseth, Captain, USAF AFIT/GAP/ENP/07-J02 DEPARTMENT OF THE AIR FORCE AIR...the United States Government. AFIT/GAP/ENP/07-J02 Parallel Fast Multipole Method For Molecular Dynamics THESIS Presented to the Faculty Department of...has also been provided by ‘The Art of Molecular Dynamics Simulation ’ by Dennis Rapaport. This work is the clearest treatment of the Fast Multipole

  9. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    NASA Astrophysics Data System (ADS)

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-05-01

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225×60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the wall thickness were measured for each tested tube.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Kenji

    A read/write head for a magnetic tape includes an elongated chip assembly and a tape running surface formed in the longitudinal direction of the chip assembly. A pair of substantially spaced parallel read/write gap lines for supporting read/write elements extend longitudinally along the tape running surface of the chip assembly. Also, at least one groove is formed on the tape running surface on both sides of each of the read/write gap lines and extends substantially parallel to the read/write gap lines.

  11. Influence of laser-welding and electroerosion on passive fit of implant-supported prosthesis.

    PubMed

    Silva, Tatiana Bernardon; De Arruda Nobilo, Mauro Antonio; Pessanha Henriques, Guilherme Elias; Mesquita, Marcelo Ferraz; Guimaraes, Magali Beck

    2008-01-01

    This study investigated the influence of laser welding and electroerosion procedure on the passive fit of interim fixed implant-supported titanium frameworks. Twenty frameworks were made from a master model, with five parallel placed implants in the inter foramen region, and cast in commercially pure titanium. The frameworks were divided into 4 groups: 10 samples were tested before (G1) and after (G2) electroerosion application; and another 10 were sectioned into five pieces and laser welded before (G3) and after (G4) electroerosion application. The passive fit between the UCLA abutment of the framework and the implant was evaluated using an optical microscope Olympus STM (Olympus Optical Co., Tokyo, Japan) with 0.0005mm of accuracy. Statistical analyses showed significant differences between G1 and G2, G1 and G3, G1 and G4, G2 and G4. However, no statistical difference was observed when comparing G2 and G3. These results indicate that frameworks may show a more precise adaptation if they are sectioned and laser welded. In the same way, electroerosion improves the precision in the framework adaptation.

  12. 46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Plate for which Charpy V-notch impact testing is required in the parent material and for which V-notch minima are specified shall similarly have welding procedures qualified for toughness by Charpy V-notch testing. For these tests, the test plates shall be oriented with their final rolling direction parallel to...

  13. Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Chang; Choi, Kyoung Joon; Bahn, Chi Bum; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun

    2015-04-01

    In order to investigate the effects of long-term thermal aging on the microstructural evolution of Type-II boundary regions in the weld metal of Alloy 152, a representative dissimilar metal weld was fabricated from Alloy 690, Alloy 152, and A533 Gr.B. This mock-up was thermally aged at 450 °C to accelerate the effects of thermal aging in a nuclear power plant operation condition (320 °C). The microstructure of the Type-II boundary region of the weld root, which is parallel to and within 100 μm of the fusion boundary and known to be more susceptible to material degradation, was then characterized after different aging times using a scanning electron microscope equipped with an energy dispersive X-ray spectroscope for micro-compositional analysis, electron backscattered diffraction detector for grain and grain boundary orientation analysis, and a nanoindenter for measurement of mechanical properties. Through this, it was found that a steep compositional gradient and high grain average misorientation is created in the narrow zone between the Type-II and fusion boundaries, while the concentration of chromium and number of low-angle grain boundaries increases with aging time. A high average hardness was also observed in the same region of the dissimilar metal welds, with hardness peaking with thermal aging simulating an operational time of 15 years.

  14. State-of-the-science review: Does manganese exposure during welding pose a neurological risk?

    PubMed

    Santamaria, Annette B; Cushing, Colleen A; Antonini, James M; Finley, Brent L; Mowat, Fionna S

    2007-01-01

    Recent studies report that exposure to manganese (Mn), an essential component of welding electrodes and some steels, results in neurotoxicity and/or Parkinson's disease (PD) in welders. This "state-of-the-science" review presents a critical analysis of the published studies that were conducted on a variety of Mn-exposed occupational cohorts during the last 100 yr, as well as the regulatory history of Mn and welding fumes. Welders often perform a variety of different tasks with varying degrees of duration and ventilation, and hence, to accurately assess Mn exposures that occurred in occupational settings, some specific information on the historical work patterns of welders is desirable. This review includes a discussion of the types of exposures that occur during the welding process--for which limited information relating airborne Mn levels with specific welding activities exists--and the human health studies evaluating neurological effects in welders and other Mn-exposed cohorts, including miners, millers, and battery workers. Findings and implications of studies specifically conducted to evaluate neurobehavioral effects and the prevalence of PD in welders are also discussed. Existing exposure data indicate that, in general, Mn exposures in welders are less than those associated with the reports of clinical neurotoxicity (e.g., "manganism") in miners and smelter workers. It was also found that although manganism was observed in highly exposed workers, the scant exposure-response data available for welders do not support a conclusion that welding is associated with clinical neurotoxicity. The available data might support the development of reasonable "worst-case" exposure estimates for most welding activities, and suggest that exposure simulation studies would significantly refine such estimates. Our review ends with a discussion of the data gaps and areas for future research.

  15. Applications of Thin Film Thermocouples for Surface Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Holanda, Raymond

    1994-01-01

    Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, therefore leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a class 1000 clean room. The thermocouples are platinum-13 percent rhodium versus platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of space shuttle main engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.

  16. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.

    PubMed

    Xu, Shengyong; Tian, Mingliang; Wang, Jinguo; Xu, Jian; Redwing, Joan M; Chan, Moses H W

    2005-12-01

    We demonstrate that a high-intensity electron beam can be applied to create holes, gaps, and other patterns of atomic and nanometer dimensions on a single nanowire, to weld individual nanowires to form metal-metal or metal-semiconductor junctions, and to remove the oxide shell from a crystalline nanowire. In single-crystalline Si nanowires, the beam induces instant local vaporization and local amorphization. In metallic Au, Ag, Cu, and Sn nanowires, the beam induces rapid local surface melting and enhanced surface diffusion, in addition to local vaporization. These studies open up a novel approach for patterning and connecting nanomaterials in devices and circuits at the nanometer scale.

  17. In-Situ Subsurface Coating of Corroded Steel Sheet Pile Structures: Final Report on Project F08-AR06

    DTIC Science & Technology

    2017-09-01

    scraped the sheet pile wall with an excavator. After scraping the out-pans with a flat edge bucket, the contractor welded a blade on the bucket...unusual striations were parallel grooves running at 30 – 45 degrees from the vertical. Some patterns cross each other symmetrically. The stria- tions

  18. Ultrasonic Inspection and Fatigue Evaluation of Critical Pore Size in Welds.

    DTIC Science & Technology

    1981-09-01

    Boiler and Pressure Vessel Code ) 20...Five porosity levels were produced that parallelled ASME boiler and pressure vessel code specification (Section VIII). Appendix IV of the pressure...Figure 2 shows porosity charts (ASME Boiler and Pressure Vessel Code ) which classify and designate the number and size of pores in any six inch length

  19. Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications - A recent review.

    PubMed

    Vinoth Jebaraj, A; Ajaykumar, L; Deepak, C R; Aditya, K V V

    2017-05-01

    In the present review, attempts have been made to analyze the metallurgical, mechanical, and corrosion properties of commercial marine alloy duplex stainless steel AISI 2205 with special reference to its weldability, machinability, and surfacing. In the first part, effects of various fusion and solid-state welding processes on joining DSS 2205 with similar and dissimilar metals are addressed. Microstructural changes during the weld cooling cycle such as austenite reformation, partitioning of alloying elements, HAZ transformations, and the intermetallic precipitations are analyzed and compared with the different welding techniques. In the second part, machinability of DSS 2205 is compared with the commercial ASS grades in order to justify the quality of machining. In the third part, the importance of surface quality in a marine exposure is emphasized and the enhancement of surface properties through peening techniques is highlighted. The research gaps and inferences highlighted in this review will be more useful for the fabrications involved in the marine applications.

  20. Gage Measures Recessed Gaps

    NASA Technical Reports Server (NTRS)

    Zepeda, J. L.

    1983-01-01

    New tool measures separation between recessed parallel surfaces. Tiles have overhanging edges, tool designed to slip into gap from end so it extends through 0.040-inch crack. Measure gaps between 0.200 and 0.400 inch so gap fillers of proper thickness can be selected. Useful in numerous industrial situation involving gap measurements in inaccessable places.

  1. Geology and Geochemistry of the 25.0 Ma Underdown Caldera Tuffs and tuff of Clipper Gap, Western Nevada Volcanic Field caldera belt, north-central Nevada

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Klausen, K. B.; Henry, C.

    2016-12-01

    The 25.0 Ma Underdown Caldera of the Shoshone Mountains near Austin, Nevada, is part of the Ignimbrite Flare-up suite of calderas in north-central Nevada. Our goal is to characterize the geochemistry and geochronology of the tuffs, determine magma sources, and contrast Underdown with nearby contemporaneous caldera suites. The caldera is contained within a single, mildly west-tilted fault block (Bonham, 1970). The basement rocks are altered intermediate volcanic rocks, rarely intruded by rhyolite veins. The lowermost caldera unit, exposed only on the east side of the fault block, is the sparsely qtz-feld-phyric Underdown Tuff, a high-silica rhyolite (Bonham, 1970) that is columnar-jointed, densely welded, commonly includes aphyric pumice, but locally includes porphyritic pumice. Stretched pumice, flow folds, and foliations that reach nearly vertical demonstrate significant rheomorphism. A densely-welded porphyritic tuff is also present along the southeast side of the exposed caldera, and may be either blocks of an older tuff or a porphyritic phase of the Underdown Tuff. Correlative outflow, the tuff of Clipper Gap, emplaced east of the caldera, is petrographically similar with the same two pumice types. Overlying the Underdown Tuff is the Bonita Canyon Formation, which is moderately welded, commonly lithic- and pumice-rich with minor biotite, quartz and feldspar crystals, and contains reworked lenses; megabreccia of intermediate volcanic rocks and abundantly porphyritic tuff are common. This formation may be an upper part of the Underdown Tuff. On the west side of the Shoshone Mountains, the Bonita Canyon units are overlain by a more porphyritic, variably pumiceous, commonly vitrophyric, and densely welded tuff. At 24.7 Ma, this tuff is petrographically similar to and may be a younger part of the 25.2 Ma tuff of Arc Dome exposed to the east in the Toiyabe Range. Ongoing dating and geochemical analyses will constrain the timing and relationships between the tuffs.

  2. Texture Development in a Friction Stir Lap-Welded AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Naik, B. S.; Chen, D. L.; Cao, X.; Wanjara, P.

    2014-09-01

    The present study was aimed at characterizing the microstructure, texture, hardness, and tensile properties of an AZ31B-H24 Mg alloy that was friction stir lap welded (FSLWed) at varying tool rotational rates and welding speeds. Friction stir lap welding (FSLW) resulted in the presence of recrystallized grains and an associated hardness drop in the stir zone (SZ). Microstructural investigation showed that both the AZ31B-H24 Mg base metal (BM) and SZ contained β-Mg17Al12 and Al8Mn5 second phase particles. The AZ31B-H24 BM contained a type of basal texture (0001)<110> with the (0001) plane nearly parallel to the rolled sheet surface and <110> directions aligned in the rolling direction. FSLW resulted in the formation of another type of basal texture (0001)<100> in the SZ, where the basal planes (0001) became slightly tilted toward the transverse direction, and the prismatic planes (100) and pyramidal planes (101) exhibited a 30 deg + ( n - 1) × 60 deg rotation ( n = 1, 2, 3, …) with respect to the rolled sheet normal direction, due to the shear plastic flow near the pin surface that occurred from the intense local stirring. With increasing tool rotational rate and decreasing welding speed, the maximum intensity of the basal poles (0001) in the SZ decreased due to a higher degree of dynamic recrystallization that led to a weaker or more random texture. The tool rotational rate and welding speed had a strong effect on the failure load of FSLWed joints. A combination of relatively high welding speed (20 mm/s) and low tool rotational rate (1000 rpm) was observed to be capable of achieving a high failure load. This was attributed to the relatively small recrystallized grains and high intensity of the basal poles in the SZ arising from the low heat input as well as the presence of a small hooking defect.

  3. Anatomical landmarks of the distal femoral condyles are not always parallel to the tibial bone cut surface in flexion during total knee arthroplasty.

    PubMed

    Itokazu, Maki; Minoda, Yukihide; Ikebuchi, Mitsuhiko; Mizokawa, Shigekazu; Ohta, Yoichi; Nakamura, Hiroaki

    2016-08-01

    Soft tissue balancing is crucial to the success of total knee arthroplasty (TKA). To create a rectangular flexion joint gap, the rotation of the femoral component is important. The purpose of this study is to determine whether or not anatomical landmarks of the distal femoral condyles are parallel to the tibial bone cut surface in flexion. Forty-eight patients (three male and 45 female) with a mean age of 74years were examined. During the operation, we estimated the flexion joint gap with the following three techniques. 1) a three degree external cut to the posterior condylar line (MR1), 2) a parallel cut to the surgical transepicondylar axis (MR2), and 3) a parallel cut to the anatomical transepicondylar axis (MR3). The flexion joint gap was 1.1±3.0° (mean±standard deviation (SD)) in internal rotation in the case of MR1, 0.9±3.4° in internal rotation in the case of MR2, and 2.1±3.4° in external rotation in the case of MR3. An outlier (flexion joint gap >3.0°) was observed in 12 cases (25%) in MR1, 13 cases (27%) in MR2, and 15 cases (31%) in MR3. The anatomical landmarks of the distal femoral condyles are not always parallel to the tibial bone cut surface in flexion. To create a rectangular flexion joint gap, the rotation of the femoral component rotation is based not only on the anatomical landmarks but also on the ligament balance. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Precision Joining Center

    NASA Astrophysics Data System (ADS)

    Powell, J. W.; Westphal, D. A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10-12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of U.S. industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG&G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  5. Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Hongliang

    The microstructure, residual strain and interfacial chemical composition distribution of a safe-end dissimilar metal weld joint (DMWJ, SA508-52-316L) prepared by narrow-gap gas-tungsten arc welding (NG-GTAW) were studied by optical microscope (OM) and scanning electron microscope equipped with an energy dispersive X-ray microanalysis (SEM/EDX) and an electron back scattering diffraction (EBSD) system. Complex microstructure and chemical composition distribution are found, especially at the SA508-52 interface and the 52-316L interface. In brief, a complicated microstructure transition exists within the SA508 heat affected zone (HAZ); the residual strain, the fraction of high angle random grain boundaries and low angle boundaries decrease with increasingmore » the distance from the fusion boundary in 316L HAZ; neither typical type II boundary nor obvious carbon-depleted zone is found near the SA508-52 interface; dramatic and complicated changes of the contents of the main elements, Fe, Cr and Ni, are observed at the distinct interfaces, especially at the SA508-52 interface. No carbon concentration is found at the SA508-52 interface. - Highlights: •Residual strain and GBCD change as a function of the distance from FB in 316L HAZ. •Neither type II boundary nor obvious carbon-depleted zone is found in SA508 HAZ. •No carbon concentration is found at the SA508-52 interface. •The middle part of the DMWJ has the highest residual strain.« less

  6. Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps.

    PubMed

    Su, Xiaoshi; Norris, Andrew N

    2016-06-01

    Gradient index (GRIN), refractive, and asymmetric transmission devices for elastic waves are designed using a solid with aligned parallel gaps. The gaps are assumed to be thin so that they can be considered as parallel cracks separating elastic plate waveguides. The plates do not interact with one another directly, only at their ends where they connect to the exterior solid. To formulate the transmission and reflection coefficients for SV- and P-waves, an analytical model is established using thin plate theory that couples the waveguide modes with the waves in the exterior body. The GRIN lens is designed by varying the thickness of the plates to achieve different flexural wave speeds. The refractive effect of SV-waves is achieved by designing the slope of the edge of the plate array, and keeping the ratio between plate length and flexural wavelength fixed. The asymmetric transmission of P-waves is achieved by sending an incident P-wave at a critical angle, at which total conversion to SV-wave occurs. An array of parallel gaps perpendicular to the propagation direction of the reflected waves stop the SV-wave but let P-waves travel through. Examples of focusing, steering, and asymmetric transmission devices are discussed.

  7. Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints

    NASA Astrophysics Data System (ADS)

    Fourment, Lionel; Gastebois, Sabrina; Dubourg, Laurent

    2016-10-01

    In order to support the design of such a complex process like Friction Stir Welding (FSW) for the aeronautic industry, numerical simulation software requires (1) developing an efficient and accurate Finite Element (F.E.) formulation that allows predicting welding defects, (2) properly modeling the thermo-mechanical complexity of the FSW process and (3) calibrating the F.E. model from accurate measurements from FSW experiments. This work uses a parallel ALE formulation developed in the Forge® F.E. code to model the different possible defects (flashes and worm holes), while pin and shoulder threads are modeled by a new friction law at the tool / material interface. FSW experiments require using a complex tool with scroll on shoulder, which is instrumented for providing sensitive thermal data close to the joint. Calibration of unknown material thermal coefficients, constitutive equations parameters and friction model from measured forces, torques and temperatures is carried out using two F.E. models, Eulerian and ALE, to reach a satisfactory agreement assessed by the proper sensitivity of the simulation to process parameters.

  8. Metallography of Battery Resistance Spot Welds

    NASA Technical Reports Server (NTRS)

    Martinez, J. E.; Johannes, L. B.; Gonzalez, D.; Yayathi, S.; Figuered, J. M.; Darcy, E. C.; Bilc, Z. M.

    2015-01-01

    Li-ion cells provide an energy dense solution for systems that require rechargeable electrical power. However, these cells can undergo thermal runaway, the point at which the cell becomes thermally unstable and results in hot gas, flame, electrolyte leakage, and in some cases explosion. The heat and fire associated with this type of event is generally violent and can subsequently cause damage to the surrounding system or present a dangerous risk to the personnel nearby. The space flight environment is especially sensitive to risks particularly when it involves potential for fire within the habitable volume of the International Space Station (ISS). In larger battery packs such as Robonaut 2 (R2), numerous Li-ion cells are placed in parallel-series configurations to obtain the required stack voltage and desired run-time or to meet specific power requirements. This raises a second and less obvious concern for batteries that undergo certification for space flight use: the joining quality at the resistance spot weld of battery cells to component wires/leads and battery tabs, bus bars or other electronic components and assemblies. Resistance spot welds undergo materials evaluation, visual inspection, conductivity (resistivity) testing, destructive peel testing, and metallurgical examination in accordance with applicable NASA Process Specifications. Welded components are cross-sectioned to ensure they are free of cracks or voids open to any exterior surface. Pore and voids contained within the weld zone but not open to an exterior surface, and are not determined to have sharp notch like characteristics, shall be acceptable. Depending on requirements, some battery cells are constructed of aluminum canisters while others are constructed of steel. Process specific weld schedules must be developed and certified for each possible joining combination. The aluminum canisters' positive terminals were particularly difficult to weld due to a bi-metal strip that comes ultrasonically pre-welded by the manufacturer. This was further complicated as the maximum electrode force was limited to low-electrode force to prevent deflection of the aluminum can during welding. Other Li-ion cells are comprised of smaller diameter cylindrical steel canisters which are inherently capable of handling greater force from the electrodes. Allowing higher-electrode forces aids greatly in insuring a consistent resistance network for the weld. Overall lessons learned: developing good jigs is critical to insure the parts and electrodes are planer to one another and the location of the weld sites remains accurate and repeatable; maintaining strict control over materials is critical--materials must be of a specific hardness and chemical composition to insure that a weld schedule is repeatable; accuracy of the die used to stamp the projections is critical and worth the investment; and proper seasoning of the electrodes is critical to producing consistent welds--once the electrodes have been properly seasoned, cleaning/dressing should be avoided until it is absolutely necessary.

  9. Improving cylinder-type LiFePO4 battery performance via control of internal resistance

    NASA Astrophysics Data System (ADS)

    Purwanto, Agus; Jumari, Arif; Nizam, Muhammad; Widiyandari, Hendri; Sudaryanto; Deswita; Azmin Mohamad, Ahmad

    2018-04-01

    Strategies for controlling the internal resistance to improve battery performance were systematically investigated. Electrode densification of LiFePO4 cathodes significantly reduced the internal resistance of the prepared batteries. Densification by reduction to 31.25% of initial thickness resulted in optimal electrochemical performance of the prepared LiFePO4 batteries. The addition of KS 6 graphite material improved the conductivity of the cathodes, which was indicated by a lowering of the internal resistance. The internal resistance was decreased from 73 to 54 when the KS6/AB ratio was varied from 3 to 1. Another factor in controlling the internal resistance was the location of a welded aluminum tab in the cathode. The welding of an aluminum tab in a small gap in the cathode significantly reduced the internal resistance. Thus, three main factors can be performed during fabrication to reduce the internal resistance of a LiFePO4 battery: cathode densification, KS-6 graphite addition, and the arrangement of an aluminum tab welded to the cathode. By optimizing these factors, high-performance LFP batteries were produced.

  10. Development of Thin Film Thermocouples on Ceramic Materials for Advanced Propulsion System Applications

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1992-01-01

    Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 c. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperature of 1500 C depending on the stability of the particular ceramic substrate.

  11. Thin film thermocouples for high temperature measurement on ceramic materials

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond

    1992-01-01

    Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high-heating-rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.

  12. Development of thin film thermocouples on ceramic materials for advanced propulsion system applications

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond

    1993-01-01

    Thin film thermocouples were developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hr or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.

  13. The Effect of Cu Powder During Friction Stir Welding on Microstructure and Mechanical Properties of AA3003-H18

    NASA Astrophysics Data System (ADS)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.

    2014-08-01

    Friction stir welding (FSW) was used to join 3003-H18 non-heat-treatable aluminum alloy plates by adding copper powder. The copper powder was first added to the gap (0.1 and 0.2 mm) between two plates and then the FSW was performed. The specimens were joined at various rotational speeds of 800, 1000, and 1200 rpm at traveling speeds of 70 and 100 mm/min. The effects of rotational speed, second pass of FSW, and direction of second pass also were studied on copper particle distribution and formation of Al-Cu intermetallic compounds in the stir zone. The second pass of FSW was carried out in two ways; in line with the first pass direction (2F) and in the reverse direction of the first pass (FB). The microstructure, mechanical properties, and formation of intermetallic compounds type were investigated. In high copper powder compaction into the gap, large clusters were formed in the stir zone, while fine clusters and sound copper particles distribution were obtained in low powder compaction. The copper particle distribution and amount of Al-Cu intermetallic compounds were increased in the stir zone with increasing the rotational speed and applying the second pass. Al2Cu and AlCu intermetallic phases were formed in the stir zone and consequently the hardness was significantly increased. The copper particles and in situ intermetallic compounds were symmetrically distributed in both advancing and retreating sides of weld zone after FB passes. Thus, the wider area was reinforced by the intermetallic compounds. Also, the tensile test specimens tend to fracture from the coarse copper aggregation at the low rotational speeds. At high rotational speeds, the fracture locations are placed in HAZ and TMAZ.

  14. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding.

    PubMed

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-23

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately t H = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  15. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    PubMed Central

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-01-01

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation and minimum reduction in the thickness of the tube. PMID:28793629

  16. The gap technique does not rotate the femur parallel to the epicondylar axis.

    PubMed

    Matziolis, Georg; Boenicke, Hinrich; Pfiel, Sascha; Wassilew, Georgi; Perka, Carsten

    2011-02-01

    In the analysis of painful total knee replacements, the surgical epicondylar axis (SEA) has become established as a standard in the diagnosis of femoral component rotation. It remains unclear whether the gap technique widely used to determine femoral rotation, when applied correctly, results in a rotation parallel to the SEA. In this prospective study, 69 patients (69 joints) were included who received a navigated bicondylar surface replacement due to primary arthritis of the knee joint. In 67 cases in which a perfect soft-tissue balancing of the extension gap (<1° asymmetry) was achieved, the flexion gap and the rotation of the femoral component necessary for its symmetry was determined and documented. The femoral component was implanted additionally taking into account the posterior condylar axis and the Whiteside's line. Postoperatively, the rotation of the femoral component to the SEA was determined and this was used to calculate the angle between a femur implanted according to the gap technique and the SEA. If the gap technique had been used consistently, it would have resulted in a deviation of the femoral components by -0.6° ± 2.9° (-7.4°-5.9°) from the SEA. The absolute deviation would have been 2.4° ± 1.8°, with a range between 0.2° and 7.4°. Even if the extension gap is perfectly balanced, the gap technique does not lead to a parallel alignment of the femoral component to the SEA. Since the clinical results of this technique are equivalent to those of the femur first technique in the literature, an evaluation of this deviation as a malalignment must be considered critically.

  17. Low temperature corneal laser welding investigated by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-02-01

    The structural modifications in the stromal matrix induced by low-temperature corneal laser welding were investigated by atomic force microscopy (AFM). This procedure consists of staining the wound with Indocyanine Green (ICG), followed by irradiation with a near-infrared laser operated at low-power densities. This induces a local heating in the 55-65 °C range. In welded tissue, extracellular components undergo heat-induced structural modifications, resulting in a joining effect between the cut edges. However, the exact mechanism generating the welding, to date, is not completely understood. Full-thickness cuts, 3.5 mm in length, were made in fresh porcine cornea samples, and these were then subjected to laser welding operated at 16.7 W/cm2 power density. AFM imaging was performed on resin-embedded semi-thin slices once they had been cleared by chemical etching, in order to expose the stromal bulk of the tissue within the section. We then carried out a morphological analysis of characteristic fibrillar features in the laser-treated and control samples. AFM images of control stromal regions highlighted well-organized collagen fibrils (36.2 +/- 8.7 nm in size) running parallel to each other as in a typical lamellar domain. The fibrils exhibited a beaded pattern with a 22-39 nm axial periodicity. Laser-treated corneal regions were characterized by a significant disorganization of the intralamellar architecture. At the weld site, groups of interwoven fibrils joined the cut edges, showing structural properties that were fully comparable with those of control regions. This suggested that fibrillar collagen is not denatured by low-temperature laser welding, confirming previous transmission electron microscopy (TEM) observations, and thus it is probably not involved in the closure mechanism of corneal cuts. The loss of fibrillar organization may be related to some structural modifications in some interfibrillar substance as proteoglycans or collagen VI. Furthermore, AFM imaging was demonstrated to be a suitable tool for attaining three-dimensional information on the fibrillar assembly of corneal stroma. The results suggested that AFM analyses of resin-embedded histological sections subjected to chemical etching provide a rapid and cost-effective response, with an imaging resolution that is quite similar to that of TEM.

  18. Modeling of plasma and thermo-fluid transport in hybrid welding

    NASA Astrophysics Data System (ADS)

    Ribic, Brandon D.

    Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of processes parameters on heat transfer, fluid flow, and plasma characteristics for arc and laser welding. However, numerical modeling of laser/GTA hybrid welding is just beginning. Arc and laser welding plasmas have been previously analyzed successfully using optical emission spectroscopy in order to better understand arc and laser plasma properties as a function of plasma radius. Variation of hybrid welding plasma properties with radial distance is not known. Since plasma properties can affect arc and laser energy absorption and weld integrity, a better understanding of the change in hybrid welding plasma properties as a function of plasma radius is important and necessary. Material composition influences welding plasma properties, arc and laser energy absorption, heat transfer, and fluid flow. The presence of surface active elements such as oxygen and sulfur can affect weld pool fluid flow and bead geometry depending upon the significance of heat transfer by convection. Easily vaporized and ionized alloying elements can influence arc plasma characteristics and arc energy absorption. The effects of surface active elements on heat transfer and fluid flow are well understood in the case of arc and conduction mode laser welding. However, the influence of surface active elements on heat transfer and fluid flow during keyhole mode laser welding and laser/arc hybrid welding are not well known. Modeling has been used to successfully analyze the influence of surface active elements during arc and conduction mode laser welding in the past and offers promise in the case of laser/arc hybrid welding. A critical review of the literature revealed several important areas for further research and unanswered questions. (1) The understanding of heat transfer and fluid flow during hybrid welding is still beginning and further research is necessary. (2) Why hybrid welding weld bead width is greater than that of laser or arc welding is not well understood. (3) The influence of arc power and heat source separation distance on cooling rates during hybrid welding are not known. (4) Convection during hybrid welding is not well understood despite its importance to weld integrity. (5) The influence of surface active elements on weld geometry, weld pool temperatures, and fluid flow during high power density laser and laser/arc hybrid welding are not known. (6) Although the arc power and heat source separation distance have been experimentally shown to influence arc stability and plasma light emission during hybrid welding, the influence of these parameters on plasma properties is unknown. (7) The electrical conductivity of hybrid welding plasmas is not known, despite its importance to arc stability and weld integrity. In this study, heat transfer and fluid flow are analyzed for laser, gas tungsten arc (GTA), and laser/GTA hybrid welding using an experimentally validated three dimensional phenomenological model. By evaluating arc and laser welding using similar process parameters, a better understanding of the hybrid welding process is expected. The role of arc power and heat source separation distance on weld depth, weld pool centerline cooling rates, and fluid flow profiles during CO2 laser/GTA hybrid welding of 321 stainless steel are analyzed. Laser power is varied for a constant heat source separation distance to evaluate its influence on weld temperatures, weld geometry, and fluid flow during Nd:YAG laser/GTA hybrid welding of A131 structural steel. The influence of oxygen and sulfur on keyhole and weld bead geometry, weld temperatures, and fluid flow are analyzed for high power density Yb doped fiber laser welding of (0.16 %C, 1.46 %Mn) mild steel. Optical emission spectroscopy was performed on GTA, Nd:YAG laser, and Nd:YAG laser/GTA hybrid welding plasmas for welding of 304L stainless steel. Emission spectroscopy provides a means of determining plasma temperatures and species densities using deconvoluted measured spectral intensities, which can then be used to calculate plasma electrical conductivity. In this study, hybrid welding plasma temperatures, species densities, and electrical conductivities were determined using various heat source separation distances and arc currents using an analytical method coupled calculated plasma compositions. As a result of these studies heat transfer by convection was determined to be dominant during hybrid welding of steels. The primary driving forces affecting hybrid welding fluid flow are the surface tension gradient and electromagnetic force. Fiber laser weld depth showed a negligible change when increasing the (0.16 %C, 1.46 %Mn) mild steel sulfur concentration from 0.006 wt% to 0.15 wt%. Increasing the dissolved oxygen content in weld pool from 0.0038 wt% to 0.0257 wt% increased the experimental weld depth from 9.3 mm to 10.8 mm. Calculated partial pressure of carbon monoxide increased from 0.1 atm to 0.75 atm with the 0.0219 wt% increase in dissolved oxygen in the weld metal and may explain the increase in weld depth. Nd:YAG laser/GTA hybrid welding plasma temperatures were calculated to be approximately between 7927 K and 9357 K. Increasing the Nd:YAG laser/GTA hybrid welding heat source separation distance from 4 mm to 6 mm reduced plasma temperatures between 500 K and 900 K. Hybrid welding plasma total electron densities and electrical conductivities were on the order of 1 x 1022 m-3 and 3000 S m-1, respectively.

  19. Weldability of Advanced High Strength Steels using Ytterbium:Yttrium Aluminium Garnet high power laser for Tailor-Welded Blank applications

    NASA Astrophysics Data System (ADS)

    Sharma, Rajashekhar Shivaram

    Use of a high power Yb:YAG laser is investigated for joining advanced high strength steel materials for use in tailor-welded blank (TWB) applications. TWB's are materials of different chemistry, coating or thicknesses that are joined before metal forming and other operations such as trimming, assembly and painting are carried out. TWB is becoming an important design tool in the automotive industry for reducing weight, improving fuel economy and passenger safety, while reducing the overall costs for the customer. Three advanced high strength steels, TRIP780, DP980 and USIBOR, which have many unique properties that are conducive to achieving these objectives, along with mild steel, are used in this work. The objective of this work is to ensure that high quality welds can be obtained using Yb:YAG lasers which are also becoming popular for metal joining operations, since they produce high quality laser beams that suffer minimal distortion when transported via fiber optic cables. Various power levels and speeds for the laser beam were used during the investigation. Argon gas was consistently used for shielding purposes during the welding process. After the samples were welded, metallographic examination of the fusion and heat-affected zones using optical and scanning electron microscopes were carried out to determine the microstructures as well as weld defects. Optical and scanning electron microscopes were also used to examine the top of welds as well as fracture surfaces. Additionally, cross-weld microhardness evaluations, tensile tests using Instron tester, limited fatigue tests as well as formability evaluations using OSU plane strain evaluation were carried out. The examinations included a 2-factor full factorial design of experiments to determine the impact of coatings on the surface roughness on the top of the welds. Tensile strengths of DP980, TRIP780 and mild steel materials as well as DP980 welded to TRIP780 and mild steel in the rolling direction as well as transverse direction were evaluated. Metallographic examinations determined that most of the fusion zone is martensitic with small regions of bainite and ferrite. High microhardness values of the order of 550--600 Hv were noted in most joints, which are attributed to high alloy content of the fusion zone as well as high rates of cooling typical of laser welds. During tensile, fatigue and formability tests, no fractures in the fusion or heat affected zones were observed. Geometric variability evaluations indicated that coatings such as aluminum (in the case of USIBOR) and galvanized zinc (TRIP780) can affect the variability of the weld zone and the surface roughness on the top of the weld. Excessive variability in the form of weld concavity in the weld zones can lead to fractures in the weld region, even though higher hardness can, to some extent, compensate for these surface irregularities. The 2-factor design of experiments further confirmed that coatings adversely affect the surface roughness on the top of the welds. Although thickness differentials alone do not make a significant impact on surface roughness, together with coatings, they can have an adverse effect on roughness. Tensile tests in the direction of rolling as well as in the transverse direction indicate that TRIP780 seems weaker in the direction of rolling when compared to transverse direction while mild steel is stronger in the direction of rolling. Weldability analyses revealed that the typical melting efficiency is on the order of 50--70% for full penetration welding. Formability tests showed that TR/MS joints fractured in a direction parallel to the weld line when tested with the loads perpendicular to the weld line. Tests have also confirmed that weld speed and power have no impact on the outcome of formability results. Overall, this work conclusively proves that high power Yb:YAG lasers can effectively join high strength materials such as DP980, TRIP780, USIBOR, as well as mild steel, for use in tailor-welded blank applications, contributing to lighter, more fuel-efficient and safer vehicles.

  20. Preliminary Investigations of Joining Technologies for Attaching Refractory Metals to Ni-Based Superalloys

    NASA Technical Reports Server (NTRS)

    Gould, Jerry E.; Ritzert, Frank J.; Loewenthal, William S.

    2006-01-01

    In this study, a range of joining technologies has been investigated for creating attachments between refractory metal and Ni-based superalloys. Refractory materials of interest include Mo-47%Re, T-111, and Ta-10%W. The Ni-based superalloys include Hastelloy X and MarM 247. During joining with conventional processes, these materials have potential for a range of solidification and intermetallic formation-related defects. For this study, three non-conventional joining technologies were evaluated. These included inertia welding, electro-spark deposition (ESD) welding, and magnetic pulse welding (MPW). The developed inertia welding practice closely paralleled that typically used for the refractory metals alloys. Metallographic investigations showed that forging during inertia welding occurred predominantly on the nickel base alloy side. It was also noted that at least some degree of forging on the refractory metal side of the joint was necessary to achieve consistent bonding. Both refractory metals were readily weldable to the Hastelloy X material. When bonding to the MarM 247, results were inconsistent. This was related to the higher forging temperatures of the MarM 247, and subsequent reduced deformation on that material during welding. ESD trials using a Hastelloy X filler were successful for all material combinations. ESD places down very thin (5- to 10- m) layers per pass, and interactions between the substrates and the fill were limited (at most) to that layer. For the refractory metals, the fill only appeared to wet the surface, with minimal dilution effects. Microstructures of the deposits showed high weld metal integrity with maximum porosity on the order of a few percent. Some limited success was also obtained with MPW. In these trials, only the T-111 tubes were used. Joints were possible for the T-111 tube to the Hastelloy X bar stock, but the stiffness of the tube (resisting collapse) necessitated the use of very high power levels. These power levels resulted in damage to the equipment (concentrator) during welding. It is of note that the joint made showed the typical wavy bond microstructure associated with magnetic pulse/explosion bond joints. Joints were not possible between the T-111 tube and the MarM 247 bar stock. In this case, the MarM 247 shattered before sufficient impact forces could be developed for bonding.

  1. The generalized accessibility and spectral gap of lower hybrid waves in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hironori

    1994-03-01

    The generalized accessibility of lower hybrid waves, primarily in the current drive regime of tokamak plasmas, which may include shifting, either upward or downward, of the parallel refractive index (n{sub {parallel}}), is investigated, based upon a cold plasma dispersion relation and various geometrical constraint (G.C.) relations imposed on the behavior of n{sub {parallel}}. It is shown that n{sub {parallel}} upshifting can be bounded and insufficient to bridge a large spectral gap to cause wave damping, depending upon whether the G.C. relation allows the oblique resonance to occur. The traditional n{sub {parallel}} upshifting mechanism caused by the pitch angle of magneticmore » field lines is shown to lead to contradictions with experimental observations. An upshifting mechanism brought about by the density gradient along field lines is proposed, which is not inconsistent with experimental observations, and provides plausible explanations to some unresolved issues of lower hybrid wave theory, including generation of {open_quote}seed electrons.{close_quote}« less

  2. Process Model for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Adams, Glynn

    1996-01-01

    Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the forging affect of the shoulder. The energy balance at the boundary of the plastic region with the environment required that energy flow away from the boundary in both radial directions. One resolution to this problem may be to introduce a time dependency into the process model, allowing the energy flow to oscillate across this boundary. Finally, experimental measurements are needed to verify the concepts used here and to aid in improving the model.

  3. Large enhancement of thermoelectric effects in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead

    NASA Astrophysics Data System (ADS)

    Yao, Hui; Zhang, Chao; Li, Zhi-Jian; Nie, Yi-Hang; Niu, Peng-bin

    2018-05-01

    We theoretically investigate the thermoelectric properties in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead. The role of the intrinsic and extrinsic parameters in improving thermoelectric properties is discussed. The peak value of figure of merit near gap edges increases with the asymmetry parameter decreasing, particularly, when asymmetry parameter is less than 0.5, the figure of merit near gap edges rapidly rises. When the interdot coupling strengh is less than the superconducting gap the thermopower spectrum presents a single-platform structure. While when the interdot coupling strengh is larger than the gap, a double-platform structure appears in thermopower spectrum. Outside the gap the peak values of figure of merit might reach the order of 102. On the basis of optimizing internal parameters the thermoelectric conversion efficiency of the device can be further improved by appropriately matching the total magnetic flux and the flux difference between two subrings.

  4. Signal enhancement due to high-Z nanofilm electrodes in parallel plate ionization chambers with variable microgaps.

    PubMed

    Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2017-12-01

    We developed a method for measuring signal enhancement produced by high-Z nanofilm electrodes in parallel plate ionization chambers with variable thickness microgaps. We used a laboratory-made variable gap parallel plate ionization chamber with nanofilm electrodes made of aluminum-aluminum (Al-Al) and aluminum-tantalum (Al-Ta). The electrodes were evaporated on 1 mm thick glass substrates. The interelectrode air gap was varied from 3 μm to 1 cm. The gap size was measured using a digital micrometer and it was confirmed by capacitance measurements. The electric field in the chamber was kept between 0.1 kV/cm and 1 kV/cm for all the gap sizes by applying appropriate compensating voltages. The chamber was exposed to 120 kVp X-rays. The current was measured using a commercial data acquisition system with temporal resolution of 600 Hz. In addition, radiation transport simulations were carried out to characterize the dose, D(x), high-energy electron current, J(x), and deposited charge, Q(x), as a function of distance, x, from the electrodes. A deterministic method was selected over Monte Carlo due to its ability to produce results with 10 nm spatial resolution without stochastic uncertainties. Experimental signal enhancement ratio, SER(G) which we defined as the ratio of signal for Al-air-Ta to signal for Al-air-Al for each gap size, was compared to computations. The individual contributions of dose, electron current, and charge deposition to the signal enhancement were determined. Experimental signals matched computed data for all gap sizes after accounting for several contributions to the signal: (a) charge carrier generated via ionization due to the energy deposited in the air gap, D(x); (b) high-energy electron current, J(x), leaking from high-Z electrode (Ta) toward low-Z electrode (Al); (c) deposited charge in the air gap, Q(x); and (d) the decreased collection efficiency for large gaps (>~500 μm). Q(x) accounts for the electrons below 100 eV, which are regarded as stopped by the radiation transport code but which can move and form electron current in small gaps (<100 μm). While the total energy deposited in the air gap increases with gap size for both samples, the average high-energy current and deposited charge are moderately decreasing with the air gap. When gap sizes are smaller than ~20 μm, the contribution to signal from dose approaches zero while contributions from high-energy current and deposited charges give rise to an offset signal. The measured signal enhancement ratio (SER) was 40.0 ± 5.0 for the 3 μm gap and rapidly decreasing with gap size down to 9.9 ± 1.2 for the 21 μm gap and to 6.6 ± 0.3 for the 100 μm gap. The uncertainties in SER were mostly due to uncertainties in gap size and data acquisition system. We developed an experimental method to determine the signal enhancement due to high-Z nanolayers in parallel plate ionization chambers with micrometer spatial resolution. As the water-equivalent thicknesses of these air gaps are 3 nm to 10 μm, the method may also be applicable for nanoscopic spatial resolution of other gap materials. The method may be extended to solid insulator materials with low Z. © 2017 American Association of Physicists in Medicine.

  5. Surface dose measurements from air gaps under a bolus by using a MOSFET dosimeter in clinical oblique photon beams

    NASA Astrophysics Data System (ADS)

    Chung, Jin-Beom; Kim, Jae-Sung; Kim, In-Ah; Lee, Jeong-Woo

    2012-10-01

    This study is intended to investigate the effects of surface dose from air gaps under the bolus in clinically used oblique photon beams by using a Markus parallel-plate chamber and a metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter. To evaluate the performances of the two detectors, the percentage surface doses of the MOSFET dosimeters in without an air gap under the bolus material were measured and compared with those of the Markus parallel-plate chamber. MOSFET dosimeters at the surface provided results mostly in good agreement with the parallelplate chamber. The MOSFET dosimeters seemed suitable for surface dose measurements having excellent accuracy for clinical used photon beams. The relative surface doses were measured with air gaps (2, 5, 10 mm) and without an air gap under 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. The reductions in the surface dose substantially increased with small field size, thick bolus, and large air gap. The absolute difference in the reductions of the surface dose between the MOSFET dosimeter and the Markus parallel-plate chamber was less than 1.1%. Results at oblique angles of incidence showed larger reductions in surface dose with increasing angle of incidence. The largest reduction in surface dose was recorded for a 6 × 6 cm2 field at a 60° angle of incidence with an 10-mm air gap under a 10-mm bolus. When a 10-mm bolus was used, a reduction in the surface dose with an air gap of up to 10.5% could be achieved by varying the field size and the incident angle. Therefore, air gaps under the bolus should be avoided in radiotherapy treatment, especially for photon beam with highly oblique angles of incidence.

  6. Thermoplastic Ribbon-Ply Bonding Model

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Marchello, Joseph M.; Messier, Bernadette C.

    1996-01-01

    The aim of the present work was to identify key variables in rapid weldbonding of thermoplastic tow (ribbon) and their relationship to matrix polymer properties and to ribbon microstructure. Theoretical models for viscosity, establishment of ply-ply contact, instantaneous (Velcro) bonding, molecular interdiffusion (healing), void growth suppression, and gap filling were reviewed and synthesized. Consideration of the theoretical bonding mechanisms and length scales and of the experimental weld/peel data allow the prediction of such quantities as the time and pressure required to achieve good contact between a ribbon and a flat substrate, the time dependence of bond strength, pressures needed to prevent void growth from dissolved moisture and conditions for filling gaps and smoothing overlaps.

  7. Static and aerothermal tests of a superalloy honeycomb prepackaged thermal protection system

    NASA Technical Reports Server (NTRS)

    Gorton, Mark P.; Shideler, John L.; Webb, Granville L.

    1993-01-01

    A reusable metallic thermal protection system has been developed for vehicles with maximum surface temperatures of up to 2000 F. An array of two 12- by 12-in. panels was subjected to radiant heating tests that simulated Space Shuttle entry temperature and pressure histories. Results indicate that this thermal protection system, with a mass of 2.201 lbm/ft(exp 2), can successfully prevent typical aluminum primary structure of an entry vehicle like the Space Shuttle from exceeding temperatures greater than 350 F at a location on the vehicle where the maximum surface temperature is 1900 F. A flat array of 20 panels was exposed to aerothermal flow conditions, at a Mach number of 6.75. The panels were installed in a worst-case orientation with the gaps between panels parallel to the flow. Results from the aerothermal tests indicated that convective heating occurred from hot gas flow in the gaps between the panels. Proposed design changes to prevent gap heating occurred from hot gas flow in the gaps between the panels. Proposed design changes to prevent gap heating include orienting panels so that gaps are not parallel to the flow and using a packaged, compressible gap-filler material between panels to block hot gas flow in the gaps.

  8. A Kinematic, Flexure-based Mechanism for Precise, Parallel Motion for the Hertz Variable-delay Polarization Modulator (VPM)

    NASA Technical Reports Server (NTRS)

    Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.

    2008-01-01

    We describe the design of the linear motion stage for a Variable-delay Polarization Modulator (VPM) and of a grid flattener that has been built and integrated into the Hertz ground-based, submillimeter polarimeter. VPMs allow the modulation of a polarized source by controlling the phase difference between two linear, orthogonal polarizations. The size of the gap between a mirror and a very flat polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. A novel, kinematic, flexure-based mechanism is described that passively maintains the parallelism of the mirror and the grid to 1.5 pm over a 150 mm diameter, with a 400 pm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. A simple device that ensures the planarity of the polarizing grid is also described. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.

  9. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Research Center for Advanced Science and Technology; Miura, Atsushi

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed tomore » the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.« less

  10. Squeezing and de-wetting of a shear thinning fluid drop between plane parallel surfaces: capillary adhesion phenomenon

    NASA Astrophysics Data System (ADS)

    Ward, Thomas

    2017-11-01

    The radial squeezing and de-wetting of a thin film of viscous shear thinning fluid filling the gap between parallel plane walls is examined both experimentally and theoretically for gap spacing much smaller than the capillary length. The interaction between motion of fluid in the gap driven by squeezing or de-wetting and surface tension is parameterized by a dimensionless variable, F, that is the ratio of the constant force supplied by the top plate (either positive or negative) to surface tension at the drop's circumference. Furthermore, the dimensionless form of the rate equation for the gap's motion reveals a time scale that is dependent on the drop volume when analyzed for a power law shear thinning fluid. In the de-wetting problem the analytical solution reveals the formation of a singularity, leading to capillary adhesion, as the gap spacing approaches a critical value that depends on F and the contact angle. Experiments are performed to test the analytical predictions for both squeezing, and de-wetting in the vicinity of the singularity.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei, E-mail: wang_wei_310@163.com; Lu, Yonghao, E-mail: lu_yonghao@mater.ustb.edu.cn; Ding, Xianfei, E-mail: xfding@ustb.edu.cn

    Microstructures and microhardness at fusion boundary of a weld joint were investigated in a 316 stainless steel/Inconel 182 dissimilar weldment. The results showed that there were two alternately distributed typical fusion boundaries, a narrow random boundary (possessed 15% in length) with a clear sharp interface and an epitaxial fusion one with (100){sub BM}//(100){sub WM} at the joint interface. The composition transition, microstructure and hardness across the fusion boundary strongly depended on the type of the fusion boundary. For the random boundary, there was a clear sharp interface and the composition transition with a width of 100 μm took place symmetricallymore » across the grain boundary. For the epitaxial fusion one, however, there were Type-I and Type-II grain boundaries perpendicular and parallel to the epitaxial fusion boundary, respectively. The composition transition took place in the Inconel 182 weld side. Σ3 boundaries in the HAZ of 316SS side and Σ5 grain boundaries in weld metal were usually observed, despite the type of fusion boundary, however the former was much more in epitaxial fusion boundary. Microhardness was continuously decreased across the random fusion boundary from the side of Inconel 182 to 316SS, but a hardening phenomenon appeared in the epitaxial fusion boundary zone because of its fine cellular microstructure. - Highlights: • Two typical fusion boundaries alternately distributed in the fusion interface • The microstructure, composition and hardness across fusion boundary depended on its type. • Different regions in welded joint have different special CSL value boundaries. • Hardening phenomenon only appeared in the epitaxial fusion boundary.« less

  12. Residual Stresses in SAVY 4000 and Hagan Container Bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroud, Mary Ann; Hill, Mary Ann; Tokash, Justin Charles

    Chloride-induced stress corrosion cracking (SCC) has been investigated as a potential failure mechanism for the SAVY 4000 and the Hagan containers used to store plutonium-bearing materials at Los Alamos National Laboratory. This report discusses the regions of the container bodies most susceptible to SCC and the magnitude of the residual stresses in those regions. Boiling MgCl2 testing indicated that for both containers the region near the top weld was most susceptible to SCC. The Hagan showed through wall cracking after 22-24 hours of exposure both parallel (axial stresses) and perpendicular (hoop stresses) to the weld. The SAVY 4000 container showedmore » significant cracking above and below the weld after 47 hours of exposure but there was no visual evidence of a through wall crack and the cracks did not leak water. Two through wall holes formed in the bottom of the SAVY 4000 container after 44-46 hours of exposure. For both containers, average “through wall” residual stresses were determined from hole drilling data 4 mm below the weld. In the Hagan body, average tensile hoop stresses were 194 MPa and average compressive axial stresses were -120 MPa. In the SAVY 4000 body, average compressive hoop stresses were 11 MPa and average tensile axial stresses were 25 MPa. Results suggest that because the Hagan container exhibited through wall cracking in a shorter time in boiling MgCl2 and had the higher average tensile stress, 194 MPa hoop stress, it is more susceptible to SCC than the SAVY 4000 container.« less

  13. Orientation dependence of microfracture behavior in a dual-phase high-strength low-alloy steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, D.; Lee, S.; Kim, N.J.

    1997-02-01

    In selecting the processing conditions and evaluating the reliability of structural materials, microscopic observations and identification of the fracture mechanisms in local cracking behavior are required. An important instance in the failure of the local brittle zone (LBZ) in the welding zone. The LBZ, which is very brittle, is the coarse-grained heat-affected zone near the fusion line, a zone known to be critical to the fracture toughness of welded parts. Thus, maintaining stable fracture resistance by predicting the microfracture behavior is important when using high-strength low-alloy (HSLA) steels in offshore structural steel welds. Depending on the thermal cycles involved duringmore » welding, the ferrite/martensite structure can have various morphologies of martensite particles, for example, fibrous and blocky martensite. In summary, in situ SEM fracture tests reveal that in the L-oriented IQ DCB specimen, a microcrack tends to propagate relatively uniformly throughout the ferrite and well-distributed fine fibrous martensite, yielding good elongation with high strength level. Also, the IQ structure in the T orientation shows similar microfracture behavior. On the other hand, in the SQ structure, where blocky-type martensite is mixed with ferrite, strain is localized into shear bands mostly in the ferrite region, and a local microcrack propagates along the strain-localized band formed in the ferrite, resulting in the SQ structure in the T orientation, where the ferrite-martensite bands are parallel to the notch direction, the martensite cannot act as an efficient barrier to microcrack advance, and thus the tensile ductility is decreased.« less

  14. Are sectioning and soldering of short-span implant-supported prostheses necessary procedures?

    PubMed

    Bianchini, Marco A; Souza, João G O; Souza, Dircilene C; Magini, Ricardo S; Benfatti, Cesar A M; Cardoso, Antonio C

    2011-01-01

    The aim of this study was to evaluate the fit between dental abutments and the metal framework of a 3-unit fixed prosthesis screwed to two implants to determine whether sectioning and soldering of the framework are in fact necessary procedures. The study was based on a model of a metal framework of a 3-unit prosthesis screwed to two implants. A total of 18 metal frameworks were constructed and divided into 3 groups: (1) NS group - each framework was cast in one piece and not sectioned; (2) CS group - the components of each sectioned framework were joined by conventional soldering; and (3) LW group - the components of each sectioned framework were joined by laser welding. The control group consisted of six silver-palladium alloy copings that were not cast together. Two analyses were mperformed: in the first analysis, the framework was screwed only to the first abutment, and in the second analysis, the framework was screwed to both abutments. The prosthetic fit was assessed at a single point using a measuring microscope (Measurescope, Nikon, Japan) and the marginal gap was measured in micrometers. Statistical analysis was performed using analysis of variance (ANOVA), Scheffe's test, Student's t-test, and Mann-Whitney U test. The NS group had larger marginal gaps than the other groups (p<0.01), while the CS and LW groups had a similar degree of misfit with no significant difference between them. The results revealed that, in the case of short-span 3-unit fixed prostheses, the framework should be sectioned and soldered or welded to prevent or reduce marginal gaps between the metal framework and dental abutments.

  15. Method of electroforming a rocket chamber

    NASA Technical Reports Server (NTRS)

    Fortini, A. (Inventor)

    1974-01-01

    A transpiration cooled rocket chamber is made by forming a porous metal wall on a suitably shaped mandrel. The porous wall may be made of sintered powdered metal, metal fibers sintered on the mandrel or wires woven onto the mandrel and then sintered to bond the interfaces of the wires. Intersecting annular and longitudinal ribs are then electroformed on the porous wall. An interchamber wall having orifices therein is then electroformed over the annular and longitudinal ribs. Parallel longitudinal ribs are then formed on the outside surface of the interchamber wall after which an annular jacket is electroformed over the parallel ribs to form distribution passages therewith. A feed manifold communicating with the distribution passages may be fabricated and welded to the rocket chamber or the feed manifold may be electroformed in place.

  16. The infrared bands Pechan prism axis parallel detection method

    NASA Astrophysics Data System (ADS)

    Qiang, Hua; Ji, Ming; He, Yu-lan; Wang, Nan-xi; Chang, Wei-jun; Wang, Ling; Liu, Li

    2017-02-01

    In this paper, we put forward a new method to adjust the air gap of the total reflection air gap of the infrared Pechan prism. The adjustment of the air gap in the air gap of the Pechan prism directly affects the parallelism of the optical axis, so as to affect the consistency of the optical axis of the infrared system. The method solves the contradiction between the total reflection and the high transmission of the infrared wave band, and promotes the engineering of the infrared wave band. This paper puts forward the method of adjusting and controlling, which can ensure the full reflection and high penetration of the light, and also can accurately measure the optical axis of the optical axis of the different Pechan prism, and can achieve the precision of the level of the sec. For Pechan prism used in the infrared band image de rotation, make the product to realize miniaturization, lightweight plays an important significance.

  17. Competition Between Electromagnetic Modes in a Free-Electron Maser

    DTIC Science & Technology

    1994-02-28

    electron perpendicular momentum familiar from gyrotron theory 111). The electron mass is me, initial electron velocity perpendicular and parallel to the...are Q Q2 of zeroth order (-1). Similarly, 48 Y tqfia IIOP --T-V I V s_*/ U- s sI J(93~+ I(*JQL4 8aq 5 Using matrix notation, we can write (i) = (C...disks were in turn electron beam welded to stainless steel flanges. While Kovar was needed to provide a good brazing interface, the mass of the material

  18. The National Shipbuilding Research Program. Survey of Air and Water Quality Pollution Prevention and Control Technology Used in Shipyards and Similar Industries

    DTIC Science & Technology

    1998-01-09

    vehicle washing 3. TSP and citric acid for bilge cleaning 1. no capture and filtration of weld fumes 8 1. black beauty abrasives 2...treatment 1. not treated N/A 12 N/A 1. treated on-site. with gravity oil water separator, acid cracking of the emulsion layer and parallel...less energy-intensive treatment technologies such as constructed wetlands for sewage treatment and anoxic limestone drains for acid mine drainage

  19. The Effect of Premixed Al-Cu Powder on the Stir Zone in Friction Stir Welding of AA3003-H18

    NASA Astrophysics Data System (ADS)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.

    2015-02-01

    In this research, 3-mm-thick AA3003-H18 non-heat-treatable aluminum alloy plates were joined by friction stir welding (FSW). It was performed by adding pure Cu and premixed Cu-Al powders at various rotational speeds of 800, 1000, and 1200 rpm and constant traveling speeds of 100 mm/min. At first, the powder was filled into the gap (0.2 or 0.4 mm) between two aluminum alloy plates, and then the FSW process was performed in two passes. The microstructure, mechanical properties, and formation of intermetallic compounds were investigated in both cases of using pure Cu and premixed Al-Cu powders. The results of using pure Cu and premixed Al-Cu powders were compared in the stir zone at various rotational speeds. The copper particle distribution and formation of Al-Cu intermetallic compounds (Al2Cu and AlCu) in the stir zone were desirable using premixed Al-Cu powder into the gap. The hardness values were significantly increased by formation of Al-Cu intermetallic compounds in the stir zone and it was uniform throughout the stir zone when premixed Al-Cu powder was used. Also, longitudinal tensile strength from the stir zone was higher when premixed Al-Cu powder was used instead of pure Cu powder.

  20. Development of a procedure for forming assisted thermal joining of tubes

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Löbbe, Christian; Staupendahl, Daniel; Tekkaya, A. Erman

    2018-05-01

    With the demand of lightweight design in the automotive industry, not only the wall-thicknesses of tubular components of the chassis or spaceframe are continuously decreased. Also the thicknesses of exhaust system parts are reduced to save material and mass. However, thinner tubular parts bring about additional challenges in joining. Welding or brazing methods, which are utilized in joining tubes with specific requirements concerning leak tightness, are sensitive to the gap between the joining partners. Furthermore, a large joining area is required to ensure the durability of the joint. The introduction of a forming step in the assembled state prior to thermal joining can define and control the gap for subsequent brazing or welding. The mechanical pre-joint resulting from the previously described calibration step also results in easier handling of the tubes prior to thermal joining. In the presented investigation, a spinning process is utilized to produce force-fit joints of varying lengths and diameter reduction and form-fit joints with varying geometrical attributes. The spinning process facilitates a high formability and geometrical flexibility, while at the achievable precision is high and the process forces are low. The strength of the joints is used to evaluate the joint quality. Finally, a comparison between joints produced by forming with subsequent brazing and original tube is conducted, which presents the high performance of the developed procedure for forming assisted thermal joining.

  1. In vitro investigation of marginal accuracy of implant-supported screw-retained partial dentures.

    PubMed

    Koke, U; Wolf, A; Lenz, P; Gilde, H

    2004-05-01

    Mismatch occurring during the fabrication of implant-supported dentures may induce stress to the peri-implant bone. The purpose of this study was to investigate the influence of two different alloys and the fabrication method on the marginal accuracy of cast partial dentures. Two laboratory implants were bonded into an aluminium block so that the distance between their longitudinal axes was 21 mm. Frameworks designed for screw-retained partial dentures were cast either with pure titanium (rematitan) or with a CoCr-alloy (remanium CD). Two groups of 10 frameworks were cast in a single piece. The first group was made of pure titanium, and the second group of a CoCr-alloy (remanium CD). A third group of 10 was cast in two pieces and then laser-welded onto a soldering model. This latter group was also made of the CoCr-alloy. All the frameworks were screwed to the original model with defined torque. Using light microscopy, marginal accuracy was determined by measuring vertical gaps at eight defined points around each implant. Titanium frameworks cast in a single piece demonstrated mean vertical gaps of 40 microm (s.d. = 11 microm) compared with 72 microm (s.d. = 40 microm) for CoCr-frameworks. These differences were not significant (U-test, P = 0.124) because of a considerable variation of the values for CoCr-frameworks (minimum: 8 microm and maximum: 216 microm). However, frameworks cast in two pieces and mated with a laser showed significantly better accuracy in comparison with the other experimental groups (mean: 17 microm +/- 6; P < 0.01). (i) The fit of implant-supported partial dentures cast with pure titanium in a single piece is preferable to that of those made with the CoCr-alloy and (ii) the highest accuracy can be achieved by using a two-piece casting technique combined with laser welding. Manufacturing the framework pieces separately and then welding them together provides the best marginal fit.

  2. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.

    PubMed

    Qi, Jing Shan; Huang, Jian Yu; Feng, Ji; Shi, Da Ning; Li, Ju

    2011-05-24

    Graphene is an interesting electronic material. However, flat monolayer graphene does not have significant gap in the electronic density of states, required for a large on-off ratio in logic applications. We propose here a novel device architecture, composed of self-folded carbon nanotube-graphene hybrids, which have been recently observed experimentally in Joule-heated graphene. These experiments demonstrated the feasibility of cutting, folding, and welding few-layer graphene in situ to form all-carbon nanostructures with complex topologies. The electronic gap of self-folded nanotubes can be combined with the semimetallicity of graphene electrodes to form a "metal-semiconductor-metal" junction. By ab initio calculations we demonstrate large energy gaps in the transmission spectra of such junctions, which preserve the intrinsic transport characteristics of the semiconducting nanotubes despite topologically necessary disinclinations at the flat graphene-curved nanotube interface. These all-carbon devices are proposed to be constructed by contact probe cutting and high-temperature annealing and, if produced, would be chemically stable at room temperature under normal gas environments.

  3. Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff

    The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cientmore » industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.« less

  4. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics.

    PubMed

    Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2012-09-25

    Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.

  5. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics

    PubMed Central

    2012-01-01

    Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363

  6. Modulations of the processing of line discontinuities under selective attention conditions?

    PubMed

    Giersch, Anne; Fahle, Manfred

    2002-01-01

    We examined whether the processing of discontinuities involved in figure-ground segmentation, like line ends, can be modulated under selective attention conditions. Subjects decided whether a gap in collinear or parallel lines was located to the right or left. Two stimuli were displayed in immediate succession. When the gaps were on the same side, reaction times (RTs) for the second stimulus increased when collinear lines followed parallel lines, or the reverse, but only when the two stimuli shared the same orientation and location. The effect did not depend on the global form of the stimuli or on the relative orientation of the gaps. A frame drawn around collinear elements affected the results, suggesting a crucial role of the "amodal" orthogonal lines produced when line ends are aligned. Including several gaps in the first stimulus also eliminated RT variations. By contrast, RT variations remained stable across several experimental blocks and were significant for interstimulus intervals from 50 to 600 msec between the two stimuli. These results are interpreted in terms of a modulation of the processing of line ends or the production of amodal lines, arising when attention is selectively drawn to a gap.

  7. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  8. ONR (Office of Naval Research) Far East Scientific Bulletin. Volume 9, Number 3, July to September 1984,

    DTIC Science & Technology

    1984-09-01

    C-033-82 (1982). "Development of the Narrow Gap Submerged Arc Welding Process - NSA Process," Hirai, Y. et al., Kawasaki Steel Technical Report, 5, 81...upsurge in the resources committed to research in the neurosciences in general, and to membrane phenomena specifically. Because of this large...reader a review of most of the current research being conducted in Japan in the neuroscience and membrane physiology areas. The presentation of the

  9. Effects of specimen preparation on the electromagnetic property measurements of solid materials with an automatic network analyzer

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1986-01-01

    Effects of specimen preparation on measured values of an acrylic's electomagnetic properties at X-band microwave frequencies, TE sub 1,0 mode, utilizing an automatic network analyzer have been studied. For 1 percent or less error, a gap between the specimen edge and the 0.901-in. wall of the specimen holder was the most significant parameter. The gap had to be less than 0.002 in. The thickness variation and alignment errors in the direction parallel to the 0.901-in. wall were equally second most significant and had to be less than 1 degree. Errors in the measurement f the thickness were third most significant. They had to be less than 3 percent. The following parameters caused errors of 1 percent or less: ratios of specimen-holder thicknesses of more than 15 percent, gaps between the specimen edge and the 0.401-in. wall less than 0.045 in., position errors less than 15 percent, surface roughness, hickness variation in the direction parallel to the 0.401-in. wall less than 35 percent, and specimen alignment in the direction parallel to the 0.401-in. wall mass than 5 degrees.

  10. Physical and hydrologic properties of outcrop samples from a nonwelded to welded tuff transition, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Rautman, C.A.; Flint, L.E.; Flint, A.L.; Istok, J.D.

    1995-01-01

    Quantitative material-property data are needed to describe lateral and vertical spatial variability of physical and hydrologic properties and to model ground-water flow and radionuclide transport at the potential Yucca Mountain nuclear-waste repository site in Nevada. As part of ongoing site characterization studies of Yucca Mountain directed toward this understanding of spatial variability, laboratory measurements of porosity, bull* and particle density, saturated hydraulic conductivity, and sorptivity have been obtained for a set of outcrop samples that form a systematic,two dimensional grid that covers a large exposure of the basal Tiva Canyon Tuff of the Paintbrush Group of Miocene age at Yucca Mountain. The samples form a detailed vertical grid roughly parallel to the transport direction of the parent ash flows, and they exhibit material-property varia- tions in an interval of major lithologic change overlying a potential nuclear-waste repository at Yucca Mountain. The observed changes in hydrologic properties were systematic and consistent with the changes expected for the nonwelded to welded transition at the base of a major ash-flow sequence. Porosity, saturated hydraulic conductivity, and sorptivity decreased upward from the base of the Tiva Canyon Tuff, indicating the progressive compaction of ash- rich volcanic debris and the onset of welding with increased overburden pressure from the accumulating ash-flow sheet. The rate of decrease in the values of these material properties varied with vertical position within the transition interval. In contrast, bulk-density values increased upward, a change that also is consistent with progressive compaction and the onset of welding. Particle-density values remained almost constant throughout the transition interval, probably indicating compositional (chemical) homogeneity.

  11. Multiturn split-conductor transmission-line resonator

    NASA Astrophysics Data System (ADS)

    Haziza, Nathalie; Bittoun, Jacques; Kan, Siew

    1997-05-01

    A split-conductor parallel-plate transmission line resonator is a simple structure made from bending a strip of double-face copper-clad printed-circuit board into a loop with alternate electrical discontinuities (gaps) on opposite sides. Its natural resonant frequency (Fn) is determined by the transmission line characteristic impedance, the loop diameter or strip length, and the number (Ng) of gaps. It is easy to design high frequency resonators simply by increasing Ng. We propose here a single-gap multiturn resonator for low frequency operation as well as a simplified expression for the determination of Fn. A design procedure of this type of resonator is outlined and illustrative examples with parallel-plate as well as ordinary 50 Ω coaxial transmission lines are given. Also, for a given cable length, numerical calculation shows that the minimum resonator frequency can be attained with a form factor of the order of 2.

  12. NASA Tech Briefs, August 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Stable, Thermally Conductive Fillers for Bolted Joints; Connecting to Thermocouples with Fewer Lead Wires; Zipper Connectors for Flexible Electronic Circuits; Safety Interlock for Angularly Misdirected Power Tool; Modular, Parallel Pulse-Shaping Filter Architectures; High-Fidelity Piezoelectric Audio Device; Photovoltaic Power Station with Ultracapacitors for Storage; Time Analyzer for Time Synchronization and Monitor of the Deep Space Network; Program for Computing Albedo; Integrated Software for Analyzing Designs of Launch Vehicles; Abstract-Reasoning Software for Coordinating Multiple Agents; Software Searches for Better Spacecraft-Navigation Models; Software for Partly Automated Recognition of Targets; Antistatic Polycarbonate/Copper Oxide Composite; Better VPS Fabrication of Crucibles and Furnace Cartridges; Burn-Resistant, Strong Metal-Matrix Composites; Self-Deployable Spring-Strip Booms; Explosion Welding for Hermetic Containerization; Improved Process for Fabricating Carbon Nanotube Probes; Automated Serial Sectioning for 3D Reconstruction; and Parallel Subconvolution Filtering Architectures.

  13. The Extended Parallel Process Model: Illuminating the Gaps in Research

    ERIC Educational Resources Information Center

    Popova, Lucy

    2012-01-01

    This article examines constructs, propositions, and assumptions of the extended parallel process model (EPPM). Review of the EPPM literature reveals that its theoretical concepts are thoroughly developed, but the theory lacks consistency in operational definitions of some of its constructs. Out of the 12 propositions of the EPPM, a few have not…

  14. Theoretical and Experimental Study of the Primary Current Distribution in Parallel-Plate Electrochemical Reactors

    ERIC Educational Resources Information Center

    Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.

    2012-01-01

    A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…

  15. In vitro apatite formation on nano-crystalline titania layer aligned parallel to Ti6Al4V alloy substrates with sub-millimeter gap.

    PubMed

    Hayakawa, Satoshi; Matsumoto, Yuko; Uetsuki, Keita; Shirosaki, Yuki; Osaka, Akiyoshi

    2015-06-01

    Pure titanium substrates were chemically oxidized with H2O2 and subsequent thermally oxidized at 400 °C in air to form anatase-type titania layer on their surface. The chemically and thermally oxidized titanium substrate (CHT) was aligned parallel to the counter specimen such as commercially pure titanium (cpTi), titanium alloy (Ti6Al4V) popularly used as implant materials or Al substrate with 0.3-mm gap. Then, they were soaked in Kokubo's simulated body fluid (SBF, pH 7.4, 36.5 °C) for 7 days. XRD and SEM analysis showed that the in vitro apatite-forming ability of the contact surface of the CHT specimen decreased in the order: cpTi > Ti6Al4V > Al. EDX and XPS surface analysis showed that aluminum species were present on the contact surface of the CHT specimen aligned parallel to the counter specimen such as Ti6Al4V and Al. This result indicated that Ti6Al4V or Al specimens released the aluminum species into the SBF under the spatial gap. The released aluminum species might be positively or negatively charged in the SBF and thus can interact with calcium or phosphate species as well as titania layer, causing the suppression of the primary heterogeneous nucleation and growth of apatite on the contact surface of the CHT specimen under the spatial gap. The diffusion and adsorption of aluminum species derived from the half-sized counter specimen under the spatial gap resulted in two dimensionally area-selective deposition of apatite particles on the contact surfaces of the CHT specimen.

  16. A droplet in the inter-electrode gap during gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Nemchinsky, Valerian

    2011-11-01

    Electrical current flowing through a metallic droplet after its detachment from the wire anode during gas metal arc welding (GMAW) is considered. Although the droplet has much higher electrical conductivity compared with the conductivity of the surrounding plasma, current cannot enter the droplet freely since doing so demands igniting of the cathode spot responsible for electron emission. A new mechanism of current flow through a metallic droplet is suggested: one part of the droplet has a potential, which is slightly below the floating potential; this part of the droplet collects ions from the plasma. The remaining portion of the droplet has a potential difference, which is slightly above the floating one. The latter section collects electrons which recombine with the ions collected by the rest of the droplet's surface. The maximum electric current that can flow through the droplet is estimated. It is shown that this current is on the order of a few tens of amperes.

  17. Current collector for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor)

    1989-01-01

    An electrode having higher power output is formed of an open mesh current collector such as expanded nickel covering an electrode film applied to a tube of beta-alumina solid electrolyte (BASE). A plurality of cross-members such as spaced, parallel loops of molybdenum metal wire surround the BASE tube. The loops are electrically connected by a bus wire. As the AMTEC cell is heated, the grid of expanded nickel expands more than the BASE tube and the surrounding loop of wire and become diffusion welded to the electrode film and to the wire loops.

  18. Large-deflection-theory Analysis of the Effect of Web Initial Curvature on the Ultimate Strength of Steel Plate Girder

    NASA Astrophysics Data System (ADS)

    Kala, Jiří; Kala, Zdeněk

    2011-09-01

    The objective of the paper is to analyze the influence of initial imperfections on the behaviour of thin-walled girders welded of slender plate elements. In parallel with experiments, one of the ultimate load tests was computer modelled. In so doing, the girder was modelled, using the geometrically and materially non-linear variant of the shell finite element method, by the ANSYS program. The shape changing during loading process is often accompanying with sudden "snap-through" i. e. rapid curvature change.

  19. Method for making a hot wire anemometer and product thereof

    NASA Technical Reports Server (NTRS)

    Milkulla, V. (Inventor)

    1977-01-01

    A hot wire anemometer probe is described that includes a ceramic body supporting two conductive rods parallel to each other. The body has a narrow edge surface from which the rods protrude. A probe wire is welded to the rods and extends along the edge surface. A ceramic adhesive is used to secure the probe wire to the surface so that the probe wire is rigid. A method for fabricating the probe is also described in which the body is molded and precisely shaped by machining techniques before the probe wires are installed.

  20. A study on fatigue strength reduction factor for small diameter socket welded pipe joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuchi, Makoto; Nakagawa, Akira; Hayashi, Makoto

    1996-12-01

    Factors that may exert influence on the fatigue strength of small diameter socket welded joints of nominal diameter in the 20--50 mm range have been investigated by the fully reversed four-point bending fatigue test with the material, diameter, pipe schedule, throat depth, bead shape, slip-on gap, and root defect as the testing parameters. The fatigue strength of socket joints depended acutely on the diameter. When the diameter is large, the fatigue strength tended to be low and the fracture is of the root-failure mode; when it is small, on the other hand, the fatigue strength is high and the fracturemore » is of the toe-failure mode. Stainless steel proved to be superior to carbon steel; it gave rise to 1.37 times the fatigue strength of the latter for socket joints of nominal diameter 50 mm; the fatigue strength reduction factor determined at 10{sup 7} cycles with respect to the fatigue strength of smooth base metal in the fully reversed fatigue was about 4 for stainless steel and about 5 for carbon steel. The fatigue strength was higher, the larger the Sche number (i.e., the thicker the pipe wall); it was improved markedly by placing one final refinement pass on the toe or by eliminating the slip-on gap. An empirical formula relating the size of the root defect to the fatigue strength reduction has been proposed.« less

  1. Water jacket for solid particle solar receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasyluk, David T.

    A solar receiver includes: water jacket panels each having a light-receiving side and a back side with a watertight sealed plenum defined in-between; light apertures passing through the watertight sealed plenums to receive light from the light-receiving sides of the water jacket panels; a heat transfer medium gap defined between the back sides of the water jacket panels and a cylindrical back plate; and light channeling tubes optically coupled with the light apertures and extending into the heat transfer medium gap. In some embodiments ends of the light apertures at the light receiving side of the water jacket panel aremore » welded together to define at least a portion of the light-receiving side. A cylindrical solar receiver may be constructed using a plurality of such water jacket panels arranged with their light-receiving sides facing outward.« less

  2. Methodology for Augmenting Existing Paths with Additional Parallel Transects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, John E.

    2013-09-30

    Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—themore » shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.« less

  3. Stainless steel corrosion by molten nitrates : analysis and lessons learned.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruizenga, Alan Michael

    2011-09-01

    A secondary containment vessel, made of stainless 316, failed due to severe nitrate salt corrosion. Corrosion was in the form of pitting was observed during high temperature, chemical stability experiments. Optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were all used to diagnose the cause of the failure. Failure was caused by potassium oxide that crept into the gap between the primary vessel (alumina) and the stainless steel vessel. Molten nitrate solar salt (89% KNO{sub 3}, 11% NaNO{sub 3} by weight) was used during chemical stability experiments, with an oxygen cover gas, at a salt temperature of 350-700 C.more » Nitrate salt was primarily contained in an alumina vessel; however salt crept into the gap between the alumina and 316 stainless steel. Corrosion occurred over a period of approximately 2000 hours, with the end result of full wall penetration through the stainless steel vessel; see Figures 1 and 2 for images of the corrosion damage to the vessel. Wall thickness was 0.0625 inches, which, based on previous data, should have been adequate to avoid corrosion-induced failure while in direct contact with salt temperature at 677 C (0.081-inch/year). Salt temperatures exceeding 650 C lasted for approximately 14 days. However, previous corrosion data was performed with air as the cover gas. High temperature combined with an oxygen cover gas obviously drove corrosion rates to a much higher value. Corrosion resulted in the form of uniform pitting. Based on SEM and EDS data, pits contained primarily potassium oxide and potassium chromate, reinforcing the link between oxides and severe corrosion. In addition to the pitting corrosion, a large blister formed on the side wall, which was mainly composed of potassium, chromium and oxygen. All data indicated that corrosion initiated internally and moved outward. There was no evidence of intergranular corrosion nor were there any indication of fast pathways along grain boundaries. Much of the pitting occurred near welds; however this was the hottest region in the chamber. Pitting was observed up to two inches above the weld, indicating independence from weld effects.« less

  4. Diderot: a Domain-Specific Language for Portable Parallel Scientific Visualization and Image Analysis.

    PubMed

    Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John

    2016-01-01

    Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.

  5. Use of gamma ray radiation to parallel the plates of a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Skinner, Wilbert R.; Hays, Paul B.; Anderson, Sally M.

    1987-01-01

    The use of gamma radiation to parallel the plates of a Fabry-Perot etalon is examined. The method for determining the etalon parallelism, and the procedure for irradiating the posts are described. Changes in effective gap for the etalon over the surface are utilized to measure the parallelism of the Fabry-Perot etalon. An example in which this technique is applied to an etalon of fused silica plates, which are 132 mm in diameter and coded with zinc sulfide and cryolite, with Zerodur spaces 2 cm in length. The effect of the irradiation of the posts on the thermal performance of the etalon is investigated.

  6. Examining the Achievement Gap: The Effectiveness of African American Teachers Instructing African American Students in Kansas City Public Schools

    ERIC Educational Resources Information Center

    Campbell, Judith Jordan

    2013-01-01

    Over several years the American public educational system has failed to address one of the most infuriating problems faced by our nation, narrowing the achievement gap in urban districts with urban learners. Historically, minority students have not paralleled the academic performance of their White counterparts. This holds true with standardized…

  7. A periodic piezoelectric smart structure with the integrated passive/active vibration-reduction performances

    NASA Astrophysics Data System (ADS)

    Wang, Yuxi; Niu, Shengkai; Hu, Yuantai

    2017-06-01

    The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.

  8. Cross-sectional aspect ratio modulated electronic properties in Si/Ge core/shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nuo; Lu, Ning; Yao, Yong-Xin

    2013-02-28

    Electronic structures of (4, n) and (m, 4) (the NW has m layers parallel to the {1 1 1} facet and n layers parallel to {1 1 0}) Si/Ge core/shell nanowires (NWs) along the [1 1 2] direction with cross-sectional aspect ratio (m/n) from 0.36 to 2.25 are studied by first-principles calculations. An indirect to direct band gap transition is observed as m/n decreases, and the critical values of m/n and diameter for the transition are also estimated. The size of the band gap also depends on the aspect ratio. These results suggest that m/n plays an important role inmore » modulating the electronic properties of the NWs.« less

  9. Stress Analysis of Bolted, Segmented Cylindrical Shells Exhibiting Flange Mating-Surface Waviness

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2009-01-01

    Bolted, segmented cylindrical shells are a common structural component in many engineering systems especially for aerospace launch vehicles. Segmented shells are often needed due to limitations of manufacturing capabilities or transportation issues related to very long, large-diameter cylindrical shells. These cylindrical shells typically have a flange or ring welded to opposite ends so that shell segments can be mated together and bolted to form a larger structural system. As the diameter of these shells increases, maintaining strict fabrication tolerances for the flanges to be flat and parallel on a welded structure is an extreme challenge. Local fit-up stresses develop in the structure due to flange mating-surface mismatch (flange waviness). These local stresses need to be considered when predicting a critical initial flaw size. Flange waviness is one contributor to the fit-up stress state. The present paper describes the modeling and analysis effort to simulate fit-up stresses due to flange waviness in a typical bolted, segmented cylindrical shell. Results from parametric studies are presented for various flange mating-surface waviness distributions and amplitudes.

  10. Investigation of the fuel feed line failures on the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Larson, E. W.

    1980-01-01

    The Space Shuttle Main Engine (SSME) development program experienced two similar appearing fuel feed line failures during the shutdown portion of two engine tests. Failure investigations into each incident showed that a few cycles of high-amplitude transient strain occurring during the start and cutoff portions of each test could have either accumulated damage and led to a fatigue failure after 46 tests, or caused rupture in a low-strength weld joint. The cause of the high strain was traced to a period of unsteady flow separation during the start and cutoff of each test coincident with the oblique shock approaching the nozzle exit. Since elimination of the flow separation was impractical, the steps taken to allow engine development and flight preparations to continue were: (1) establish the safe operating life of the nozzle, (2) reinforce all low-strength welds, and (3) eliminate the use of thin-wall fuel feed lines. In parallel, the feed line was redesigned and fabrication was initiated on units to be incorporated into the development program.

  11. Manufacturing High-Quality Carbon Nanotubes at Lower Cost

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M.; Lidecker, Henning

    2004-01-01

    A modified electric-arc welding process has been developed for manufacturing high-quality batches of carbon nanotubes at relatively low cost. Unlike in some other processes for making carbon nanotubes, metal catalysts are not used and, consequently, it is not necessary to perform extensive cleaning and purification. Also, unlike some other processes, this process is carried out at atmospheric pressure under a hood instead of in a closed, pressurized chamber; as a result, the present process can be implemented more easily. Although the present welding-based process includes an electric arc, it differs from a prior electric-arc nanotube-production process. The welding equipment used in this process includes an AC/DC welding power source with an integral helium-gas delivery system and circulating water for cooling an assembly that holds one of the welding electrodes (in this case, the anode). The cathode is a hollow carbon (optionally, graphite) rod having an outside diameter of 2 in. (approximately equal to 5.1 cm) and an inside diameter of 5/8 in. (approximately equal to 1.6 cm). The cathode is partly immersed in a water bath, such that it protrudes about 2 in. (about 5.1 cm) above the surface of the water. The bottom end of the cathode is held underwater by a clamp, to which is connected the grounding cable of the welding power source. The anode is a carbon rod 1/8 in. (approximately equal to 0.3 cm) in diameter. The assembly that holds the anode includes a thumbknob- driven mechanism for controlling the height of the anode. A small hood is placed over the anode to direct a flow of helium downward from the anode to the cathode during the welding process. A bell-shaped exhaust hood collects the helium and other gases from the process. During the process, as the anode is consumed, the height of the anode is adjusted to maintain an anode-to-cathode gap of 1 mm. The arc-welding process is continued until the upper end of the anode has been lowered to a specified height above the surface of the water bath. The process causes carbon nanotubes to form in the lowest 2.5 cm of the anode. It also causes a deposit reminiscent of a sandcastle to form on the cathode. The nanotube-containing material is harvested. The cathode and anode can then be cleaned (or the anode is replaced, if necessary) and the process repeated to produce more nanotubes. Tests have shown that the process results in approximately equal to 50-percent yield of carbon nanotubes (mostly of the single-wall type) of various sizes. Whereas the unit cost of purified single-wall carbon nanotubes produced by other process is about $1,000/g in the year 2000, it has been estimated that for the present process, the corresponding cost would be about $10/g.

  12. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  13. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading the way for future circumferential weld implementation.

  14. Parameter optimization of flux-aided backing-submerged arc welding by using Taguchi method

    NASA Astrophysics Data System (ADS)

    Pu, Juan; Yu, Shengfu; Li, Yuanyuan

    2017-07-01

    Flux-aided backing-submerged arc welding has been conducted on D36 steel with thickness of 20 mm. The effects of processing parameters such as welding current, voltage, welding speed and groove angle on welding quality were investigated by Taguchi method. The optimal welding parameters were predicted and the individual importance of each parameter on welding quality was evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results. The importance order of the welding parameters for the welding quality of weld bead was: welding current > welding speed > groove angle > welding voltage. The welding quality of weld bead increased gradually with increasing welding current and welding speed and decreasing groove angle. The optimum values of the welding current, welding speed, groove angle and welding voltage were found to be 1050 A, 27 cm/min, 40∘ and 34 V, respectively.

  15. Gas-path leakage seal for a gas turbine

    DOEpatents

    Wolfe, C.E.; Dinc, O.S.; Bagepalli, B.S.; Correia, V.H.; Aksit, M.F.

    1996-04-23

    A gas-path leakage seal is described for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a gas turbine (such as combustor casing segments). The seal includes a generally imperforate foil-layer assemblage which is generally impervious to gas and is located in the leakage-gap. The seal also includes a cloth-layer assemblage generally enclosingly contacting the foil-layer assemblage. In one seal, the first edge of the foil-layer assemblage is left exposed, and the foil-layer assemblage resiliently contacts the first member near the first edge to reduce leakage in the ``plane`` of the cloth-layer assemblage under conditions which include differential thermal growth of the two members. In another seal, such leakage is reduced by having a first weld-bead which permeates the cloth-layer assemblage, is attached to the metal-foil-layer assemblage near the first edge, and unattachedly contacts the first member. 4 figs.

  16. Gas-path leakage seal for a gas turbine

    DOEpatents

    Wolfe, Christopher E.; Dinc, Osman S.; Bagepalli, Bharat S.; Correia, Victor H.; Aksit, Mahmut F.

    1996-01-01

    A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a gas turbine (such as combustor casing segments). The seal includes a generally imperforate foil-layer assemblage which is generally impervious to gas and is located in the leakage-gap. The seal also includes a cloth-layer assemblage generally enclosingly contacting the foil-layer assemblage. In one seal, the first edge of the foil-layer assemblage is left exposed, and the foil-layer assemblage resiliently contacts the first member near the first edge to reduce leakage in the "plane" of the cloth-layer assemblage under conditions which include differential thermal growth of the two members. In another seal, such leakage is reduced by having a first weld-bead which permeates the cloth-layer assemblage, is attached to the metal-foil-layer assemblage near the first edge, and unattachedly contacts the first member.

  17. A kinematic flexure-based mechanism for precise parallel motion for the Hertz Variable-delay Polarization Modulator (VPM)

    NASA Astrophysics Data System (ADS)

    Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.

    2006-06-01

    We describe the design and construction of a Variable-delay Polarization Modulator (VPM) that has been built and integrated into the Hertz ground-based, submillimeter polarimeter at the SMTO on Mt. Graham in Arizona. VPMs allow polarization modulation by controlling the phase difference between two linear, orthogonal polarizations. This is accomplished by utilizing a grid-mirror pair with a controlled separation. The size of the gap between the mirror and the polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. The necessity of controlling the phase of the radiation across this device drives the two novel features of the VPM. First, a novel, kinematic, flexure is employed that passively maintains the parallelism of the mirror and the grid to 1.5 μm over a 150 mm diameter, with a 400 μm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. Second, the VPM uses a grid flattener that highly constrains the planarity of the polarizing grid. In doing so, the phase error across the device is minimized. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.

  18. Corrosion-fatigue of laser-repaired commercially pure titanium and Ti-6Al-4V alloy under different test environments.

    PubMed

    Zavanelli, R A; Guilherme, A S; Pessanha-Henriques, G E; de Arruda Nóbilo, M Antônio; Mesquita, M F

    2004-10-01

    This study evaluated the corrosion-fatigue life of laser-repaired specimens fabricated from commercially pure titanium (CP Ti) and Ti-6Al-4V alloy, tested under different storage conditions. For each metal, 30 dumbbell rods with a central 2.3 mm diameter were prepared by lost-wax casting with the Rematitan System. Simulating the failure after service, corrosion-fatigue life in different media at room temperature (air, synthetic saliva and fluoride synthetic saliva) was determined at a testing frequency of 10 Hz for intact specimens and after laser repairing, using a square waveform with equal maximum tensile and compressive stress that was 30% lower than the 0.2% offset yield strength. For laser welding, the fractured specimens were rejoined using a jig to align the sections invested in type-IV dental stone. The adjacent areas of the gap was air-abraded with 100 microm aluminum oxide, laser welded and retested under the same conditions as the initial intact specimens. The number of cycles at failure was recorded, and the fracture surface was examined with a scanning electron microscope (SEM). The number of cycles for failure of the welded and intact specimens was compared by anova and the Tukey test at a 5% probability level. Within the limitations of this study, the number of cycles required for fracture decreased in wet environments and the laser repairing process adversely affected the life of both metals under the corrosion-fatigue conditions.

  19. Progress and achievements of R&D activities for the ITER vacuum vessel

    NASA Astrophysics Data System (ADS)

    Nakahira, M.; Takahashi, H.; Koizumi, K.; Onozuka, M.; Ioki, K.

    2001-04-01

    The Full Scale Sector Model Project, which was initiated in 1995 as one of the Seven Large Projects for ITER R&D, has been continued with the joint effort of the ITER Joint Central Team and the Japanese, Russian Federation and United States Home Teams. The fabrication of a full scale 18° toroidal sector, which is composed of two 9° sectors spliced at the port centre, was successfully completed in September 1997 with a dimensional accuracy of +/-3 mm for the total height and total width. Both sectors were shipped to the test site at the Japan Atomic Energy Research Institute and the integration test of the sectors was begun in October 1997. The integration test involves the adjustment of field joints, automatic narrow gap tungsten inert gas welding of field joints with splice plates and inspection of the joints by ultrasonic testing, as required for the initial assembly of the ITER vacuum vessel. This first demonstration of field joint welding and the performance test of the mechanical characteristics were completed in May 1998, and all the results obtained have satisfied the ITER design. In addition to these tests, integration with the midplane port extension fabricated by the Russian Home Team by using a fully remotized welding and cutting system developed by the US Home Team was completed in March 2000. The article describes the progress, achievements and latest status of the R&D activities for the ITER vacuum vessel.

  20. The Influence of the Heat-Affected Zone Mechanical Properties on the Behaviour of the Welding in Transverse Plate-to-Tube Joints.

    PubMed

    Lozano, Miguel; Serrano, Miguel A; López-Colina, Carlos; Gayarre, Fernando L; Suárez, Jesús

    2018-02-09

    Eurocode 3 establishes the component method to analytically characterize the structural joints between beam and columns. When one of the members involved in the joint is a hollow section (i.e., a tube) there is a lack of information for the specific components present in the joint. There are two different ways to bridge the gap: experimental testing on the actual beam column joints involving tubular sections; or numerical modelization, typically by means of finite element analysis. For this second option, it is necessary to know the actual mechanical properties of the material. As long as the joint implies a welding process, there is a concern related to how the mechanical properties in the heat-affected zone (HAZ) influence the behavior of the joint. In this work, some coupons were extracted from the HAZ of the beam-column joint. The coupons were tested and the results were implemented in the numerical model of the joint, in an attempt to bring it closer to the experimental results of the tested joints.

  1. Fabrication of seamless calandria tubes by cold pilgering route using 3-pass and 2-pass schedules

    NASA Astrophysics Data System (ADS)

    Saibaba, N.

    2008-12-01

    Calandria tube is a large diameter, extremely thin walled zirconium alloy tube which has diameter to wall thickness ratio as high as 90-95. Such tubes are conventionally produced by the 'welded route', which involves extrusion of slabs followed by a series of hot and cold rolling passes, intermediate anneals, press forming of sheets into circular shape and closing the gap by TIG welding. Though pilgering is a well established process for the fabrication of seamless tubes, production of extremely thin walled tubes offers several challenges during pilgering. Nuclear fuel complex (NFC), Hyderabad, has successfully developed a process for the production of Zircaloy-4 calandria tubes by adopting the 'seamless route' which involves hot extrusion of mother blanks followed by three-pass pilgering or two-pass pilgering schedules. This paper deals with standardization of the seamless route processes for fabrication of calandria tubes, comparison between the tubes produced by 2-pass and 3-pass pilgering schedules, role of ultrasonic test charts for control of process parameters, development of new testing methods for burst testing and other properties.

  2. Underwater laser weld bowing distortion behavior and mechanism of thin 304 stainless steel plates

    NASA Astrophysics Data System (ADS)

    Huang, ZunYue; Luo, Zhen; Ao, Sansan; Cai, YangChuan

    2018-10-01

    Underwater laser weld bowing distortion behavior and mechanism of thin 304 stainless steel plates are studied in the paper. The influence of underwater laser welding parameters (such as laser power, welding speed, defocusing distance and gas flow rate) on weld bowing distortion was investigated through central composite rotatable design and an orthogonal test. A quadratic response model was established to evaluate the underwater laser weld bowing distortion by central composite rotatable design and the order of the impacts of the welding parameters on weld bowing distortion was studied by an orthogonal test. The weld bowing distortion after welding was determined by the digital image correlation technique. The weld bowing distortion of in-air laser welding and underwater laser welding were compared and it revealed that the shape of the in-air and underwater laser welded specimens are the same, but the weld bowing distortion amount of in-air welding is larger than that of underwater welding. Weld bowing distortion mechanism was studied by the digital image correlation technique, and it was demonstrated that weld bowing distortion is associated with the welding plate temperature gradient during laser welding. The wider weld width also resulted in larger weld bowing distortion.

  3. Submerged Arc Welding Control via Arc Sensing.

    DTIC Science & Technology

    1986-01-31

    B . NARROW- GAP...processing. 17 %7 z >- OD Z zO a, 0 "rn0 0 0)0 01 b 3- 00 o 00 0Lz i- >-,N 0 J - i z %a 0 00 .0. 0 ----- 0 0 0 00 " 0 >,. 0(050:J Ow U,)coW 0~ ~ 0D 0 04 24 w...By 29 * °° () 4-4 30 -4- .4 9- ____ ___3 C.- 4~JGo ;,a C3- 4- 4-s L 0 C3 4-4 ( L >’. L L U)0 -- -- LL b 0 -410 41 .,1 41i a cc (4- 4.: m- . if

  4. Patterns of Alloy Deformation by Pulsed Pressure

    NASA Astrophysics Data System (ADS)

    Chebotnyagin, L. M.; Potapov, V. V.; Lopatin, V. V.

    2015-06-01

    Patterns of alloy deformation for optimization of a welding regime are studied by the method of modeling and deformation profiles providing high deformation quality are determined. A model of stepwise kinetics of the alloy deformation by pulsed pressure from the expanding plasma channel inside of a deformable cylinder is suggested. The model is based on the analogy between the acoustic and electromagnetic wave processes in long lines. The shock wave pattern of alloy deformation in the presence of multiple reflections of pulsed pressure waves in the gap plasma channel - cylinder wall and the influence of unloading waves from free surfaces are confirmed.

  5. Current NRC Perspectives Concerning Primary Water Stress Corrosion Cracking

    NASA Astrophysics Data System (ADS)

    Alley, David; Dunn, Darrell

    Materials currently used in nuclear power plants are reliable and are generally resistant to environmental degradation. However, occurrences of environmental degradation have been observed as the current fleet of reactors ages. Primary water stress corrosion cracking (PWSCC) is of particular interest to the US Nuclear Regulatory Commission (NRC). This paper provides a historical assessment of operating experience associated with PWSCC and welding issues associated with PWSCC resistant materials. The paper also considers the regulatory issues associated with PWSCC, especially those associated with gaps in the understanding of the behavior of PWSCC resistant material under actual reactor conditions.

  6. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    NASA Astrophysics Data System (ADS)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  7. TAB interconnects for space concentrator solar cell arrays

    NASA Technical Reports Server (NTRS)

    Avery, J.; Bauman, J. S.; Gallagher, P.; Yerkes, J. W.

    1993-01-01

    The Boeing Company has evaluated the use of Tape Automated Bonding (TAB) and Surface Mount Technology (SMT) for a highly reliable, low cost interconnect for concentrator solar cell arrays. TAB and SMT are currently used in the electronics industry for chip interconnects and printed circuit board assembly. TAB tape consists of sixty-four 3-mil/1-oz tin-plated copper leads on 8-mil centers. The leads are thermocompression gang bonded to GaAs concentrator solar cell with silver contacts. This bond, known as an Inner Lead Bond (ILB), allows for pretesting and sorting capability via nondestruct wire bond pull and flash testing. Destructive wire pull tests resulted in preferred mid-span failures. Improvements in fill factor were attributed to decreased contact resistance on TAB bonded cells. Preliminary thermal cycling and aging tests were shown excellent bond strength and metallurgical results. Auger scans of bond sites reveals an Ag-Cu-Tin composition. Improper bonds are identified through flash testing as a performance degradation. On going testing of cells are underway at Lewis Research Center. SMT techniques are utilized to excise and form TAB leads post ILB. The formed leads' shape isolates thermal mismatches between the cells and the flex circuit they are mounted on. TABed cells are picked and placed with a gantry x-y-z positioning system with pattern recognition. Adhesives are selected to avoid thermal expansion mismatch and promote thermal transfer to the flex circuit. TAB outer lead bonds are parallel gap welded (PGW) to the flex circuit to finish the concentrator solar cell subassembly.

  8. Progress in HTS trapped field magnets: J(sub c), area, and applications

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Ren, Yanru; Liu, Jianxiong; Sawh, Ravi; Parks, Drew; Foster, Charles; Obot, Victor; Arndt, G. Dickey; Crapo, Alan

    1995-01-01

    Progress in trapped field magnets is reported. Single YBCO grains with diameters of 2 cm are made in production quantities, while 3 cm, 4 1/2 cm and 6 cm diameters are being explored. For single grain tiles: J(sub c) is approximately 10,000 A/cm(exp 2) for melt textured grains; J(sub c) is approximately 40,000 A/cm2 for light ion irradiation; and J(sub c) is approximately 85,000 A/cm(exp 2) for heavy ion irradiation. Using 2 cm diameter tiles bombarded by light ions, we have fabricated a mini-magnet which trapped 2.25 Tesla at 77K, and 5.3 Tesla at 65K. A previous generation of tiles, 1 cm x 1 cm, was used to trap 7.0 Tesla at 55K. Unirradiated 2.0 cm tiles were used to provide 8 magnets for an axial gap generator, in a collaborative experiment with Emerson Electric Co. This generator delivered 100 Watts to a resistive load, at 2265 rpm. In this experiment activation of the TFMs was accomplished by a current pulse of 15 ms duration. Tiles have also been studied for application as a bumper-tether system for the soft docking of spacecraft. A method for optimizing tether forces, and mechanisms of energy dissipation are discussed. A bus bar was constructed by welding three crystals while melt-texturing, such that their a,b planes were parallel and interleaved. The bus bar, an area of approximately 2 cm(exp 2), carried a transport current of 1000 amps, the limit of the testing equipment available.

  9. Progress in HTS Trapped Field Magnets: J(sub c), Area, and Applications

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Ren, Yanru; Liu, Jian-Xiong; Sawh, Ravi; Parks, Drew; Foster, Charles; Obot, Victor; Arndt, G. Dickey; Crapo, Alan

    1995-01-01

    Progress in trapped field magnets is reported. Single YBCO grains with diameters of 2 cm are made in production quantities, while 3 cm, 4 1/2 cm and 6 cm diameters are being explored. For single grain tiles: J(sub c) - 10,000 A/sq cm for melt textured grains; J(sub c) - 40,000 A/sq cm for light ion irradiation; and J(sub c) - 85,000 A/J(sub c) for heavy ion irradiation. Using 2 cm diameter tiles bombarded by light ions, we have fabricated a mini-magnet which trapped 2.25 Tesla at 77K, and 5.3 Tesla at 65K. A previous generation of tiles, 1 cm x 1 cm, was used to trap 7.0 Tesla at 55K. Unirradiated 2.0 cm tiles were used to provide 8 magnets for an axial gap generator, in a collaborative experiment with Emerson Electric Co. This generator delivered 100 Watts to a resistive load, at 2265 rpm. In this experiment, activation of the TFMs was accomplished by a current pulse of 15 ms duration. Tiles have also been studied for application as a bumper-tether system for the soft docking of spacecraft. A method for optimizing tether forces, and mechanisms of energy dissipation are discussed. A bus bar was constructed by welding three crystals while melt-texturing, such that their a,b planes were parallel and interleaved. The bus bar, of area approx. 2 sq cm, carried a transport current of 1000 amps, the limit of the testing equipment available.

  10. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position

    PubMed Central

    Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-01-01

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically. PMID:28885573

  11. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position.

    PubMed

    Chang, Baohua; Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-09-08

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically.

  12. Comparison of two tension-band fixation materials and techniques in transverse patella fractures: a biomechanical study.

    PubMed

    Rabalais, R David; Burger, Evalina; Lu, Yun; Mansour, Alfred; Baratta, Richard V

    2008-02-01

    This study compared the biomechanical properties of 2 tension-band techniques with stainless steel wire and ultra high molecular weight polyethylene (UHMWPE) cable in a patella fracture model. Transverse patella fractures were simulated in 8 cadaver knees and fixated with figure-of-8 and parallel wire configurations in combination with Kirschner wires. Identical configurations were tested with UHMWPE cable. Specimens were mounted to a testing apparatus and the quadriceps was used to extend the knees from 90 degrees to 0 degrees; 4 knees were tested under monotonic loading, and 4 knees were tested under cyclic loading. Under monotonic loading, average fracture gap was 0.50 and 0.57 mm for steel wire and UHMWPE cable, respectively, in the figure-of-8 construct compared with 0.16 and 0.04 mm, respectively, in the parallel wire construct. Under cyclic loading, average fracture gap was 1.45 and 1.66 mm for steel wire and UHMWPE cable, respectively, in the figure-of-8 construct compared with 0.45 and 0.60 mm, respectively, in the parallel wire construct. A statistically significant effect of technique was found, with the parallel wire construct performing better than the figure-of-8 construct in both loading models. There was no effect of material or interaction. In this biomechanical model, parallel wires performed better than the figure-of-8 configuration in both loading regimens, and UHMWPE cable performed similarly to 18-gauge steel wire.

  13. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    PubMed

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution.

  14. Parametric optimisation and microstructural analysis on high power Yb-fibre laser welding of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Chen, L.; Davies, C. M.; Dear, J. P.

    2016-11-01

    In this work thin sheets of Ti-6Al-4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti-6Al-4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.

  15. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Carsley, John; Carlson, Blair

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  16. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    NASA Astrophysics Data System (ADS)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  17. GTA welding and heat treating of high purity aluminum. [-452/sup 0/F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigt, R.C.; Loper, C.R. Jr.

    1979-01-01

    Gas tungsten arc welding is a suitable way to join high purity aluminum with only small increases in the electrical resistivity at 4.2 K (i.e., -269 C or -452 F) if proper welding procedures are used. High purity aluminum weld zone properties, useful for the design of cryogenic superconducting devices, are now available. The additional electrical resistivity caused by welding is independent of original base metal resistivity and can be decreased significantly by heat treatments as low as 260 C (500 F) for 30 minutes. Tungsten contamination caused from welding is small (on the order of 0.2 ppM) but itmore » is a significant contribution to weld zone resistivity. This suggests that other welding techniques such as laser welding or electron beam welding may be successful alternatives. Additional GTA welding tests for various welding conditions and welding procedures would lead to a greater understanding of the tungsten emission levels during welding. Perturbations during GTA welding such as electrode spitting or electrode contact with the weld metal must be eliminated to successfully weld high purity aluminum. Improper welding techniques causing arc instabilities, for any reason, cause highly resistive welds that must be properly repaired.« less

  18. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    NASA Astrophysics Data System (ADS)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  19. Distribution of rubidium, strontium, and zirconium in tuff from two deep coreholes at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Spengler, Richard W.; Peterman, Zell E.; ,

    1991-01-01

    Variations in concentrations of trace elements Rb, Sr, and Zr within the sequence of high-silica tuff and dacitic lava beneath Yucca Mountain reflect both primary composition and secondary alteration. Rb and K concentrations have parallel trends. Rb concentrations are significantly lower within intervals containing zeolitic nonwelded to partially welded and bedded tuffs and are higher in thick moderately to densely welded zones. Sr concentrations increase with depth from about 30 ppm in the Topopah Spring Member of the Paintbrush Tuff to almost 300 ppm in the older tuffs. Zr concentrations are about 100 ppm in the Topopah Spring Member and also increase with depth to about 150 ppm in the Lithic Ridge Tuff and upper part of the older tuffs. Conspicuous local high concentrations of Sr in the lower part of the Tram Member, in the dacite lava, and in unit c of the older tuffs in USW G-1, and in the densely welded zone of the Bullfrog Member in USW GU-3/G-3 closely correlate with high concentrations of less-mobile Zr and may reflect either primary composition or elemental redistribution resulting largely from smectitic alteration. Initial 87Sr/86Sr values from composite samples increase upward in units above the Bullfrog Member of the Crater Flat Tuff. The progressive tenfold increase in Sr with depth coupled with the similarity of initial 87Sr/86Sr values within the Bullfrog Member and older units to those of Paleozoic marine carbonates are consistent with a massive influx of Sr from water derived from a Paleozoic carbonate aquifer.

  20. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rodmore » gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.« less

  1. Metal-assisted exfoliation (MAE): green process for transferring graphene to flexible substrates and templating of sub-nanometer plasmonic gaps (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Marin, Brandon C.; Moetazedi, Herad; Dill, Tyler J.; Jibril, Liban; Kong, Casey; Tao, Andrea R.; Lipomi, Darren J.

    2015-09-01

    This paper describes a new technique, termed "metal-assisted exfoliation," for the scalable transfer of graphene from catalytic copper foils to flexible polymeric supports. The process is amenable to roll-to-roll manufacturing, and the copper substrate can be recycled. We then demonstrate the use of single-layer graphene as a template for the formation of sub-nanometer plasmonic gaps using a scalable fabrication process called "nanoskiving." These gaps are formed between parallel gold nanowires in a process that first produces three-layer thin films with the architecture gold/single-layer graphene/gold, and then sections the composite films with an ultramicrotome. The structures produced can be treated as two gold nanowires separated along their entire lengths by an atomically thin graphene nanoribbon. Oxygen plasma etches the sandwiched graphene to a finite depth; this action produces a sub-nanometer gap near the top surface of the junction between the wires that is capable of supporting highly confined optical fields. The confinement of light is confirmed by surface-enhanced Raman spectroscopy measurements, which indicate that the enhancement of the electric field arises from the junction between the gold nanowires. These experiments demonstrate nanoskiving as a unique and easy-to-implement fabrication technique that is capable of forming sub-nanometer plasmonic gaps between parallel metallic nanostructures over long, macroscopic distances. These structures could be valuable for fundamental investigations as well as applications in plasmonics and molecular electronics.

  2. Friction Stir Welding of Magnesium Alloy Type AZ 31

    NASA Astrophysics Data System (ADS)

    Kupec, Tomáš; Behúlová, Mária; Turňa, Milan; Sahul, Miroslav

    The paper deals with welding of Mg alloy of the type AZ 31 by Friction Stir Welding technology (FSW). The FSW technology is at present predominantly used for welding light metals and alloys, as aluminium, magnesium and their alloys. Experimental part consists of performing the simulation and fabrication of welded joints on a new-installed welding equipment available at the Welding Research Institute — Industrial Institute of SR Bratislava. Welding tools made of tool steel type H 13 were used for welding experiments. Geometry of welding tools was designed on the base of literature knowledge. Suitable welding parameters and conditions were determined using numerical simulation. Main emphasis was laid upon the tool revolutions, welding speed and tool bevel angle. The effect of welding parameters on the quality of welded joints was assessed. Assessment of welded joints was carried out by radiography, light microscopy, hardness measurement and EDX microanalysis. Static tensile test was employed for mechanical testing.

  3. Structures with negative index of refraction

    DOEpatents

    Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  4. Contribution to applications of EBW in instrument techniques

    NASA Astrophysics Data System (ADS)

    Hrabovsky, Miroslav

    1999-07-01

    The electron beam welding belongs to so-called physical methods of welding and it is utilized to welding of most materials, that can be arc welded. It is of use there, where one taxing welding technics and structure technologyableless heavily. As a rule, the quality of weld is better than at most first-rate welds being done by inert gas shielded arc welding (WIG, Argoarc). In plant instrumentation, where the limitation of any welded material distortion is of extraordinary importance, this way of welding is significant at welding of thermal-treated Cu-Be alloys, used in measurement technics, structural members from Ti alloys and stainless steels in branches of biomedicine and cryotechnics. This technology positives, especially high weld purity, narrow and deep root penetration, high welding rate, together with low energy consumption, lead to applications and verification of optimum operating mode at welding of frequent materials. In the contribution the results of this proofs of selected welded materials from viewpoint of weld quality, their physical-mechanic properties and microhardness, are presented.

  5. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Bjorkman, Gerry; McCool, Carolyn (Technical Monitor)

    2000-01-01

    A viewgraph presentation outlines NASA Marshall Space Flight Center, Lockheed Martin Michoud Space Systems, and McCook Metals' development an aluminum-copper weld filler wire for fusion welding 2195 aluminum lithium. The aluminum-copper based weld filler wire has been identified as B218, which is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The Super Lightweight External Tank for the NASA Space Shuttle Program consists of 2195 welded with 4043 aluminum-silicon weld filler wire. The B218 filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties. An initial characterization of the B218 weld filler wire was performed consisting of initial weld and repair weld evaluation comparing B218 and 4043. The testing involved room temperature and cryogenic tensile testing along with fracture toughness testing. B218 weld filler wire proved to produce enhanced initial and repair weld tensile and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding 2195 and other aluminum lithium alloys over 4043.

  6. Fundamentals and advances in the development of remote welding fabrication systems

    NASA Technical Reports Server (NTRS)

    Agapakis, J. E.; Masubuchi, K.; Von Alt, C.

    1986-01-01

    Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.

  7. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  8. Soldadura (Welding). Spanish Translations for Welding.

    ERIC Educational Resources Information Center

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  9. Numerical and experimental determination of weld pool shape during high-power diode laser welding

    NASA Astrophysics Data System (ADS)

    Klimpel, Andrzej; Lisiecki, Aleksander; Szymanski, Andrzej; Hoult, Anthony P.

    2003-10-01

    In this paper, results of investigations on the shape of weld pool during High Power Diode Laser (HPDL) welding are presented. The results of tests showed that the shape of weld pool and mechanism of laser welding with a rectangular pattern of 808 nm laser radiation differs distinctly from previous laser welding mechanisms. For all power densities the conduction mode welds were observed and weld pool geometry depends significantly on the welding parameters.

  10. Directionally solidified article with weld repair

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Borne, Bruce L. (Inventor)

    2003-01-01

    A directionally solidified nickel-base superalloy article has a defect therein extending parallel to the solidification direction. The article is repaired by removing any foreign matter present in the defect, and then heating the article to a repair temperature of from about 60 to about 98 percent of the solidus temperature of the base material in a chamber containing a protective gas that inhibits oxidation of the base material. The defect is filled with a filler metal while maintaining the article at the repair temperature. The filling is accomplished by providing a source of the filler metal of substantially the same composition as the base material of the directionally solidified article, and melting the filler metal into the defect progressively while moving the source of the filler metal relative to the article in a direction parallel to the solidification direction. Optionally, additional artificial heat extraction is accomplished in a heat-flow direction that is within about 45 degrees of the solidification direction, as the filler metal solidifies within the defect. The article may thereafter be heat treated.

  11. Weld repair of directionally solidified articles

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Borne, Bruce L. (Inventor)

    2002-01-01

    A directionally solidified nickel-base superalloy article has a defect therein extending parallel to the solidification direction. The article is repaired by removing any foreign matter present in the defect, and then heating the article to a repair temperature of from about 60 to about 98 percent of the solidus temperature of the base material in a chamber containing a protective gas that inhibits oxidation of the base material. The defect is filled with a filler metal while maintaining the article at the repair temperature. The filling is accomplished by providing a source of the filler metal of substantially the same composition as the base material of the directionally solidified article, and melting the filler metal into the defect progressively while moving the source of the filler metal relative to the article in a direction parallel to the solidification direction. Optionally, additional artificial heat extraction is accomplished in a heat-flow direction that is within about 45 degrees of the solidification direction, as the filler metal solidifies within the defect. The article may thereafter be heat treated.

  12. A Brief Introduction to the Theory of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and is already an important welding process for the aerospace industry, where welds of optimal quality are demanded. The structure of welds determines weld properties. The structure of friction stir welds is determined by the flow field in the weld metal in the vicinity of the weld tool. A simple kinematic model of the FSW flow field developed at Marshall Space Flight Center, which enables the basic features of FSW microstructure to be understood and related to weld process parameters and tool design, is explained.

  13. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  14. Experimental signatures of the inverted phase in InAs/GaSb coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Karalic, Matija; Mueller, Susanne; Mittag, Christopher; Pakrouski, Kiryl; Wu, QuanSheng; Soluyanov, Alexey A.; Troyer, Matthias; Tschirky, Thomas; Wegscheider, Werner; Ensslin, Klaus; Ihn, Thomas

    2016-12-01

    Transport measurements are performed on InAs/GaSb double quantum wells at zero and finite magnetic fields applied parallel and perpendicular to the quantum wells. We investigate a sample in the inverted regime where electrons and holes coexist, and compare it with another sample in the noninverted semiconducting regime. The activated behavior in conjunction with a strong suppression of the resistance peak at the charge neutrality point in a parallel magnetic field attest to the topological hybridization gap between electron and hole bands in the inverted sample. We observe an unconventional Landau level spectrum with energy gaps modulated by the magnetic field applied perpendicular to the quantum wells. This is caused by a strong spin-orbit interaction provided jointly by the InAs and the GaSb quantum wells.

  15. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance with...

  16. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance with...

  17. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance with...

  18. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance with...

  19. 49 CFR 195.228 - Welds and welding inspection: Standards of acceptability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welds and welding inspection: Standards of... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.228 Welds and welding inspection: Standards of acceptability. (a) Each weld and welding must be inspected to insure compliance with...

  20. Research and application of self - propagating welding technology

    NASA Astrophysics Data System (ADS)

    Ma, Yunhe; Li, Zhizun; Wang, Jianjiang; Sun, Liming

    2018-04-01

    Self-propagating welding is an important application area of self-propagating high-temperature synthesis technology (SHS technology), suitable for special environment and special materials welding. This paper briefly introduces the principle of self - propagating welding and its technical characteristics, and briefly summarizes the current research and application of SHS welding around three aspects of thin film welding, welding of refractory welding and emergency welding of battlefield.

  1. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  2. Laser Beam Welding of Nitride Steel Components

    NASA Astrophysics Data System (ADS)

    Gu, Hongping; Yin, Guobin; Shulkin, Boris

    Laser beam welding is a joining technique that has many advantages over conventional GMAW welding, such as low heat input, short cycle time as well as good cosmetic welds. Laser beam welding has been widely used for welding powertrain components in automotive industry. When welding nitride steel components, however, laser beam welding faces a great challenge. The difficulty lies in the fact that the nitride layer in the joint releases the nitrogen into the weld pool, resulting in a porous weld. This research presents an industrial ready solution to prevent the nitrogen from forming gas bubbles in the weld.

  3. Friction plug welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Riki (Inventor); Hibbard, Terry L. (Inventor)

    2001-01-01

    Friction plug welding (FPW) usage is advantageous for friction stir welding (FSW) hole close-outs and weld repairs in 2195 Al--Cu--Li fusion or friction stir welds. Current fusion welding methods of Al--Cu--Li have produced welds containing varied defects. These areas are found by non-destructive examination both after welding and after proof testing. Current techniques for repairing typically small (<0.25) defects weaken the weldment, rely heavily on welders' skill, and are costly. Friction plug welding repairs increase strength, ductility and resistance to cracking over initial weld quality, without requiring much time or operator skill. Friction plug welding while pulling the plug is advantageous because all hardware for performing the weld can be placed on one side of the workpiece.

  4. Three-dimensional accuracy of different correction methods for cast implant bars

    PubMed Central

    Kwon, Ji-Yung; Kim, Chang-Whe; Lim, Young-Jun; Kwon, Ho-Beom

    2014-01-01

    PURPOSE The aim of the present study was to evaluate the accuracy of three techniques for correction of cast implant bars. MATERIALS AND METHODS Thirty cast implant bars were fabricated on a metal master model. All cast implant bars were sectioned at 5 mm from the left gold cylinder using a disk of 0.3 mm thickness, and then each group of ten specimens was corrected by gas-air torch soldering, laser welding, and additional casting technique. Three dimensional evaluation including horizontal, vertical, and twisting measurements was based on measurement and comparison of (1) gap distances of the right abutment replica-gold cylinder interface at buccal, distal, lingual side, (2) changes of bar length, and (3) axis angle changes of the right gold cylinders at the step of the post-correction measurements on the three groups with a contact and non-contact coordinate measuring machine. One-way analysis of variance (ANOVA) and paired t-test were performed at the significance level of 5%. RESULTS Gap distances of the cast implant bars after correction procedure showed no statistically significant difference among groups. Changes in bar length between pre-casting and post-correction measurement were statistically significance among groups. Axis angle changes of the right gold cylinders were not statistically significance among groups. CONCLUSION There was no statistical significance among three techniques in horizontal, vertical and axial errors. But, gas-air torch soldering technique showed the most consistent and accurate trend in the correction of implant bar error. However, Laser welding technique, showed a large mean and standard deviation in vertical and twisting measurement and might be technique-sensitive method. PMID:24605205

  5. Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach

    PubMed Central

    Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen

    2016-01-01

    A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design. PMID:28773800

  6. Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach.

    PubMed

    Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen

    2016-08-09

    A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design.

  7. Method and apparatus for assessing weld quality

    DOEpatents

    Smartt, Herschel B.; Kenney, Kevin L.; Johnson, John A.; Carlson, Nancy M.; Clark, Denis E.; Taylor, Paul L.; Reutzel, Edward W.

    2001-01-01

    Apparatus for determining a quality of a weld produced by a welding device according to the present invention includes a sensor operatively associated with the welding device. The sensor is responsive to at least one welding process parameter during a welding process and produces a welding process parameter signal that relates to the at least one welding process parameter. A computer connected to the sensor is responsive to the welding process parameter signal produced by the sensor. A user interface operatively associated with the computer allows a user to select a desired welding process. The computer processes the welding process parameter signal produced by the sensor in accordance with one of a constant voltage algorithm, a short duration weld algorithm or a pulsed current analysis module depending on the desired welding process selected by the user. The computer produces output data indicative of the quality of the weld.

  8. 73rd American Welding Society annual meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    The volume includes the abstracts of papers presented at the 73rd American Welding Society Annual Meeting. Detailed summaries are given for 118 technical sessions papers discussing computer and control applications in welding, stainless steel, nickel and nickel alloys, weld metal microstructure, shipbuilding, consumables, structural welding, investigations in arc welding and cutting, arc welding processes, weldability testing, piping and tubing, high energy beam welding processes, welding metallurgy of structural steels, new applications, weld metal behavior, NDT certification, aluminum welding, submerged arc welding, modeling studies, resistance welding, friction welding, and safety and health. The 23rd International AWS Brazing and Soldering Conference wasmore » also held during this meeting. The topics presented in 24 papers included recent developments in soldering technology, brazing of stainless steel, brazing of ceramics and nickel material, filler metal developments for torch brazing, and developments in diffusion and induction brazing.« less

  9. Parametric study in weld mismatch of longitudinally welded SSME HPFTP inlet

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Spanyer, K. L.; Brunair, R. M.

    1991-01-01

    Welded joints are an essential part of pressure vessels such as the Space Shuttle Main Engine (SSME) Turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet x rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered. Using the finite element method and mathematical formulations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thickness on both sides of the joint. From the study, the finite element results and theoretical solutions are presented.

  10. Study of weld offset in longitudinally welded SSME HPFTP inlet

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Spanyer, K. S.; Brunair, R. M.

    1992-01-01

    Welded joints are an essential part of rocket engine structures such as the Space Shuttle Main Engine (SSME) turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet X-rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered in this report. Using the FEM and beamlike plate approximations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thicknesses on both sides of the joint. Following the study, some conclusions are derived for the weld offsets.

  11. Weld analysis and control system

    NASA Technical Reports Server (NTRS)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  12. Method of fabricating a prestressed cast iron vessel

    DOEpatents

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  13. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  14. Effects of electrode bevel angle on argon arc properties and weld shape

    NASA Astrophysics Data System (ADS)

    Dong, W. C.; Lu, S. P.; Li, D. Z.; Y Li, Y.

    2012-07-01

    A numerical modeling of coupled welding arc with weld pool is established using FLUENT software for moving shielded GTA welding to systematically investigate the effects of electrode bevel angle on the argon arc properties as well as the weld shape on SUS304 stainless steel. The calculated results show that the argon arc is constricted and the peak values of heat flux and shear stress on the weld pool decrease with increasing electrode bevel angle, while the radial distribution of heat flux and shear stress varying slightly. The weld shape is controlled by the pool flow patterns driving by the surface tension, gas shear stress, electromagnetic force and buoyancy. The Marangoni convection induced by surface tension plays an important role on weld shapes. All the weld shapes are wide and shallow with low weld metal oxygen content, while the narrow and deep weld shapes form under high weld metal oxygen content, which is related with the oxygen concentration in the shielding gas. The weld depth/width (D/W) ratio increases with increasing electrode bevel angle for high weld metal oxygen content and is not sensitive to the electrode bevel angle under low weld metal oxygen content. The calculated results for the weld shape, weld size and weld D/W ratio agree well with the experimental ones.

  15. Effect of Welding Processes on the Microstructure, Mechanical Properties and Residual Stresses of Plain 9Cr-1Mo Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Nagaraju, S.; Vasantharaja, P.; Brahadees, G.; Vasudevan, M.; Mahadevan, S.

    2017-12-01

    9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.

  16. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2017-10-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  17. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  18. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  19. Results of convective heating tests of a longitudinal gap on the Rockwell flat plate model (15-0, insert 7) in the NASA/Ames Research Center

    NASA Technical Reports Server (NTRS)

    Quan, M.; Lockman, W. K.

    1975-01-01

    Results are presented which were obtained from tests in a hypersonic wind tunnel to determine aerodynamic heating rates in a gap running parallel or slightly askew to the flow direction. The model used was a flat plate instrumented in thin-skin sections with chromelconstantan thermocouples. Heating rate profiles lengthwise along and down into the gap were obtained, and additional data were obtained from a total temperature probe and rake fabricated during the test to investigate an apparent aerodynamic cooling trend in the gap. Model variables were width, depth, length, and orientation of the gap relative to the flow direction. The tests were conducted at Mach 5.1 and Reynolds numbers per foot of 500,000, 1,000,000, and 2,000,000.

  20. Spot-Welding Gun Is Easy To Use

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Nguyen, Francis H.

    1991-01-01

    Electrical-resistance spot-welding gun designed to produce more welds per unit time by decreasing technician's effort and fatigue. Vacuum cups on frame secure welding gun to workpiece while compressed air drives welding tip against workpiece to make spot resistance weld. When weld completed, vacuum in frame cups released so frame and gun moved to position of next spot weld.

  1. Characterizing Shipyard Welding Emissions and Associated Control Options (The National Shipbuilding Research Program)

    DTIC Science & Technology

    1995-08-01

    TRl) Occupational Health and Safety Administration (OSHA) Air Quality Legislation Hexavalent Chromium and the Legislation List-of-list Chemicals and...2.2.7 2.2.8 Shielded Metal Arc Welding (SMAW) Submerged Arc Welding (SAW) Gas Metal Arc Welding (GMAW) Gas Tungsten Arc Welding ( GTAW ) Flux Core Arc... GTAW Welding Processes Advantages and Disadvantages of FCAW Welding Processes Welding Process Comparison Matrix Diagram of SMAW Welding Process

  2. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  3. Research on the Effect of Welding Speed on the Quality of Welding Seam Based on the Local Dry Underwater Welding

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Chen, Wu; Wang, Huagang; Ba, Jinyu; Li, Bing

    2017-12-01

    The repair of nuclear spent fuel pool has a high requirement for the quality of welding, the welding speed directly affects the quality of the weld when local dry automatic underwater welding is used to repair the damaged surface. Under the condition of the same condition, the local dry automatic underwater welding test was carried out under the condition of the same welding condition. Taking the 20cm as the experimental condition, after massive experiments show that when the welding speed is approximately 48cm/min the weld quality is high, meeting the design requirements, based on the double layer shrinkage nozzle chamber of local dry underwater automatic welding.

  4. Effect of welding position on porosity formation in aluminum alloy welds

    NASA Technical Reports Server (NTRS)

    Haryung, J.; Wroth, R. S.

    1967-01-01

    Program investigates the effects of varied welding positions on weld qualities. Progressive changes in bead geometry occur as the weld plane angle is varied from upslope to downslope. The gravitational effect on the weld puddle varies greatly with welding position.

  5. Gravitational effects on the weld pool shape and microstructural evolution during gas tungsten arc and laser beam welding of 304 stainless steel and Al-4 wt% Cu alloy.

    PubMed

    Kang, Namhyun; Singh, Jogender; Kulkarni, Anil K

    2004-11-01

    Effects of gravitational acceleration were investigated on the weld pool shape and microstructural evolution for 304 stainless steel and Al-4wt% Cu alloy. Effects of welding heat source were investigated by using laser beam welding (LBW) and gas tungsten arc welding (GTAW). As the gravitational level was increased from low gravity (LG approximately 1.2 g) to high gravity (HG approximately 1.8 g) using a NASA KC-135 aircraft, the weld pool shape for 304 stainless steel was influenced considerably during GTAW. However, insignificant change in the microstructure and solute distribution was observed at gravitational levels between LG and HG. The GTAW on Al-4 wt% Cu alloy was used to investigate the effect of gravitational orientation on the weld solidification behavior. Gravitational orientation was manipulated by varying the welding direction with respect to gravity vector; that is, by welding upward opposing gravity ( ||-U) and downward with gravity ( ||-D) on a vertical weld piece and welding perpendicular to gravity (perpendicular) on a horizontal weld piece. Under the same welding conditions, a larger primary dendrite spacing in the ||-U weld was observed near the weld pool surface and the fusion boundary than in the case of perpendicular or ||-D welds. The ||-D weld exhibited different solidification morphology and abnormal S shape of solidification rate curve during its growth. For 304 stainless steel GTAW, significant effects of gravitational orientation were observed on the weld pool shape that was associated with weld surface morphology and convection flow. However, the weld pool shape for LBW was mostly constant with respect to the gravitational orientation.

  6. Research on the microstructure and properties of laser-MIG hybrid welded joint of Invar alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Zhang, Dan; Wei, Yanhong; Wang, Yuhua

    2017-12-01

    In order to solve the problem of large deformation, low production efficiency and high tendency of hot cracking in welding 19.05 mm thick plates of Fe36Ni Invar alloy, laser-MIG hybrid multi-layer welding technique (LMHMW) has been developed. To investigate the influence of different welding parameters on the joint properties, optical microscope observation, SEM, EDS and microhardness measurement were conducted. Experimental results illustrated that different matching of welding parameters significantly affected the depth-to-width ratio, formation of defects and HAZ width. Besides, weld zone were consisted of two regions according to the different grain shape. The region near center of weld seam (region 1) was columnar dendrite induced by laser, while the region far away from weld seam center (region 2) was cellular dendrite which was mainly caused by MIG arc. The peak value of microhardness appeared at the center of weld seam since the grains in region 1 were relatively fine, and the lowest hardness value was obtained in HAZ. In addition, results showed that the sheets can be welded at optimum process parameters, with few defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam: laser power of backing weld P = 5500 W, welding current I = 240 A, welding speed v = 1 m/min. laser power of filling weld P = 2000 W, welding current I = 220 A, welding speed v = 0.35 m/min. laser power of cosmetic weld P = 2000 W, welding current I = 300 A, welding speed v = 0.35 m/min.

  7. Damage Tolerance Assessment of Friction Pull Plug Welds

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  8. Automated Welding System

    NASA Technical Reports Server (NTRS)

    Bayless, E. O.; Lawless, K. G.; Kurgan, C.; Nunes, A. C.; Graham, B. F.; Hoffman, D.; Jones, C. S.; Shepard, R.

    1993-01-01

    Fully automated variable-polarity plasma arc VPPA welding system developed at Marshall Space Flight Center. System eliminates defects caused by human error. Integrates many sensors with mathematical model of the weld and computer-controlled welding equipment. Sensors provide real-time information on geometry of weld bead, location of weld joint, and wire-feed entry. Mathematical model relates geometry of weld to critical parameters of welding process.

  9. Low profile, highly configurable, current sharing paralleled wide band gap power device power module

    DOEpatents

    McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M

    2016-08-23

    A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.

  10. Influence of Welding Process and Post Weld Heat Treatment on Microstructure and Pitting Corrosion Behavior of Dissimilar Aluminium Alloy Welds

    NASA Astrophysics Data System (ADS)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    Welding of dissimilar Aluminum alloy welds is becoming important in aerospace, shipbuilding and defence applications. In the present work, an attempt has been made to weld dissimilar aluminium alloys using conventional gas tungsten arc welding (GTAW) and friction stir welding (FSW) processes. An attempt was also made to study the effect of post weld heat treatment (T4 condition) on microstructure and pitting corrosion behaviour of these welds. Results of the present investigation established the differences in microstructures of the base metals in T4 condition and in annealed conditions. It is evident that the thickness of the PMZ is relatively more on AA2014 side than that of AA6061 side. In FS welds, lamellar like shear bands are well noticed on the top of the stir zone. The concentration profile of dissimilar friction stir weld in T4 condition revealed that no diffusion has taken place at the interface. Poor Hardness is observed in all regions of FS welds compared to that of GTA welds. Pitting corrosion resistance of the dissimilar FS welds in all regions was improved by post weld heat treatment.

  11. Influence of Oxides on Microstructures and Mechanical Properties of High-Strength Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Cai, Yangchuan; Luo, Zhen; Huang, Zunyue; Zeng, Yida

    2016-11-01

    A comprehensive investigation was conducted into the effect of oxides on penetrations, microstructures and mechanical properties of BS700MC super steel weld bead. Boron oxide changed the penetration of weld bead by changing the Marangoni convection in the weld pool and contracting the welding arc. Chromium oxide only changed the Marangoni convection in the weld pool to increase the penetration of super steel. Thus, the super steel weld bead has higher penetration coated with flux boron oxide than that coated with chromium oxide. In other words, the activating flux TIG (A-TIG) welding with flux boron oxide has less welding heat input than the A-TIG welding with flux chromium oxide. As a result, on the one hand, there existed more fine and homogeneous acicular ferrites in the microstructure of welding heat-affected zone when the super steel was welded by A-TIG with flux boron oxide. Thus, the weld beads have higher value of low-temperature impact toughness. On the other hand, the softening degree of welding heat-affected zone, welded by A-TIG with flux boron oxide, will be decreased for the minimum value of welding heat input.

  12. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  13. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    NASA Technical Reports Server (NTRS)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  14. Method for enhanced control of welding processes

    DOEpatents

    Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin

    2000-01-01

    Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

  15. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  16. Weld pool oscillation during GTA welding of mild steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Y.H.; Ouden, G. den

    1993-08-01

    In this paper the results are reported of a study dealing with the oscillation behavior of weld pools in the case of GTA bead-on-plate welding of mild steel, Fe 360. During welding, the weld pool was brought into oscillation by applying short current pulses, and the oscillation frequency and amplitude were measured by monitoring the arc voltage. It was found that the oscillation of the partially penetrated weld pool is dominated by one of two different oscillation modes (Mode 1 and Mode 2) depending on the welding conditions, whereas the oscillation of the fully penetrated weld pool is characterized bymore » a third oscillation mode (Mode 3). It is possible to maintain partially penetrated weld pool oscillation in Mode 1 by choosing appropriate welding conditions. Under these conditions, an abrupt decrease in oscillation frequency occurs when the weld pool transfers from partial penetration to full penetration. Thus, weld penetration can be in-process controlled by monitoring the oscillation frequency during welding.« less

  17. Comparison between hybrid laser-MIG welding and MIG welding for the invar36 alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Li, Yubo; Ou, Wenmin; Yu, Fengyi; Chen, Jie; Wei, Yanhong

    2016-11-01

    The invar36 alloy is suitable to produce mold of composite materials structure because it has similar thermal expansion coefficient with composite materials. In the present paper, the MIG welding and laser-MIG hybrid welding methods are compared to get the more appropriate method to overcome the poor weldability of invar36 alloy. According to the analysis of the experimental and simulated results, it has been proved that the Gauss and cone combined heat source model can characterize the laser-MIG hybrid welding heat source well. The total welding time of MIG welding is 8 times that of hybrid laser-MIG welding. The welding material consumption of MIG welding is about 4 times that of hybrid laser-MIG welding. The stress and deformation simulation indicate that the peak value of deformation during MIG welding is 3 times larger than that of hybrid laser-MIG welding.

  18. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Nele, L.

    2016-01-01

    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  19. Improving the Quality of Welding Seam of Automatic Welding of Buckets Based on TCP

    NASA Astrophysics Data System (ADS)

    Hu, Min

    2018-02-01

    Since February 2014, the welding defects of the automatic welding line of buckets have been frequently appeared. The average repair time of each bucket is 26min, which seriously affects the production efficiency and welding quality. We conducted troubleshooting, and found the main reasons for the welding defects of the buckets were the deviations of the center points of the robot tools and the poor quality of the locating welding. We corrected the gripper, welding torch, and accuracy of repeat positioning of robots to control the quality of positioning welding. The welding defect rate of buckets was reduced greatly, ensuring the production efficiency and welding quality.

  20. Computerized adaptive control weld skate with CCTV weld guidance project

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  1. Syllabus in Trade Welding.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  2. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  3. A software architecture for multidisciplinary applications: Integrating task and data parallelism

    NASA Technical Reports Server (NTRS)

    Chapman, Barbara; Mehrotra, Piyush; Vanrosendale, John; Zima, Hans

    1994-01-01

    Data parallel languages such as Vienna Fortran and HPF can be successfully applied to a wide range of numerical applications. However, many advanced scientific and engineering applications are of a multidisciplinary and heterogeneous nature and thus do not fit well into the data parallel paradigm. In this paper we present new Fortran 90 language extensions to fill this gap. Tasks can be spawned as asynchronous activities in a homogeneous or heterogeneous computing environment; they interact by sharing access to Shared Data Abstractions (SDA's). SDA's are an extension of Fortran 90 modules, representing a pool of common data, together with a set of Methods for controlled access to these data and a mechanism for providing persistent storage. Our language supports the integration of data and task parallelism as well as nested task parallelism and thus can be used to express multidisciplinary applications in a natural and efficient way.

  4. Development of a needle driver with multiple degrees of freedom for neonatal laparoscopic surgery.

    PubMed

    Ishimaru, Tetsuya; Takazawa, Shinya; Uchida, Hiroo; Kawashima, Hiroshi; Fujii, Masahiro; Harada, Kanako; Sugita, Naohiko; Mitsuishi, Mamoru; Iwanaka, Tadashi

    2013-07-01

    The aims of this study were to develop a thin needle driver with multiple degrees of freedom and to evaluate its efficacy in multidirectional suturing compared with a conventional needle driver. The tip (15 mm) of the novel user-friendly needle driver (3.5 mm in diameter) has three degrees of freedom for grasping, rotation, and deflection. Six pediatric surgeons performed two kinds of suturing tasks in a dry box: three stitches in continuous suturing that were perpendicular or parallel to the insertion direction of the instrument, first using the novel instrument, then using a conventional instrument, and finally using the novel instrument again. The accuracy of insertion and exit compared with the target points and the procedure time were measured. In the conventional and novel procedures the mean gaps from the insertion point to the target in perpendicular suturing were 0.8 mm and 0.7 mm, respectively; in parallel suturing they were 0.8 mm and 0.6 mm, respectively. The mean gaps from the exit point to the target in perpendicular suturing were 0.6 mm and 0.6 mm for conventional and novel procedures, respectively; in parallel suturing they were 0.6 mm and 0.8 mm, respectively. The procedure time for perpendicular suturing was 33 seconds and 64 seconds for conventional and novel procedures, respectively (P=.02); for parallel suturing it was 114 seconds and 91 seconds, respectively. Our novel needle driver maintained accuracy of suturing; parallel suturing with the novel driver may be easier than with the conventional one.

  5. Programmable Positioner For Spot Welding

    NASA Technical Reports Server (NTRS)

    Roden, William A.

    1989-01-01

    Welding station mechanized by installing preset indexing system and gear drive. Mechanism includes a low-cost, versatile, single-axis motion control and motor drive to provide fully-automatic weld sequencing and spot-to-spot spacing. Welding station relieves operator of some difficult, tedious tasks and increases both productivity and quality of welds. Results in welds of higher quality and greater accuracy, fewer weld defects, and faster welding operation.

  6. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW

    NASA Astrophysics Data System (ADS)

    Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian

    2016-03-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  7. Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  8. Evaluating the SCC resistance of underwater welds in sodium tetrathionate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.A.; Angeliu, T.M.

    1997-12-01

    The susceptibility of welds to stress corrosion cracking (SCC) is enhanced by the surface residual tensile stresses generated by the typical welding process. However, underwater plasma transferred arc (PTA) welding has been shown to produce compressive surface residual stresses, an encouraging result if repairs of cracked boiling water reactor (BWR) components are to be made without further endangering them to SCC. This program was designed to verify that underwater PTA welds are resistant to SCC and to determine if underwater PTA welding could mitigate SCC in potentially susceptible welds. This was achieved by exposing various welds on solution annealed (SA)more » and SA + thermally sensitized 304 stainless steel at 25 C in a solution of 1.5 gm/liter of sodium sulfide added to 0.05M sodium tetrathionate, titrated to a pH of 1.25 with H{sub 2}SO{sub 4}. The autogeneous welds were produced using gas tungsten arc (GTA) and plasma transferred arc (PTA) welding under atmospheric conditions, and PTA welding underwater. After 1 hour of sodium tetrathionate exposure, GTA and air PTA welds exhibited SCC while the underwater PTA weld heat affected zones were more resistant. Underwater PTA welds bisecting a GTA weld eliminated the cracking in the GTA weld heat affected zone under certain conditions. The lack of IG cracking in the region influenced by the underwater PTA weld is consistent with the measurement of compressive surface residual stresses inherent to the underwater welding process.« less

  9. Production of ozone and reactive oxygen species after welding.

    PubMed

    Liu, H H; Wu, Y C; Chen, H L

    2007-11-01

    Many toxic substances including heavy metals, ozone, carbon monoxide, carbon dioxide, and nitrogen oxides are generated during welding. Ozone (O(3)) is a strong oxidant that generates reactive oxygen species (ROS) in tissue, and ambient ROS exposure associated with particles has been determined to cause DNA damage. Ozone is produced within 30 seconds during welding. However, the length of time that O(3) remains in the air after welding is completed (post-welding) is unknown. The current study aimed to assess the distributions of ambient ROS and O(3) before the start of welding (pre-welding), during welding, and after welding. The highest O(3) levels, equal to 195 parts per billion (ppb), appeared during welding. Ozone levels gradually decreased to 60 ppb 10 minutes after the welding was completed. The highest ROS level was found in samples taken during welding, followed by samples taken after the welding was completed. The lowest ROS level was found in samples taken before the welding had started. Ozone and ROS levels were poorly correlated, but a similar trend was found for O(3) and ROS levels in particles (microM/mg). Although particles were not generated after welding, ROS and O(3) still persisted for more than 10 minutes. Meanwhile, because O(3) continues after welding, how long the occupational protective system should be used depends on the welding materials and the methods used. In addition, the relationship between metal fumes and ROS generation during the welding process should be further investigated.

  10. Opus: A Coordination Language for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Chapman, Barbara; Haines, Matthew; Mehrotra, Piyush; Zima, Hans; vanRosendale, John

    1997-01-01

    Data parallel languages, such as High Performance fortran, can be successfully applied to a wide range of numerical applications. However, many advanced scientific and engineering applications are multidisciplinary and heterogeneous in nature, and thus do not fit well into the data parallel paradigm. In this paper we present Opus, a language designed to fill this gap. The central concept of Opus is a mechanism called ShareD Abstractions (SDA). An SDA can be used as a computation server, i.e., a locus of computational activity, or as a data repository for sharing data between asynchronous tasks. SDAs can be internally data parallel, providing support for the integration of data and task parallelism as well as nested task parallelism. They can thus be used to express multidisciplinary applications in a natural and efficient way. In this paper we describe the features of the language through a series of examples and give an overview of the runtime support required to implement these concepts in parallel and distributed environments.

  11. Experimental study on microsphere assisted nanoscope in non-contact mode

    NASA Astrophysics Data System (ADS)

    Ling, Jinzhong; Li, Dancui; Liu, Xin; Wang, Xiaorui

    2018-07-01

    Microsphere assisted nanoscope was proposed in existing literatures to capture super-resolution images of the nano-structures beneath the microsphere attached on sample surface. In this paper, a microsphere assisted nanoscope working in non-contact mode is designed and demonstrated, in which the microsphere is controlled with a gap separated to sample surface. With a gap, the microsphere is moved in parallel to sample surface non-invasively, so as to observe all the areas of interest. Furthermore, the influence of gap size on image resolution is studied experimentally. Only when the microsphere is close enough to the sample surface, super-resolution image could be obtained. Generally, the resolution decreases when the gap increases as the contribution of evanescent wave disappears. To keep an appropriate gap size, a quantitative method is implemented to estimate the gap variation by observing Newton's rings around the microsphere, serving as a real-time feedback for tuning the gap size. With a constant gap, large-area image with high resolution can be obtained during microsphere scanning. Our study of non-contact mode makes the microsphere assisted nanoscope more practicable and easier to implement.

  12. Effect of friction stir welding parameters on defect formation

    NASA Astrophysics Data System (ADS)

    Tarasov, S. Yu.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.; Filippov, A. V.; Ivanov, A. N.

    2015-10-01

    Friction stir welding is a perspective method for manufacturing automotive parts, aviation and space technology. One of the major problems is the formation of welding defects and weld around the welding zone. The formation of defect is the main reason failure of the joint. A possible way to obtain defect-free welded joints is the selection of the correct welding parameters. Experimental results describing the effect of friction stir welding process parameters on the defects of welded joints on aluminum alloy AMg5M have been shown. The weld joint defects have been characterized using the non-destructive radioscopic and ultrasound phase array methods. It was shown how the type and size of defects determine the welded joint strength.

  13. Non-destructive Magnetic Evaluation of Laser Weld Quality in Hot Rolled Coils

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Chakradhar, I.; Rao, K. R. C.; Rao, V. V. L.; Kaza, Marutiram

    2015-06-01

    Weld quality evaluation was conducted on laser welded thin sectsions (2 mm) of hot-rolled (HR) low-carbon steel coils during cold rolling process. The analysis revealed that the poor welds consisting of the weld defects like incomplete fusion, cluster of porosity, and large difference in hardness between the weld zone and base metal were responsible for the weld failures. Experiments were conducted by varying the welding parameters; laser power and welding speed to optimize the parameters for minimizing the weld defects. The optimized weld process parameters have helped elimination of weld defects and the results are verified with microscopy and microhardness measurements. As destructive evaluation techniques are time consuming and not always permitted in industrial applications, attempts have been made in the present investigation for the utilization of suitable non-destructive techniques for the evaluation of weld quality. Non-destructive magnetic techniques of magnetic hysteresis loop and magnetic Barkhausen emissions were used in the present investigation to establish possible correlations of magnetic properties across the weld seam with the mechanical property (microhardness) for evaluation of weld quality. It is inferred that the magnetic properties of coercivity and inverse of root mean square voltage can be effectively utilized to determine weld quality in HR steel coils.

  14. Tool For Friction Stir Tack Welding of Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  15. Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel

    NASA Astrophysics Data System (ADS)

    Sinha, Amit Kumar; Kim, Duck Young; Ceglarek, Darek

    2013-10-01

    Many advantages of laser welding technology such as high speed and non-contact welding make the use of the technology more attractive in the automotive industry. Many studies have been conducted to search the optimal welding condition experimentally that ensure the joining quality of laser welding that relies both on welding system configuration and welding parameter specification. Both non-destructive and destructive techniques, for example, ultrasonic inspection and tensile test are widely used in practice for estimating the joining quality. Non-destructive techniques are attractive as a rapid quality testing method despite relatively low accuracy. In this paper, we examine the relationship between the variation of weld seam and tensile shear strength in the laser welding of galvanized steel in a lap joint configuration in order to investigate the potential of the variation of weld seam as a joining quality estimator. From the experimental analysis, we identify a trend in between maximum tensile shear strength and the variation of weld seam that clearly supports the fact that laser welded parts having larger variation in the weld seam usually have lower tensile strength. The discovered relationship leads us to conclude that the variation of weld seam can be used as an indirect non-destructive testing method for estimating the tensile strength of the welded parts.

  16. Selection of optimal welding condition for GTA pulse welding in root-pass of V-groove butt joint

    NASA Astrophysics Data System (ADS)

    Yun, Seok-Chul; Kim, Jae-Woong

    2010-12-01

    In the manufacture of high-quality welds or pipeline, a full-penetration weld has to be made along the weld joint. Therefore, root-pass welding is very important, and its conditions have to be selected carefully. In this study, an experimental method for the selection of optimal welding conditions is proposed for gas tungsten arc (GTA) pulse welding in the root pass which is done along the V-grooved butt-weld joint. This method uses response surface analysis in which the width and height of back bead are chosen as quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, is used as the objective function to obtain the optimal welding conditions. In our experiments, the target values of back bead width and height are 4 mm and zero, respectively, for a V-grooved butt-weld joint of a 7-mm-thick steel plate. The optimal welding conditions could determine the back bead profile (bead width and height) as 4.012 mm and 0.02 mm. From a series of welding tests, it was revealed that a uniform and full-penetration weld bead can be obtained by adopting the optimal welding conditions determined according to the proposed method.

  17. Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview

    NASA Astrophysics Data System (ADS)

    Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.

    2018-03-01

    Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.

  18. Comparison of Tensile Damage Evolution in Ti6A14V Joints Between Laser Beam Welding and Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun

    2014-12-01

    The present paper studied the evolution of tensile damage in joints welded using laser beam welding (LBW) and gas tungsten arc welding (TIG) under a uniaxial tensile load. The damage evolution in the LBW joints and TIG-welded joints was studied by using digital image correlation (DIC) technology and monitoring changes in Young's modulus during tensile testing. To study the mechanism of void nucleation and growth in the LBW joints and TIG-welded joints, test specimens with various amounts of plastic deformation were analyzed using a scanning electron microscope (SEM). Compared with TIG-welded joints, LBW-welded joints have a finer microstructure and higher microhardness in the fusion zone. The SEM analysis and DIC test results indicated that the critical strain of void nucleation was greater in the LBW-welded joints than in the TIG-welded joints, while the growth rate of voids was lower in the LBW-welded joints than in the TIG-welded joints. Thus, the damage ratio in the LBW joints was lower than that in the TIG-welded joints during tensile testing. This can be due to the coarser martensitic α' and the application of TC-1 welding rods in the TIG-welded joint.

  19. Mount assembly for porous transition panel at annular combustor outlet

    NASA Technical Reports Server (NTRS)

    Sweeney, Ralph B. (Inventor); Verdouw, Albert J. (Inventor)

    1980-01-01

    A gas turbine engine combustor assembly of annular configuration has outer and inner walls made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween and each outer and inner wall including a transition panel of porous metal defining a combustor assembly outlet supported by a combustor mount assembly including a stiffener ring having a side undercut thereon fit over a transition panel end face; and wherein an annular weld joins the ring to the end face to transmit exhaust heat from the end face to the stiffener ring for dissipation from the combustor; a combustor pilot member is located in axially spaced, surrounding relationship to the end face and connector means support the stiffener ring in free floating relationship with the pilot member to compensate for both radial and axial thermal expansion of the transition panel; and said connector means includes a radial gap for maintaining a controlled flow of coolant from outside of the transition panel into cooling relationship with the stiffener ring and said weld to further cool the end face against excessive heat build-up therein during flow of hot gas exhaust through said outlet.

  20. Welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems using fundamental- and higher-resonance frequencies.

    PubMed

    Tsujino, Jiromaru; Hongoh, Misugi; Yoshikuni, Masafumi; Hashii, Hidekazu; Ueoka, Tetsugi

    2004-04-01

    The welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems that are driven at only the fundamental-resonance frequency vibration were compared, and also those of the welding systems that were driven at the fundamental and several higher resonance frequencies simultaneously were studied. At high frequency, welding characteristics can be improved due to the larger vibration loss of plastic materials. For welding of rather thin or small specimens, as the fundamental frequency of these welding systems is higher and the numbers of driven higher frequencies are driven simultaneously, larger welded area and weld strength were obtained.

  1. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  2. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    NASA Astrophysics Data System (ADS)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  3. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests of welded joints were performed, and it was confirmed that they have sufficient mechanical properties. As a result of this study, it is confirmed that, if the appropriate welding conditions are selected, sound welded joints of AZ31B magnesium alloy are obtainable by the YAG laser/TIG arc hybrid welding process.

  4. Survey of welding processes.

    DOT National Transportation Integrated Search

    2003-07-01

    The current KYTC SPECIAL PROVISION NO. 4 WELDING STEEL BRIDGES prohibits the use of welding processes other than shielded metal arc welding (SMAW) and submerged arc welding (SAW). Nationally, bridge welding is codified under ANSI/AASHTO/AWS D1....

  5. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    NASA Astrophysics Data System (ADS)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  6. Computational simulation of weld microstructure and distortion by considering process mechanics

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.

    2009-05-01

    Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.

  7. A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding

    NASA Astrophysics Data System (ADS)

    Rao, Harish Mangebettu

    The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack propagation into the top sheet, into the bottom sheet, and interfacial separation. Investigation of the tested welds revealed that the voids in the weld nugget reduced the weld strength, resulting in lower fatigue life. A thin layer of IMCs formed along the faying surface which accelerated the fatigue failure.

  8. Gravitational effects on weld pool shape and microstructural evolution during gas tungsten arc and laser beam welding on 304 stainless steel, nickel, and aluminum-4 wt.% copper alloy

    NASA Astrophysics Data System (ADS)

    Kang, Namhyun

    The objective of the present work was to investigate effects of gravitational (acceleration) level and orientation on Ni 200 alloy (99.5% Ni purity), 304 stainless steel, and Al-4 wt.% Cu alloy during gas tungsten arc welding (GTAW) and laser beam welding (LBW). Main characterization was focused on the weld pool shape, microstructure, and solute distribution as a function of gravitational level and orientation. The welds were divided into two classes, i.e., 'stable' and 'unstable' welds, in view of the variation of weld pool shape as a function of gravitational level and orientation. In general, higher arc current and translational GTAW produced more significant effects of gravitational orientation on the weld pool shape than the case of lower arc current and spot welding. Cross-sectional area (CSA) was a secondary factor in determining the stability of weld pool shape. For the 'stable' weld of 304 stainless steel GTAW, the II-U weld showed less convexity in the pool bottom and more depression of the free surface, therefore producing deeper penetration (10--20%) than the case of II-D weld. The II-D weld of 304 stainless steel showed 31% deeper penetration, 28% narrower width, and more hemispherical shape of the weld pool than the case of II-U weld. For GTAW on 304 stainless steel, gravitational level variation from low gravity (LG ≈ 1.2 go) to high gravity (HG ≈ 1.8 go) caused 10% increase in width and 10% decrease in depth while maintaining the overall weld pool volume. Furthermore, LBW on 304 stainless steels showed mostly constant shape of weld pool as a function of gravitational orientation. GTAW on Ni showed similar trends of weld pool shape compared with GTAW on 304 stainless steel, i.e., the weld pool became unstable by showing more penetration in the II-D weld for slower arc translational velocity (V a) and larger weld pool size. However, the Ni weld pool shape had greater stability of the weld pool shape with respect to the gravitational orientation than the case of 304 stainless steel, i.e., higher current boundary and no humping. Regardless of the gravitational level, the ferrite content and the distribution of the solutes (Cr and Ni) remained constant for GTAW on 304 stainless steel. However, for GTAW on Al-4 wt.% Cu alloys, the gravitational orientation changed the weld pool shape associated with convection flows. In summary, gravity influenced the weld pool shape that was associated with convection flows and weld surface deformation for specific welding conditions. The variation of convection flows and weld pool shape played a role in modifying VS and GL. Solidification orientation and morphology were affected because VS and GL were changed as a function of gravity. Studies of gravity on the welding process are expected to play a significant role in the space-station construction and circumferential pipe welding on the earth. (Abstract shortened by UMI.)

  9. Research study on materials processing in space experiment number M512. [adhesion-cohesion properties of liquid metals under weightlessness conditions in Skylab

    NASA Technical Reports Server (NTRS)

    Tobin, J. M.; Kossowsky, R.

    1973-01-01

    Adhesion of the melted metals to the adjacent solid metals, and cohesion of the liquid metal to itself appeared to be equally as strong in zero gravity as on earth. Similar cut edge bead periodicity in cut thin plate, and similar periodic chevron patterns in full penetration welds were seen. The most significant practical result is that the design of braze joints for near zero gravity can be very tolerant of dimensional gaps in the joint. This conclusion is based on a comparison of narrow, wide and variable gap widths. Brazing is very practical as a joining or repairing technique for metal structures at zero gravity. The operation of the hardware developed to locate successive small (0.6 cm) diameter cylinders in the focus of the battery powered EB unit, melt the various metal specimens and deploy some liquid metal drops to drift in space, was generally successful. However, the sphericity and surface roughness were far from those of ball bearings.

  10. Tunable THz notch filter with a single groove inside parallel-plate waveguides.

    PubMed

    Lee, Eui Su; Jeon, Tae-In

    2012-12-31

    A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.

  11. Stability of an optically contacted etalon to cosmic radiation. [aboard Dynamics Explorer satellite

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Dettman, D. L.; Hays, P. B.

    1980-01-01

    An investigation has been completed to determine the effects of prolonged exposure to cosmic radiation on Zerodur spacing elements used between two dielectric reflectors on silica substrates in the plane Fabry-Perot etalon selected for flight in the Dynamics Explorer satellite. The measured radiation expansion coefficient for Zerodur is approximately -4.0 x 10 to the -12th/rad. In addition to the overall change in gap dimension, test data indicate a degradation in etalon parallelism, which is ascribed to the different doses received by the three spacers due to their differing distances from a Co-60 source. The effect is considered to be of practical use in the tuning and parallelism adjustment of fixed gap etalons. The variation is small enough not to pose a problem for the satellite instrument where expected radiation doses are less than 10,000 rads.

  12. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    NASA Astrophysics Data System (ADS)

    Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  13. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    PubMed

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  14. Effect of FSW welding speed on microstructure and microhardness of Al-0.84Mg-0.69Si-0.76Fe alloy at moderate rotational tool velocity

    NASA Astrophysics Data System (ADS)

    Chand, Suresh; Vineetha, S.; Madhusudhan, D.; Sai Krishna, CH; Kusuma Devi, G.; Bhawani; Hemarao, K.; Ganesh Naidu, G.

    2018-03-01

    The plate of 7.0 mm thickness was double side welded using friction stir welding is investigated. The rotational velocity of friction stir welding tool is used 1400 rpm. The influence of welding speed on the microstructure and microhardness values of Al-0.84Mg-0.69Si-0.76Fe aluminum alloy is presented. Two welding speeds 25 mm/min and 31.5 mm/min are used. The microhardness values of friction stir weld are measured at various locations from the weld interface. The microhardness values in stir zone of weld are found larger than lower welding speed at constant rotational velocity of 1400 rpm of friction stir welding tool. The similar effects on microhardness values are found in the thermo-mechanically affected zone and heat affected zone. The fine microstructure is observed at 31.5 mm/min welding speed compared to the 25 mm/min welding speed at 1400 rpm.

  15. Bronchial reactions to exposure to welding fumes.

    PubMed Central

    Contreras, G R; Chan-Yeung, M

    1997-01-01

    OBJECTIVES: To study the airway response and its mechanism to welding fumes in six welders with respiratory symptoms. METHODS: Methacholine and welding challenge tests were carried out. The concentration of welding fumes during the exposure test was measured. On two subjects who developed bronchoconstricition to welding challenge, additional tests were carried out including prick, patch, and inhalation challenges with metal salt solutions. RESULTS: Three subjects developed immediate bronchial reaction to exposure to welding fume; one to mild steel and stainless steel welding, another to mild steel and galvanised welding, and one only to galvanised welding. They all had a moderate to pronounced degree of non-specific bronchial hyperresponsiveness. The concentration of fumes during welding tests, particularly to galvanised welding, was high. An inhalation challenge test with zinc chloride salt solution in two subjects who reacted to galvanised welding was negative. Prick and patch tests with zinc chloride were also negative. CONCLUSION: The airway response to welding in these subjects is non-specific and is due to irritation rather than to sensitisation. PMID:9538358

  16. Bronchial reactions to exposure to welding fumes.

    PubMed

    Contreras, G R; Chan-Yeung, M

    1997-11-01

    To study the airway response and its mechanism to welding fumes in six welders with respiratory symptoms. Methacholine and welding challenge tests were carried out. The concentration of welding fumes during the exposure test was measured. On two subjects who developed bronchoconstricition to welding challenge, additional tests were carried out including prick, patch, and inhalation challenges with metal salt solutions. Three subjects developed immediate bronchial reaction to exposure to welding fume; one to mild steel and stainless steel welding, another to mild steel and galvanised welding, and one only to galvanised welding. They all had a moderate to pronounced degree of non-specific bronchial hyperresponsiveness. The concentration of fumes during welding tests, particularly to galvanised welding, was high. An inhalation challenge test with zinc chloride salt solution in two subjects who reacted to galvanised welding was negative. Prick and patch tests with zinc chloride were also negative. The airway response to welding in these subjects is non-specific and is due to irritation rather than to sensitisation.

  17. Automatic hot wire GTA welding of pipe offers speed and increased deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sykes, I.; Digiacomo, J.

    1995-07-01

    Heavy-wall pipe welding for the power and petrochemical industry must meet code requirements. Contractors strive to meet these requirements in the most productive way possible. The challenge put to orbital welding equipment manufacturers is to produce pipe welding equipment that cost-effectively produces code-quality welds. Orbital welding equipment using the GTA process has long produced outstanding quality results but has lacked the deposition rate to compete cost effectively with other manual and semiautomatic processes such as SMAW, FCAW and GMAW. In recent years, significant progress has been made with the use of narrow-groove weld joint designs to reduce weld joint volumemore » and improve welding times. Astro Arc Polysoude, an orbital welding equipment manufacturer based in Sun Valley, Calif., and Nantes, France, has combined the hot wire GTAW process with orbital welding equipment using a narrow-groove weld joint design. Field test results show this process and procedure is a good alternative for many heavy-wall-pipe welding applications.« less

  18. Monitoring the quality of welding based on welding current and ste analysis

    NASA Astrophysics Data System (ADS)

    Mazlan, Afidatusshimah; Daniyal, Hamdan; Izzani Mohamed, Amir; Ishak, Mahadzir; Hadi, Amran Abdul

    2017-10-01

    Qualities of welding play an important part in industry especially in manufacturing field. Post-welding non-destructive test is one of the importance process to ensure the quality of welding but it is time consuming and costly. To reduce the chance of defects, online monitoring had been utilized by continuously sense some of welding parameters and predict welding quality. One of the parameters is welding current, which is rich of information but lack of study focus on extract them at signal analysis level. This paper presents the analysis of welding current using Short Time Energy (STE) signal processing to quantify the pattern of the current. GMAW set with carbon steel specimens are used in this experimental study with high-bandwidth and high sampling rate oscilloscope capturing the welding current. The results indicate welding current as signatures have high correlation with the welding process. Continue with STE analysis, the value below 5000 is declare as good welding, meanwhile the STE value more than 6000 is contained defect.

  19. Sensors control gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siewert, T.A.; Madigan, R.B.; Quinn, T.P.

    1997-04-01

    The response time of a trained welder from the time a weld problem is identified to the time action is taken is about one second--especially after a long, uneventful period of welding. This is acceptable for manual welding because it is close to the time it takes for the weld pool to solidify. If human response time were any slower, manual welding would not be possible. However, human response time is too slow to respond to some weld events, such as melting of the contact tube in gas metal arc welding (GMAW), and only automated intelligent control systems can reactmore » fast enough to correct or avoid these problems. Control systems incorporate welding knowledge that enables intelligent decisions to be made about weld quality and, ultimately, to keep welding parameters in the range where only high-quality welds are produced. This article discusses the correlation of electrical signals with contact-tube wear, changes in shielding gas, changes in arc length, and other weld process data.« less

  20. Plasma Processes of Cutting and Welding

    DTIC Science & Technology

    1976-02-01

    TIG process. 2.2.2 Keyhole Welding In plasma arc welding , the term...Cutting 3 3 4 4 4 2.2 Plasma Arc Welding 5 2.2.1 Needle Arc Welding 2.2.2 Keyhole Welding 5 6 3. Applications 8 93.1 Economics 4. Environmental Aspects of...Arc Lengths III. Needle Arc Welding Conditions IV. Keyhole Welding Conditions v. Chemical Analyses of Plates Used - vii - 1. 2. 3. 4. 5. 6. 7. 8.

  1. Quality status display for a vibration welding process

    DOEpatents

    Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony; Chakraborty, Debejyo; Bracey, Jennifer; Wang, Hui; Tavora, Peter W.; Davis, Jeffrey S.; Hutchinson, Daniel C.; Reardon, Ronald L.; Utz, Shawn

    2017-03-28

    A system includes a host machine and a status projector. The host machine is in electrical communication with a collection of sensors and with a welding controller that generates control signals for controlling the welding horn. The host machine is configured to execute a method to thereby process the sensory and control signals, as well as predict a quality status of a weld that is formed using the welding horn, including identifying any suspect welds. The host machine then activates the status projector to illuminate the suspect welds. This may occur directly on the welds using a laser projector, or on a surface of the work piece in proximity to the welds. The system and method may be used in the ultrasonic welding of battery tabs of a multi-cell battery pack in a particular embodiment. The welding horn and welding controller may also be part of the system.

  2. The effects of welded joint characteristics on its properties in HDPE thermal fusion welding

    NASA Astrophysics Data System (ADS)

    Dai, Hongbin; Peng, Jun

    2017-05-01

    In this paper, PE100 pipes with the diameter of 200 mm and the thickness of 11.9 mm were used as material. The welded joints were obtained in different welding pressures with the optimal welding temperature of 220∘C. Reheating process on the welded joints with the temperature of 130∘C was carried out. The joints exhibited X-type, and the cause of X-type joints was discussed. The temperature field in the forming process of welded joints was measured, and tensile and bending tests on welded joints were carried out. The fracture surface of welded joints was observed by scanning electron microscopy (SEM), and crystallinity calculation was taken by X-ray diffraction (XRD). The mechanism of X-type weld profile effects on welded joints properties was analyzed. It was concluded that the mechanical properties of welded joints decrease with the reduced X distance between lines.

  3. Multi-mode ultrasonic welding control and optimization

    DOEpatents

    Tang, Jason C.H.; Cai, Wayne W

    2013-05-28

    A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.

  4. Optimization and Prediction of Angular Distortion and Weldment Characteristics of TIG Square Butt Joints

    NASA Astrophysics Data System (ADS)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2014-05-01

    Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.

  5. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stine, Andrew Martin; Pierce, Stanley W.; Moniz, Paul F.

    The welding equipment used for welding iridium containers (clads) at Los Alamos National Laboratory is twenty five years old and is undergoing an upgrade. With the upgrade, there is a requirement for requalification of the welding process, and the opportunity for process improvement. Testing of the new system and requalification will require several welds on iridium test parts and clads, and any efforts to improve the process will add to the need for iridium parts. The extreme high cost of iridium imposes a severe limitation on the extent of test welding that can be done. The 2 inch diameter, 0.027more » inch thick, iridium blank disc that the clad cup is formed from, is useful for initial weld trials, but it costs $5000. The development clad sets needed for final tests and requalification cost $15,000 per set. A solution to iridium cost issue would be to do the majority of the weld development on a less expensive surrogate metal with similar weld characteristics. One such metal is molybdenum. Since its melting index (melting temperature x thermal conductivity) is closest to iridium, welds on molybdenum should be similar in size for a given weld power level. Molybdenum is inexpensive; a single 2 inch molybdenum disc costs only $9. In order to evaluate molybdenum as a surrogate for iridium, GTA welds were first developed to provide full penetration on 0.030 inch thick molybdenum discs at speeds of 20, 25, and 30 inches per minute (ipm). These weld parameters were then repeated on the standard 0.027 inch thick iridium blanks. The top surface and bottom surface (root) width and grain structure of the molybdenum and iridium welds were compared, and similarities were evident between the two metals. Due to material and thickness differences, the iridium welds were approximately 35% wider than the molybdenum welds. A reduction in iridium weld current of 35% produce welds slightly smaller than the molybdenum welds yet showed that current could be scaled according to molybdenum/iridium weld width ratio to achieve similar welds. Further weld trials using various thicknesses of molybdenum determined that 0.024 inch thick molybdenum material would best match the 0.027 inch thick iridium in achieving comparable welds when using the same welding parameters. Across the range of welding speeds, the characteristic weld pool shape and solidification grain structure in the two materials was also similar. With the similarity of welding characteristics confirmed, and the appropriate thickness of molybdenum determined, it has been concluded that the use of molybdenum discs and tube sections will greatly expand the weld testing opportunities prior to iridium weld qualification« less

  7. Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.

    1992-01-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less

  8. [Study on the arc spectral information for welding quality diagnosis].

    PubMed

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  9. A Study to Increase Weld Penetration in P91 Steel During TIG Welding by using Activating Fluxes

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kumar; Kumar, Mayank; Dey, Vidyut; Naresh Rai, Ram

    2017-08-01

    Activated Flux TIG (ATIG) welding is a unique joining process, invented at Paton Institute of electric welding in 1960. ATIG welding process is also known as flux zoned TIG (FZTIG). In this process, a thin layer of activating flux is applied along the line on the surface of the material where the welding is to be carries out. The ATIG process aids to increase the weld penetration in thick materials. Activating fluxes used in the literature show the use of oxides like TiO2, SiO2, Cr2O3, ZnO, CaO, Fe2O3, and MnO2 during welding of steels. In the present study, ATIG was carried out on P-91 steel. Though, Tungsten Inert Gas welding gives excellent quality welds, but the penetration obtained in such welding is still demanding. P91 steel which is ferritic steel is used in high temperature applications. As this steel is, generally, used in thick sections, fabrication of such structures with TIG welding is limited, due to its low depth of penetration. To increase the depth of penetration in P91while welding with ATIG, the role of various oxides were investigated. Apart from the oxides mentioned above, in the present study the role of B2O3, V2O5 and MgO, during ATIG welding of P91 was investigated. It was seen that, compared to TIG welding, there was phenomenal increase in weld penetration during ATIG welding. Amongst all the oxides used in this study, maximum penetration was achieved in case of B2O3. The measurements of weld penetration, bead width and heat affected zone of the weldings were carried out using an image analysis technique.

  10. Clamp force and alignment checking device

    DOEpatents

    Spicer, John Patrick; Cai, Wayne W.; Chakraborty, Debejyo; Mink, Keith

    2017-04-11

    A check fixture measures a total clamp force applied by a welder device. The welder device includes a welding horn having a plurality of weld pads and welding anvil having a plurality of weld pads. The check fixture includes a base member operatively supporting a plurality of force sensors. The base member and the force sensors are received between the weld pads of the welding horn and the anvil pads of the welding anvil. Each force sensor is configured to measure an individual clamp force applied thereto by corresponding weld and anvil pads when the base member is received between the welding horn and the welding anvil and the welder device is in the clamped position. The individual clamp forces are used to determine whether the weld and/or anvil pads are worn or misaligned.

  11. Automated GMA welding of austenitic stainless steel pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahash, G.J.

    1996-12-31

    The study focused on reducing weld cycle times of rotatable subassemblies (spools) using automated welding equipment. A unique automatic Gas Metal Arc Welding (GMAW) system was used to produce a series of pipe to pipe welds on 141 mm (5 in.) schedule 80 seamless stainless steel pipe. After manual tack welding, the adaptive control system welded the root pass of the argon gas backed open vee groove circumferential butt joints in the IG rotated position with short circuiting transfer GMAW. The fill and cover passes were welded automatically with spray transfer GMAW. Automatic welding cycle times were found to bemore » 50--80 percent shorter than the current techniques of roll welding with Shielded Metal Arc Welding and manual Gas Tungsten Arc Welding. Weld costs ({Brit_pounds}/m), including amortization, for the various systems were compared. The cost of automated GMA welds was virtually equivalent to the most competitive methods while depositing 75% more filler metal per year. Also investigated were metallurgical effects generated by weld thermal cycling, and the associated effects on mechanical properties of the weld joint. Mechanical properties of the welds met or exceeded those of the base metal. Sensitization of the pipe did not occur in the heat affected zone (HAZ), based on the absence of evidence of intergranular attack in modified Strauss corrosion tests and despite the fact of interpass temperatures well above recommended maximums. Cooling rates of 3--5 C/s in the heat affected zone of the four pass welds were measured by thermocouple technique and found to be within the non-sensitizing range for this alloy.« less

  12. 49 CFR 195.230 - Welds: Repair or removal of defects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... adversely affect the quality of the weld repair. After repair, the segment of the weld that was repaired... welding procedure used to make the original weld are met upon completion of the final weld repair. [Amdt...

  13. 49 CFR 195.230 - Welds: Repair or removal of defects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... adversely affect the quality of the weld repair. After repair, the segment of the weld that was repaired... welding procedure used to make the original weld are met upon completion of the final weld repair. [Amdt...

  14. 49 CFR 195.230 - Welds: Repair or removal of defects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... adversely affect the quality of the weld repair. After repair, the segment of the weld that was repaired... welding procedure used to make the original weld are met upon completion of the final weld repair. [Amdt...

  15. 49 CFR 195.230 - Welds: Repair or removal of defects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... adversely affect the quality of the weld repair. After repair, the segment of the weld that was repaired... welding procedure used to make the original weld are met upon completion of the final weld repair. [Amdt...

  16. 49 CFR 195.230 - Welds: Repair or removal of defects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... adversely affect the quality of the weld repair. After repair, the segment of the weld that was repaired... welding procedure used to make the original weld are met upon completion of the final weld repair. [Amdt...

  17. Arc Welding of Mg Alloys: Oxide Films, Irregular Weld Shape and Liquation Cracking

    NASA Astrophysics Data System (ADS)

    Chai, Xiao

    The use of Mg alloys for vehicle weight reduction has been increasing rapidly worldwide. Gas-metal arc welding (GMAW) has the potential for mass-production welding of Mg alloys. Recently, the University of Wisconsin demonstrated in bead-on-plate GMAW of Mg alloys that severe spatter can be eliminated by using controlled short circuiting (CSC), and severe hydrogen porosity can be eliminated by removing Mg(OH)2. The present study aimed at actual butt and lap welding of Mg alloys by CSC-GMAW and susceptibility of Mg alloys to weld-edge cracking using the circular-patch welding test. Sound welds were made without spatter and hydrogen porosity butt and lap welding of AZ 31 Mg using CSC-GMAW , with butt welds approaching 100% of the base-metal strength. However, three new significant issues were found to occur easily and degrade the weld quality significantly: 1. formation of oxide films inside butt welds, 2. formation of high crowns on butt welds, and 3. formation of fingers from lap welds. The mechanisms of their formation were established, and the methods for their elimination or reduction were demonstrated. Circular-patch welds were made on most widely used Mg casting alloy AZ91, the most widely used Mg wrought alloy AZ31 with three different Mg filler wires AZ31, AZ61 and AZ92. The susceptibility to cracking along the weld edge was predicted and compared against the experimental results. Such a prediction has not been made for welds of Mg alloys before.

  18. Tailor-welded blanks and their production

    NASA Astrophysics Data System (ADS)

    Yan, Qi

    2005-01-01

    Tailor welded blanks had been widely used in the automobile industry. A tailor welded blank consists of several flat sheets that were laser welded together before stamping. A combination of different materials, thickness, and coatings could be welded together to form a blank for stamping car body panels. As for the material for automobile industry, this technology was one of the development trend for automobile industry because of its weight reduction, safety improvement and economical use of materials. In this paper, the characters and production of tailor welded blanks in the market were discussed in detail. There had two major methods to produce tailor welded blanks. Laser welding would replace mesh seam welding for the production of tailor welded blanks in the future. The requirements on the edge preparation of unwelded blanks for tailor welded blanks were higher than the other steel processing technology. In order to produce the laser welded blank, there had the other process before the laser welding in the factory. In the world, there had three kinds of patterns for the large volume production of tailor welded blanks. In China, steel factory played the important role in the promotion of the application of tailor welded blanks. The competition for the supply of tailor welded blanks to the automobile industry would become fierce in the near future. As a result, the demand for the quality control on the production of tailor welded blanks would be the first priority concern for the factory.

  19. Weld pool oscillation during pulsed GTA welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aendenroomer, A.J.R.; Ouden, G. den

    1996-12-31

    This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Undermore » these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.« less

  20. Periodic dielectric structure for production of photonic band gap and devices incorporating the same

    DOEpatents

    Ho, Kai-Ming; Chan, Che-Ting; Soukoulis, Costas

    1994-08-02

    A periodic dielectric structure which is capable of producing a photonic band gap and which is capable of practical construction. The periodic structure is formed of a plurality of layers, each layer being formed of a plurality of rods separated by a given spacing. The material of the rods contrasts with the material between the rods to have a refractive index contrast of at least two. The rods in each layer are arranged with their axes parallel and at a given spacing. Adjacent layers are rotated by 90.degree., such that the axes of the rods in any given layer are perpendicular to the axes in its neighbor. Alternating layers (that is, successive layers of rods having their axes parallel such as the first and third layers) are offset such that the rods of one are about at the midpoint between the rods of the other. A four-layer periocity is thus produced, and successive layers are stacked to form a three-dimensional structure which exhibits a photonic band gap. By virtue of forming the device in layers of elongate members, it is found that the device is susceptible of practical construction.

  1. Pulsar Emission Geometry and Accelerating Field Strength

    NASA Technical Reports Server (NTRS)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  2. Large-aperture Tunable Plasma Meta-material to Interact with Electromagnetic Waves

    NASA Astrophysics Data System (ADS)

    Corke, Thomas; Matlis, Eric

    2016-11-01

    The formation of spatially periodic arrangements of glow discharge plasma resulting from charge instabilities were investigated as a tuneable plasma meta-material. The plasma was formed between two 2-D parallel dielectric covered electrodes: one consisting of an Indium-Tin-Oxide coated glass sheet, and the other consisting of a glass-covered circular electrode. The dielectric covered electrodes were separated by a gap that formed a 2-D channel. The gap spacing was adjustable. The electrodes were powered by a variable amplitude AC generator. The parallel electrode arrangement was placed in a variable pressure vacuum chamber. Various combinations of gap spacing, pressure and voltage resulted in the formation of spatially periodic arrangements (lattice) of glow discharge plasma. The lattice spacing perfectly followed 2-D packing theory, and was fully adjustable through the three governing parameters. Lattice arrangements were designed to interact with electromagnetic (EM) waves in the frequency range between 10GHz-80GHz. Its feasibility was investigate through an EM wave simulation that we adapted to allow for plasma permittivity. The results showed a clear suppression of the EM wave amplitude through the plasma gratings. Supported by AFOSR.

  3. Tailoring of the partial magnonic gap in three-dimensional magnetoferritin-based magnonic crystals

    NASA Astrophysics Data System (ADS)

    Mamica, S.

    2013-07-01

    We investigate theoretically the use of magnetoferritin nanoparticles, self-assembled in the protein crystallization process, as the basis for the realization of 3D magnonic crystals in which the interparticle space is filled with a ferromagnetic material. Using the plane wave method we study the dependence of the width of the partial band gap and its central frequency on the total magnetic moment of the magnetoferritin core and the lattice constant of the magnetoferritin crystal. We show that by adjusting the combination of these two parameters the partial gap can be tailored in a wide frequency range and shifted to sub-terahertz frequencies. Moreover, the difference in the width of the partial gap for spin waves propagating in planes parallel and perpendicular to the external field allows for switching on and off the partial magnonic gap by changing the direction of the applied field.

  4. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOEpatents

    Heiple, C.R.; Burgardt, P.

    1984-03-13

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  5. Electron Beam Welding to Join Gamma Titanium Aluminide Articles

    NASA Technical Reports Server (NTRS)

    Kelly, Thomas Joseph (Inventor)

    2008-01-01

    A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700 F to about 2100 F, thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800 F to about 2200 F, to form a joined structure.

  6. Friction Stir Process Mapping Methodology

    NASA Technical Reports Server (NTRS)

    Kooney, Alex; Bjorkman, Gerry; Russell, Carolyn; Smelser, Jerry (Technical Monitor)

    2002-01-01

    In FSW (friction stir welding), the weld process performance for a given weld joint configuration and tool setup is summarized on a 2-D plot of RPM vs. IPM. A process envelope is drawn within the map to identify the range of acceptable welds. The sweet spot is selected as the nominal weld schedule. The nominal weld schedule is characterized in the expected manufacturing environment. The nominal weld schedule in conjunction with process control ensures a consistent and predictable weld performance.

  7. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  8. Study on Dynamic Development of Three-dimensional Weld Pool Surface in Stationary GTAW

    NASA Astrophysics Data System (ADS)

    Huang, Jiankang; He, Jing; He, Xiaoying; Shi, Yu; Fan, Ding

    2018-04-01

    The weld pool contains abundant information about the welding process. In particular, the type of the weld pool surface shape, i. e., convex or concave, is determined by the weld penetration. To detect it, an innovative laser-vision-based sensing method is employed to observe the weld pool surface of the gas tungsten arc welding (GTAW). A low-power laser dots pattern is projected onto the entire weld pool surface. Its reflection is intercepted by a screen and captured by a camera. Then the dynamic development process of the weld pool surface can be detected. By observing and analyzing, the change of the reflected laser dots reflection pattern, for shape of the weld pool surface shape, was found to closely correlate to the penetration of weld pool in the welding process. A mathematical model was proposed to correlate the incident ray, reflected ray, screen and surface of weld pool based on structured laser specular reflection. The dynamic variation of the weld pool surface and its corresponding dots laser pattern were simulated and analyzed. By combining the experimental data and the mathematical analysis, the results show that the pattern of the reflected laser dots pattern is closely correlated to the development of weld pool, such as the weld penetration. The concavity of the pool surface was found to increase rapidly after the surface shape was changed from convex to concave during the stationary GTAW process.

  9. Weld procedure produces quality welds for thick sections of Hastelloy-X

    NASA Technical Reports Server (NTRS)

    Flens, F. J.; Fletcher, C. W.; Glasier, L. F., Jr.

    1967-01-01

    Welding program produces premium quality, multipass welds in heavy tube sections of Hastelloy-X. It develops semiautomatic tungsten/inert gas procedures, weld wire procurement specifications material weld properties, welder-operator training, and nondestructive testing inspection techniques and procedures.

  10. On-line welding quality inspection system for steel pipe based on machine vision

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2017-05-01

    In recent years, high frequency welding has been widely used in production because of its advantages of simplicity, reliability and high quality. In the production process, how to effectively control the weld penetration welding, ensure full penetration, weld uniform, so as to ensure the welding quality is to solve the problem of the present stage, it is an important research field in the field of welding technology. In this paper, based on the study of some methods of welding inspection, a set of on-line welding quality inspection system based on machine vision is designed.

  11. Fusion welding studies using laser on Ti-SS dissimilar combination

    NASA Astrophysics Data System (ADS)

    Shanmugarajan, B.; Padmanabham, G.

    2012-11-01

    Laser welding investigations were carried out on dissimilar Ti-SS combination. The study is aimed to improve the weld strength and ductility by minimizing harmful intermetallics and taking advantage of high cooling rates in laser welding. Results of continuous wave 3.5 kW CO2 laser welding of totally dissimilar combination of Titanium and stainless steel (304) have been discussed. Bead on plate welding experiments were conducted to identify the laser welding parameters using depth of penetration as criteria. The welding of dissimilar combination has been attempted both autogenously and with interlayers such as Vanadium (V) and Tantalum (Ta) in the form of laser cladding as well as strip. Autogenous welds were carried out by varying the laser power, welding speed and position of the laser beam with respect to the joint centre. The resultant welds are characterized by macrostructure analysis, SEM/EDAX and XRD and as welded tensile test in UTM. The autogenous welds have exhibited extensive cracking even when welded at high speeds or by manipulating the beam position with respect to the joint. Similarly Vandaium as interlayer could not achieve crack free joint. A joint with 40 MPa strength could be made with Ta as interlayer. Results and analysis of these variants of laser welded joints are reported and discussed.

  12. Thermo-Mechanical Analysis of a Single-Pass Weld Overlay and Girth Welding in Lined Pipe

    NASA Astrophysics Data System (ADS)

    Obeid, Obeid; Alfano, Giulio; Bahai, Hamid

    2017-08-01

    The paper presents a nonlinear heat-transfer and mechanical finite-element (FE) analyses of a two-pass welding process of two segments of lined pipe made of a SUS304 stainless steel liner and a C-Mn steel pipe. The two passes consist of the single-pass overlay welding (inner lap weld) of the liner with the C-Mn steel pipe for each segment and the single-pass girth welding (outer butt weld) of the two segments. A distributed power density of the moving welding torch and a nonlinear heat-transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in user subroutines for the FE code ABAQUS. The modeling procedure has been validated against previously published experimental results for stainless steel and carbon steel welding separately. The model has been then used to determine the isotherms induced by the weld overlay and the girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding.

  13. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  14. Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical Behavior of 409 Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Vidyarthy, R. S.; Dwivedi, D. K.; Vasudevan, M.

    2017-03-01

    The current study investigates the effects of activating flux tungsten inert gas welding (A-TIG) and multipass tungsten inert gas welding (M-TIG) on the weld morphology, angular distortion, microstructures and mechanical properties when welding 8-mm-thick 409 ferritic stainless steel (FSS). SiO2 was used as activating flux for A-TIG welding, while SUPERTIG ER309L was used as filler for M-TIG welding. Bead-on-plate weld trials were carried out to obtain the full penetration by using different combinations of flux coating density, welding speed and welding current. An optical microscope, field emission scanning microscope (FESEM), and x-ray diffractometer were used for the metallurgical characterizations. Vickers hardness, tensile test, Charpy toughness test, and creep behavior test were carried out to evaluate the mechanical properties of the base and weld metals. Experimental results indicate that the A-TIG process can increase the joint penetration and tends to reduce the angular distortion of the 409 FSS weldment. The A-TIG welded joint also exhibited greater mechanical strength. However, a critically low Charpy toughness was measured for the A-TIG weld fusion zone, which was later sufficiently improved after post weld heat treatment (PWHT). It was concluded that PWHT is mandatory for A-TIG welded 409 FSS.

  15. 30 CFR 250.110 - What must I include in my welding plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my welding plan? 250.110... must I include in my welding plan? You must include all of the following in the Welding Plan that you... qualified personnel weld; (c) Practices and procedures for safe welding that address: (1) Welding in...

  16. U-Groove Aluminum Weld Strength Improvement

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Vaughan, R.

    1997-01-01

    Though butt-welds are among the most preferred joining methods in aerostructures, their strength dependence on inelastic mechanics is generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. One is the source of peaking in which the extreme thermal expansion and contraction gradient of the fusion heat input across the groove tab thickness produces severe angular distortion that induces bending under uniaxial loading. The other is the filler strain hardening decreasing with increasing filler pass sequences, producing the weakest welds on the last weld pass side. Both phenomena are governed by weld pass sequences. Many industrial welding schedules unknowingly compound these effects, which reduce the weld strength. A depeaking index model was developed to select filler pass thickness, pass numbers, and sequences to improve depeaking in the welding process. The result was to select the number and sequence of weld passes to reverse the peaking angle such as to combine the strongest weld pass side with the peaking induced bending tension component side to provide a more uniform stress and stronger weld under axial tensile loading.

  17. Fluid Flow Phenomena during Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction andmore » speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.« less

  18. Enabling high speed friction stir welding of aluminum tailor welded blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  19. Automatic welding of stainless steel tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  20. Integrated optical sensor

    DOEpatents

    Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.

    1994-01-01

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  1. Integrated optical sensor

    DOEpatents

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  2. The Effect of Welding Energy on the Microstructural and Mechanical Properties of Ultrasonic-Welded Copper Joints

    PubMed Central

    Yang, Jingwei; Cao, Biao; Lu, Qinghua

    2017-01-01

    The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed. PMID:28772553

  3. Evaluation of Residual Stress Measurements Before and After Post-Weld Heat Treatment in the Weld Repairs

    NASA Astrophysics Data System (ADS)

    Pardowska, Anna M.; Price, John W. H.; Finlayson, Trevor R.; Ibrahim, R.

    2010-11-01

    Welding repairs are increasingly a structural integrity concern for aging pressure vessel and piping components. It has been demonstrated that the residual stress distribution near repair welds can be drastically different from that of the original weld. Residual stresses have a significant effect on the lifetime performance of a weld, and a reduction of these stresses is normally desirable. The aim of this paper is to investigate residual stresses in various weld repair arrangements using the non-destructive neutron diffraction technique. This research is focused on characterization of the residual stress distribution: (i) in the original weld; (ii) in a shallow toe weld repair; and (iii) after conventional post-weld heat treatment. The focus of the measurements is on the values of the subsurface strain/stress variations across the weld.

  4. The Effect of Welding Energy on the Microstructural and Mechanical Properties of Ultrasonic-Welded Copper Joints.

    PubMed

    Yang, Jingwei; Cao, Biao; Lu, Qinghua

    2017-02-16

    The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed.

  5. Advanced fusion welding processes, solid state joining and a successful marriage. [production of aerospace structures

    NASA Technical Reports Server (NTRS)

    Miller, F. R.

    1972-01-01

    Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.

  6. Grinding Parts For Automatic Welding

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  7. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, Herschel B.; Einerson, Carolyn J.; Watkins, Arthur D.

    1989-01-01

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

  8. Computational Short-cutting the Big Data Classification Bottleneck: Using the MODIS Land Cover Product to Derive a Consistent 30 m Landsat Land Cover Product of the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Roy, D. P.

    2016-12-01

    Classification is a fundamental process in remote sensing used to relate pixel values to land cover classes present on the surface. The state of the practice for large area land cover classification is to classify satellite time series metrics with a supervised (i.e., training data dependent) non-parametric classifier. Classification accuracy generally increases with training set size. However, training data collection is expensive and the optimal training distribution over large areas is unknown. The MODIS 500 m land cover product is available globally on an annual basis and so provides a potentially very large source of land cover training data. A novel methodology to classify large volume Landsat data using high quality training data derived automatically from the MODIS land cover product is demonstrated for all of the Conterminous United States (CONUS). The known misclassification accuracy of the MODIS land cover product and the scale difference between the 500 m MODIS and 30 m Landsat data are accommodated for by a novel MODIS product filtering, Landsat pixel selection, and iterative training approach to balance the proportion of local and CONUS training data used. Three years of global Web-enabled Landsat data (WELD) data for all of the CONUS are classified using a random forest classifier and the results assessed using random forest `out-of-bag' training samples. The global WELD data are corrected to surface nadir BRDF-Adjusted Reflectance and are defined in 158 × 158 km tiles in the same projection and nested to the MODIS land cover products. This reduces the need to pre-process the considerable Landsat data volume (more than 14,000 Landsat 5 and 7 scenes per year over the CONUS covering 11,000 million 30 m pixels). The methodology is implemented in a parallel manner on WELD tile by tile basis but provides a wall-to-wall seamless 30 m land cover product. Detailed tile and CONUS results are presented and the potential for global production using the recently available global WELD products are discussed.

  9. Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints.

    PubMed

    Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian

    2017-09-15

    In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding.

  10. Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints

    PubMed Central

    Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian

    2017-01-01

    In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding. PMID:28914825

  11. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  12. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  13. Upgraded HFIR Fuel Element Welding System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sease, John D

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. Inmore » recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.« less

  14. Development of an intelligent system for cooling rate and fill control in GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.

    1992-09-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less

  15. Development of automatic pre-tracking system for fillet weld based on laser trigonometry

    NASA Astrophysics Data System (ADS)

    Shen, Xiaoqin; Yu, Fusheng

    2005-01-01

    In this paper, an automatic fillet weld pre-tracking system for welding the work piece of lorry back boards with several bend in haul automobile is developed basing on laser trigonometry. The optical measuring head based on laser-PSD trigonometry is used as position sensor. It is placed in front of the traveling direction of welding wire to get the distances from welding wire to the two side boards of the welding lines, upper board and bottom board of the fillet weld respectively. A chip of AT89S52 is used as the micro controller in this system. The AC servomotors, ball-screws and straight guide rails constitute the sliding table to take welding wire move. The laser-PSD sensors pass through the vertical board, upper board and bottom board of the fillet weld when welding wire moves and then get the distance. The laser-PSD sensors output the analog signals. After A/D conversion, the digital signal is input into AT89S52 and calculated. Then the information of the position and lateral deviation of the welding wire when welding a certain position are gotten to control welding wires. So the weld pre-tracking for welding the work piece with long distance and large bend in haul automobile is realized. The position information is input into EEPROM to be saved for short time after handled by AT89S52. The information is as the welding position information as well as the speed adjusting data of the welding wire when it welds the several bend of the work piece. The practice indicates that this system has high pre-tracking precision, good anti-disturb ability, excellent reliability, easy operating ability and good adaptability to the field of production.

  16. Properties of the welded joints of manganese steel made by low-frequency pulsed arc welding

    NASA Astrophysics Data System (ADS)

    Saraev, Yu. N.; Bezborodov, V. P.; Gladovskii, S. V.; Golikov, N. I.

    2017-04-01

    The structure, the mechanical properties, the impact toughness, and the fracture mechanisms of the welded joints made of steel 09G2S plates by direct current welding and pulsed arc welding with a modulated arc current in the frequency range 0.25-5.0 Hz are studied. The application of low-frequency pulsed arc welding allowed us to form welded joints with a fine-grained structure in the weld metal and the heat-affected zone and to achieve a higher impact toughness and a longer cyclic fatigue life as compared to the welded joints fabricated by direct current welding. The achieved effect manifests itself over the entire testing range from 20 to-60°C.

  17. High Power Laser Welding. [of stainless steel and titanium alloy structures

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  18. On the hot cracking susceptibility of a semisolid aluminium 6061 weld: Application of a coupled solidification- thermomechanical model

    NASA Astrophysics Data System (ADS)

    Zareie Rajani, H. R.; Phillion, A. B.

    2015-06-01

    A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluskin, Efim; Trakhtenberg, Emil; Xu, Joseph Z.

    A method and apparatus for implementing dynamic compensation of magnetic forces for undulators are provided. An undulator includes a respective set of magnet arrays, each attached to a strongback, and placed on horizontal slides and positioned parallel relative to each other with a predetermined gap. Magnetic forces are compensated by a set of compensation springs placed along the strongback. The compensation springs are conical springs having exponential-force characteristics that substantially match undulator magnetic forces independently of the predetermined gap. The conical springs are positioned along the length of the magnets.

  20. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures...

  1. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures...

  2. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures...

  3. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures...

  4. 49 CFR 192.225 - Welding procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding procedures. 192.225 Section 192.225... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.225 Welding procedures. (a) Welding must be performed by a qualified welder in accordance with welding procedures...

  5. Effect of rotation speed and welding speed on Friction Stir Welding of AA1100 Aluminium alloy

    NASA Astrophysics Data System (ADS)

    Raja, P.; Bojanampati, S.; Karthikeyan, R.; Ganithi, R.

    2018-04-01

    Aluminum AA1100 is the most widely used grade of Aluminium due to its excellent corrosion resistance, high ductility and reflective finish, the selected material was welded with Friction Stir Welding (FSW) process on a CNC machine, using a combination of different tool rotation speed (1500 rpm, 2500 rpm, 3500 rpm) and welding speed (10 mm/min, 30 mm/min, 50 mm/min) as welding parameters. The effect of FSW using this welding parameter was studied by measuring the ultimate tensile strength of the welded joints. A high-speed steel tool was prepared for welding the Aluminium AA1100 alloy having an 8mm shoulder diameter and pin dimension of 4mm diameter and 2.8 mm length. The welded joints were tested using the universal testing machine. It was found that Ultimate Tensile Strength of FSW specimen was highest with a value of 98.08 MPa when the weld was performed at rotation speed of 1500 RPM and welding speed of 50 mm/min.

  6. Hardness variation of welded boron steel using continuous wave (CW) and pulse wave (PW) mode of fiber laser

    NASA Astrophysics Data System (ADS)

    Yaakob, K. I.; Ishak, M.; Idris, S. R. A.; Aiman, M. H.; Khalil, N. Z.

    2017-09-01

    Recent car manufacturer requirement in lightweight and optimum safety lead to utilization of boron steel with tailor welded blank approach. Laser welding process in tailor welded blank (TWB) production can be applied in continuous wave (CW) of pulse wave (PW) which produce different thermal experience in welded area. Instead of microstructure identification, hardness properties also can determine the behavior of weld area. In this paper, hardness variation of welded boron steel using PW and CW mode is investigated. Welding process is conducted using similar average power for both welding mode. Hardness variation across weld area is observed. The result shows similar hardness pattern across weld area for both welding mode. Hardness degradation at fusion zone (FZ) is due to ferrite formation existence from high heat input applied. With additional slower cooling rate for CW mode, the hardness degradation is become obvious. The normal variation of hardness behavior with PW mode might lead to good strength.

  7. Fusion welding experiments under low-gravity conditions using aircraft

    NASA Astrophysics Data System (ADS)

    Masubuchi, Koichi; Nayama, Michisuke

    A series of gas tungsten arc welding experiments under low-gravity conditions created using parabolic flight of aircraft were performed. The materials used were aluminum and 2219 aluminum alloy. Welding was conducted in a small chamber filled with 100 percent argon gas, and the power source was a set of storage batteries. While welding was conducted, CCD image of welding phenomena, welding current, voltage, and the gravity level of the welding table were recorded continuously. It was found that sound welds can be obtained under low-gravity conditions. The bead appearance of the weld bead made under low-gravity conditions was very smooth and flat with no ripple lines which normally exist in welds made on the earth. The observed shape of the arc plasma under low-gravity conditions was larger than that made under normal gravity condition, but the difference was not so significant. Welds made under low-gravity conditions tend to contain more porosity compared with welds made under the earth conditions.

  8. Laser welding on trough panel: 3D body part

    NASA Astrophysics Data System (ADS)

    Shirai, Masato; Hisano, Hirohiko

    2003-03-01

    Laser welding for automotive bodies has been introduced mainly by European car manufacturers since more than 10 years ago. Their purposes of laser welding introduction were mainly vehicle performance improvement and lightweight. And laser welding was applied to limited portion where shapes of panels are simple and easy to fit welded flanges. Toyota also has introduced laser welding onto 3 dimensional parts named trough panel since 1999. Our purpose of the introduction was common use of equipment. Trough panel has a complex shape and different shapes in each car type. In order to realize common use of welding equipment, we introduced parts locating equipment which had unique, small & simple jigs fo each car type and NC (Numerical Controlled) locators and air-cooled small laser head developed by ourselves to the trough welding process. Laser welding replaced spot welding and was applied linearly like stitches. Length of laser welding was determined according to comparison with statistic tensile strength and fatigue strength of spot welding.

  9. An optimization method for defects reduction in fiber laser keyhole welding

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Jiang, Ping; Shao, Xinyu; Wang, Chunming; Li, Peigen; Mi, Gaoyang; Liu, Yang; Liu, Wei

    2016-01-01

    Laser welding has been widely used in automotive, power, chemical, nuclear and aerospace industries. The quality of welded joints is closely related to the existing defects which are primarily determined by the welding process parameters. This paper proposes a defects optimization method that takes the formation mechanism of welding defects and weld geometric features into consideration. The analysis of welding defects formation mechanism aims to investigate the relationship between welding defects and process parameters, and weld features are considered to identify the optimal process parameters for the desired welded joints with minimum defects. The improved back-propagation neural network possessing good modeling for nonlinear problems is adopted to establish the mathematical model and the obtained model is solved by genetic algorithm. The proposed method is validated by macroweld profile, microstructure and microhardness in the confirmation tests. The results show that the proposed method is effective at reducing welding defects and obtaining high-quality joints for fiber laser keyhole welding in practical production.

  10. The effect of welding parameters on penetration in GTA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirali, A.A.; Mills, K.C.

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parametersmore » on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.« less

  11. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    NASA Astrophysics Data System (ADS)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  12. Adaptive weld control for high-integrity welding applications

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.

    1993-01-01

    An advanced adaptive control weld system for high-integrity welding applications is presented. The system consists of a state-of-the-art weld control subsystem, motion control subsystem, and sensor subsystem which closes the loop on the process. The adaptive control subsystem (ACS), which is required to totally close the loop on weld process control, consists of a multiprocessor system, data acquisition hardware, and three welding sensors which provide measurements from all areas around the torch in real time. The ACS acquires all 'measurables' and feeds offset trims back into the weld control and motion control subsystems to modify the 'controllables' in order to maintain a previously defined weld quality.

  13. Effects of welding technology on welding stress based on the finite element method

    NASA Astrophysics Data System (ADS)

    Fu, Jianke; Jin, Jun

    2017-01-01

    Finite element method is used to simulate the welding process under four different conditions of welding flat butt joints. Welding seams are simulated with birth and death elements. The size and distribution of welding residual stress is obtained in the four kinds of welding conditions by Q345 manganese steel plate butt joint of the work piece. The results shown that when using two-layers welding,the longitudinal and transverse residual stress were reduced;When welding from Middle to both sides,the residual stress distribution will change,and the residual stress in the middle of the work piece was reduced.

  14. Welding apparatus and methods for using ultrasonic sensing

    DOEpatents

    McJunkin, Timothy R.; Johnson, John A.; Larsen, Eric D.; Smartt, Herschel B.

    2006-08-22

    A welding apparatus using ultrasonic sensing is described and which includes a movable welder having a selectively adjustable welding head for forming a partially completed weld in a weld seam defined between adjoining metal substrates; an ultrasonic assembly borne by the moveable welder and which is operable to generate an ultrasonic signal which is directed toward the partially completed weld, and is further reflected from same; and a controller electrically coupled with the ultrasonic assembly and controllably coupled with the welding head, and wherein the controller receives information regarding the ultrasonic signal and in response to the information optimally positions the welding head relative to the weld seam.

  15. U-Groove aluminum weld strength improvement

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Vaughan, R.

    1996-01-01

    Though butt-welds are among the most preferred joining methods in aerostructures, their strength dependence on inelastic mechanics is generally the least understood. This study investigated experimental strain distributions across a thick aluminum U-grooved weld and identified two weld process considerations for improving the multipass weld strength. The extreme thermal expansion and contraction gradient of the fusion heat input across the groove tab thickness produces severe peaking, which induces bending under uniaxial loading. The filler strain-hardening decreased with increasing filler pass sequence, producing the weakest welds on the last pass side. Current welding schedules unknowingly compound these effects which reduce the weld strength. A depeaking index model was developed to select filler pass thicknesses, pass numbers, and sequences to improve depeaking in the welding process. The intent is to combine the strongest weld pass side with the peaking induced bending tension to provide a more uniform stress and stronger weld under axial tensile loading.

  16. Investigation of Hot Cracking Behavior in Transverse Mechanically Arc Oscillated Autogenous AA2014 T6 TIG Welds

    NASA Astrophysics Data System (ADS)

    Biradar, N. S.; Raman, R.

    2012-09-01

    Hot cracking studies on autogenous AA2014 T6 TIG welds were carried out. Significant cracking was observed during linear and circular welding test (CWT) on 4-mm-thick plates. Weld metal grain structure and amount of liquid distribution during the terminal stages of solidification were the key cause for hot cracking in aluminum welds. Square-wave AC TIG welding with transverse mechanical arc oscillation (TMAO) was employed to study the cracking behavior during linear and CWT. TMAO welds with amplitude = 0.9 mm and frequency = 0.5 Hz showed significant reduction in cracking tendency. The increase in cracking resistance in the arc-oscillated weld was attributed to grain refinement and improved weld bead morphology, which improved the weld metal ductility and uniformity, respectively, of residual tensile stresses that developed during welding. The obtained results were comparable to those of reported favorable results of electromagnetic arc oscillation.

  17. Performance Improvement of Friction Stir Welds by Better Surface Finish

    NASA Technical Reports Server (NTRS)

    Russell, Sam; Nettles, Mindy

    2015-01-01

    The as-welded friction stir weld has a cross section that may act as a stress concentrator. The geometry associated with the stress concentration may reduce the weld strength and it makes the weld challenging to inspect with ultrasound. In some cases, the geometry leads to false positive nondestructive evaluation (NDE) indications and, in many cases, it requires manual blending to facilitate the inspection. This study will measure the stress concentration effect and develop an improved phased array ultrasound testing (PAUT) technique for friction stir welding. Post-welding, the friction stir weld (FSW) tool would be fitted with an end mill that would machine the weld smooth, trimmed shaved. This would eliminate the need for manual weld preparation for ultrasonic inspections. Manual surface preparation is a hand operation that varies widely depending on the person preparing the welds. Shaving is a process that can be automated and tightly controlled.

  18. Thermo-Mechanical Calculations of Hybrid Rotary Friction Welding at Equal Diameter Copper Bars and Effects of Essential Parameters on Dependent Special Variables

    NASA Astrophysics Data System (ADS)

    Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili

    2007-05-01

    Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.

  19. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.

    PubMed

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.

  20. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing

    PubMed Central

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs. PMID:22399990

  1. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  2. Automatic, nondestructive test monitors in-process weld quality

    NASA Technical Reports Server (NTRS)

    Deal, F. C.

    1968-01-01

    Instrument automatically and nondestructively monitors the quality of welds produced in microresistance welding. It measures the infrared energy generated in the weld as the weld is made and compares this energy with maximum and minimum limits of infrared energy values previously correlated with acceptable weld-strength tolerances.

  3. Dual wire weld feed proportioner

    NASA Technical Reports Server (NTRS)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  4. Optimization of process parameters of pulsed TIG welded maraging steel C300

    NASA Astrophysics Data System (ADS)

    Deepak, P.; Jualeash, M. J.; Jishnu, J.; Srinivasan, P.; Arivarasu, M.; Padmanaban, R.; Thirumalini, S.

    2016-09-01

    Pulsed TIG welding technology provides excellent welding performance on thin sections which helps to increase productivity, enhance weld quality, minimize weld costs, and boost operator efficiency and this has drawn the attention of the welding society. Maraging C300 steel is extensively used in defence and aerospace industry and thus its welding becomes an area of paramount importance. In pulsed TIG welding, weld quality depends on the process parameters used. In this work, Pulsed TIG bead-on-plate welding is performed on a 5mm thick maraging C300 plate at different combinations of input parameters: peak current (Ip), base current (Ib) and pulsing frequency (HZ) as per box behnken design with three-levels for each factor. Response surface methodology is utilized for establishing a mathematical model for predicting the weld bead depth. The effect of Ip, Ib and HZ on the weld bead depth is investigated using the developed model. The weld bead depth is found to be affected by all the three parameters. Surface and contour plots developed from regression equation are used to optimize the processing parameters for maximizing the weld bead depth. Optimum values of Ip, Ib and HZ are obtained as 259 A, 120 A and 8 Hz respectively. Using this optimum condition, maximum bead depth of the weld is predicted to be 4.325 mm.

  5. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    NASA Astrophysics Data System (ADS)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  6. Tensile Properties of Friction Stir Welded Joints of AA 2024-T6 Alloy at Different Welding Speeds

    NASA Astrophysics Data System (ADS)

    Avula, Dhananjayulu; Devuri, Venkateswarlu; Cheepu, Muralimohan; Dwivedi, Dheerendra Kumar

    2018-03-01

    The influence of welding speed on the friction stir welded joint properties of hardness, tensile properties, defects and microstructure characterization are studied in the present study. The friction stir welding was conducted on AA2014-T6 heat treated alloy with 5 mm thickness plate in butt joint configuration. The welding speed was varied from 8 mm/min to 120 mm/min at the fixed travel speed and load conditions. It is observed that the welding speeds at higher rate with wide range can be possible to weld this alloy at higher rates of tool revolution suggesting that the inherent capability of friction stir welding technique for aluminum 2014 alloys. The strength of the joints gradually increases with enhancing of welding speed. The micro structural observations exhibited the formation of equiaxed grains in the stir zone and slightly in the thermo-mechanically affected zone. In addition, the size of the grains decreases with increase in welding speed owing to the presence of low heat input. Hence the hardness of the joints slightly increased in the stir zones over the other zones of the weld nugget. The joint strength initially increases with the welding speed and starts to decreases after reaching to the maximum value. The relationship between the welding conditions and friction stir welded joint properties has been discussed.

  7. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.

    PubMed

    Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang

    2017-11-01

    Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain fragmentation in a pure aluminum TIG weld during an ultrasonic-assisted TIG welding process. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 49 CFR 195.234 - Welds: Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welds: Nondestructive testing. 195.234 Section 195... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.234 Welds: Nondestructive testing. (a) A weld may be... weld. (b) Any nondestructive testing of welds must be performed— (1) In accordance with a written set...

  9. General Mechanical Repair. Welding. Volume 2. Teacher's Guide.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Five units on welding are presented in this teacher's guide. The units are the following: introduction to oxyacetylene welding, oxyacetylene welding positions and applications, use of the cutting torch, introduction to shielded metal arc welding, and welding joints and positions. Each instructional unit generally contains eight components:…

  10. 49 CFR 192.235 - Preparation for welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Preparation for welding. 192.235 Section 192.235... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation for welding. Before beginning any welding, the welding surfaces must be clean and free of any material that...

  11. Method for welding chromium molybdenum steels

    DOEpatents

    Sikka, Vinod K.

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  12. 49 CFR 192.235 - Preparation for welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Preparation for welding. 192.235 Section 192.235... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation for welding. Before beginning any welding, the welding surfaces must be clean and free of any material that...

  13. 49 CFR 192.235 - Preparation for welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Preparation for welding. 192.235 Section 192.235... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation for welding. Before beginning any welding, the welding surfaces must be clean and free of any material that...

  14. 49 CFR 192.235 - Preparation for welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Preparation for welding. 192.235 Section 192.235... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation for welding. Before beginning any welding, the welding surfaces must be clean and free of any material that...

  15. 49 CFR 192.235 - Preparation for welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Preparation for welding. 192.235 Section 192.235... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.235 Preparation for welding. Before beginning any welding, the welding surfaces must be clean and free of any material that...

  16. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

    1987-08-10

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

  17. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  18. Thermal Stir Welding: A New Solid State Welding Process

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffery; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Thermal Stir Shielding is a revolutionary new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating and stirring functions are independent allowing more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  19. A laser-based vision system for weld quality inspection.

    PubMed

    Huang, Wei; Kovacevic, Radovan

    2011-01-01

    Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved.

  20. Method and apparatus for real time weld monitoring

    DOEpatents

    Leong, Keng H.; Hunter, Boyd V.

    1997-01-01

    An improved method and apparatus are provided for real time weld monitoring. An infrared signature emitted by a hot weld surface during welding is detected and this signature is compared with an infrared signature emitted by the weld surface during steady state conditions. The result is correlated with weld penetration. The signal processing is simpler than for either UV or acoustic techniques. Changes in the weld process, such as changes in the transmitted laser beam power, quality or positioning of the laser beam, change the resulting weld surface features and temperature of the weld surface, thereby resulting in a change in the direction and amount of infrared emissions. This change in emissions is monitored by an IR sensitive detecting apparatus that is sensitive to the appropriate wavelength region for the hot weld surface.

  1. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding

    NASA Astrophysics Data System (ADS)

    Luo, Masiyang; Shin, Yung C.

    2015-01-01

    In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.

  2. A Laser-Based Vision System for Weld Quality Inspection

    PubMed Central

    Huang, Wei; Kovacevic, Radovan

    2011-01-01

    Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved. PMID:22344308

  3. Proposed GTA welding specification and acceptance criteria for the MC4163

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowski, J.J.

    1991-04-12

    This specification documents the gas tungsten arc (GTA) welding process and production weld acceptance criteria requirements for the MC4163. This document is written specifically to apply to the welds on the MC4163 and is not to be used as a general gas tungsten arc welding specification. All sections of this specification must be complied with unless specifically exempted in writing. There are a total of five welds with three different joint designs required to fabricate the MC4163. In the order of fabrication they are (1) initiator closure disc, (2) nozzle to case girth welds, two and, (3) nozzle closure discmore » welds, two. This specification will only address the nozzle to case girth welds and the nozzle closure disc welds.« less

  4. Application of TRIZ Methodology in Diffusion Welding System Optimization

    NASA Astrophysics Data System (ADS)

    Ravinder Reddy, N.; Satyanarayana, V. V.; Prashanthi, M.; Suguna, N.

    2017-12-01

    Welding is tremendously used in metal joining processes in the manufacturing process. In recent years, diffusion welding method has significantly increased the quality of a weld. Nevertheless, diffusion welding has some extent short research and application progress. Therefore, diffusion welding has a lack of relevant information, concerned with the joining of thick and thin materials with or without interlayers, on welding design such as fixture, parameters selection and integrated design. This article intends to combine innovative methods in the application of diffusion welding design. This will help to decrease trial and error or failure risks in the welding process being guided by the theory of inventive problem solving (TRIZ) design method. This article hopes to provide welding design personnel with innovative design ideas under research and for practical application.

  5. An evaluation of GTAW-P versus GTA welding of alloy 718

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Kurgan, C.; Malone, T. W.

    1991-01-01

    Mechanical properties were evaluated to determine statistically whether the pulsed current gas tungsten arc welding (GTAW-P) process produces welds in alloy 718 with room temperature structural performance equivalent to current Space Shuttle Main Engine (SSME) welds manufactured by the constant current GTAW-P process. Evaluations were conducted on two base metal lots, two filler metal lots, two heat input levels, and two welding processes. The material form was 0.125-inch (3.175-mm) alloy 718 sheet. Prior to welding, sheets were treated to either the ST or STA-1 condition. After welding, panels were left as welded or heat treated to the STA-1 condition, and weld beads were left intact or machined flush. Statistical analyses were performed on yield strength, ultimate tensile strength (UTS), and high cycle fatigue (HCF) properties for all the post welded material conditions. Analyses of variance were performed on the data to determine if there were any significant effects on UTS or HCF life due to variations in base metal, filler metal, heat input level, or welding process. Statistical analyses showed that the GTAW-P process does produce welds with room temperature structural performance equivalent to current SSME welds manufactured by the GTAW process, regardless of prior material condition or post welding condition.

  6. Complete Report on the Development of Welding Parameters for Irradiated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Greg; Sutton, Benjamin J.; Tatman, Jonathan K.

    The advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory, which was conceived to enable research and development of weld repair techniques for nuclear power plant life extension, is now operational. The development of the facility and its advanced welding capabilities, along with the model materials for initial welding trials, were funded jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program, the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, with additional support from Oak Ridge National Laboratory. Welding of irradiatedmore » materials was initiated on November 17, 2017, which marked a significant step in the development of the facility and the beginning of extensive welding research and development campaigns on irradiated materials that will eventually produce validated techniques and guidelines for weld repair activities carried out to extend the operational lifetimes of nuclear power plants beyond 60 years. This report summarizes the final steps that were required to complete weld process development, initial irradiated materials welding activities, near-term plans for irradiated materials welding, and plans for post-weld analyses that will be carried out to assess the ability of the advanced welding processes to make repairs on irradiated materials.« less

  7. Parametric studies on tensile strength in joining AA6061- T6 and AA7075-T6 by gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Ishak, M.; Noordin, N. F. M.; Shah, L. H.

    2015-12-01

    Proper selection of the welding parameters can result in better joining. In this study, the effects of various welding parameters on tensile strength in joining dissimilar aluminum alloys AA6061-T6 and AA7075-T6 were investigated. 2 mm thick samples of both base metals were welded by semi-automatic gas metal arc welding (GMAW) using filler wire ER5356. The welding current, arc voltage and welding speed were chosen as variables parameters. The strength of each specimen after the welding operations were tested and the effects of these parameters on tensile strength were identified by using Taguchi method. The range of parameter for welding current were chosen from 100 to 115 A, arc voltage from 17 to 20 V and welding speed from 2 to 5 mm/s. L16 orthogonal array was used to obtained 16 runs of experiments. It was found that the highest tensile strength (194.34 MPa) was obtained with the combination of a welding current of 115 A, welding voltage of 18 V and welding speed of 4 mm/s. Through analysis of variance (ANOVA), the welding voltage was the most effected parameter on tensile strength with percentage of contribution at 41.30%.

  8. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  9. Effects of Post-Weld Heat Treatment on the Mechanical Properties of Similar- and Dissimilar-Alloy Friction Stir Welded Blanks

    NASA Astrophysics Data System (ADS)

    Zadpoor, Amir Abbas; Sinke, Jos

    2011-01-01

    Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.

  10. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    PubMed

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (p<0.001) among the non-welded materials, the Co-Cr alloy being the most resistant to deflection. Comparing the welding processes, significant differences (p<0.001) where found between TIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys.

  11. Optimization of the A-TIG welding for stainless steels

    NASA Astrophysics Data System (ADS)

    Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.

    2018-03-01

    The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.

  12. Analysis of droplet transfer mode and forming process of weld bead in CO 2 laser-MAG hybrid welding process

    NASA Astrophysics Data System (ADS)

    Liu, Shuangyu; Liu, Fengde; Zhang, Hong; Shi, Yan

    2012-06-01

    In this paper, CO 2 laser-metal active gas (MAG) hybrid welding technique is used to weld high strength steel and the optimized process parameters are obtained. Using LD Pumped laser with an emission wavelength of 532 nm to overcome the strong interference from the welding arc, a computer-based system is developed to collect and visualize the waveforms of the electrical welding parameters and metal transfer processes in laser-MAG. The welding electric signals of hybrid welding processes are quantitatively described and analyzed using the ANALYSATOR HANNOVER. The effect of distance between laser and arc ( DLA) on weld bead geometry, forming process of weld shape, electric signals, arc characteristic and droplet transfer behavior is investigated. It is found that arc characteristic, droplet transfer mode and final weld bead geometry are strongly affected by the distance between laser and arc. The weld bead geometry is changed from "cocktail cup" to "cone-shaped" with the increasing DLA. The droplet transfer mode is changed from globular transfer to projected transfer with the increasing DLA. Projected transfer mode is an advantage for the stability of hybrid welding processes.

  13. High-Speed Friction-Stir Welding To Enable Aluminum Tailor-Welded Blanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John

    Current joining technologies for automotive aluminum alloys are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding has been traditionally applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translatemore » to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum welded components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability utilizing a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.« less

  14. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    NASA Astrophysics Data System (ADS)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  15. SLI Complex Curvature Friction Stir Weld Risk Reduction Program

    NASA Technical Reports Server (NTRS)

    Hartley, Paula J.; Schneider, Jules; Jones, Chip; Lawless, Kirby; Russell, Carolyn

    2003-01-01

    The Space Launch Initiative Program (SLI) in conjunction with the National Center for Advanced Manufacturing (NCAM) will demonstrate the ability to produce large-scale complex curvature hardware using the self-reacting friction stir welding process. This multi-phased risk reduction program includes friction stir welding process development and manufacture of a 22-ft diameter quarter dome using a conventional tooling approach; it culminates in a 27.5-ft diameter quarter dome demonstration performed on a 5-axis Universal Weld System. The design, fabrication, and installation of the Universal Weld System is made possible through a collaboration between the State of Louisiana, NASA, and the University of New Orleans. The Universal Weld System, manufactured by MTS Systems Corporation, will be installed at the Michoud Assembly Facility in New Orleans, Louisiana, and will be capable of manufacturing domes up to 30 ft in diameter. All welding will be accomplished using the Adaptable Adjustable Pin Tool (AdAPT) weld head and controller manufactured by MTS. Weld parameters will be developed for an aluminum alloy in gauges ranging from 0.320 to 0.400 in. thick. Weld quality will be verified through radiography, mechanical property testing at ambient and LN2 temperatures, and metallurgical analysis. The AdAPT weld head will then be mounted on a 22-ft diameter dome tool, which will be modified to include a welding track and drive system for moving the AdAPT weld head along the weld joint. This tool will then be used to manufacture a 22-ft diameter dome of an aluminum alloy, with 0.320-in. constant thickness joints, consisting of three individual gore panels. Finally, the 27.5-ft diameter quarter dome will be welded on the Universal Weld System. The quarter dome will consist of three individual gore panels with weld lands tapering from 0.320 to 0.360 in. in thickness. With the demonstration of these welds, the ability to manufacture large diameter domes using the friction stir weld process in conjunction with a universal weld system provides a low risk approach to the fabrication of aluminum tanks for future launch vehicle applications.

  16. Effect of Mg and Cu on mechanical properties of high-strength welded joints of aluminum alloys obtained by laser welding

    NASA Astrophysics Data System (ADS)

    Annin, B. D.; Fomin, V. M.; Karpov, E. V.; Malikov, A. G.; Orishich, A. M.

    2017-09-01

    Results of experimental investigations of welded joints of high-strength aluminum-lithium alloys of the Al-Cu-Li and Al-Mg-Li systems are reported. The welded joints are obtained by means of laser welding and are subjected to various types of processing for obtaining high-strength welded joints. A microstructural analysis is performed. The phase composition and mechanical properties of the welded joints before and after heat treatment are studied. It is found that combined heat treatment of the welded joint (annealing, quenching, and artificial ageing) increases the joint strength, but appreciably decreases the alloy strength outside the region thermally affected by the welding process.

  17. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    NASA Astrophysics Data System (ADS)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  18. A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fei; Wang, Chunming, E-mail: yanxiangfei225@163.com; Wang, Yajun

    2013-04-15

    In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residualmore » hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. Laves–Ni{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ► It is a new process for the forming of GH909 alloy via laser welding. ► The forming mechanism of laser welding defects in GH909 has been studied. ► It may be a means to improve the efficiency of aircraft engine production.« less

  19. Characterization of nitrogen effects in high energy density weldments of Nitronic 40 stainless steel

    NASA Astrophysics Data System (ADS)

    Pfeif, Erik Andrew

    Variation in the welding environment for laser beam welding and electron beam welding can alter the resulting weld chemical composition, microstructure and therefore the mechanical properties. The room temperature mechanical properties of Nitronic 40 stainless steel weld metal from three different heats containing 0.24, 0.28, and 0.31 wt. pct. nitrogen were evaluated for continuous mode Ytterbium doped Fiber laser welds conducted with argon and nitrogen shielding gases, and for electron beam welds. The bulk nitrogen contents were monitored and the resulting properties were then related to microstructural features measured using Electron BackScatter Diffraction (EBSD). Traditional tensile testing of weld metal is conducted on composite tensile bars consisting of base metal and weld metal often leading to failure in the region adjacent to the weld due to strength mismatch at the weld interface. These tests provide composite strength but do not specifically determine the mechanical properties of the heterogeneous weld metal. In this research, microtensile testing was conducted to characterize the properties of the different regions of the weld. The microtensile testing procedures were developed using two geometries of tensile bars measuring the properties through the thickness of 3 mm full penetration welds. In all cases an increase in the strength of the weld metal was found to occur, though the electron beam welds exhibited a higher strength than the laser welds. Standard predictive equations were found to under-predict the strength of the laser welds, even when average grain size or intercept distances were measured. The contribution of nitrogen solid solution strengthening was consistent at approximately 513 MPa per wt. pct. nitrogen. Similar cooling rates and heat inputs allow for a comparison across high energy density welding techniques. Though microstructural differences through the depth of the weld metal were observed as nitrogen vaporization decreased and cooling rates increased. Vermicular ferrite, lacy ferrite and intercellular ferrite were identified as predicted in prior research done on high nitrogen austenitic stainless steels. The resulting laser weld metal microstructures were analyzed with EBSD for grain size and ferrite content measurements, while grain boundary character was determined for a Hansen model used for multi-scale mechanical property measurements. It was found that the low angle grain boundaries were the predominant microstructural feature responsible for strengthening within the weld metal and that this contribution must be accounted for when predicting yield strength of the weld metal.

  20. Contrasting styles of welding observed in the proximal Askja 1875 eruption deposits II: Local welding

    NASA Astrophysics Data System (ADS)

    Carey, R. J.; Houghton, B. F.; Thordarson, T.

    2008-03-01

    As an alternative to classical welding models of fall deposits due to the progressive accumulation of hot tephra which then weld, we describe here welded deposits on the northern 1875 caldera rim of Askja volcano that have welded due to the influence of hot, discrete spatter bombs impacting into and supplying heat to a halo of surrounding tephra. This style of welding we term 'local welding' in contrast to 'regional welding' which is described elsewhere [Carey, R.J., Houghton, B.F., Thordarson, T., 2008. Contrasting styles of welding observed in the proximal Askja 1875 eruption deposits I: Regional welding. J. Volcanol. Geotherm. Res. 171, 1-19. doi:10.1016/j.jvolgeores.2007.11.020]. Locally welded deposits are associated with the rhyolitic Plinian phase of the 1875 eruption of Askja volcano. Two distinct welding units (W1 and W2) are interbedded with Plinian fall on the northern caldera rim, and grade outwards to weakly dispersed non-welded fall. Spatter bombs are found in both welding units but vary in their characteristic sizes and internal features. In the W1 unit simple bombs with homogeneous internal characteristics up to ˜ 60 cm in diameter are found. In the W2 unit, large discrete spatter bombs with complex internal features range up to 9 m in diameter. We describe here two case studies showing the effects of a) single small spatter bombs; b) multiple small spatter bombs and c) large discrete spatter bombs varying in size. Vertical and lateral profiles through welding zones reveal that the primary controls on local welding are the availability of supplied or added heat and the loading capacity of the spatter bomb. Local welding grades are much higher than that of regional welding, as the combined effects of heat, compaction and insulation can provide suitable conditions which lead to dense welding and, proximal to the spatter bomb, rheomorphic flowage. If heating and loading exceed the critical requirement for welding, porosity loss via matrix welding and vesicle collapse occurs to a point where further strain must be accommodated as shearing and ductile flowage. The spatter bombs are found only within the weakly dispersed welding units and are the final erupted products of each fountaining phase. Their low viscosities are evident by their deformation on impact and fluidal forms, and hold some important clues to eruption dynamics in the shallow conduit and vent regions.

  1. Friction Stir Process Mapping Methodology

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Kooney, Alex; Russell, Carolyn

    2003-01-01

    The weld process performance for a given weld joint configuration and tool setup is summarized on a 2-D plot of RPM vs. IPM. A process envelope is drawn within the map to identify the range of acceptable welds. The sweet spot is selected as the nominal weld schedule The nominal weld schedule is characterized in the expected manufacturing environment. The nominal weld schedule in conjunction with process control ensures a consistent and predictable weld performance.

  2. Electroslag and electrogas welding

    NASA Technical Reports Server (NTRS)

    Campbell, H. C.

    1972-01-01

    These two new joining methods perform welding in the vertical position, and therein lies the secret of their impressive advantages in material handling, in weld preparation, in welding speed, in freedom from distortion, and in weld soundness. Once the work has been set in the proper vertical position for welding, no further plate handling is required. The molten filler metal is held in place by copper shoes or dams, and the weld is completed in one pass.

  3. Structure of welded joints obtained by contact weld in nanostructured titanium

    NASA Astrophysics Data System (ADS)

    Klimenov, V. A.; Klopotov, A. A.; Gnysov, S. F.; Vlasov, V. A.; Lychagin, D. V.; Chumaevskii, A. V.

    2015-10-01

    The paper presents the research of the weld structure of two Ti specimens of the type VT6 that have nano- and submicrocrystalline structures. Electrical contact welding is used to obtain welds. The acicular structure is formed in the weld area. Two types of defects are detected, namely micropores and microcracks.

  4. Weldability of an iron meteorite by Friction Stir Spot Welding: A contribution to in-space manufacturing

    NASA Astrophysics Data System (ADS)

    Evans, William Todd; Neely, Kelsay E.; Strauss, Alvin M.; Cook, George E.

    2017-11-01

    Friction Stir Welding has been proposed as an efficient and appropriate method for in space welding. It has the potential to serve as a viable option for assembling large scale space structures. These large structures will require the use of natural in space materials such as those available from iron meteorites. Impurities present in most iron meteorites limit its ability to be welded by other space welding techniques such as electron beam laser welding. This study investigates the ability to weld pieces of in situ Campo del Cielo meteorites by Friction Stir Spot Welding. Due to the rarity of the material, low carbon steel was used as a model material to determine welding parameters. Welded samples of low carbon steel, invar, and Campo del Cielo meteorite were compared and found to behave in similar ways. This study shows that meteorites can be Friction Stir Spot Welded and that they exhibit properties analogous to that of FSSW low carbon steel welds. Thus, iron meteorites can be regarded as another viable option for in-space or Martian construction.

  5. Mechanical Properties and Wear Behavior of AA5182/WC Nanocomposite Fabricated by Friction Stir Welding at Different Tool Traverse Speeds

    NASA Astrophysics Data System (ADS)

    Paidar, Moslem; Asgari, Ali; Ojo, Olatunji Oladimeji; Saberi, Abbas

    2018-03-01

    Grain growth inhibition at the heat-affected zone, improved weld strength and superior tribological properties of welds are desirable attributes of modern manufacturing. With the focused on these attributes, tungsten carbide (WC) nanoparticles were employed as reinforcements for the friction stir welding of 5-mm-thick AA5182 aluminum alloy by varying tool traverse speeds. The microstructure, microhardness, ultimate tensile strength, fracture and wear behavior of the resultant WC-reinforced welds were investigated, while unreinforced AA5182 welds were employed as controls for the study. The result shows that the addition of WC nanoparticles causes substantial grain refinement within the weld nugget. A decrease in traverse speed caused additional particle fragmentation, improved hardness value and enhanced weld strength in the reinforced welds. Improved wear rate and friction coefficient of welds were attained at a reduced traverse speed of 100 mm/min in the WC-reinforced welds. This improvement is attributed to the effects of reduced grain size/grain fragmentation and homogeneous dispersion of WC nanoparticles within the WC-reinforced weld nugget.

  6. Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies

    NASA Astrophysics Data System (ADS)

    Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry

    2016-08-01

    Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.

  7. Visualization of hump formation in high-speed gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Zhong, L. M.; Gao, J. Q.

    2009-11-01

    The hump bead is a typical weld defect observed in high-speed welding. Its occurrence limits the improvement of welding productivity. Visualization of hump formation during high-speed gas metal arc welding (GMAW) is helpful in the better understanding of the humping phenomena so that effective measures can be taken to suppress or decrease the tendency of hump formation and achieve higher productivity welding. In this study, an experimental system was developed to implement vision-based observation of the weld pool behavior during high-speed GMAW. Considering the weld pool characteristics in high-speed welding, a narrow band-pass and neutral density filter was equipped for the CCD camera, the suitable exposure time was selected and side view orientation of the CCD camera was employed. The events that took place at the rear portion of the weld pools were imaged during the welding processes with and without hump bead formation, respectively. It was found that the variation of the weld pool surface height and the solid-liquid interface at the pool trailing with time shows some useful information to judge whether the humping phenomenon occurs or not.

  8. The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.

    2010-01-01

    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.

  9. The effects of aluminum oxide on inertial welding of aluminum in space applications

    NASA Astrophysics Data System (ADS)

    Smith, Michael H.

    1992-05-01

    Inertial friction welding of 2219 aluminum alloy studs to 2219 aluminum alloy plates is investigated in air and in an argon atmosphere to determine the effects of an intact oxide layer on weld quality. Scratch-brushing of plates and studs was performed in an argon atmosphere to break up the oxide layer and prevent reformation prior to testing. Argon was used to simulate the near-oxygen free space environment. Weld quality was determined by a bend test and by measurement of the fraction of the weld surface area that was dimpled in appearance following fracture of the weld. The fundamental theories of friction and wear that are applicable to friction welding are reviewed. A brief survey of current welding methods that may have application in space is presented, as well as a discussion of their feasibility and limitations. Characteristics of the space station are discussed as well as their consequences on welding in space. A qualitative model of the process of inertial friction welding based on the theories of friction and observations of welds and weld fractures is developed and presented.

  10. Evaluation of Weldability for MAG and LASER with Galvannealed Steel.

    PubMed

    Kim, Jong-Hee; Bang, Han-Sur; Bang, Hee-Seon

    2018-03-01

    Lower-arm, one of the components in automotive suspension module, has been fabricated by MAG welding in general which is lap jointed with 2 mm thick galvannealed steel sheet (SGAPH440). This welding process produces some problems such as significantly much spatters and weld defects of porosity in welded joint, which degrades productivity and weldability. Therefore, in order to solve these problems, this study has been tried to apply two types of solid wires with different chemical composition rate of Si and Mn, in MAG welding process. Moreover, the laser welding process has been adopted to fabricate the low-arm and compared with those of MAG welding, in terms of mechanical and metallurgical characteristics. It was observed that in MAG welded joints, much more spatters were occurred in using solid wire with higher Si and Mn contains. The maximum tensile-shear strength in laser welded joints was approximately 16.7 kN, which was almost equal to that of in MAG welded joints. The microstructure showed ferrite and martensite in weld metal in MAG and laser welded joints indicating no significantly grain size change.

  11. Automated Variable-Polarity Plasma-Arc Welding

    NASA Technical Reports Server (NTRS)

    Numes, A. C., Jr.; Bayless, E. O., Jr.; Jones, S. C., III; Munafo, P.; Munafo, A.; Biddle, A.; Wilson, W.

    1984-01-01

    Variable-polarity plasma-arc methods produces better welds at lower cost than gas-shielded tungsten-arc welding in assemblies. Weld porosity very low and costs of joint preparation, depeaking, inspection, and weld repair minimized.

  12. Method for defect free keyhole plasma arc welding

    NASA Technical Reports Server (NTRS)

    Harwig, Dennis D. (Inventor); Hunt, James F. (Inventor); Ryan, Patrick M. (Inventor); Fisher, Walter J. (Inventor)

    1993-01-01

    A plasma arc welding process for welding metal of increased thickness with one pass includes operating the plasma arc welding apparatus at a selected plasma gas flow rate, travel speed and arc current, to form a weld having a penetration ratio to weld height to weld width, and maintaining the penetration ratio at less than 0.74. Parameters for the plasma gas flow rate, travel speed and arc current are adjusted to a steady state condition during a start up period and maintained during the steady state condition to complete a weld. During a terminal stopping period, the travel speed is stopped and instantaneously replaced by filler wire which adds material to fill the keyhole that had been formed by the welding process. Parameters are subsequently adjusted during the stopping period to terminate the weld in a sound manner.

  13. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    NASA Astrophysics Data System (ADS)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  14. Effect of Trailing Intensive Cooling on Residual Stress and Welding Distortion of Friction Stir Welded 2060 Al-Li Alloy

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Yang, Zhanpeng; Wen, Quan; Yue, Yumei; Zhang, Liguo

    2018-04-01

    Trailing intensive cooling with liquid nitrogen has successfully applied to friction stir welding of 2 mm thick 2060 Al-Li alloy. Welding temperature, plastic strain, residual stress and distortion of 2060 Al-Li alloy butt-joint are compared and discussed between conventional cooling and trailing intensive cooling using experimental and numerical simulation methods. The results reveal that trailing intensive cooling is beneficial to shrink high temperature area, reduce peak temperature and decrease plastic strain during friction stir welding process. In addition, the reduction degree of plastic strain outside weld is smaller than that inside weld. Welding distortion presents an anti-saddle shape. Compared with conventional cooling, the reductions of welding distortion and longitudinal residual stresses of welding joint under intense cooling reach 47.7 % and 23.8 %, respectively.

  15. Residual Stresses and Critical Initial Flaw Size Analyses of Welds

    NASA Technical Reports Server (NTRS)

    Brust, Frederick W.; Raju, Ivatury, S.; Dawocke, David S.; Cheston, Derrick

    2009-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). A series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on the fatigue life. The purpose of the weld analyses was to model the weld process using a variety of sequences to determine the 'best' sequence in terms of weld residual stresses and distortions. The many factors examined in this study include weld design (single-V, double-V groove), weld sequence, boundary conditions, and material properties, among others. The results of this weld analysis are included with service loads to perform a fatigue and critical initial flaw size evaluation.

  16. Design of cylindrical pipe automatic welding control system based on STM32

    NASA Astrophysics Data System (ADS)

    Chen, Shuaishuai; Shen, Weicong

    2018-04-01

    The development of modern economy makes the demand for pipeline construction and construction rapidly increasing, and the pipeline welding has become an important link in pipeline construction. At present, there are still a large number of using of manual welding methods at home and abroad, and field pipe welding especially lacks miniature and portable automatic welding equipment. An automated welding system consists of a control system, which consisting of a lower computer control panel and a host computer operating interface, as well as automatic welding machine mechanisms and welding power systems in coordination with the control system. In this paper, a new control system of automatic pipe welding based on the control panel of the lower computer and the interface of the host computer is proposed, which has many advantages over the traditional automatic welding machine.

  17. Studies on Fusion Welding of High Nitrogen Stainless Steel: Microstructure, Mechanical and corrosion Behaviour

    NASA Astrophysics Data System (ADS)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    An attempt has been made in the present investigation to weld high nitrogen steel of 5mm thick plates using various process i.e., shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and autogenous electron beam welding (EBW) process. Present work is aimed at studying the microstructural changes and its effects on mechanical properties and corrosion resistance. Microstructure is characterized by optical, scanning electron microscopy and electron back scattered diffraction technique. Vickers hardness, tensile properties, impact toughness and face bend ductility testing of the welds was carried out. Pitting corrosion resistance of welds was determined using potentio-dynamic polarization testing in 3.5%NaCl solution. Results of the present investigation established that SMA welds made using Cr-Mn-N electrode were observed to have a austenite dendritic grain structure in the weld metal and is having poor mechanical properties but good corrosion resistance. GTA welds made using 18Ni (MDN 250) filler wire were observed to have a reverted austenite in martensite matrix of the weld metal and formation of unmixed zone at the fusion boundary which resulted in better mechanical properties and poor corrosion resistance. Fine grains and uniform distribution of delta ferrite in the austenite matrix and narrow width of weld zone are observed in autogeneous electron beam welds. A good combination of mechanical properties and corrosion resistance was achieved for electron beam welds of high nitrogen steel when compared to SMA and GTA welds.

  18. Studies on microstructure, mechanical and pitting corrosion behaviour of similar and dissimilar stainless steel gas tungsten arc welds

    NASA Astrophysics Data System (ADS)

    Mohammed, Raffi; Dilkush; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    In the present study, an attempt has been made to weld dissimilar alloys of 5mm thick plates i.e., austenitic stainless steel (316L) and duplex stainless steel (2205) and compared with that of similar welds. Welds are made with conventional gas tungsten arc welding (GTAW) process with two different filler wires namely i.e., 309L and 2209. Welds were characterized using optical microscopy to observe the microstructural changes and correlate with mechanical properties using hardness, tensile and impact testing. Potentio-dynamic polarization studies were carried out to observe the pitting corrosion behaviour in different regions of the welds. Results of the present study established that change in filler wire composition resulted in microstructural variation in all the welds with different morphology of ferrite and austenite. Welds made with 2209 filler showed plate like widmanstatten austenite (WA) nucleated at grain boundaries. Compared to similar stainless steel welds inferior mechanical properties was observed in dissimilar stainless steel welds. Pitting corrosion resistance is observed to be low for dissimilar stainless steel welds when compared to similar stainless steel welds. Overall study showed that similar duplex stainless steel welds having favorable microstructure and resulted in better mechanical properties and corrosion resistance. Relatively dissimilar stainless steel welds made with 309L filler obtained optimum combination of mechanical properties and pitting corrosion resistance when compared to 2209 filler and is recommended for industrial practice.

  19. Optimization of Laser Keyhole Welding Strategies of Dissimilar Metals by FEM Simulation

    NASA Astrophysics Data System (ADS)

    Garcia Navas, Virginia; Leunda, Josu; Lambarri, Jon; Sanz, Carmen

    2015-07-01

    Laser keyhole welding of dissimilar metals has been simulated to study the effect of welding strategies (laser beam displacements and tilts) and combination of metals to be welded on final quality of the joints. Molten pool geometry and welding penetration have been studied but special attention has been paid to final joint material properties, such as microstructure/phases and hardness, and especially to the residual stress state because it greatly conditions the service life of laser-welded components. For a fixed strategy (laser beam perpendicular to the joint) austenitic to carbon steel laser welding leads to residual stresses at the joint area very similar to those obtained in austenitic to martensitic steel welding, but welding of steel to Inconel 718 results in steeper residual stress gradients and higher area at the joint with detrimental tensile stresses. Therefore, when the difference in thermo-mechanical properties of the metals to be welded is higher, the stress state generated is more detrimental for the service life of the component, and consequently more relevant is the optimization of welding strategy. In laser keyhole welding of austenitic to martensitic stainless steel and austenitic to carbon steel, the optimum welding strategy is displacing the laser beam 1 mm toward the austenitic steel. In the case of austenitic steel to Inconel welding, the optimum welding strategy consists in setting the heat source tilted 45 deg and moved 2 mm toward the austenitic steel.

  20. Gas Shielding Technology for Welding and Brazing

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur J.; Gradl, Paul R.

    2012-01-01

    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

Top