Sample records for parallel image processing

  1. Parallel processing considerations for image recognition tasks

    NASA Astrophysics Data System (ADS)

    Simske, Steven J.

    2011-01-01

    Many image recognition tasks are well-suited to parallel processing. The most obvious example is that many imaging tasks require the analysis of multiple images. From this standpoint, then, parallel processing need be no more complicated than assigning individual images to individual processors. However, there are three less trivial categories of parallel processing that will be considered in this paper: parallel processing (1) by task; (2) by image region; and (3) by meta-algorithm. Parallel processing by task allows the assignment of multiple workflows-as diverse as optical character recognition [OCR], document classification and barcode reading-to parallel pipelines. This can substantially decrease time to completion for the document tasks. For this approach, each parallel pipeline is generally performing a different task. Parallel processing by image region allows a larger imaging task to be sub-divided into a set of parallel pipelines, each performing the same task but on a different data set. This type of image analysis is readily addressed by a map-reduce approach. Examples include document skew detection and multiple face detection and tracking. Finally, parallel processing by meta-algorithm allows different algorithms to be deployed on the same image simultaneously. This approach may result in improved accuracy.

  2. The Goddard Space Flight Center Program to develop parallel image processing systems

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.

    1972-01-01

    Parallel image processing which is defined as image processing where all points of an image are operated upon simultaneously is discussed. Coherent optical, noncoherent optical, and electronic methods are considered parallel image processing techniques.

  3. Thread concept for automatic task parallelization in image analysis

    NASA Astrophysics Data System (ADS)

    Lueckenhaus, Maximilian; Eckstein, Wolfgang

    1998-09-01

    Parallel processing of image analysis tasks is an essential method to speed up image processing and helps to exploit the full capacity of distributed systems. However, writing parallel code is a difficult and time-consuming process and often leads to an architecture-dependent program that has to be re-implemented when changing the hardware. Therefore it is highly desirable to do the parallelization automatically. For this we have developed a special kind of thread concept for image analysis tasks. Threads derivated from one subtask may share objects and run in the same context but may process different threads of execution and work on different data in parallel. In this paper we describe the basics of our thread concept and show how it can be used as basis of an automatic task parallelization to speed up image processing. We further illustrate the design and implementation of an agent-based system that uses image analysis threads for generating and processing parallel programs by taking into account the available hardware. The tests made with our system prototype show that the thread concept combined with the agent paradigm is suitable to speed up image processing by an automatic parallelization of image analysis tasks.

  4. Image Processing Using a Parallel Architecture.

    DTIC Science & Technology

    1987-12-01

    ENG/87D-25 Abstract This study developed a set o± low level image processing tools on a parallel computer that allows concurrent processing of images...environment, the set of tools offers a significant reduction in the time required to perform some commonly used image processing operations. vI IMAGE...step toward developing these systems, a structured set of image processing tools was implemented using a parallel computer. More important than

  5. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  6. Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy

    PubMed Central

    Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.

    2014-01-01

    Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868

  7. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.

    PubMed

    Tankam, Patrice; Santhanam, Anand P; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P

    2014-07-01

    Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.

  8. Synthesizing parallel imaging applications using the CAP (computer-aided parallelization) tool

    NASA Astrophysics Data System (ADS)

    Gennart, Benoit A.; Mazzariol, Marc; Messerli, Vincent; Hersch, Roger D.

    1997-12-01

    Imaging applications such as filtering, image transforms and compression/decompression require vast amounts of computing power when applied to large data sets. These applications would potentially benefit from the use of parallel processing. However, dedicated parallel computers are expensive and their processing power per node lags behind that of the most recent commodity components. Furthermore, developing parallel applications remains a difficult task: writing and debugging the application is difficult (deadlocks), programs may not be portable from one parallel architecture to the other, and performance often comes short of expectations. In order to facilitate the development of parallel applications, we propose the CAP computer-aided parallelization tool which enables application programmers to specify at a high-level of abstraction the flow of data between pipelined-parallel operations. In addition, the CAP tool supports the programmer in developing parallel imaging and storage operations. CAP enables combining efficiently parallel storage access routines and image processing sequential operations. This paper shows how processing and I/O intensive imaging applications must be implemented to take advantage of parallelism and pipelining between data access and processing. This paper's contribution is (1) to show how such implementations can be compactly specified in CAP, and (2) to demonstrate that CAP specified applications achieve the performance of custom parallel code. The paper analyzes theoretically the performance of CAP specified applications and demonstrates the accuracy of the theoretical analysis through experimental measurements.

  9. Studies in optical parallel processing. [All optical and electro-optic approaches

    NASA Technical Reports Server (NTRS)

    Lee, S. H.

    1978-01-01

    Threshold and A/D devices for converting a gray scale image into a binary one were investigated for all-optical and opto-electronic approaches to parallel processing. Integrated optical logic circuits (IOC) and optical parallel logic devices (OPA) were studied as an approach to processing optical binary signals. In the IOC logic scheme, a single row of an optical image is coupled into the IOC substrate at a time through an array of optical fibers. Parallel processing is carried out out, on each image element of these rows, in the IOC substrate and the resulting output exits via a second array of optical fibers. The OPAL system for parallel processing which uses a Fabry-Perot interferometer for image thresholding and analog-to-digital conversion, achieves a higher degree of parallel processing than is possible with IOC.

  10. Real-time implementations of image segmentation algorithms on shared memory multicore architecture: a survey (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akil, Mohamed

    2017-05-01

    The real-time processing is getting more and more important in many image processing applications. Image segmentation is one of the most fundamental tasks image analysis. As a consequence, many different approaches for image segmentation have been proposed. The watershed transform is a well-known image segmentation tool. The watershed transform is a very data intensive task. To achieve acceleration and obtain real-time processing of watershed algorithms, parallel architectures and programming models for multicore computing have been developed. This paper focuses on the survey of the approaches for parallel implementation of sequential watershed algorithms on multicore general purpose CPUs: homogeneous multicore processor with shared memory. To achieve an efficient parallel implementation, it's necessary to explore different strategies (parallelization/distribution/distributed scheduling) combined with different acceleration and optimization techniques to enhance parallelism. In this paper, we give a comparison of various parallelization of sequential watershed algorithms on shared memory multicore architecture. We analyze the performance measurements of each parallel implementation and the impact of the different sources of overhead on the performance of the parallel implementations. In this comparison study, we also discuss the advantages and disadvantages of the parallel programming models. Thus, we compare the OpenMP (an application programming interface for multi-Processing) with Ptheads (POSIX Threads) to illustrate the impact of each parallel programming model on the performance of the parallel implementations.

  11. Parallel Algorithms for Image Analysis.

    DTIC Science & Technology

    1982-06-01

    8217 _ _ _ _ _ _ _ 4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED PARALLEL ALGORITHMS FOR IMAGE ANALYSIS TECHNICAL 6. PERFORMING O4G. REPORT NUMBER TR-1180...Continue on reverse side it neceesary aid Identlfy by block number) Image processing; image analysis ; parallel processing; cellular computers. 20... IMAGE ANALYSIS TECHNICAL 6. PERFORMING ONG. REPORT NUMBER TR-1180 - 7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s) Azriel Rosenfeld AFOSR-77-3271 9

  12. Massively parallel information processing systems for space applications

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.

    1979-01-01

    NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.

  13. Design of a dataway processor for a parallel image signal processing system

    NASA Astrophysics Data System (ADS)

    Nomura, Mitsuru; Fujii, Tetsuro; Ono, Sadayasu

    1995-04-01

    Recently, demands for high-speed signal processing have been increasing especially in the field of image data compression, computer graphics, and medical imaging. To achieve sufficient power for real-time image processing, we have been developing parallel signal-processing systems. This paper describes a communication processor called 'dataway processor' designed for a new scalable parallel signal-processing system. The processor has six high-speed communication links (Dataways), a data-packet routing controller, a RISC CORE, and a DMA controller. Each communication link operates at 8-bit parallel in a full duplex mode at 50 MHz. Moreover, data routing, DMA, and CORE operations are processed in parallel. Therefore, sufficient throughput is available for high-speed digital video signals. The processor is designed in a top- down fashion using a CAD system called 'PARTHENON.' The hardware is fabricated using 0.5-micrometers CMOS technology, and its hardware is about 200 K gates.

  14. Parallel-hierarchical processing and classification of laser beam profile images based on the GPU-oriented architecture

    NASA Astrophysics Data System (ADS)

    Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan

    2017-08-01

    The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.

  15. Parallel workflow tools to facilitate human brain MRI post-processing

    PubMed Central

    Cui, Zaixu; Zhao, Chenxi; Gong, Gaolang

    2015-01-01

    Multi-modal magnetic resonance imaging (MRI) techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues. PMID:26029043

  16. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    NASA Astrophysics Data System (ADS)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  17. Efficient Parallel Levenberg-Marquardt Model Fitting towards Real-Time Automated Parametric Imaging Microscopy

    PubMed Central

    Zhu, Xiang; Zhang, Dianwen

    2013-01-01

    We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785

  18. Graphics Processing Unit (GPU) implementation of image processing algorithms to improve system performance of the Control, Acquisition, Processing, and Image Display System (CAPIDS) of the Micro-Angiographic Fluoroscope (MAF).

    PubMed

    Vasan, S N Swetadri; Ionita, Ciprian N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-02-23

    We present the image processing upgrades implemented on a Graphics Processing Unit (GPU) in the Control, Acquisition, Processing, and Image Display System (CAPIDS) for the custom Micro-Angiographic Fluoroscope (MAF) detector. Most of the image processing currently implemented in the CAPIDS system is pixel independent; that is, the operation on each pixel is the same and the operation on one does not depend upon the result from the operation on the other, allowing the entire image to be processed in parallel. GPU hardware was developed for this kind of massive parallel processing implementation. Thus for an algorithm which has a high amount of parallelism, a GPU implementation is much faster than a CPU implementation. The image processing algorithm upgrades implemented on the CAPIDS system include flat field correction, temporal filtering, image subtraction, roadmap mask generation and display window and leveling. A comparison between the previous and the upgraded version of CAPIDS has been presented, to demonstrate how the improvement is achieved. By performing the image processing on a GPU, significant improvements (with respect to timing or frame rate) have been achieved, including stable operation of the system at 30 fps during a fluoroscopy run, a DSA run, a roadmap procedure and automatic image windowing and leveling during each frame.

  19. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor)

    2013-01-01

    Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.

  20. A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms

    PubMed Central

    Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein

    2017-01-01

    Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts’ Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2–100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms. PMID:28487831

  1. A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms.

    PubMed

    Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein

    2017-01-01

    Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts' Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2-100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms.

  2. Parallel and serial grouping of image elements in visual perception.

    PubMed

    Houtkamp, Roos; Roelfsema, Pieter R

    2010-12-01

    The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some situations, but we demonstrate that there are also situations where Gestalt grouping becomes serial. We observe substantial time delays when image elements have to be grouped indirectly through a chain of local groupings. We call this chaining process incremental grouping and demonstrate that it can occur for only a single object at a time. We suggest that incremental grouping requires the gradual spread of object-based attention so that eventually all the object's parts become grouped explicitly by an attentional labeling process. Our findings inspire a new incremental grouping theory that relates the parallel, local grouping process to feedforward processing and the serial, incremental grouping process to recurrent processing in the visual cortex.

  3. Next Generation Parallelization Systems for Processing and Control of PDS Image Node Assets

    NASA Astrophysics Data System (ADS)

    Verma, R.

    2017-06-01

    We present next-generation parallelization tools to help Planetary Data System (PDS) Imaging Node (IMG) better monitor, process, and control changes to nearly 650 million file assets and over a dozen machines on which they are referenced or stored.

  4. Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform.

    PubMed

    Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun

    2018-01-01

    The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.

  5. An embedded multi-core parallel model for real-time stereo imaging

    NASA Astrophysics Data System (ADS)

    He, Wenjing; Hu, Jian; Niu, Jingyu; Li, Chuanrong; Liu, Guangyu

    2018-04-01

    The real-time processing based on embedded system will enhance the application capability of stereo imaging for LiDAR and hyperspectral sensor. The task partitioning and scheduling strategies for embedded multiprocessor system starts relatively late, compared with that for PC computer. In this paper, aimed at embedded multi-core processing platform, a parallel model for stereo imaging is studied and verified. After analyzing the computing amount, throughout capacity and buffering requirements, a two-stage pipeline parallel model based on message transmission is established. This model can be applied to fast stereo imaging for airborne sensors with various characteristics. To demonstrate the feasibility and effectiveness of the parallel model, a parallel software was designed using test flight data, based on the 8-core DSP processor TMS320C6678. The results indicate that the design performed well in workload distribution and had a speed-up ratio up to 6.4.

  6. Performance evaluation of canny edge detection on a tiled multicore architecture

    NASA Astrophysics Data System (ADS)

    Brethorst, Andrew Z.; Desai, Nehal; Enright, Douglas P.; Scrofano, Ronald

    2011-01-01

    In the last few years, a variety of multicore architectures have been used to parallelize image processing applications. In this paper, we focus on assessing the parallel speed-ups of different Canny edge detection parallelization strategies on the Tile64, a tiled multicore architecture developed by the Tilera Corporation. Included in these strategies are different ways Canny edge detection can be parallelized, as well as differences in data management. The two parallelization strategies examined were loop-level parallelism and domain decomposition. Loop-level parallelism is achieved through the use of OpenMP,1 and it is capable of parallelization across the range of values over which a loop iterates. Domain decomposition is the process of breaking down an image into subimages, where each subimage is processed independently, in parallel. The results of the two strategies show that for the same number of threads, programmer implemented, domain decomposition exhibits higher speed-ups than the compiler managed, loop-level parallelism implemented with OpenMP.

  7. A Versatile Image Processor For Digital Diagnostic Imaging And Its Application In Computed Radiography

    NASA Astrophysics Data System (ADS)

    Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.

    1986-06-01

    In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.

  8. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    PubMed Central

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-01-01

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate. PMID:27070606

  9. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    PubMed

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-04-07

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  10. Parallel Guessing: A Strategy for High-Speed Computation

    DTIC Science & Technology

    1984-09-19

    for using additional hardware to obtain higher processing speed). In this paper we argue that parallel guessing for image analysis is a useful...from a true solution, or the correctness of a guess, can be readily checked. We review image - analysis algorithms having a parallel guessing or

  11. Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop

    NASA Astrophysics Data System (ADS)

    Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.

    2018-04-01

    The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.

  12. Performance enhancement of various real-time image processing techniques via speculative execution

    NASA Astrophysics Data System (ADS)

    Younis, Mohamed F.; Sinha, Purnendu; Marlowe, Thomas J.; Stoyenko, Alexander D.

    1996-03-01

    In real-time image processing, an application must satisfy a set of timing constraints while ensuring the semantic correctness of the system. Because of the natural structure of digital data, pure data and task parallelism have been used extensively in real-time image processing to accelerate the handling time of image data. These types of parallelism are based on splitting the execution load performed by a single processor across multiple nodes. However, execution of all parallel threads is mandatory for correctness of the algorithm. On the other hand, speculative execution is an optimistic execution of part(s) of the program based on assumptions on program control flow or variable values. Rollback may be required if the assumptions turn out to be invalid. Speculative execution can enhance average, and sometimes worst-case, execution time. In this paper, we target various image processing techniques to investigate applicability of speculative execution. We identify opportunities for safe and profitable speculative execution in image compression, edge detection, morphological filters, and blob recognition.

  13. Parallel Processing of Images in Mobile Devices using BOINC

    NASA Astrophysics Data System (ADS)

    Curiel, Mariela; Calle, David F.; Santamaría, Alfredo S.; Suarez, David F.; Flórez, Leonardo

    2018-04-01

    Medical image processing helps health professionals make decisions for the diagnosis and treatment of patients. Since some algorithms for processing images require substantial amounts of resources, one could take advantage of distributed or parallel computing. A mobile grid can be an adequate computing infrastructure for this problem. A mobile grid is a grid that includes mobile devices as resource providers. In a previous step of this research, we selected BOINC as the infrastructure to build our mobile grid. However, parallel processing of images in mobile devices poses at least two important challenges: the execution of standard libraries for processing images and obtaining adequate performance when compared to desktop computers grids. By the time we started our research, the use of BOINC in mobile devices also involved two issues: a) the execution of programs in mobile devices required to modify the code to insert calls to the BOINC API, and b) the division of the image among the mobile devices as well as its merging required additional code in some BOINC components. This article presents answers to these four challenges.

  14. Wavelet Transforms in Parallel Image Processing

    DTIC Science & Technology

    1994-01-27

    NUMBER OF PAGES Object Segmentation, Texture Segmentation, Image Compression, Image 137 Halftoning , Neural Network, Parallel Algorithms, 2D and 3D...Vector Quantization of Wavelet Transform Coefficients ........ ............................. 57 B.1.f Adaptive Image Halftoning based on Wavelet...application has been directed to the adaptive image halftoning . The gray information at a pixel, including its gray value and gradient, is represented by

  15. Basic research planning in mathematical pattern recognition and image analysis

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Guseman, L. F., Jr.

    1981-01-01

    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.

  16. Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform

    PubMed Central

    Wang, Min; Tian, Yun

    2018-01-01

    The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance. PMID:29861711

  17. Cache write generate for parallel image processing on shared memory architectures.

    PubMed

    Wittenbrink, C M; Somani, A K; Chen, C H

    1996-01-01

    We investigate cache write generate, our cache mode invention. We demonstrate that for parallel image processing applications, the new mode improves main memory bandwidth, CPU efficiency, cache hits, and cache latency. We use register level simulations validated by the UW-Proteus system. Many memory, cache, and processor configurations are evaluated.

  18. Comparing an FPGA to a Cell for an Image Processing Application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.

    2010-12-01

    Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.

  19. Parallel exploitation of a spatial-spectral classification approach for hyperspectral images on RVC-CAL

    NASA Astrophysics Data System (ADS)

    Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.

    2017-10-01

    Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.

  20. Parallel image reconstruction for 3D positron emission tomography from incomplete 2D projection data

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas M.; Ricci, Anthony R.; Dahlbom, Magnus; Cherry, Simon R.; Hoffman, Edward T.

    1993-07-01

    The problem of excessive computational time in 3D Positron Emission Tomography (3D PET) reconstruction is defined, and we present an approach for solving this problem through the construction of an inexpensive parallel processing system and the adoption of the FAVOR algorithm. Currently, the 3D reconstruction of the 610 images of a total body procedure would require 80 hours and the 3D reconstruction of the 620 images of a dynamic study would require 110 hours. An inexpensive parallel processing system for 3D PET reconstruction is constructed from the integration of board level products from multiple vendors. The system achieves its computational performance through the use of 6U VME four i860 processor boards, the processor boards from five manufacturers are discussed from our perspective. The new 3D PET reconstruction algorithm FAVOR, FAst VOlume Reconstructor, that promises a substantial speed improvement is adopted. Preliminary results from parallelizing FAVOR are utilized in formulating architectural improvements for this problem. In summary, we are addressing the problem of excessive computational time in 3D PET image reconstruction, through the construction of an inexpensive parallel processing system and the parallelization of a 3D reconstruction algorithm that uses the incomplete data set that is produced by current PET systems.

  1. Reconstruction for time-domain in vivo EPR 3D multigradient oximetric imaging--a parallel processing perspective.

    PubMed

    Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.

  2. Parallel algorithm of real-time infrared image restoration based on total variation theory

    NASA Astrophysics Data System (ADS)

    Zhu, Ran; Li, Miao; Long, Yunli; Zeng, Yaoyuan; An, Wei

    2015-10-01

    Image restoration is a necessary preprocessing step for infrared remote sensing applications. Traditional methods allow us to remove the noise but penalize too much the gradients corresponding to edges. Image restoration techniques based on variational approaches can solve this over-smoothing problem for the merits of their well-defined mathematical modeling of the restore procedure. The total variation (TV) of infrared image is introduced as a L1 regularization term added to the objective energy functional. It converts the restoration process to an optimization problem of functional involving a fidelity term to the image data plus a regularization term. Infrared image restoration technology with TV-L1 model exploits the remote sensing data obtained sufficiently and preserves information at edges caused by clouds. Numerical implementation algorithm is presented in detail. Analysis indicates that the structure of this algorithm can be easily implemented in parallelization. Therefore a parallel implementation of the TV-L1 filter based on multicore architecture with shared memory is proposed for infrared real-time remote sensing systems. Massive computation of image data is performed in parallel by cooperating threads running simultaneously on multiple cores. Several groups of synthetic infrared image data are used to validate the feasibility and effectiveness of the proposed parallel algorithm. Quantitative analysis of measuring the restored image quality compared to input image is presented. Experiment results show that the TV-L1 filter can restore the varying background image reasonably, and that its performance can achieve the requirement of real-time image processing.

  3. Image segmentation by iterative parallel region growing with application to data compression and image analysis

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    1988-01-01

    Image segmentation can be a key step in data compression and image analysis. However, the segmentation results produced by most previous approaches to region growing are suspect because they depend on the order in which portions of the image are processed. An iterative parallel segmentation algorithm avoids this problem by performing globally best merges first. Such a segmentation approach, and two implementations of the approach on NASA's Massively Parallel Processor (MPP) are described. Application of the segmentation approach to data compression and image analysis is then described, and results of such application are given for a LANDSAT Thematic Mapper image.

  4. Parallel evolution of image processing tools for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.

    2000-11-01

    We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.

  5. Parallel and Serial Grouping of Image Elements in Visual Perception

    ERIC Educational Resources Information Center

    Houtkamp, Roos; Roelfsema, Pieter R.

    2010-01-01

    The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some…

  6. Digital image processing using parallel computing based on CUDA technology

    NASA Astrophysics Data System (ADS)

    Skirnevskiy, I. P.; Pustovit, A. V.; Abdrashitova, M. O.

    2017-01-01

    This article describes expediency of using a graphics processing unit (GPU) in big data processing in the context of digital images processing. It provides a short description of a parallel computing technology and its usage in different areas, definition of the image noise and a brief overview of some noise removal algorithms. It also describes some basic requirements that should be met by certain noise removal algorithm in the projection to computer tomography. It provides comparison of the performance with and without using GPU as well as with different percentage of using CPU and GPU.

  7. Algorithms and programming tools for image processing on the MPP

    NASA Technical Reports Server (NTRS)

    Reeves, A. P.

    1985-01-01

    Topics addressed include: data mapping and rotational algorithms for the Massively Parallel Processor (MPP); Parallel Pascal language; documentation for the Parallel Pascal Development system; and a description of the Parallel Pascal language used on the MPP.

  8. Study on parallel and distributed management of RS data based on spatial database

    NASA Astrophysics Data System (ADS)

    Chen, Yingbiao; Qian, Qinglan; Wu, Hongqiao; Liu, Shijin

    2009-10-01

    With the rapid development of current earth-observing technology, RS image data storage, management and information publication become a bottle-neck for its appliance and popularization. There are two prominent problems in RS image data storage and management system. First, background server hardly handle the heavy process of great capacity of RS data which stored at different nodes in a distributing environment. A tough burden has put on the background server. Second, there is no unique, standard and rational organization of Multi-sensor RS data for its storage and management. And lots of information is lost or not included at storage. Faced at the above two problems, the paper has put forward a framework for RS image data parallel and distributed management and storage system. This system aims at RS data information system based on parallel background server and a distributed data management system. Aiming at the above two goals, this paper has studied the following key techniques and elicited some revelatory conclusions. The paper has put forward a solid index of "Pyramid, Block, Layer, Epoch" according to the properties of RS image data. With the solid index mechanism, a rational organization for different resolution, different area, different band and different period of Multi-sensor RS image data is completed. In data storage, RS data is not divided into binary large objects to be stored at current relational database system, while it is reconstructed through the above solid index mechanism. A logical image database for the RS image data file is constructed. In system architecture, this paper has set up a framework based on a parallel server of several common computers. Under the framework, the background process is divided into two parts, the common WEB process and parallel process.

  9. Study on parallel and distributed management of RS data based on spatial data base

    NASA Astrophysics Data System (ADS)

    Chen, Yingbiao; Qian, Qinglan; Liu, Shijin

    2006-12-01

    With the rapid development of current earth-observing technology, RS image data storage, management and information publication become a bottle-neck for its appliance and popularization. There are two prominent problems in RS image data storage and management system. First, background server hardly handle the heavy process of great capacity of RS data which stored at different nodes in a distributing environment. A tough burden has put on the background server. Second, there is no unique, standard and rational organization of Multi-sensor RS data for its storage and management. And lots of information is lost or not included at storage. Faced at the above two problems, the paper has put forward a framework for RS image data parallel and distributed management and storage system. This system aims at RS data information system based on parallel background server and a distributed data management system. Aiming at the above two goals, this paper has studied the following key techniques and elicited some revelatory conclusions. The paper has put forward a solid index of "Pyramid, Block, Layer, Epoch" according to the properties of RS image data. With the solid index mechanism, a rational organization for different resolution, different area, different band and different period of Multi-sensor RS image data is completed. In data storage, RS data is not divided into binary large objects to be stored at current relational database system, while it is reconstructed through the above solid index mechanism. A logical image database for the RS image data file is constructed. In system architecture, this paper has set up a framework based on a parallel server of several common computers. Under the framework, the background process is divided into two parts, the common WEB process and parallel process.

  10. A programmable computational image sensor for high-speed vision

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian

    2013-08-01

    In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.

  11. The AIS-5000 parallel processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, L.A.; Wilson, S.S.

    1988-05-01

    The AIS-5000 is a commercially available massively parallel processor which has been designed to operate in an industrial environment. It has fine-grained parallelism with up to 1024 processing elements arranged in a single-instruction multiple-data (SIMD) architecture. The processing elements are arranged in a one-dimensional chain that, for computer vision applications, can be as wide as the image itself. This architecture has superior cost/performance characteristics than two-dimensional mesh-connected systems. The design of the processing elements and their interconnections as well as the software used to program the system allow a wide variety of algorithms and applications to be implemented. In thismore » paper, the overall architecture of the system is described. Various components of the system are discussed, including details of the processing elements, data I/O pathways and parallel memory organization. A virtual two-dimensional model for programming image-based algorithms for the system is presented. This model is supported by the AIS-5000 hardware and software and allows the system to be treated as a full-image-size, two-dimensional, mesh-connected parallel processor. Performance bench marks are given for certain simple and complex functions.« less

  12. Managing Algorithmic Skeleton Nesting Requirements in Realistic Image Processing Applications: The Case of the SKiPPER-II Parallel Programming Environment's Operating Model

    NASA Astrophysics Data System (ADS)

    Coudarcher, Rémi; Duculty, Florent; Serot, Jocelyn; Jurie, Frédéric; Derutin, Jean-Pierre; Dhome, Michel

    2005-12-01

    SKiPPER is a SKeleton-based Parallel Programming EnviRonment being developed since 1996 and running at LASMEA Laboratory, the Blaise-Pascal University, France. The main goal of the project was to demonstrate the applicability of skeleton-based parallel programming techniques to the fast prototyping of reactive vision applications. This paper deals with the special features embedded in the latest version of the project: algorithmic skeleton nesting capabilities and a fully dynamic operating model. Throughout the case study of a complete and realistic image processing application, in which we have pointed out the requirement for skeleton nesting, we are presenting the operating model of this feature. The work described here is one of the few reported experiments showing the application of skeleton nesting facilities for the parallelisation of a realistic application, especially in the area of image processing. The image processing application we have chosen is a 3D face-tracking algorithm from appearance.

  13. Online measurement for geometrical parameters of wheel set based on structure light and CUDA parallel processing

    NASA Astrophysics Data System (ADS)

    Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie

    2018-01-01

    The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.

  14. Parallel-Processing Software for Correlating Stereo Images

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Deen, Robert; Mcauley, Michael; DeJong, Eric

    2007-01-01

    A computer program implements parallel- processing algorithms for cor relating images of terrain acquired by stereoscopic pairs of digital stereo cameras on an exploratory robotic vehicle (e.g., a Mars rove r). Such correlations are used to create three-dimensional computatio nal models of the terrain for navigation. In this program, the scene viewed by the cameras is segmented into subimages. Each subimage is assigned to one of a number of central processing units (CPUs) opera ting simultaneously.

  15. GPU computing in medical physics: a review.

    PubMed

    Pratx, Guillem; Xing, Lei

    2011-05-01

    The graphics processing unit (GPU) has emerged as a competitive platform for computing massively parallel problems. Many computing applications in medical physics can be formulated as data-parallel tasks that exploit the capabilities of the GPU for reducing processing times. The authors review the basic principles of GPU computing as well as the main performance optimization techniques, and survey existing applications in three areas of medical physics, namely image reconstruction, dose calculation and treatment plan optimization, and image processing.

  16. Improving the scalability of hyperspectral imaging applications on heterogeneous platforms using adaptive run-time data compression

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio; Plaza, Javier; Paz, Abel

    2010-10-01

    Latest generation remote sensing instruments (called hyperspectral imagers) are now able to generate hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. In previous work, we have reported that the scalability of parallel processing algorithms dealing with these high-dimensional data volumes is affected by the amount of data to be exchanged through the communication network of the system. However, large messages are common in hyperspectral imaging applications since processing algorithms are pixel-based, and each pixel vector to be exchanged through the communication network is made up of hundreds of spectral values. Thus, decreasing the amount of data to be exchanged could improve the scalability and parallel performance. In this paper, we propose a new framework based on intelligent utilization of wavelet-based data compression techniques for improving the scalability of a standard hyperspectral image processing chain on heterogeneous networks of workstations. This type of parallel platform is quickly becoming a standard in hyperspectral image processing due to the distributed nature of collected hyperspectral data as well as its flexibility and low cost. Our experimental results indicate that adaptive lossy compression can lead to improvements in the scalability of the hyperspectral processing chain without sacrificing analysis accuracy, even at sub-pixel precision levels.

  17. Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2012-07-01

    Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.

  18. Real time display Fourier-domain OCT using multi-thread parallel computing with data vectorization

    NASA Astrophysics Data System (ADS)

    Eom, Tae Joong; Kim, Hoon Seop; Kim, Chul Min; Lee, Yeung Lak; Choi, Eun-Seo

    2011-03-01

    We demonstrate a real-time display of processed OCT images using multi-thread parallel computing with a quad-core CPU of a personal computer. The data of each A-line are treated as one vector to maximize the data translation rate between the cores of the CPU and RAM stored image data. A display rate of 29.9 frames/sec for processed OCT data (4096 FFT-size x 500 A-scans) is achieved in our system using a wavelength swept source with 52-kHz swept frequency. The data processing times of the OCT image and a Doppler OCT image with a 4-time average are 23.8 msec and 91.4 msec.

  19. Clinical image processing engine

    NASA Astrophysics Data System (ADS)

    Han, Wei; Yao, Jianhua; Chen, Jeremy; Summers, Ronald

    2009-02-01

    Our group provides clinical image processing services to various institutes at NIH. We develop or adapt image processing programs for a variety of applications. However, each program requires a human operator to select a specific set of images and execute the program, as well as store the results appropriately for later use. To improve efficiency, we design a parallelized clinical image processing engine (CIPE) to streamline and parallelize our service. The engine takes DICOM images from a PACS server, sorts and distributes the images to different applications, multithreads the execution of applications, and collects results from the applications. The engine consists of four modules: a listener, a router, a job manager and a data manager. A template filter in XML format is defined to specify the image specification for each application. A MySQL database is created to store and manage the incoming DICOM images and application results. The engine achieves two important goals: reduce the amount of time and manpower required to process medical images, and reduce the turnaround time for responding. We tested our engine on three different applications with 12 datasets and demonstrated that the engine improved the efficiency dramatically.

  20. Overview of the DART project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, K.R.; Hansen, F.R.; Napolitano, L.M.

    1992-01-01

    DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate ( C'' or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability bymore » using DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less

  1. Overview of the DART project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, K.R.; Hansen, F.R.; Napolitano, L.M.

    1992-01-01

    DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate (``C`` or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability by usingmore » DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less

  2. Classification of hyperspectral imagery using MapReduce on a NVIDIA graphics processing unit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ramirez, Andres; Rahnemoonfar, Maryam

    2017-04-01

    A hyperspectral image provides multidimensional figure rich in data consisting of hundreds of spectral dimensions. Analyzing the spectral and spatial information of such image with linear and non-linear algorithms will result in high computational time. In order to overcome this problem, this research presents a system using a MapReduce-Graphics Processing Unit (GPU) model that can help analyzing a hyperspectral image through the usage of parallel hardware and a parallel programming model, which will be simpler to handle compared to other low-level parallel programming models. Additionally, Hadoop was used as an open-source version of the MapReduce parallel programming model. This research compared classification accuracy results and timing results between the Hadoop and GPU system and tested it against the following test cases: the CPU and GPU test case, a CPU test case and a test case where no dimensional reduction was applied.

  3. Vivaldi: A Domain-Specific Language for Volume Processing and Visualization on Distributed Heterogeneous Systems.

    PubMed

    Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki

    2014-12-01

    As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.

  4. Two improved coherent optical feedback systems for optical information processing

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Bartholomew, B.; Cederquist, J.

    1976-01-01

    Coherent optical feedback systems are Fabry-Perot interferometers modified to perform optical information processing. Two new systems based on plane parallel and confocal Fabry-Perot interferometers are introduced. The plane parallel system can be used for contrast control, intensity level selection, and image thresholding. The confocal system can be used for image restoration and solving partial differential equations. These devices are simpler and less expensive than previous systems. Experimental results are presented to demonstrate their potential for optical information processing.

  5. Bayer image parallel decoding based on GPU

    NASA Astrophysics Data System (ADS)

    Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua

    2012-11-01

    In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.

  6. Parallel asynchronous systems and image processing algorithms

    NASA Technical Reports Server (NTRS)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  7. A Review of High-Performance Computational Strategies for Modeling and Imaging of Electromagnetic Induction Data

    NASA Astrophysics Data System (ADS)

    Newman, Gregory A.

    2014-01-01

    Many geoscientific applications exploit electrostatic and electromagnetic fields to interrogate and map subsurface electrical resistivity—an important geophysical attribute for characterizing mineral, energy, and water resources. In complex three-dimensional geologies, where many of these resources remain to be found, resistivity mapping requires large-scale modeling and imaging capabilities, as well as the ability to treat significant data volumes, which can easily overwhelm single-core and modest multicore computing hardware. To treat such problems requires large-scale parallel computational resources, necessary for reducing the time to solution to a time frame acceptable to the exploration process. The recognition that significant parallel computing processes must be brought to bear on these problems gives rise to choices that must be made in parallel computing hardware and software. In this review, some of these choices are presented, along with the resulting trade-offs. We also discuss future trends in high-performance computing and the anticipated impact on electromagnetic (EM) geophysics. Topics discussed in this review article include a survey of parallel computing platforms, graphics processing units to multicore CPUs with a fast interconnect, along with effective parallel solvers and associated solver libraries effective for inductive EM modeling and imaging.

  8. a Hadoop-Based Distributed Framework for Efficient Managing and Processing Big Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hu, F.; Hu, X.; Zhao, S.; Wen, W.; Yang, C.

    2015-07-01

    Various sensors from airborne and satellite platforms are producing large volumes of remote sensing images for mapping, environmental monitoring, disaster management, military intelligence, and others. However, it is challenging to efficiently storage, query and process such big data due to the data- and computing- intensive issues. In this paper, a Hadoop-based framework is proposed to manage and process the big remote sensing data in a distributed and parallel manner. Especially, remote sensing data can be directly fetched from other data platforms into the Hadoop Distributed File System (HDFS). The Orfeo toolbox, a ready-to-use tool for large image processing, is integrated into MapReduce to provide affluent image processing operations. With the integration of HDFS, Orfeo toolbox and MapReduce, these remote sensing images can be directly processed in parallel in a scalable computing environment. The experiment results show that the proposed framework can efficiently manage and process such big remote sensing data.

  9. The 2nd Symposium on the Frontiers of Massively Parallel Computations

    NASA Technical Reports Server (NTRS)

    Mills, Ronnie (Editor)

    1988-01-01

    Programming languages, computer graphics, neural networks, massively parallel computers, SIMD architecture, algorithms, digital terrain models, sort computation, simulation of charged particle transport on the massively parallel processor and image processing are among the topics discussed.

  10. High speed infrared imaging system and method

    DOEpatents

    Zehnder, Alan T.; Rosakis, Ares J.; Ravichandran, G.

    2001-01-01

    A system and method for radiation detection with an increased frame rate. A semi-parallel processing configuration is used to process a row or column of pixels in a focal-plane array in parallel to achieve a processing rate up to and greater than 1 million frames per second.

  11. The method of parallel-hierarchical transformation for rapid recognition of dynamic images using GPGPU technology

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Yarovyi, Andrii; Kokriatskaya, Nataliya; Nakonechna, Svitlana; Abramenko, Ludmila; Ławicki, Tomasz; Popiel, Piotr; Yesmakhanova, Laura

    2016-09-01

    The paper presents a method of parallel-hierarchical transformations for rapid recognition of dynamic images using GPU technology. Direct parallel-hierarchical transformations based on cluster CPU-and GPU-oriented hardware platform. Mathematic models of training of the parallel hierarchical (PH) network for the transformation are developed, as well as a training method of the PH network for recognition of dynamic images. This research is most topical for problems on organizing high-performance computations of super large arrays of information designed to implement multi-stage sensing and processing as well as compaction and recognition of data in the informational structures and computer devices. This method has such advantages as high performance through the use of recent advances in parallelization, possibility to work with images of ultra dimension, ease of scaling in case of changing the number of nodes in the cluster, auto scan of local network to detect compute nodes.

  12. Comparison of multihardware parallel implementations for a phase unwrapping algorithm

    NASA Astrophysics Data System (ADS)

    Hernandez-Lopez, Francisco Javier; Rivera, Mariano; Salazar-Garibay, Adan; Legarda-Sáenz, Ricardo

    2018-04-01

    Phase unwrapping is an important problem in the areas of optical metrology, synthetic aperture radar (SAR) image analysis, and magnetic resonance imaging (MRI) analysis. These images are becoming larger in size and, particularly, the availability and need for processing of SAR and MRI data have increased significantly with the acquisition of remote sensing data and the popularization of magnetic resonators in clinical diagnosis. Therefore, it is important to develop faster and accurate phase unwrapping algorithms. We propose a parallel multigrid algorithm of a phase unwrapping method named accumulation of residual maps, which builds on a serial algorithm that consists of the minimization of a cost function; minimization achieved by means of a serial Gauss-Seidel kind algorithm. Our algorithm also optimizes the original cost function, but unlike the original work, our algorithm is a parallel Jacobi class with alternated minimizations. This strategy is known as the chessboard type, where red pixels can be updated in parallel at same iteration since they are independent. Similarly, black pixels can be updated in parallel in an alternating iteration. We present parallel implementations of our algorithm for different parallel multicore architecture such as CPU-multicore, Xeon Phi coprocessor, and Nvidia graphics processing unit. In all the cases, we obtain a superior performance of our parallel algorithm when compared with the original serial version. In addition, we present a detailed comparative performance of the developed parallel versions.

  13. Quantitative Image Feature Engine (QIFE): an Open-Source, Modular Engine for 3D Quantitative Feature Extraction from Volumetric Medical Images.

    PubMed

    Echegaray, Sebastian; Bakr, Shaimaa; Rubin, Daniel L; Napel, Sandy

    2017-10-06

    The aim of this study was to develop an open-source, modular, locally run or server-based system for 3D radiomics feature computation that can be used on any computer system and included in existing workflows for understanding associations and building predictive models between image features and clinical data, such as survival. The QIFE exploits various levels of parallelization for use on multiprocessor systems. It consists of a managing framework and four stages: input, pre-processing, feature computation, and output. Each stage contains one or more swappable components, allowing run-time customization. We benchmarked the engine using various levels of parallelization on a cohort of CT scans presenting 108 lung tumors. Two versions of the QIFE have been released: (1) the open-source MATLAB code posted to Github, (2) a compiled version loaded in a Docker container, posted to DockerHub, which can be easily deployed on any computer. The QIFE processed 108 objects (tumors) in 2:12 (h/mm) using 1 core, and 1:04 (h/mm) hours using four cores with object-level parallelization. We developed the Quantitative Image Feature Engine (QIFE), an open-source feature-extraction framework that focuses on modularity, standards, parallelism, provenance, and integration. Researchers can easily integrate it with their existing segmentation and imaging workflows by creating input and output components that implement their existing interfaces. Computational efficiency can be improved by parallelizing execution at the cost of memory usage. Different parallelization levels provide different trade-offs, and the optimal setting will depend on the size and composition of the dataset to be processed.

  14. Parallel-Processing Software for Creating Mosaic Images

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Deen, Robert; McCauley, Michael; DeJong, Eric

    2008-01-01

    A computer program implements parallel processing for nearly real-time creation of panoramic mosaics of images of terrain acquired by video cameras on an exploratory robotic vehicle (e.g., a Mars rover). Because the original images are typically acquired at various camera positions and orientations, it is necessary to warp the images into the reference frame of the mosaic before stitching them together to create the mosaic. [Also see "Parallel-Processing Software for Correlating Stereo Images," Software Supplement to NASA Tech Briefs, Vol. 31, No. 9 (September 2007) page 26.] The warping algorithm in this computer program reflects the considerations that (1) for every pixel in the desired final mosaic, a good corresponding point must be found in one or more of the original images and (2) for this purpose, one needs a good mathematical model of the cameras and a good correlation of individual pixels with respect to their positions in three dimensions. The desired mosaic is divided into slices, each of which is assigned to one of a number of central processing units (CPUs) operating simultaneously. The results from the CPUs are gathered and placed into the final mosaic. The time taken to create the mosaic depends upon the number of CPUs, the speed of each CPU, and whether a local or a remote data-staging mechanism is used.

  15. Implementing An Image Understanding System Architecture Using Pipe

    NASA Astrophysics Data System (ADS)

    Luck, Randall L.

    1988-03-01

    This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.

  16. Parallel processing approach to transform-based image coding

    NASA Astrophysics Data System (ADS)

    Normile, James O.; Wright, Dan; Chu, Ken; Yeh, Chia L.

    1991-06-01

    This paper describes a flexible parallel processing architecture designed for use in real time video processing. The system consists of floating point DSP processors connected to each other via fast serial links, each processor has access to a globally shared memory. A multiple bus architecture in combination with a dual ported memory allows communication with a host control processor. The system has been applied to prototyping of video compression and decompression algorithms. The decomposition of transform based algorithms for decompression into a form suitable for parallel processing is described. A technique for automatic load balancing among the processors is developed and discussed, results ar presented with image statistics and data rates. Finally techniques for accelerating the system throughput are analyzed and results from the application of one such modification described.

  17. ImageJ: Image processing and analysis in Java

    NASA Astrophysics Data System (ADS)

    Rasband, W. S.

    2012-06-01

    ImageJ is a public domain Java image processing program inspired by NIH Image. It can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-bit images. It can read many image formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and "raw". It supports "stacks", a series of images that share a single window. It is multithreaded, so time-consuming operations such as image file reading can be performed in parallel with other operations.

  18. Parallel Wavefront Analysis for a 4D Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  19. Multifaceted free-space image distributor for optical interconnects in massively parrallel processing

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Frietman, Edward E. E.; Han, Zhong; Chen, Ray T.

    1999-04-01

    A characteristic feature of a conventional von Neumann computer is that computing power is delivered by a single processing unit. Although increasing the clock frequency improves the performance of the computer, the switching speed of the semiconductor devices and the finite speed at which electrical signals propagate along the bus set the boundaries. Architectures containing large numbers of nodes can solve this performance dilemma, with the comment that main obstacles in designing such systems are caused by difficulties to come up with solutions that guarantee efficient communications among the nodes. Exchanging data becomes really a bottleneck should al nodes be connected by a shared resource. Only optics, due to its inherent parallelism, could solve that bottleneck. Here, we explore a multi-faceted free space image distributor to be used in optical interconnects in massively parallel processing. In this paper, physical and optical models of the image distributor are focused on from diffraction theory of light wave to optical simulations. the general features and the performance of the image distributor are also described. The new structure of an image distributor and the simulations for it are discussed. From the digital simulation and experiment, it is found that the multi-faceted free space image distributing technique is quite suitable for free space optical interconnection in massively parallel processing and new structure of the multifaceted free space image distributor would perform better.

  20. A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform

    PubMed Central

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.

    2013-01-01

    Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014

  1. The application of image processing in the measurement for three-light-axis parallelity of laser ranger

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wang, Qianqian

    2008-12-01

    When laser ranger is transported or used in field operations, the transmitting axis, receiving axis and aiming axis may be not parallel. The nonparallelism of the three-light-axis will affect the range-measuring ability or make laser ranger not be operated exactly. So testing and adjusting the three-light-axis parallelity in the production and maintenance of laser ranger is important to ensure using laser ranger reliably. The paper proposes a new measurement method using digital image processing based on the comparison of some common measurement methods for the three-light-axis parallelity. It uses large aperture off-axis paraboloid reflector to get the images of laser spot and white light cross line, and then process the images on LabVIEW platform. The center of white light cross line can be achieved by the matching arithmetic in LABVIEW DLL. And the center of laser spot can be achieved by gradation transformation, binarization and area filter in turn. The software system can set CCD, detect the off-axis paraboloid reflector, measure the parallelity of transmitting axis and aiming axis and control the attenuation device. The hardware system selects SAA7111A, a programmable vedio decoding chip, to perform A/D conversion. FIFO (first-in first-out) is selected as buffer.USB bus is used to transmit data to PC. The three-light-axis parallelity can be achieved according to the position bias between them. The device based on this method has been already used. The application proves this method has high precision, speediness and automatization.

  2. Commodity cluster and hardware-based massively parallel implementations of hyperspectral imaging algorithms

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David

    2006-05-01

    The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.

  3. GPU accelerated fuzzy connected image segmentation by using CUDA.

    PubMed

    Zhuge, Ying; Cao, Yong; Miller, Robert W

    2009-01-01

    Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.

  4. Associative architecture for image processing

    NASA Astrophysics Data System (ADS)

    Adar, Rutie; Akerib, Avidan

    1997-09-01

    This article presents a new generation in parallel processing architecture for real-time image processing. The approach is implemented in a real time image processor chip, called the XiumTM-2, based on combining a fully associative array which provides the parallel engine with a serial RISC core on the same die. The architecture is fully programmable and can be programmed to implement a wide range of color image processing, computer vision and media processing functions in real time. The associative part of the chip is based on patented pending methodology of Associative Computing Ltd. (ACL), which condenses 2048 associative processors, each of 128 'intelligent' bits. Each bit can be a processing bit or a memory bit. At only 33 MHz and 0.6 micron manufacturing technology process, the chip has a computational power of 3 billion ALU operations per second and 66 billion string search operations per second. The fully programmable nature of the XiumTM-2 chip enables developers to use ACL tools to write their own proprietary algorithms combined with existing image processing and analysis functions from ACL's extended set of libraries.

  5. Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography.

    PubMed

    Hielscher, Andreas H; Bartel, Sebastian

    2004-02-01

    Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.

  6. Parallel MR Imaging with Accelerations Beyond the Number of Receiver Channels Using Real Image Reconstruction.

    PubMed

    Ji, Jim; Wright, Steven

    2005-01-01

    Parallel imaging using multiple phased-array coils and receiver channels has become an effective approach to high-speed magnetic resonance imaging (MRI). To obtain high spatiotemporal resolution, the k-space is subsampled and later interpolated using multiple channel data. Higher subsampling factors result in faster image acquisition. However, the subsampling factors are upper-bounded by the number of parallel channels. Phase constraints have been previously proposed to overcome this limitation with some success. In this paper, we demonstrate that in certain applications it is possible to obtain acceleration factors potentially up to twice the channel numbers by using a real image constraint. Data acquisition and processing methods to manipulate and estimate of the image phase information are presented for improving image reconstruction. In-vivo brain MRI experimental results show that accelerations up to 6 are feasible with 4-channel data.

  7. Photography/Digital Imaging: Parallel & Paradoxical Histories.

    ERIC Educational Resources Information Center

    Witte, Mary Stieglitz

    With the introduction of photography and photomechanical printing processes in the 19th century, the first age of machine pictures and reproductions emerged. The 20th century introduced computer image processing systems, creating a digital imaging revolution. Rather than concentrating on the adversarial aspects of the computer's influence on…

  8. A novel parallel architecture for local histogram equalization

    NASA Astrophysics Data System (ADS)

    Ohannessian, Mesrob I.; Choueiter, Ghinwa F.; Diab, Hassan

    2005-07-01

    Local histogram equalization is an image enhancement algorithm that has found wide application in the pre-processing stage of areas such as computer vision, pattern recognition and medical imaging. The computationally intensive nature of the procedure, however, is a main limitation when real time interactive applications are in question. This work explores the possibility of performing parallel local histogram equalization, using an array of special purpose elementary processors, through an HDL implementation that targets FPGA or ASIC platforms. A novel parallelization scheme is presented and the corresponding architecture is derived. The algorithm is reduced to pixel-level operations. Processing elements are assigned image blocks, to maintain a reasonable performance-cost ratio. To further simplify both processor and memory organizations, a bit-serial access scheme is used. A brief performance assessment is provided to illustrate and quantify the merit of the approach.

  9. An automated workflow for parallel processing of large multiview SPIM recordings

    PubMed Central

    Schmied, Christopher; Steinbach, Peter; Pietzsch, Tobias; Preibisch, Stephan; Tomancak, Pavel

    2016-01-01

    Summary: Selective Plane Illumination Microscopy (SPIM) allows to image developing organisms in 3D at unprecedented temporal resolution over long periods of time. The resulting massive amounts of raw image data requires extensive processing interactively via dedicated graphical user interface (GUI) applications. The consecutive processing steps can be easily automated and the individual time points can be processed independently, which lends itself to trivial parallelization on a high performance computing (HPC) cluster. Here, we introduce an automated workflow for processing large multiview, multichannel, multiillumination time-lapse SPIM data on a single workstation or in parallel on a HPC cluster. The pipeline relies on snakemake to resolve dependencies among consecutive processing steps and can be easily adapted to any cluster environment for processing SPIM data in a fraction of the time required to collect it. Availability and implementation: The code is distributed free and open source under the MIT license http://opensource.org/licenses/MIT. The source code can be downloaded from github: https://github.com/mpicbg-scicomp/snakemake-workflows. Documentation can be found here: http://fiji.sc/Automated_workflow_for_parallel_Multiview_Reconstruction. Contact: schmied@mpi-cbg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26628585

  10. An automated workflow for parallel processing of large multiview SPIM recordings.

    PubMed

    Schmied, Christopher; Steinbach, Peter; Pietzsch, Tobias; Preibisch, Stephan; Tomancak, Pavel

    2016-04-01

    Selective Plane Illumination Microscopy (SPIM) allows to image developing organisms in 3D at unprecedented temporal resolution over long periods of time. The resulting massive amounts of raw image data requires extensive processing interactively via dedicated graphical user interface (GUI) applications. The consecutive processing steps can be easily automated and the individual time points can be processed independently, which lends itself to trivial parallelization on a high performance computing (HPC) cluster. Here, we introduce an automated workflow for processing large multiview, multichannel, multiillumination time-lapse SPIM data on a single workstation or in parallel on a HPC cluster. The pipeline relies on snakemake to resolve dependencies among consecutive processing steps and can be easily adapted to any cluster environment for processing SPIM data in a fraction of the time required to collect it. The code is distributed free and open source under the MIT license http://opensource.org/licenses/MIT The source code can be downloaded from github: https://github.com/mpicbg-scicomp/snakemake-workflows Documentation can be found here: http://fiji.sc/Automated_workflow_for_parallel_Multiview_Reconstruction : schmied@mpi-cbg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  11. High Performance Input/Output for Parallel Computer Systems

    NASA Technical Reports Server (NTRS)

    Ligon, W. B.

    1996-01-01

    The goal of our project is to study the I/O characteristics of parallel applications used in Earth Science data processing systems such as Regional Data Centers (RDCs) or EOSDIS. Our approach is to study the runtime behavior of typical programs and the effect of key parameters of the I/O subsystem both under simulation and with direct experimentation on parallel systems. Our three year activity has focused on two items: developing a test bed that facilitates experimentation with parallel I/O, and studying representative programs from the Earth science data processing application domain. The Parallel Virtual File System (PVFS) has been developed for use on a number of platforms including the Tiger Parallel Architecture Workbench (TPAW) simulator, The Intel Paragon, a cluster of DEC Alpha workstations, and the Beowulf system (at CESDIS). PVFS provides considerable flexibility in configuring I/O in a UNIX- like environment. Access to key performance parameters facilitates experimentation. We have studied several key applications fiom levels 1,2 and 3 of the typical RDC processing scenario including instrument calibration and navigation, image classification, and numerical modeling codes. We have also considered large-scale scientific database codes used to organize image data.

  12. TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images.

    PubMed

    Li, Yuxin; Gong, Hui; Yang, Xiaoquan; Yuan, Jing; Jiang, Tao; Li, Xiangning; Sun, Qingtao; Zhu, Dan; Wang, Zhenyu; Luo, Qingming; Li, Anan

    2017-01-01

    Three-dimensional imaging of whole mammalian brains at single-neuron resolution has generated terabyte (TB)- and even petabyte (PB)-sized datasets. Due to their size, processing these massive image datasets can be hindered by the computer hardware and software typically found in biological laboratories. To fill this gap, we have developed an efficient platform named TDat, which adopts a novel data reformatting strategy by reading cuboid data and employing parallel computing. In data reformatting, TDat is more efficient than any other software. In data accessing, we adopted parallelization to fully explore the capability for data transmission in computers. We applied TDat in large-volume data rigid registration and neuron tracing in whole-brain data with single-neuron resolution, which has never been demonstrated in other studies. We also showed its compatibility with various computing platforms, image processing software and imaging systems.

  13. Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method

    PubMed Central

    Yip, Hon Ming; Li, John C. S.; Cui, Xin; Gao, Qiannan; Leung, Chi Chiu

    2014-01-01

    As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities. PMID:25133248

  14. Novel wavelength diversity technique for high-speed atmospheric turbulence compensation

    NASA Astrophysics Data System (ADS)

    Arrasmith, William W.; Sullivan, Sean F.

    2010-04-01

    The defense, intelligence, and homeland security communities are driving a need for software dominant, real-time or near-real time atmospheric turbulence compensated imagery. The development of parallel processing capabilities are finding application in diverse areas including image processing, target tracking, pattern recognition, and image fusion to name a few. A novel approach to the computationally intensive case of software dominant optical and near infrared imaging through atmospheric turbulence is addressed in this paper. Previously, the somewhat conventional wavelength diversity method has been used to compensate for atmospheric turbulence with great success. We apply a new correlation based approach to the wavelength diversity methodology using a parallel processing architecture enabling high speed atmospheric turbulence compensation. Methods for optical imaging through distributed turbulence are discussed, simulation results are presented, and computational and performance assessments are provided.

  15. Density-based parallel skin lesion border detection with webCL

    PubMed Central

    2015-01-01

    Background Dermoscopy is a highly effective and noninvasive imaging technique used in diagnosis of melanoma and other pigmented skin lesions. Many aspects of the lesion under consideration are defined in relation to the lesion border. This makes border detection one of the most important steps in dermoscopic image analysis. In current practice, dermatologists often delineate borders through a hand drawn representation based upon visual inspection. Due to the subjective nature of this technique, intra- and inter-observer variations are common. Because of this, the automated assessment of lesion borders in dermoscopic images has become an important area of study. Methods Fast density based skin lesion border detection method has been implemented in parallel with a new parallel technology called WebCL. WebCL utilizes client side computing capabilities to use available hardware resources such as multi cores and GPUs. Developed WebCL-parallel density based skin lesion border detection method runs efficiently from internet browsers. Results Previous research indicates that one of the highest accuracy rates can be achieved using density based clustering techniques for skin lesion border detection. While these algorithms do have unfavorable time complexities, this effect could be mitigated when implemented in parallel. In this study, density based clustering technique for skin lesion border detection is parallelized and redesigned to run very efficiently on the heterogeneous platforms (e.g. tablets, SmartPhones, multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units) by transforming the technique into a series of independent concurrent operations. Heterogeneous computing is adopted to support accessibility, portability and multi-device use in the clinical settings. For this, we used WebCL, an emerging technology that enables a HTML5 Web browser to execute code in parallel for heterogeneous platforms. We depicted WebCL and our parallel algorithm design. In addition, we tested parallel code on 100 dermoscopy images and showed the execution speedups with respect to the serial version. Results indicate that parallel (WebCL) version and serial version of density based lesion border detection methods generate the same accuracy rates for 100 dermoscopy images, in which mean of border error is 6.94%, mean of recall is 76.66%, and mean of precision is 99.29% respectively. Moreover, WebCL version's speedup factor for 100 dermoscopy images' lesion border detection averages around ~491.2. Conclusions When large amount of high resolution dermoscopy images considered in a usual clinical setting along with the critical importance of early detection and diagnosis of melanoma before metastasis, the importance of fast processing dermoscopy images become obvious. In this paper, we introduce WebCL and the use of it for biomedical image processing applications. WebCL is a javascript binding of OpenCL, which takes advantage of GPU computing from a web browser. Therefore, WebCL parallel version of density based skin lesion border detection introduced in this study can supplement expert dermatologist, and aid them in early diagnosis of skin lesions. While WebCL is currently an emerging technology, a full adoption of WebCL into the HTML5 standard would allow for this implementation to run on a very large set of hardware and software systems. WebCL takes full advantage of parallel computational resources including multi-cores and GPUs on a local machine, and allows for compiled code to run directly from the Web Browser. PMID:26423836

  16. Density-based parallel skin lesion border detection with webCL.

    PubMed

    Lemon, James; Kockara, Sinan; Halic, Tansel; Mete, Mutlu

    2015-01-01

    Dermoscopy is a highly effective and noninvasive imaging technique used in diagnosis of melanoma and other pigmented skin lesions. Many aspects of the lesion under consideration are defined in relation to the lesion border. This makes border detection one of the most important steps in dermoscopic image analysis. In current practice, dermatologists often delineate borders through a hand drawn representation based upon visual inspection. Due to the subjective nature of this technique, intra- and inter-observer variations are common. Because of this, the automated assessment of lesion borders in dermoscopic images has become an important area of study. Fast density based skin lesion border detection method has been implemented in parallel with a new parallel technology called WebCL. WebCL utilizes client side computing capabilities to use available hardware resources such as multi cores and GPUs. Developed WebCL-parallel density based skin lesion border detection method runs efficiently from internet browsers. Previous research indicates that one of the highest accuracy rates can be achieved using density based clustering techniques for skin lesion border detection. While these algorithms do have unfavorable time complexities, this effect could be mitigated when implemented in parallel. In this study, density based clustering technique for skin lesion border detection is parallelized and redesigned to run very efficiently on the heterogeneous platforms (e.g. tablets, SmartPhones, multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units) by transforming the technique into a series of independent concurrent operations. Heterogeneous computing is adopted to support accessibility, portability and multi-device use in the clinical settings. For this, we used WebCL, an emerging technology that enables a HTML5 Web browser to execute code in parallel for heterogeneous platforms. We depicted WebCL and our parallel algorithm design. In addition, we tested parallel code on 100 dermoscopy images and showed the execution speedups with respect to the serial version. Results indicate that parallel (WebCL) version and serial version of density based lesion border detection methods generate the same accuracy rates for 100 dermoscopy images, in which mean of border error is 6.94%, mean of recall is 76.66%, and mean of precision is 99.29% respectively. Moreover, WebCL version's speedup factor for 100 dermoscopy images' lesion border detection averages around ~491.2. When large amount of high resolution dermoscopy images considered in a usual clinical setting along with the critical importance of early detection and diagnosis of melanoma before metastasis, the importance of fast processing dermoscopy images become obvious. In this paper, we introduce WebCL and the use of it for biomedical image processing applications. WebCL is a javascript binding of OpenCL, which takes advantage of GPU computing from a web browser. Therefore, WebCL parallel version of density based skin lesion border detection introduced in this study can supplement expert dermatologist, and aid them in early diagnosis of skin lesions. While WebCL is currently an emerging technology, a full adoption of WebCL into the HTML5 standard would allow for this implementation to run on a very large set of hardware and software systems. WebCL takes full advantage of parallel computational resources including multi-cores and GPUs on a local machine, and allows for compiled code to run directly from the Web Browser.

  17. Architecture of the parallel hierarchical network for fast image recognition

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Wójcik, Waldemar; Kokriatskaia, Natalia; Kutaev, Yuriy; Ivasyuk, Igor; Kotyra, Andrzej; Smailova, Saule

    2016-09-01

    Multistage integration of visual information in the brain allows humans to respond quickly to most significant stimuli while maintaining their ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing includes main types of cortical multistage convergence. The input images are mapped into a flexible hierarchy that reflects complexity of image data. Procedures of the temporal image decomposition and hierarchy formation are described in mathematical expressions. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image that encapsulates a structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a quick response of the system. The result is presented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match. With regard to the forecasting method, its idea lies in the following. In the results synchronization block, network-processed data arrive to the database where a sample of most correlated data is drawn using service parameters of the parallel-hierarchical network.

  18. Near Real-Time Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Denker, C.; Yang, G.; Wang, H.

    2001-08-01

    In recent years, post-facto image-processing algorithms have been developed to achieve diffraction-limited observations of the solar surface. We present a combination of frame selection, speckle-masking imaging, and parallel computing which provides real-time, diffraction-limited, 256×256 pixel images at a 1-minute cadence. Our approach to achieve diffraction limited observations is complementary to adaptive optics (AO). At the moment, AO is limited by the fact that it corrects wavefront abberations only for a field of view comparable to the isoplanatic patch. This limitation does not apply to speckle-masking imaging. However, speckle-masking imaging relies on short-exposure images which limits its spectroscopic applications. The parallel processing of the data is performed on a Beowulf-class computer which utilizes off-the-shelf, mass-market technologies to provide high computational performance for scientific calculations and applications at low cost. Beowulf computers have a great potential, not only for image reconstruction, but for any kind of complex data reduction. Immediate access to high-level data products and direct visualization of dynamic processes on the Sun are two of the advantages to be gained.

  19. Algorithms and programming tools for image processing on the MPP, part 2

    NASA Technical Reports Server (NTRS)

    Reeves, Anthony P.

    1986-01-01

    A number of algorithms were developed for image warping and pyramid image filtering. Techniques were investigated for the parallel processing of a large number of independent irregular shaped regions on the MPP. In addition some utilities for dealing with very long vectors and for sorting were developed. Documentation pages for the algorithms which are available for distribution are given. The performance of the MPP for a number of basic data manipulations was determined. From these results it is possible to predict the efficiency of the MPP for a number of algorithms and applications. The Parallel Pascal development system, which is a portable programming environment for the MPP, was improved and better documentation including a tutorial was written. This environment allows programs for the MPP to be developed on any conventional computer system; it consists of a set of system programs and a library of general purpose Parallel Pascal functions. The algorithms were tested on the MPP and a presentation on the development system was made to the MPP users group. The UNIX version of the Parallel Pascal System was distributed to a number of new sites.

  20. Using Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data

    NASA Astrophysics Data System (ADS)

    O'Connor, A. S.; Justice, B.; Harris, A. T.

    2013-12-01

    Graphics Processing Units (GPUs) are high-performance multiple-core processors capable of very high computational speeds and large data throughput. Modern GPUs are inexpensive and widely available commercially. These are general-purpose parallel processors with support for a variety of programming interfaces, including industry standard languages such as C. GPU implementations of algorithms that are well suited for parallel processing can often achieve speedups of several orders of magnitude over optimized CPU codes. Significant improvements in speeds for imagery orthorectification, atmospheric correction, target detection and image transformations like Independent Components Analsyis (ICA) have been achieved using GPU-based implementations. Additional optimizations, when factored in with GPU processing capabilities, can provide 50x - 100x reduction in the time required to process large imagery. Exelis Visual Information Solutions (VIS) has implemented a CUDA based GPU processing frame work for accelerating ENVI and IDL processes that can best take advantage of parallelization. Testing Exelis VIS has performed shows that orthorectification can take as long as two hours with a WorldView1 35,0000 x 35,000 pixel image. With GPU orthorecification, the same orthorectification process takes three minutes. By speeding up image processing, imagery can successfully be used by first responders, scientists making rapid discoveries with near real time data, and provides an operational component to data centers needing to quickly process and disseminate data.

  1. Quantum realization of the bilinear interpolation method for NEQR.

    PubMed

    Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping; Ian, Hou

    2017-05-31

    In recent years, quantum image processing is one of the most active fields in quantum computation and quantum information. Image scaling as a kind of image geometric transformation has been widely studied and applied in the classical image processing, however, the quantum version of which does not exist. This paper is concerned with the feasibility of the classical bilinear interpolation based on novel enhanced quantum image representation (NEQR). Firstly, the feasibility of the bilinear interpolation for NEQR is proven. Then the concrete quantum circuits of the bilinear interpolation including scaling up and scaling down for NEQR are given by using the multiply Control-Not operation, special adding one operation, the reverse parallel adder, parallel subtractor, multiplier and division operations. Finally, the complexity analysis of the quantum network circuit based on the basic quantum gates is deduced. Simulation result shows that the scaled-up image using bilinear interpolation is clearer and less distorted than nearest interpolation.

  2. Intershot Analysis of Flows in DIII-D

    NASA Astrophysics Data System (ADS)

    Meyer, W. H.; Allen, S. L.; Samuell, C. M.; Howard, J.

    2016-10-01

    Analysis of the DIII-D flow diagnostic data require demodulation of interference images, and inversion of the resultant line integrated emissivity and flow (phase) images. Four response matrices are pre-calculated: the emissivity line integral and the line integral of the scalar product of the lines-of-site with the orthogonal unit vectors of parallel flow. Equilibrium data determines the relative weight of the component matrices used in the final flow inversion matrix. Serial processing has been used for the lower divertor viewing flow camera 800x600 pixel image. The full cross section viewing camera will require parallel processing of the 2160x2560 pixel image. We will discuss using a Posix thread pool and a Tesla K40c GPU in the processing of this data. Prepared by LLNL under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. DOE, Office of Science, Fusion Energy Sciences.

  3. Research on moving object detection based on frog's eyes

    NASA Astrophysics Data System (ADS)

    Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan

    2008-12-01

    On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.

  4. Image Understanding Architecture

    DTIC Science & Technology

    1991-09-01

    architecture to support real-time, knowledge -based image understanding , and develop the software support environment that will be needed to utilize...NUMBER OF PAGES Image Understanding Architecture, Knowledge -Based Vision, AI Real-Time Computer Vision, Software Simulator, Parallel Processor IL PRICE... information . In addition to sensory and knowledge -based processing it is useful to introduce a level of symbolic processing. Thus, vision researchers

  5. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  6. Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun

    2014-01-01

    We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.

  7. An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing

    NASA Astrophysics Data System (ADS)

    Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng

    2018-02-01

    De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.

  8. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    PubMed Central

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  9. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    PubMed

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  10. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images.

    PubMed

    Du, Xiaogang; Dang, Jianwu; Wang, Yangping; Wang, Song; Lei, Tao

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU).

  11. UWGSP4: an imaging and graphics superworkstation and its medical applications

    NASA Astrophysics Data System (ADS)

    Jong, Jing-Ming; Park, Hyun Wook; Eo, Kilsu; Kim, Min-Hwan; Zhang, Peng; Kim, Yongmin

    1992-05-01

    UWGSP4 is configured with a parallel architecture for image processing and a pipelined architecture for computer graphics. The system's peak performance is 1,280 MFLOPS for image processing and over 200,000 Gouraud shaded 3-D polygons per second for graphics. The simulated sustained performance is about 50% of the peak performance in general image processing. Most of the 2-D image processing functions are efficiently vectorized and parallelized in UWGSP4. A performance of 770 MFLOPS in convolution and 440 MFLOPS in FFT is achieved. The real-time cine display, up to 32 frames of 1280 X 1024 pixels per second, is supported. In 3-D imaging, the update rate for the surface rendering is 10 frames of 20,000 polygons per second; the update rate for the volume rendering is 6 frames of 128 X 128 X 128 voxels per second. The system provides 1280 X 1024 X 32-bit double frame buffers and one 1280 X 1024 X 8-bit overlay buffer for supporting realistic animation, 24-bit true color, and text annotation. A 1280 X 1024- pixel, 66-Hz noninterlaced display screen with 1:1 aspect ratio can be windowed into the frame buffer for the display of any portion of the processed image or graphics.

  12. GPU Accelerated Ultrasonic Tomography Using Propagation and Back Propagation Method

    DTIC Science & Technology

    2015-09-28

    the medical imaging field using GPUs has been done for many years. In [1], Copeland et al. used 2D images , obtained by X - ray projections, to...Index Terms— Medical Imaging , Ultrasonic Tomography, GPU, CUDA, Parallel Computing I. INTRODUCTION GRAPHIC Processing Units (GPUs) are computation... Imaging Algorithm The process of reconstructing images from ultrasonic infor- mation starts with the following acoustical wave equation: ∂2 ∂t2 u ( x

  13. Scalable isosurface visualization of massive datasets on commodity off-the-shelf clusters

    PubMed Central

    Bajaj, Chandrajit

    2009-01-01

    Tomographic imaging and computer simulations are increasingly yielding massive datasets. Interactive and exploratory visualizations have rapidly become indispensable tools to study large volumetric imaging and simulation data. Our scalable isosurface visualization framework on commodity off-the-shelf clusters is an end-to-end parallel and progressive platform, from initial data access to the final display. Interactive browsing of extracted isosurfaces is made possible by using parallel isosurface extraction, and rendering in conjunction with a new specialized piece of image compositing hardware called Metabuffer. In this paper, we focus on the back end scalability by introducing a fully parallel and out-of-core isosurface extraction algorithm. It achieves scalability by using both parallel and out-of-core processing and parallel disks. It statically partitions the volume data to parallel disks with a balanced workload spectrum, and builds I/O-optimal external interval trees to minimize the number of I/O operations of loading large data from disk. We also describe an isosurface compression scheme that is efficient for progress extraction, transmission and storage of isosurfaces. PMID:19756231

  14. The correlation study of parallel feature extractor and noise reduction approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewi, Deshinta Arrova; Sundararajan, Elankovan; Prabuwono, Anton Satria

    2015-05-15

    This paper presents literature reviews that show variety of techniques to develop parallel feature extractor and finding its correlation with noise reduction approaches for low light intensity images. Low light intensity images are normally displayed as darker images and low contrast. Without proper handling techniques, those images regularly become evidences of misperception of objects and textures, the incapability to section them. The visual illusions regularly clues to disorientation, user fatigue, poor detection and classification performance of humans and computer algorithms. Noise reduction approaches (NR) therefore is an essential step for other image processing steps such as edge detection, image segmentation,more » image compression, etc. Parallel Feature Extractor (PFE) meant to capture visual contents of images involves partitioning images into segments, detecting image overlaps if any, and controlling distributed and redistributed segments to extract the features. Working on low light intensity images make the PFE face challenges and closely depend on the quality of its pre-processing steps. Some papers have suggested many well established NR as well as PFE strategies however only few resources have suggested or mentioned the correlation between them. This paper reviews best approaches of the NR and the PFE with detailed explanation on the suggested correlation. This finding may suggest relevant strategies of the PFE development. With the help of knowledge based reasoning, computational approaches and algorithms, we present the correlation study between the NR and the PFE that can be useful for the development and enhancement of other existing PFE.« less

  15. Automated inspection of hot steel slabs

    DOEpatents

    Martin, R.J.

    1985-12-24

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  16. Automated inspection of hot steel slabs

    DOEpatents

    Martin, Ronald J.

    1985-01-01

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  17. Development of an optical inspection platform for surface defect detection in touch panel glass

    NASA Astrophysics Data System (ADS)

    Chang, Ming; Chen, Bo-Cheng; Gabayno, Jacque Lynn; Chen, Ming-Fu

    2016-04-01

    An optical inspection platform combining parallel image processing with high resolution opto-mechanical module was developed for defect inspection of touch panel glass. Dark field images were acquired using a 12288-pixel line CCD camera with 3.5 µm per pixel resolution and 12 kHz line rate. Key features of the glass surface were analyzed by parallel image processing on combined CPU and GPU platforms. Defect inspection of touch panel glass, which provided 386 megapixel image data per sample, was completed in roughly 5 seconds. High detection rate of surface scratches on the touch panel glass was realized with minimum defects size of about 10 µm after inspection. The implementation of a custom illumination source significantly improved the scattering efficiency on the surface, therefore enhancing the contrast in the acquired images and overall performance of the inspection system.

  18. Hospital integrated parallel cluster for fast and cost-efficient image analysis: clinical experience and research evaluation

    NASA Astrophysics Data System (ADS)

    Erberich, Stephan G.; Hoppe, Martin; Jansen, Christian; Schmidt, Thomas; Thron, Armin; Oberschelp, Walter

    2001-08-01

    In the last few years more and more University Hospitals as well as private hospitals changed to digital information systems for patient record, diagnostic files and digital images. Not only that patient management becomes easier, it is also very remarkable how clinical research can profit from Picture Archiving and Communication Systems (PACS) and diagnostic databases, especially from image databases. Since images are available on the finger tip, difficulties arise when image data needs to be processed, e.g. segmented, classified or co-registered, which usually demands a lot computational power. Today's clinical environment does support PACS very well, but real image processing is still under-developed. The purpose of this paper is to introduce a parallel cluster of standard distributed systems and its software components and how such a system can be integrated into a hospital environment. To demonstrate the cluster technique we present our clinical experience with the crucial but cost-intensive motion correction of clinical routine and research functional MRI (fMRI) data, as it is processed in our Lab on a daily basis.

  19. Parallel Processing Systems for Passive Ranging During Helicopter Flight

    NASA Technical Reports Server (NTRS)

    Sridhar, Bavavar; Suorsa, Raymond E.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    The complexity of rotorcraft missions involving operations close to the ground result in high pilot workload. In order to allow a pilot time to perform mission-oriented tasks, sensor-aiding and automation of some of the guidance and control functions are highly desirable. Images from an electro-optical sensor provide a covert way of detecting objects in the flight path of a low-flying helicopter. Passive ranging consists of processing a sequence of images using techniques based on optical low computation and recursive estimation. The passive ranging algorithm has to extract obstacle information from imagery at rates varying from five to thirty or more frames per second depending on the helicopter speed. We have implemented and tested the passive ranging algorithm off-line using helicopter-collected images. However, the real-time data and computation requirements of the algorithm are beyond the capability of any off-the-shelf microprocessor or digital signal processor. This paper describes the computational requirements of the algorithm and uses parallel processing technology to meet these requirements. Various issues in the selection of a parallel processing architecture are discussed and four different computer architectures are evaluated regarding their suitability to process the algorithm in real-time. Based on this evaluation, we conclude that real-time passive ranging is a realistic goal and can be achieved with a short time.

  20. The whole mesh deformation model: a fast image segmentation method suitable for effective parallelization

    NASA Astrophysics Data System (ADS)

    Lenkiewicz, Przemyslaw; Pereira, Manuela; Freire, Mário M.; Fernandes, José

    2013-12-01

    In this article, we propose a novel image segmentation method called the whole mesh deformation (WMD) model, which aims at addressing the problems of modern medical imaging. Such problems have raised from the combination of several factors: (1) significant growth of medical image volumes sizes due to increasing capabilities of medical acquisition devices; (2) the will to increase the complexity of image processing algorithms in order to explore new functionality; (3) change in processor development and turn towards multi processing units instead of growing bus speeds and the number of operations per second of a single processing unit. Our solution is based on the concept of deformable models and is characterized by a very effective and precise segmentation capability. The proposed WMD model uses a volumetric mesh instead of a contour or a surface to represent the segmented shapes of interest, which allows exploiting more information in the image and obtaining results in shorter times, independently of image contents. The model also offers a good ability for topology changes and allows effective parallelization of workflow, which makes it a very good choice for large datasets. We present a precise model description, followed by experiments on artificial images and real medical data.

  1. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  2. Parallel ptychographic reconstruction

    DOE PAGES

    Nashed, Youssef S. G.; Vine, David J.; Peterka, Tom; ...

    2014-12-19

    Ptychography is an imaging method whereby a coherent beam is scanned across an object, and an image is obtained by iterative phasing of the set of diffraction patterns. It is able to be used to image extended objects at a resolution limited by scattering strength of the object and detector geometry, rather than at an optics-imposed limit. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes, yet at the same time there is also a need to deliver reconstructed images immediately so that one can evaluate the next steps tomore » take in an experiment. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs) and then employs novel techniques to merge sub-datasets into a single complex phase and amplitude image. Results are shown on a simulated specimen and a real dataset from an X-ray experiment conducted at a synchrotron light source.« less

  3. Parallel design of JPEG-LS encoder on graphics processing units

    NASA Astrophysics Data System (ADS)

    Duan, Hao; Fang, Yong; Huang, Bormin

    2012-01-01

    With recent technical advances in graphic processing units (GPUs), GPUs have outperformed CPUs in terms of compute capability and memory bandwidth. Many successful GPU applications to high performance computing have been reported. JPEG-LS is an ISO/IEC standard for lossless image compression which utilizes adaptive context modeling and run-length coding to improve compression ratio. However, adaptive context modeling causes data dependency among adjacent pixels and the run-length coding has to be performed in a sequential way. Hence, using JPEG-LS to compress large-volume hyperspectral image data is quite time-consuming. We implement an efficient parallel JPEG-LS encoder for lossless hyperspectral compression on a NVIDIA GPU using the computer unified device architecture (CUDA) programming technology. We use the block parallel strategy, as well as such CUDA techniques as coalesced global memory access, parallel prefix sum, and asynchronous data transfer. We also show the relation between GPU speedup and AVIRIS block size, as well as the relation between compression ratio and AVIRIS block size. When AVIRIS images are divided into blocks, each with 64×64 pixels, we gain the best GPU performance with 26.3x speedup over its original CPU code.

  4. F3D Image Processing and Analysis for Many - and Multi-core Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F3D is written in OpenCL, so it achieve[sic] platform-portable parallelism on modern mutli-core CPUs and many-core GPUs. The interface and mechanims to access F3D core are written in Java as a plugin for Fiji/ImageJ to deliver several key image-processing algorithms necessary to remove artifacts from micro-tomography data. The algorithms consist of data parallel aware filters that can efficiently utilizes[sic] resources and can work on out of core datasets and scale efficiently across multiple accelerators. Optimizing for data parallel filters, streaming out of core datasets, and efficient resource and memory and data managements over complex execution sequence of filters greatly expeditesmore » any scientific workflow with image processing requirements. F3D performs several different types of 3D image processing operations, such as non-linear filtering using bilateral filtering and/or median filtering and/or morphological operators (MM). F3D gray-level MM operators are one-pass constant time methods that can perform morphological transformations with a line-structuring element oriented in discrete directions. Additionally, MM operators can be applied to gray-scale images, and consist of two parts: (a) a reference shape or structuring element, which is translated over the image, and (b) a mechanism, or operation, that defines the comparisons to be performed between the image and the structuring element. This tool provides a critical component within many complex pipelines such as those for performing automated segmentation of image stacks. F3D is also called a "descendent" of Quant-CT, another software we developed in the past. These two modules are to be integrated in a next version. Further details were reported in: D.M. Ushizima, T. Perciano, H. Krishnan, B. Loring, H. Bale, D. Parkinson, and J. Sethian. Structure recognition from high-resolution images of ceramic composites. IEEE International Conference on Big Data, October 2014.« less

  5. Massively parallel electrical conductivity imaging of the subsurface: Applications to hydrocarbon exploration

    NASA Astrophysics Data System (ADS)

    Newman, Gregory A.; Commer, Michael

    2009-07-01

    Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.

  6. Massively parallel processor computer

    NASA Technical Reports Server (NTRS)

    Fung, L. W. (Inventor)

    1983-01-01

    An apparatus for processing multidimensional data with strong spatial characteristics, such as raw image data, characterized by a large number of parallel data streams in an ordered array is described. It comprises a large number (e.g., 16,384 in a 128 x 128 array) of parallel processing elements operating simultaneously and independently on single bit slices of a corresponding array of incoming data streams under control of a single set of instructions. Each of the processing elements comprises a bidirectional data bus in communication with a register for storing single bit slices together with a random access memory unit and associated circuitry, including a binary counter/shift register device, for performing logical and arithmetical computations on the bit slices, and an I/O unit for interfacing the bidirectional data bus with the data stream source. The massively parallel processor architecture enables very high speed processing of large amounts of ordered parallel data, including spatial translation by shifting or sliding of bits vertically or horizontally to neighboring processing elements.

  7. The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-06-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage than was previously possible and have sensitivity to partially closed defects. This study explores a coherent imaging technique based on the subtraction of two modes of focusing: parallel, in which the elements are fired together with a delay law and sequential, in which elements are fired independently. In the parallel focusing a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded and post-processed to form an image. Under linear elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images and use this to characterise the nonlinearity of small closed fatigue cracks. In particular we monitor the change in relative phase and amplitude at the fundamental frequencies for each focal point and use this nonlinear coherent imaging metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g. back wall or large scatters) effectively when instrumentation noise compensation in applied, thereby allowing damage to be detected at an early stage (c. 15% of fatigue life) and reliably quantified in later fatigue life.

  8. Smart cloud system with image processing server in diagnosing brain diseases dedicated for hospitals with limited resources.

    PubMed

    Fahmi, Fahmi; Nasution, Tigor H; Anggreiny, Anggreiny

    2017-01-01

    The use of medical imaging in diagnosing brain disease is growing. The challenges are related to the big size of data and complexity of the image processing. High standard of hardware and software are demanded, which can only be provided in big hospitals. Our purpose was to provide a smart cloud system to help diagnosing brain diseases for hospital with limited infrastructure. The expertise of neurologists was first implanted in cloud server to conduct an automatic diagnosis in real time using image processing technique developed based on ITK library and web service. Users upload images through website and the result, in this case the size of tumor was sent back immediately. A specific image compression technique was developed for this purpose. The smart cloud system was able to measure the area and location of tumors, with average size of 19.91 ± 2.38 cm2 and an average response time 7.0 ± 0.3 s. The capability of the server decreased when multiple clients accessed the system simultaneously: 14 ± 0 s (5 parallel clients) and 27 ± 0.2 s (10 parallel clients). The cloud system was successfully developed to process and analyze medical images for diagnosing brain diseases in this case for tumor.

  9. A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images

    PubMed Central

    Wang, Yangping; Wang, Song

    2016-01-01

    The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU). PMID:28053653

  10. High-performance computing in image registration

    NASA Astrophysics Data System (ADS)

    Zanin, Michele; Remondino, Fabio; Dalla Mura, Mauro

    2012-10-01

    Thanks to the recent technological advances, a large variety of image data is at our disposal with variable geometric, radiometric and temporal resolution. In many applications the processing of such images needs high performance computing techniques in order to deliver timely responses e.g. for rapid decisions or real-time actions. Thus, parallel or distributed computing methods, Digital Signal Processor (DSP) architectures, Graphical Processing Unit (GPU) programming and Field-Programmable Gate Array (FPGA) devices have become essential tools for the challenging issue of processing large amount of geo-data. The article focuses on the processing and registration of large datasets of terrestrial and aerial images for 3D reconstruction, diagnostic purposes and monitoring of the environment. For the image alignment procedure, sets of corresponding feature points need to be automatically extracted in order to successively compute the geometric transformation that aligns the data. The feature extraction and matching are ones of the most computationally demanding operations in the processing chain thus, a great degree of automation and speed is mandatory. The details of the implemented operations (named LARES) exploiting parallel architectures and GPU are thus presented. The innovative aspects of the implementation are (i) the effectiveness on a large variety of unorganized and complex datasets, (ii) capability to work with high-resolution images and (iii) the speed of the computations. Examples and comparisons with standard CPU processing are also reported and commented.

  11. A data distributed parallel algorithm for ray-traced volume rendering

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Painter, James S.; Hansen, Charles D.; Krogh, Michael F.

    1993-01-01

    This paper presents a divide-and-conquer ray-traced volume rendering algorithm and a parallel image compositing method, along with their implementation and performance on the Connection Machine CM-5, and networked workstations. This algorithm distributes both the data and the computations to individual processing units to achieve fast, high-quality rendering of high-resolution data. The volume data, once distributed, is left intact. The processing nodes perform local ray tracing of their subvolume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Test results on both the CM-5 and a group of networked workstations demonstrate the practicality of our rendering algorithm and compositing method.

  12. Optimized Laplacian image sharpening algorithm based on graphic processing unit

    NASA Astrophysics Data System (ADS)

    Ma, Tinghuai; Li, Lu; Ji, Sai; Wang, Xin; Tian, Yuan; Al-Dhelaan, Abdullah; Al-Rodhaan, Mznah

    2014-12-01

    In classical Laplacian image sharpening, all pixels are processed one by one, which leads to large amount of computation. Traditional Laplacian sharpening processed on CPU is considerably time-consuming especially for those large pictures. In this paper, we propose a parallel implementation of Laplacian sharpening based on Compute Unified Device Architecture (CUDA), which is a computing platform of Graphic Processing Units (GPU), and analyze the impact of picture size on performance and the relationship between the processing time of between data transfer time and parallel computing time. Further, according to different features of different memory, an improved scheme of our method is developed, which exploits shared memory in GPU instead of global memory and further increases the efficiency. Experimental results prove that two novel algorithms outperform traditional consequentially method based on OpenCV in the aspect of computing speed.

  13. Low level image processing techniques using the pipeline image processing engine in the flight telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Nashman, Marilyn; Chaconas, Karen J.

    1988-01-01

    The sensory processing system for the NASA/NBS Standard Reference Model (NASREM) for telerobotic control is described. This control system architecture was adopted by NASA of the Flight Telerobotic Servicer. The control system is hierarchically designed and consists of three parallel systems: task decomposition, world modeling, and sensory processing. The Sensory Processing System is examined, and in particular the image processing hardware and software used to extract features at low levels of sensory processing for tasks representative of those envisioned for the Space Station such as assembly and maintenance are described.

  14. Telemedicine optoelectronic biomedical data processing system

    NASA Astrophysics Data System (ADS)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  15. Algorithms and programming tools for image processing on the MPP:3

    NASA Technical Reports Server (NTRS)

    Reeves, Anthony P.

    1987-01-01

    This is the third and final report on the work done for NASA Grant 5-403 on Algorithms and Programming Tools for Image Processing on the MPP:3. All the work done for this grant is summarized in the introduction. Work done since August 1986 is reported in detail. Research for this grant falls under the following headings: (1) fundamental algorithms for the MPP; (2) programming utilities for the MPP; (3) the Parallel Pascal Development System; and (4) performance analysis. In this report, the results of two efforts are reported: region growing, and performance analysis of important characteristic algorithms. In each case, timing results from MPP implementations are included. A paper is included in which parallel algorithms for region growing on the MPP is discussed. These algorithms permit different sized regions to be merged in parallel. Details on the implementation and peformance of several important MPP algorithms are given. These include a number of standard permutations, the FFT, convolution, arbitrary data mappings, image warping, and pyramid operations, all of which have been implemented on the MPP. The permutation and image warping functions have been included in the standard development system library.

  16. Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems

    PubMed Central

    Barreiros, Willian; Teodoro, George; Kurc, Tahsin; Kong, Jun; Melo, Alba C. M. A.; Saltz, Joel

    2017-01-01

    We investigate efficient sensitivity analysis (SA) of algorithms that segment and classify image features in a large dataset of high-resolution images. Algorithm SA is the process of evaluating variations of methods and parameter values to quantify differences in the output. A SA can be very compute demanding because it requires re-processing the input dataset several times with different parameters to assess variations in output. In this work, we introduce strategies to efficiently speed up SA via runtime optimizations targeting distributed hybrid systems and reuse of computations from runs with different parameters. We evaluate our approach using a cancer image analysis workflow on a hybrid cluster with 256 nodes, each with an Intel Phi and a dual socket CPU. The SA attained a parallel efficiency of over 90% on 256 nodes. The cooperative execution using the CPUs and the Phi available in each node with smart task assignment strategies resulted in an additional speedup of about 2×. Finally, multi-level computation reuse lead to an additional speedup of up to 2.46× on the parallel version. The level of performance attained with the proposed optimizations will allow the use of SA in large-scale studies. PMID:29081725

  17. High-Performance 3D Image Processing Architectures for Image-Guided Interventions

    DTIC Science & Technology

    2008-01-01

    Parallel architectures and algorithms for image understanding. Boston: Academic Press, 1991. [99] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger , J...Symposium on Pattern Recognition, vol. 2449(pp. 290-297, 2002. [100] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger , J. Weickert, U. Bruning, and C

  18. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  19. Development of an optical parallel logic device and a half-adder circuit for digital optical processing

    NASA Technical Reports Server (NTRS)

    Athale, R. A.; Lee, S. H.

    1978-01-01

    The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.

  20. Reconstruction of coded aperture images

    NASA Technical Reports Server (NTRS)

    Bielefeld, Michael J.; Yin, Lo I.

    1987-01-01

    Balanced correlation method and the Maximum Entropy Method (MEM) were implemented to reconstruct a laboratory X-ray source as imaged by a Uniformly Redundant Array (URA) system. Although the MEM method has advantages over the balanced correlation method, it is computationally time consuming because of the iterative nature of its solution. Massively Parallel Processing, with its parallel array structure is ideally suited for such computations. These preliminary results indicate that it is possible to use the MEM method in future coded-aperture experiments with the help of the MPP.

  1. Time-Resolved 3D Quantitative Flow MRI of the Major Intracranial Vessels: Initial Experience and Comparative Evaluation at 1.5T and 3.0T in Combination With Parallel Imaging

    PubMed Central

    Bammer, Roland; Hope, Thomas A.; Aksoy, Murat; Alley, Marcus T.

    2012-01-01

    Exact knowledge of blood flow characteristics in the major cerebral vessels is of great relevance for diagnosing cerebrovascular abnormalities. This involves the assessment of hemodynamically critical areas as well as the derivation of biomechanical parameters such as wall shear stress and pressure gradients. A time-resolved, 3D phase-contrast (PC) MRI method using parallel imaging was implemented to measure blood flow in three dimensions at multiple instances over the cardiac cycle. The 4D velocity data obtained from 14 healthy volunteers were used to investigate dynamic blood flow with the use of multiplanar reformatting, 3D streamlines, and 4D particle tracing. In addition, the effects of magnetic field strength, parallel imaging, and temporal resolution on the data were investigated in a comparative evaluation at 1.5T and 3T using three different parallel imaging reduction factors and three different temporal resolutions in eight of the 14 subjects. Studies were consistently performed faster at 3T than at 1.5T because of better parallel imaging performance. A high temporal resolution (65 ms) was required to follow dynamic processes in the intracranial vessels. The 4D flow measurements provided a high degree of vascular conspicuity. Time-resolved streamline analysis provided features that have not been reported previously for the intracranial vasculature. PMID:17195166

  2. Parallel fuzzy connected image segmentation on GPU

    PubMed Central

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.

    2011-01-01

    Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA’s compute unified device Architecture (cuda) platform for segmenting medical image data sets. Methods: In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as cuda kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Results: Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. Conclusions: The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set. PMID:21859037

  3. Parallel fuzzy connected image segmentation on GPU.

    PubMed

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W

    2011-07-01

    Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.

  4. Acceleration of integral imaging based incoherent Fourier hologram capture using graphic processing unit.

    PubMed

    Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung

    2012-10-08

    Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.

  5. Accelerating EPI distortion correction by utilizing a modern GPU-based parallel computation.

    PubMed

    Yang, Yao-Hao; Huang, Teng-Yi; Wang, Fu-Nien; Chuang, Tzu-Chao; Chen, Nan-Kuei

    2013-04-01

    The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task. Parallel computing by employing general-purpose calculations on graphics processing units (GPU) can accelerate scientific computing if the algorithm is parallelized. This study proposes a method that incorporates the GPU-based technique into phase demodulation calculations to reduce computation time. The proposed parallel algorithm was applied to a PROPELLER-EPI diffusion tensor data set. The GPU-based phase demodulation method reduced the EPI distortion correctly, and accelerated the computation. The total reconstruction time of the 16-slice PROPELLER-EPI diffusion tensor images with matrix size of 128 × 128 was reduced from 1,754 seconds to 101 seconds by utilizing the parallelized 4-GPU program. GPU computing is a promising method to accelerate EPI geometric correction. The resulting reduction in computation time of phase demodulation should accelerate postprocessing for studies performed with EPI, and should effectuate the PROPELLER-EPI technique for clinical practice. Copyright © 2011 by the American Society of Neuroimaging.

  6. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization.

    PubMed

    Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L; Wang, Xueding; Liu, Xiaojun

    2013-08-01

    Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.

  7. Markov Processes in Image Processing

    NASA Astrophysics Data System (ADS)

    Petrov, E. P.; Kharina, N. L.

    2018-05-01

    Digital images are used as an information carrier in different sciences and technologies. The aspiration to increase the number of bits in the image pixels for the purpose of obtaining more information is observed. In the paper, some methods of compression and contour detection on the basis of two-dimensional Markov chain are offered. Increasing the number of bits on the image pixels will allow one to allocate fine object details more precisely, but it significantly complicates image processing. The methods of image processing do not concede by the efficiency to well-known analogues, but surpass them in processing speed. An image is separated into binary images, and processing is carried out in parallel with each without an increase in speed, when increasing the number of bits on the image pixels. One more advantage of methods is the low consumption of energy resources. Only logical procedures are used and there are no computing operations. The methods can be useful in processing images of any class and assignment in processing systems with a limited time and energy resources.

  8. Creating a Parallel Version of VisIt for Microsoft Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlock, B J; Biagas, K S; Rawson, P L

    2011-12-07

    VisIt is a popular, free interactive parallel visualization and analysis tool for scientific data. Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images or movies for presentations. VisIt was designed from the ground up to work on many scales of computers from modest desktops up to massively parallel clusters. VisIt is comprised of a set of cooperating programs. All programs can be run locally or in client/server mode in which some run locally and some run remotely on compute clusters. The VisIt program most able to harness today's computing powermore » is the VisIt compute engine. The compute engine is responsible for reading simulation data from disk, processing it, and sending results or images back to the VisIt viewer program. In a parallel environment, the compute engine runs several processes, coordinating using the Message Passing Interface (MPI) library. Each MPI process reads some subset of the scientific data and filters the data in various ways to create useful visualizations. By using MPI, VisIt has been able to scale well into the thousands of processors on large computers such as dawn and graph at LLNL. The advent of multicore CPU's has made parallelism the 'new' way to achieve increasing performance. With today's computers having at least 2 cores and in many cases up to 8 and beyond, it is more important than ever to deploy parallel software that can use that computing power not only on clusters but also on the desktop. We have created a parallel version of VisIt for Windows that uses Microsoft's MPI implementation (MSMPI) to process data in parallel on the Windows desktop as well as on a Windows HPC cluster running Microsoft Windows Server 2008. Initial desktop parallel support for Windows was deployed in VisIt 2.4.0. Windows HPC cluster support has been completed and will appear in the VisIt 2.5.0 release. We plan to continue supporting parallel VisIt on Windows so our users will be able to take full advantage of their multicore resources.« less

  9. Parallel computer vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhr, L.

    1987-01-01

    This book is written by research scientists involved in the development of massively parallel, but hierarchically structured, algorithms, architectures, and programs for image processing, pattern recognition, and computer vision. The book gives an integrated picture of the programs and algorithms that are being developed, and also of the multi-computer hardware architectures for which these systems are designed.

  10. Software for Verifying Image-Correlation Tie Points

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Yagi, Gary

    2008-01-01

    A computer program enables assessment of the quality of tie points in the image-correlation processes of the software described in the immediately preceding article. Tie points are computed in mappings between corresponding pixels in the left and right images of a stereoscopic pair. The mappings are sometimes not perfect because image data can be noisy and parallax can cause some points to appear in one image but not the other. The present computer program relies on the availability of a left- right correlation map in addition to the usual right left correlation map. The additional map must be generated, which doubles the processing time. Such increased time can now be afforded in the data-processing pipeline, since the time for map generation is now reduced from about 60 to 3 minutes by the parallelization discussed in the previous article. Parallel cluster processing time, therefore, enabled this better science result. The first mapping is typically from a point (denoted by coordinates x,y) in the left image to a point (x',y') in the right image. The second mapping is from (x',y') in the right image to some point (x",y") in the left image. If (x,y) and(x",y") are identical, then the mapping is considered perfect. The perfect-match criterion can be relaxed by introducing an error window that admits of round-off error and a small amount of noise. The mapping procedure can be repeated until all points in each image not connected to points in the other image are eliminated, so that what remains are verified correlation data.

  11. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOEpatents

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  12. A Design Verification of the Parallel Pipelined Image Processings

    NASA Astrophysics Data System (ADS)

    Wasaki, Katsumi; Harai, Toshiaki

    2008-11-01

    This paper presents a case study of the design and verification of a parallel and pipe-lined image processing unit based on an extended Petri net, which is called a Logical Colored Petri net (LCPN). This is suitable for Flexible-Manufacturing System (FMS) modeling and discussion of structural properties. LCPN is another family of colored place/transition-net(CPN) with the addition of the following features: integer value assignment of marks, representation of firing conditions as marks' value based formulae, and coupling of output procedures with transition firing. Therefore, to study the behavior of a system modeled with this net, we provide a means of searching the reachability tree for markings.

  13. Parallel processing of general and specific threat during early stages of perception

    PubMed Central

    2016-01-01

    Differential processing of threat can consummate as early as 100 ms post-stimulus. Moreover, early perception not only differentiates threat from non-threat stimuli but also distinguishes among discrete threat subtypes (e.g. fear, disgust and anger). Combining spatial-frequency-filtered images of fear, disgust and neutral scenes with high-density event-related potentials and intracranial source estimation, we investigated the neural underpinnings of general and specific threat processing in early stages of perception. Conveyed in low spatial frequencies, fear and disgust images evoked convergent visual responses with similarly enhanced N1 potentials and dorsal visual (middle temporal gyrus) cortical activity (relative to neutral cues; peaking at 156 ms). Nevertheless, conveyed in high spatial frequencies, fear and disgust elicited divergent visual responses, with fear enhancing and disgust suppressing P1 potentials and ventral visual (occipital fusiform) cortical activity (peaking at 121 ms). Therefore, general and specific threat processing operates in parallel in early perception, with the ventral visual pathway engaged in specific processing of discrete threats and the dorsal visual pathway in general threat processing. Furthermore, selectively tuned to distinctive spatial-frequency channels and visual pathways, these parallel processes underpin dimensional and categorical threat characterization, promoting efficient threat response. These findings thus lend support to hybrid models of emotion. PMID:26412811

  14. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction.

    PubMed

    Watanabe, Yuuki; Takahashi, Yuhei; Numazawa, Hiroshi

    2014-02-01

    We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.

  15. [Research and realization of signal processing algorithms based on FPGA in digital ophthalmic ultrasonography imaging].

    PubMed

    Fang, Simin; Zhou, Sheng; Wang, Xiaochun; Ye, Qingsheng; Tian, Ling; Ji, Jianjun; Wang, Yanqun

    2015-01-01

    To design and improve signal processing algorithms of ophthalmic ultrasonography based on FPGA. Achieved three signal processing modules: full parallel distributed dynamic filter, digital quadrature demodulation, logarithmic compression, using Verilog HDL hardware language in Quartus II. Compared to the original system, the hardware cost is reduced, the whole image shows clearer and more information of the deep eyeball contained in the image, the depth of detection increases from 5 cm to 6 cm. The new algorithms meet the design requirements and achieve the system's optimization that they can effectively improve the image quality of existing equipment.

  16. A survey of GPU-based acceleration techniques in MRI reconstructions

    PubMed Central

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou

    2018-01-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community. PMID:29675361

  17. A survey of GPU-based acceleration techniques in MRI reconstructions.

    PubMed

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou; Liang, Dong

    2018-03-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community.

  18. Parallel, confocal, and complete spectrum imager for fluorescent detection of high-density microarray

    NASA Astrophysics Data System (ADS)

    Bogdanov, Valery L.; Boyce-Jacino, Michael

    1999-05-01

    Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.

  19. GaAs Supercomputing: Architecture, Language, And Algorithms For Image Processing

    NASA Astrophysics Data System (ADS)

    Johl, John T.; Baker, Nick C.

    1988-10-01

    The application of high-speed GaAs processors in a parallel system matches the demanding computational requirements of image processing. The architecture of the McDonnell Douglas Astronautics Company (MDAC) vector processor is described along with the algorithms and language translator. Most image and signal processing algorithms can utilize parallel processing and show a significant performance improvement over sequential versions. The parallelization performed by this system is within each vector instruction. Since each vector has many elements, each requiring some computation, useful concurrent arithmetic operations can easily be performed. Balancing the memory bandwidth with the computation rate of the processors is an important design consideration for high efficiency and utilization. The architecture features a bus-based execution unit consisting of four to eight 32-bit GaAs RISC microprocessors running at a 200 MHz clock rate for a peak performance of 1.6 BOPS. The execution unit is connected to a vector memory with three buses capable of transferring two input words and one output word every 10 nsec. The address generators inside the vector memory perform different vector addressing modes and feed the data to the execution unit. The functions discussed in this paper include basic MATRIX OPERATIONS, 2-D SPATIAL CONVOLUTION, HISTOGRAM, and FFT. For each of these algorithms, assembly language programs were run on a behavioral model of the system to obtain performance figures.

  20. Processing Cones: A Computational Structure for Image Analysis.

    DTIC Science & Technology

    1981-12-01

    image analysis applications, referred to as a processing cone, is described and sample algorithms are presented. A fundamental characteristic of the structure is its hierarchical organization into two-dimensional arrays of decreasing resolution. In this architecture, a protypical function is defined on a local window of data and applied uniformly to all windows in a parallel manner. Three basic modes of processing are supported in the cone: reduction operations (upward processing), horizontal operations (processing at a single level) and projection operations (downward

  1. Programmable Remapper with Single Flow Architecture

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E. (Inventor)

    1993-01-01

    An apparatus for image processing comprising a camera for receiving an original visual image and transforming the original visual image into an analog image, a first converter for transforming the analog image of the camera to a digital image, a processor having a single flow architecture for receiving the digital image and producing, with a single algorithm, an output image, a second converter for transforming the digital image of the processor to an analog image, and a viewer for receiving the analog image, transforming the analog image into a transformed visual image for observing the transformations applied to the original visual image. The processor comprises one or more subprocessors for the parallel reception of a digital image for producing an output matrix of the transformed visual image. More particularly, the processor comprises a plurality of subprocessors for receiving in parallel and transforming the digital image for producing a matrix of the transformed visual image, and an output interface means for receiving the respective portions of the transformed visual image from the respective subprocessor for producing an output matrix of the transformed visual image.

  2. Photocapacitive image converter

    NASA Technical Reports Server (NTRS)

    Miller, W. E.; Sher, A.; Tsuo, Y. H. (Inventor)

    1982-01-01

    An apparatus for converting a radiant energy image into corresponding electrical signals including an image converter is described. The image converter includes a substrate of semiconductor material, an insulating layer on the front surface of the substrate, and an electrical contact on the back surface of the substrate. A first series of parallel transparent conductive stripes is on the insulating layer with a processing circuit connected to each of the conductive stripes for detecting the modulated voltages generated thereon. In a first embodiment of the invention, a modulated light stripe perpendicular to the conductive stripes scans the image converter. In a second embodiment a second insulating layer is deposited over the conductive stripes and a second series of parallel transparent conductive stripes perpendicular to the first series is on the second insulating layer. A different frequency current signal is applied to each of the second series of conductive stripes and a modulated image is applied to the image converter.

  3. The Parallel Implementation of Algorithms for Finding the Reflection Symmetry of the Binary Images

    NASA Astrophysics Data System (ADS)

    Fedotova, S.; Seredin, O.; Kushnir, O.

    2017-05-01

    In this paper, we investigate the exact method of searching an axis of binary image symmetry, based on brute-force search among all potential symmetry axes. As a measure of symmetry, we use the set-theoretic Jaccard similarity applied to two subsets of pixels of the image which is divided by some axis. Brute-force search algorithm definitely finds the axis of approximate symmetry which could be considered as ground-truth, but it requires quite a lot of time to process each image. As a first step of our contribution we develop the parallel version of the brute-force algorithm. It allows us to process large image databases and obtain the desired axis of approximate symmetry for each shape in database. Experimental studies implemented on "Butterflies" and "Flavia" datasets have shown that the proposed algorithm takes several minutes per image to find a symmetry axis. However, in case of real-world applications we need computational efficiency which allows solving the task of symmetry axis search in real or quasi-real time. So, for the task of fast shape symmetry calculation on the common multicore PC we elaborated another parallel program, which based on the procedure suggested before in (Fedotova, 2016). That method takes as an initial axis the axis obtained by superfast comparison of two skeleton primitive sub-chains. This process takes about 0.5 sec on the common PC, it is considerably faster than any of the optimized brute-force methods including ones implemented in supercomputer. In our experiments for 70 percent of cases the found axis coincides with the ground-truth one absolutely, and for the rest of cases it is very close to the ground-truth.

  4. Massively parallel data processing for quantitative total flow imaging with optical coherence microscopy and tomography

    NASA Astrophysics Data System (ADS)

    Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo

    2017-08-01

    We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU data processing time)

  5. Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis

    NASA Astrophysics Data System (ADS)

    Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI

    2018-05-01

    Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.

  6. Noncoherent parallel optical processor for discrete two-dimensional linear transformations.

    PubMed

    Glaser, I

    1980-10-01

    We describe a parallel optical processor, based on a lenslet array, that provides general linear two-dimensional transformations using noncoherent light. Such a processor could become useful in image- and signal-processing applications in which the throughput requirements cannot be adequately satisfied by state-of-the-art digital processors. Experimental results that illustrate the feasibility of the processor by demonstrating its use in parallel optical computation of the two-dimensional Walsh-Hadamard transformation are presented.

  7. Content-addressable read/write memories for image analysis

    NASA Technical Reports Server (NTRS)

    Snyder, W. E.; Savage, C. D.

    1982-01-01

    The commonly encountered image analysis problems of region labeling and clustering are found to be cases of search-and-rename problem which can be solved in parallel by a system architecture that is inherently suitable for VLSI implementation. This architecture is a novel form of content-addressable memory (CAM) which provides parallel search and update functions, allowing speed reductions down to constant time per operation. It has been proposed in related investigations by Hall (1981) that, with VLSI, CAM-based structures with enhanced instruction sets for general purpose processing will be feasible.

  8. Compact holographic optical neural network system for real-time pattern recognition

    NASA Astrophysics Data System (ADS)

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  9. Discrimination of portraits using a hybrid parallel joint transform correlator system

    NASA Astrophysics Data System (ADS)

    Inaba, Rieko; Hashimoto, Asako; Kodate, Kashiko

    1999-05-01

    A hybrid parallel joint transform correlation system is demonstrated through the introduction of a five-channel binary zone plate array and is applied to the discrimination of portraits for a presumed criminal investigation. In order to improve performance, we adopt pe-processing of images with white area of 20%. Furthermore, we discuss the robustness.

  10. Design and DSP implementation of star image acquisition and star point fast acquiring and tracking

    NASA Astrophysics Data System (ADS)

    Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang

    2006-02-01

    Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.

  11. Non-Cartesian Parallel Imaging Reconstruction

    PubMed Central

    Wright, Katherine L.; Hamilton, Jesse I.; Griswold, Mark A.; Gulani, Vikas; Seiberlich, Nicole

    2014-01-01

    Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be employed to reconstruct images from undersampled Cartesian data, non-Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the non-homogeneous sensitivities of multi-coil phased arrays. This review will begin with an overview of non-Cartesian k-space trajectories and their sampling properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging algorithms. Three representative non-Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non-Cartesian GRAPPA, and Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non-Cartesian parallel imaging will be covered. PMID:24408499

  12. Reducing Speckle In One-Look SAR Images

    NASA Technical Reports Server (NTRS)

    Nathan, K. S.; Curlander, J. C.

    1990-01-01

    Local-adaptive-filter algorithm incorporated into digital processing of synthetic-aperture-radar (SAR) echo data to reduce speckle in resulting imagery. Involves use of image statistics in vicinity of each picture element, in conjunction with original intensity of element, to estimate brightness more nearly proportional to true radar reflectance of corresponding target. Increases ratio of signal to speckle noise without substantial degradation of resolution common to multilook SAR images. Adapts to local variations of statistics within scene, preserving subtle details. Computationally simple. Lends itself to parallel processing of different segments of image, making possible increased throughput.

  13. Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu

    1995-01-01

    As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.

  14. Optical to optical interface device

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Vohl, P.; Nisenson, P.

    1972-01-01

    The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.

  15. STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.

    PubMed

    Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X

    2009-08-01

    This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.

  16. Medical image processing on the GPU - past, present and future.

    PubMed

    Eklund, Anders; Dufort, Paul; Forsberg, Daniel; LaConte, Stephen M

    2013-12-01

    Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing, are affordable and energy efficient. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms. This review presents the past and present work on GPU accelerated medical image processing, and is meant to serve as an overview and introduction to existing GPU implementations. The review covers GPU acceleration of basic image processing operations (filtering, interpolation, histogram estimation and distance transforms), the most commonly used algorithms in medical imaging (image registration, image segmentation and image denoising) and algorithms that are specific to individual modalities (CT, PET, SPECT, MRI, fMRI, DTI, ultrasound, optical imaging and microscopy). The review ends by highlighting some future possibilities and challenges. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Holographic Associative Memory Employing Phase Conjugation

    NASA Astrophysics Data System (ADS)

    Soffer, B. H.; Marom, E.; Owechko, Y.; Dunning, G.

    1986-12-01

    The principle of information retrieval by association has been suggested as a basis for parallel computing and as the process by which human memory functions.1 Various associative processors have been proposed that use electronic or optical means. Optical schemes,2-7 in particular, those based on holographic principles,8'8' are well suited to associative processing because of their high parallelism and information throughput. Previous workers8 demonstrated that holographically stored images can be recalled by using relatively complicated reference images but did not utilize nonlinear feedback to reduce the large cross talk that results when multiple objects are stored and a partial or distorted input is used for retrieval. These earlier approaches were limited in their ability to reconstruct the output object faithfully from a partial input.

  18. Embedded Implementation of VHR Satellite Image Segmentation

    PubMed Central

    Li, Chao; Balla-Arabé, Souleymane; Ginhac, Dominique; Yang, Fan

    2016-01-01

    Processing and analysis of Very High Resolution (VHR) satellite images provide a mass of crucial information, which can be used for urban planning, security issues or environmental monitoring. However, they are computationally expensive and, thus, time consuming, while some of the applications, such as natural disaster monitoring and prevention, require high efficiency performance. Fortunately, parallel computing techniques and embedded systems have made great progress in recent years, and a series of massively parallel image processing devices, such as digital signal processors or Field Programmable Gate Arrays (FPGAs), have been made available to engineers at a very convenient price and demonstrate significant advantages in terms of running-cost, embeddability, power consumption flexibility, etc. In this work, we designed a texture region segmentation method for very high resolution satellite images by using the level set algorithm and the multi-kernel theory in a high-abstraction C environment and realize its register-transfer level implementation with the help of a new proposed high-level synthesis-based design flow. The evaluation experiments demonstrate that the proposed design can produce high quality image segmentation with a significant running-cost advantage. PMID:27240370

  19. Parallel ICA and its hardware implementation in hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Du, Hongtao; Qi, Hairong; Peterson, Gregory D.

    2004-04-01

    Advances in hyperspectral images have dramatically boosted remote sensing applications by providing abundant information using hundreds of contiguous spectral bands. However, the high volume of information also results in excessive computation burden. Since most materials have specific characteristics only at certain bands, a lot of these information is redundant. This property of hyperspectral images has motivated many researchers to study various dimensionality reduction algorithms, including Projection Pursuit (PP), Principal Component Analysis (PCA), wavelet transform, and Independent Component Analysis (ICA), where ICA is one of the most popular techniques. It searches for a linear or nonlinear transformation which minimizes the statistical dependence between spectral bands. Through this process, ICA can eliminate superfluous but retain practical information given only the observations of hyperspectral images. One hurdle of applying ICA in hyperspectral image (HSI) analysis, however, is its long computation time, especially for high volume hyperspectral data sets. Even the most efficient method, FastICA, is a very time-consuming process. In this paper, we present a parallel ICA (pICA) algorithm derived from FastICA. During the unmixing process, pICA divides the estimation of weight matrix into sub-processes which can be conducted in parallel on multiple processors. The decorrelation process is decomposed into the internal decorrelation and the external decorrelation, which perform weight vector decorrelations within individual processors and between cooperative processors, respectively. In order to further improve the performance of pICA, we seek hardware solutions in the implementation of pICA. Until now, there are very few hardware designs for ICA-related processes due to the complicated and iterant computation. This paper discusses capacity limitation of FPGA implementations for pICA in HSI analysis. A synthesis of Application-Specific Integrated Circuit (ASIC) is designed for pICA-based dimensionality reduction in HSI analysis. The pICA design is implemented using standard-height cells and aimed at TSMC 0.18 micron process. During the synthesis procedure, three ICA-related reconfigurable components are developed for the reuse and retargeting purpose. Preliminary results show that the standard-height cell based ASIC synthesis provide an effective solution for pICA and ICA-related processes in HSI analysis.

  20. Computational Performance of Intel MIC, Sandy Bridge, and GPU Architectures: Implementation of a 1D c++/OpenMP Electrostatic Particle-In-Cell Code

    DTIC Science & Technology

    2014-05-01

    fusion, space and astrophysical plasmas, but still the general picture can be presented quite well with the fluid approach [6, 7]. The microscopic...purpose computing CPU for algorithms where processing of large blocks of data is done in parallel. The reason for that is the GPU’s highly effective...parallel structure. Most of the image and video processing computations involve heavy matrix and vector op- erations over large amounts of data and

  1. The study on the parallel processing based time series correlation analysis of RBC membrane flickering in quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Lee, Minsuk; Won, Youngjae; Park, Byungjun; Lee, Seungrag

    2017-02-01

    Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.

  2. The Television Generation, Television Literacy, and Television Trends.

    ERIC Educational Resources Information Center

    Cohen, Jodi R.

    Unlike the linear, serial process of reading books, learning to "read" television is a parallel process in which multiple pieces of information are simultaneously received. Perceiving images, only one aspect of understanding television, requires the concurrent processing of information that is compounded within a symbol system. The…

  3. Fast polyenergetic forward projection for image formation using OpenCL on a heterogeneous parallel computing platform.

    PubMed

    Zhou, Lili; Clifford Chao, K S; Chang, Jenghwa

    2012-11-01

    Simulated projection images of digital phantoms constructed from CT scans have been widely used for clinical and research applications but their quality and computation speed are not optimal for real-time comparison with the radiography acquired with an x-ray source of different energies. In this paper, the authors performed polyenergetic forward projections using open computing language (OpenCL) in a parallel computing ecosystem consisting of CPU and general purpose graphics processing unit (GPGPU) for fast and realistic image formation. The proposed polyenergetic forward projection uses a lookup table containing the NIST published mass attenuation coefficients (μ∕ρ) for different tissue types and photon energies ranging from 1 keV to 20 MeV. The CT images of interested sites are first segmented into different tissue types based on the CT numbers and converted to a three-dimensional attenuation phantom by linking each voxel to the corresponding tissue type in the lookup table. The x-ray source can be a radioisotope or an x-ray generator with a known spectrum described as weight w(n) for energy bin E(n). The Siddon method is used to compute the x-ray transmission line integral for E(n) and the x-ray fluence is the weighted sum of the exponential of line integral for all energy bins with added Poisson noise. To validate this method, a digital head and neck phantom constructed from the CT scan of a Rando head phantom was segmented into three (air, gray∕white matter, and bone) regions for calculating the polyenergetic projection images for the Mohan 4 MV energy spectrum. To accelerate the calculation, the authors partitioned the workloads using the task parallelism and data parallelism and scheduled them in a parallel computing ecosystem consisting of CPU and GPGPU (NVIDIA Tesla C2050) using OpenCL only. The authors explored the task overlapping strategy and the sequential method for generating the first and subsequent DRRs. A dispatcher was designed to drive the high-degree parallelism of the task overlapping strategy. Numerical experiments were conducted to compare the performance of the OpenCL∕GPGPU-based implementation with the CPU-based implementation. The projection images were similar to typical portal images obtained with a 4 or 6 MV x-ray source. For a phantom size of 512 × 512 × 223, the time for calculating the line integrals for a 512 × 512 image panel was 16.2 ms on GPGPU for one energy bin in comparison to 8.83 s on CPU. The total computation time for generating one polyenergetic projection image of 512 × 512 was 0.3 s (141 s for CPU). The relative difference between the projection images obtained with the CPU-based and OpenCL∕GPGPU-based implementations was on the order of 10(-6) and was virtually indistinguishable. The task overlapping strategy was 5.84 and 1.16 times faster than the sequential method for the first and the subsequent digitally reconstruction radiographies, respectively. The authors have successfully built digital phantoms using anatomic CT images and NIST μ∕ρ tables for simulating realistic polyenergetic projection images and optimized the processing speed with parallel computing using GPGPU∕OpenCL-based implementation. The computation time was fast (0.3 s per projection image) enough for real-time IGRT (image-guided radiotherapy) applications.

  4. Real-time digital signal processing for live electro-optic imaging.

    PubMed

    Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro

    2009-08-31

    We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.

  5. Image gathering, coding, and processing: End-to-end optimization for efficient and robust acquisition of visual information

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.

    1990-01-01

    Researchers are concerned with the end-to-end performance of image gathering, coding, and processing. The applications range from high-resolution television to vision-based robotics, wherever the resolution, efficiency and robustness of visual information acquisition and processing are critical. For the presentation at this workshop, it is convenient to divide research activities into the following two overlapping areas: The first is the development of focal-plane processing techniques and technology to effectively combine image gathering with coding, with an emphasis on low-level vision processing akin to the retinal processing in human vision. The approach includes the familiar Laplacian pyramid, the new intensity-dependent spatial summation, and parallel sensing/processing networks. Three-dimensional image gathering is attained by combining laser ranging with sensor-array imaging. The second is the rigorous extension of information theory and optimal filtering to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing.

  6. Manyscale Computing for Sensor Processing in Support of Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Chapman, W.; Hayden, E.; Sahni, S.; Ranka, S.

    2014-09-01

    Increasing image and signal data burden associated with sensor data processing in support of space situational awareness implies continuing computational throughput growth beyond the petascale regime. In addition to growing applications data burden and diversity, the breadth, diversity and scalability of high performance computing architectures and their various organizations challenge the development of a single, unifying, practicable model of parallel computation. Therefore, models for scalable parallel processing have exploited architectural and structural idiosyncrasies, yielding potential misapplications when legacy programs are ported among such architectures. In response to this challenge, we have developed a concise, efficient computational paradigm and software called Manyscale Computing to facilitate efficient mapping of annotated application codes to heterogeneous parallel architectures. Our theory, algorithms, software, and experimental results support partitioning and scheduling of application codes for envisioned parallel architectures, in terms of work atoms that are mapped (for example) to threads or thread blocks on computational hardware. Because of the rigor, completeness, conciseness, and layered design of our manyscale approach, application-to-architecture mapping is feasible and scalable for architectures at petascales, exascales, and above. Further, our methodology is simple, relying primarily on a small set of primitive mapping operations and support routines that are readily implemented on modern parallel processors such as graphics processing units (GPUs) and hybrid multi-processors (HMPs). In this paper, we overview the opportunities and challenges of manyscale computing for image and signal processing in support of space situational awareness applications. We discuss applications in terms of a layered hardware architecture (laboratory > supercomputer > rack > processor > component hierarchy). Demonstration applications include performance analysis and results in terms of execution time as well as storage, power, and energy consumption for bus-connected and/or networked architectures. The feasibility of the manyscale paradigm is demonstrated by addressing four principal challenges: (1) architectural/structural diversity, parallelism, and locality, (2) masking of I/O and memory latencies, (3) scalability of design as well as implementation, and (4) efficient representation/expression of parallel applications. Examples will demonstrate how manyscale computing helps solve these challenges efficiently on real-world computing systems.

  7. INVITED TOPICAL REVIEW: Parallel magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Larkman, David J.; Nunes, Rita G.

    2007-04-01

    Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed.

  8. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array—Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-01-01

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813

  9. Satellite on-board real-time SAR processor prototype

    NASA Astrophysics Data System (ADS)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and size are reviewed.

  10. Eye movement related brain responses to emotional scenes during free viewing

    PubMed Central

    Simola, Jaana; Torniainen, Jari; Moisala, Mona; Kivikangas, Markus; Krause, Christina M.

    2013-01-01

    Emotional stimuli are preferentially processed over neutral stimuli. Previous studies, however, disagree on whether emotional stimuli capture attention preattentively or whether the processing advantage is dependent on allocation of attention. The present study investigated attention and emotion processes by measuring brain responses related to eye movement events while 11 participants viewed images selected from the International Affective Picture System (IAPS). Brain responses to emotional stimuli were compared between serial and parallel presentation. An “emotional” set included one image with high positive or negative valence among neutral images. A “neutral” set comprised four neutral images. The participants were asked to indicate which picture—if any—was emotional and to rate that picture on valence and arousal. In the serial condition, the event-related potentials (ERPs) were time-locked to the stimulus onset. In the parallel condition, the ERPs were time-locked to the first eye entry on an image. The eye movement results showed facilitated processing of emotional, especially unpleasant information. The EEG results in both presentation conditions showed that the LPP (“late positive potential”) amplitudes at 400–500 ms were enlarged for the unpleasant and pleasant pictures as compared to neutral pictures. Moreover, the unpleasant scenes elicited stronger responses than pleasant scenes. The ERP results did not support parafoveal emotional processing, although the eye movement results suggested faster attention capture by emotional stimuli. Our findings, thus, suggested that emotional processing depends on overt attentional resources engaged in the processing of emotional content. The results also indicate that brain responses to emotional images can be analyzed time-locked to eye movement events, although the response amplitudes were larger during serial presentation. PMID:23970856

  11. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    PubMed

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  12. MIST: An Open Source Environmental Modelling Programming Language Incorporating Easy to Use Data Parallelism.

    NASA Astrophysics Data System (ADS)

    Bellerby, Tim

    2014-05-01

    Model Integration System (MIST) is open-source environmental modelling programming language that directly incorporates data parallelism. The language is designed to enable straightforward programming structures, such as nested loops and conditional statements to be directly translated into sequences of whole-array (or more generally whole data-structure) operations. MIST thus enables the programmer to use well-understood constructs, directly relating to the mathematical structure of the model, without having to explicitly vectorize code or worry about details of parallelization. A range of common modelling operations are supported by dedicated language structures operating on cell neighbourhoods rather than individual cells (e.g.: the 3x3 local neighbourhood needed to implement an averaging image filter can be simply accessed from within a simple loop traversing all image pixels). This facility hides details of inter-process communication behind more mathematically relevant descriptions of model dynamics. The MIST automatic vectorization/parallelization process serves both to distribute work among available nodes and separately to control storage requirements for intermediate expressions - enabling operations on very large domains for which memory availability may be an issue. MIST is designed to facilitate efficient interpreter based implementations. A prototype open source interpreter is available, coded in standard FORTRAN 95, with tools to rapidly integrate existing FORTRAN 77 or 95 code libraries. The language is formally specified and thus not limited to FORTRAN implementation or to an interpreter-based approach. A MIST to FORTRAN compiler is under development and volunteers are sought to create an ANSI-C implementation. Parallel processing is currently implemented using OpenMP. However, parallelization code is fully modularised and could be replaced with implementations using other libraries. GPU implementation is potentially possible.

  13. Computational method for multi-modal microscopy based on transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao

    2017-02-01

    In this paper, we develop the requisite theory to describe a hybrid virtual-physical multi-modal imaging system which yields quantitative phase, Zernike phase contrast, differential interference contrast (DIC), and light field moment imaging simultaneously based on transport of intensity equation(TIE). We then give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens based TIE system, combined with the appropriate post-processing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.

  14. An iterative reduced field-of-view reconstruction for periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI.

    PubMed

    Lin, Jyh-Miin; Patterson, Andrew J; Chang, Hing-Chiu; Gillard, Jonathan H; Graves, Martin J

    2015-10-01

    To propose a new reduced field-of-view (rFOV) strategy for iterative reconstructions in a clinical environment. Iterative reconstructions can incorporate regularization terms to improve the image quality of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI. However, the large amount of calculations required for full FOV iterative reconstructions has posed a huge computational challenge for clinical usage. By subdividing the entire problem into smaller rFOVs, the iterative reconstruction can be accelerated on a desktop with a single graphic processing unit (GPU). This rFOV strategy divides the iterative reconstruction into blocks, based on the block-diagonal dominant structure. A near real-time reconstruction system was developed for the clinical MR unit, and parallel computing was implemented using the object-oriented model. In addition, the Toeplitz method was implemented on the GPU to reduce the time required for full interpolation. Using the data acquired from the PROPELLER MRI, the reconstructed images were then saved in the digital imaging and communications in medicine format. The proposed rFOV reconstruction reduced the gridding time by 97%, as the total iteration time was 3 s even with multiple processes running. A phantom study showed that the structure similarity index for rFOV reconstruction was statistically superior to conventional density compensation (p < 0.001). In vivo study validated the increased signal-to-noise ratio, which is over four times higher than with density compensation. Image sharpness index was improved using the regularized reconstruction implemented. The rFOV strategy permits near real-time iterative reconstruction to improve the image quality of PROPELLER images. Substantial improvements in image quality metrics were validated in the experiments. The concept of rFOV reconstruction may potentially be applied to other kinds of iterative reconstructions for shortened reconstruction duration.

  15. Associative Memory In A Phase Conjugate Resonator Cavity Utilizing A Hologram

    NASA Astrophysics Data System (ADS)

    Owechko, Y.; Marom, E.; Soffer, B. H.; Dunning, G.

    1987-01-01

    The principle of information retrieval by association has been suggested as a basis for parallel computing and as the process by which human memory functions.1 Various associative processors have been proposed that use electronic or optical means. Optical schemes,2-7 in particular, those based on holographic principles,3,6,7 are well suited to associative processing because of their high parallelism and information throughput. Previous workers8 demonstrated that holographically stored images can be recalled by using relatively complicated reference images but did not utilize nonlinear feedback to reduce the large cross talk that results when multiple objects are stored and a partial or distorted input is used for retrieval. These earlier approaches were limited in their ability to reconstruct the output object faithfully from a partial input.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, G.A.; Commer, M.

    Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/Lmore » supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.« less

  17. Real-Time Spaceborne Synthetic Aperture Radar Float-Point Imaging System Using Optimized Mapping Methodology and a Multi-Node Parallel Accelerating Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long

    2018-01-01

    With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637

  18. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve the speed and orientation efficiency of target identification effectively, and validate the feasibility of this method primarily.

  19. Analysis on detection accuracy of binocular photoelectric instrument optical axis parallelism digital calibration instrument

    NASA Astrophysics Data System (ADS)

    Ying, Jia-ju; Yin, Jian-ling; Wu, Dong-sheng; Liu, Jie; Chen, Yu-dan

    2017-11-01

    Low-light level night vision device and thermal infrared imaging binocular photoelectric instrument are used widely. The maladjustment of binocular instrument ocular axises parallelism will cause the observer the symptom such as dizziness, nausea, when use for a long time. Binocular photoelectric equipment digital calibration instrument is developed for detecting ocular axises parallelism. And the quantitative value of optical axis deviation can be quantitatively measured. As a testing instrument, the precision must be much higher than the standard of test instrument. Analyzes the factors that influence the accuracy of detection. Factors exist in each testing process link which affect the precision of the detecting instrument. They can be divided into two categories, one category is factors which directly affect the position of reticle image, the other category is factors which affect the calculation the center of reticle image. And the Synthesize error is calculated out. And further distribute the errors reasonably to ensure the accuracy of calibration instruments.

  20. Scalable computing for evolutionary genomics.

    PubMed

    Prins, Pjotr; Belhachemi, Dominique; Möller, Steffen; Smant, Geert

    2012-01-01

    Genomic data analysis in evolutionary biology is becoming so computationally intensive that analysis of multiple hypotheses and scenarios takes too long on a single desktop computer. In this chapter, we discuss techniques for scaling computations through parallelization of calculations, after giving a quick overview of advanced programming techniques. Unfortunately, parallel programming is difficult and requires special software design. The alternative, especially attractive for legacy software, is to introduce poor man's parallelization by running whole programs in parallel as separate processes, using job schedulers. Such pipelines are often deployed on bioinformatics computer clusters. Recent advances in PC virtualization have made it possible to run a full computer operating system, with all of its installed software, on top of another operating system, inside a "box," or virtual machine (VM). Such a VM can flexibly be deployed on multiple computers, in a local network, e.g., on existing desktop PCs, and even in the Cloud, to create a "virtual" computer cluster. Many bioinformatics applications in evolutionary biology can be run in parallel, running processes in one or more VMs. Here, we show how a ready-made bioinformatics VM image, named BioNode, effectively creates a computing cluster, and pipeline, in a few steps. This allows researchers to scale-up computations from their desktop, using available hardware, anytime it is required. BioNode is based on Debian Linux and can run on networked PCs and in the Cloud. Over 200 bioinformatics and statistical software packages, of interest to evolutionary biology, are included, such as PAML, Muscle, MAFFT, MrBayes, and BLAST. Most of these software packages are maintained through the Debian Med project. In addition, BioNode contains convenient configuration scripts for parallelizing bioinformatics software. Where Debian Med encourages packaging free and open source bioinformatics software through one central project, BioNode encourages creating free and open source VM images, for multiple targets, through one central project. BioNode can be deployed on Windows, OSX, Linux, and in the Cloud. Next to the downloadable BioNode images, we provide tutorials online, which empower bioinformaticians to install and run BioNode in different environments, as well as information for future initiatives, on creating and building such images.

  1. Fast parallel approach for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2009-12-01

    Two-dimensional fast Gabor transform algorithms are useful for real-time applications due to the high computational complexity of the traditional 2-D complex-valued discrete Gabor transform (CDGT). This paper presents two block time-recursive algorithms for 2-D DHT-based real-valued discrete Gabor transform (RDGT) and its inverse transform and develops a fast parallel approach for the implementation of the two algorithms. The computational complexity of the proposed parallel approach is analyzed and compared with that of the existing 2-D CDGT algorithms. The results indicate that the proposed parallel approach is attractive for real time image processing.

  2. Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs

    PubMed Central

    Hernández, Moisés; Guerrero, Ginés D.; Cecilia, José M.; García, José M.; Inuggi, Alberto; Jbabdi, Saad; Behrens, Timothy E. J.; Sotiropoulos, Stamatios N.

    2013-01-01

    With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance imaging (MRI). More specifically, we are concerned with a model-based approach for extracting tissue structural information from diffusion-weighted (DW) MRI data. DW-MRI offers, through tractography approaches, the only way to study brain structural connectivity, non-invasively and in-vivo. We parallelise the Bayesian inference framework for the ball & stick model, as it is implemented in the tractography toolbox of the popular FSL software package (University of Oxford). For our implementation, we utilise the Compute Unified Device Architecture (CUDA) programming model. We show that the parameter estimation, performed through Markov Chain Monte Carlo (MCMC), is accelerated by at least two orders of magnitude, when comparing a single GPU with the respective sequential single-core CPU version. We also illustrate similar speed-up factors (up to 120x) when comparing a multi-GPU with a multi-CPU implementation. PMID:23658616

  3. The Holistic Processing Account of Visual Expertise in Medical Image Perception: A Review

    PubMed Central

    Sheridan, Heather; Reingold, Eyal M.

    2017-01-01

    In the field of medical image perception, the holistic processing perspective contends that experts can rapidly extract global information about the image, which can be used to guide their subsequent search of the image (Swensson, 1980; Nodine and Kundel, 1987; Kundel et al., 2007). In this review, we discuss the empirical evidence supporting three different predictions that can be derived from the holistic processing perspective: Expertise in medical image perception is domain-specific, experts use parafoveal and/or peripheral vision to process large regions of the image in parallel, and experts benefit from a rapid initial glimpse of an image. In addition, we discuss a pivotal recent study (Litchfield and Donovan, 2016) that seems to contradict the assumption that experts benefit from a rapid initial glimpse of the image. To reconcile this finding with the existing literature, we suggest that global processing may serve multiple functions that extend beyond the initial glimpse of the image. Finally, we discuss future research directions, and we highlight the connections between the holistic processing account and similar theoretical perspectives and findings from other domains of visual expertise. PMID:29033865

  4. The Holistic Processing Account of Visual Expertise in Medical Image Perception: A Review.

    PubMed

    Sheridan, Heather; Reingold, Eyal M

    2017-01-01

    In the field of medical image perception, the holistic processing perspective contends that experts can rapidly extract global information about the image, which can be used to guide their subsequent search of the image (Swensson, 1980; Nodine and Kundel, 1987; Kundel et al., 2007). In this review, we discuss the empirical evidence supporting three different predictions that can be derived from the holistic processing perspective: Expertise in medical image perception is domain-specific, experts use parafoveal and/or peripheral vision to process large regions of the image in parallel, and experts benefit from a rapid initial glimpse of an image. In addition, we discuss a pivotal recent study (Litchfield and Donovan, 2016) that seems to contradict the assumption that experts benefit from a rapid initial glimpse of the image. To reconcile this finding with the existing literature, we suggest that global processing may serve multiple functions that extend beyond the initial glimpse of the image. Finally, we discuss future research directions, and we highlight the connections between the holistic processing account and similar theoretical perspectives and findings from other domains of visual expertise.

  5. Tracking moving radar targets with parallel, velocity-tuned filters

    DOEpatents

    Bickel, Douglas L.; Harmony, David W.; Bielek, Timothy P.; Hollowell, Jeff A.; Murray, Margaret S.; Martinez, Ana

    2013-04-30

    Radar data associated with radar illumination of a movable target is processed to monitor motion of the target. A plurality of filter operations are performed in parallel on the radar data so that each filter operation produces target image information. The filter operations are defined to have respectively corresponding velocity ranges that differ from one another. The target image information produced by one of the filter operations represents the target more accurately than the target image information produced by the remainder of the filter operations when a current velocity of the target is within the velocity range associated with the one filter operation. In response to the current velocity of the target being within the velocity range associated with the one filter operation, motion of the target is tracked based on the target image information produced by the one filter operation.

  6. A high performance parallel computing architecture for robust image features

    NASA Astrophysics Data System (ADS)

    Zhou, Renyan; Liu, Leibo; Wei, Shaojun

    2014-03-01

    A design of parallel architecture for image feature detection and description is proposed in this article. The major component of this architecture is a 2D cellular network composed of simple reprogrammable processors, enabling the Hessian Blob Detector and Haar Response Calculation, which are the most computing-intensive stage of the Speeded Up Robust Features (SURF) algorithm. Combining this 2D cellular network and dedicated hardware for SURF descriptors, this architecture achieves real-time image feature detection with minimal software in the host processor. A prototype FPGA implementation of the proposed architecture achieves 1318.9 GOPS general pixel processing @ 100 MHz clock and achieves up to 118 fps in VGA (640 × 480) image feature detection. The proposed architecture is stand-alone and scalable so it is easy to be migrated into VLSI implementation.

  7. Parallelization and Algorithmic Enhancements of High Resolution IRAS Image Construction

    NASA Technical Reports Server (NTRS)

    Cao, Yu; Prince, Thomas A.; Tereby, Susan; Beichman, Charles A.

    1996-01-01

    The Infrared Astronomical Satellite caried out a nearly complete survey of the infrared sky, and the survey data are important for the study of many astrophysical phenomena. However, many data sets at other wavelengths have higher resolutions than that of the co-added IRAS maps, and high resolution IRAS images are strongly desired both for their own information content and their usefulness in correlation. The HIRES program was developed by the Infrared Processing and Analysis Center (IPAC) to produce high resolution (approx. 1') images from IRAS data using the Maximum Correlation Method (MCM). We describe the port of HIRES to the Intel Paragon, a massively parallel supercomputer, other software developments for mass production of HIRES images, and the IRAS Galaxy Atlas, a project to map the Galactic plane at 60 and 100(micro)m.

  8. Playback system designed for X-Band SAR

    NASA Astrophysics Data System (ADS)

    Yuquan, Liu; Changyong, Dou

    2014-03-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.

  9. Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit.

    PubMed

    Yi, Faliu; Lee, Jieun; Moon, Inkyu

    2014-05-01

    The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.

  10. Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash.

    PubMed

    Pelletier, Mathew G

    2008-02-08

    One of the main hurdles standing in the way of optimal cleaning of cotton lint isthe lack of sensing systems that can react fast enough to provide the control system withreal-time information as to the level of trash contamination of the cotton lint. This researchexamines the use of programmable graphic processing units (GPU) as an alternative to thePC's traditional use of the central processing unit (CPU). The use of the GPU, as analternative computation platform, allowed for the machine vision system to gain asignificant improvement in processing time. By improving the processing time, thisresearch seeks to address the lack of availability of rapid trash sensing systems and thusalleviate a situation in which the current systems view the cotton lint either well before, orafter, the cotton is cleaned. This extended lag/lead time that is currently imposed on thecotton trash cleaning control systems, is what is responsible for system operators utilizing avery large dead-band safety buffer in order to ensure that the cotton lint is not undercleaned.Unfortunately, the utilization of a large dead-band buffer results in the majority ofthe cotton lint being over-cleaned which in turn causes lint fiber-damage as well assignificant losses of the valuable lint due to the excessive use of cleaning machinery. Thisresearch estimates that upwards of a 30% reduction in lint loss could be gained through theuse of a tightly coupled trash sensor to the cleaning machinery control systems. Thisresearch seeks to improve processing times through the development of a new algorithm forcotton trash sensing that allows for implementation on a highly parallel architecture.Additionally, by moving the new parallel algorithm onto an alternative computing platform,the graphic processing unit "GPU", for processing of the cotton trash images, a speed up ofover 6.5 times, over optimized code running on the PC's central processing unit "CPU", wasgained. The new parallel algorithm operating on the GPU was able to process a 1024x1024image in less than 17ms. At this improved speed, the image processing system's performance should now be sufficient to provide a system that would be capable of realtimefeed-back control that is in tight cooperation with the cleaning equipment.

  11. Parallel processing in the honeybee olfactory pathway: structure, function, and evolution.

    PubMed

    Rössler, Wolfgang; Brill, Martin F

    2013-11-01

    Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.

  12. Architectures for single-chip image computing

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1992-04-01

    This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.

  13. Scalable software architecture for on-line multi-camera video processing

    NASA Astrophysics Data System (ADS)

    Camplani, Massimo; Salgado, Luis

    2011-03-01

    In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead.

  14. Assessing clutter reduction in parallel coordinates using image processing techniques

    NASA Astrophysics Data System (ADS)

    Alhamaydh, Heba; Alzoubi, Hussein; Almasaeid, Hisham

    2018-01-01

    Information visualization has appeared as an important research field for multidimensional data and correlation analysis in recent years. Parallel coordinates (PCs) are one of the popular techniques to visual high-dimensional data. A problem with the PCs technique is that it suffers from crowding, a clutter which hides important data and obfuscates the information. Earlier research has been conducted to reduce clutter without loss in data content. We introduce the use of image processing techniques as an approach for assessing the performance of clutter reduction techniques in PC. We use histogram analysis as our first measure, where the mean feature of the color histograms of the possible alternative orderings of coordinates for the PC images is calculated and compared. The second measure is the extracted contrast feature from the texture of PC images based on gray-level co-occurrence matrices. The results show that the best PC image is the one that has the minimal mean value of the color histogram feature and the maximal contrast value of the texture feature. In addition to its simplicity, the proposed assessment method has the advantage of objectively assessing alternative ordering of PC visualization.

  15. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  16. Optical Processing of Speckle Images with Bacteriorhodopsin for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Tucker, Deanne (Technical Monitor)

    1994-01-01

    Logarithmic processing of images with multiplicative noise characteristics can be utilized to transform the image into one with an additive noise distribution. This simplifies subsequent image processing steps for applications such as image restoration or correlation for pattern recognition. One particularly common form of multiplicative noise is speckle, for which the logarithmic operation not only produces additive noise, but also makes it of constant variance (signal-independent). We examine the optical transmission properties of some bacteriorhodopsin films here and find them well suited to implement such a pointwise logarithmic transformation optically in a parallel fashion. We present experimental results of the optical conversion of speckle images into transformed images with additive, signal-independent noise statistics using the real-time photochromic properties of bacteriorhodopsin. We provide an example of improved correlation performance in terms of correlation peak signal-to-noise for such a transformed speckle image.

  17. The design of multi-core DSP parallel model based on message passing and multi-level pipeline

    NASA Astrophysics Data System (ADS)

    Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong

    2017-10-01

    Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.

  18. Automation of a Wave-Optics Simulation and Image Post-Processing Package on Riptide

    NASA Astrophysics Data System (ADS)

    Werth, M.; Lucas, J.; Thompson, D.; Abercrombie, M.; Holmes, R.; Roggemann, M.

    Detailed wave-optics simulations and image post-processing algorithms are computationally expensive and benefit from the massively parallel hardware available at supercomputing facilities. We created an automated system that interfaces with the Maui High Performance Computing Center (MHPCC) Distributed MATLAB® Portal interface to submit massively parallel waveoptics simulations to the IBM iDataPlex (Riptide) supercomputer. This system subsequently postprocesses the output images with an improved version of physically constrained iterative deconvolution (PCID) and analyzes the results using a series of modular algorithms written in Python. With this architecture, a single person can simulate thousands of unique scenarios and produce analyzed, archived, and briefing-compatible output products with very little effort. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

  19. Fast l₁-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime.

    PubMed

    Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael

    2012-06-01

    We present l₁-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative self-consistent parallel imaging (SPIRiT). Like many iterative magnetic resonance imaging reconstructions, l₁-SPIRiT's image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing l₁-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of l₁-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT spoiled gradient echo (SPGR) sequence with up to 8× acceleration via Poisson-disc undersampling in the two phase-encoded directions.

  20. Parallel phase-sensitive three-dimensional imaging camera

    DOEpatents

    Smithpeter, Colin L.; Hoover, Eddie R.; Pain, Bedabrata; Hancock, Bruce R.; Nellums, Robert O.

    2007-09-25

    An apparatus is disclosed for generating a three-dimensional (3-D) image of a scene illuminated by a pulsed light source (e.g. a laser or light-emitting diode). The apparatus, referred to as a phase-sensitive 3-D imaging camera utilizes a two-dimensional (2-D) array of photodetectors to receive light that is reflected or scattered from the scene and processes an electrical output signal from each photodetector in the 2-D array in parallel using multiple modulators, each having inputs of the photodetector output signal and a reference signal, with the reference signal provided to each modulator having a different phase delay. The output from each modulator is provided to a computational unit which can be used to generate intensity and range information for use in generating a 3-D image of the scene. The 3-D camera is capable of generating a 3-D image using a single pulse of light, or alternately can be used to generate subsequent 3-D images with each additional pulse of light.

  1. Externally Calibrated Parallel Imaging for 3D Multispectral Imaging Near Metallic Implants Using Broadband Ultrashort Echo Time Imaging

    PubMed Central

    Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Reeder, Scott B.

    2017-01-01

    Purpose To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. Theory and Methods A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Results Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. Conclusion A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. PMID:27403613

  2. Parallel algorithms for mapping pipelined and parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1988-01-01

    Many computational problems in image processing, signal processing, and scientific computing are naturally structured for either pipelined or parallel computation. When mapping such problems onto a parallel architecture it is often necessary to aggregate an obvious problem decomposition. Even in this context the general mapping problem is known to be computationally intractable, but recent advances have been made in identifying classes of problems and architectures for which optimal solutions can be found in polynomial time. Among these, the mapping of pipelined or parallel computations onto linear array, shared memory, and host-satellite systems figures prominently. This paper extends that work first by showing how to improve existing serial mapping algorithms. These improvements have significantly lower time and space complexities: in one case a published O(nm sup 3) time algorithm for mapping m modules onto n processors is reduced to an O(nm log m) time complexity, and its space requirements reduced from O(nm sup 2) to O(m). Run time complexity is further reduced with parallel mapping algorithms based on these improvements, which run on the architecture for which they create the mappings.

  3. On-line range images registration with GPGPU

    NASA Astrophysics Data System (ADS)

    Będkowski, J.; Naruniec, J.

    2013-03-01

    This paper concerns implementation of algorithms in the two important aspects of modern 3D data processing: data registration and segmentation. Solution proposed for the first topic is based on the 3D space decomposition, while the latter on image processing and local neighbourhood search. Data processing is implemented by using NVIDIA compute unified device architecture (NIVIDIA CUDA) parallel computation. The result of the segmentation is a coloured map where different colours correspond to different objects, such as walls, floor and stairs. The research is related to the problem of collecting 3D data with a RGB-D camera mounted on a rotated head, to be used in mobile robot applications. Performance of the data registration algorithm is aimed for on-line processing. The iterative closest point (ICP) approach is chosen as a registration method. Computations are based on the parallel fast nearest neighbour search. This procedure decomposes 3D space into cubic buckets and, therefore, the time of the matching is deterministic. First technique of the data segmentation uses accele-rometers integrated with a RGB-D sensor to obtain rotation compensation and image processing method for defining pre-requisites of the known categories. The second technique uses the adapted nearest neighbour search procedure for obtaining normal vectors for each range point.

  4. Proteus: a reconfigurable computational network for computer vision

    NASA Astrophysics Data System (ADS)

    Haralick, Robert M.; Somani, Arun K.; Wittenbrink, Craig M.; Johnson, Robert; Cooper, Kenneth; Shapiro, Linda G.; Phillips, Ihsin T.; Hwang, Jenq N.; Cheung, William; Yao, Yung H.; Chen, Chung-Ho; Yang, Larry; Daugherty, Brian; Lorbeski, Bob; Loving, Kent; Miller, Tom; Parkins, Larye; Soos, Steven L.

    1992-04-01

    The Proteus architecture is a highly parallel MIMD, multiple instruction, multiple-data machine, optimized for large granularity tasks such as machine vision and image processing The system can achieve 20 Giga-flops (80 Giga-flops peak). It accepts data via multiple serial links at a rate of up to 640 megabytes/second. The system employs a hierarchical reconfigurable interconnection network with the highest level being a circuit switched Enhanced Hypercube serial interconnection network for internal data transfers. The system is designed to use 256 to 1,024 RISC processors. The processors use one megabyte external Read/Write Allocating Caches for reduced multiprocessor contention. The system detects, locates, and replaces faulty subsystems using redundant hardware to facilitate fault tolerance. The parallelism is directly controllable through an advanced software system for partitioning, scheduling, and development. System software includes a translator for the INSIGHT language, a parallel debugger, low and high level simulators, and a message passing system for all control needs. Image processing application software includes a variety of point operators neighborhood, operators, convolution, and the mathematical morphology operations of binary and gray scale dilation, erosion, opening, and closing.

  5. Fast Face-Recognition Optical Parallel Correlator Using High Accuracy Correlation Filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Kodate, Kashiko

    2005-11-01

    We designed and fabricated a fully automatic fast face recognition optical parallel correlator [E. Watanabe and K. Kodate: Appl. Opt. 44 (2005) 5666] based on the VanderLugt principle. The implementation of an as-yet unattained ultra high-speed system was aided by reconfiguring the system to make it suitable for easier parallel processing, as well as by composing a higher accuracy correlation filter and high-speed ferroelectric liquid crystal-spatial light modulator (FLC-SLM). In running trial experiments using this system (dubbed FARCO), we succeeded in acquiring remarkably low error rates of 1.3% for false match rate (FMR) and 2.6% for false non-match rate (FNMR). Given the results of our experiments, the aim of this paper is to examine methods of designing correlation filters and arranging database image arrays for even faster parallel correlation, underlining the issues of calculation technique, quantization bit rate, pixel size and shift from optical axis. The correlation filter has proved its excellent performance and higher precision than classical correlation and joint transform correlator (JTC). Moreover, arrangement of multi-object reference images leads to 10-channel correlation signals, as sharply marked as those of a single channel. This experiment result demonstrates great potential for achieving the process speed of 10000 face/s.

  6. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments

    NASA Astrophysics Data System (ADS)

    Enomoto, Ayano; Hirata, Hiroshi

    2014-02-01

    This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.

  7. Emotional stimuli exert parallel effects on attention and memory.

    PubMed

    Talmi, Deborah; Ziegler, Marilyne; Hawksworth, Jade; Lalani, Safina; Herman, C Peter; Moscovitch, Morris

    2013-01-01

    Because emotional and neutral stimuli typically differ on non-emotional dimensions, it has been difficult to determine conclusively which factors underlie the ability of emotional stimuli to enhance immediate long-term memory. Here we induced arousal by varying participants' goals, a method that removes many potential confounds between emotional and non-emotional items. Hungry and sated participants encoded food and clothing images under divided attention conditions. Sated participants attended to and recalled food and clothing images equivalently. Hungry participants performed worse on the concurrent tone-discrimination task when they viewed food relative to clothing images, suggesting enhanced attention to food images, and they recalled more food than clothing images. A follow-up regression analysis of the factors predicting memory for individual pictures revealed that food images had parallel effects on attention and memory in hungry participants, so that enhanced attention to food images did not predict their enhanced memory. We suggest that immediate long-term memory for food is enhanced in the hungry state because hunger leads to more distinctive processing of food images rendering them more accessible during retrieval.

  8. An Efficient Computational Framework for the Analysis of Whole Slide Images: Application to Follicular Lymphoma Immunohistochemistry

    PubMed Central

    Samsi, Siddharth; Krishnamurthy, Ashok K.; Gurcan, Metin N.

    2012-01-01

    Follicular Lymphoma (FL) is one of the most common non-Hodgkin Lymphoma in the United States. Diagnosis and grading of FL is based on the review of histopathological tissue sections under a microscope and is influenced by human factors such as fatigue and reader bias. Computer-aided image analysis tools can help improve the accuracy of diagnosis and grading and act as another tool at the pathologist’s disposal. Our group has been developing algorithms for identifying follicles in immunohistochemical images. These algorithms have been tested and validated on small images extracted from whole slide images. However, the use of these algorithms for analyzing the entire whole slide image requires significant changes to the processing methodology since the images are relatively large (on the order of 100k × 100k pixels). In this paper we discuss the challenges involved in analyzing whole slide images and propose potential computational methodologies for addressing these challenges. We discuss the use of parallel computing tools on commodity clusters and compare performance of the serial and parallel implementations of our approach. PMID:22962572

  9. RVC-CAL library for endmember and abundance estimation in hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Lazcano López, R.; Madroñal Quintín, D.; Juárez Martínez, E.; Sanz Álvaro, C.

    2015-10-01

    Hyperspectral imaging (HI) collects information from across the electromagnetic spectrum, covering a wide range of wavelengths. Although this technology was initially developed for remote sensing and earth observation, its multiple advantages - such as high spectral resolution - led to its application in other fields, as cancer detection. However, this new field has shown specific requirements; for instance, it needs to accomplish strong time specifications, since all the potential applications - like surgical guidance or in vivo tumor detection - imply real-time requisites. Achieving this time requirements is a great challenge, as hyperspectral images generate extremely high volumes of data to process. Thus, some new research lines are studying new processing techniques, and the most relevant ones are related to system parallelization. In that line, this paper describes the construction of a new hyperspectral processing library for RVC-CAL language, which is specifically designed for multimedia applications and allows multithreading compilation and system parallelization. This paper presents the development of the required library functions to implement two of the four stages of the hyperspectral imaging processing chain--endmember and abundances estimation. The results obtained show that the library achieves speedups of 30%, approximately, comparing to an existing software of hyperspectral images analysis; concretely, the endmember estimation step reaches an average speedup of 27.6%, which saves almost 8 seconds in the execution time. It also shows the existence of some bottlenecks, as the communication interfaces among the different actors due to the volume of data to transfer. Finally, it is shown that the library considerably simplifies the implementation process. Thus, experimental results show the potential of a RVC-CAL library for analyzing hyperspectral images in real-time, as it provides enough resources to study the system performance.

  10. Parallel MR imaging: a user's guide.

    PubMed

    Glockner, James F; Hu, Houchun H; Stanley, David W; Angelos, Lisa; King, Kevin

    2005-01-01

    Parallel imaging is a recently developed family of techniques that take advantage of the spatial information inherent in phased-array radiofrequency coils to reduce acquisition times in magnetic resonance imaging. In parallel imaging, the number of sampled k-space lines is reduced, often by a factor of two or greater, thereby significantly shortening the acquisition time. Parallel imaging techniques have only recently become commercially available, and the wide range of clinical applications is just beginning to be explored. The potential clinical applications primarily involve reduction in acquisition time, improved spatial resolution, or a combination of the two. Improvements in image quality can be achieved by reducing the echo train lengths of fast spin-echo and single-shot fast spin-echo sequences. Parallel imaging is particularly attractive for cardiac and vascular applications and will likely prove valuable as 3-T body and cardiovascular imaging becomes part of standard clinical practice. Limitations of parallel imaging include reduced signal-to-noise ratio and reconstruction artifacts. It is important to consider these limitations when deciding when to use these techniques. (c) RSNA, 2005.

  11. Stress and decision making: neural correlates of the interaction between stress, executive functions, and decision making under risk.

    PubMed

    Gathmann, Bettina; Schulte, Frank P; Maderwald, Stefan; Pawlikowski, Mirko; Starcke, Katrin; Schäfer, Lena C; Schöler, Tobias; Wolf, Oliver T; Brand, Matthias

    2014-03-01

    Stress and additional load on the executive system, produced by a parallel working memory task, impair decision making under risk. However, the combination of stress and a parallel task seems to preserve the decision-making performance [e.g., operationalized by the Game of Dice Task (GDT)] from decreasing, probably by a switch from serial to parallel processing. The question remains how the brain manages such demanding decision-making situations. The current study used a 7-tesla magnetic resonance imaging (MRI) system in order to investigate the underlying neural correlates of the interaction between stress (induced by the Trier Social Stress Test), risky decision making (GDT), and a parallel executive task (2-back task) to get a better understanding of those behavioral findings. The results show that on a behavioral level, stressed participants did not show significant differences in task performance. Interestingly, when comparing the stress group (SG) with the control group, the SG showed a greater increase in neural activation in the anterior prefrontal cortex when performing the 2-back task simultaneously with the GDT than when performing each task alone. This brain area is associated with parallel processing. Thus, the results may suggest that in stressful dual-tasking situations, where a decision has to be made when in parallel working memory is demanded, a stronger activation of a brain area associated with parallel processing takes place. The findings are in line with the idea that stress seems to trigger a switch from serial to parallel processing in demanding dual-tasking situations.

  12. Real-time polarization-sensitive optical coherence tomography data processing with parallel computing

    PubMed Central

    Liu, Gangjun; Zhang, Jun; Yu, Lingfeng; Xie, Tuqiang; Chen, Zhongping

    2010-01-01

    With the increase of the A-line speed of optical coherence tomography (OCT) systems, real-time processing of acquired data has become a bottleneck. The shared-memory parallel computing technique is used to process OCT data in real time. The real-time processing power of a quad-core personal computer (PC) is analyzed. It is shown that the quad-core PC could provide real-time OCT data processing ability of more than 80K A-lines per second. A real-time, fiber-based, swept source polarization-sensitive OCT system with 20K A-line speed is demonstrated with this technique. The real-time 2D and 3D polarization-sensitive imaging of chicken muscle and pig tendon is also demonstrated. PMID:19904337

  13. Local spatio-temporal analysis in vision systems

    NASA Astrophysics Data System (ADS)

    Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David

    1994-07-01

    The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.

  14. Scalable, High-performance 3D Imaging Software Platform: System Architecture and Application to Virtual Colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2013-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803

  15. Boundary and object detection in real world images. [by means of algorithms

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.

    1974-01-01

    A solution to the problem of automatic location of objects in digital pictures by computer is presented. A self-scaling local edge detector which can be applied in parallel on a picture is described. Clustering algorithms and boundary following algorithms which are sequential in nature process the edge data to locate images of objects.

  16. Seamless contiguity method for parallel segmentation of remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, Geng; Wang, Guanghui; Yu, Mei; Cui, Chengling

    2015-12-01

    Seamless contiguity is the key technology for parallel segmentation of remote sensing data with large quantities. It can be effectively integrate fragments of the parallel processing into reasonable results for subsequent processes. There are numerous methods reported in the literature for seamless contiguity, such as establishing buffer, area boundary merging and data sewing. et. We proposed a new method which was also based on building buffers. The seamless contiguity processes we adopt are based on the principle: ensuring the accuracy of the boundary, ensuring the correctness of topology. Firstly, block number is computed based on data processing ability, unlike establishing buffer on both sides of block line, buffer is established just on the right side and underside of the line. Each block of data is segmented respectively and then gets the segmentation objects and their label value. Secondly, choose one block(called master block) and do stitching on the adjacent blocks(called slave block), process the rest of the block in sequence. Through the above processing, topological relationship and boundaries of master block are guaranteed. Thirdly, if the master block polygons boundaries intersect with buffer boundary and the slave blocks polygons boundaries intersect with block line, we adopt certain rules to merge and trade-offs them. Fourthly, check the topology and boundary in the buffer area. Finally, a set of experiments were conducted and prove the feasibility of this method. This novel seamless contiguity algorithm provides an applicable and practical solution for efficient segmentation of massive remote sensing image.

  17. On-board landmark navigation and attitude reference parallel processor system

    NASA Technical Reports Server (NTRS)

    Gilbert, L. E.; Mahajan, D. T.

    1978-01-01

    An approach to autonomous navigation and attitude reference for earth observing spacecraft is described along with the landmark identification technique based on a sequential similarity detection algorithm (SSDA). Laboratory experiments undertaken to determine if better than one pixel accuracy in registration can be achieved consistent with onboard processor timing and capacity constraints are included. The SSDA is implemented using a multi-microprocessor system including synchronization logic and chip library. The data is processed in parallel stages, effectively reducing the time to match the small known image within a larger image as seen by the onboard image system. Shared memory is incorporated in the system to help communicate intermediate results among microprocessors. The functions include finding mean values and summation of absolute differences over the image search area. The hardware is a low power, compact unit suitable to onboard application with the flexibility to provide for different parameters depending upon the environment.

  18. Integrated test system of infrared and laser data based on USB 3.0

    NASA Astrophysics Data System (ADS)

    Fu, Hui Quan; Tang, Lin Bo; Zhang, Chao; Zhao, Bao Jun; Li, Mao Wen

    2017-07-01

    Based on USB3.0, this paper presents the design method of an integrated test system for both infrared image data and laser signal data processing module. The core of the design is FPGA logic control, the design uses dual-chip DDR3 SDRAM to achieve high-speed laser data cache, and receive parallel LVDS image data through serial-to-parallel conversion chip, and it achieves high-speed data communication between the system and host computer through the USB3.0 bus. The experimental results show that the developed PC software realizes the real-time display of 14-bit LVDS original image after 14-to-8 bit conversion and JPEG2000 compressed image after decompression in software, and can realize the real-time display of the acquired laser signal data. The correctness of the test system design is verified, indicating that the interface link is normal.

  19. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    PubMed

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  20. Fast ℓ1-SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime

    PubMed Central

    Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael

    2012-01-01

    We present ℓ1-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the Wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative Self-Consistent Parallel Imaging (SPIRiT). Like many iterative MRI reconstructions, ℓ1-SPIRiT’s image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing ℓ1-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of ℓ1-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT Spoiled Gradient Echo (SPGR) sequence with up to 8× acceleration via poisson-disc undersampling in the two phase-encoded directions. PMID:22345529

  1. Externally calibrated parallel imaging for 3D multispectral imaging near metallic implants using broadband ultrashort echo time imaging.

    PubMed

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Reeder, Scott B

    2017-06-01

    To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. Magn Reson Med 77:2303-2309, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. New scheme for image edge detection using the switching mechanism of nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Pahari, Nirmalya; Mukhopadhyay, Sourangshu

    2006-03-01

    The limitations of electronics in conducting parallel arithmetic, algebraic, and logic processing are well known. Very high-speed (terahertz) performance cannot be expected in conventional electronic mechanisms. To achieve such performance we can introduce optics instead of electronics for information processing, computing, and data handling. Nonlinear optical material (NOM) is a successful candidate in this regard to play a major role in the domain of optically controlled switching systems. The character of some NOMs is such as to reflect the probe beam in the presence of two read beams (or pump beams) exciting the material from opposite directions, using the principle of four-wave mixing. In image processing, edge extraction from an image is an important and essential task. Several optical methods of digital image processing are used for properly evaluating the image edges. We propose here a new method of image edge detection, extraction, and enhancement by use of AND-based switching operations with NOM. In this process we have used the optically inverted image of a supplied image. This can be obtained by the EXOR switching operation of the NOM.

  3. A survey of GPU-based medical image computing techniques

    PubMed Central

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming

    2012-01-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  4. Parallel imaging of knee cartilage at 3 Tesla.

    PubMed

    Zuo, Jin; Li, Xiaojuan; Banerjee, Suchandrima; Han, Eric; Majumdar, Sharmila

    2007-10-01

    To evaluate the feasibility and reproducibility of quantitative cartilage imaging with parallel imaging at 3T and to determine the impact of the acceleration factor (AF) on morphological and relaxation measurements. An eight-channel phased-array knee coil was employed for conventional and parallel imaging on a 3T scanner. The imaging protocol consisted of a T2-weighted fast spin echo (FSE), a 3D-spoiled gradient echo (SPGR), a custom 3D-SPGR T1rho, and a 3D-SPGR T2 sequence. Parallel imaging was performed with an array spatial sensitivity technique (ASSET). The left knees of six healthy volunteers were scanned with both conventional and parallel imaging (AF = 2). Morphological parameters and relaxation maps from parallel imaging methods (AF = 2) showed comparable results with conventional method. The intraclass correlation coefficient (ICC) of the two methods for cartilage volume, mean cartilage thickness, T1rho, and T2 were 0.999, 0.977, 0.964, and 0.969, respectively, while demonstrating excellent reproducibility. No significant measurement differences were found when AF reached 3 despite the low signal-to-noise ratio (SNR). The study demonstrated that parallel imaging can be applied to current knee cartilage quantification at AF = 2 without degrading measurement accuracy with good reproducibility while effectively reducing scan time. Shorter imaging times can be achieved with higher AF at the cost of SNR. (c) 2007 Wiley-Liss, Inc.

  5. Quantitative metrics for evaluating parallel acquisition techniques in diffusion tensor imaging at 3 Tesla.

    PubMed

    Ardekani, Siamak; Selva, Luis; Sayre, James; Sinha, Usha

    2006-11-01

    Single-shot echo-planar based diffusion tensor imaging is prone to geometric and intensity distortions. Parallel imaging is a means of reducing these distortions while preserving spatial resolution. A quantitative comparison at 3 T of parallel imaging for diffusion tensor images (DTI) using k-space (generalized auto-calibrating partially parallel acquisitions; GRAPPA) and image domain (sensitivity encoding; SENSE) reconstructions at different acceleration factors, R, is reported here. Images were evaluated using 8 human subjects with repeated scans for 2 subjects to estimate reproducibility. Mutual information (MI) was used to assess the global changes in geometric distortions. The effects of parallel imaging techniques on random noise and reconstruction artifacts were evaluated by placing 26 regions of interest and computing the standard deviation of apparent diffusion coefficient and fractional anisotropy along with the error of fitting the data to the diffusion model (residual error). The larger positive values in mutual information index with increasing R values confirmed the anticipated decrease in distortions. Further, the MI index of GRAPPA sequences for a given R factor was larger than the corresponding mSENSE images. The residual error was lowest in the images acquired without parallel imaging and among the parallel reconstruction methods, the R = 2 acquisitions had the least error. The standard deviation, accuracy, and reproducibility of the apparent diffusion coefficient and fractional anisotropy in homogenous tissue regions showed that GRAPPA acquired with R = 2 had the least amount of systematic and random noise and of these, significant differences with mSENSE, R = 2 were found only for the fractional anisotropy index. Evaluation of the current implementation of parallel reconstruction algorithms identified GRAPPA acquired with R = 2 as optimal for diffusion tensor imaging.

  6. The parallel algorithm for the 2D discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Barina, David; Najman, Pavel; Kleparnik, Petr; Kula, Michal; Zemcik, Pavel

    2018-04-01

    The discrete wavelet transform can be found at the heart of many image-processing algorithms. Until now, the transform on general-purpose processors (CPUs) was mostly computed using a separable lifting scheme. As the lifting scheme consists of a small number of operations, it is preferred for processing using single-core CPUs. However, considering a parallel processing using multi-core processors, this scheme is inappropriate due to a large number of steps. On such architectures, the number of steps corresponds to the number of points that represent the exchange of data. Consequently, these points often form a performance bottleneck. Our approach appropriately rearranges calculations inside the transform, and thereby reduces the number of steps. In other words, we propose a new scheme that is friendly to parallel environments. When evaluating on multi-core CPUs, we consistently overcome the original lifting scheme. The evaluation was performed on 61-core Intel Xeon Phi and 8-core Intel Xeon processors.

  7. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex

    PubMed Central

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2014-01-01

    Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314

  8. Tie Points Extraction for SAR Images Based on Differential Constraints

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.

    2018-04-01

    Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.

  9. Image reconstruction: an overview for clinicians.

    PubMed

    Hansen, Michael S; Kellman, Peter

    2015-03-01

    Image reconstruction plays a critical role in the clinical use of magnetic resonance imaging (MRI). The MRI raw data is not acquired in image space and the role of the image reconstruction process is to transform the acquired raw data into images that can be interpreted clinically. This process involves multiple signal processing steps that each have an impact on the image quality. This review explains the basic terminology used for describing and quantifying image quality in terms of signal-to-noise ratio and point spread function. In this context, several commonly used image reconstruction components are discussed. The image reconstruction components covered include noise prewhitening for phased array data acquisition, interpolation needed to reconstruct square pixels, raw data filtering for reducing Gibbs ringing artifacts, Fourier transforms connecting the raw data with image space, and phased array coil combination. The treatment of phased array coils includes a general explanation of parallel imaging as a coil combination technique. The review is aimed at readers with no signal processing experience and should enable them to understand what role basic image reconstruction steps play in the formation of clinical images and how the resulting image quality is described. © 2014 Wiley Periodicals, Inc.

  10. Cellular Neural Network for Real Time Image Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagliasindi, G.; Arena, P.; Fortuna, L.

    2008-03-12

    Since their introduction in 1988, Cellular Nonlinear Networks (CNNs) have found a key role as image processing instruments. Thanks to their structure they are able of processing individual pixels in a parallel way providing fast image processing capabilities that has been applied to a wide range of field among which nuclear fusion. In the last years, indeed, visible and infrared video cameras have become more and more important in tokamak fusion experiments for the twofold aim of understanding the physics and monitoring the safety of the operation. Examining the output of these cameras in real-time can provide significant information formore » plasma control and safety of the machines. The potentiality of CNNs can be exploited to this aim. To demonstrate the feasibility of the approach, CNN image processing has been applied to several tasks both at the Frascati Tokamak Upgrade (FTU) and the Joint European Torus (JET)« less

  11. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  12. High data volume and transfer rate techniques used at NASA's image processing facility

    NASA Technical Reports Server (NTRS)

    Heffner, P.; Connell, E.; Mccaleb, F.

    1978-01-01

    Data storage and transfer operations at a new image processing facility are described. The equipment includes high density digital magnetic tape drives and specially designed controllers to provide an interface between the tape drives and computerized image processing systems. The controller performs the functions necessary to convert the continuous serial data stream from the tape drive to a word-parallel blocked data stream which then goes to the computer-based system. With regard to the tape packing density, 1.8 times 10 to the tenth data bits are stored on a reel of one-inch tape. System components and their operation are surveyed, and studies on advanced storage techniques are summarized.

  13. (abstract) A High Throughput 3-D Inner Product Processor

    NASA Technical Reports Server (NTRS)

    Daud, Tuan

    1996-01-01

    A particularily challenging image processing application is the real time scene acquisition and object discrimination. It requires spatio-temporal recognition of point and resolved objects at high speeds with parallel processing algorithms. Neural network paradigms provide fine grain parallism and, when implemented in hardware, offer orders of magnitude speed up. However, neural networks implemented on a VLSI chip are planer architectures capable of efficient processing of linear vector signals rather than 2-D images. Therefore, for processing of images, a 3-D stack of neural-net ICs receiving planar inputs and consuming minimal power are required. Details of the circuits with chip architectures will be described with need to develop ultralow-power electronics. Further, use of the architecture in a system for high-speed processing will be illustrated.

  14. High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform

    PubMed Central

    Chan, Kenny K. H.; Tang, Shuo

    2010-01-01

    The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye. PMID:21258551

  15. Quantum image pseudocolor coding based on the density-stratified method

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Wu, Wenya; Wang, Luo; Zhao, Na

    2015-05-01

    Pseudocolor processing is a branch of image enhancement. It dyes grayscale images to color images to make the images more beautiful or to highlight some parts on the images. This paper proposes a quantum image pseudocolor coding scheme based on the density-stratified method which defines a colormap and changes the density value from gray to color parallel according to the colormap. Firstly, two data structures: quantum image GQIR and quantum colormap QCR are reviewed or proposed. Then, the quantum density-stratified algorithm is presented. Based on them, the quantum realization in the form of circuits is given. The main advantages of the quantum version for pseudocolor processing over the classical approach are that it needs less memory and can speed up the computation. Two kinds of examples help us to describe the scheme further. Finally, the future work are analyzed.

  16. A novel highly parallel algorithm for linearly unmixing hyperspectral images

    NASA Astrophysics Data System (ADS)

    Guerra, Raúl; López, Sebastián.; Callico, Gustavo M.; López, Jose F.; Sarmiento, Roberto

    2014-10-01

    Endmember extraction and abundances calculation represent critical steps within the process of linearly unmixing a given hyperspectral image because of two main reasons. The first one is due to the need of computing a set of accurate endmembers in order to further obtain confident abundance maps. The second one refers to the huge amount of operations involved in these time-consuming processes. This work proposes an algorithm to estimate the endmembers of a hyperspectral image under analysis and its abundances at the same time. The main advantage of this algorithm is its high parallelization degree and the mathematical simplicity of the operations implemented. This algorithm estimates the endmembers as virtual pixels. In particular, the proposed algorithm performs the descent gradient method to iteratively refine the endmembers and the abundances, reducing the mean square error, according with the linear unmixing model. Some mathematical restrictions must be added so the method converges in a unique and realistic solution. According with the algorithm nature, these restrictions can be easily implemented. The results obtained with synthetic images demonstrate the well behavior of the algorithm proposed. Moreover, the results obtained with the well-known Cuprite dataset also corroborate the benefits of our proposal.

  17. Landsat real-time processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, E.L.

    A novel method for performing real-time acquisition and processing Landsat/EROS data covers all aspects including radiometric and geometric corrections of multispectral scanner or return-beam vidicon inputs, image enhancement, statistical analysis, feature extraction, and classification. Radiometric transformations include bias/gain adjustment, noise suppression, calibration, scan angle compensation, and illumination compensation, including topography and atmospheric effects. Correction or compensation for geometric distortion includes sensor-related distortions, such as centering, skew, size, scan nonlinearity, radial symmetry, and tangential symmetry. Also included are object image-related distortions such as aspect angle (altitude), scale distortion (altitude), terrain relief, and earth curvature. Ephemeral corrections are also applied to compensatemore » for satellite forward movement, earth rotation, altitude variations, satellite vibration, and mirror scan velocity. Image enhancement includes high-pass, low-pass, and Laplacian mask filtering and data restoration for intermittent losses. Resource classification is provided by statistical analysis including histograms, correlational analysis, matrix manipulations, and determination of spectral responses. Feature extraction includes spatial frequency analysis, which is used in parallel discriminant functions in each array processor for rapid determination. The technique uses integrated parallel array processors that decimate the tasks concurrently under supervision of a control processor. The operator-machine interface is optimized for programming ease and graphics image windowing.« less

  18. Fuzzy Matching Based on Gray-scale Difference for Quantum Images

    NASA Astrophysics Data System (ADS)

    Luo, GaoFeng; Zhou, Ri-Gui; Liu, XingAo; Hu, WenWen; Luo, Jia

    2018-05-01

    Quantum image processing has recently emerged as an essential problem in practical tasks, e.g. real-time image matching. Previous studies have shown that the superposition and entanglement of quantum can greatly improve the efficiency of complex image processing. In this paper, a fuzzy quantum image matching scheme based on gray-scale difference is proposed to find out the target region in a reference image, which is very similar to the template image. Firstly, we employ the proposed enhanced quantum representation (NEQR) to store digital images. Then some certain quantum operations are used to evaluate the gray-scale difference between two quantum images by thresholding. If all of the obtained gray-scale differences are not greater than the threshold value, it indicates a successful fuzzy matching of quantum images. Theoretical analysis and experiments show that the proposed scheme performs fuzzy matching at a low cost and also enables exponentially significant speedup via quantum parallel computation.

  19. New machining method of high precision infrared window part

    NASA Astrophysics Data System (ADS)

    Yang, Haicheng; Su, Ying; Xu, Zengqi; Guo, Rui; Li, Wenting; Zhang, Feng; Liu, Xuanmin

    2016-10-01

    Most of the spherical shell of the photoelectric multifunctional instrument was designed as multi optical channel mode to adapt to the different band of the sensor, there were mainly TV, laser and infrared channels. Without affecting the optical diameter, wind resistance and pneumatic performance of the optical system, the overall layout of the spherical shell was optimized to save space and reduce weight. Most of the shape of the optical windows were special-shaped, each optical window directly participated in the high resolution imaging of the corresponding sensor system, and the optical axis parallelism of each sensor needed to meet the accuracy requirement of 0.05mrad.Therefore precision machining of optical window parts quality will directly affect the photoelectric system's pointing accuracy and interchangeability. Processing and testing of the TV and laser window had been very mature, while because of the special nature of the material, transparent and high refractive rate, infrared window parts had the problems of imaging quality and the control of the minimum focal length and second level parallel in the processing. Based on years of practical experience, this paper was focused on how to control the shape and parallel difference precision of infrared window parts in the processing. Single pass rate was increased from 40% to more than 95%, the processing efficiency was significantly enhanced, an effective solution to the bottleneck problem in the actual processing, which effectively solve the bottlenecks in research and production.

  20. Serial and Parallel Processing in the Primate Auditory Cortex Revisited

    PubMed Central

    Recanzone, Gregg H.; Cohen, Yale E.

    2009-01-01

    Over a decade ago it was proposed that the primate auditory cortex is organized in a serial and parallel manner in which there is a dorsal stream processing spatial information and a ventral stream processing non-spatial information. This organization is similar to the “what”/“where” processing of the primate visual cortex. This review will examine several key studies, primarily electrophysiological, that have tested this hypothesis. We also review several human imaging studies that have attempted to define these processing streams in the human auditory cortex. While there is good evidence that spatial information is processed along a particular series of cortical areas, the support for a non-spatial processing stream is not as strong. Why this should be the case and how to better test this hypothesis is also discussed. PMID:19686779

  1. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit.

    PubMed

    Lee, Kenneth K C; Mariampillai, Adrian; Yu, Joe X Z; Cadotte, David W; Wilson, Brian C; Standish, Beau A; Yang, Victor X D

    2012-07-01

    Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second.

  2. From Wheatstone to Cameron and beyond: overview in 3-D and 4-D imaging technology

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine

    2012-02-01

    This paper reviews three-dimensional (3-D) and four-dimensional (4-D) imaging technology, from Wheatstone through today, with some prognostications for near future applications. This field is rich in variety, subject specialty, and applications. A major trend, multi-view stereoscopy, is moving the field forward to real-time wide-angle 3-D reconstruction as breakthroughs in parallel processing and multi-processor computers enable very fast processing. Real-time holography meets 4-D imaging reconstruction at the goal of achieving real-time, interactive, 3-D imaging. Applications to telesurgery and telemedicine as well as to the needs of the defense and intelligence communities are also discussed.

  3. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; Nusshardt, R.

    1993-09-14

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams, (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor. 25 figures.

  4. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, John H.; Bonse, Ulrich K.; Johnson, Quintin C.; Nichols, Monte C.; Saroyan, Ralph A.; Massey, Warren N.; Nusshardt, Rudolph

    1993-01-01

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: a) source means for providing a source of parallel x-ray beams, b) staging means for staging and sequentially rotating a sample to be positioned in the path of the c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.

  5. Skeletonization with hollow detection on gray image by gray weighted distance transform

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Prabir; Qian, Kai; Cao, Siqi; Qian, Yi

    1998-10-01

    A skeletonization algorithm that could be used to process non-uniformly distributed gray-scale images with hollows was presented. This algorithm is based on the Gray Weighted Distance Transformation. The process includes a preliminary phase of investigation in the hollows in the gray-scale image, whether these hollows are considered as topological constraints for the skeleton structure depending on their statistically significant depth. We then extract the resulting skeleton that has certain meaningful information for understanding the object in the image. This improved algorithm can overcome the possible misinterpretation of some complicated images in the extracted skeleton, especially in images with asymmetric hollows and asymmetric features. This algorithm can be executed on a parallel machine as all the operations are executed in local. Some examples are discussed to illustrate the algorithm.

  6. Field test studies of our infrared-based human temperature screening system embedded with a parallel measurement approach

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun; Chaitavon, Kosom

    2009-07-01

    This paper introduces a parallel measurement approach for fast infrared-based human temperature screening suitable for use in a large public area. Our key idea is based on the combination of simple image processing algorithms, infrared technology, and human flow management. With this multidisciplinary concept, we arrange as many people as possible in a two-dimensional space in front of a thermal imaging camera and then highlight all human facial areas through simple image filtering, image morphological, and particle analysis processes. In this way, an individual's face in live thermal image can be located and the maximum facial skin temperature can be monitored and displayed. Our experiment shows a measured 1 ms processing time in highlighting all human face areas. With a thermal imaging camera having an FOV lens of 24° × 18° and 320 × 240 active pixels, the maximum facial skin temperatures from three people's faces located at 1.3 m from the camera can also be simultaneously monitored and displayed in a measured rate of 31 fps, limited by the looping process in determining coordinates of all faces. For our 3-day test under the ambient temperature of 24-30 °C, 57-72% relative humidity, and weak wind from the outside hospital building, hyperthermic patients can be identified with 100% sensitivity and 36.4% specificity when the temperature threshold level and the offset temperature value are appropriately chosen. Appropriately locating our system away from the building doors, air conditioners and electric fans in order to eliminate wind blow coming toward the camera lens can significantly help improve our system specificity.

  7. Efficient Smart CMOS Camera Based on FPGAs Oriented to Embedded Image Processing

    PubMed Central

    Bravo, Ignacio; Baliñas, Javier; Gardel, Alfredo; Lázaro, José L.; Espinosa, Felipe; García, Jorge

    2011-01-01

    This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC) microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely. PMID:22163739

  8. Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing

    NASA Astrophysics Data System (ADS)

    Hewener, Holger J.; Tretbar, Steffen H.

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.

  9. Optical information-processing systems and architectures II; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Astrophysics Data System (ADS)

    Javidi, Bahram

    The present conference discusses topics in the fields of neural networks, acoustooptic signal processing, pattern recognition, phase-only processing, nonlinear signal processing, image processing, optical computing, and optical information processing. Attention is given to the optical implementation of an inner-product neural associative memory, optoelectronic associative recall via motionless-head/parallel-readout optical disk, a compact real-time acoustooptic image correlator, a multidimensional synthetic estimation filter, and a light-efficient joint transform optical correlator. Also discussed are a high-resolution spatial light modulator, compact real-time interferometric Fourier-transform processors, a fast decorrelation algorithm for permutation arrays, the optical interconnection of optical modules, and carry-free optical binary adders.

  10. Advances in Parallel Computing and Databases for Digital Pathology in Cancer Research

    DTIC Science & Technology

    2016-11-13

    these technologies and how we have used them in the past. We are interested in learning more about the needs of clinical pathologists as we continue to...such as image processing and correlation. Further, High Performance Computing (HPC) paradigms such as the Message Passing Interface (MPI) have been...Defense for Research and Engineering. such as pMatlab [4], or bcMPI [5] can significantly reduce the need for deep knowledge of parallel computing. In

  11. Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems

    DTIC Science & Technology

    2017-04-13

    modelling code, a parallel benchmark , and a communication avoiding version of the QR algorithm. Further, several improvements to the OmpSs model were...movement; and a port of the dynamic load balancing library to OmpSs. Finally, several updates to the tools infrastructure were accomplished, including: an...OmpSs: a basic algorithm on image processing applications, a mini application representative of an ocean modelling code, a parallel benchmark , and a

  12. Multiplexed aberration measurement for deep tissue imaging in vivo

    PubMed Central

    Wang, Chen; Liu, Rui; Milkie, Daniel E.; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na

    2014-01-01

    We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large imaging volume. PMID:25128976

  13. Physics of fractional imaging in biomedicine.

    PubMed

    Sohail, Ayesha; Bég, O A; Li, Zhiwu; Celik, Sebahattin

    2018-03-12

    The mathematics of imaging is a growing field of research and is evolving rapidly parallel to evolution in the field of imaging. Imaging, which is a sub-field of biomedical engineering, considers novel approaches to visualize biological tissues with the general goal of improving health. "Medical imaging research provides improved diagnostic tools in clinical settings and supports the development of drugs and other therapies. The data acquisition and diagnostic interpretation with minimum error are the important technical aspects of medical imaging. The image quality and resolution are really important in portraying the internal aspects of patient's body. Although there are several user friendly resources for processing image features, such as enhancement, colour manipulation and compression, the development of new processing methods is still worthy of efforts. In this article we aim to present the role of fractional calculus in imaging with the aid of practical examples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The RABiT: a rapid automated biodosimetry tool for radiological triage. II. Technological developments.

    PubMed

    Garty, Guy; Chen, Youhua; Turner, Helen C; Zhang, Jian; Lyulko, Oleksandra V; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Lawrence Yao, Y; Brenner, David J

    2011-08-01

    Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT. The RABiT analyses fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cut-off dose. Through automated robotics, lymphocytes are extracted from fingerstick blood samples into filter-bottomed multi-well plates. Depending on the time since exposure, the RABiT scores either micronuclei or phosphorylation of the histone H2AX, in an automated robotic system, using filter-bottomed multi-well plates. Following lymphocyte culturing, fixation and staining, the filter bottoms are removed from the multi-well plates and sealed prior to automated high-speed imaging. Image analysis is performed online using dedicated image processing hardware. Both the sealed filters and the images are archived. We have developed a new robotic system for lymphocyte processing, making use of an upgraded laser power and parallel processing of four capillaries at once. This system has allowed acceleration of lymphocyte isolation, the main bottleneck of the RABiT operation, from 12 to 2 sec/sample. Reliability tests have been performed on all robotic subsystems. Parallel handling of multiple samples through the use of dedicated, purpose-built, robotics and high speed imaging allows analysis of up to 30,000 samples per day.

  15. The RABiT: A Rapid Automated Biodosimetry Tool For Radiological Triage. II. Technological Developments

    PubMed Central

    Garty, Guy; Chen, Youhua; Turner, Helen; Zhang, Jian; Lyulko, Oleksandra; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Yao, Y. Lawrence; Brenner, David J.

    2011-01-01

    Purpose Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT. Materials and methods The RABiT analyzes fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cutoff dose. Through automated robotics, lymphocytes are extracted from fingerstick blood samples into filter-bottomed multi-well plates. Depending on the time since exposure, the RABiT scores either micronuclei or phosphorylation of the histone H2AX, in an automated robotic system, using filter-bottomed multi-well plates. Following lymphocyte culturing, fixation and staining, the filter bottoms are removed from the multi-well plates and sealed prior to automated high-speed imaging. Image analysis is performed online using dedicated image processing hardware. Both the sealed filters and the images are archived. Results We have developed a new robotic system for lymphocyte processing, making use of an upgraded laser power and parallel processing of four capillaries at once. This system has allowed acceleration of lymphocyte isolation, the main bottleneck of the RABiT operation, from 12 to 2 sec/sample. Reliability tests have been performed on all robotic subsystems. Conclusions Parallel handling of multiple samples through the use of dedicated, purpose-built, robotics and high speed imaging allows analysis of up to 30,000 samples per day. PMID:21557703

  16. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce

    PubMed Central

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987

  17. Application of parallelized software architecture to an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam

    2011-01-01

    This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.

  18. Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1993-01-01

    Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.

  19. Parallel design patterns for a low-power, software-defined compressed video encoder

    NASA Astrophysics Data System (ADS)

    Bruns, Michael W.; Hunt, Martin A.; Prasad, Durga; Gunupudi, Nageswara R.; Sonachalam, Sekar

    2011-06-01

    Video compression algorithms such as H.264 offer much potential for parallel processing that is not always exploited by the technology of a particular implementation. Consumer mobile encoding devices often achieve real-time performance and low power consumption through parallel processing in Application Specific Integrated Circuit (ASIC) technology, but many other applications require a software-defined encoder. High quality compression features needed for some applications such as 10-bit sample depth or 4:2:2 chroma format often go beyond the capability of a typical consumer electronics device. An application may also need to efficiently combine compression with other functions such as noise reduction, image stabilization, real time clocks, GPS data, mission/ESD/user data or software-defined radio in a low power, field upgradable implementation. Low power, software-defined encoders may be implemented using a massively parallel memory-network processor array with 100 or more cores and distributed memory. The large number of processor elements allow the silicon device to operate more efficiently than conventional DSP or CPU technology. A dataflow programming methodology may be used to express all of the encoding processes including motion compensation, transform and quantization, and entropy coding. This is a declarative programming model in which the parallelism of the compression algorithm is expressed as a hierarchical graph of tasks with message communication. Data parallel and task parallel design patterns are supported without the need for explicit global synchronization control. An example is described of an H.264 encoder developed for a commercially available, massively parallel memorynetwork processor device.

  20. Advanced imaging techniques for the study of plant growth and development.

    PubMed

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P; Benfey, Philip N

    2014-05-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A new tool for supervised classification of satellite images available on web servers: Google Maps as a case study

    NASA Astrophysics Data System (ADS)

    García-Flores, Agustín.; Paz-Gallardo, Abel; Plaza, Antonio; Li, Jun

    2016-10-01

    This paper describes a new web platform dedicated to the classification of satellite images called Hypergim. The current implementation of this platform enables users to perform classification of satellite images from any part of the world thanks to the worldwide maps provided by Google Maps. To perform this classification, Hypergim uses unsupervised algorithms like Isodata and K-means. Here, we present an extension of the original platform in which we adapt Hypergim in order to use supervised algorithms to improve the classification results. This involves a significant modification of the user interface, providing the user with a way to obtain samples of classes present in the images to use in the training phase of the classification process. Another main goal of this development is to improve the runtime of the image classification process. To achieve this goal, we use a parallel implementation of the Random Forest classification algorithm. This implementation is a modification of the well-known CURFIL software package. The use of this type of algorithms to perform image classification is widespread today thanks to its precision and ease of training. The actual implementation of Random Forest was developed using CUDA platform, which enables us to exploit the potential of several models of NVIDIA graphics processing units using them to execute general purpose computing tasks as image classification algorithms. As well as CUDA, we use other parallel libraries as Intel Boost, taking advantage of the multithreading capabilities of modern CPUs. To ensure the best possible results, the platform is deployed in a cluster of commodity graphics processing units (GPUs), so that multiple users can use the tool in a concurrent way. The experimental results indicate that this new algorithm widely outperform the previous unsupervised algorithms implemented in Hypergim, both in runtime as well as precision of the actual classification of the images.

  2. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    PubMed Central

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  3. Using parallel evolutionary development for a biologically-inspired computer vision system for mobile robots.

    PubMed

    Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J

    2005-01-01

    We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.

  4. Award-Winning Animation Helps Scientists See Nature at Work | News | NREL

    Science.gov Websites

    Scientists See Nature at Work August 8, 2008 A computer-aided image combines a photo of a man with a three -dimensional, computer-generated image. The man has long brown hair and a long beard. He is wearing a blue - simultaneously. "It is very difficult to parallelize the process to run even on a huge computer,"

  5. Space Radar Image of Mammoth Mountain, California

    NASA Image and Video Library

    1999-05-01

    This false-color composite radar image of the Mammoth Mountain area in the Sierra Nevada Mountains, California, was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 67th orbit on October 3, 1994. The image is centered at 37.6 degrees north latitude and 119.0 degrees west longitude. The area is about 39 kilometers by 51 kilometers (24 miles by 31 miles). North is toward the bottom, about 45 degrees to the right. In this image, red was created using L-band (horizontally transmitted/vertically received) polarization data; green was created using C-band (horizontally transmitted/vertically received) polarization data; and blue was created using C-band (horizontally transmitted and received) polarization data. Crawley Lake appears dark at the center left of the image, just above or south of Long Valley. The Mammoth Mountain ski area is visible at the top right of the scene. The red areas correspond to forests, the dark blue areas are bare surfaces and the green areas are short vegetation, mainly brush. The purple areas at the higher elevations in the upper part of the scene are discontinuous patches of snow cover from a September 28 storm. New, very thin snow was falling before and during the second space shuttle pass. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput Synthetic Aperture Radar processing in preparation for upcoming data-intensive SAR missions. The image released here was produced as part of this experimental effort. http://photojournal.jpl.nasa.gov/catalog/PIA01746

  6. Document Image Parsing and Understanding using Neuromorphic Architecture

    DTIC Science & Technology

    2015-03-01

    processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored to reduce the processing...developed to reduce the processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored... cortex where the complex data is reduced to abstract representations. The abstract representation is compared to stored patterns in massively parallel

  7. Implementation of parallel transmit beamforming using orthogonal frequency division multiplexing--achievable resolution and interbeam interference.

    PubMed

    Demi, Libertario; Viti, Jacopo; Kusters, Lieneke; Guidi, Francesco; Tortoli, Piero; Mischi, Massimo

    2013-11-01

    The speed of sound in the human body limits the achievable data acquisition rate of pulsed ultrasound scanners. To overcome this limitation, parallel beamforming techniques are used in ultrasound 2-D and 3-D imaging systems. Different parallel beamforming approaches have been proposed. They may be grouped into two major categories: parallel beamforming in reception and parallel beamforming in transmission. The first category is not optimal for harmonic imaging; the second category may be more easily applied to harmonic imaging. However, inter-beam interference represents an issue. To overcome these shortcomings and exploit the benefit of combining harmonic imaging and high data acquisition rate, a new approach has been recently presented which relies on orthogonal frequency division multiplexing (OFDM) to perform parallel beamforming in transmission. In this paper, parallel transmit beamforming using OFDM is implemented for the first time on an ultrasound scanner. An advanced open platform for ultrasound research is used to investigate the axial resolution and interbeam interference achievable with parallel transmit beamforming using OFDM. Both fundamental and second-harmonic imaging modalities have been considered. Results show that, for fundamental imaging, axial resolution in the order of 2 mm can be achieved in combination with interbeam interference in the order of -30 dB. For second-harmonic imaging, axial resolution in the order of 1 mm can be achieved in combination with interbeam interference in the order of -35 dB.

  8. Noise Power Spectrum in PROPELLER MR Imaging.

    PubMed

    Ichinoseki, Yuki; Nagasaka, Tatsuo; Miyamoto, Kota; Tamura, Hajime; Mori, Issei; Machida, Yoshio

    2015-01-01

    The noise power spectrum (NPS), an index for noise evaluation, represents the frequency characteristics of image noise. We measured the NPS in PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) magnetic resonance (MR) imaging, a nonuniform data sampling technique, as an initial study for practical MR image evaluation using the NPS. The 2-dimensional (2D) NPS reflected the k-space sampling density and showed agreement with the shape of the k-space trajectory as expected theoretically. Additionally, the 2D NPS allowed visualization of a part of the image reconstruction process, such as filtering and motion correction.

  9. Enterprise Imaging Governance: HIMSS-SIIM Collaborative White Paper.

    PubMed

    Roth, Christopher J; Lannum, Louis M; Joseph, Carol L

    2016-10-01

    Enterprise imaging governance is an emerging need in health enterprises today. This white paper highlights the decision-making body, framework, and process for optimal enterprise imaging governance inclusive of five areas of focus: program governance, technology governance, information governance, clinical governance, and financial governance. It outlines relevant parallels and differences when forming or optimizing imaging governance as compared with other established broad horizontal governance groups, such as for the electronic health record. It is intended for CMIOs and health informatics leaders looking to grow and govern a program to optimally capture, store, index, distribute, view, exchange, and analyze the images of their enterprise.

  10. The Resource, Spring 2002

    DTIC Science & Technology

    2002-01-01

    wrappers to other widely used languages, namely TCL/TK, Java, and Python . VTK is very powerful and covers polygonal models and image processing classes and...follows: � Large Data Visualization and Rendering � Information Visualization for Beginners � Rendering and Visualization in Parallel Environments

  11. Pattern recognition with parallel associative memory

    NASA Technical Reports Server (NTRS)

    Toth, Charles K.; Schenk, Toni

    1990-01-01

    An examination is conducted of the feasibility of searching targets in aerial photographs by means of a parallel associative memory (PAM) that is based on the nearest-neighbor algorithm; the Hamming distance is used as a measure of closeness, in order to discriminate patterns. Attention has been given to targets typically used for ground-control points. The method developed sorts out approximate target positions where precise localizations are needed, in the course of the data-acquisition process. The majority of control points in different images were correctly identified.

  12. Fast Image Subtraction Using Multi-cores and GPUs

    NASA Astrophysics Data System (ADS)

    Hartung, Steven; Shukla, H.

    2013-01-01

    Many important image processing techniques in astronomy require a massive number of computations per pixel. Among them is an image differencing technique known as Optimal Image Subtraction (OIS), which is very useful for detecting and characterizing transient phenomena. Like many image processing routines, OIS computations increase proportionally with the number of pixels being processed, and the number of pixels in need of processing is increasing rapidly. Utilizing many-core graphical processing unit (GPU) technology in a hybrid conjunction with multi-core CPU and computer clustering technologies, this work presents a new astronomy image processing pipeline architecture. The chosen OIS implementation focuses on the 2nd order spatially-varying kernel with the Dirac delta function basis, a powerful image differencing method that has seen limited deployment in part because of the heavy computational burden. This tool can process standard image calibration and OIS differencing in a fashion that is scalable with the increasing data volume. It employs several parallel processing technologies in a hierarchical fashion in order to best utilize each of their strengths. The Linux/Unix based application can operate on a single computer, or on an MPI configured cluster, with or without GPU hardware. With GPU hardware available, even low-cost commercial video cards, the OIS convolution and subtraction times for large images can be accelerated by up to three orders of magnitude.

  13. High-contrast imaging in the cloud with klipReduce and Findr

    NASA Astrophysics Data System (ADS)

    Haug-Baltzell, Asher; Males, Jared R.; Morzinski, Katie M.; Wu, Ya-Lin; Merchant, Nirav; Lyons, Eric; Close, Laird M.

    2016-08-01

    Astronomical data sets are growing ever larger, and the area of high contrast imaging of exoplanets is no exception. With the advent of fast, low-noise detectors operating at 10 to 1000 Hz, huge numbers of images can be taken during a single hours-long observation. High frame rates offer several advantages, such as improved registration, frame selection, and improved speckle calibration. However, advanced image processing algorithms are computationally challenging to apply. Here we describe a parallelized, cloud-based data reduction system developed for the Magellan Adaptive Optics VisAO camera, which is capable of rapidly exploring tens of thousands of parameter sets affecting the Karhunen-Loève image processing (KLIP) algorithm to produce high-quality direct images of exoplanets. We demonstrate these capabilities with a visible wavelength high contrast data set of a hydrogen-accreting brown dwarf companion.

  14. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  15. Iris unwrapping using the Bresenham circle algorithm for real-time iris recognition

    NASA Astrophysics Data System (ADS)

    Carothers, Matthew T.; Ngo, Hau T.; Rakvic, Ryan N.; Broussard, Randy P.

    2015-02-01

    An efficient parallel architecture design for the iris unwrapping process in a real-time iris recognition system using the Bresenham Circle Algorithm is presented in this paper. Based on the characteristics of the model parameters this algorithm was chosen over the widely used polar conversion technique as the iris unwrapping model. The architecture design is parallelized to increase the throughput of the system and is suitable for processing an inputted image size of 320 × 240 pixels in real-time using Field Programmable Gate Array (FPGA) technology. Quartus software is used to implement, verify, and analyze the design's performance using the VHSIC Hardware Description Language. The system's predicted processing time is faster than the modern iris unwrapping technique used today∗.

  16. 3D hyperpolarized C-13 EPI with calibrationless parallel imaging

    NASA Astrophysics Data System (ADS)

    Gordon, Jeremy W.; Hansen, Rie B.; Shin, Peter J.; Feng, Yesu; Vigneron, Daniel B.; Larson, Peder E. Z.

    2018-04-01

    With the translation of metabolic MRI with hyperpolarized 13C agents into the clinic, imaging approaches will require large volumetric FOVs to support clinical applications. Parallel imaging techniques will be crucial to increasing volumetric scan coverage while minimizing RF requirements and temporal resolution. Calibrationless parallel imaging approaches are well-suited for this application because they eliminate the need to acquire coil profile maps or auto-calibration data. In this work, we explored the utility of a calibrationless parallel imaging method (SAKE) and corresponding sampling strategies to accelerate and undersample hyperpolarized 13C data using 3D blipped EPI acquisitions and multichannel receive coils, and demonstrated its application in a human study of [1-13C]pyruvate metabolism.

  17. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.

    PubMed

    He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej

    2011-12-01

    Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.

  18. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; McDougal, Matthew; Russell, Sam

    2012-01-01

    Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often great, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques. Technical Methodology/Approach: Apply massively parallel algorithms and data structures to the specific analysis requirements presented when working with thermographic data sets.

  19. An Intelligent Architecture Based on Field Programmable Gate Arrays Designed to Detect Moving Objects by Using Principal Component Analysis

    PubMed Central

    Bravo, Ignacio; Mazo, Manuel; Lázaro, José L.; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel

    2010-01-01

    This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices. PMID:22163406

  20. An intelligent architecture based on Field Programmable Gate Arrays designed to detect moving objects by using Principal Component Analysis.

    PubMed

    Bravo, Ignacio; Mazo, Manuel; Lázaro, José L; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel

    2010-01-01

    This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices.

  1. pWeb: A High-Performance, Parallel-Computing Framework for Web-Browser-Based Medical Simulation.

    PubMed

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2014-01-01

    This work presents a pWeb - a new language and compiler for parallelization of client-side compute intensive web applications such as surgical simulations. The recently introduced HTML5 standard has enabled creating unprecedented applications on the web. Low performance of the web browser, however, remains the bottleneck of computationally intensive applications including visualization of complex scenes, real time physical simulations and image processing compared to native ones. The new proposed language is built upon web workers for multithreaded programming in HTML5. The language provides fundamental functionalities of parallel programming languages as well as the fork/join parallel model which is not supported by web workers. The language compiler automatically generates an equivalent parallel script that complies with the HTML5 standard. A case study on realistic rendering for surgical simulations demonstrates enhanced performance with a compact set of instructions.

  2. Self-calibrated correlation imaging with k-space variant correlation functions.

    PubMed

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. A parallel method of atmospheric correction for multispectral high spatial resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin

    2018-03-01

    The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.

  4. Automatic tissue image segmentation based on image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  5. Ultraviolet Communication for Medical Applications

    DTIC Science & Technology

    2015-06-01

    In the previous Phase I effort, Directed Energy Inc.’s (DEI) parent company Imaging Systems Technology (IST) demonstrated feasibility of several key...accurately model high path loss. Custom photon scatter code was rewritten for parallel execution on a graphics processing unit (GPU). The NVidia CUDA

  6. Topology preserve gray image skeletonization algorithm

    NASA Astrophysics Data System (ADS)

    Qian, Kai; Zhu, Weibin; Bhattacharya, Prabir

    1993-10-01

    A new algorithm which can skeletonize both black-white and gray pictures is presented. This algorithm is based on distance transformation and can preserve the topology of the original picture. It can be extended to 3-D skeletonization and can be implemented by parallel processing.

  7. Multi-Probe SPM using Interference Patterns for a Parallel Nano Imaging

    NASA Astrophysics Data System (ADS)

    Koyama, Hirotaka; Oohira, Fumikazu; Hosogi, Maho; Hashiguchi, Gen

    This paper proposes a new composition of the multi-probe using optical interference patterns for a parallel nano imaging in a large area scanning. We achieved large-scale integration with 50,000 probes fabricated with MEMS technology, and measured the optical interference patterns with CCD, which was difficult in a conventional single scanning probe. In this research, the multi-probes are made of Si3N4 by MEMS process, and, the multi-probes are joined with a Pyrex glass by an anodic bonding. We designed, fabricated, and evaluated the characteristics of the probe. In addition, we changed the probe shape to decrease the warpage of the Si3N4 probe. We used the supercritical drying to avoid stiction of the Si3N4 probe with the glass surface and fabricated 4 types of the probe shapes without stiction. We took some interference patterns by CCD and measured the position of them. We calculate the probe height using the interference displacement and compared the result with the theoretical deflection curve. As a result, these interference patterns matched the theoretical deflection curve. We found that this multi-probe chip using interference patterns is effective in measurement for a parallel nano imaging.

  8. Parallel Computer System for 3D Visualization Stereo on GPU

    NASA Astrophysics Data System (ADS)

    Al-Oraiqat, Anas M.; Zori, Sergii A.

    2018-03-01

    This paper proposes the organization of a parallel computer system based on Graphic Processors Unit (GPU) for 3D stereo image synthesis. The development is based on the modified ray tracing method developed by the authors for fast search of tracing rays intersections with scene objects. The system allows significant increase in the productivity for the 3D stereo synthesis of photorealistic quality. The generalized procedure of 3D stereo image synthesis on the Graphics Processing Unit/Graphics Processing Clusters (GPU/GPC) is proposed. The efficiency of the proposed solutions by GPU implementation is compared with single-threaded and multithreaded implementations on the CPU. The achieved average acceleration in multi-thread implementation on the test GPU and CPU is about 7.5 and 1.6 times, respectively. Studying the influence of choosing the size and configuration of the computational Compute Unified Device Archi-tecture (CUDA) network on the computational speed shows the importance of their correct selection. The obtained experimental estimations can be significantly improved by new GPUs with a large number of processing cores and multiprocessors, as well as optimized configuration of the computing CUDA network.

  9. Two-Dimensional Signal Processing and Storage and Theory and Applications of Electromagnetic Measurements.

    DTIC Science & Technology

    1983-06-01

    system, provides a convenient, low- noise , fully parallel method of improving contrast and enhancing structural detail in an image prior to input to a...directed towards problems in deconvolution, reconstruction from projections, bandlimited extrapolation, and shift varying deblurring of images...deconvolution algorithm has been studied with promising 5 results [I] for simulated motion blurs. Future work will focus on noise effects and the extension

  10. Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging.

    PubMed

    Jiang, Chao; Zhang, Hongyan; Wang, Jia; Wang, Yaru; He, Heng; Liu, Rui; Zhou, Fangyuan; Deng, Jialiang; Li, Pengcheng; Luo, Qingming

    2011-11-01

    Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.

  11. Parallel task processing of very large datasets

    NASA Astrophysics Data System (ADS)

    Romig, Phillip Richardson, III

    This research concerns the use of distributed computer technologies for the analysis and management of very large datasets. Improvements in sensor technology, an emphasis on global change research, and greater access to data warehouses all are increase the number of non-traditional users of remotely sensed data. We present a framework for distributed solutions to the challenges of datasets which exceed the online storage capacity of individual workstations. This framework, called parallel task processing (PTP), incorporates both the task- and data-level parallelism exemplified by many image processing operations. An implementation based on the principles of PTP, called Tricky, is also presented. Additionally, we describe the challenges and practical issues in modeling the performance of parallel task processing with large datasets. We present a mechanism for estimating the running time of each unit of work within a system and an algorithm that uses these estimates to simulate the execution environment and produce estimated runtimes. Finally, we describe and discuss experimental results which validate the design. Specifically, the system (a) is able to perform computation on datasets which exceed the capacity of any one disk, (b) provides reduction of overall computation time as a result of the task distribution even with the additional cost of data transfer and management, and (c) in the simulation mode accurately predicts the performance of the real execution environment.

  12. Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2003-01-01

    A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic region growing.

  13. GPU-Based Real-Time Volumetric Ultrasound Image Reconstruction for a Ring Array

    PubMed Central

    Choe, Jung Woo; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T.

    2014-01-01

    Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection (MIP), processed at a rate of 104 fps. This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software. PMID:23529080

  14. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

    NASA Astrophysics Data System (ADS)

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-12-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.

  15. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification.

    PubMed

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-12-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.

  16. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

    PubMed Central

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-01-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value. PMID:27905520

  17. Design and realization of photoelectric instrument binocular optical axis parallelism calibration system

    NASA Astrophysics Data System (ADS)

    Ying, Jia-ju; Chen, Yu-dan; Liu, Jie; Wu, Dong-sheng; Lu, Jun

    2016-10-01

    The maladjustment of photoelectric instrument binocular optical axis parallelism will affect the observe effect directly. A binocular optical axis parallelism digital calibration system is designed. On the basis of the principle of optical axis binocular photoelectric instrument calibration, the scheme of system is designed, and the binocular optical axis parallelism digital calibration system is realized, which include four modules: multiband parallel light tube, optical axis translation, image acquisition system and software system. According to the different characteristics of thermal infrared imager and low-light-level night viewer, different algorithms is used to localize the center of the cross reticle. And the binocular optical axis parallelism calibration is realized for calibrating low-light-level night viewer and thermal infrared imager.

  18. Parallel Monte Carlo Search for Hough Transform

    NASA Astrophysics Data System (ADS)

    Lopes, Raul H. C.; Franqueira, Virginia N. L.; Reid, Ivan D.; Hobson, Peter R.

    2017-10-01

    We investigate the problem of line detection in digital image processing and in special how state of the art algorithms behave in the presence of noise and whether CPU efficiency can be improved by the combination of a Monte Carlo Tree Search, hierarchical space decomposition, and parallel computing. The starting point of the investigation is the method introduced in 1962 by Paul Hough for detecting lines in binary images. Extended in the 1970s to the detection of space forms, what came to be known as Hough Transform (HT) has been proposed, for example, in the context of track fitting in the LHC ATLAS and CMS projects. The Hough Transform transfers the problem of line detection, for example, into one of optimization of the peak in a vote counting process for cells which contain the possible points of candidate lines. The detection algorithm can be computationally expensive both in the demands made upon the processor and on memory. Additionally, it can have a reduced effectiveness in detection in the presence of noise. Our first contribution consists in an evaluation of the use of a variation of the Radon Transform as a form of improving theeffectiveness of line detection in the presence of noise. Then, parallel algorithms for variations of the Hough Transform and the Radon Transform for line detection are introduced. An algorithm for Parallel Monte Carlo Search applied to line detection is also introduced. Their algorithmic complexities are discussed. Finally, implementations on multi-GPU and multicore architectures are discussed.

  19. Graphics processing unit-assisted lossless decompression

    DOEpatents

    Loughry, Thomas A.

    2016-04-12

    Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.

  20. Proceedings of the international conference on cybernetics and societ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    This book presents the papers given at a conference on artificial intelligence, expert systems and knowledge bases. Topics considered at the conference included automating expert system development, modeling expert systems, causal maps, data covariances, robot vision, image processing, multiprocessors, parallel processing, VLSI structures, man-machine systems, human factors engineering, cognitive decision analysis, natural language, computerized control systems, and cybernetics.

  1. Specialized Computer Systems for Environment Visualization

    NASA Astrophysics Data System (ADS)

    Al-Oraiqat, Anas M.; Bashkov, Evgeniy A.; Zori, Sergii A.

    2018-06-01

    The need for real time image generation of landscapes arises in various fields as part of tasks solved by virtual and augmented reality systems, as well as geographic information systems. Such systems provide opportunities for collecting, storing, analyzing and graphically visualizing geographic data. Algorithmic and hardware software tools for increasing the realism and efficiency of the environment visualization in 3D visualization systems are proposed. This paper discusses a modified path tracing algorithm with a two-level hierarchy of bounding volumes and finding intersections with Axis-Aligned Bounding Box. The proposed algorithm eliminates the branching and hence makes the algorithm more suitable to be implemented on the multi-threaded CPU and GPU. A modified ROAM algorithm is used to solve the qualitative visualization of reliefs' problems and landscapes. The algorithm is implemented on parallel systems—cluster and Compute Unified Device Architecture-networks. Results show that the implementation on MPI clusters is more efficient than Graphics Processing Unit/Graphics Processing Clusters and allows real-time synthesis. The organization and algorithms of the parallel GPU system for the 3D pseudo stereo image/video synthesis are proposed. With realizing possibility analysis on a parallel GPU-architecture of each stage, 3D pseudo stereo synthesis is performed. An experimental prototype of a specialized hardware-software system 3D pseudo stereo imaging and video was developed on the CPU/GPU. The experimental results show that the proposed adaptation of 3D pseudo stereo imaging to the architecture of GPU-systems is efficient. Also it accelerates the computational procedures of 3D pseudo-stereo synthesis for the anaglyph and anamorphic formats of the 3D stereo frame without performing optimization procedures. The acceleration is on average 11 and 54 times for test GPUs.

  2. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    PubMed

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Cross-polarised and parallel-polarised light: Viewing and photography for examination and documentation of biological materials in medicine and forensics.

    PubMed

    Hanlon, Katharine L

    2018-01-01

    Cross-polarisation, with regard to visible light, is a process wherein two polarisers with perpendicular orientation to one another are used on the incident and reflected lights. Under cross-polarised light birefringent structures which are otherwise invisible become apparent. Cross-polarised light eliminates glare and specular highlights, allowing for an unobstructed view of subsurface pathology. Parallel-polarisation occurs when the polarisers are rotated to the same orientation. When cross- or parallel-polarisation is applied to photography, images can be generated which aid in visualisation of surface and subsurface elements. Improved access to equipment and education has the potential to benefit practitioners, researchers, investigators and patients.

  4. Real-time FPGA architectures for computer vision

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar

    2000-03-01

    This paper presents an architecture for real-time generic convolution of a mask and an image. The architecture is intended for fast low level image processing. The FPGA-based architecture takes advantage of the availability of registers in FPGAs to implement an efficient and compact module to process the convolutions. The architecture is designed to minimize the number of accesses to the image memory and is based on parallel modules with internal pipeline operation in order to improve its performance. The architecture is prototyped in a FPGA, but it can be implemented on a dedicated VLSI to reach higher clock frequencies. Complexity issues, FPGA resources utilization, FPGA limitations, and real time performance are discussed. Some results are presented and discussed.

  5. Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-core Processors

    DTIC Science & Technology

    2009-09-01

    TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes... 4   3. INFORMATION MANAGEMENT FOR PARALLELIZATION AND...STREAMING............................................................. 7  4 . RESULTS

  6. GPU-accelerated Lattice Boltzmann method for anatomical extraction in patient-specific computational hemodynamics

    NASA Astrophysics Data System (ADS)

    Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.

    2014-11-01

    Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.

  7. Three-dimensional real-time imaging of bi-phasic flow through porous media

    NASA Astrophysics Data System (ADS)

    Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, S.

    2011-11-01

    We present a scanning laser-sheet video imaging technique to image bi-phasic flow in three-dimensional porous media in real time with pore-scale spatial resolution, i.e., 35 μm and 500 μm for directions parallel and perpendicular to the flow, respectively. The technique is illustrated for the case of viscous fingering. Using suitable image processing protocols, both the morphology and the movement of the two-fluid interface, were quantitatively estimated. Furthermore, a macroscopic parameter such as the displacement efficiency obtained from a microscopic (pore-scale) analysis demonstrates the versatility and usefulness of the method.

  8. Plexus structure imaging with thin slab MR neurography: rotating frames, fly-throughs, and composite projections

    NASA Astrophysics Data System (ADS)

    Raphael, David T.; McIntee, Diane; Tsuruda, Jay S.; Colletti, Patrick; Tatevossian, Raymond; Frazier, James

    2006-03-01

    We explored multiple image processing approaches by which to display the segmented adult brachial plexus in a three-dimensional manner. Magnetic resonance neurography (MRN) 1.5-Tesla scans with STIR sequences, which preferentially highlight nerves, were performed in adult volunteers to generate high-resolution raw images. Using multiple software programs, the raw MRN images were then manipulated so as to achieve segmentation of plexus neurovascular structures, which were incorporated into three different visualization schemes: rotating upper thoracic girdle skeletal frames, dynamic fly-throughs parallel to the clavicle, and thin slab volume-rendered composite projections.

  9. Missile signal processing common computer architecture for rapid technology upgrade

    NASA Astrophysics Data System (ADS)

    Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul

    2004-10-01

    Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application may be programmed under existing real-time operating systems using parallel processing software libraries, resulting in highly portable code that can be rapidly migrated to new platforms as processor technology evolves. Use of standardized development tools and 3rd party software upgrades are enabled as well as rapid upgrade of processing components as improved algorithms are developed. The resulting weapon system will have a superior processing capability over a custom approach at the time of deployment as a result of a shorter development cycles and use of newer technology. The signal processing computer may be upgraded over the lifecycle of the weapon system, and can migrate between weapon system variants enabled by modification simplicity. This paper presents a reference design using the new approach that utilizes an Altivec PowerPC parallel COTS platform. It uses a VxWorks-based real-time operating system (RTOS), and application code developed using an efficient parallel vector library (PVL). A quantification of computing requirements and demonstration of interceptor algorithm operating on this real-time platform are provided.

  10. Image processing for a tactile/vision substitution system using digital CNN.

    PubMed

    Lin, Chien-Nan; Yu, Sung-Nien; Hu, Jin-Cheng

    2006-01-01

    In view of the parallel processing and easy implementation properties of CNN, we propose to use digital CNN as the image processor of a tactile/vision substitution system (TVSS). The digital CNN processor is used to execute the wavelet down-sampling filtering and the half-toning operations, aiming to extract important features from the images. A template combination method is used to embed the two image processing functions into a single CNN processor. The digital CNN processor is implemented on an intellectual property (IP) and is implemented on a XILINX VIRTEX II 2000 FPGA board. Experiments are designated to test the capability of the CNN processor in the recognition of characters and human subjects in different environments. The experiments demonstrates impressive results, which proves the proposed digital CNN processor a powerful component in the design of efficient tactile/vision substitution systems for the visually impaired people.

  11. Holographic illuminator for synchrotron-based projection lithography systems

    DOEpatents

    Naulleau, Patrick P.

    2005-08-09

    The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.

  12. Real-time image dehazing using local adaptive neighborhoods and dark-channel-prior

    NASA Astrophysics Data System (ADS)

    Valderrama, Jesus A.; Díaz-Ramírez, Víctor H.; Kober, Vitaly; Hernandez, Enrique

    2015-09-01

    A real-time algorithm for single image dehazing is presented. The algorithm is based on calculation of local neighborhoods of a hazed image inside a moving window. The local neighborhoods are constructed by computing rank-order statistics. Next the dark-channel-prior approach is applied to the local neighborhoods to estimate the transmission function of the scene. By using the suggested approach there is no need for applying a refining algorithm to the estimated transmission such as the soft matting algorithm. To achieve high-rate signal processing the proposed algorithm is implemented exploiting massive parallelism on a graphics processing unit (GPU). Computer simulation results are carried out to test the performance of the proposed algorithm in terms of dehazing efficiency and speed of processing. These tests are performed using several synthetic and real images. The obtained results are analyzed and compared with those obtained with existing dehazing algorithms.

  13. Stereo-Video Data Reduction of Wake Vortices and Trailing Aircrafts

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel

    1998-01-01

    This report presents stereo image theory and the corresponding image processing software developed to analyze stereo imaging data acquired for the wake-vortex hazard flight experiment conducted at NASA Langley Research Center. In this experiment, a leading Lockheed C-130 was equipped with wing-tip smokers to visualize its wing vortices, while a trailing Boeing 737 flew into the wake vortices of the leading airplane. A Rockwell OV-10A airplane, fitted with video cameras under its wings, flew at 400 to 1000 feet above and parallel to the wakes, and photographed the wake interception process for the purpose of determining the three-dimensional location of the trailing aircraft relative to the wake. The report establishes the image-processing tools developed to analyze the video flight-test data, identifies sources of potential inaccuracies, and assesses the quality of the resultant set of stereo data reduction.

  14. Real-time biscuit tile image segmentation method based on edge detection.

    PubMed

    Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter

    2018-05-01

    In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Efficient LIDAR Point Cloud Data Managing and Processing in a Hadoop-Based Distributed Framework

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hu, F.; Sha, D.; Han, X.

    2017-10-01

    Light Detection and Ranging (LiDAR) is one of the most promising technologies in surveying and mapping city management, forestry, object recognition, computer vision engineer and others. However, it is challenging to efficiently storage, query and analyze the high-resolution 3D LiDAR data due to its volume and complexity. In order to improve the productivity of Lidar data processing, this study proposes a Hadoop-based framework to efficiently manage and process LiDAR data in a distributed and parallel manner, which takes advantage of Hadoop's storage and computing ability. At the same time, the Point Cloud Library (PCL), an open-source project for 2D/3D image and point cloud processing, is integrated with HDFS and MapReduce to conduct the Lidar data analysis algorithms provided by PCL in a parallel fashion. The experiment results show that the proposed framework can efficiently manage and process big LiDAR data.

  16. Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions.

    PubMed

    Robson, Philip M; Grant, Aaron K; Madhuranthakam, Ananth J; Lattanzi, Riccardo; Sodickson, Daniel K; McKenzie, Charles A

    2008-10-01

    Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g-factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal-to-noise ratio and g-factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple "prescan" measurement of noise amplitude and correlation in the phased-array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal-to-noise ratio and g-factor. The "pseudo multiple replica" method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel-by-pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k-space trajectories, image reconstruction, or noise conditioning techniques. (c) 2008 Wiley-Liss, Inc.

  17. Real-time object tracking based on scale-invariant features employing bio-inspired hardware.

    PubMed

    Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya

    2016-09-01

    We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment.

    PubMed

    Meng, Bowen; Pratx, Guillem; Xing, Lei

    2011-12-01

    Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT∕CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. In this work, we accelerated the Feldcamp-Davis-Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT∕CT reconstruction algorithm. Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10(-7). Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. An ultrafast, reliable and scalable 4D CBCT∕CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment.

  19. Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment

    PubMed Central

    Meng, Bowen; Pratx, Guillem; Xing, Lei

    2011-01-01

    Purpose: Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT/CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. Methods: In this work, we accelerated the Feldcamp–Davis–Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT/CT reconstruction algorithm. Results: Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10−7. Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. Conclusions: An ultrafast, reliable and scalable 4D CBCT/CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment. PMID:22149842

  20. Parallel algorithm of VLBI software correlator under multiprocessor environment

    NASA Astrophysics Data System (ADS)

    Zheng, Weimin; Zhang, Dong

    2007-11-01

    The correlator is the key signal processing equipment of a Very Lone Baseline Interferometry (VLBI) synthetic aperture telescope. It receives the mass data collected by the VLBI observatories and produces the visibility function of the target, which can be used to spacecraft position, baseline length measurement, synthesis imaging, and other scientific applications. VLBI data correlation is a task of data intensive and computation intensive. This paper presents the algorithms of two parallel software correlators under multiprocessor environments. A near real-time correlator for spacecraft tracking adopts the pipelining and thread-parallel technology, and runs on the SMP (Symmetric Multiple Processor) servers. Another high speed prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm is realized on a small Beowulf cluster platform. Both correlators have the characteristic of flexible structure, scalability, and with 10-station data correlating abilities.

  1. A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.

    PubMed

    Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F

    2018-03-01

    Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.

  2. Limited angle tomographic breast imaging: A comparison of parallel beam and pinhole collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessell, D.E.; Kadrmas, D.J.; Frey, E.C.

    1996-12-31

    Results from clinical trials have suggested no improvement in lesion detection with parallel hole SPECT scintimammography (SM) with Tc-99m over parallel hole planar SM. In this initial investigation, we have elucidated some of the unique requirements of SPECT SM. With these requirements in mind, we have begun to develop practical data acquisition and reconstruction strategies that can reduce image artifacts and improve image quality. In this paper we investigate limited angle orbits for both parallel hole and pinhole SPECT SM. Singular Value Decomposition (SVD) is used to analyze the artifacts associated with the limited angle orbits. Maximum likelihood expectation maximizationmore » (MLEM) reconstructions are then used to examine the effects of attenuation compensation on the quality of the reconstructed image. All simulations are performed using the 3D-MCAT breast phantom. The results of these simulation studies demonstrate that limited angle SPECT SM is feasible, that attenuation correction is needed for accurate reconstructions, and that pinhole SPECT SM may have an advantage over parallel hole SPECT SM in terms of improved image quality and reduced image artifacts.« less

  3. Medical applications for high-performance computers in SKIF-GRID network.

    PubMed

    Zhuchkov, Alexey; Tverdokhlebov, Nikolay

    2009-01-01

    The paper presents a set of software services for massive mammography image processing by using high-performance parallel computers of SKIF-family which are linked into a service-oriented grid-network. An experience of a prototype system implementation in two medical institutions is also described.

  4. Efficient generation of discontinuity-preserving adaptive triangulations from range images.

    PubMed

    Garcia, Miguel Angel; Sappa, Angel Domingo

    2004-10-01

    This paper presents an efficient technique for generating adaptive triangular meshes from range images. The algorithm consists of two stages. First, a user-defined number of points is adaptively sampled from the given range image. Those points are chosen by taking into account the surface shapes represented in the range image in such a way that points tend to group in areas of high curvature and to disperse in low-variation regions. This selection process is done through a noniterative, inherently parallel algorithm in order to gain efficiency. Once the image has been subsampled, the second stage applies a two and one half-dimensional Delaunay triangulation to obtain an initial triangular mesh. To favor the preservation of surface and orientation discontinuities (jump and crease edges) present in the original range image, the aforementioned triangular mesh is iteratively modified by applying an efficient edge flipping technique. Results with real range images show accurate triangular approximations of the given range images with low processing times.

  5. Implementation of total focusing method for phased array ultrasonic imaging on FPGA

    NASA Astrophysics Data System (ADS)

    Guo, JianQiang; Li, Xi; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2015-02-01

    This paper describes a multi-FPGA imaging system dedicated for the real-time imaging using the Total Focusing Method (TFM) and Full Matrix Capture (FMC). The system was entirely described using Verilog HDL language and implemented on Altera Stratix IV GX FPGA development board. The whole algorithm process is to: establish a coordinate system of image and divide it into grids; calculate the complete acoustic distance of array element between transmitting array element and receiving array element, and transform it into index value; then index the sound pressure values from ROM and superimpose sound pressure values to get pixel value of one focus point; and calculate the pixel values of all focus points to get the final imaging. The imaging result shows that this algorithm has high SNR of defect imaging. And FPGA with parallel processing capability can provide high speed performance, so this system can provide the imaging interface, with complete function and good performance.

  6. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  7. USC orthogonal multiprocessor for image processing with neural networks

    NASA Astrophysics Data System (ADS)

    Hwang, Kai; Panda, Dhabaleswar K.; Haddadi, Navid

    1990-07-01

    This paper presents the architectural features and imaging applications of the Orthogonal MultiProcessor (OMP) system, which is under construction at the University of Southern California with research funding from NSF and assistance from several industrial partners. The prototype OMP is being built with 16 Intel i860 RISC microprocessors and 256 parallel memory modules using custom-designed spanning buses, which are 2-D interleaved and orthogonally accessed without conflicts. The 16-processor OMP prototype is targeted to achieve 430 MIPS and 600 Mflops, which have been verified by simulation experiments based on the design parameters used. The prototype OMP machine will be initially applied for image processing, computer vision, and neural network simulation applications. We summarize important vision and imaging algorithms that can be restructured with neural network models. These algorithms can efficiently run on the OMP hardware with linear speedup. The ultimate goal is to develop a high-performance Visual Computer (Viscom) for integrated low- and high-level image processing and vision tasks.

  8. Skeletonization of gray-scale images by gray weighted distance transform

    NASA Astrophysics Data System (ADS)

    Qian, Kai; Cao, Siqi; Bhattacharya, Prabir

    1997-07-01

    In pattern recognition, thinning algorithms are often a useful tool to represent a digital pattern by means of a skeletonized image, consisting of a set of one-pixel-width lines that highlight the significant features interest in applying thinning directly to gray-scale images, motivated by the desire of processing images characterized by meaningful information distributed over different levels of gray intensity. In this paper, a new algorithm is presented which can skeletonize both black-white and gray pictures. This algorithm is based on the gray distance transformation and can be used to process any non-well uniformly distributed gray-scale picture and can preserve the topology of original picture. This process includes a preliminary phase of investigation in the 'hollows' in the gray-scale image; these hollows are considered not as topological constrains for the skeleton structure depending on their statistically significant depth. This algorithm can also be executed on a parallel machine as all the operations are executed in local. Some examples are discussed to illustrate the algorithm.

  9. Mountain building processes in the Central Andes

    NASA Technical Reports Server (NTRS)

    Bloom, A. L.; Isacks, B. L.

    1986-01-01

    False color composite images of the Thematic Mapper (TM) bands 5, 4, and 2 were examined to make visual interpretations of geological features. The use of the roam mode of image display with the International Imaging Systems (IIS) System 600 image processing package running on the IIS Model 75 was very useful. Several areas in which good comparisons with ground data existed, were examined in detail. Parallel to the visual approach, image processing methods are being developed which allow the complete use of the seven TM bands. The data was organized into easily accessible files and a visual cataloging of the quads (quarter TM scenes) with preliminary registration with the best available charts for the region. The catalog has proved to be a valuable tool for the rapid scanning of quads for a specific investigation. Integration of the data into a complete approach to the problems of uplift, deformation, and magnetism in relation to the Nazca-South American plate interaction is at an initial stage.

  10. Mountain building processes in the Central Andes

    NASA Astrophysics Data System (ADS)

    Bloom, A. L.; Isacks, B. L.

    False color composite images of the Thematic Mapper (TM) bands 5, 4, and 2 were examined to make visual interpretations of geological features. The use of the roam mode of image display with the International Imaging Systems (IIS) System 600 image processing package running on the IIS Model 75 was very useful. Several areas in which good comparisons with ground data existed, were examined in detail. Parallel to the visual approach, image processing methods are being developed which allow the complete use of the seven TM bands. The data was organized into easily accessible files and a visual cataloging of the quads (quarter TM scenes) with preliminary registration with the best available charts for the region. The catalog has proved to be a valuable tool for the rapid scanning of quads for a specific investigation. Integration of the data into a complete approach to the problems of uplift, deformation, and magnetism in relation to the Nazca-South American plate interaction is at an initial stage.

  11. High-accuracy and robust face recognition system based on optical parallel correlator using a temporal image sequence

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Kodate, Kashiko

    2005-09-01

    Face recognition is used in a wide range of security systems, such as monitoring credit card use, searching for individuals with street cameras via Internet and maintaining immigration control. There are still many technical subjects under study. For instance, the number of images that can be stored is limited under the current system, and the rate of recognition must be improved to account for photo shots taken at different angles under various conditions. We implemented a fully automatic Fast Face Recognition Optical Correlator (FARCO) system by using a 1000 frame/s optical parallel correlator designed and assembled by us. Operational speed for the 1: N (i.e. matching a pair of images among N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 seconds, including the pre/post processing. From trial 1: N identification experiments using FARCO, we acquired low error rates of 2.6% False Reject Rate and 1.3% False Accept Rate. By making the most of the high-speed data-processing capability of this system, much more robustness can be achieved for various recognition conditions when large-category data are registered for a single person. We propose a face recognition algorithm for the FARCO while employing a temporal image sequence of moving images. Applying this algorithm to a natural posture, a two times higher recognition rate scored compared with our conventional system. The system has high potential for future use in a variety of purposes such as search for criminal suspects by use of street and airport video cameras, registration of babies at hospitals or handling of an immeasurable number of images in a database.

  12. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  13. [Method of correcting sensitivity nonuniformity using gaussian distribution on 3.0 Tesla abdominal MRI].

    PubMed

    Hayashi, Norio; Miyati, Tosiaki; Takanaga, Masako; Ohno, Naoki; Hamaguchi, Takashi; Kozaka, Kazuto; Sanada, Shigeru; Yamamoto, Tomoyuki; Matsui, Osamu

    2011-01-01

    In the direction where the phased array coil used in parallel magnetic resonance imaging (MRI) is perpendicular to the arrangement, sensitivity falls significantly. Moreover, in a 3.0 tesla (3T) abdominal MRI, the quality of the image is reduced by changes in the relaxation time, reinforcement of the magnetic susceptibility effect, etc. In a 3T MRI, which has a high resonant frequency, the signal of the depths (central part) is reduced in the trunk part. SCIC, which is sensitivity correction processing, has inadequate correction processing, such as that edges are emphasized and the central part is corrected. Therefore, we used 3T with a Gaussian distribution. The uneven compensation processing for sensitivity of an abdomen MR image was considered. The correction processing consisted of the following methods. 1) The center of gravity of the domain of the human body in an abdomen MR image was calculated. 2) The correction coefficient map was created from the center of gravity using the Gaussian distribution. 3) The sensitivity correction image was created from the correction coefficient map and the original picture image. Using the Gaussian correction to process the image, the uniformity calculated using the NEMA method was improved significantly compared to the original image of a phantom. In a visual evaluation by radiologists, the uniformity was improved significantly using the Gaussian correction processing. Because of the homogeneous improvement of the abdomen image taken using 3T MRI, the Gaussian correction processing is considered to be a very useful technique.

  14. EMAN2: an extensible image processing suite for electron microscopy.

    PubMed

    Tang, Guang; Peng, Liwei; Baldwin, Philip R; Mann, Deepinder S; Jiang, Wen; Rees, Ian; Ludtke, Steven J

    2007-01-01

    EMAN is a scientific image processing package with a particular focus on single particle reconstruction from transmission electron microscopy (TEM) images. It was first released in 1999, and new versions have been released typically 2-3 times each year since that time. EMAN2 has been under development for the last two years, with a completely refactored image processing library, and a wide range of features to make it much more flexible and extensible than EMAN1. The user-level programs are better documented, more straightforward to use, and written in the Python scripting language, so advanced users can modify the programs' behavior without any recompilation. A completely rewritten 3D transformation class simplifies translation between Euler angle standards and symmetry conventions. The core C++ library has over 500 functions for image processing and associated tasks, and it is modular with introspection capabilities, so programmers can add new algorithms with minimal effort and programs can incorporate new capabilities automatically. Finally, a flexible new parallelism system has been designed to address the shortcomings in the rigid system in EMAN1.

  15. An extended algebraic reconstruction technique (E-ART) for dual spectral CT.

    PubMed

    Zhao, Yunsong; Zhao, Xing; Zhang, Peng

    2015-03-01

    Compared with standard computed tomography (CT), dual spectral CT (DSCT) has many advantages for object separation, contrast enhancement, artifact reduction, and material composition assessment. But it is generally difficult to reconstruct images from polychromatic projections acquired by DSCT, because of the nonlinear relation between the polychromatic projections and the images to be reconstructed. This paper first models the DSCT reconstruction problem as a nonlinear system problem; and then extend the classic ART method to solve the nonlinear system. One feature of the proposed method is its flexibility. It fits for any scanning configurations commonly used and does not require consistent rays for different X-ray spectra. Another feature of the proposed method is its high degree of parallelism, which means that the method is suitable for acceleration on GPUs (graphic processing units) or other parallel systems. The method is validated with numerical experiments from simulated noise free and noisy data. High quality images are reconstructed with the proposed method from the polychromatic projections of DSCT. The reconstructed images are still satisfactory even if there are certain errors in the estimated X-ray spectra.

  16. Parallel halftoning technique using dot diffusion optimization

    NASA Astrophysics Data System (ADS)

    Molina-Garcia, Javier; Ponomaryov, Volodymyr I.; Reyes-Reyes, Rogelio; Cruz-Ramos, Clara

    2017-05-01

    In this paper, a novel approach for halftone images is proposed and implemented for images that are obtained by the Dot Diffusion (DD) method. Designed technique is based on an optimization of the so-called class matrix used in DD algorithm and it consists of generation new versions of class matrix, which has no baron and near-baron in order to minimize inconsistencies during the distribution of the error. Proposed class matrix has different properties and each is designed for two different applications: applications where the inverse-halftoning is necessary, and applications where this method is not required. The proposed method has been implemented in GPU (NVIDIA GeForce GTX 750 Ti), multicore processors (AMD FX(tm)-6300 Six-Core Processor and in Intel core i5-4200U), using CUDA and OpenCV over a PC with linux. Experimental results have shown that novel framework generates a good quality of the halftone images and the inverse halftone images obtained. The simulation results using parallel architectures have demonstrated the efficiency of the novel technique when it is implemented in real-time processing.

  17. JANUS: A Compilation System for Balancing Parallelism and Performance in OpenVX

    NASA Astrophysics Data System (ADS)

    Omidian, Hossein; Lemieux, Guy G. F.

    2018-04-01

    Embedded systems typically do not have enough on-chip memory for entire an image buffer. Programming systems like OpenCV operate on entire image frames at each step, making them use excessive memory bandwidth and power. In contrast, the paradigm used by OpenVX is much more efficient; it uses image tiling, and the compilation system is allowed to analyze and optimize the operation sequence, specified as a compute graph, before doing any pixel processing. In this work, we are building a compilation system for OpenVX that can analyze and optimize the compute graph to take advantage of parallel resources in many-core systems or FPGAs. Using a database of prewritten OpenVX kernels, it automatically adjusts the image tile size as well as using kernel duplication and coalescing to meet a defined area (resource) target, or to meet a specified throughput target. This allows a single compute graph to target implementations with a wide range of performance needs or capabilities, e.g. from handheld to datacenter, that use minimal resources and power to reach the performance target.

  18. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement.

    PubMed

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.

  19. Multiple asynchronous stimulus- and task-dependent hierarchies (STDH) within the visual brain's parallel processing systems.

    PubMed

    Zeki, Semir

    2016-10-01

    Results from a variety of sources, some many years old, lead ineluctably to a re-appraisal of the twin strategies of hierarchical and parallel processing used by the brain to construct an image of the visual world. Contrary to common supposition, there are at least three 'feed-forward' anatomical hierarchies that reach the primary visual cortex (V1) and the specialized visual areas outside it, in parallel. These anatomical hierarchies do not conform to the temporal order with which visual signals reach the specialized visual areas through V1. Furthermore, neither the anatomical hierarchies nor the temporal order of activation through V1 predict the perceptual hierarchies. The latter shows that we see (and become aware of) different visual attributes at different times, with colour leading form (orientation) and directional visual motion, even though signals from fast-moving, high-contrast stimuli are among the earliest to reach the visual cortex (of area V5). Parallel processing, on the other hand, is much more ubiquitous than commonly supposed but is subject to a barely noticed but fundamental aspect of brain operations, namely that different parallel systems operate asynchronously with respect to each other and reach perceptual endpoints at different times. This re-assessment leads to the conclusion that the visual brain is constituted of multiple, parallel and asynchronously operating task- and stimulus-dependent hierarchies (STDH); which of these parallel anatomical hierarchies have temporal and perceptual precedence at any given moment is stimulus and task related, and dependent on the visual brain's ability to undertake multiple operations asynchronously. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Separating figure from ground with a parallel network.

    PubMed

    Kienker, P K; Sejnowski, T J; Hinton, G E; Schumacher, L E

    1986-01-01

    The differentiation of figure from ground plays an important role in the perceptual organization of visual stimuli. The rapidity with which we can discriminate the inside from the outside of a figure suggests that at least this step in the process may be performed in visual cortex by a large number of neurons in several different areas working together in parallel. We have attempted to simulate this collective computation by designing a network of simple processing units that receives two types of information: bottom-up input from the image containing the outlines of a figure, which may be incomplete, and a top-down attentional input that biases one part of the image to be the inside of the figure. No presegmentation of the image was assumed. Two methods for performing the computation were explored: gradient descent, which seeks locally optimal states, and simulated annealing, which attempts to find globally optimal states by introducing noise into the computation. For complete outlines, gradient descent was faster, but the range of input parameters leading to successful performance was very narrow. In contrast, simulated annealing was more robust: it worked over a wider range of attention parameters and a wider range of outlines, including incomplete ones. Our network model is too simplified to serve as a model of human performance, but it does demonstrate that one global property of outlines can be computed through local interactions in a parallel network. Some features of the model, such as the role of noise in escaping from nonglobal optima, may generalize to more realistic models.

  1. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; Russell, Samuel S.

    2012-01-01

    Objective Develop a software application utilizing high performance computing techniques, including general purpose graphics processing units (GPGPUs), for the analysis and visualization of large thermographic data sets. Over the past several years, an increasing effort among scientists and engineers to utilize graphics processing units (GPUs) in a more general purpose fashion is allowing for previously unobtainable levels of computation by individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU which yield significant increases in performance. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Image processing is one area were GPUs are being used to greatly increase the performance of certain analysis and visualization techniques.

  2. Parallel processing of embossing dies with ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan; Du, Keming; Jenke, Gerald

    2018-02-01

    Functionalization of surfaces equips products and components with new features like hydrophilic behavior, adjustable gloss level, light management properties, etc. Small feature sizes demand diffraction-limited spots and adapted fluence for different materials. Through the availability of high power fast repeating ultrashort pulsed lasers and efficient optical processing heads delivering diffraction-limited small spot size of around 10μm it is feasible to achieve fluences higher than an adequate patterning requires. Hence, parallel processing is becoming of interest to increase the throughput and allow mass production of micro machined surfaces. The first step on the roadmap of parallel processing for cylinder embossing dies was realized with an eight- spot processing head based on ns-fiber laser with passive optical beam splitting, individual spot switching by acousto optical modulation and an advanced imaging. Patterning of cylindrical embossing dies shows a high efficiency of nearby 80%, diffraction-limited and equally spaced spots with pitches down to 25μm achieved by a compression using cascaded prism arrays. Due to the nanoseconds laser pulses the ablation shows the typical surrounding material deposition of a hot process. In the next step the processing head was adapted to a picosecond-laser source and the 500W fiber laser was replaced by an ultrashort pulsed laser with 300W, 12ps and a repetition frequency of up to 6MHz. This paper presents details about the processing head design and the analysis of ablation rates and patterns on steel, copper and brass dies. Furthermore, it gives an outlook on scaling the parallel processing head from eight to 16 individually switched beamlets to increase processing throughput and optimized utilization of the available ultrashort pulsed laser energy.

  3. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-11-17

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.

  4. Scalable splitting algorithms for big-data interferometric imaging in the SKA era

    NASA Astrophysics Data System (ADS)

    Onose, Alexandru; Carrillo, Rafael E.; Repetti, Audrey; McEwen, Jason D.; Thiran, Jean-Philippe; Pesquet, Jean-Christophe; Wiaux, Yves

    2016-11-01

    In the context of next-generation radio telescopes, like the Square Kilometre Array (SKA), the efficient processing of large-scale data sets is extremely important. Convex optimization tasks under the compressive sensing framework have recently emerged and provide both enhanced image reconstruction quality and scalability to increasingly larger data sets. We focus herein mainly on scalability and propose two new convex optimization algorithmic structures able to solve the convex optimization tasks arising in radio-interferometric imaging. They rely on proximal splitting and forward-backward iterations and can be seen, by analogy, with the CLEAN major-minor cycle, as running sophisticated CLEAN-like iterations in parallel in multiple data, prior, and image spaces. Both methods support any convex regularization function, in particular, the well-studied ℓ1 priors promoting image sparsity in an adequate domain. Tailored for big-data, they employ parallel and distributed computations to achieve scalability, in terms of memory and computational requirements. One of them also exploits randomization, over data blocks at each iteration, offering further flexibility. We present simulation results showing the feasibility of the proposed methods as well as their advantages compared to state-of-the-art algorithmic solvers. Our MATLAB code is available online on GitHub.

  5. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.

    PubMed

    Samant, Sanjiv S; Xia, Junyi; Muyan-Ozcelik, Pinar; Owens, John D

    2008-08-01

    The advent of readily available temporal imaging or time series volumetric (4D) imaging has become an indispensable component of treatment planning and adaptive radiotherapy (ART) at many radiotherapy centers. Deformable image registration (DIR) is also used in other areas of medical imaging, including motion corrected image reconstruction. Due to long computation time, clinical applications of DIR in radiation therapy and elsewhere have been limited and consequently relegated to offline analysis. With the recent advances in hardware and software, graphics processing unit (GPU) based computing is an emerging technology for general purpose computation, including DIR, and is suitable for highly parallelized computing. However, traditional general purpose computation on the GPU is limited because the constraints of the available programming platforms. As well, compared to CPU programming, the GPU currently has reduced dedicated processor memory, which can limit the useful working data set for parallelized processing. We present an implementation of the demons algorithm using the NVIDIA 8800 GTX GPU and the new CUDA programming language. The GPU performance will be compared with single threading and multithreading CPU implementations on an Intel dual core 2.4 GHz CPU using the C programming language. CUDA provides a C-like language programming interface, and allows for direct access to the highly parallel compute units in the GPU. Comparisons for volumetric clinical lung images acquired using 4DCT were carried out. Computation time for 100 iterations in the range of 1.8-13.5 s was observed for the GPU with image size ranging from 2.0 x 10(6) to 14.2 x 10(6) pixels. The GPU registration was 55-61 times faster than the CPU for the single threading implementation, and 34-39 times faster for the multithreading implementation. For CPU based computing, the computational time generally has a linear dependence on image size for medical imaging data. Computational efficiency is characterized in terms of time per megapixels per iteration (TPMI) with units of seconds per megapixels per iteration (or spmi). For the demons algorithm, our CPU implementation yielded largely invariant values of TPMI. The mean TPMIs were 0.527 spmi and 0.335 spmi for the single threading and multithreading cases, respectively, with <2% variation over the considered image data range. For GPU computing, we achieved TPMI =0.00916 spmi with 3.7% variation, indicating optimized memory handling under CUDA. The paradigm of GPU based real-time DIR opens up a host of clinical applications for medical imaging.

  6. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    NASA Astrophysics Data System (ADS)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  7. The Maia Spectroscopy Detector System: Engineering for Integrated Pulse Capture, Low-Latency Scanning and Real-Time Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkham, R.; Siddons, D.; Dunn, P.A.

    2010-06-23

    The Maia detector system is engineered for energy dispersive x-ray fluorescence spectroscopy and elemental imaging at photon rates exceeding 10{sup 7}/s, integrated scanning of samples for pixel transit times as small as 50 {micro}s and high definition images of 10{sup 8} pixels and real-time processing of detected events for spectral deconvolution and online display of pure elemental images. The system developed by CSIRO and BNL combines a planar silicon 384 detector array, application-specific integrated circuits for pulse shaping and peak detection and sampling and optical data transmission to an FPGA-based pipelined, parallel processor. This paper describes the system and themore » underpinning engineering solutions.« less

  8. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation

    PubMed Central

    Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.

    2012-01-01

    Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477

  9. A review of GPU-based medical image reconstruction.

    PubMed

    Després, Philippe; Jia, Xun

    2017-10-01

    Tomographic image reconstruction is a computationally demanding task, even more so when advanced models are used to describe a more complete and accurate picture of the image formation process. Such advanced modeling and reconstruction algorithms can lead to better images, often with less dose, but at the price of long calculation times that are hardly compatible with clinical workflows. Fortunately, reconstruction tasks can often be executed advantageously on Graphics Processing Units (GPUs), which are exploited as massively parallel computational engines. This review paper focuses on recent developments made in GPU-based medical image reconstruction, from a CT, PET, SPECT, MRI and US perspective. Strategies and approaches to get the most out of GPUs in image reconstruction are presented as well as innovative applications arising from an increased computing capacity. The future of GPU-based image reconstruction is also envisioned, based on current trends in high-performance computing. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    NASA Astrophysics Data System (ADS)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  11. NeuroSeek dual-color image processing infrared focal plane array

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  12. Data consistency criterion for selecting parameters for k-space-based reconstruction in parallel imaging.

    PubMed

    Nana, Roger; Hu, Xiaoping

    2010-01-01

    k-space-based reconstruction in parallel imaging depends on the reconstruction kernel setting, including its support. An optimal choice of the kernel depends on the calibration data, coil geometry and signal-to-noise ratio, as well as the criterion used. In this work, data consistency, imposed by the shift invariance requirement of the kernel, is introduced as a goodness measure of k-space-based reconstruction in parallel imaging and demonstrated. Data consistency error (DCE) is calculated as the sum of squared difference between the acquired signals and their estimates obtained based on the interpolation of the estimated missing data. A resemblance between DCE and the mean square error in the reconstructed image was found, demonstrating DCE's potential as a metric for comparing or choosing reconstructions. When used for selecting the kernel support for generalized autocalibrating partially parallel acquisition (GRAPPA) reconstruction and the set of frames for calibration as well as the kernel support in temporal GRAPPA reconstruction, DCE led to improved images over existing methods. Data consistency error is efficient to evaluate, robust for selecting reconstruction parameters and suitable for characterizing and optimizing k-space-based reconstruction in parallel imaging.

  13. Parallel approach to incorporating face image information into dialogue processing

    NASA Astrophysics Data System (ADS)

    Ren, Fuji

    2000-10-01

    There are many kinds of so-called irregular expressions in natural dialogues. Even if the content of a conversation is the same in words, different meanings can be interpreted by a person's feeling or face expression. To have a good understanding of dialogues, it is required in a flexible dialogue processing system to infer the speaker's view properly. However, it is difficult to obtain the meaning of the speaker's sentences in various scenes using traditional methods. In this paper, a new approach for dialogue processing that incorporates information from the speaker's face is presented. We first divide conversation statements into several simple tasks. Second, we process each simple task using an independent processor. Third, we employ some speaker's face information to estimate the view of the speakers to solve ambiguities in dialogues. The approach presented in this paper can work efficiently, because independent processors run in parallel, writing partial results to a shared memory, incorporating partial results at appropriate points, and complementing each other. A parallel algorithm and a method for employing the face information in a dialogue machine translation will be discussed, and some results will be included in this paper.

  14. Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography.

    PubMed

    Podoleanu, Adrian Gh; Bradu, Adrian

    2013-08-12

    Conventional spectral domain interferometry (SDI) methods suffer from the need of data linearization. When applied to optical coherence tomography (OCT), conventional SDI methods are limited in their 3D capability, as they cannot deliver direct en-face cuts. Here we introduce a novel SDI method, which eliminates these disadvantages. We denote this method as Master - Slave Interferometry (MSI), because a signal is acquired by a slave interferometer for an optical path difference (OPD) value determined by a master interferometer. The MSI method radically changes the main building block of an SDI sensor and of a spectral domain OCT set-up. The serially provided signal in conventional technology is replaced by multiple signals, a signal for each OPD point in the object investigated. This opens novel avenues in parallel sensing and in parallelization of signal processing in 3D-OCT, with applications in high- resolution medical imaging and microscopy investigation of biosamples. Eliminating the need of linearization leads to lower cost OCT systems and opens potential avenues in increasing the speed of production of en-face OCT images in comparison with conventional SDI.

  15. A dynamic system with digital lock-in-photon-counting for pharmacokinetic diffuse fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Yin, Guoyan; Zhang, Limin; Zhang, Yanqi; Liu, Han; Du, Wenwen; Ma, Wenjuan; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Pharmacokinetic diffuse fluorescence tomography (DFT) can describe the metabolic processes of fluorescent agents in biomedical tissue and provide helpful information for tumor differentiation. In this paper, a dynamic DFT system was developed by employing digital lock-in-photon-counting with square wave modulation, which predominates in ultra-high sensitivity and measurement parallelism. In this system, 16 frequency-encoded laser diodes (LDs) driven by self-designed light source system were distributed evenly in the imaging plane and irradiated simultaneously. Meanwhile, 16 detection fibers collected emission light in parallel by the digital lock-in-photon-counting module. The fundamental performances of the proposed system were assessed with phantom experiments in terms of stability, linearity, anti-crosstalk as well as images reconstruction. The results validated the availability of the proposed dynamic DFT system.

  16. The Pan-STARRS PS1 Image Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Magnier, E.

    The Pan-STARRS PS1 Image Processing Pipeline (IPP) performs the image processing and data analysis tasks needed to enable the scientific use of the images obtained by the Pan-STARRS PS1 prototype telescope. The primary goals of the IPP are to process the science images from the Pan-STARRS telescopes and make the results available to other systems within Pan-STARRS. It also is responsible for combining all of the science images in a given filter into a single representation of the non-variable component of the night sky defined as the "Static Sky". To achieve these goals, the IPP also performs other analysis functions to generate the calibrations needed in the science image processing, and to occasionally use the derived data to generate improved astrometric and photometric reference catalogs. It also provides the infrastructure needed to store the incoming data and the resulting data products. The IPP inherits lessons learned, and in some cases code and prototype code, from several other astronomy image analysis systems, including Imcat (Kaiser), the Sloan Digital Sky Survey (REF), the Elixir system (Magnier & Cuillandre), and Vista (Tonry). Imcat and Vista have a large number of robust image processing functions. SDSS has demonstrated a working analysis pipeline and large-scale databasesystem for a dedicated project. The Elixir system has demonstrated an automatic image processing system and an object database system for operational usage. This talk will present an overview of the IPP architecture, functional flow, code development structure, and selected analysis algorithms. Also discussed is the HW highly parallel HW configuration necessary to support PS1 operational requirements. Finally, results are presented of the processing of images collected during PS1 early commissioning tasks utilizing the Pan-STARRS Test Camera #3.

  17. A safety monitoring system for taxi based on CMOS imager

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    CMOS image sensors now become increasingly competitive with respect to their CCD counterparts, while adding advantages such as no blooming, simpler driving requirements and the potential of on-chip integration of sensor, analogue circuitry, and digital processing functions. A safety monitoring system for taxi based on cmos imager that can record field situation when unusual circumstance happened is described in this paper. The monitoring system is based on a CMOS imager (OV7120), which can output digital image data through parallel pixel data port. The system consists of a CMOS image sensor, a large capacity NAND FLASH ROM, a USB interface chip and a micro controller (AT90S8515). The structure of whole system and the test data is discussed and analyzed in detail.

  18. A review of snapshot multidimensional optical imaging: measuring photon tags in parallel

    PubMed Central

    Gao, Liang; Wang, Lihong V.

    2015-01-01

    Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons’ spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition—also dubbed snapshot imaging—has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications. PMID:27134340

  19. Research of the effectiveness of parallel multithreaded realizations of interpolation methods for scaling raster images

    NASA Astrophysics Data System (ADS)

    Vnukov, A. A.; Shershnev, M. B.

    2018-01-01

    The aim of this work is the software implementation of three image scaling algorithms using parallel computations, as well as the development of an application with a graphical user interface for the Windows operating system to demonstrate the operation of algorithms and to study the relationship between system performance, algorithm execution time and the degree of parallelization of computations. Three methods of interpolation were studied, formalized and adapted to scale images. The result of the work is a program for scaling images by different methods. Comparison of the quality of scaling by different methods is given.

  20. Hadoop-based implementation of processing medical diagnostic records for visual patient system

    NASA Astrophysics Data System (ADS)

    Yang, Yuanyuan; Shi, Liehang; Xie, Zhe; Zhang, Jianguo

    2018-03-01

    We have innovatively introduced Visual Patient (VP) concept and method visually to represent and index patient imaging diagnostic records (IDR) in last year SPIE Medical Imaging (SPIE MI 2017), which can enable a doctor to review a large amount of IDR of a patient in a limited appointed time slot. In this presentation, we presented a new approach to design data processing architecture of VP system (VPS) to acquire, process and store various kinds of IDR to build VP instance for each patient in hospital environment based on Hadoop distributed processing structure. We designed this system architecture called Medical Information Processing System (MIPS) with a combination of Hadoop batch processing architecture and Storm stream processing architecture. The MIPS implemented parallel processing of various kinds of clinical data with high efficiency, which come from disparate hospital information system such as PACS, RIS LIS and HIS.

  1. Measurement of smaller colon polyp in CT colonography images using morphological image processing.

    PubMed

    Manjunath, K N; Siddalingaswamy, P C; Prabhu, G K

    2017-11-01

    Automated measurement of the size and shape of colon polyps is one of the challenges in Computed tomography colonography (CTC). The objective of this retrospective study was to improve the sensitivity and specificity of smaller polyp measurement in CTC using image processing techniques. A domain knowledge-based method has been implemented with hybrid method of colon segmentation, morphological image processing operators for detecting the colonic structures, and the decision-making system for delineating the smaller polyp-based on a priori knowledge. The method was applied on 45 CTC dataset. The key finding was that the smaller polyps were accurately measured. In addition to 6-9 mm range, polyps of even <5 mm were also detected. The results were validated qualitatively and quantitatively using both 2D MPR and 3D view. Implementation was done on a high-performance computer with parallel processing. It takes [Formula: see text] min for measuring the smaller polyp in a dataset of 500 CTC images. With this method, [Formula: see text] and [Formula: see text] were achieved. The domain-based approach with morphological image processing has given good results. The smaller polyps were measured accurately which helps in making right clinical decisions. Qualitatively and quantitatively the results were acceptable when compared to the ground truth at [Formula: see text].

  2. Robust Segmentation of Overlapping Cells in Histopathology Specimens Using Parallel Seed Detection and Repulsive Level Set

    PubMed Central

    Qi, Xin; Xing, Fuyong; Foran, David J.; Yang, Lin

    2013-01-01

    Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMA) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm which can reliably separate touching cells in hematoxylin stained breast TMA specimens which have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach which utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and tissue microarrays containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) which resulted in significant speed-up over the C/C++ implementation. PMID:22167559

  3. Specific methodology for capacitance imaging by atomic force microscopy: A breakthrough towards an elimination of parasitic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Ivan; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Chrétien, Pascal

    2014-02-24

    On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.

  4. Acceleration of fluoro-CT reconstruction for a mobile C-Arm on GPU and FPGA hardware: a simulation study

    NASA Astrophysics Data System (ADS)

    Xue, Xinwei; Cheryauka, Arvi; Tubbs, David

    2006-03-01

    CT imaging in interventional and minimally-invasive surgery requires high-performance computing solutions that meet operational room demands, healthcare business requirements, and the constraints of a mobile C-arm system. The computational requirements of clinical procedures using CT-like data are increasing rapidly, mainly due to the need for rapid access to medical imagery during critical surgical procedures. The highly parallel nature of Radon transform and CT algorithms enables embedded computing solutions utilizing a parallel processing architecture to realize a significant gain of computational intensity with comparable hardware and program coding/testing expenses. In this paper, using a sample 2D and 3D CT problem, we explore the programming challenges and the potential benefits of embedded computing using commodity hardware components. The accuracy and performance results obtained on three computational platforms: a single CPU, a single GPU, and a solution based on FPGA technology have been analyzed. We have shown that hardware-accelerated CT image reconstruction can be achieved with similar levels of noise and clarity of feature when compared to program execution on a CPU, but gaining a performance increase at one or more orders of magnitude faster. 3D cone-beam or helical CT reconstruction and a variety of volumetric image processing applications will benefit from similar accelerations.

  5. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-09-02

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  6. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-06-24

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  7. Global Swath and Gridded Data Tiling

    NASA Technical Reports Server (NTRS)

    Thompson, Charles K.

    2012-01-01

    This software generates cylindrically projected tiles of swath-based or gridded satellite data for the purpose of dynamically generating high-resolution global images covering various time periods, scaling ranges, and colors called "tiles." It reconstructs a global image given a set of tiles covering a particular time range, scaling values, and a color table. The program is configurable in terms of tile size, spatial resolution, format of input data, location of input data (local or distributed), number of processes run in parallel, and data conditioning.

  8. Parallel Reconstruction Using Null Operations (PRUNO)

    PubMed Central

    Zhang, Jian; Liu, Chunlei; Moseley, Michael E.

    2011-01-01

    A novel iterative k-space data-driven technique, namely Parallel Reconstruction Using Null Operations (PRUNO), is presented for parallel imaging reconstruction. In PRUNO, both data calibration and image reconstruction are formulated into linear algebra problems based on a generalized system model. An optimal data calibration strategy is demonstrated by using Singular Value Decomposition (SVD). And an iterative conjugate- gradient approach is proposed to efficiently solve missing k-space samples during reconstruction. With its generalized formulation and precise mathematical model, PRUNO reconstruction yields good accuracy, flexibility, stability. Both computer simulation and in vivo studies have shown that PRUNO produces much better reconstruction quality than autocalibrating partially parallel acquisition (GRAPPA), especially under high accelerating rates. With the aid of PRUO reconstruction, ultra high accelerating parallel imaging can be performed with decent image quality. For example, we have done successful PRUNO reconstruction at a reduction factor of 6 (effective factor of 4.44) with 8 coils and only a few autocalibration signal (ACS) lines. PMID:21604290

  9. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.

    PubMed

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  10. Aberration-free superresolution imaging via binary speckle pattern encoding and processing

    NASA Astrophysics Data System (ADS)

    Ben-Eliezer, Eyal; Marom, Emanuel

    2007-04-01

    We present an approach that provides superresolution beyond the classical limit as well as image restoration in the presence of aberrations; in particular, the ability to obtain superresolution while extending the depth of field (DOF) simultaneously is tested experimentally. It is based on an approach, recently proposed, shown to increase the resolution significantly for in-focus images by speckle encoding and decoding. In our approach, an object multiplied by a fine binary speckle pattern may be located anywhere along an extended DOF region. Since the exact magnification is not known in the presence of defocus aberration, the acquired low-resolution image is electronically processed via a parallel-branch decoding scheme, where in each branch the image is multiplied by the same high-resolution synchronized time-varying binary speckle but with different magnification. Finally, a hard-decision algorithm chooses the branch that provides the highest-resolution output image, thus achieving insensitivity to aberrations as well as DOF variations. Simulation as well as experimental results are presented, exhibiting significant resolution improvement factors.

  11. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement

    PubMed Central

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344

  12. Predicting Database Requirements for Geographic Information Systems in the Year 2000: Long-Term Design Issues for GRASS

    DTIC Science & Technology

    1992-08-01

    Image Processing. Reading, Massachusetts: Addison-Wesley (1977). Graefe, G., "Parallelizing the Volcano Query Processor," Proc. IEEE COMPCON 90...Approach to a Next Generation of Hypermedia System," Proc. IEEE COMPCON 90 (February 1990), pp 520-527. Jellinghaus, R., " Eiffel Linda: An Object

  13. Digital signal processing and control and estimation theory -- Points of tangency, area of intersection, and parallel directions

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1976-01-01

    A number of current research directions in the fields of digital signal processing and modern control and estimation theory were studied. Topics such as stability theory, linear prediction and parameter identification, system analysis and implementation, two-dimensional filtering, decentralized control and estimation, image processing, and nonlinear system theory were examined in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the two disciplines. An extensive bibliography is included.

  14. Expert Systems for the Scheduling of Image Processing Tasks on a Parallel Processing System

    DTIC Science & Technology

    1986-12-01

    existed for over twenty years. Credit for designing and implementing the first computer vision system is usually given to L. G . Roberts [Robe65]. With...hardware differences between systems. 44 LIST OF REFERENCES [Adam82] G . B. Adams III and H. J. Siegel, "The Extra Stage Cube: a Fault-Tolerant...Academic Press, 1985 [Robe65] L. G . Roberts, "Machine Perception of Three-Dimensional Solids," in Optical and Electro-Optical Information Processing, ed. J

  15. Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

    PubMed Central

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964

  16. MULTI-CORE AND OPTICAL PROCESSOR RELATED APPLICATIONS RESEARCH AT OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhen, Jacob; Kerekes, Ryan A; ST Charles, Jesse Lee

    2008-01-01

    High-speed parallelization of common tasks holds great promise as a low-risk approach to achieving the significant increases in signal processing and computational performance required for next generation innovations in reconfigurable radio systems. Researchers at the Oak Ridge National Laboratory have been working on exploiting the parallelization offered by this emerging technology and applying it to a variety of problems. This paper will highlight recent experience with four different parallel processors applied to signal processing tasks that are directly relevant to signal processing required for SDR/CR waveforms. The first is the EnLight Optical Core Processor applied to matched filter (MF) correlationmore » processing via fast Fourier transform (FFT) of broadband Dopplersensitive waveforms (DSW) using active sonar arrays for target tracking. The second is the IBM CELL Broadband Engine applied to 2-D discrete Fourier transform (DFT) kernel for image processing and frequency domain processing. And the third is the NVIDIA graphical processor applied to document feature clustering. EnLight Optical Core Processor. Optical processing is inherently capable of high-parallelism that can be translated to very high performance, low power dissipation computing. The EnLight 256 is a small form factor signal processing chip (5x5 cm2) with a digital optical core that is being developed by an Israeli startup company. As part of its evaluation of foreign technology, ORNL's Center for Engineering Science Advanced Research (CESAR) had access to a precursor EnLight 64 Alpha hardware for a preliminary assessment of capabilities in terms of large Fourier transforms for matched filter banks and on applications related to Doppler-sensitive waveforms. This processor is optimized for array operations, which it performs in fixed-point arithmetic at the rate of 16 TeraOPS at 8-bit precision. This is approximately 1000 times faster than the fastest DSP available today. The optical core performs the matrix-vector multiplications, where the nominal matrix size is 256x256. The system clock is 125MHz. At each clock cycle, 128K multiply-and-add operations per second (OPS) are carried out, which yields a peak performance of 16 TeraOPS. IBM Cell Broadband Engine. The Cell processor is the extraordinary resulting product of 5 years of sustained, intensive R&D collaboration (involving over $400M investment) between IBM, Sony, and Toshiba. Its architecture comprises one multithreaded 64-bit PowerPC processor element (PPE) with VMX capabilities and two levels of globally coherent cache, and 8 synergistic processor elements (SPEs). Each SPE consists of a processor (SPU) designed for streaming workloads, local memory, and a globally coherent direct memory access (DMA) engine. Computations are performed in 128-bit wide single instruction multiple data streams (SIMD). An integrated high-bandwidth element interconnect bus (EIB) connects the nine processors and their ports to external memory and to system I/O. The Applied Software Engineering Research (ASER) Group at the ORNL is applying the Cell to a variety of text and image analysis applications. Research on Cell-equipped PlayStation3 (PS3) consoles has led to the development of a correlation-based image recognition engine that enables a single PS3 to process images at more than 10X the speed of state-of-the-art single-core processors. NVIDIA Graphics Processing Units. The ASER group is also employing the latest NVIDIA graphical processing units (GPUs) to accelerate clustering of thousands of text documents using recently developed clustering algorithms such as document flocking and affinity propagation.« less

  17. Intelligent robotic tracker

    NASA Technical Reports Server (NTRS)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  18. A Electro-Optical Image Algebra Processing System for Automatic Target Recognition

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick Cyrus

    The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.

  19. Three-dimensional image contrast using biospeckle

    NASA Astrophysics Data System (ADS)

    Godinho, Robson Pierangeli; Braga, Roberto A., Jr.

    2010-09-01

    The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.

  20. Quantitative fluorescence imaging of protein diffusion and interaction in living cells.

    PubMed

    Capoulade, Jérémie; Wachsmuth, Malte; Hufnagel, Lars; Knop, Michael

    2011-08-07

    Diffusion processes and local dynamic equilibria inside cells lead to nonuniform spatial distributions of molecules, which are essential for processes such as nuclear organization and signaling in cell division, differentiation and migration. To understand these mechanisms, spatially resolved quantitative measurements of protein abundance, mobilities and interactions are needed, but current methods have limited capabilities to study dynamic parameters. Here we describe a microscope based on light-sheet illumination that allows massively parallel fluorescence correlation spectroscopy (FCS) measurements and use it to visualize the diffusion and interactions of proteins in mammalian cells and in isolated fly tissue. Imaging the mobility of heterochromatin protein HP1α (ref. 4) in cell nuclei we could provide high-resolution diffusion maps that reveal euchromatin areas with heterochromatin-like HP1α-chromatin interactions. We expect that FCS imaging will become a useful method for the precise characterization of cellular reaction-diffusion processes.

  1. Imaging resolution and properties analysis of super resolution microscopy with parallel detection under different noise, detector and image restoration conditions

    NASA Astrophysics Data System (ADS)

    Yu, Zhongzhi; Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Liu, Xu

    2018-06-01

    Parallel detection, which can use the additional information of a pinhole plane image taken at every excitation scan position, could be an efficient method to enhance the resolution of a confocal laser scanning microscope. In this paper, we discuss images obtained under different conditions and using different image restoration methods with parallel detection to quantitatively compare the imaging quality. The conditions include different noise levels and different detector array settings. The image restoration methods include linear deconvolution and pixel reassignment with Richard-Lucy deconvolution and with maximum-likelihood estimation deconvolution. The results show that the linear deconvolution share properties such as high-efficiency and the best performance under all different conditions, and is therefore expected to be of use for future biomedical routine research.

  2. Efficient testing methodologies for microcameras in a gigapixel imaging system

    NASA Astrophysics Data System (ADS)

    Youn, Seo Ho; Marks, Daniel L.; McLaughlin, Paul O.; Brady, David J.; Kim, Jungsang

    2013-04-01

    Multiscale parallel imaging--based on a monocentric optical design--promises revolutionary advances in diverse imaging applications by enabling high resolution, real-time image capture over a wide field-of-view (FOV), including sport broadcast, wide-field microscopy, astronomy, and security surveillance. Recently demonstrated AWARE-2 is a gigapixel camera consisting of an objective lens and 98 microcameras spherically arranged to capture an image over FOV of 120° by 50°, using computational image processing to form a composite image of 0.96 gigapixels. Since microcameras are capable of individually adjusting exposure, gain, and focus, true parallel imaging is achieved with a high dynamic range. From the integration perspective, manufacturing and verifying consistent quality of microcameras is a key to successful realization of AWARE cameras. We have developed an efficient testing methodology that utilizes a precisely fabricated dot grid chart as a calibration target to extract critical optical properties such as optical distortion, veiling glare index, and modulation transfer function to validate imaging performance of microcameras. This approach utilizes an AWARE objective lens simulator which mimics the actual objective lens but operates with a short object distance, suitable for a laboratory environment. Here we describe the principles of the methodologies developed for AWARE microcameras and discuss the experimental results with our prototype microcameras. Reference Brady, D. J., Gehm, M. E., Stack, R. A., Marks, D. L., Kittle, D. S., Golish, D. R., Vera, E. M., and Feller, S. D., "Multiscale gigapixel photography," Nature 486, 386--389 (2012).

  3. Accelerating image recognition on mobile devices using GPGPU

    NASA Astrophysics Data System (ADS)

    Bordallo López, Miguel; Nykänen, Henri; Hannuksela, Jari; Silvén, Olli; Vehviläinen, Markku

    2011-01-01

    The future multi-modal user interfaces of battery-powered mobile devices are expected to require computationally costly image analysis techniques. The use of Graphic Processing Units for computing is very well suited for parallel processing and the addition of programmable stages and high precision arithmetic provide for opportunities to implement energy-efficient complete algorithms. At the moment the first mobile graphics accelerators with programmable pipelines are available, enabling the GPGPU implementation of several image processing algorithms. In this context, we consider a face tracking approach that uses efficient gray-scale invariant texture features and boosting. The solution is based on the Local Binary Pattern (LBP) features and makes use of the GPU on the pre-processing and feature extraction phase. We have implemented a series of image processing techniques in the shader language of OpenGL ES 2.0, compiled them for a mobile graphics processing unit and performed tests on a mobile application processor platform (OMAP3530). In our contribution, we describe the challenges of designing on a mobile platform, present the performance achieved and provide measurement results for the actual power consumption in comparison to using the CPU (ARM) on the same platform.

  4. Parallel image logical operations using cross correlation

    NASA Technical Reports Server (NTRS)

    Strong, J. P., III

    1972-01-01

    Methods are presented for counting areas in an image in a parallel manner using noncoherent optical techniques. The techniques presented include the Levialdi algorithm for counting, optical techniques for binary operations, and cross-correlation.

  5. Real-time field programmable gate array architecture for computer vision

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar

    2001-01-01

    This paper presents an architecture for real-time generic convolution of a mask and an image. The architecture is intended for fast low-level image processing. The field programmable gate array (FPGA)-based architecture takes advantage of the availability of registers in FPGAs to implement an efficient and compact module to process the convolutions. The architecture is designed to minimize the number of accesses to the image memory and it is based on parallel modules with internal pipeline operation in order to improve its performance. The architecture is prototyped in a FPGA, but it can be implemented on dedicated very- large-scale-integrated devices to reach higher clock frequencies. Complexity issues, FPGA resources utilization, FPGA limitations, and real-time performance are discussed. Some results are presented and discussed.

  6. Flight Results from the HST SM4 Relative Navigation Sensor System

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Eepoel, John Van; Queen, Steve; Southward, C. Michael; Hannah, Joel

    2010-01-01

    On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as SpaceCube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms

  7. Designing for Peta-Scale in the LSST Database

    NASA Astrophysics Data System (ADS)

    Kantor, J.; Axelrod, T.; Becla, J.; Cook, K.; Nikolaev, S.; Gray, J.; Plante, R.; Nieto-Santisteban, M.; Szalay, A.; Thakar, A.

    2007-10-01

    The Large Synoptic Survey Telescope (LSST), a proposed ground-based 8.4 m telescope with a 10 deg^2 field of view, will generate 15 TB of raw images every observing night. When calibration and processed data are added, the image archive, catalogs, and meta-data will grow 15 PB yr^{-1} on average. The LSST Data Management System (DMS) must capture, process, store, index, replicate, and provide open access to this data. Alerts must be triggered within 30 s of data acquisition. To do this in real-time at these data volumes will require advances in data management, database, and file system techniques. This paper describes the design of the LSST DMS and emphasizes features for peta-scale data. The LSST DMS will employ a combination of distributed database and file systems, with schema, partitioning, and indexing oriented for parallel operations. Image files are stored in a distributed file system with references to, and meta-data from, each file stored in the databases. The schema design supports pipeline processing, rapid ingest, and efficient query. Vertical partitioning reduces disk input/output requirements, horizontal partitioning allows parallel data access using arrays of servers and disks. Indexing is extensive, utilizing both conventional RAM-resident indexes and column-narrow, row-deep tag tables/covering indices that are extracted from tables that contain many more attributes. The DMS Data Access Framework is encapsulated in a middleware framework to provide a uniform service interface to all framework capabilities. This framework will provide the automated work-flow, replication, and data analysis capabilities necessary to make data processing and data quality analysis feasible at this scale.

  8. Optical computing and image processing using photorefractive gallium arsenide

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Duncan T. H.

    1990-01-01

    Recent experimental results on matrix-vector multiplication and multiple four-wave mixing using GaAs are presented. Attention is given to a simple concept of using two overlapping holograms in GaAs to do two matrix-vector multiplication processes operating in parallel with a common input vector. This concept can be used to construct high-speed, high-capacity, reconfigurable interconnection and multiplexing modules, important for optical computing and neural-network applications.

  9. High performance computing environment for multidimensional image analysis

    PubMed Central

    Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo

    2007-01-01

    Background The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. Results We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478× speedup. Conclusion Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets. PMID:17634099

  10. High performance computing environment for multidimensional image analysis.

    PubMed

    Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo

    2007-07-10

    The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478x speedup. Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets.

  11. Real time 3D structural and Doppler OCT imaging on graphics processing units

    NASA Astrophysics Data System (ADS)

    Sylwestrzak, Marcin; Szlag, Daniel; Szkulmowski, Maciej; Gorczyńska, Iwona; Bukowska, Danuta; Wojtkowski, Maciej; Targowski, Piotr

    2013-03-01

    In this report the application of graphics processing unit (GPU) programming for real-time 3D Fourier domain Optical Coherence Tomography (FdOCT) imaging with implementation of Doppler algorithms for visualization of the flows in capillary vessels is presented. Generally, the time of the data processing of the FdOCT data on the main processor of the computer (CPU) constitute a main limitation for real-time imaging. Employing additional algorithms, such as Doppler OCT analysis, makes this processing even more time consuming. Lately developed GPUs, which offers a very high computational power, give a solution to this problem. Taking advantages of them for massively parallel data processing, allow for real-time imaging in FdOCT. The presented software for structural and Doppler OCT allow for the whole processing with visualization of 2D data consisting of 2000 A-scans generated from 2048 pixels spectra with frame rate about 120 fps. The 3D imaging in the same mode of the volume data build of 220 × 100 A-scans is performed at a rate of about 8 frames per second. In this paper a software architecture, organization of the threads and optimization applied is shown. For illustration the screen shots recorded during real time imaging of the phantom (homogeneous water solution of Intralipid in glass capillary) and the human eye in-vivo is presented.

  12. Changes in In Situ Stress Across the Nankai and Cascadia Convergent Margins From Borehole Breakout Measurements During Ocean Drilling

    NASA Astrophysics Data System (ADS)

    McNeill, L.; Moore, J. C.; Yamada, Y.; Chang, C.; Tobin, H.; Kinoshita, M.; Gulick, S.; Moore, G.; Iodp Exp. 314/315/316 Science Party, &

    2008-12-01

    Borehole breakouts are commonly observed in borehole images shortly after drilling of continental margin sites. This study aims to compile and compare these results to determine what in situ shallow stress measurements can tell us about the larger scale tectonic regime. Recent Logging While Drilling resistivity images across the Kumano transect of the Nankai subduction zone, during Expedition 314, Stage 1 of the IODP NanTroSEIZE project, add to this dataset. Expedition 314 site data within the prism (C0001, C0004, C0006, including the megasplay fault system which may overlie the seismogenic updip limit) suggest maximum compressive stress (SHmax) is perpendicular to the margin (not parallel to the convergence vector) but is rotated through 90° at the forearc basin site (C0002). These results may point to changes in stress state of the shallow forearc from east to west: compression in the aseismic active prism (with evidence of strain partitioning of oblique convergence); and extension above the updip seismogenic zone suggesting focus of plate coupling at the plate boundary and not in the shallow forearc. Further south, ODP Leg 196 drilled the prism toe (808) with breakouts indicating SHmax parallel to the convergence vector, in contrast to Exp. 314 results. The stress state in the shallow prism at Site 808 may be affected by nearby seamount subduction or may represent differences in strain partitioning. On the Cascadia margin, two drilling legs have collected LWD borehole images (Leg 204 and Exp. 311). Leg 204 drilled 3 sites at hydrate ridge in the C Cascadia outer prism with breakout orientations variable between closely spaced sites. Prism fold axes are parallel to the margin so we might expect SHmax perpendicular to the margin as in Exp. 314. Deviations from this orientation may reflect local and surface effects (Goldberg and Janik, 2006). Exp. 311, N Cascadia, drilled 5 sites across the prism with breakouts in LWD images. Subduction is not oblique here, in contrast to the other sites discussed, and most sites indicate SHmax almost parallel to convergence and normal to major fold axes. In one case, the in situ stress orientation is also compatible with shallow normal faulting from seismic data. Site 1325, in a slope basin, deviates from this orientation and may reflect local processes. Borehole breakouts within the shallow forearc of convergent margins are often in agreement with other indications of regional tectonic stress and may be indicative of processes at depth. Deviations may represent local stresses due to gravitational processes.

  13. Further optimization of SeDDaRA blind image deconvolution algorithm and its DSP implementation

    NASA Astrophysics Data System (ADS)

    Wen, Bo; Zhang, Qiheng; Zhang, Jianlin

    2011-11-01

    Efficient algorithm for blind image deconvolution and its high-speed implementation is of great value in practice. Further optimization of SeDDaRA is developed, from algorithm structure to numerical calculation methods. The main optimization covers that, the structure's modularization for good implementation feasibility, reducing the data computation and dependency of 2D-FFT/IFFT, and acceleration of power operation by segmented look-up table. Then the Fast SeDDaRA is proposed and specialized for low complexity. As the final implementation, a hardware system of image restoration is conducted by using the multi-DSP parallel processing. Experimental results show that, the processing time and memory demand of Fast SeDDaRA decreases 50% at least; the data throughput of image restoration system is over 7.8Msps. The optimization is proved efficient and feasible, and the Fast SeDDaRA is able to support the real-time application.

  14. Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system.

    PubMed

    Monfaredi, Reza; Wilson, Emmanuel; Azizi Koutenaei, Bamshad; Labrecque, Brendan; Leroy, Kristen; Goldie, James; Louis, Eric; Swerdlow, Daniel; Cleary, Kevin

    2015-02-01

    Ultrasound imaging is frequently used in medicine. The quality of ultrasound images is often dependent on the skill of the sonographer. Several researchers have proposed robotic systems to aid in ultrasound image acquisition. In this paper we first provide a short overview of robot-assisted ultrasound imaging (US). We categorize robot-assisted US imaging systems into three approaches: autonomous US imaging, teleoperated US imaging, and human-robot cooperation. For each approach several systems are introduced and briefly discussed. We then describe a compact six degree of freedom parallel mechanism telerobotic system for ultrasound imaging developed by our research team. The long-term goal of this work is to enable remote ultrasound scanning through teleoperation. This parallel mechanism allows for both translation and rotation of an ultrasound probe mounted on the top plate along with force control. Our experimental results confirmed good mechanical system performance with a positioning error of < 1 mm. Phantom experiments by a radiologist showed promising results with good image quality.

  15. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; McDougal, Matthew; Russell, Sam

    2013-01-01

    Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques.

  16. A parallel-processing approach to computing for the geographic sciences

    USGS Publications Warehouse

    Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Haga, Jim; Maddox, Brian; Feller, Mark

    2001-01-01

    The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting research into various areas, such as advanced computer architecture, algorithms to meet the processing needs for real-time image and data processing, the creation of custom datasets from seamless source data, rapid turn-around of products for emergency response, and support for computationally intense spatial and temporal modeling.

  17. Computations on the massively parallel processor at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Strong, James P.

    1991-01-01

    Described are four significant algorithms implemented on the massively parallel processor (MPP) at the Goddard Space Flight Center. Two are in the area of image analysis. Of the other two, one is a mathematical simulation experiment and the other deals with the efficient transfer of data between distantly separated processors in the MPP array. The first algorithm presented is the automatic determination of elevations from stereo pairs. The second algorithm solves mathematical logistic equations capable of producing both ordered and chaotic (or random) solutions. This work can potentially lead to the simulation of artificial life processes. The third algorithm is the automatic segmentation of images into reasonable regions based on some similarity criterion, while the fourth is an implementation of a bitonic sort of data which significantly overcomes the nearest neighbor interconnection constraints on the MPP for transferring data between distant processors.

  18. Every factor helps: Rapid Ptychographic Reconstruction

    NASA Astrophysics Data System (ADS)

    Nashed, Youssef

    2015-03-01

    Recent advances in microscopy, specifically higher spatial resolution and data acquisition rates, require faster and more robust phase retrieval reconstruction methods. Ptychography is a phase retrieval technique for reconstructing the complex transmission function of a specimen from a sequence of diffraction patterns in visible light, X-ray, and electron microscopes. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes. Waiting to postprocess datasets offline results in missed opportunities. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs). A final specimen reconstruction is then achieved by different techniques to merge sub-dataset results into a single complex phase and amplitude image. Results are shown on a simulated specimen and real datasets from X-ray experiments conducted at a synchrotron light source.

  19. Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    NASA Technical Reports Server (NTRS)

    Manohar, M.; Ramapriyan, H. K.; Strong, J. P.

    1988-01-01

    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images.

  20. The parallel-sequential field subtraction techniques for nonlinear ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-04-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage and have sensitivity to particularly closed defects. This study utilizes two modes of focusing: parallel, in which the elements are fired together with a delay law, and sequential, in which elements are fired independently. In the parallel focusing, a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded; with elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images formed from the coherent component of the field and use this to characterize nonlinearity of closed fatigue cracks. In particular we monitor the reduction in amplitude at the fundamental frequency at each focal point and use this metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g., back wall or large scatters) and allow damage to be detected at an early stage.

  1. Distributed memory parallel Markov random fields using graph partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, C.; Perciano, T.; Ushizima, D.

    Markov random fields (MRF) based algorithms have attracted a large amount of interest in image analysis due to their ability to exploit contextual information about data. Image data generated by experimental facilities, though, continues to grow larger and more complex, making it more difficult to analyze in a reasonable amount of time. Applying image processing algorithms to large datasets requires alternative approaches to circumvent performance problems. Aiming to provide scientists with a new tool to recover valuable information from such datasets, we developed a general purpose distributed memory parallel MRF-based image analysis framework (MPI-PMRF). MPI-PMRF overcomes performance and memory limitationsmore » by distributing data and computations across processors. The proposed approach was successfully tested with synthetic and experimental datasets. Additionally, the performance of the MPI-PMRF framework is analyzed through a detailed scalability study. We show that a performance increase is obtained while maintaining an accuracy of the segmentation results higher than 98%. The contributions of this paper are: (a) development of a distributed memory MRF framework; (b) measurement of the performance increase of the proposed approach; (c) verification of segmentation accuracy in both synthetic and experimental, real-world datasets« less

  2. Coil Compression for Accelerated Imaging with Cartesian Sampling

    PubMed Central

    Zhang, Tao; Pauly, John M.; Vasanawala, Shreyas S.; Lustig, Michael

    2012-01-01

    MRI using receiver arrays with many coil elements can provide high signal-to-noise ratio and increase parallel imaging acceleration. At the same time, the growing number of elements results in larger datasets and more computation in the reconstruction. This is of particular concern in 3D acquisitions and in iterative reconstructions. Coil compression algorithms are effective in mitigating this problem by compressing data from many channels into fewer virtual coils. In Cartesian sampling there often are fully sampled k-space dimensions. In this work, a new coil compression technique for Cartesian sampling is presented that exploits the spatially varying coil sensitivities in these non-subsampled dimensions for better compression and computation reduction. Instead of directly compressing in k-space, coil compression is performed separately for each spatial location along the fully-sampled directions, followed by an additional alignment process that guarantees the smoothness of the virtual coil sensitivities. This important step provides compatibility with autocalibrating parallel imaging techniques. Its performance is not susceptible to artifacts caused by a tight imaging fieldof-view. High quality compression of in-vivo 3D data from a 32 channel pediatric coil into 6 virtual coils is demonstrated. PMID:22488589

  3. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  4. Extraction and analysis of the image in the sight field of comparison goniometer to measure IR mirrors assembly

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-shan; Zhao, Yue-jin; Li, Zhuo; Dong, Liquan; Chu, Xuhong; Li, Ping

    2010-11-01

    The comparison goniometer is widely used to measure and inspect small angle, angle difference, and parallelism of two surfaces. However, the common manner to read a comparison goniometer is to inspect the ocular of the goniometer by one eye of the operator. To read an old goniometer that just equips with one adjustable ocular is a difficult work. In the fabrication of an IR reflecting mirrors assembly, a common comparison goniometer is used to measure the angle errors between two neighbor assembled mirrors. In this paper, a quick reading technique image-based for the comparison goniometer used to inspect the parallelism of mirrors in a mirrors assembly is proposed. One digital camera, one comparison goniometer and one set of computer are used to construct a reading system, the image of the sight field in the comparison goniometer will be extracted and recognized to get the angle positions of the reflection surfaces to be measured. In order to obtain the interval distance between the scale lines, a particular technique, left peak first method, based on the local peak values of intensity in the true color image is proposed. A program written in VC++6.0 has been developed to perform the color digital image processing.

  5. Simultaneous fluoroscopic and nuclear imaging: impact of collimator choice on nuclear image quality.

    PubMed

    van der Velden, Sandra; Beijst, Casper; Viergever, Max A; de Jong, Hugo W A M

    2017-01-01

    X-ray-guided oncological interventions could benefit from the availability of simultaneously acquired nuclear images during the procedure. To this end, a real-time, hybrid fluoroscopic and nuclear imaging device, consisting of an X-ray c-arm combined with gamma imaging capability, is currently being developed (Beijst C, Elschot M, Viergever MA, de Jong HW. Radiol. 2015;278:232-238). The setup comprises four gamma cameras placed adjacent to the X-ray tube. The four camera views are used to reconstruct an intermediate three-dimensional image, which is subsequently converted to a virtual nuclear projection image that overlaps with the X-ray image. The purpose of the present simulation study is to evaluate the impact of gamma camera collimator choice (parallel hole versus pinhole) on the quality of the virtual nuclear image. Simulation studies were performed with a digital image quality phantom including realistic noise and resolution effects, with a dynamic frame acquisition time of 1 s and a total activity of 150 MBq. Projections were simulated for 3, 5, and 7 mm pinholes and for three parallel hole collimators (low-energy all-purpose (LEAP), low-energy high-resolution (LEHR) and low-energy ultra-high-resolution (LEUHR)). Intermediate reconstruction was performed with maximum likelihood expectation-maximization (MLEM) with point spread function (PSF) modeling. In the virtual projection derived therefrom, contrast, noise level, and detectability were determined and compared with the ideal projection, that is, as if a gamma camera were located at the position of the X-ray detector. Furthermore, image deformations and spatial resolution were quantified. Additionally, simultaneous fluoroscopic and nuclear images of a sphere phantom were acquired with a physical prototype system and compared with the simulations. For small hot spots, contrast is comparable for all simulated collimators. Noise levels are, however, 3 to 8 times higher in pinhole geometries than in parallel hole geometries. This results in higher contrast-to-noise ratios for parallel hole geometries. Smaller spheres can thus be detected with parallel hole collimators than with pinhole collimators (17 mm vs 28 mm). Pinhole geometries show larger image deformations than parallel hole geometries. Spatial resolution varied between 1.25 cm for the 3 mm pinhole and 4 cm for the LEAP collimator. The simulation method was successfully validated by the experiments with the physical prototype. A real-time hybrid fluoroscopic and nuclear imaging device is currently being developed. Image quality of nuclear images obtained with different collimators was compared in terms of contrast, noise, and detectability. Parallel hole collimators showed lower noise and better detectability than pinhole collimators. © 2016 American Association of Physicists in Medicine.

  6. Parallel architecture for rapid image generation and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nerheim, R.J.

    1987-01-01

    A multiprocessor architecture inspired by the Disney multiplane camera is proposed. For many applications, this approach produces a natural mapping of processors to objects in a scene. Such a mapping promotes parallelism and reduces the hidden-surface work with minimal interprocessor communication and low-overhead cost. Existing graphics architectures store the final picture as a monolithic entity. The architecture here stores each object's image separately. It assembles the final composite picture from component images only when the video display needs to be refreshed. This organization simplifies the work required to animate moving objects that occlude other objects. In addition, the architecture hasmore » multiple processors that generate the component images in parallel. This further shortens the time needed to create a composite picture. In addition to generating images for animation, the architecture has the ability to decompose images.« less

  7. Partial fourier and parallel MR image reconstruction with integrated gradient nonlinearity correction.

    PubMed

    Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Weavers, Paul T; Huston, John; Gray, Erin M; Bernstein, Matt A

    2016-06-01

    To describe how integrated gradient nonlinearity (GNL) correction can be used within noniterative partial Fourier (homodyne) and parallel (SENSE and GRAPPA) MR image reconstruction strategies, and demonstrate that performing GNL correction during, rather than after, these routines mitigates the image blurring and resolution loss caused by postreconstruction image domain based GNL correction. Starting from partial Fourier and parallel magnetic resonance imaging signal models that explicitly account for GNL, noniterative image reconstruction strategies for each accelerated acquisition technique are derived under the same core mathematical assumptions as their standard counterparts. A series of phantom and in vivo experiments on retrospectively undersampled data were performed to investigate the spatial resolution benefit of integrated GNL correction over conventional postreconstruction correction. Phantom and in vivo results demonstrate that the integrated GNL correction reduces the image blurring introduced by the conventional GNL correction, while still correcting GNL-induced coarse-scale geometrical distortion. Images generated from undersampled data using the proposed integrated GNL strategies offer superior depiction of fine image detail, for example, phantom resolution inserts and anatomical tissue boundaries. Noniterative partial Fourier and parallel imaging reconstruction methods with integrated GNL correction reduce the resolution loss that occurs during conventional postreconstruction GNL correction while preserving the computational efficiency of standard reconstruction techniques. Magn Reson Med 75:2534-2544, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. The Construction of English: Culture, Consumerism and Promotion in the ELT Global Coursebook

    ERIC Educational Resources Information Center

    Gray, John

    2010-01-01

    This book takes the view that ELT global coursebooks, in addition to being curriculum artefacts, are also highly wrought cultural artefacts which seek to make English mean in highly selective ways and it argues that the textual construction (and imaging) of English parallels the processes of commodity promotion more generally. This book contains…

  9. Focus measure method based on the modulus of the gradient of the color planes for digital microscopy

    NASA Astrophysics Data System (ADS)

    Hurtado-Pérez, Román; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso; Aguilar-Valdez, J. Félix; Ortega-Mendoza, Gabriel

    2018-02-01

    The modulus of the gradient of the color planes (MGC) is implemented to transform multichannel information to a grayscale image. This digital technique is used in two applications: (a) focus measurements during autofocusing (AF) process and (b) extending the depth of field (EDoF) by means of multifocus image fusion. In the first case, the MGC procedure is based on an edge detection technique and is implemented in over 15 focus metrics that are typically handled in digital microscopy. The MGC approach is tested on color images of histological sections for the selection of in-focus images. An appealing attribute of all the AF metrics working in the MGC space is their monotonic behavior even up to a magnification of 100×. An advantage of the MGC method is its computational simplicity and inherent parallelism. In the second application, a multifocus image fusion algorithm based on the MGC approach has been implemented on graphics processing units (GPUs). The resulting fused images are evaluated using a nonreference image quality metric. The proposed fusion method reveals a high-quality image independently of faulty illumination during the image acquisition. Finally, the three-dimensional visualization of the in-focus image is shown.

  10. Metal Artifact Suppression in Dental Cone Beam Computed Tomography Images Using Image Processing Techniques.

    PubMed

    Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh

    2018-01-01

    Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images.

  11. Metal Artifact Suppression in Dental Cone Beam Computed Tomography Images Using Image Processing Techniques

    PubMed Central

    Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh

    2018-01-01

    Background: Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. Methods: In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Results: Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Conclusions: Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images. PMID:29535920

  12. Superresolution parallel magnetic resonance imaging: Application to functional and spectroscopic imaging

    PubMed Central

    Otazo, Ricardo; Lin, Fa-Hsuan; Wiggins, Graham; Jordan, Ramiro; Sodickson, Daniel; Posse, Stefan

    2009-01-01

    Standard parallel magnetic resonance imaging (MRI) techniques suffer from residual aliasing artifacts when the coil sensitivities vary within the image voxel. In this work, a parallel MRI approach known as Superresolution SENSE (SURE-SENSE) is presented in which acceleration is performed by acquiring only the central region of k-space instead of increasing the sampling distance over the complete k-space matrix and reconstruction is explicitly based on intra-voxel coil sensitivity variation. In SURE-SENSE, parallel MRI reconstruction is formulated as a superresolution imaging problem where a collection of low resolution images acquired with multiple receiver coils are combined into a single image with higher spatial resolution using coil sensitivities acquired with high spatial resolution. The effective acceleration of conventional gradient encoding is given by the gain in spatial resolution, which is dictated by the degree of variation of the different coil sensitivity profiles within the low resolution image voxel. Since SURE-SENSE is an ill-posed inverse problem, Tikhonov regularization is employed to control noise amplification. Unlike standard SENSE, for which acceleration is constrained to the phase-encoding dimension/s, SURE-SENSE allows acceleration along all encoding directions — for example, two-dimensional acceleration of a 2D echo-planar acquisition. SURE-SENSE is particularly suitable for low spatial resolution imaging modalities such as spectroscopic imaging and functional imaging with high temporal resolution. Application to echo-planar functional and spectroscopic imaging in human brain is presented using two-dimensional acceleration with a 32-channel receiver coil. PMID:19341804

  13. SDO Collects Its 100 Millionth Image

    NASA Image and Video Library

    2015-01-20

    An instrument on our Solar Dynamics Observatory (SDO) captured its 100 millionth image of the sun. The instrument is the Atmospheric Imaging Assembly, or AIA, which uses four telescopes working parallel to gather eight images of the sun – cycling through 10 different wavelengths -- every 12 seconds. This is a processed image of SDO multiwavelength blend from Jan. 19, 2015, the date of the spacecraft's 100th millionth image release. Credit: NASA/Goddard/SDO Read more: www.nasa.gov/content/goddard/sdo-telescope-collects-its-1... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Shoulder Arthroplasty Imaging: What’s New

    PubMed Central

    Gregory, T.M

    2017-01-01

    Background: Shoulder arthroplasty, in its different forms (hemiarthroplasty, total shoulder arthroplasty and reverse total shoulder arthroplasty) has transformed the clinical outcomes of shoulder disorders. Improvement of general clinical outcome is the result of stronger adequacy of the treatment to the diagnosis, enhanced surgical techniques, specific implanted materials, and more accurate follow up. Imaging is an important tool in each step of these processes. Method: This article is a review article declining recent imaging processes for shoulder arthroplasty. Results: Shoulder imaging is important for shoulder arthroplasty pre-operative planning but also for post-operative monitoring of the prosthesis and this article has a focus on the validity of plain radiographs for detecting radiolucent line and on new Computed Tomography scan method established to eliminate the prosthesis metallic artefacts that obscure the component fixation visualisation. Conclusion: Number of shoulder arthroplasties implanted have grown up rapidly for the past decade, leading to an increase in the number of complications. In parallel, new imaging system have been established to monitor these complications, especially component loosening PMID:29152007

  15. A smart technique for attendance system to recognize faces through parallelism

    NASA Astrophysics Data System (ADS)

    Prabhavathi, B.; Tanuja, V.; Madhu Viswanatham, V.; Rajashekhara Babu, M.

    2017-11-01

    Major part of recognising a person is face with the help of image processing techniques we can exploit the physical features of a person. In the old approach method that is used in schools and colleges it is there that the professor calls the student name and then the attendance for the students marked. Here in paper want to deviate from the old approach and go with the new approach by using techniques that are there in image processing. In this paper we presenting spontaneous presence for students in classroom. At first classroom image has been in use and after that image is kept in data record. For the images that are stored in the database we apply system algorithm which includes steps such as, histogram classification, noise removal, face detection and face recognition methods. So by using these steps we detect the faces and then compare it with the database. The attendance gets marked automatically if the system recognizes the faces.

  16. Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks.

    PubMed

    Stegmaier, Johannes; Otte, Jens C; Kobitski, Andrei; Bartschat, Andreas; Garcia, Ariel; Nienhaus, G Ulrich; Strähle, Uwe; Mikut, Ralf

    2014-01-01

    Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu's method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm's superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results.

  17. Efficient Scalable Median Filtering Using Histogram-Based Operations.

    PubMed

    Green, Oded

    2018-05-01

    Median filtering is a smoothing technique for noise removal in images. While there are various implementations of median filtering for a single-core CPU, there are few implementations for accelerators and multi-core systems. Many parallel implementations of median filtering use a sorting algorithm for rearranging the values within a filtering window and taking the median of the sorted value. While using sorting algorithms allows for simple parallel implementations, the cost of the sorting becomes prohibitive as the filtering windows grow. This makes such algorithms, sequential and parallel alike, inefficient. In this work, we introduce the first software parallel median filtering that is non-sorting-based. The new algorithm uses efficient histogram-based operations. These reduce the computational requirements of the new algorithm while also accessing the image fewer times. We show an implementation of our algorithm for both the CPU and NVIDIA's CUDA supported graphics processing unit (GPU). The new algorithm is compared with several other leading CPU and GPU implementations. The CPU implementation has near perfect linear scaling with a speedup on a quad-core system. The GPU implementation is several orders of magnitude faster than the other GPU implementations for mid-size median filters. For small kernels, and , comparison-based approaches are preferable as fewer operations are required. Lastly, the new algorithm is open-source and can be found in the OpenCV library.

  18. An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging.

    PubMed

    Li, Guobin; Hennig, Jürgen; Raithel, Esther; Büchert, Martin; Paul, Dominik; Korvink, Jan G; Zaitsev, Maxim

    2015-10-01

    In most half-Fourier imaging methods, explicit phase replacement is used. In combination with parallel imaging, or compressed sensing, half-Fourier reconstruction is usually performed in a separate step. The purpose of this paper is to report that integration of half-Fourier reconstruction into iterative reconstruction minimizes reconstruction errors. The L1-norm phase constraint for half-Fourier imaging proposed in this work is compared with the L2-norm variant of the same algorithm, with several typical half-Fourier reconstruction methods. Half-Fourier imaging with the proposed phase constraint can be seamlessly combined with parallel imaging and compressed sensing to achieve high acceleration factors. In simulations and in in-vivo experiments half-Fourier imaging with the proposed L1-norm phase constraint enables superior performance both reconstruction of image details and with regard to robustness against phase estimation errors. The performance and feasibility of half-Fourier imaging with the proposed L1-norm phase constraint is reported. Its seamless combination with parallel imaging and compressed sensing enables use of greater acceleration in 3D MR imaging.

  19. Antibodies and antimatter: the resurgence of immuno-PET.

    PubMed

    Wu, Anna M

    2009-01-01

    The completion of the human genome, coupled with parallel major research efforts in proteomics and systems biology, has led to a flood of information on the roles of individual genes and proteins in normal physiologic processes and their disruptions in disease. In practical terms, this information has opened the door to increasingly targeted therapies as specific molecular markers are identified and validated. The ongoing transition from empiric to molecular medicine has engendered a need for corresponding molecular diagnostics, including noninvasive molecular imaging. Convergence of knowledge regarding key biomarkers that define normal biologic processes and disease with protein and imaging technology makes this an opportune time to revisit the combination of antibodies and PET, or immuno-PET.

  20. Iterative nonlinear joint transform correlation for the detection of objects in cluttered scenes

    NASA Astrophysics Data System (ADS)

    Haist, Tobias; Tiziani, Hans J.

    1999-03-01

    An iterative correlation technique with digital image processing in the feedback loop for the detection of small objects in cluttered scenes is proposed. A scanning aperture is combined with the method in order to improve the immunity against noise and clutter. Multiple reference objects or different views of one object are processed in parallel. We demonstrate the method by detecting a noisy and distorted face in a crowd with a nonlinear joint transform correlator.

  1. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  2. Architecture and data processing alternatives for the TSE computer. Volume 3: Execution of a parallel counting algorithm using array logic (Tse) devices

    NASA Technical Reports Server (NTRS)

    Metcalfe, A. G.; Bodenheimer, R. E.

    1976-01-01

    A parallel algorithm for counting the number of logic-l elements in a binary array or image developed during preliminary investigation of the Tse concept is described. The counting algorithm is implemented using a basic combinational structure. Modifications which improve the efficiency of the basic structure are also presented. A programmable Tse computer structure is proposed, along with a hardware control unit, Tse instruction set, and software program for execution of the counting algorithm. Finally, a comparison is made between the different structures in terms of their more important characteristics.

  3. High Performance Compression of Science Data

    NASA Technical Reports Server (NTRS)

    Storer, James A.; Carpentieri, Bruno; Cohn, Martin

    1994-01-01

    Two papers make up the body of this report. One presents a single-pass adaptive vector quantization algorithm that learns a codebook of variable size and shape entries; the authors present experiments on a set of test images showing that with no training or prior knowledge of the data, for a given fidelity, the compression achieved typically equals or exceeds that of the JPEG standard. The second paper addresses motion compensation, one of the most effective techniques used in interframe data compression. A parallel block-matching algorithm for estimating interframe displacement of blocks with minimum error is presented. The algorithm is designed for a simple parallel architecture to process video in real time.

  4. Associative Pattern Recognition In Analog VLSI Circuits

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1995-01-01

    Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.

  5. Towards Exascale Seismic Imaging and Inversion

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Lei, W.; Ruan, Y.

    2015-12-01

    Post-petascale supercomputers are now available to solve complex scientific problems that were thought unreachable a few decades ago. They also bring a cohort of concerns tied to obtaining optimum performance. Several issues are currently being investigated by the HPC community. These include energy consumption, fault resilience, scalability of the current parallel paradigms, workflow management, I/O performance and feature extraction with large datasets. In this presentation, we focus on the last three issues. In the context of seismic imaging and inversion, in particular for simulations based on adjoint methods, workflows are well defined.They consist of a few collective steps (e.g., mesh generation or model updates) and of a large number of independent steps (e.g., forward and adjoint simulations of each seismic event, pre- and postprocessing of seismic traces). The greater goal is to reduce the time to solution, that is, obtaining a more precise representation of the subsurface as fast as possible. This brings us to consider both the workflow in its entirety and the parts comprising it. The usual approach is to speedup the purely computational parts based on code optimization in order to reach higher FLOPS and better memory management. This still remains an important concern, but larger scale experiments show that the imaging workflow suffers from severe I/O bottlenecks. Such limitations occur both for purely computational data and seismic time series. The latter are dealt with by the introduction of a new Adaptable Seismic Data Format (ASDF). Parallel I/O libraries, namely HDF5 and ADIOS, are used to drastically reduce the cost of disk access. Parallel visualization tools, such as VisIt, are able to take advantage of ADIOS metadata to extract features and display massive datasets. Because large parts of the workflow are embarrassingly parallel, we are investigating the possibility of automating the imaging process with the integration of scientific workflow management tools, specifically Pegasus.

  6. Design of k-Space Channel Combination Kernels and Integration with Parallel Imaging

    PubMed Central

    Beatty, Philip J.; Chang, Shaorong; Holmes, James H.; Wang, Kang; Brau, Anja C. S.; Reeder, Scott B.; Brittain, Jean H.

    2014-01-01

    Purpose In this work, a new method is described for producing local k-space channel combination kernels using a small amount of low-resolution multichannel calibration data. Additionally, this work describes how these channel combination kernels can be combined with local k-space unaliasing kernels produced by the calibration phase of parallel imaging methods such as GRAPPA, PARS and ARC. Methods Experiments were conducted to evaluate both the image quality and computational efficiency of the proposed method compared to a channel-by-channel parallel imaging approach with image-space sum-of-squares channel combination. Results Results indicate comparable image quality overall, with some very minor differences seen in reduced field-of-view imaging. It was demonstrated that this method enables a speed up in computation time on the order of 3–16X for 32-channel data sets. Conclusion The proposed method enables high quality channel combination to occur earlier in the reconstruction pipeline, reducing computational and memory requirements for image reconstruction. PMID:23943602

  7. Processing large remote sensing image data sets on Beowulf clusters

    USGS Publications Warehouse

    Steinwand, Daniel R.; Maddox, Brian; Beckmann, Tim; Schmidt, Gail

    2003-01-01

    High-performance computing is often concerned with the speed at which floating- point calculations can be performed. The architectures of many parallel computers and/or their network topologies are based on these investigations. Often, benchmarks resulting from these investigations are compiled with little regard to how a large dataset would move about in these systems. This part of the Beowulf study addresses that concern by looking at specific applications software and system-level modifications. Applications include an implementation of a smoothing filter for time-series data, a parallel implementation of the decision tree algorithm used in the Landcover Characterization project, a parallel Kriging algorithm used to fit point data collected in the field on invasive species to a regular grid, and modifications to the Beowulf project's resampling algorithm to handle larger, higher resolution datasets at a national scale. Systems-level investigations include a feasibility study on Flat Neighborhood Networks and modifications of that concept with Parallel File Systems.

  8. GPU-accelerated algorithms for compressed signals recovery with application to astronomical imagery deblurring

    NASA Astrophysics Data System (ADS)

    Fiandrotti, Attilio; Fosson, Sophie M.; Ravazzi, Chiara; Magli, Enrico

    2018-04-01

    Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain.

  9. Interactive Fringe Analysis System: Applications To Moire Contourogram And Interferogram

    NASA Astrophysics Data System (ADS)

    Yatagai, T.; Idesawa, M.; Yamaashi, Y.; Suzuki, M.

    1982-10-01

    A general purpose fringe pattern processing facility was developed in order to analyze moire photographs used for scoliosis diagnoses and interferometric patterns in optical shops. A TV camera reads a fringe profile to be analyzed, and peaks of the fringe are detected by a microcomputer. Fringe peak correction and fringe order determination are performed with the man-machine interactive software developed. A light pen facility and an image digitizer are employed for interaction. In the case of two-dimensional fringe analysis, we analyze independently analysis lines parallel to each other and a reference line perpendicular to the parallel analysis lines. Fringe orders of parallel analysis lines are uniquely determined by using the fringe order of the reference line. Some results of analysis of moire contourograms, interferometric testing of silicon wafers, and holographic measurement of thermal deformation are presented.

  10. Contrasting landform perception with varied radar illumination geometries and at simulated resolutions of Venera and Magellan

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Arvidson, R. E.

    1989-01-01

    The high sensitivity of imaging radars to slope at moderate to low incidence angles enhances the perception of linear topography on images. It reveals broad spatial patterns that are essential to landform mapping and interpretation. As radar responses are strongly directional, the ability to discriminate linear features on images varies with their orientation. Landforms that appear prominent on images where they are transverse to the illumination may be obscure to indistinguishable on images where they are parallel to it. Landform detection is also influenced by the spatial resolution in radar images. Seasat radar images of the Gran Desierto Dunes complex, Sonora, Mexico; the Appalachian Valley and Ridge Province; and accreted terranes in eastern interior Alaska were processed to simulate both Venera 15 and 16 images (1000 to 3000 km resolution) and image data expected from the Magellan mission (120 to 300 m resolution. The Gran Desierto Dunes are not discernable in the Venera simulation, whereas the higher resolution Magellan simulation shows dominant dune patterns produced from differential erosion of the rocks. The Magellan simulation also shows that fluvial processes have dominated erosion and exposure of the folds.

  11. Development of IR imaging system simulator

    NASA Astrophysics Data System (ADS)

    Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu

    2017-02-01

    To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.

  12. Data processing pipeline for serial femtosecond crystallography at SACLA.

    PubMed

    Nakane, Takanori; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Nango, Eriko; Iwata, So; Ishitani, Ryuichiro; Nureki, Osamu

    2016-06-01

    A data processing pipeline for serial femtosecond crystallography at SACLA was developed, based on Cheetah [Barty et al. (2014). J. Appl. Cryst. 47 , 1118-1131] and CrystFEL [White et al. (2016). J. Appl. Cryst. 49 , 680-689]. The original programs were adapted for data acquisition through the SACLA API, thread and inter-node parallelization, and efficient image handling. The pipeline consists of two stages: The first, online stage can analyse all images in real time, with a latency of less than a few seconds, to provide feedback on hit rate and detector saturation. The second, offline stage converts hit images into HDF5 files and runs CrystFEL for indexing and integration. The size of the filtered compressed output is comparable to that of a synchrotron data set. The pipeline enables real-time feedback and rapid structure solution during beamtime.

  13. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging.

    PubMed

    Jiang, J; Hall, T J

    2007-07-07

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s(-1)) that exceed our previous methods.

  14. A MULTICORE BASED PARALLEL IMAGE REGISTRATION METHOD

    PubMed Central

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.

    2012-01-01

    Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform. PMID:19964921

  15. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.

    2017-02-01

    Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.

  16. Gorgonum Chaos

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 08 April 2002) This image shows the cratered highlands of Terra Sirenum in the southern hemisphere. Near the center of the image running from left to right one can see long parallel to semi-parallel fractures or troughs called graben. Mars Global Surveyor initially discovered gullies on the south-facing wall of these fractures. This image is located at 38oS, 174oW (186oE).

  17. In vitro and in vivo tissue harmonic images obtained with parallel transmit beamforming by means of orthogonal frequency division multiplexing.

    PubMed

    Demi, Libertario; Ramalli, Alessandro; Giannini, Gabriele; Mischi, Massimo

    2015-01-01

    In classic pulse-echo ultrasound imaging, the data acquisition rate is limited by the speed of sound. To overcome this, parallel beamforming techniques in transmit (PBT) and in receive (PBR) mode have been proposed. In particular, PBT techniques, based on the transmission of focused beams, are more suitable for harmonic imaging because they are capable of generating stronger harmonics. Recently, orthogonal frequency division multiplexing (OFDM) has been investigated as a means to obtain parallel beamformed tissue harmonic images. To date, only numerical studies and experiments in water have been performed, hence neglecting the effect of frequencydependent absorption. Here we present the first in vitro and in vivo tissue harmonic images obtained with PBT by means of OFDM, and we compare the results with classic B-mode tissue harmonic imaging. The resulting contrast-to-noise ratio, here used as a performance metric, is comparable. A reduction by 2 dB is observed for the case in which three parallel lines are reconstructed. In conclusion, the applicability of this technique to ultrasonography as a means to improve the data acquisition rate is confirmed.

  18. Parallel traveling-wave MRI: a feasibility study.

    PubMed

    Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-04-01

    Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments. Copyright © 2011 Wiley-Liss, Inc.

  19. Spatial Data Exploring by Satellite Image Distributed Processing

    NASA Astrophysics Data System (ADS)

    Mihon, V. D.; Colceriu, V.; Bektas, F.; Allenbach, K.; Gvilava, M.; Gorgan, D.

    2012-04-01

    Our society needs and environmental predictions encourage the applications development, oriented on supervising and analyzing different Earth Science related phenomena. Satellite images could be explored for discovering information concerning land cover, hydrology, air quality, and water and soil pollution. Spatial and environment related data could be acquired by imagery classification consisting of data mining throughout the multispectral bands. The process takes in account a large set of variables such as satellite image types (e.g. MODIS, Landsat), particular geographic area, soil composition, vegetation cover, and generally the context (e.g. clouds, snow, and season). All these specific and variable conditions require flexible tools and applications to support an optimal search for the appropriate solutions, and high power computation resources. The research concerns with experiments on solutions of using the flexible and visual descriptions of the satellite image processing over distributed infrastructures (e.g. Grid, Cloud, and GPU clusters). This presentation highlights the Grid based implementation of the GreenLand application. The GreenLand application development is based on simple, but powerful, notions of mathematical operators and workflows that are used in distributed and parallel executions over the Grid infrastructure. Currently it is used in three major case studies concerning with Istanbul geographical area, Rioni River in Georgia, and Black Sea catchment region. The GreenLand application offers a friendly user interface for viewing and editing workflows and operators. The description involves the basic operators provided by GRASS [1] library as well as many other image related operators supported by the ESIP platform [2]. The processing workflows are represented as directed graphs giving the user a fast and easy way to describe complex parallel algorithms, without having any prior knowledge of any programming language or application commands. Also this Web application does not require any kind of install for what the house-hold user is concerned. It is a remote application which may be accessed over the Internet. Currently the GreenLand application is available through the BSC-OS Portal provided by the enviroGRIDS FP7 project [3]. This presentation aims to highlight the challenges and issues of flexible description of the Grid based processing of satellite images, interoperability with other software platforms available in the portal, as well as the particular requirements of the Black Sea related use cases.

  20. Image stack alignment in full-field X-ray absorption spectroscopy using SIFT_PyOCL.

    PubMed

    Paleo, Pierre; Pouyet, Emeline; Kieffer, Jérôme

    2014-03-01

    Full-field X-ray absorption spectroscopy experiments allow the acquisition of millions of spectra within minutes. However, the construction of the hyperspectral image requires an image alignment procedure with sub-pixel precision. While the image correlation algorithm has originally been used for image re-alignment using translations, the Scale Invariant Feature Transform (SIFT) algorithm (which is by design robust versus rotation, illumination change, translation and scaling) presents an additional advantage: the alignment can be limited to a region of interest of any arbitrary shape. In this context, a Python module, named SIFT_PyOCL, has been developed. It implements a parallel version of the SIFT algorithm in OpenCL, providing high-speed image registration and alignment both on processors and graphics cards. The performance of the algorithm allows online processing of large datasets.

  1. Hybrid Parallel-Slant Hole Collimators for SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Shao, Ling; Ye, Jinghan; Durbin, M.; Petrillo, M.

    2004-06-01

    We propose a new collimator geometry, the hybrid parallel-slant (HPS) hole geometry, to improve sensitivity for SPECT imaging with large field of view (LFOV) gamma cameras. A HPS collimator has one segment with parallel holes and one or more segments with slant holes. The collimator can be mounted on a conventional SPECT LFOV system that uses parallel-beam collimators, and no additional detector or collimator motion is required for data acquisition. The parallel segment of the collimator allows for the acquisition of a complete data set of the organs-of-interest and the slant segments provide additional data. In this work, simulation studies of an MCAT phantom were performed with a HPS collimator with one slant segment. The slant direction points from patient head to patient feet with a slant angle of 30/spl deg/. We simulated 64 projection views over 180/spl deg/ with the modeling of nonuniform attenuation effect, and then reconstructed images using an MLEM algorithm that incorporated the hybrid geometry. It was shown that sensitivity to the cardiac region of the phantom was increased by approximately 50% when using the HPS collimator compared with a parallel-hole collimator. No visible artifacts were observed in the myocardium and the signal-to-noise ratio (SNR) of the myocardium walls was improved. Compared with collimators with other geometries, using a HPS collimator has the following advantages: (a) significant sensitivity increase; (b) a complete data set obtained from the parallel segment that allows for artifact-free image reconstruction; and (c) no additional collimator or detector motion. This work demonstrates the potential value of hybrid geometry in collimator design for LFOV SPECT imaging.

  2. Combining fluorescence imaging with Hi-C to study 3D genome architecture of the same single cell.

    PubMed

    Lando, David; Basu, Srinjan; Stevens, Tim J; Riddell, Andy; Wohlfahrt, Kai J; Cao, Yang; Boucher, Wayne; Leeb, Martin; Atkinson, Liam P; Lee, Steven F; Hendrich, Brian; Klenerman, Dave; Laue, Ernest D

    2018-05-01

    Fluorescence imaging and chromosome conformation capture assays such as Hi-C are key tools for studying genome organization. However, traditionally, they have been carried out independently, making integration of the two types of data difficult to perform. By trapping individual cell nuclei inside a well of a 384-well glass-bottom plate with an agarose pad, we have established a protocol that allows both fluorescence imaging and Hi-C processing to be carried out on the same single cell. The protocol identifies 30,000-100,000 chromosome contacts per single haploid genome in parallel with fluorescence images. Contacts can be used to calculate intact genome structures to better than 100-kb resolution, which can then be directly compared with the images. Preparation of 20 single-cell Hi-C libraries using this protocol takes 5 d of bench work by researchers experienced in molecular biology techniques. Image acquisition and analysis require basic understanding of fluorescence microscopy, and some bioinformatics knowledge is required to run the sequence-processing tools described here.

  3. Parallel image registration with a thin client interface

    NASA Astrophysics Data System (ADS)

    Saiprasad, Ganesh; Lo, Yi-Jung; Plishker, William; Lei, Peng; Ahmad, Tabassum; Shekhar, Raj

    2010-03-01

    Despite its high significance, the clinical utilization of image registration remains limited because of its lengthy execution time and a lack of easy access. The focus of this work was twofold. First, we accelerated our course-to-fine, volume subdivision-based image registration algorithm by a novel parallel implementation that maintains the accuracy of our uniprocessor implementation. Second, we developed a thin-client computing model with a user-friendly interface to perform rigid and nonrigid image registration. Our novel parallel computing model uses the message passing interface model on a 32-core cluster. The results show that, compared with the uniprocessor implementation, the parallel implementation of our image registration algorithm is approximately 5 times faster for rigid image registration and approximately 9 times faster for nonrigid registration for the images used. To test the viability of such systems for clinical use, we developed a thin client in the form of a plug-in in OsiriX, a well-known open source PACS workstation and DICOM viewer, and used it for two applications. The first application registered the baseline and follow-up MR brain images, whose subtraction was used to track progression of multiple sclerosis. The second application registered pretreatment PET and intratreatment CT of radiofrequency ablation patients to demonstrate a new capability of multimodality imaging guidance. The registration acceleration coupled with the remote implementation using a thin client should ultimately increase accuracy, speed, and access of image registration-based interpretations in a number of diagnostic and interventional applications.

  4. A GPU-Accelerated Approach for Feature Tracking in Time-Varying Imagery Datasets.

    PubMed

    Peng, Chao; Sahani, Sandip; Rushing, John

    2017-10-01

    We propose a novel parallel connected component labeling (CCL) algorithm along with efficient out-of-core data management to detect and track feature regions of large time-varying imagery datasets. Our approach contributes to the big data field with parallel algorithms tailored for GPU architectures. We remove the data dependency between frames and achieve pixel-level parallelism. Due to the large size, the entire dataset cannot fit into cached memory. Frames have to be streamed through the memory hierarchy (disk to CPU main memory and then to GPU memory), partitioned, and processed as batches, where each batch is small enough to fit into the GPU. To reconnect the feature regions that are separated due to data partitioning, we present a novel batch merging algorithm to extract the region connection information across multiple batches in a parallel fashion. The information is organized in a memory-efficient structure and supports fast indexing on the GPU. Our experiment uses a commodity workstation equipped with a single GPU. The results show that our approach can efficiently process a weather dataset composed of terabytes of time-varying radar images. The advantages of our approach are demonstrated by comparing to the performance of an efficient CPU cluster implementation which is being used by the weather scientists.

  5. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    PubMed Central

    Yan, Susu; Bowsher, James; Tough, MengHeng; Cheng, Lin; Yin, Fang-Fang

    2014-01-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction. PMID:25370663

  6. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng; Bowsher, James

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator ormore » a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.« less

  7. NASA Tech Briefs, June 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics include: Cloud Absorption Radiometer Autonomous Navigation System - CANS, Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis, Discrete Data Qualification System and Method Comprising Noise Series Fault Detection, Simple Laser Communications Terminal for Downlink from Earth Orbit at Rates Exceeding 10 Gb/s, Application Program Interface for the Orion Aerodynamics Database, Hyperspectral Imager-Tracker, Web Application Software for Ground Operations Planning Database (GOPDb) Management, Software Defined Radio with Parallelized Software Architecture, Compact Radar Transceiver with Included Calibration, Software Defined Radio with Parallelized Software Architecture, Phase Change Material Thermal Power Generator, The Thermal Hogan - A Means of Surviving the Lunar Night, Micromachined Active Magnetic Regenerator for Low-Temperature Magnetic Coolers, Nano-Ceramic Coated Plastics, Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use, Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO, Dual-Compartment Inflatable Suitlock, Modular Connector Keying Concept, Genesis Ultrapure Water Megasonic Wafer Spin Cleaner, Piezoelectrically Initiated Pyrotechnic Igniter, Folding Elastic Thermal Surface - FETS, Multi-Pass Quadrupole Mass Analyzer, Lunar Sulfur Capture System, Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use, Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter, Qualification of UHF Antenna for Extreme Martian Thermal Environments, Ensemble Eclipse: A Process for Prefab Development Environment for the Ensemble Project, ISS Live!, Space Operations Learning Center (SOLC) iPhone/iPad Application, Software to Compare NPP HDF5 Data Files, Planetary Data Systems (PDS) Imaging Node Atlas II, Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit, Translating MAPGEN to ASPEN for MER, Support Routines for In Situ Image Processing, and Semi-Supervised Eigenbasis Novelty Detection.

  8. A method of fast mosaic for massive UAV images

    NASA Astrophysics Data System (ADS)

    Xiang, Ren; Sun, Min; Jiang, Cheng; Liu, Lei; Zheng, Hui; Li, Xiaodong

    2014-11-01

    With the development of UAV technology, UAVs are used widely in multiple fields such as agriculture, forest protection, mineral exploration, natural disaster management and surveillances of public security events. In contrast of traditional manned aerial remote sensing platforms, UAVs are cheaper and more flexible to use. So users can obtain massive image data with UAVs, but this requires a lot of time to process the image data, for example, Pix4UAV need approximately 10 hours to process 1000 images in a high performance PC. But disaster management and many other fields require quick respond which is hard to realize with massive image data. Aiming at improving the disadvantage of high time consumption and manual interaction, in this article a solution of fast UAV image stitching is raised. GPS and POS data are used to pre-process the original images from UAV, belts and relation between belts and images are recognized automatically by the program, in the same time useless images are picked out. This can boost the progress of finding match points between images. Levenberg-Marquard algorithm is improved so that parallel computing can be applied to shorten the time of global optimization notably. Besides traditional mosaic result, it can also generate superoverlay result for Google Earth, which can provide a fast and easy way to show the result data. In order to verify the feasibility of this method, a fast mosaic system of massive UAV images is developed, which is fully automated and no manual interaction is needed after original images and GPS data are provided. A test using 800 images of Kelan River in Xinjiang Province shows that this system can reduce 35%-50% time consumption in contrast of traditional methods, and increases respond speed of UAV image processing rapidly.

  9. Non-parametric analysis of LANDSAT maps using neural nets and parallel computers

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda; Tilton, James

    1991-01-01

    Nearest neighbor approaches and a new neural network, the Binary Diamond, are used for the classification of images of ground pixels obtained by LANDSAT satellite. The performances are evaluated by comparing classifications of a scene in the vicinity of Washington DC. The problem of optimal selection of categories is addressed as a step in the classification process.

  10. Programmable Image Processing Element.

    DTIC Science & Technology

    1980-11-01

    appicaIOn IS g-ivenl Ill A parallel ss OIL irmnat . Ilece. thle block diagramm of- [iguire 3 is modifwid to chanlge the 1iput data frmM pl)JIll oiit to...is slownl In I iguie -42. -1h1 breaid- board oi~s of, nine iniput latche\\,. niruc pifdle-ini seri:il-oiit shl’t reitcs I fast 5 1-’ 1 2--ilt

  11. The "c" Equivalence Principle and the Correct form of Writing Maxwell's Equations

    ERIC Educational Resources Information Center

    Heras, Jose A.

    2010-01-01

    It is well known that the speed [image omitted] is obtained in the process of defining SI units via action-at-a-distance forces, like the force between two static charges and the force between two long and parallel currents. The speed c[subscript u] is then physically different from the observed speed of propagation c associated with…

  12. Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-code Processors

    NASA Astrophysics Data System (ADS)

    Linderman, R.; Spetka, S.; Fitzgerald, D.; Emeny, S.

    The Physically-Constrained Iterative Deconvolution (PCID) image deblurring code is being ported to heterogeneous networks of multi-core systems, including Intel Xeons and IBM Cell Broadband Engines. This paper reports results from experiments using the JAWS supercomputer at MHPCC (60 TFLOPS of dual-dual Xeon nodes linked with Infiniband) and the Cell Cluster at AFRL in Rome, NY. The Cell Cluster has 52 TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes Infiniband, 10 Gigabit Ethernet and 1 Gigabit Ethernet to each of the 336 PS3s. The results compare approaches to parallelizing FFT executions across the Xeons and the Cell's Synergistic Processing Elements (SPEs) for frame-level image processing. The experiments included Intel's Performance Primitives and Math Kernel Library, FFTW3.2, and Carnegie Mellon's SPIRAL. Optimization of FFTs in the PCID code led to a decrease in relative processing time for FFTs. Profiling PCID version 6.2, about one year ago, showed the 13 functions that accounted for the highest percentage of processing were all FFT processing functions. They accounted for over 88% of processing time in one run on Xeons. FFT optimizations led to improvement in the current PCID version 8.0. A recent profile showed that only two of the 19 functions with the highest processing time were FFT processing functions. Timing measurements showed that FFT processing for PCID version 8.0 has been reduced to less than 19% of overall processing time. We are working toward a goal of scaling to 200-400 cores per job (1-2 imagery frames/core). Running a pair of cores on each set of frames reduces latency by implementing parallel FFT processing. Our current results show scaling well out to 100 pairs of cores. These results support the next higher level of parallelism in PCID, where groups of several hundred frames each producing one resolved image are sent to cliques of several hundred cores in a round robin fashion. Current efforts toward further performance enhancement for PCID are shifting toward using the Playstations in conjunction with the Xeons to take advantage of outstanding price/performance as well as the Flops/Watt cost advantage. We are fine-tuning the PCID parallization strategy to balance processing over Xeons and Cell BEs to find an optimal partitioning of PCID over the heterogeneous processors. A high performance information management system that exploits native Infiniband multicast is used to improve latency among the head nodes. Using a publication/subscription oriented information management system to implement a unified communications platform makes runs on large HPCs with thousands of intercommunicating cores more flexible and more fault tolerant. It features a loose couplingof publishers to subscribers through intervening brokers. We are also working on enhancing performance for both Xeons and Cell BEs, buy moving selected operations to single precision. Techniques for adapting the code to single precision and performance results are reported.

  13. Digital image compression for a 2f multiplexing optical setup

    NASA Astrophysics Data System (ADS)

    Vargas, J.; Amaya, D.; Rueda, E.

    2016-07-01

    In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.

  14. Parallel computing in experimental mechanics and optical measurement: A review (II)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Kemao, Qian

    2018-05-01

    With advantages such as non-destructiveness, high sensitivity and high accuracy, optical techniques have successfully integrated into various important physical quantities in experimental mechanics (EM) and optical measurement (OM). However, in pursuit of higher image resolutions for higher accuracy, the computation burden of optical techniques has become much heavier. Therefore, in recent years, heterogeneous platforms composing of hardware such as CPUs and GPUs, have been widely employed to accelerate these techniques due to their cost-effectiveness, short development cycle, easy portability, and high scalability. In this paper, we analyze various works by first illustrating their different architectures, followed by introducing their various parallel patterns for high speed computation. Next, we review the effects of CPU and GPU parallel computing specifically in EM & OM applications in a broad scope, which include digital image/volume correlation, fringe pattern analysis, tomography, hyperspectral imaging, computer-generated holograms, and integral imaging. In our survey, we have found that high parallelism can always be exploited in such applications for the development of high-performance systems.

  15. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.up

    Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittalmore » breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.« less

  16. The use of parallel imaging for MRI assessment of knees in children and adolescents.

    PubMed

    Doria, Andrea S; Chaudry, Gulraiz A; Nasui, Cristina; Rayner, Tammy; Wang, Chenghua; Moineddin, Rahim; Babyn, Paul S; White, Larry M; Sussman, Marshall S

    2010-03-01

    Parallel imaging provides faster scanning at the cost of reduced signal-to-noise ratio (SNR) and increased artifacts. To compare the diagnostic performance of two parallel MRI protocols (PPs) for assessment of pathologic knees using an 8-channel knee coil (reference standard, conventional protocol [CP]) and to characterize the SNR losses associated with parallel imaging. Two radiologists blindly interpreted 1.5 Tesla knee MRI images in 21 children (mean 13 years, range 9-18 years) with clinical indications for an MRI scan. Sagittal proton density, T2-W fat-saturated FSE, axial T2-W fat-saturated FSE, and coronal T1-W (NEX of 1,1,1) images were obtained with both CP and PP. Images were read for soft tissue and osteochondral findings. There was a 75% decrease in acquisition time using PP in comparison to CP. The CP and PP protocols fell within excellent or upper limits of substantial agreement: CP, kappa coefficient, 0.81 (95% CIs, 0.73-0.89); PP, 0.80-0.81 (0.73-0.89). The sensitivity of the two PPs was similar for assessment of soft (0.98-1.00) and osteochondral (0.89-0.94) tissues. Phantom data indicated an SNR of 1.67, 1.6, and 1.51 (axial, sagittal and coronal planes) between CP and PP scans. Parallel MRI provides a reliable assessment for pediatric knees in a significantly reduced scan time without affecting the diagnostic performance of MRI.

  17. It takes two-coincidence coding within the dual olfactory pathway of the honeybee.

    PubMed

    Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).

  18. Block iterative restoration of astronomical images with the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don J.

    1987-01-01

    A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images.

  19. A spectral water index based on visual bands

    NASA Astrophysics Data System (ADS)

    Basaeed, Essa; Bhaskar, Harish; Al-Mualla, Mohammed

    2013-10-01

    Land-water segmentation is an important preprocessing step in a number of remote sensing applications such as target detection, environmental monitoring, and map updating. A Normalized Optical Water Index (NOWI) is proposed to accurately discriminate between land and water regions in multi-spectral satellite imagery data from DubaiSat-1. NOWI exploits the spectral characteristics of water content (using visible bands) and uses a non-linear normalization procedure that renders strong emphasize on small changes in lower brightness values whilst guaranteeing that the segmentation process remains image-independent. The NOWI representation is validated through systematic experiments, evaluated using robust metrics, and compared against various supervised classification algorithms. Analysis has indicated that NOWI has the advantages that it: a) is a pixel-based method that requires no global knowledge of the scene under investigation, b) can be easily implemented in parallel processing, c) is image-independent and requires no training, d) works in different environmental conditions, e) provides high accuracy and efficiency, and f) works directly on the input image without any form of pre-processing.

  20. Fast Segmentation From Blurred Data in 3D Fluorescence Microscopy.

    PubMed

    Storath, Martin; Rickert, Dennis; Unser, Michael; Weinmann, Andreas

    2017-10-01

    We develop a fast algorithm for segmenting 3D images from linear measurements based on the Potts model (or piecewise constant Mumford-Shah model). To that end, we first derive suitable space discretizations of the 3D Potts model, which are capable of dealing with 3D images defined on non-cubic grids. Our discretization allows us to utilize a specific splitting approach, which results in decoupled subproblems of moderate size. The crucial point in the 3D setup is that the number of independent subproblems is so large that we can reasonably exploit the parallel processing capabilities of the graphics processing units (GPUs). Our GPU implementation is up to 18 times faster than the sequential CPU version. This allows to process even large volumes in acceptable runtimes. As a further contribution, we extend the algorithm in order to deal with non-negativity constraints. We demonstrate the efficiency of our method for combined image deconvolution and segmentation on simulated data and on real 3D wide field fluorescence microscopy data.

  1. A distributed pipeline for DIDSON data processing

    USGS Publications Warehouse

    Li, Liling; Danner, Tyler; Eickholt, Jesse; McCann, Erin L.; Pangle, Kevin; Johnson, Nicholas

    2018-01-01

    Technological advances in the field of ecology allow data on ecological systems to be collected at high resolution, both temporally and spatially. Devices such as Dual-frequency Identification Sonar (DIDSON) can be deployed in aquatic environments for extended periods and easily generate several terabytes of underwater surveillance data which may need to be processed multiple times. Due to the large amount of data generated and need for flexibility in processing, a distributed pipeline was constructed for DIDSON data making use of the Hadoop ecosystem. The pipeline is capable of ingesting raw DIDSON data, transforming the acoustic data to images, filtering the images, detecting and extracting motion, and generating feature data for machine learning and classification. All of the tasks in the pipeline can be run in parallel and the framework allows for custom processing. Applications of the pipeline include monitoring migration times, determining the presence of a particular species, estimating population size and other fishery management tasks.

  2. Imaging characteristics of scintimammography using parallel-hole and pinhole collimators

    NASA Astrophysics Data System (ADS)

    Tsui, B. M. W.; Wessell, D. E.; Zhao, X. D.; Wang, W. T.; Lewis, D. P.; Frey, E. C.

    1998-08-01

    The purpose of the study is to investigate the imaging characteristics of scintimammography (SM) using parallel-hole (PR) and pinhole (PN) collimators in a clinical setting. Experimental data were acquired from a phantom that models the breast with small lesions using a low energy high resolution (LEHR) PR and a PN collimator. At close distances, the PN collimator provides better spatial resolution and higher detection efficiency than the PR collimator, at the expense of a smaller field-of-view (FOV). Detection of small breast lesions can be further enhanced by noise smoothing, field uniformity correction, scatter subtraction and resolution recovery filtering. Monte Carlo (MC) simulation data were generated from the 3D MCAT phantom that realistically models the Tc-99m sestamibi uptake and attenuation distributions in an average female patient. For both PR and PN collimation, the scatter to primary ratio (S/P) decreases from the base of the breast to the nipple and is higher in the left than right breast due to scatter of photons from the heart. Results from the study add to understanding of the imaging characteristics of SM using PR and PN collimators and assist in the design of data acquisition and image processing methods to enhance the detection of breast lesions using SM.

  3. Visualization and recommendation of large image collections toward effective sensemaking

    NASA Astrophysics Data System (ADS)

    Gu, Yi; Wang, Chaoli; Nemiroff, Robert; Kao, David; Parra, Denis

    2016-03-01

    In our daily lives, images are among the most commonly found data which we need to handle. We present iGraph, a graph-based approach for visual analytics of large image collections and their associated text information. Given such a collection, we compute the similarity between images, the distance between texts, and the connection between image and text to construct iGraph, a compound graph representation which encodes the underlying relationships among these images and texts. To enable effective visual navigation and comprehension of iGraph with tens of thousands of nodes and hundreds of millions of edges, we present a progressive solution that offers collection overview, node comparison, and visual recommendation. Our solution not only allows users to explore the entire collection with representative images and keywords but also supports detailed comparison for understanding and intuitive guidance for navigation. The visual exploration of iGraph is further enhanced with the implementation of bubble sets to highlight group memberships of nodes, suggestion of abnormal keywords or time periods based on text outlier detection, and comparison of four different recommendation solutions. For performance speedup, multiple graphics processing units and central processing units are utilized for processing and visualization in parallel. We experiment with two image collections and leverage a cluster driving a display wall of nearly 50 million pixels. We show the effectiveness of our approach by demonstrating experimental results and conducting a user study.

  4. Pulse-coupled neural network implementation in FPGA

    NASA Astrophysics Data System (ADS)

    Waldemark, Joakim T. A.; Lindblad, Thomas; Lindsey, Clark S.; Waldemark, Karina E.; Oberg, Johnny; Millberg, Mikael

    1998-03-01

    Pulse Coupled Neural Networks (PCNN) are biologically inspired neural networks, mainly based on studies of the visual cortex of small mammals. The PCNN is very well suited as a pre- processor for image processing, particularly in connection with object isolation, edge detection and segmentation. Several implementations of PCNN on von Neumann computers, as well as on special parallel processing hardware devices (e.g. SIMD), exist. However, these implementations are not as flexible as required for many applications. Here we present an implementation in Field Programmable Gate Arrays (FPGA) together with a performance analysis. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications. The latter may include advanced on-line image analysis with close to real-time performance.

  5. A method for real-time implementation of HOG feature extraction

    NASA Astrophysics Data System (ADS)

    Luo, Hai-bo; Yu, Xin-rong; Liu, Hong-mei; Ding, Qing-hai

    2011-08-01

    Histogram of oriented gradient (HOG) is an efficient feature extraction scheme, and HOG descriptors are feature descriptors which is widely used in computer vision and image processing for the purpose of biometrics, target tracking, automatic target detection(ATD) and automatic target recognition(ATR) etc. However, computation of HOG feature extraction is unsuitable for hardware implementation since it includes complicated operations. In this paper, the optimal design method and theory frame for real-time HOG feature extraction based on FPGA were proposed. The main principle is as follows: firstly, the parallel gradient computing unit circuit based on parallel pipeline structure was designed. Secondly, the calculation of arctangent and square root operation was simplified. Finally, a histogram generator based on parallel pipeline structure was designed to calculate the histogram of each sub-region. Experimental results showed that the HOG extraction can be implemented in a pixel period by these computing units.

  6. Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.

    PubMed

    Reboul, Cyril F; Eager, Michael; Elmlund, Dominika; Elmlund, Hans

    2018-01-01

    Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated. © 2017 The Protein Society.

  7. Morphological-transformation-based technique of edge detection and skeletonization of an image using a single spatial light modulator

    NASA Astrophysics Data System (ADS)

    Munshi, Soumika; Datta, A. K.

    2003-03-01

    A technique of optically detecting the edge and skeleton of an image by defining shift operations for morphological transformation is described. A (2 × 2) source array, which acts as the structuring element of morphological operations, casts four angularly shifted optical projections of the input image. The resulting dilated image, when superimposed with the complementary input image, produces the edge image. For skeletonization, the source array casts four partially overlapped output images of the inverted input image, which is negated, and the resultant image is recorded in a CCD camera. This overlapped eroded image is again eroded and then dilated, producing an opened image. The difference between the eroded and opened image is then computed, resulting in a thinner image. This procedure of obtaining a thinned image is iterated until the difference image becomes zero, maintaining the connectivity conditions. The technique has been optically implemented using a single spatial modulator and has the advantage of single-instruction parallel processing of the image. The techniques have been tested both for binary and grey images.

  8. Implementation of the 2-D Wavelet Transform into FPGA for Image

    NASA Astrophysics Data System (ADS)

    León, M.; Barba, L.; Vargas, L.; Torres, C. O.

    2011-01-01

    This paper presents a hardware system implementation of the of discrete wavelet transform algoritm in two dimensions for FPGA, using the Daubechies filter family of order 2 (db2). The decomposition algorithm of this transform is designed and simulated with the Hardware Description Language VHDL and is implemented in a programmable logic device (FPGA) XC3S1200E reference, Spartan IIIE family, by Xilinx, take advantage the parallels properties of these gives us and speeds processing that can reach them. The architecture is evaluated using images input of different sizes. This implementation is done with the aim of developing a future images encryption hardware system using wavelet transform for security information.

  9. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    PubMed

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  10. Automatic Camera Orientation and Structure Recovery with Samantha

    NASA Astrophysics Data System (ADS)

    Gherardi, R.; Toldo, R.; Garro, V.; Fusiello, A.

    2011-09-01

    SAMANTHA is a software capable of computing camera orientation and structure recovery from a sparse block of casual images without human intervention. It can process both calibrated images or uncalibrated, in which case an autocalibration routine is run. Pictures are organized into a hierarchical tree which has single images as leaves and partial reconstructions as internal nodes. The method proceeds bottom up until it reaches the root node, corresponding to the final result. This framework is one order of magnitude faster than sequential approaches, inherently parallel, less sensitive to the error accumulation causing drift. We have verified the quality of our reconstructions both qualitatively producing compelling point clouds and quantitatively, comparing them with laser scans serving as ground truth.

  11. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  12. Sequential and parallel image restoration: neural network implementations.

    PubMed

    Figueiredo, M T; Leitao, J N

    1994-01-01

    Sequential and parallel image restoration algorithms and their implementations on neural networks are proposed. For images degraded by linear blur and contaminated by additive white Gaussian noise, maximum a posteriori (MAP) estimation and regularization theory lead to the same high dimension convex optimization problem. The commonly adopted strategy (in using neural networks for image restoration) is to map the objective function of the optimization problem into the energy of a predefined network, taking advantage of its energy minimization properties. Departing from this approach, we propose neural implementations of iterative minimization algorithms which are first proved to converge. The developed schemes are based on modified Hopfield (1985) networks of graded elements, with both sequential and parallel updating schedules. An algorithm supported on a fully standard Hopfield network (binary elements and zero autoconnections) is also considered. Robustness with respect to finite numerical precision is studied, and examples with real images are presented.

  13. Imaging Polarimetry in Central Serous Chorioretinopathy

    PubMed Central

    MIURA, MASAHIRO; ELSNER, ANN E.; WEBER, ANKE; CHENEY, MICHAEL C.; OSAKO, MASAHIRO; USUI, MASAHIKO; IWASAKI, TAKUYA

    2006-01-01

    PURPOSE To evaluate a noninvasive technique to detect the leakage point of central serous chorioretinopathy (CSR), using a polarimetry method. DESIGN Prospective cohort study. METHODS SETTING Institutional practice. PATIENTS We examined 30 eyes of 30 patients with CSR. MAIN OUTCOME MEASURES Polarimetry images were recorded using the GDx-N (Laser Diagnostic Technologies). We computed four images that differed in their polarization content: a depolarized light image, an average reflectance image, a parallel polarized light image, and a birefringence image. Each polarimetry image was compared with abnormalities seen on fluorescein angiography. RESULTS In all eyes, leakage area could be clearly visualized as a bright area in the depolarized light images. Michelson contrasts for the leakage areas were 0.58 ± 0.28 in the depolarized light images, 0.17 ± 0.11 in the average reflectance images, 0.09 ± 0.09 in the parallel polarized light images, and 0.11 ± 0.21 in the birefringence images from the same raw data. Michelson contrasts in depolarized light images were significantly higher than for the other three images (P < .0001, for all tests, paired t test). The fluid accumulated in the retina was well-visualized in the average and parallel polarized light images. CONCLUSIONS Polarization-sensitive imaging could readily localize the leakage point and area of fluid in CSR. This may assist with the rapid, noninvasive assessment of CSR. PMID:16376644

  14. Comparative study of bowtie and patient scatter in diagnostic CT

    NASA Astrophysics Data System (ADS)

    Prakash, Prakhar; Boudry, John M.

    2017-03-01

    A fast, GPU accelerated Monte Carlo engine for simulating relevant photon interaction processes over the diagnostic energy range in third-generation CT systems was developed to study the relative contributions of bowtie and object scatter to the total scatter reaching an imaging detector. Primary and scattered projections for an elliptical water phantom (major axis set to 300mm) with muscle and fat inserts were simulated for a typical diagnostic CT system as a function of anti-scatter grid (ASG) configurations. The ASG design space explored grid orientation, i.e. septa either a) parallel or b) parallel and perpendicular to the axis of rotation, as well as septa height. The septa material was Tungsten. The resulting projections were reconstructed and the scatter induced image degradation was quantified using common CT image metrics (such as Hounsfield Unit (HU) inaccuracy and loss in contrast), along with a qualitative review of image artifacts. Results indicate object scatter dominates total scatter in the detector channels under the shadow of the imaged object with the bowtie scatter fraction progressively increasing towards the edges of the object projection. Object scatter was shown to be the driving factor behind HU inaccuracy and contrast reduction in the simulated images while shading artifacts and elevated loss in HU accuracy at the object boundary were largely attributed to bowtie scatter. Because the impact of bowtie scatter could not be sufficiently mitigated with a large grid ratio ASG, algorithmic correction may be necessary to further mitigate these artifacts.

  15. A 2D MTF approach to evaluate and guide dynamic imaging developments.

    PubMed

    Chao, Tzu-Cheng; Chung, Hsiao-Wen; Hoge, W Scott; Madore, Bruno

    2010-02-01

    As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two-dimensional modulation transfer function, an easy-to-interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k-t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension-sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition-enhanced sensitivity maps for sensitivity encoding reconstructions.

  16. Parametric dense stereovision implementation on a system-on chip (SoC).

    PubMed

    Gardel, Alfredo; Montejo, Pablo; García, Jorge; Bravo, Ignacio; Lázaro, José L

    2012-01-01

    This paper proposes a novel hardware implementation of a dense recovery of stereovision 3D measurements. Traditionally 3D stereo systems have imposed the maximum number of stereo correspondences, introducing a large restriction on artificial vision algorithms. The proposed system-on-chip (SoC) provides great performance and efficiency, with a scalable architecture available for many different situations, addressing real time processing of stereo image flow. Using double buffering techniques properly combined with pipelined processing, the use of reconfigurable hardware achieves a parametrisable SoC which gives the designer the opportunity to decide its right dimension and features. The proposed architecture does not need any external memory because the processing is done as image flow arrives. Our SoC provides 3D data directly without the storage of whole stereo images. Our goal is to obtain high processing speed while maintaining the accuracy of 3D data using minimum resources. Configurable parameters may be controlled by later/parallel stages of the vision algorithm executed on an embedded processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained considering 2 Mpix images, with a minimum initial latency. The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor to reconstruct 3D images with high density information in real time.

  17. Investigation of multichannel phased array performance for fetal MR imaging on 1.5T clinical MR system

    PubMed Central

    Li, Ye; Pang, Yong; Vigneron, Daniel; Glenn, Orit; Xu, Duan; Zhang, Xiaoliang

    2011-01-01

    Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B1 coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B1 field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T. PMID:22408747

  18. A fast non-local means algorithm based on integral image and reconstructed similar kernel

    NASA Astrophysics Data System (ADS)

    Lin, Zheng; Song, Enmin

    2018-03-01

    Image denoising is one of the essential methods in digital image processing. The non-local means (NLM) denoising approach is a remarkable denoising technique. However, its time complexity of the computation is high. In this paper, we design a fast NLM algorithm based on integral image and reconstructed similar kernel. First, the integral image is introduced in the traditional NLM algorithm. In doing so, it reduces a great deal of repetitive operations in the parallel processing, which will greatly improves the running speed of the algorithm. Secondly, in order to amend the error of the integral image, we construct a similar window resembling the Gaussian kernel in the pyramidal stacking pattern. Finally, in order to eliminate the influence produced by replacing the Gaussian weighted Euclidean distance with Euclidean distance, we propose a scheme to construct a similar kernel with a size of 3 x 3 in a neighborhood window which will reduce the effect of noise on a single pixel. Experimental results demonstrate that the proposed algorithm is about seventeen times faster than the traditional NLM algorithm, yet produce comparable results in terms of Peak Signal-to- Noise Ratio (the PSNR increased 2.9% in average) and perceptual image quality.

  19. High performance compression of science data

    NASA Technical Reports Server (NTRS)

    Storer, James A.; Cohn, Martin

    1994-01-01

    Two papers make up the body of this report. One presents a single-pass adaptive vector quantization algorithm that learns a codebook of variable size and shape entries; the authors present experiments on a set of test images showing that with no training or prior knowledge of the data, for a given fidelity, the compression achieved typically equals or exceeds that of the JPEG standard. The second paper addresses motion compensation, one of the most effective techniques used in the interframe data compression. A parallel block-matching algorithm for estimating interframe displacement of blocks with minimum error is presented. The algorithm is designed for a simple parallel architecture to process video in real time.

  20. Parallel processor-based raster graphics system architecture

    DOEpatents

    Littlefield, Richard J.

    1990-01-01

    An apparatus for generating raster graphics images from the graphics command stream includes a plurality of graphics processors connected in parallel, each adapted to receive any part of the graphics command stream for processing the command stream part into pixel data. The apparatus also includes a frame buffer for mapping the pixel data to pixel locations and an interconnection network for interconnecting the graphics processors to the frame buffer. Through the interconnection network, each graphics processor may access any part of the frame buffer concurrently with another graphics processor accessing any other part of the frame buffer. The plurality of graphics processors can thereby transmit concurrently pixel data to pixel locations in the frame buffer.

Top