Science.gov

Sample records for parallel ionization chambers

  1. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    NASA Astrophysics Data System (ADS)

    Stoyanov, D. G.

    2007-08-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  2. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    NASA Astrophysics Data System (ADS)

    Stoyanov, D. G.

    2007-11-01

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  3. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  4. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  5. Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry

    SciTech Connect

    Araki, Fujio

    2008-09-15

    Recent standard dosimetry protocols recommend that plane-parallel ionization chambers be used in the measurements of depth-dose distributions or the calibration of low-energy electron beams with beam quality R{sub 50}<4 g/cm{sup 2}. In electron dosimetry protocols with the plane-parallel chambers, the wall correction factor, P{sub wall}, in water is assumed to be unity and the replacement correction factor, P{sub repl}, is taken to be unity for well-guarded plane-parallel chambers, at all measurement depths. This study calculated P{sub wall} and P{sub repl} for NACP-02, Markus, and Roos plane-parallel chambers in clinical electron dosimetry using the EGSnrc Monte Carlo code system. The P{sub wall} values for the plane-parallel chambers increased rapidly as a function of depth in water, especially at lower energy. The value around R{sub 50} for NACP-02 was about 10% greater than unity at 4 MeV. The effect was smaller for higher electron energies. Similarly, P{sub repl} values with depth increased drastically at the region with the steep dose gradient for lower energy. For Markus P{sub repl} departed more than 10% from unity close to R{sub 50} due to the narrow guard ring width. P{sub repl} for NACP-02 and Roos was close to unity in the plateau region of depth-dose curves that includes a reference depth, d{sub ref}. It was also found that the ratio of the dose to water and the dose to the sensitive volume in the air cavity for the plane-parallel chambers, D{sub w}/[D{sub air}]{sub pp}, at d{sub ref} differs significantly from that assumed by electron dosimetry protocols.

  6. The calibration and use of plane-parallel ionization chambers for dosimetry of electron beams.

    PubMed

    Almond, P R; Xu, Z; Li, H; Park, H C

    1995-08-01

    The AAPM TG 39 protocol has proposed three different methods of calibrating plane-parallel ionization chambers, i.e., in-phantom irradiation with a high-energy electron beam and in-phantom and in-air 60Co irradiation. To verify the consistency of the three methods, we have measured Ngaspp values using each of these techniques for the five most commonly used plane-parallel chambers considered by the protocol. Our results demonstrate that the measured Ngaspp values for the three different methods for any of the chambers agree to within +/- 0.6%. Once Ngaspp was measured, the determination of absorbed dose for electron beams with different energies for an AECL Therac 20 and Philips SL25 was carried out according to the AAPM TG 39 protocol. The results show that the determination of the absorbed dose outputs for any of the five chambers agree to within +/- 0.7% for electron-beam energies of 4-20 MeV if all five chambers had Ngaspp values determined by the electron-beam method. The uncertainties are well within the expected error for these approaches.

  7. The response of prototype plane-parallel ionization chambers in small megavoltage x-ray fields.

    PubMed

    McNiven, Andrea L; Mulligan, Matt; Kron, Tomas; Battista, Jerry J

    2006-11-01

    Accurate small-field dosimetry has become important with the use of multiple small fields in modern radiotherapy treatments such as IMRT and stereotactic radiosurgery. In this study, we investigate the response of a set of prototype plane-parallel ionization chambers, based upon the Exradin T11 chamber, with active volume diameters of 2, 4, 10, and 20 mm, exposed to 6 MV stereotactic radiotherapy x-ray fields. Our goal was to assess their usefulness for accurate small x-ray field dose measurements. The relative ionization response was measured in circular fields (0.5 to 4 cm diameter) as compared to a 10 x 10 cm2 reference field. A large discrepancy (approximately 40%) was found between the relative response in the smallest plane-parallel chamber and other small volume dosimeters (radiochromic film, micro-metal-oxide-semiconductor field-effect transistor and diode) used for comparison. Monte Carlo BEAMnrc simulations were used to simulate the experimental setup in order to investigate the cause of the under-response and to calculate appropriate correction factors that could be applied to experimental measurements. It was found that in small fields, the air cavity of these custom-made research chambers perturbed the secondary electron fluence profile significantly, resulting in decreased fluence within the active volume, which in turn produces a chamber under-response. It is demonstrated that a large correction to the p(fl) correction factor would be required to improve dosimetric accuracy in small fields, and that these factors could be derived using Monte Carlo simulations.

  8. Super-resolution non-parametric deconvolution in modelling the radial response function of a parallel plate ionization chamber.

    PubMed

    Kulmala, A; Tenhunen, M

    2012-11-07

    The signal of the dosimetric detector is generally dependent on the shape and size of the sensitive volume of the detector. In order to optimize the performance of the detector and reliability of the output signal the effect of the detector size should be corrected or, at least, taken into account. The response of the detector can be modelled using the convolution theorem that connects the system input (actual dose), output (measured result) and the effect of the detector (response function) by a linear convolution operator. We have developed the super-resolution and non-parametric deconvolution method for determination of the cylinder symmetric ionization chamber radial response function. We have demonstrated that the presented deconvolution method is able to determine the radial response for the Roos parallel plate ionization chamber with a better than 0.5 mm correspondence with the physical measures of the chamber. In addition, the performance of the method was proved by the excellent agreement between the output factors of the stereotactic conical collimators (4-20 mm diameter) measured by the Roos chamber, where the detector size is larger than the measured field, and the reference detector (diode). The presented deconvolution method has a potential in providing reference data for more accurate physical models of the ionization chamber as well as for improving and enhancing the performance of the detectors in specific dosimetric problems.

  9. General collection efficiency for liquid isooctane and tetramethylsilane used as sensitive media in a parallel-plate ionization chamber.

    PubMed

    Johansson, B; Wickman, G

    1997-01-01

    The general collection efficiency has been measured in liquid isooctane (C8H18) and tetramethylsilane (Si(CH3)4) used as the sensitive media in a parallel-plate ionization chamber, with an electrode distance of 1 mm, intended for photon and electron dosimetry applications. The liquid ionization chamber was irradiated at different dose rates by 140 keV photons from the decay of radioactive 99mTc. The measurements were made at potential differences of 50, 100, 200 and 500 V. Measurements were performed for each liquid and electric field strength, with the decay rate of 99mTc used as the dose-rate reference. The maximum dose rate was about 150 mGy min-1 in each experiment. When the measured general collection efficiency values are compared with the theoretical predictions for collection efficiency in gases, it is found that the latter also describe the general collection efficiency in the two liquids within 1% of the saturation current for collection efficiencies down to 60% when using experimentally determined recombination rate constants and on mobilities characteristic of each of the liquids.

  10. NOTE: The calibration of parallel-plate electron ionization chambers at NPL for use with the IPEM 2003 code of practice: summary data

    NASA Astrophysics Data System (ADS)

    Bass, Graham; Thomas, Russell; Pearce, Julia

    2009-04-01

    The most recent electron dosimetry code of practice for radiotherapy written by the Institute of Physics and Engineering in Medicine was published in 2003 and is based on the NPL electron absorbed dose to water calibration service. NPL has calibrated many Scanditronix type NACP-02 and PTW Roos type 34001 parallel plate ionization chambers in terms of absorbed dose to water, for use with the code of practice. The results of the calibrations of these chamber types summarized here include the absorbed dose to water sensitivity, where the mean calibration factor standard deviations are 5.8% for NACP-02 chambers and 1.1% for PTW Roos chambers. The correction for the polarity effect is shown to be small (less than 0.2% for all beam qualities) but with a discernible beam quality dependence. The correction for recombination is shown to be consistent and reproducible, and an analysis of these results suggests that the plate separation of the NACP-02 chambers is more variable from chamber to chamber than with the PTW Roos chambers. The calibration of these chambers is shown to be repeatable within ±0.2% over 2-3 years. It is also shown that check source measurements can be repeated within ±0.3% over several years. The results justify the use of NACP-02 and PTW 34001 chambers as secondary standards, but also indicate that the PTW 34001 chambers show less variation from chamber to chamber.

  11. The calibration of parallel-plate electron ionization chambers at NPL for use with the IPEM 2003 code of practice: summary data.

    PubMed

    Bass, Graham; Thomas, Russell; Pearce, Julia

    2009-04-21

    The most recent electron dosimetry code of practice for radiotherapy written by the Institute of Physics and Engineering in Medicine was published in 2003 and is based on the NPL electron absorbed dose to water calibration service. NPL has calibrated many Scanditronix type NACP-02 and PTW Roos type 34001 parallel plate ionization chambers in terms of absorbed dose to water, for use with the code of practice. The results of the calibrations of these chamber types summarized here include the absorbed dose to water sensitivity, where the mean calibration factor standard deviations are 5.8% for NACP-02 chambers and 1.1% for PTW Roos chambers. The correction for the polarity effect is shown to be small (less than 0.2% for all beam qualities) but with a discernible beam quality dependence. The correction for recombination is shown to be consistent and reproducible, and an analysis of these results suggests that the plate separation of the NACP-02 chambers is more variable from chamber to chamber than with the PTW Roos chambers. The calibration of these chambers is shown to be repeatable within +/-0.2% over 2-3 years. It is also shown that check source measurements can be repeated within +/-0.3% over several years. The results justify the use of NACP-02 and PTW 34001 chambers as secondary standards, but also indicate that the PTW 34001 chambers show less variation from chamber to chamber.

  12. Ionization chamber dosimeter

    DOEpatents

    Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  13. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    NASA Astrophysics Data System (ADS)

    Groetz, J.-E.; Ounoughi, N.; Mavon, C.; Belafrites, A.; Fromm, M.

    2014-08-01

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  14. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    SciTech Connect

    Groetz, J.-E. Mavon, C.; Fromm, M.; Ounoughi, N.; Belafrites, A.

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  15. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate.

    PubMed

    Karsch, Leonhard

    2016-04-21

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  16. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  17. Liquid-filled ionization chamber temperature dependence

    NASA Astrophysics Data System (ADS)

    Franco, L.; Gómez, F.; Iglesias, A.; Pardo, J.; Pazos, A.; Pena, J.; Zapata, M.

    2006-05-01

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a ˜20C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27×10-2 K-1 for an operation electric field of 1.67×106 V m-1 has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  18. a Liquid Ionization Chamber as Monitor in Radiotherapy

    NASA Astrophysics Data System (ADS)

    Berghöfer, Th.; Engler, J.; Milke, J. M.; Hörandel, J. R.; Hartmann, G. H.

    2006-04-01

    First measurements with a prototype liquid ionization chamber are described to be applied as an online-monitor for intensity modulated radiotherapy. The detector consists of 480 individual electronic channels which allow parallel read-out of radiation induced currents at frequencies exceeding 10 Hz. Dose gradients in the direction of leaf movement of a multileaf collimator have been measured and a reconstruction method for individual leaf positions has been developed. The achieved reconstruction accuracy will be described.

  19. Performances of a VLSI wide dynamic range current-to-frequency converter for strip ionization chambers

    NASA Astrophysics Data System (ADS)

    Bonazzola, G. C.; Cirio, R.; Donetti, M.; Marchetto, F.; Mazza, G.; Peroni, C.; Zampieri, A.

    1998-02-01

    In this paper we report on the design and test of a 14-channel VLSI chip to perform the current to frequency conversion for parallel plate strip ionization chambers. The chambers measure the intensity and the geometrical characteristics of a therapeutical beam.

  20. Ionization Chamber for Prompt Fission Neutron Investigations

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Hambsch, F.-J.; Sedyshev, P.; Shvetsov, V.

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical formulae provided for FF angles measured in respect to the coordinate axes. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event-by-event analysis of individual fission reactions from non- point fissile source. Position sensitive neutron induced fission detector for neutron-imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  1. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  2. Radiation damage to tetramethylsilane and tetramethylgermanium ionization chambers

    SciTech Connect

    Hoshi, Y.; Higuchi, M.; Oyama, K. . Dept. of Applied Physics)

    1994-08-01

    Two detector media suitable for a warm liquid, ionization chamber filled with tetramethylsilane (TMS) and tetramethylgermanium (TMG) were exposed to [gamma] radiation form a [sup 60]Co source up to dose 579 Gray and 902 Gray, respectively. The electron lifetimes and the free ion yields were measured as a function of accumulated radiation dose. A similar behavior of the electron lifetimes and the free ion yields with increasing radiation does was observed between the TMS and TMG ionization chambers.

  3. Development of a pixel ionization chamber for beam monitor in proton therapy

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Garella, M. A.; Attili, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Giordanengo, S.; Givehchi, N.; Marchetto, F.; Mazza, G.; Meyroneinc, S.; Pecka, A.; Peroni, C.; Pittà, G.

    2007-03-01

    We have developed a detector to be used as monitor for proton therapy beam lines. The detector is a 2-D parallel plate ionization chamber, with the anode segmented in 1024 square pixels arranged in a 32×32 matrix. The detector characterization is presented.

  4. A VLSI analog pipeline read-out for electrode segmented ionization chambers

    NASA Astrophysics Data System (ADS)

    Bonazzola, G. C.; Bouvier, S.; Cirio, R.; Donetti, M.; Figus, M.; Marchetto, F.; Peroni, C.; Pernigotti, E.; Thenard, J. M.; Zampieri, A.

    1999-05-01

    We report on the design and test of a 32-channel VLSI chip based on the analog pipeline memory concept. The charge from a strip of a ionization chamber, is stored as a function of time in a switched capacitor array. The cell reading can be done in parallel with the writing.

  5. RADIATION MONITOR CONTAINING TWO CONCENTRIC IONIZATION CHAMBERS AND MEANS FOR INSULATING THE SEPARATE CHAMBERS

    DOEpatents

    Braestrup, C.B.; Mooney, R.T.

    1964-01-21

    This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)

  6. Quantification of static magnetic field effects on radiotherapy ionization chambers

    NASA Astrophysics Data System (ADS)

    Agnew, J.; O’Grady, F.; Young, R.; Duane, S.; Budgell, G. J.

    2017-03-01

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  7. Quantification of static magnetic field effects on radiotherapy ionization chambers.

    PubMed

    Agnew, J; O'Grady, F; Young, R; Duane, S; Budgell, G J

    2017-03-07

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  8. Segmented ionization chambers for beam monitoring in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Braccini, Saverio; Cirio, Roberto; Donetti, Marco; Marchetto, Flavio; Pittà, Giuseppe; Lavagno, Marco; La Rosa, Vanessa

    2015-05-01

    Segmented ionization chambers represent a good solution to monitor the position, the intensity and the shape of ion beams in hadrontherapy. Pixel and strip chambers have been developed for both passive scattering and active scanning dose delivery systems. In particular, strip chambers are optimal for pencil beam scanning, allowing for spatial and time resolutions below 0.1 mm and 1 ms, respectively. The MATRIX pixel and the Strip Accurate Monitor for Beam Applications (SAMBA) detectors are described in this paper together with the results of several beam tests and industrial developments based on these prototypes.

  9. EML pulse ionization chamber systems for /sup 222/Rn measurements

    SciTech Connect

    Fisenne, I M; Keller, H W

    1985-03-01

    Radon measurements have been performed with pulse ionization chambers at the Environmental Measurements Laboratory (EML) for over 35 years. This report describes the evolution of radon measurement systems, with emphasis on the continuous quality control efforts at EML. 38 refs., 3 figs., 3 tabs.

  10. Ionization chamber gradient effects in nonstandard beam configurations

    SciTech Connect

    Bouchard, Hugo; Seuntjens, Jan; Carrier, Jean-Francois; Kawrakow, Iwan

    2009-10-15

    Purpose: For the purpose of nonstandard beam reference dosimetry, the current concept of reporting absorbed dose at a point in water located at a representative position in the chamber volume is investigated in detail. As new nonstandard beam reference dosimetry protocols are under development, an evaluation of the role played by the definition of point of measurement could lead to conceptual improvements prior to establishing measurement procedures. Methods: The present study uses the current definition of reporting absorbed dose to calculate ionization chamber perturbation factors for two cylindrical chamber models (Exradin A12 and A14) using the Monte Carlo method. The EGSnrc based user-code EGS lowbar chamber is used to calculate chamber dose responses of 14 IMRT beams chosen to cause considerable dose gradients over the chamber volume as previously used by Bouchard and Seuntjens [''Ionization chamber-based reference dosimetry of intensity modulated radiation beams,'' Med. Phys. 31(9), 2454-5465 (2004)]. Results: The study shows conclusively the relative importance of each physical effect involved in the nonstandard beam correction factors of 14 IMRT beams. Of all correction factors involved in the dosimetry of the beams studied, the gradient perturbation correction factor has the highest magnitude, on average, 11% higher compared to reference conditions for the Exradin A12 chamber and about 5% higher for the Extradin A14 chamber. Other perturbation correction factors (i.e., P{sub wall}, P{sub stem}, and P{sub cel}) are, on average, less than 0.8% different from reference conditions for the chambers and beams studied. The current approach of reporting measured absorbed dose at a point in water coinciding with the location of the centroid of the chamber is the main factor responsible for large correction factors in nonstandard beam deliveries (e.g., intensity modulated radiation therapy) reported in literature. Conclusions: To reduce or eliminate the magnitude

  11. Application of the two-dose-rate method for general recombination correction for liquid ionization chambers in continuous beams

    NASA Astrophysics Data System (ADS)

    Andersson, Jonas; Tölli, Heikki

    2011-01-01

    A method to correct for the general recombination losses for liquid ionization chambers in continuous beams has been developed. The proposed method has been derived from Greening's theory for continuous beams and is based on measuring the signal from a liquid ionization chamber and an air filled monitor ionization chamber at two different dose rates. The method has been tested with two plane parallel liquid ionization chambers in a continuous radiation x-ray beam with a tube voltage of 120 kV and with dose rates between 2 and 13 Gy min-1. The liquids used as sensitive media in the chambers were isooctane (C8H18) and tetramethylsilane (Si(CH3)4). The general recombination effect was studied using chamber polarizing voltages of 100, 300, 500, 700 and 900 V for both liquids. The relative standard deviation of the results for the collection efficiency with respect to general recombination was found to be a maximum of 0.7% for isooctane and 2.4% for tetramethylsilane. The results are in excellent agreement with Greening's theory for collection efficiencies over 90%. The measured and corrected signals from the liquid ionization chambers used in this work are in very good agreement with the air filled monitor chamber with respect to signal to dose linearity.

  12. Application of the two-dose-rate method for general recombination correction for liquid ionization chambers in continuous beams.

    PubMed

    Andersson, Jonas; Tölli, Heikki

    2011-01-21

    A method to correct for the general recombination losses for liquid ionization chambers in continuous beams has been developed. The proposed method has been derived from Greening's theory for continuous beams and is based on measuring the signal from a liquid ionization chamber and an air filled monitor ionization chamber at two different dose rates. The method has been tested with two plane parallel liquid ionization chambers in a continuous radiation x-ray beam with a tube voltage of 120 kV and with dose rates between 2 and 13 Gy min(-1). The liquids used as sensitive media in the chambers were isooctane (C(8)H(18)) and tetramethylsilane (Si(CH(3))(4)). The general recombination effect was studied using chamber polarizing voltages of 100, 300, 500, 700 and 900 V for both liquids. The relative standard deviation of the results for the collection efficiency with respect to general recombination was found to be a maximum of 0.7% for isooctane and 2.4% for tetramethylsilane. The results are in excellent agreement with Greening's theory for collection efficiencies over 90%. The measured and corrected signals from the liquid ionization chambers used in this work are in very good agreement with the air filled monitor chamber with respect to signal to dose linearity.

  13. Neutron Dosimetry Using a Tissue-Equivalent Ionization Chamber.

    DTIC Science & Technology

    1980-05-01

    procedures are described, and correction factors discussed. /’ On a montg et v~rifiA un systtme de niesure d’oZz la dose ou le kerma tissulaire neutronique ...tube 3.8 cm in diameter. At the same time, it is advantageous to keep the active volume as large as possible in order to maximize sensitivity. The...CHAMBER The construction of the FWT TE Ionization chamber is Illustrated in figure 1. The active volume lies between the central electrode and the

  14. Use of a liquid ionization chamber for stereotactic radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Crop, F.; Lacornerie, T.; Vandevelde, F.; Reynaert, N.

    2013-04-01

    Liquid ionization chambers (LICs) offer an interesting tool in the field of small beam dosimetry, allowing better spatial resolution and reduced perturbation effects. However, some aspects remain to be addressed, such as the higher recombination and the effects from the materials of the detector. Our aim was to investigate these issues and their impact. The first step was the evaluation of the recombination effects. Measurements were performed at different SSDs to vary the dose per pulse, and the collection efficiency was obtained. The BEAMnrc code was then used to model the Cyberknife head. Finally, the liquid ionization chamber itself was modelled using the EGSnrc-based code Cavity allowing the evaluation of the influence of the volume and the chamber materials. The liquid ionization charge collection efficiency is approximately 0.98 at 1.5 mGy pulse-1, the highest dose per pulse that we have measured. Its impact on the accuracy of output factors is less than half a per cent. The detector modelling showed a significant contribution from the graphite electrode, up to 6% for the 5 mm collimator. The dependence of the average electronic mass collision stopping power of iso-octane with beam collimation is negligible and thus has no influence on output factor measurements. Finally, the volume effect reaches 5% for the small 5 mm collimator and becomes much smaller (<0.5%) for diameters above 10 mm. LICs can effectively be used for small beam relative dosimetry as long as adequate correction factors are applied, especially for the electrode and volume effects.

  15. Comparison of ionization chamber efficiencies for activity measurements.

    PubMed

    Schrader, H; Svec, A

    2004-01-01

    The calibration of ionization chamber measuring systems in terms of activity is described. The energy-dependent efficiency curves of three chambers at the Bureau International des Poids et Mesures, the National Physical Laboratory and the Physikalisch-Technische Bundesanstalt are determined and compared using a fitting procedure for the experimental radionuclide efficiencies by the Microsoft (MS) EXCEL Solver program. An estimation of the uncertainty of the efficiency curves and the deviations of experimental and calculated radionuclide efficiencies are given. By this fitting method, discrepancies in the efficiency determination can be detected at a level of about one percent. Systematic deviations entering into the calculations either from emission probabilities per decay or from absolute activity standardization are discussed.

  16. An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams

    SciTech Connect

    Hill, Robin; Mo Zhao; Haque, Mamoon; Baldock, Clive

    2009-09-15

    In this work, the authors have evaluated ten different ionization chambers for the relative dosimetry of kilovoltage x-ray beams in the energy range of 50-280 kVp. Percentage depth doses in water and relative detector response (in Solid Water and in air) were measured for each of the x-ray beams studied using a number of chambers. Measured depth dose data were compared with Monte Carlo calculated depth doses using the EGSnrc Monte Carlo package and the BEAMnrc user code. The accuracy of the phase space files generated by BEAMnrc was verified by calculating the half-value layer and comparing with the measured half-value layer of each x-ray beam. The results indicate that the Advanced Markus, Markus, NACP, and Roos parallel plate ionization chambers were suitable for the measurement of depth dose data in this beam quality range with an uncertainty of less than 3%, including in the regions close to the water surface. While the relative detector response of the Farmer and scanning thimble chambers exhibited a better energy response, they were not suitable for depth dose measurements in the first 5 mm below the water surface with differences of up to 12% in the surface dose measurement for the 50 kVp x-ray beam. These differences were due to dose artifacts generated by the chamber size and the dose gradient. However, at depths greater than 5 mm, the Farmer and thimble scanning chambers gave uncertainties of less than 3% for the depth dose measurements for all beam energies. The PTW PinPoint 31006 chamber was found to give varying dose differences of up to 8% depending on the x-ray beam energy; this was attributed to the steel central electrode. The authors recommend that one of the parallel plate ionization chambers investigated be used to determine depth dose data for kilovoltage x-ray beams in the energy range studied and give correct dose information close to the surface and at depth in the water phantom.

  17. Amplitude distribution of ionization jerks in ionization-chamber ASK-1 according long-term measurements

    NASA Astrophysics Data System (ADS)

    Timofeev, Vladislav

    2016-07-01

    As part of the Yakut complex systems by measuring the intensity of cosmic rays has a unique device spherical - ionization chamber ASK-1 with a lead screen thickness of 12 cm. The camera allows you to explore the physical characteristics of the so-called "ionization jerks " - sharp increases ionization current caused by the passage through the device much ionizing particles of cosmic origin. Due to a large increase in current nuclear cascade "showers", formed mainly by particles of cosmic rays in the camera screen. Over the entire period of observation (50 years old) camera ASK-1 was registered 59125 aftershocks. Their nature and properties still does not sufficiently studied, especially in medium and large amplitudes.

  18. Differences between signal currents for both polarities of applied voltages on cavity ionization chambers

    NASA Astrophysics Data System (ADS)

    Takata, N.

    2001-06-01

    A difference between the surface potential of the charge collecting electrode and that of the guard electrode of an ionization chamber changes the charge collecting volume depending on the applied voltage. If the difference is large, the saturation curve of the signal current shows a maximum at a low applied voltage. Even when there is no electrical or mechanical defect, the signal current from a parallel plate ionization chamber irradiated with 60Co γ-rays increases or decreases with the applied voltage beyond the recombination region depending on the polarity of the applied voltage. The variation in the signal current is explained as a result of the change in the stopping power of air due to the acceleration or deceleration of secondary electrons. These electrons are emitted from the polarizing electrode towards the collector as a result of Compton scattering. In a range of low applied voltages, the signal current from a cylindrical ionization chamber is expected to be smaller for a negative applied voltage than for a positive applied voltage. This is because epithermal electrons are expected to have a higher probability of being lost by back diffusion than positive ions which are originally produced in a thermal equilibrium condition. An experimental result, however, showed no difference in the polarities of the applied voltage. The result may be explained as a consequence of the fact that epithemal electrons do not drift for long distances and maintain their energies.

  19. Performance of electret ionization chambers in magnetic field.

    PubMed

    Kotrappa, P; Stieff, L R; Mengers, T F; Shull, R D

    2006-04-01

    Electret ionization chambers are widely used for measuring radon and radiation. The radiation measured includes alpha, beta, and gamma radiation. These detectors do not have any electronics and as such can be introduced into magnetic field regions. It is of interest to study the effect of magnetic fields on the performance of these detectors. Relative responses are measured with and without magnetic fields present. Quantitative responses are measured as the magnetic field is varied from 8 kA/m to 716 kA/m (100 to 9,000 gauss). No significant effect is observed for measuring alpha radiation and gamma radiation. However, a significant systematic effect is observed while measuring beta radiation from a 90Sr-Y source. Depending upon the field orientation, the relative response increased from 1.0 to 2.7 (vertical position) and decreased from 1.0 to 0.60 (horizontal position). This is explained as due to the setting up of a circular motion for the electrons by the magnetic field, which may increase or decrease the path length in air depending upon the experimental configuration. It is concluded that these ionization chambers can be used for measuring alpha (and hence radon) and gamma radiation in the range of magnetic fields studied. However, caution must be exercised if measuring beta radiation.

  20. Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam

    SciTech Connect

    Sugama, Yuya; Nishio, Teiji; Onishi, Hiroshi

    2015-07-15

    Purpose: IAEA TRS-398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS-398 recommends a displacement of 0.75 times the inner cavity radius (0.75R) for heavy ion beams. Theoretical models by Palmans and by Bhullar and Watchman confirmed this value. However, the experimental results vary from author to author. The purpose of this study is to accurately measure the displacement and explain the past experimental discrepancies. Methods: In this work, we measured the EPOM of cylindrical ionization chambers with high accuracy by comparing the Bragg-peak position obtained with cylindrical ionization chambers (PTW 30013, PTW 31016) to that obtained using a plane-parallel ionization chamber (PTW 34045). Results: The EPOMs of PTW 30013 and 31016 were shifted by 0.92 ± 0.07 R with R = 3.05 mm and 0.90 ± 0.14 R with R = 1.45 mm, respectively, from the reference point toward the source. Conclusions: The EPOMs obtained were greater than the value of 0.75R proposed by the IAEA TRS-398 and the analytical results.

  1. An automated ionization chamber for secondary radioactivity standards.

    PubMed

    Fitzgerald, R

    2010-01-01

    I report on the operation and characterization of a new ionization chamber system, "AUTOIC", featuring a commercial digital electrometer and a commercial robotic sample changer. The relative accuracy of the electrometer was improved significantly beyond the manufacturer's specifications through an in-house calibration of the various ranges, applied via software. The measurement precision and repeatability of the system have been determined by measuring multiple samples of the same radionuclide over the span of two or three years. The linearity of the system was examined by following the decay of (99m)Tc, (99)Mo and (133)Xe sources for up to 19 half-lives and determining half-life values. All of these values agree with the accepted literature values, within their combined uncertainties.

  2. A multiwire ionization chamber readout circuit using current mirrors

    NASA Astrophysics Data System (ADS)

    Rawnsley, W. R.; Smith, D.; Moskven, T.

    1997-01-01

    A circuit which utilizes current mirrors has been used to apply high voltage bias to the wires of a multiwire ionization chamber (MWIC) profile monitor while still allowing measurement of the beam-induced ion-electron currents collected on the wires. Bias voltages of up to 250 V have been used while wire currents over a range of 0.5 nA to 50 nA have been measured. The circuit is unipolar but can be designed for positive or negative bias. The mirrors also provide a current gain of 10, reducing the effects of transistor leakage and extending the useful range of the circuit to lower signal levels. A module containing 32 Wilson current mirrors has been constructed and is used with a MWIC monitor in TRIUMF's Parity experiment beamline.

  3. NIST Ionization Chamber "A" Sample-Height Corrections.

    PubMed

    Fitzgerald, Ryan

    2012-01-01

    For over 30 years scientists in the NIST radioactivity group have been using their pressurized ionization chamber "A" (PIC "A") to make measurements of radioactivity and radioactive half-lives. We now have evidence that some of those reported measurements were incorrect due to slippage of the source positioning ring over time. The temporal change in the holder caused an error in the source-height within the chamber, which was thought to be invariant. This unaccounted-for height change caused a change in the detector response and thus a relative error in measured activity on the order of 10(-5) to 10(-3) per year, depending on the radionuclide. The drifting detector response affected calibration factors and half-life determinations. After discovering the problem, we carried out historic research and new sensitivity tests. As a result, we have created a quantitative model of the effect and have used that model to estimate corrections to some of the past measurement results from PIC "A". In this paper we report the details and results of that model. Meanwhile, we have fixed the positioning ring and are recalibrating the detector using primary measurement methods and enhanced quality control measures.

  4. A well-type ionization chamber geometric correction factor

    NASA Astrophysics Data System (ADS)

    Meiler, R. J.; Sibata, C. H.; Ho, A. K.; de Souza, C.; Shin, K. H.

    1996-07-01

    To correct for the influence of source configuration on the measured activity of spherical and cylindrical brachytherapy sources, a geometric correction factor was calculated for the Standard Imaging HDR-1000 well-type ionization chamber. A Fortran program modelled each source as a lattice of point sources. Because of the cylindrical symmetry of the well chamber, it could be uniquely modelled by point detectors along the perimeter of the radial plane of the detection volume. Path lengths were calculated and attenuation factors were applied to each source - detector point combination individually. The total dose rate at each detection point was found through a Sievert summation of the point source contributions. For sources with identical activities, a correction factor of was calculated, equal to the ratio of the dose rate of the cylindrical source to that of the sphere. Experimental verification using a Nuclear Associates 67-809 series cylindrical source and an Amersham spherical source yielded a correction factor of .

  5. Polarity correction factor for flattening filter free photon beams in several cylindrical ionization chambers.

    PubMed

    Ogata, Toshiyuki; Uehara, Kazuyuki; Nakayama, Masao; Tsudou, Shinji; Masutani, Takashi; Okayama, Takanobu

    2016-07-01

    In this study, we aimed to compare the polarity correction factor in ionization chambers for flattening filter free (FFF) photon beams and flattening filter (FF) beams. Measurements were performed with both 6 and 10 MV FFF and FF beams. Five commercial ionization chambers were evaluated: PTW TN30013; IBA Dosimetry CC01, CC04, and CC13; and Exradin A12S. Except for the CC01 ionization chamber, the other four chambers showed less than a 0.3 % difference in the polarity effect between the FFF and the FF beams. The CC01 chamber showed a strong field-size-dependence, unlike the other chambers. The polarity effect for all chambers with FFF beams did not change with the dose rate. Except in the case of the CC01 chamber, the difference in the polarity effect between FFF and FF beams was not significant.

  6. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-02-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  7. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    SciTech Connect

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke; Sorimachi, Atsuyuki; Yatabe, Yoshinori; Miyahara, Nobuyuki

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  8. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  9. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Oberstedt, S.; Pomp, S.

    2012-05-01

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235U(nth, f).

  10. A two-dose-rate method for general recombination correction for liquid ionization chambers in pulsed beams

    NASA Astrophysics Data System (ADS)

    Tölli, Heikki; Sjögren, Rickard; Wendelsten, Mikael

    2010-08-01

    The correction for general recombination losses in liquid ionization chambers (LICs) is more complex than that in air-filled ionization chambers. The reason for this is that the saturation charge in LICs, i.e. the charge that escapes initial recombination, depends on the applied voltage. This paper presents a method, based on measurements at two different dose rates in a pulsed beam, for general recombination correction in LICs. The Boag theory for pulsed beams is used and the collection efficiency is determined by numerical methods which are equivalent to the two-voltage method used in dosimetry with air-filled ionization chambers. The method has been tested in experiments in water in a 20 MeV electron beam using two LICs filled with isooctane and tetramethylsilane. The dose per pulse in the electron beam was varied between 0.1 mGy/pulse and 8 mGy/pulse. The relative standard deviations of the collection efficiencies determined with the two-dose-rate method ranged between 0.1% and 1.5%. The dose-rate variations of the general recombination corrected charge measured with the LICs are in excellent agreement with the corresponding values obtained with an air-filled plane parallel ionization chamber.

  11. Strip Ionization Chamber as Beam Monitor in the Proton Therapy Eye Treatment

    NASA Astrophysics Data System (ADS)

    Marchetto, F.; Cirio, R.; Garella, M. A.; Giordanengo, S.; Boriano, A.; Givehchi, N.; La Rosa, A.; Peroni, C.; Donetti, M.; Bourhaleb, F.; Pitta', G.; Cirrone, G. A. P.; Cuttone, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-04-01

    Since spring 2002, ocular pathologies have been treated in Catania at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) within a collaboration between INFN Laboratori Nazionali del Sud (LNS), Physics Department, Ophthalmology Institute, Radiology Institute of the Catania University and CSFNSM Catania. A beam line from a 62 MeV Superconducting Cyclotron is used to treat shallow tumors. The beam is conformed to the tumor shape with a passive delivery system. A detector system has been developed in collaboration with INFN-Torino to be used as real time beam monitor. The detector, placed upstream of the patient collimator, consists of two parallel plate ionization chambers with the anode segmented in strips. Each anode is made of 0.5 mm-wide 256 strips corresponding to (12.8 × 12.8) cm2 sensitive area. With the two strip ionization chambers one can measure the relevant beam parameters during treatment to probe both asymmetry and flatness. In the test carried out at CATANA the detector has been used under different and extreme beam conditions. Preliminary results are given for profiles and skewness, together with a comparison with reference detectors.

  12. Monte Carlo calculation of energy deposition in ionization chambers for tritium measurements

    NASA Astrophysics Data System (ADS)

    Zhilin, Chen; Shuming, Peng; Dan, Meng; Yuehong, He; Heyi, Wang

    2014-10-01

    Energy deposition in ionization chambers for tritium measurements has been theoretically studied using Monte Carlo code MCNP 5. The influence of many factors, including carrier gas, chamber size, wall materials and gas pressure, has been evaluated in the simulations. It is found that β rays emitted by tritium deposit much more energy into chambers flowing through with argon than with deuterium in them, as much as 2.7 times higher at pressure 100 Pa. As chamber size gets smaller, energy deposition decreases sharply. For an ionization chamber of 1 mL, β rays deposit less than 1% of their energy at pressure 100 Pa and only 84% even if gas pressure is as high as 100 kPa. It also indicates that gold plated ionization chamber results in the highest deposition ratio while aluminum one leads to the lowest. In addition, simulations were validated by comparison with experimental data. Results show that simulations agree well with experimental data.

  13. Extraction of depth-dependent perturbation factors for parallel-plate chambers in electron beams using a plastic scintillation detector

    SciTech Connect

    Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Cojocaru, Claudiu; Gingras, Luc; Beddar, A. Sam; Beaulieu, Luc

    2010-08-15

    Purpose: This work presents the experimental extraction of the overall perturbation factor P{sub Q} in megavoltage electron beams for NACP-02 and Roos parallel-plate ionization chambers using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6, 12, and 18 MeV clinical electron beams. The authors also measured depth-dose curves using the NACP-02 and PTW Roos chambers. Results: The authors found that the perturbation factors for the NACP-02 and Roos chambers increased substantially with depth, especially for low-energy electron beams. The experimental results were in good agreement with the results of Monte Carlo simulations reported by other investigators. The authors also found that using an effective point of measurement (EPOM) placed inside the air cavity reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: A PSD can be used to experimentally extract perturbation factors for ionization chambers. The dosimetry protocol recommendations indicating that the point of measurement be placed on the inside face of the front window appear to be incorrect for parallel-plate chambers and result in errors in the R{sub 50} of approximately 0.4 mm at 6 MeV, 1.0 mm at 12 MeV, and 1.2 mm at 18 MeV.

  14. On line high dose static position monitoring by ionization chamber detector for industrial gamma irradiators.

    PubMed

    Rodrigues, Ary A; Vieira, Jose M; Hamada, Margarida M

    2010-01-01

    A 1 cm(3) cylindrical ionization chamber was developed to measure high doses on line during the sample irradiation in static position, in a (60)Co industrial plant. The developed ionization chamber showed to be suitable for use as a dosimeter on line. A good linearity of the detector was found between the dose and the accumulated charge, independently of the different dose rates caused by absorbing materials.

  15. Construction of an ionization chamber for the measurement of dose of low energy x-rays

    SciTech Connect

    Perez, Y. B. Alcantara; Jimenez, F. J. Ramirez

    2008-08-11

    We designed and constructed the prototype of an ionization chamber to measure the dose of an X-ray tube with Molybdenum anode. This X-ray tube is located in the Physics department at CINVESTAV and is used for medical physics purposes in the imaging area. The ionization chamber is designed to measure doses on biological samples exposed to X-rays and will be applied in radiation protection studies.

  16. Pencil beam proton radiography using a multilayer ionization chamber

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  17. The magic cube and the pixel ionization chamber: detectors for monitor and dosimetry of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Sanz Freire, C. J.; Sardo, A.; Trevisiol, E.

    2003-09-01

    Tumor therapy takes advantage of the energy deposition of radiation to concentrate high doses in the target while sparing healthy tissue. Elective pathologies for highly conformal radiotherapies such as photon Intensity Modulated Radiotherapy (IMRT) and radiotherapy with hadrons are head and neck, eye, prostate and in general all tumors that are either deep or located close to critical organs. In the world there are several centers that are using such techniques and a common problem that is being experienced is the verification of treatment plans and monitoring of the beam. We have designed and built two detectors that allow 2D and 3D measurements of dose and fluence of such beams. The detectors allow measurements on big surfaces, up to 25∗25 cm2. The active media are parallel plate, strip and pixel segmented ionization chambers with front-end Very Large Scale Integration (VLSI) readout and PC based data acquistion. The description of dosimeter, chamber and electronics will be given with results from beam tests and therapy plan verification.

  18. D-IMRT verification with a 2D pixel ionization chamber: dosimetric and clinical results in head and neck cancer.

    PubMed

    Stasi, M; Giordanengo, S; Cirio, R; Boriano, A; Bourhaleb, F; Cornelius, I; Donetti, M; Garelli, E; Gomola, I; Marchetto, F; Porzio, M; Sanz Freire, C J; Sardo, A; Peroni, C

    2005-10-07

    Dynamic intensity-modulated radiotherapy (D-IMRT) using the sliding-window technique is currently applied for selected treatments of head and neck cancer at Institute for Cancer Research and Treatment of Candiolo (Turin, Italy). In the present work, a PiXel-segmented ionization Chamber (PXC) has been used for the verification of 19 fields used for four different head and neck cancers. The device consists of a 32x32 matrix of 1024 parallel-plate ionization chambers arranged in a square of 24x24 cm2 area. Each chamber has 0.4 cm diameter and 0.55 cm height; a distance of 0.75 cm separates the centre of adjacent chambers. The sensitive volume of each single ionization chamber is 0.07 cm3. Each of the 1024 independent ionization chambers is read out with a custom microelectronics chip.The output factors in water obtained with the PXC at a depth of 10 cm were compared to other detectors and the maximum difference was 1.9% for field sizes down to 3x3 cm2. Beam profiles for different field dimensions were measured with the PXC and two other types of ionization chambers; the maximum distance to agreement (DTA) in the 20-80% penumbra region of a 3x3 cm2 field was 0.09 cm. The leaf speed of the multileaf collimator was varied between 0.07 and 2 cm s-1 and the detector response was constant to better than 0.6%. The behaviour of the PXC was measured while varying the dose rate between 0.21 and 1.21 Gy min-1; the mean difference was 0.50% and the maximum difference was 0.96%. Using fields obtained with an enhanced dynamic wedge and a staircase-like (step) IMRT field, the PXC has been tested for simple 1D modulated beams; comparison with film gave a maximum DTA of 0.12 cm. The PXC was then used to check four different IMRT plans for head and neck cancer treatment: cervical chordoma, parotid, ethmoid and skull base. In the comparison of the PXC versus film and PXC versus treatment planning system, the number of pixels with gamma parameter

  19. D-IMRT verification with a 2D pixel ionization chamber: dosimetric and clinical results in head and neck cancer

    NASA Astrophysics Data System (ADS)

    Stasi, M.; Giordanengo, S.; Cirio, R.; Boriano, A.; Bourhaleb, F.; Cornelius, I.; Donetti, M.; Garelli, E.; Gomola, I.; Marchetto, F.; Porzio, M.; Sanz Freire, C. J.; Sardo, A.; Peroni, C.

    2005-10-01

    Dynamic intensity-modulated radiotherapy (D-IMRT) using the sliding-window technique is currently applied for selected treatments of head and neck cancer at Institute for Cancer Research and Treatment of Candiolo (Turin, Italy). In the present work, a PiXel-segmented ionization Chamber (PXC) has been used for the verification of 19 fields used for four different head and neck cancers. The device consists of a 32 × 32 matrix of 1024 parallel-plate ionization chambers arranged in a square of 24 × 24 cm2 area. Each chamber has 0.4 cm diameter and 0.55 cm height; a distance of 0.75 cm separates the centre of adjacent chambers. The sensitive volume of each single ionization chamber is 0.07 cm3. Each of the 1024 independent ionization chambers is read out with a custom microelectronics chip. The output factors in water obtained with the PXC at a depth of 10 cm were compared to other detectors and the maximum difference was 1.9% for field sizes down to 3 × 3 cm2. Beam profiles for different field dimensions were measured with the PXC and two other types of ionization chambers; the maximum distance to agreement (DTA) in the 20-80% penumbra region of a 3 × 3 cm2 field was 0.09 cm. The leaf speed of the multileaf collimator was varied between 0.07 and 2 cm s-1 and the detector response was constant to better than 0.6%. The behaviour of the PXC was measured while varying the dose rate between 0.21 and 1.21 Gy min-1; the mean difference was 0.50% and the maximum difference was 0.96%. Using fields obtained with an enhanced dynamic wedge and a staircase-like (step) IMRT field, the PXC has been tested for simple 1D modulated beams; comparison with film gave a maximum DTA of 0.12 cm. The PXC was then used to check four different IMRT plans for head and neck cancer treatment: cervical chordoma, parotid, ethmoid and skull base. In the comparison of the PXC versus film and PXC versus treatment planning system, the number of pixels with γ parameter <=1 was 97.7% and 97

  20. Polarity and ion recombination corrections in continuous and pulsed beams for ionization chambers with high Z chamber walls.

    PubMed

    Aldosary, Ghada; Safigholi, Habib; Song, William; Seuntjens, Jan; Sarfehnia, Arman

    2017-03-01

    In this work, the response of Farmer-type ionization chambers fitted with high atomic number (Z) walls is studied, and results of the effects of such walls on polarity and ion recombination correction factors in both continuous and pulsed beams are presented. Measurements were made in a continuous Co-60 beam and a pulsed 6MV linac beam using an Exradin-A12 ionization chamber fitted with the manufacturer's C-552 plastic wall, as well as geometrically identical walls made from aluminum, copper and molybdenum. The bias voltage was changed between 10values (range: +50 to +560V). Ion recombination was determined from Jaffé plots and by using the "two-voltage technique". The saturation charge measured with each chamber wall was extrapolated from Jaffé plots. Additionally, the effect of different wall materials on chamber response was studied using MCNP simulations. Results showed that the polarity correction factor is not significantly affected by changes in chamber wall material (within 0.1%). Furthermore, although the saturation charges greatly vary with each chamber wall material, and charge multiplication increases for higher atomic number wall materials, the standard methods of calculating ion recombination yielded results that differed by only 0.2%. Therefore, polarity and ion recombination correction factors are not greatly affected by the chamber wall material. The experimental saturation charges for all the different wall materials agreed well within the uncertainty with MCNP simulations. The breakdown of the linear relationship in Jaffé plots that was previously reported to exist for conventional chamber walls was also observed with the different wall materials.

  1. Experimental determination of the effective point of measurement of cylindrical ionization chambers for high-energy photon and electron beams.

    PubMed

    Huang, Yanxiao; Willomitzer, Christian; Zakaria, Golam Abu; Hartmann, Guenther H

    2010-01-01

    Measurements of depth-dose curves in water phantom using a cylindrical ionization chamber require that its effective point of measurement is located at the measuring depth. Recommendations for the position of the effective point of measurement with respect to the central axis valid for high-energy electron and photon beams are given in dosimetry protocols. According to these protocols, the use of a constant shift P(eff) is currently recommended. However, this is still based on a very limited set of experimental results. It is therefore expected that an improved knowledge of the exact position of the effective point of measurement will further improve the accuracy of dosimetry. Recent publications have revealed that the position of the effective point of measurement is indeed varying with beam energy, field size and also with chamber geometry. The aim of this study is to investigate whether the shift of P(eff) can be taken to be constant and independent from the beam energy. An experimental determination of the effective point of measurement is presented based on a comparison between cylindrical chambers and a plane-parallel chamber using conventional dosimetry equipment. For electron beams, the determination is based on the comparison of halfvalue depth R(50) between the cylindrical chamber of interest and a well guarded plane-parallel Roos chamber. For photon beams, the depth of dose maximum, d(max), the depth of 80% dose, d(80), and the dose parameter PDD(10) were used. It was again found that the effective point of measurement for both, electron and photon beams Dosimetry, depends on the beam energy. The deviation from a constant value remains very small for photons, whereas significant deviations were found for electrons. It is therefore concluded that use of a single upstream shift value from the centre of the cylindrical chamber as recommended in current dosimetry protocols is adequate for photons, however inadequate for accurate electron beam dosimetry.

  2. Use of a novel two-dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance.

    PubMed

    Lin, Liyong; Kang, Minglei; Solberg, Timothy D; Mertens, Thierry; Baeumer, Christian; Ainsley, Christopher G; McDonough, James E

    2015-05-08

    The need to accurately and efficiently verify both output and dose profiles creates significant challenges in quality assurance of pencil beam scanning (PBS) proton delivery. A system for PBS QA has been developed that combines a new two-dimensional ionization chamber array in a waterproof housing that is scanned in a water phantom. The MatriXX PT has the same detector array arrangement as the standard MatriXX(Evolution) but utilizes a smaller 2 mm plate spacing instead of 5mm. Because the bias voltage of the MatriXX PT and Evolution cannot be changed, PPC40 and FC65-G ionization chambers were used to assess recombination effects. The PPC40 is a parallel plate chamber with an electrode spacing of 2mm, while the FC65-G is a Farmer chamber FC65-G with an electrode spacing of 2.8 mm. Three bias voltages (500, 200, and 100 V) were used for both detectors to determine which radiation type (continuous, pulse or pulse-scanned beam) could closely estimate Pion from the ratios of charges collected. In comparison with the MatriXX(Evolution), a significant improvement in measurement of absolute dose with the MatriXX PT was observed. While dose uncertainty of the MatriXX(Evolution) can be up to 4%, it is < 1% for the MatriXX PT. Therefore the MatriXX(Evolution) should not be used for QA of PBS for conditions in which ion recombination is not negligible. Farmer chambers should be used with caution for measuring the absolute dose of PBS beams, as the uncertainty of Pion can be > 1%; chambers with an electrode spacing of 2 mm or smaller are recommended.

  3. Use of a novel two-dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance.

    PubMed

    Lin, Liyong; Kang, Minglei; Solberg, Timothy D; Mertens, Thierry; Baumer, Christian; Ainsley, Christopher G; McDonough, James E

    2015-05-01

    The need to accurately and efficiently verify both output and dose profiles creates significant challenges in quality assurance of pencil beam scanning (PBS) proton delivery. A system for PBS QA has been developed that combines a new two-dimensional ionization chamber array in a waterproof housing that is scanned in a water phantom. The MatriXX PT has the same detector array arrangement as the standard MatriXXEvolution but utilizes a smaller 2 mm plate spacing instead of 5 mm. Because the bias voltage of the MatriXX PT and Evolution cannot be changed, PPC40 and FC65-G ionization chambers were used to assess recombination effects. The PPC40 is a parallel plate chamber with an electrode spacing of 2 mm, while the FC65-G is a Farmer chamber FC65-G with an electrode spacing of 2.8 mm. Three bias voltages (500, 200, and 100 V) were used for both detectors to determine which radiation type (continuous, pulse or pulse-scanned beam) could closely estimate Pion from the ratios of charges collected. In comparison with the MatriXXEvolution, a significant improvement in measurement of absolute dose with the MatriXX PT was observed. While dose uncertainty of the MatriXXEvolution can be up to 4%, it is <1% for the MatriXX PT. Therefore the MatriXXEvolution should not be used for QA of PBS for conditions in which ion recombination is not negligible. Farmer chambers should be used with caution for measuring the absolute dose of PBS beams, as the uncertainty of Pion can be <1%; chambers with an electrode spacing of 2 mm or smaller are recommended. PACS number: 87.53.Qc.

  4. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  5. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers.

    PubMed

    Lye, J E; Harty, P D; Butler, D J; Crosbie, J C; Livingstone, J; Poole, C M; Ramanathan, G; Wright, T; Stevenson, A W

    2016-06-07

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  6. Theoretical study of energy deposition in ionization chambers for tritium measurements

    SciTech Connect

    Chen, Zhilin; Peng, Shuming; Meng, Dan; He, Yuehong; Wang, Heyi

    2013-10-15

    Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

  7. Theoretical study of energy deposition in ionization chambers for tritium measurements

    NASA Astrophysics Data System (ADS)

    Chen, Zhilin; Peng, Shuming; Meng, Dan; He, Yuehong; Wang, Heyi

    2013-10-01

    Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

  8. SU-E-T-350: Effective Point of Measurement and Total Perturbation Correction P for Parallel-Plate Ion Chambers in High-Energy Photon Beams

    SciTech Connect

    Langner, N; Czarnecki, D; Voigts-Rhetz, P von; Zink, K

    2015-06-15

    Purpose: This paper aims to determine the effective point of measurement and the total perturbation correction p of parallel-plate chambers for clinical photon dosimetry. Methods: The effective point of measurement (EPOM) was calculated using the EGSnrc Monte Carlo code system with the EGSnrc user code egs- chamber. Depth dose curves of the ionization chambers were calculated in a water phantom for several high energy photon spectra (4, 6, 10, 15, 18 MV-X). Different normalization criterions (normalization to the maximum of the depth dose curve and normalization to the value in 10 cm depth) have been applied. The EPOM was determined by shifting the normalized depth dose curve of a small water voxel against the depth ionization curve until the disagreement (calculated by the root mean square deviation) reaches a minimum. In addition, the total perturbation correction p was calculated by the ratio of the dose to water and the product of the dose determined in the chamber and the water to air stopping power ratio. Results: The EPOM varied slightly depending on the chosen normalization criterion. For all chambers the necessary shift of the EPOM decreased linearly with increasing beam quality specifier TPR{sub 20/10}. For the Roos and NACP chamber, the results were positive suggesting that the chambers need to be shifted towards the focus. For the Markus chamber, the required shift was negative and for the Advanced Markus chamber partly negative and partly positive. The total perturbation correction p was almost independent of the depth. Only for regions below 1 cm the perturbation correction deviated significantly from unity. Conclusion: In the present study, the effective point of measurement and the total perturbation correction p was determined for four parallel-plate ionization chambers and five clinical relevant photon spectra. Applying the calculated EPOM, the residual perturbation correction p was mostly depth independent.

  9. Dosimetric characterization of a large area pixel-segmented ionization chamber.

    PubMed

    Amerio, S; Boriano, A; Bourhaleb, F; Cirio, R; Donetti, M; Fidanzio, A; Garelli, E; Giordanengo, S; Madon, E; Marchetto, F; Nastasi, U; Peroni, C; Piermattei, A; Sanz Freire, C J; Sardo, A; Trevisiol, E

    2004-02-01

    A pixel-segmented ionization chamber has been designed and built by Torino University and INFN. The detector features a 24 x 24 cm2 active area divided in 1024 independent cylindrical ionization chambers and can be read out in 500 micros without introducing dead time; the digital charge quantum can be adjusted between 100 fC and 800 fC. The sensitive volume of each single ionization chamber is 0.07 cm3. The purpose of the detector is to ease the two-dimensional (2D) verifications of fields with complex shapes and large gradients. The detector was characterized in a PMMA phantom using 60Co and 6 MV x-ray photon beams. It has shown good signal linearity with respect to dose and dose rate to water. The average sensitivity of a single ionization chamber was 2.1 nC/Gy, constant within 0.5% over one month of daily measurements. Charge collection efficiency was 0.985 at the operating polarization voltage of 400 V and 3.5 Gy/min dose rate. Tissue maximum ratio and output factor have been compared with a Farmer ionization chamber and were found in good agreement. The dose profiles have been compared with the ones obtained with an ionization chamber in water phantom for the field sizes supplied by a 3D-Line dynamic multileaf collimator. These results show that this detector can be used for 2D dosimetry of x-ray photon beams, supplying a good spatial resolution and sensibly reducing the time spent in dosimetric verification of complex radiation fields.

  10. Nuclear signal simulation applied to gas ionizing chambers

    SciTech Connect

    Coulon, Romain; Dumazert, Jonathan

    2015-07-01

    Particle transport codes used in detector simulation allow the calculation of the energy deposited by charged particles produced following an interaction. The pulses temporal shaping is more and more used in nuclear measurement into pulse shape analysis techniques. A model is proposed in this paper to simulate the pulse temporal shaping and the associated noise level thanks to the output track file PTRAC provides by Monte-Carlo particle transport codes. The model has been dedicated to ion chambers and more especially for High Pressure Xenon chambers HPXe where the pulse shape analysis can resolve some issues regarding with this technology as the ballistic deficit phenomenon. The model is fully described and an example is presented as a validation of such full detector simulation. (authors)

  11. An improved leakage current compensation technique for a 4πγ ionization chamber system

    NASA Astrophysics Data System (ADS)

    Hino, Y.; Kawada, Y.; Nazaroh

    1996-02-01

    A current integration method using a small capacitor is most commonly employed for precise measurements of small currents from 4πγ ionization chambers for the secondary standardization of radionuclides. An improved technique has been developed for eliminating the possible effect due to the electrical leakage and/or current loss across the feedback capacitor used in the integration of the ionization current. This method is based upon charge integration from a fixed negative level of potential to nearly the same level of positive potential via the zero point. The validity of this method is demonstrated for some typical applications of 4πγ ionization chamber systems. This technique can contribute to the improvement of accuracy and to the extension of the intensity range of radioactive source in 4πγ ionization measurement.

  12. Determination of (137)Cs half-life with an ionization chamber.

    PubMed

    Juget, Frédéric; Nedjadi, Youcef; Buchillier, Thierry; Bochud, François; Bailat, Claude

    2016-12-01

    The half-life of (137)Cs was measured with an ionization chamber by following the decay of 5 sources over a 30 years period between 1983 and 2013. The ratio between the ionization chamber current for the cesium sources and (226)Ra source was used for the half-life calculation. The value found for the (137)Cs half-life is 10,955.2±10.7 days, where the uncertainty evaluation combines type A and B for one standard deviation.

  13. Update of NIST half-life results corrected for ionization chamber source-holder instability.

    PubMed

    Unterweger, M P; Fitzgerald, R

    2014-05-01

    As reported at the ICRM 2011, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) was not stable. This has affected a large number of half-life measurement results previously reported and used in compilations of nuclear data. Corrections have been made on all of the half-life data based on the assumption that the changes to the ionization chamber response were gradual. The corrections are energy dependent and therefore radionuclide specific. This presentation will review our results and present the recommended changes in half-life values and/or uncertainties.

  14. Construction of a fast ionization chamber for high-rate particle identification

    NASA Astrophysics Data System (ADS)

    Chae, K. Y.; Ahn, S.; Bardayan, D. W.; Chipps, K. A.; Manning, B.; Pain, S. D.; Peters, W. A.; Schmitt, K. T.; Smith, M. S.; Strauss, S. Y.

    2014-07-01

    A new gas-filled ionization chamber for high count rate particle identification has been constructed and commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL). To enhance the response time of the ionization chamber, a design utilizing a tilted entrance window and tilted electrodes was adopted, which is modified from an original design by Kimura et al. [1]. A maximum counting rate of 700 , 000 particles per second has been achieved. The detector has been used for several radioactive beam measurements performed at the HRIBF.

  15. Design of ionization chambers for use in teaching x-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Ross, Joseph

    Ionization chambers are one of the most commonly used radiation detectors in radiation dosimetry. In this project, nine ionization chambers were constructed for use in teaching radiation dosimetry to students of health physics, medical physics, nuclear engineering, and related disciplines. The components of these detectors such as detector wall composition, type of electrode, type of leakage current guard ring, fill gas pressure, and interior conducting material differ in a systematic way to show that various parameters of ionization chamber design can affect the response of the detectors. Each of these variables was investigated using an 80 keV x-ray machine to determine detector response in terms of absorbed dose, HVL, polarity, and operating voltage. Of the components studied, wall thickness and composition was found to be the most sensitive variable. The pressure inside the chamber did have a significant effect on the amount of charge collected and the absorbed dose. The leakage current guard ring was not a critical component for this ionization chamber design.

  16. Pulse mode readout techniques for use with non-gridded industrial ionization chambers

    SciTech Connect

    Popov, Vladimir E.; Degtiarenko, Pavel V.

    2011-10-01

    Highly sensitive readout technique for precision long-term radiation measurements has been developed and tested in the Radiation Control Department at Jefferson Lab. The new electronics design is used to retrieve ionization data in a pulse mode. The dedicated data acquisition system works with M=Audio Audiophile 192 High-Definition 24-bit/192 kHz audio cards, taking data in continuous waveform recording mode. The on-line data processing algorithms extract signals of the ionization events from the data flow and measure the ionization value for each event. Two different ion chambers are evaluated. The first is a Reuter-Stokes Argon-filled (at 25 atm) High Pressure Ionization Chamber (HPIC), commonly used as a detector part in many GE Reuter-Stokes instruments of the RSS series. The second is a VacuTec Model 70181, 5 atm Xenon-filled ionization chamber. Results for both chambers indicate that the techniques allow using industrial ICs for high sensitivity and precision long-term radiation measurements, while at the same time providing information about spectral characteristics of the radiation fields.

  17. A magnetically levitated electrode ionization chamber of the noncontact measurement type

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Toshiro; Yoshimura, Atsushi

    2002-04-01

    A new type of ionization chamber with levitated electrode has been developed. In this ionization chamber, an ion-collection electrode levitates in the air without getting any physical support from the insulator. The electrode is charged by an electrostatic charger without physical contact. The charge of the electrode is read out at a Faraday cage periodically at a given time interval without physical contact. Because its electrode levitates, the ionization chamber produces no background current caused by leaks or piezo current. In addition, as the charging of its electrode and the read-out of its charge are carried out without physical contact, no irregular charge or contact potential difference due to the chattering between electrode and contact point occurs. Through experiments, it was found that this ionization chamber was able to measure the γ-ray dose such as the environmental radiation with a high degree of sensitivity. The minimum detectable value of ionization current when accumulated for 1 h is about 1.3×10 -17 A.

  18. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    NASA Astrophysics Data System (ADS)

    Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Luparia, A.; Marchette, F.; Peroni, C.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-01-01

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape.

  19. Two-dimensional and quasi-three-dimensional dosimetry of hadron and photon beams with the Magic Cube and the Pixel Ionization Chamber.

    PubMed

    Cirio, R; Garelli, E; Schulte, R; Amerio, S; Boriano, A; Bourhaleb, F; Coutrakon, G; Donetti, M; Giordanengo, S; Koss, P; Madon, E; Marchetto, F; Nastasi, U; Peroni, C; Santuari, D; Sardo, A; Scielzo, G; Stasi, M; Trevisiol, E

    2004-08-21

    Two detectors for fast two-dimensional (2D) and quasi-three-dimensional (quasi-3D) verification of the dose delivered by radiotherapy beams have been developed at University and Istituto Nazionale di Fisica Nucleare (INFN) of Torino. The Magic Cube is a stack of strip-segmented ionization chambers interleaved with water-equivalent slabs. The parallel plate ionization chambers have a sensitive area of 24 x 24 cm2, and consist of 0.375 cm wide and 24 cm long strips. There are a total of 64 strips per chamber. The Magic Cube has been tested with the clinical proton beam at Loma Linda University Medical Centre (LLUMC), and was shown to be capable of fast and precise quasi-3D dose verification. The Pixel Ionization Chamber (PXC) is a detector with pixel anode segmentation. It is a 32 x 32 matrix of 1024 cylindrical ionization cells arranged in a square 24 x 24 cm2 area. Each cell has 0.4 cm diameter and 0.55 cm height, at a pitch of 0.75 cm separates the centre of adjacent cells. The sensitive volume of each single ionization cell is 0.07 cm3. The detectors are read out using custom designed front-end microelectronics and a personal computer-based data acquisition system. The PXC has been used to verify dynamic intensity-modulated radiotherapy for head-and-neck and breast cancers.

  20. Two-dimensional and quasi-three-dimensional dosimetry of hadron and photon beams with the Magic Cube and the Pixel Ionization Chamber

    NASA Astrophysics Data System (ADS)

    Cirio, R.; Garelli, E.; Schulte, R.; Amerio, S.; Boriano, A.; Bourhaleb, F.; Coutrakon, G.; Donetti, M.; Giordanengo, S.; Koss, P.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Santuari, D.; Sardo, A.; Scielzo, G.; Stasi, M.; Trevisiol, E.

    2004-08-01

    Two detectors for fast two-dimensional (2D) and quasi-three-dimensional (quasi-3D) verification of the dose delivered by radiotherapy beams have been developed at University and Istituto Nazionale di Fisica Nucleare (INFN) of Torino. The Magic Cube is a stack of strip-segmented ionization chambers interleaved with water-equivalent slabs. The parallel plate ionization chambers have a sensitive area of 24 × 24 cm2, and consist of 0.375 cm wide and 24 cm long strips. There are a total of 64 strips per chamber. The Magic Cube has been tested with the clinical proton beam at Loma Linda University Medical Centre (LLUMC), and was shown to be capable of fast and precise quasi-3D dose verification. The Pixel Ionization Chamber (PXC) is a detector with pixel anode segmentation. It is a 32 × 32 matrix of 1024 cylindrical ionization cells arranged in a square 24 × 24 cm2 area. Each cell has 0.4 cm diameter and 0.55 cm height, at a pitch of 0.75 cm separates the centre of adjacent cells. The sensitive volume of each single ionization cell is 0.07 cm3. The detectors are read out using custom designed front-end microelectronics and a personal computer-based data acquisition system. The PXC has been used to verify dynamic intensity-modulated radiotherapy for head-and-neck and breast cancers.

  1. Determination of relative ion chamber calibration coefficients from depth-ionization measurements in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.

    2014-10-01

    A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.

  2. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams

    SciTech Connect

    Zink, K.; Wulff, J.

    2011-02-15

    Purpose: In recent years, several Monte Carlo studies have been published concerning the perturbation corrections of a parallel-plate chamber in clinical electron beams. In these studies, a strong depth dependence of the relevant correction factors (p{sub wall} and p{sub cav}) for depth beyond the reference depth is recognized and it has been shown that the variation with depth is sensitive to the choice of the chamber's effective point of measurement. Recommendations concerning the positioning of parallel-plate ionization chambers in clinical electron beams are not the same for all current dosimetry protocols. The IAEA TRS-398 as well as the IPEM protocol and the German protocol DIN 6800-2 interpret the depth of measurement within the phantom as the water equivalent depth, i.e., the nonwater equivalence of the entrance window has to be accounted for by shifting the chamber by an amount {Delta}z. This positioning should ensure that the primary electrons traveling from the surface of the water phantom through the entrance window to the chamber's reference point sustain the same energy loss as the primary electrons in the undisturbed phantom. The objective of the present study is the determination of the shift {Delta}z for a NACP-02 chamber and the calculation of the resulting wall perturbation correction as a function of depth. Moreover, the contributions of the different chamber walls to the wall perturbation correction are identified. Methods: The dose and fluence within the NACP-02 chamber and a wall-less air cavity is calculated using the Monte Carlo code EGSnrc in a water phantom at different depths for different clinical electron beams. In order to determine the necessary shift to account for the nonwater equivalence of the entrance window, the chamber is shifted in steps {Delta}z around the depth of measurement. The optimal shift {Delta}z is determined from a comparison of the spectral fluence within the chamber and the bare cavity. The wall perturbation

  3. Absorbed dose dependence of the correction factors for ionization chamber cable irradiation effects.

    PubMed

    Campos, L L; Caldas, L V

    1991-03-01

    A simple method was developed, for possible use by hospital physicists, to evaluate the irradiation effects on cables and connectors during large-radiation-field dosimetry with ionization chambers and to determine correction factors for the used system or geometry. This method was based on the absorbed dose dependence of the correction factor.

  4. a Solution for Dosimetry and Quality Assurance in Imrt and Hadrontherapy:. the Pixel Ionization Chamber

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Coda, S.; Nastasi, U.; Belletti, S.; Ghedi, B.; Boriano, A.; Cirio, R.; Luparia, A.; Marchetto, F.; Peroni, C.; Sanz Freire, C. J.; Donetti, M.; Madon, E.; Trevisiol, E.; Urgesi, A.

    2002-11-01

    The new radiotherapy techniques require new detectors to monitor and measure the clinical field. The Intensity Modulated Radiation Therapy (IMRT) techniques like step and shoot, sliding window, dynamic wedge or scanning beam add the time variable to the treatment field. In this case the water phantom with a single ionization chamber moving inside the field needs very long measurement time. Linear arrays of ionization chambers or diodes measure the field only along a line. 2D detectors like radiographic or gafchromic film are not suitable to be used as on line detectors. We have developed, built and tested an ionization chamber segmented in pixels that measure the dose in a plane at several points. Every channel has a dedicated electronic chain that digitizes the collected charge and data from all the channels are sent to the computer that performs the data acquisition. One read out cycle is very fast allowing to measure in real time the fluency and the shape of the field. The chamber can be used in two different ways, as monitor chamber and as relative dosemeter. A description of the detector, the electronics, and test results with both photon and hadron beams will be reported.

  5. Stability of A-150 plastic ionization chamber response over a ~30 year period

    SciTech Connect

    Kroc, Thomas K.; Lennox, Arlene J.; /Fermilab

    2007-08-01

    At the NIU Institute for Neutron Therapy at Fermilab, the clinical tissue-equivalent ionization chamber response is measured every treatment day using a cesium source that was configured to match readings obtained at the National Bureau of Standards. Daily measurements are performed in air using the air-to-tissue dose conversion factors given in AAPM Report no. 7. The measured exposure calibration factors have been tabulated and graphed as a function of time from 1978 to present. For A-150 plastic ionization chambers, these factors exhibit a sinusoidal variation with a period of approximately one year and amplitude of {+-} 1%. This variation, attributable to the hygroscopic nature of A-150 plastic, is correlated with the relative humidity of the facility, and is greater than the humidity corrections for gas described in the literature. Our data suggest that chamber calibration should be performed at least weekly to accommodate these variations.

  6. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  7. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    NASA Astrophysics Data System (ADS)

    Poirier, Aurélie; Douysset, Guilhem

    2006-10-01

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a 192Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A ±0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations.

  8. SU-E-T-623: Polarity Effects for Small Volume Ionization Chambers in Cobalt-60 Beams

    SciTech Connect

    Xu, Y; Bhatnagar, J; Huq, M Saiful

    2015-06-15

    Purpose: To investigate the polarity effects for small volume ionization chambers in {sup 60}Co gamma-ray beams using the Leksell Gamma Knife Perfexion. Methods: Measurements were made for 7 small volume ionization chambers (a PTW 31016, an Exradin A14, 2 Capintec PR0-5P, and 3 Exradin A16) using a PTW UNIDOSwebline Universal Dosemeter and an ELEKTA solid water phantom with proper inserts. For each ion chamber, the temperature/pressure corrected electric charge readings were obtained for 16 voltage values (±50V, ±100V, ±200V, ±300V, ±400V, ±500V, ±600V, ±700V). For each voltage, a five-minute leakage charge reading and a series of 2-minute readings were continuously taken during irradiation until 5 stable signals (less than 0.05% variation) were obtained. The average of the 5 reading was then used for the calculation of the polarity corrections at the voltage and for generating the saturation curves. Results: The polarity effects are more pronounced at high or low voltages than at the medium voltages for all chambers studied. The voltage dependence of the 3 Exradin A16 chambers is similar in shape. The polarity corrections for the Exradin A16 chambers changes rapidly from about 1 at 500V to about 0.98 at 700V. The polarity corrections for the 7 ion chambers at 300V are in the range from 0.9925 (for the PTW31016) to 1.0035 (for an Exradin A16). Conclusion: The polarity corrections for certain micro-chambers are large even at normal operating voltage.

  9. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading

    NASA Astrophysics Data System (ADS)

    Smit, K.; van Asselen, B.; Kok, J. G. M.; Aalbers, A. H. L.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953.

  10. Particle and energy dependence of the statistical fluctuations of an ionization chamber current

    NASA Astrophysics Data System (ADS)

    Purghel, Lidia; Vaˆlcov, Nicolae

    For the purpose of getting more detailed information concerning the processes leading to statistical fluctuations of an ionization chamber current, measurements with various radioactive sources have been done. By using the experimental arrangement described elsewhere [A. Necula et al. Nucl. Instr. and Meth. A 332 (1993) 501] the mean value and the standard deviation of the ionization current for 3H (water vapours), 60Co (sealed source), 85Kr (gas), 204Tl (8 mm diameter disk) and 239Pu (10 mm diameter disk), beta, gamma and alpha sources have been measured. A statistical model explaining the experimental data is proposed.

  11. PTRAC File Utilization for Calculation of Free-Air Ionization Chamber Correction Factors by MCNPX

    NASA Astrophysics Data System (ADS)

    Šolc, Jaroslav; Sochor, Vladimír

    2014-06-01

    A free-air ionization chamber is used as a standard of photon air-kerma. Several correction factors are applied to the air-kerma value. Correction factors for electron loss (kloss) and for additional ionization current caused by photon scatter (ksc), photon fluorescence (kfl), photon transmission through diaphragm edge (kdtr), and photon scatter from the surface of the diaphragm aperture (kdsc) were determined by the MCNPX code utilizing information stored in Particle Track (PTRAC) output files. Individual steps of the procedure are described and the calculated values of the correction factors are presented. The values are in agreement with the correction factors published in a literature for similar free-air chambers.

  12. Neutron and gamma detector using an ionization chamber with an integrated body and moderator

    DOEpatents

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul

    2006-07-18

    A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.

  13. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    SciTech Connect

    Müller, O. Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  14. Hard disk drive based microsecond X-ray chopper for characterization of ionization chambers and photodiodes.

    PubMed

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  15. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    NASA Astrophysics Data System (ADS)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  16. A pixel ionization chamber used as beam monitor at the Institut Curie—Centre de Protontherapie de Orsay (CPO)

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Garella, M. A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Giordanengo, S.; Givehchi, N.; Marchetto, F.; Martin, F.; Meyroneinc, S.; Peroni, C.; Pittà, G.

    2006-09-01

    The Dipartimento di Fisica Sperimentale and the Istituto Nazionale di Fisica Nucleare (INFN), Torino, in collaboration with the Institut Curie—Centre de Protontherapie de Orsay (CPO), have developed and built a pixel parallel plate ionization chamber to be used as monitor for the proton therapy beam line at the Institut Curie—CPO (Orsay, France). The sensitive area of the detector is (160×160) mm 2, with the anode segmented in 1024 square pixels arranged in a 32×32 matrix; the area of each pixel is (5×5) mm 2. The detector has been placed on the beam line just upstream of the last collimator to monitor the beam shape and to measure the stability and reproducibility of the delivery system. In this paper, we present a detailed description of the detector and the results of a set of preliminary tests.

  17. Some specific features of ionization chamber calibrations in linac x-ray beams at the LNE-LNHB.

    PubMed

    Delaunay, F; Ostrowsky, A

    2007-05-07

    The purpose of this note is to give some details about the modus operandi employed today to calibrate ionization chambers in radiotherapy linac photon beams at the Laboratoire National Henri Becquerel (LNE-LNHB). Some specific features are described: first the equipment (including the external monitoring ionization chambers), second the calculations of the profile or radial non-uniformity correction factors (up to 0.5% effect for commonly used ionization chambers) and finally the calculations to get the calibration coefficients for customer beam qualities.

  18. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500

    SciTech Connect

    Stelljes, T. S. Looe, H. K.; Chofor, N.; Poppe, B.; Harmeyer, A.; Reuter, J.; Harder, D.

    2015-04-15

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm{sup 2} measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor k{sub NR} for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1

  19. SU-E-T-525: Ionization Chamber Perturbation in Flattening Filter Free Beams

    SciTech Connect

    Czarnecki, D; Voigts-Rhetz, P von; Zink, K

    2015-06-15

    Purpose: Changing the characteristic of a photon beam by mechanically removing the flattening filter may impact the dose response of ionization chambers. Thus, perturbation factors of cylindrical ionization chambers in conventional and flattening filter free photon beams were calculated by Monte Carlo simulations. Methods: The EGSnrc/BEAMnrc code system was used for all Monte Carlo calculations. BEAMnrc models of nine different linear accelerators with and without flattening filter were used to create realistic photon sources. Monte Carlo based calculations to determine the fluence perturbations due to the presens of the chambers components, the different material of the sensitive volume (air instead of water) as well as the volume effect were performed by the user code egs-chamber. Results: Stem, central electrode, wall, density and volume perturbation factors for linear accelerators with and without flattening filter were calculated as a function of the beam quality specifier TPR{sub 20/10}. A bias between the perturbation factors as a function of TPR{sub 20/10} for flattening filter free beams and conventional linear accelerators could not be observed for the perturbations caused by the components of the ionization chamber and the sensitive volume. Conclusion: The results indicate that the well-known small bias between the beam quality correction factor as a function of TPR20/10 for the flattening filter free and conventional linear accelerators is not caused by the geometry of the detector but rather by the material of the sensitive volume. This suggest that the bias for flattening filter free photon fields is only caused by the different material of the sensitive volume (air instead of water)

  20. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    NASA Astrophysics Data System (ADS)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  1. A numerical model of initial recombination for high-LET irradiation: Application to liquid-filled ionization chambers

    NASA Astrophysics Data System (ADS)

    Aguiar, P.; Pardo-Montero, J.

    2016-02-01

    In this paper we present a numerical model of initial recombination in media irradiated with high linear energy transfer (LET) ions, which relies on an amorphous track model of ionization of high LET particles, and diffusion, drift and recombination of ionized charge carriers. The model has fundamental applications for the study of recombination in non-polar liquids, as well as practical ones, like in modelling hadrontherapy dosimetry with ionization chambers. We have used it to study the response of liquid-filled ionization chambers to hadrontherapy beams: dependence of initial recombination on ion species, energy and applied external electric field.

  2. Calibration of the KRISS reference ionization chamber for certification of ²²²Rn gaseous sources.

    PubMed

    Lee, J M; Lee, K B; Lee, S H; Oh, P J; Park, T S; Kim, B C; Lee, M S

    2013-11-01

    A primary measurement system for gaseous (222)Rn based on the defined solid angle counting method has recently been constructed at KRISS and the reference ionization chamber used to measure the activities of gamma-emitting single radionuclides was adopted as a secondary standard for gaseous (222)Rn. A 20 mL flame-sealed glass ampoule source from the primary measurement system was used to calibrate the ionization chamber for (222)Rn. The (222)Rn efficiency of the ionization chamber was compared with that calculated by using a photon energy-dependent efficiency curve and that measured by using a standard (226)Ra solution. From the comparisons we draw the conclusion that the reference ionization chamber for gamma-emitting radionuclides can be a suitable secondary measurement system for gaseous (222)Rn sources.

  3. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    NASA Astrophysics Data System (ADS)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  4. Use of relativistic rise in ionization chambers for measurement of high energy heavy nuclei

    NASA Technical Reports Server (NTRS)

    Barthelmy, S. D.; Israel, M. H.; Klarmann, J.; Vogel, J. S.

    1983-01-01

    A balloon-borne instrument has been constructed to measure the energy spectra of cosmic-ray heavy nuclei in the range of about 0.3 to about 100 GeV/amu. It makes use of the relativistic rise portion of the Bethe-Bloch curve in ionization chambers for energy determination in the 10- to 100-GeV/amu interval. The instrument consists of six layers of dual-gap ionization chambers for energy determination above 10 GeV/amu. Charge is determined with a NE114 scintillator and a Pilot 425 plastic Cerenkov counter. A CO2 gas Cerenkov detector (1 atm; threshold of 30 GeV/amu) calibrates the ion chambers in the relativistic rise region. The main emphasis of the instrument is the determination of the change of the ratio of Iron (26) to the Iron secondaries (21-25) in the energy range of 10 to 100 GeV/amu. Preliminary data from a balloon flight in the fall of 1982 from Palestine, TX is presented.

  5. Simulation of the Mg(Ar) ionization chamber currents by different Monte Carlo codes in benchmark gamma fields

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chun; Liu, Yuan-Hao; Nievaart, Sander; Chen, Yen-Fu; Wu, Shu-Wei; Chou, Wen-Tsae; Jiang, Shiang-Huei

    2011-10-01

    High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary 60Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the 60Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.

  6. Argon/propane ionization-chamber dosimetry for mixed x-ray/neutron fields.

    PubMed

    Schulz, R J

    1978-01-01

    The photoneutrons produced by high-energy x-ray machines can diffuse through the mazes usually employed at the treatment-room entrance and readily penetrate the lead-lined doors used for x-ray shielding. The measurement of these neutrons in the presence of x-rays and the determination of dose equivalent poses a problem for which there is currently no standard method of solution. In order to separate x-ray dose from neutron dose, the author employed an ionization chamber alternately filled with argon or propane. The response characteristics of this chamber to x-ray and neutrons are described. Quality factors were determined from a calculated neutron spectrum. As a result of these measurements, a 10-in. polyethylene door was added to the entranceway of a 25-MV linear accelerator.

  7. Feasibility of calibrating elongated brachytherapy sources using a well-type ionization chamber

    SciTech Connect

    Meigooni, Ali S.; Awan, Shahid B.; Dou, Kai

    2006-11-15

    Recently, elongated brachytherapy sources (active length >1 cm) have become commercially available for interstitial prostate implants. These sources were introduced to improve the quality of brachytherapy procedures by eliminating the migration and seed bunching associated with loose seed-type implants. However, the inability to calibrate elongated brachytherapy sources with the Wide-Angle Free-Air Chamber (WAFAC) used by the National Institute of Standards and Technology (NIST) hinders the experimental determination of dosimetric parameters of these source types. In order to resolve this shortcoming, an interim solution has been introduced for calibration of elongated brachytherapy sources using a commercially available well-type ionization chamber. The feasibility of this procedure was examined by calibrating RadioCoil{sup Tm} {sup 103}Pd sources with active lengths ranging from 1 to 7 cm.

  8. An ionization chamber and a Si-detector for lead-210 chronology

    NASA Astrophysics Data System (ADS)

    Farid, M.; El-Daoushy, A. F.; El-Daoushy, M. F. A. F.

    1981-09-01

    Radon emanation and isotopic dilution techniques were used for the determination of 226Ra and "total" 210Pb in sediment samples. The "unsupported" 210Pb were then used to construct lake-sediment chronologies. Polonium was extracted at 550-600°C, transferred to chloride, then plated by self-deposition on silver disks. Memory effects due to adsorption of polonium on glass were carefully studied. Si-detectors were used for α-activity measurements. Background studies indicated instabilities in a Si-detector when left without bias for longer periods. The radium was extracted with the help of a barium carrier, which not only made the extraction quantitative but also eliminated the adsorption of radium on the glasses used. The 222Rn was measured in an ionization chamber. The gas counter with its modified filling system allowed both low level measurements of sediment samples and counter calibration with comparably active 226Ra standards. The increasing background of the ionization chamber was explained by the adsorption of 222Rn on the surfaces of the counter. The background was reduced by the removal of the adsorbed atoms. Normalization for discrimination shifts, due to electronegative impurities, is required in case the counting gas is impure.

  9. High-rate axial-field ionization chamber for particle identification of Radioactive beams

    NASA Astrophysics Data System (ADS)

    Desouza, Romualdo; Vadas, Justin; Singh, Varinderjit; Visser, G.; Alexander, A.; Hudan, S.; Huston, J.; Wiggins, B.; Chbihi, A.; Famiano, M.; Bischak, M.

    2017-01-01

    The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. The detector is optimized for use with low-energy radioactive beams (<) 5 MeV/A. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a rise-time of 60 to 70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate while providing a time resolution of 6 to 8 ns. Tests with an α source establish the detector energy resolution as 8 % for an energy deposit of 3.5 MeV. Beam tests indicate that the detector is an effective tool for the characterization of low-energy radioactive beams at beam intensities up to 3 x 105 ions/s. Supported by the U.S. DOE under Award # DE-FG02-88ER-40404 and the NSF under Grant No. 1342962.

  10. High-rate axial-field ionization chamber for particle identification of radioactive beams

    NASA Astrophysics Data System (ADS)

    Vadas, J.; Singh, Varinderjit; Visser, G.; Alexander, A.; Hudan, S.; Huston, J.; Wiggins, B. B.; Chbihi, A.; Famiano, M.; Bischak, M. M.; deSouza, R. T.

    2016-11-01

    The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. Optimized for use with low-energy radioactive beams (< 5 MeV / A) the detector presents only three 0.5 μm/cm2 foils to the beam in addition to the detector gas. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a risetime of 60-70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate and providing a time resolution of 6-8 ns. Tests with an α source establish the detector energy resolution as ∼ 8 % for an energy deposit of ∼3.5 MeV. The energy resolution with beams of 2.5 and 4.0 MeV/A 39K ions and the dependence of the energy resolution on beam intensity is measured. At an instantaneous rate of 3×105 ions/s the energy resolution has degraded to 14% with a pileup of 12%. The good energy resolution of this detector at rates up to 3×105 ions/s makes it an effective tool in the characterization of low-energy radioactive beams.

  11. Assessment of ionization chamber correction factors in photon beams using a time saving strategy with PENELOPE code.

    PubMed

    Reis, C Q M; Nicolucci, P

    2016-02-01

    The purpose of this study was to investigate Monte Carlo-based perturbation and beam quality correction factors for ionization chambers in photon beams using a saving time strategy with PENELOPE code. Simulations for calculating absorbed doses to water using full spectra of photon beams impinging the whole water phantom and those using a phase-space file previously stored around the point of interest were performed and compared. The widely used NE2571 ionization chamber was modeled with PENELOPE using data from the literature in order to calculate absorbed doses to the air cavity of the chamber. Absorbed doses to water at reference depth were also calculated for providing the perturbation and beam quality correction factors for that chamber in high energy photon beams. Results obtained in this study show that simulations with phase-space files appropriately stored can be up to ten times shorter than using a full spectrum of photon beams in the input-file. Values of kQ and its components for the NE2571 ionization chamber showed good agreement with published values in the literature and are provided with typical statistical uncertainties of 0.2%. Comparisons to kQ values published in current dosimetry protocols such as the AAPM TG-51 and IAEA TRS-398 showed maximum percentage differences of 0.1% and 0.6% respectively. The proposed strategy presented a significant efficiency gain and can be applied for a variety of ionization chambers and clinical photon beams.

  12. Matrix:. AN Innovative Pixel Ionization Chamber for On-Line Beam Monitoring in Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Braccini, S.; Pitta', G.; Donetti, M.; Cirio, R.; La Rosa, A.; Garella, M. A.; Giordanengo, S.; Marchetto, F.; Peroni, C.

    2006-04-01

    The control of intensity, position and shape of clinical beams are key issues in the treatment of tumours using hadron beams, especially in the case of active dose distribution systems. For this purpose an innovative pixel ionization chamber, named MATRIX, has been designed, constructed and tested. The chamber is conceived to be located very near the patient to precisely monitor the beam parameters used to verify the treatment planning specifications. MATRIX operates in air and is characterized by a 21 × 21 cm2 sensitive area subdivided in 1024 pixels of 6.5 × 6.5 mm2. To minimize the amount of material crossed by the beam, the anode is made of a 50 μm kapton foil, with a deposit of 17 μm copper on each side. A very sensitive electronics is used for the readout, based on a dedicated chip. In this paper the construction of the chamber and the very positive results of the first beam tests are described.

  13. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won

    2016-02-01

    A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1  ×  1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.

  14. Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field

    NASA Astrophysics Data System (ADS)

    Smit, K.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2014-04-01

    At the UMC Utrecht a prototype MR-linac has been installed. The system consists of an 8 MV Elekta linear accelerator and a 1.5 T Philips MRI system. This paper investigates the performance of the IC PROFILER™, a multi-axis ionization chamber array, in a 1.5 T magnetic field. The influence of the magnetic field on the IC PROFILER™ reproducibility, dose response linearity, pulse rate frequency dependence, power to electronics, panel orientation and ionization chamber shape were investigated. The linearity, reproducibility, pulse rate frequency dependence, panel orientation and ionization chamber shape are unaffected by the magnetic field. When the measurements results are normalized to the centre reference chamber, the measurements can commence unaltered. Orientation of the ionization chambers in the magnetic field is of importance, therefore caution must be taken when comparing or normalizing results from several different axes. IC PROFILER™ dose profiles were compared with film dose profiles obtained simultaneously in the MR-linac. Deviation between the film and the IC PROFILER™ data was caused by the noise in the film, indicating correct performance of the IC PROFILER™ in the transverse 1.5 T magnetic field.

  15. [Theoretical investigation of the saturation correction for ionization chambers irradiated with pulsed beams of arbitrary pulse length].

    PubMed

    Karsch, Leonhard; Pawelke, Jörg

    2014-09-01

    In ionization chambers, not all released charge is collected due to the recombination of charge carriers. This effect is taken into account by the saturation correction factor kS. A physical description of the correction factor has been established for pulsed radiation. However, it is only accurate when the pulse length is short compared with the collection time of the ionization chamber. In this paper we develop a description of the saturation correction for radiation pulses of arbitrary length. For this, a system of partial differential equations is solved iteratively. The numerical solutions are verified experimentally for a Roos ionization chamber (PTW TM34001) exposed to a pulsed electron beam. The results of this iterative procedure describe the experimental data well. The calculations are also possible for beam structures which are experimentally hard to get and thereby contribute to a better understanding and correct description of the saturation correction at arbitrary pulse length. Among other things the pulse length dependent distributions of the charge carriers in the ionization chamber is calculated, inclusive of the transition to the conditions prevailing in the case of continuous irradiation. Furthermore is shown that the formula for kS established by Hochhäuser and Balk is applicable even at arbitrary pulse length, if pulse duration dependent effective values are used for the parameters a and p. These effective values have been determined for the Roos chamber at pulse lengths up to 300 μs.

  16. Monte Carlo Simulation in the Optimization of a Free-Air Ionization Chamber for Dosimetric Control in Medical Digital Radiography

    SciTech Connect

    Leyva, A.; Pinera, I.; Abreu, Y.; Cruz, C. M.; Montano, L. M.

    2008-08-11

    During the earliest tests of a free-air ionization chamber a poor response to the X-rays emitted by several sources was observed. Then, the Monte Carlo simulation of X-rays transport in matter was employed in order to evaluate chamber behavior as X-rays detector. The photons energy deposition dependence with depth and its integral value in all active volume were calculated. The obtained results reveal that the designed device geometry is feasible to be optimized.

  17. Comparison of pencil-type ionization chamber calibration results and methods between dosimetry laboratories.

    PubMed

    Hourdakis, Costas J; Büermann, Ludwig; Ciraj-Bjelac, Olivera; Csete, Istvan; Delis, Harry; Gomola, Igor; Persson, Linda; Novak, Leos; Petkov, Ivailo; Toroi, Paula

    2016-01-01

    A comparison of calibration results and procedures in terms of air kerma length product, PKL, and air kerma, K, was conducted between eight dosimetry laboratories. A pencil-type ionization chamber (IC), generally used for computed tomography dose measurements, was calibrated according to three calibration methods, while its residual signal and other characteristics (sensitivity profile, active length) were assessed. The results showed that the "partial irradiation method" is the preferred method for the pencil-type IC calibration in terms of PKL and it could be applied by the calibration laboratories successfully. Most of the participating laboratories achieved high level of agreement (>99%) for both dosimetry quantities (PKL and K). Estimated relative standard uncertainties of comparison results vary among laboratories from 0.34% to 2.32% depending on the quantity, beam quality and calibration method applied. Detailed analysis of the assigned uncertainties have been presented and discussed.

  18. Absolute dose measurements by means of a small cylindrical ionization chamber for very high dose per pulse high energy electron beams

    SciTech Connect

    Karaj, E.; Righi, S.; Di Martino, F.

    2007-03-15

    Very high dose per pulse (3-13 cGy/pulse) high energy electron beams are currently produced by special linear accelerators (linac) dedicated to Intra Operative Radiation Therapy (IORT). The electron beams produced by such linacs are collimated by special Perspex applicators of various size and cylindrically shaped. The biggest problems from the dosimetric point of view are caused by the high dose-per-pulse values and the use of inclined applicators. In this work measurements of absolute dose for the inclined applicators were done by using a small cylindrical ionization chamber, type CC01 (Wellhofer), a parallel plane ionization chamber type Markus (PTW 23343) and radiochromic films type EBT. We show a method which allows calculating the quality correction factors for CC01 chamber with an uncertainty of 1% and the absolute dose value for the inclined applicators using CC01 with an uncertainty of 3.1% for electron beams of energy of 6 and 7 MeV produced by the linac dedicated to IORT Novac7.

  19. Unexpected bias in NIST 4πγ ionization chamber measurements.

    PubMed

    Unterweger, M P; Fitzgerald, R

    2012-09-01

    In January of 2010, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) has not been stable. The positioning ring that determines the height of the sample in the reentrant tube of the IC has slowly shifted during 35 years of use. This has led to a slow change in the calibration factors for the various radionuclides measured by this instrument. The changes are dependent on γ-ray energy and the time the IC was calibrated for a given radionuclide. A review of the historic data with regard to when the calibrations were done has enabled us to approximate the magnitude of the changes with time. This requires a number of assumptions, and corresponding uncertainty components, including whether the changes in height were gradual or in steps as will be shown in drawings of sample holder. For calibrations the changes in calibration factors have been most significant for low energy gamma emitters such as (133)Xe, (241)Am, (125)I and (85)Kr. The corrections to previous calibrations can be approximated and the results corrected with an increase in the overall uncertainty. At present we are recalibrating the IC based on new primary measurements of the radionuclides measured on the IC. Likewise we have been calibrating a new automated ionization-chamber system. A bigger problem is the significant number of half-life results NIST has published over the last 35 years that are based on IC measurements. The effect on half-life is largest for long-lived radionuclei, especially low-energy γ-ray emitters. This presentation will review our results and recommend changes in values and/or uncertainties. Any recommendation for withdrawal of any results will also be undertaken.

  20. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    SciTech Connect

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel; Perez-Calatayud, Jose; Simancas, Fernando; Lallena, Antonio M.; Gazdic-Santic, Maja

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and

  1. Monte Carlo aided design of an improved well-type ionization chamber for low energy brachytherapy sources

    SciTech Connect

    Bohm, Tim D.; Micka, John A.; De Werd, Larry A.

    2007-04-15

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well-type ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, an improved well-type ionization chamber for low energy, low dose rate brachytherapy sources is designed using Monte Carlo transport calculations to aid in the design process. The design improvements are the elimination of the air density induced over-response effect seen in other air-communicating chambers for low energy photon sources, and a larger signal strength (response or current) for {sup 103}Pd and {sup 125}I based seeds. A prototype well chamber based on the Monte Carlo aided design but using graphite coated acrylic walls rather than the design basis air equivalent plastic (C-552) walls was constructed and experimentally evaluated. The prototype chamber produced an 85% stronger signal when measuring a commonly used {sup 103}Pd seed and a 26% stronger signal when measuring a commonly used {sup 125}I seed when compared to another commonly used well chamber. The normalized P{sub TP} corrected chamber response is, at most, 1.3% and 2.4% over unity for air densities/pressures corresponding to an elevation of 3048 m (10 000 feet) above sea level for the commonly used {sup 103}Pd and {sup 125}I based seeds respectively. Comparing calculated and measured chamber responses for common {sup 103}Pd and {sup 125}I based brachytherapy seeds show agreement within 0.6% and 0.2%, respectively. We conclude that Monte Carlo transport calculations accurately model the response of this new well chamber and in general can be used to predict the response of well chambers. The prototype chamber built in this work responds as predicted by the Monte Carlo calculations.

  2. Scintillation properties of N2 and CF4 and performances of a scintillating ionization chamber

    NASA Astrophysics Data System (ADS)

    Lehaut, G.; Salvador, S.; Fontbonne, J.-M.; Lecolley, F.-R.; Perronnel, J.; Vandamme, Ch.

    2015-10-01

    In this work, we studied the emission yields, decay times and coincidence resolving times (CRT) of two gases, nitrogen (N2) and tetrafluoromethane (CF4), used for particle detection in the context of fission products measurement. The set-up was made of an ionization chamber and two photomultiplier tubes (PMTs) placed front-to-front on each side of the active zone of the chamber. Using the photomultiplier tubes, the number of photoelectrons (phe) converted at the photocathodes from the scintillation processes in each gas was quantified and the scintillation time spectra were recorded. A scintillation emission yield of 24 phe MeV-1 with a decay time of τd = 2.5 ns in N2, and 225 phe MeV-1 with τd = 6.2 ns for CF4, has been measured. With our set-up, the coincidence resolving time (σ values) between the two PMTs have been measured using alpha particles at 1.4 ns and 0.34 ns for N2 and CF4, respectively.

  3. Fast-neutron spectrometry using a ³He ionization chamber and digital pulse shape analysis.

    PubMed

    Chichester, D L; Johnson, J T; Seabury, E H

    2012-08-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type (3)He ionization chamber to measure the fast-neutron spectra of a deuterium-deuterium electronic neutron generator, a bare (252)Cf spontaneous fission neutron source, and of the transmitted fast neutron spectra of a (252)Cf source attenuated by water, graphite, liquid nitrogen, and magnesium. Rise-time dPSA has been employed using the common approach for analyzing n +(3)He→(1)H+(3)H ionization events and improved to account for wall-effect and pile-up events, increasing the fidelity of these measurements. Simulations have been performed of the different experimental arrangements and compared with the measurements, demonstrating general agreement between the dPSA-processed fast-neutron spectra and predictions. The fast-neutron resonance features of the attenuation cross sections of the attenuating materials are clearly visible within the resolution limits of the electronics used for the measurements, and the potential applications of high-resolution fast-neutron spectrometry for nuclear nonproliferation and safeguards measurements are discussed.

  4. Correction factors for the INER-improved free-air ionization chambers calculated with the Monte Carlo method.

    PubMed

    Lin, Uei-Tyng; Chu, Chien-Hau

    2006-05-01

    Monte Carlo method was used to simulate the correction factors for electron loss and scattered photons for two improved cylindrical free-air ionization chambers (FACs) constructed at the Institute of Nuclear Energy Research (INER, Taiwan). The method is based on weighting correction factors for mono-energetic photons with X-ray spectra. The newly obtained correction factors for the medium-energy free-air chamber were compared with the current values, which were based on a least-squares fit to experimental data published in the NBS Handbook 64 [Wyckoff, H.O., Attix, F.H., 1969. Design of free-air ionization chambers. National Bureau Standards Handbook, No. 64. US Government Printing Office, Washington, DC, pp. 1-16; Chen, W.L., Su, S.H., Su, L.L., Hwang, W.S., 1999. Improved free-air ionization chamber for the measurement of X-rays. Metrologia 36, 19-24]. The comparison results showed the agreement between the Monte Carlo method and experimental data is within 0.22%. In addition, mono-energetic correction factors for the low-energy free-air chamber were calculated. Average correction factors were then derived for measured and theoretical X-ray spectra at 30-50 kVp. Although the measured and calculated spectra differ slightly, the resulting differences in the derived correction factors are less than 0.02%.

  5. Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies.

    PubMed

    Munn, L L; Melder, R J; Jain, R K

    1994-08-01

    The parallel plate flow chamber provides a controlled environment for determinations of the shear stress at which cells in suspension can bind to endothelial cell monolayers. By decreasing the flow rate of cell-containing media over the monolayer and assessing the number of cells bound at each wall shear stress, the relationship between shear force and binding efficiency can be determined. The rate of binding should depend on the delivery of cells to the surface as well as the intrinsic cell-surface interactions; thus, only if the cell flux to the surface is known can the resulting binding curves be interpreted correctly. We present the development and validation of a mathematical model based on the sedimentation rate and velocity profile in the chamber for the delivery of cells from a flowing suspension to the chamber surface. Our results show that the flux depends on the bulk cell concentration, the distance from the entrance point, and the flow rate of the cell-containing medium. The model was then used in a normalization procedure for experiments in which T cells attach to TNF-alpha-stimulated HUVEC monolayers, showing that a threshold for adhesion occurs at a shear stress of about 3 dyn/cm2.

  6. Determinations of the correction factors for small fields in cylindrical ionization chambers based on measurement and numerical calculation

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Choi, Wonhoon; Park, Sungho; Choi, Jin Hwa; Park, Suk Won; Bak, Jino

    2015-07-01

    We investigated the volume averaging effect for air-filled cylindrical ionization chambers to determine the correction factors in a small photon field for a given chamber. We measured output factors with several cylindrical ionization chambers, and by using a mathematical method similar to deconvolution, we modeled the non-constant and inhomogeneous exposure function in the cavity of the chamber. The parameters in the exposure function and the correction factors were determined by solving a system of equations that we had developed by using the measured data and the geometry of the given chamber. The correction factors (CFs) were very similar to those obtained from Monte Carlo (MC) simulations. For example, the CFs in this study were found to be 1.116 for PTW31010 and 1.0225 for PTW31016 while the CFs obtained from MC simulations were reported as being approximately between 1.17 and 1.20 for PTW31010 and between 1.02 and 1.06 for PTW31016 in a 6-MV photon beam of 1 × 1 cm2. Furthermore, the method of deconvolution combined with the MC result for the chamber's response function showed a similar CF for PTW 30013, which was reported as 2.29 and 1.54 for a 1 × 1 cm2 and a 1.5 × 1.5 cm2 field size, respectively. The CFs from our method were similar, 2.42 and 1.54. In addition, we report CFs for PTW30013, PTW31010, PTW31016, IBA FC23-C, and IBA CC13. As a consequence, we suggest the use of our method to measure the correct output factor by using the fact that an inhomogeneous exposure causes a volume averaging effect in the cavity of air-filled cylindrical ionization chamber. The result obtained by using our method is very similar to that obtained from MC simulations. The method we developed can easily be applied in clinics.

  7. Time-resolved dosimetry using a pinpoint ionization chamber as quality assurance for IMRT and VMAT

    SciTech Connect

    Louwe, Robert J. W. Satherley, Thomas; Day, Rebecca A.; Greig, Lynne; Wendling, Markus; Monshouwer, René

    2015-04-15

    Purpose: To develop a method to verify the dose delivery in relation to the individual control points of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) using an ionization chamber. In addition to more effective problem solving during patient-specific quality assurance (QA), the aim is to eventually map out the limitations in the treatment chain and enable a targeted improvement of the treatment technique in an efficient way. Methods: Pretreatment verification was carried out for 255 treatment plans that included a broad range of treatment indications in two departments using the equipment of different vendors. In-house developed software was used to enable calculation of the dose delivery for the individual beamlets in the treatment planning system (TPS), for data acquisition, and for analysis of the data. The observed deviations were related to various delivery and measurement parameters such as gantry angle, field size, and the position of the detector with respect to the field edge to distinguish between error sources. Results: The average deviation of the integral fraction dose during pretreatment verification of the planning target volume dose was −2.1% ± 2.2% (1 SD), −1.7% ± 1.7% (1 SD), and 0.0% ± 1.3% (1 SD) for IMRT at the Radboud University Medical Center (RUMC), VMAT (RUMC), and VMAT at the Wellington Blood and Cancer Centre, respectively. Verification of the dose to organs at risk gave very similar results but was generally subject to a larger measurement uncertainty due to the position of the detector at a high dose gradient. The observed deviations could be related to limitations of the TPS beam models, attenuation of the treatment couch, as well as measurement errors. The apparent systematic error of about −2% in the average deviation of the integral fraction dose in the RUMC results could be explained by the limitations of the TPS beam model in the calculation of the beam penumbra. Conclusions: This

  8. Liquid ionization chamber initial recombination dependence on LET for electrons and photons.

    PubMed

    Johansson, Erik; Andersson, Jonas; Johansson, Lennart; Tölli, Heikki

    2013-06-21

    The possibility of indirect measurements of linear energy transfer (LET) with a liquid ionization chamber (LIC) has been investigated by studying initial recombination losses at different applied voltages. A linear fit is made to the voltage-signal curve and the intersection point of the fit and the voltage-axis is shown to correlate with LET. The LIC applied voltages were 100-700 V, which corresponds to electric field strengths between 0.3 and 2.0 MV m(-1). Several different photon and electron beams have been studied, and by using MCNPX™ the respective LET spectra have been determined. The beam qualities in this study were found to have a fluence averaged LET between 0.17 and 1.67 keV µm(-1) and a corresponding dose averaged LET between 0.97 and 4.62 keV µm(-1). For the experimental data in this study the linear fit method yields consistent results with respect to Monte Carlo simulated LET values. A calibration curve for LET determination is provided for the LIC used in the present work.

  9. Optimization of signal extraction and front-end design in a fast,multigap ionization chamber

    SciTech Connect

    Datte, P.S.; Manfredi, P.F.; Millaud, J.E.; Placidi, M.; Ratti,L.; Speziali, V.; Traversi, G.; Turner, W.C.

    2001-11-05

    This paper discusses the criteria that have been adopted tooptimize the signal processing in a shower detector to be employed as LHCbeam luminosity monitor. The original aspect ofthis instrument is itsablility to operate on a bunch-by-bunch basis. This means that it mustperform accurate charge measurements at a repetition rate of 40 MHz. Thedetector must withstand an integrated dose of 100 Grad, that is, two tothree orders of magnitude beyond those expected in the experiments. Tomeet the above requirements, an ionization chamber consisting of severalgaps of thickness 0.5 mm, filled with a gas that is expected to beradiation resistant, has been designed. Crucial in the development of thesystem is the signal processing, as the electronic noise may set thedominant limitation to the accuracy of the measurement. This is relatedto two aspects. One is the short time available for the chargemeasurement. The second one is the presence of a few meter cable betweenthe detector and the preamplifier, as this must be located out of theregion of highest radiation field. Therefore the optimization of thesignal-to-noise ratio requires that the best configuration of the chambergaps be determined under the constraint of the presence of a cable ofnon-negligible length between detector and preamplifier. The remoteplacement of the amplifying electronics will require that the front-endelectronics be radiation hard although to a lesser extent than thedetector.

  10. The control system of the multi-strip ionization chamber for the HIMM

    NASA Astrophysics Data System (ADS)

    Li, Min; Yuan, Y. J.; Mao, R. S.; Xu, Z. G.; Li, Peng; Zhao, T. C.; Zhao, Z. L.; Zhang, Nong

    2015-03-01

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer-consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  11. Parallel readout multiwire proportional chambers for time resolved X-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; Bond, C. C.

    1980-10-01

    Linear position sensitive detectors have been used for a number of years in X-ray diffraction studies from various types of muscle under different physiological conditions. Such detectors are mainly based on either an internal (RC) delay line or an external (LC) delay line for decoding positional information; the counting speed of the detectors is optimally matched to the available photon flux from laboratory based X-ray cameras. However, X-ray cameras based on synchrotron radiation provide photon fluxes which are greater by about three orders of magnitude. We describe in this paper an X-ray detection system based on parallel readout from a multiwire proportional chamber which offers high counting speeds and is designed to perform time slicing experiments with time resolutions down to 1 ms.

  12. Investigation of the initial and volume recombination losses in gamma versatile cylindrical ionization chamber VGIC developed for gamma ray dosimetry

    SciTech Connect

    Fares, M.; Mameri, S.; Abdlani, I.; Negara, K.

    2015-07-01

    A versatile Gamma ionization chambers are used for flow control in systems with gamma nuclear reactors and reprocessing plants in and monitoring atmosphere around these facilities, this in order to protect staff. In the Laboratory Detection and Measures (LDM) Division for Study and Development of Nuclear Instrumentation (DSDNI) of CRNB, we designed, developed and characterized a versatile gamma ionization chamber (VGIC) to study experimentally its characteristics according to the geometry of the electrodes, the volume and pressure of the filler gas for the design of a gamma sealed chamber. The tests were conducted under the IEC (International Electro-technical Commission). In this paper, we present the results obtained in the various nuclear tests for characterization and calibration that we have made on the ionization chamber gamma VGIC prototype developed at our Department. To do this, three irradiators were operated at the Laboratory Calibration (SSDL) of the Department of Medical Physics Nuclear Research Center of Algiers (CRNA). Irradiator intensive gamma ({sup 60}Co: 1.25 MeV), one medium intensity gamma ({sup 137}Cs: 0.662 MeV) and 3rd low intensity ({sup 60}Co). Saturation curves and linearity were identified and the operating range and the sensitivity of the chamber have been deducted. The (I,V) characteristics of the chamber filled, with argon gas at 3 bar (0.3 M pa) pressure, for gamma ray irradiator sources were studied. To do so, the chamber was irradiated with gamma rays using different numbers of gamma sources (i.e. Up to 5). The plateau region is reached above 200 V and the detector operating voltage is found to be 600 V. It is observed that in the plateau region the slope is constant with an increase in the exposure rate. The (1/I, 1/V) and (I, l/V{sup 2}) characteristic curves reveal the presence of the initial and volume recombination losses. The volume recombination losses are found to be smaller than the initial recombination losses. Finally

  13. Determination of the thermal neutron flux in a fast neutron beam by use of a boron-coated ionization chamber.

    PubMed

    Lüdemann, L; Matzen, T; Matzke, M; Schmidt, R; Scobel, W

    1995-11-01

    The thermal neutron distribution in slow and fast neutron beams is usually determined using the foil activation method. In this work a small magnesium walled ionization chamber, in which the inner surface of the wall has been coated with 10B to increase the sensitivity for thermal neutrons, is used to estimate the thermal neutron component of the beam. After calibration and determination of the directional response in a thermal neutron beam a comparison with foil activation at different depths in water was performed to investigate the reliability of the ionization measurements. The chamber was used in a computer controlled water phantom to measure the depth and lateral distribution of the thermal neutron dose. With this arrangement two-dimensional scans of the thermal neutrons could be performed quickly and with high accuracy.

  14. Parallel Single Cancer Cell Whole Genome Amplification Using Button-Valve Assisted Mixing in Nanoliter Chambers

    PubMed Central

    Yang, Yoonsun; Swennenhuis, Joost F.; Rho, Hoon Suk; Le Gac, Séverine; Terstappen, Leon W. M. M.

    2014-01-01

    The heterogeneity of tumor cells and their alteration during the course of the disease urges the need for real time characterization of individual tumor cells to improve the assessment of treatment options. New generations of therapies are frequently associated with specific genetic alterations driving the need to determine the genetic makeup of tumor cells. Here, we present a microfluidic device for parallel single cell whole genome amplification (pscWGA) to obtain enough copies of a single cell genome to probe for the presence of treatment targets and the frequency of its occurrence among the tumor cells. Individual cells were first captured and loaded into eight parallel amplification units. Next, cells were lysed on a chip and their DNA amplified through successive introduction of dedicated reagents while mixing actively with the help of integrated button-valves. The reaction chamber volume for scWGA 23.85 nl, and starting from 6–7 pg DNA contained in a single cell, around 8 ng of DNA was obtained after WGA, representing over 1000-fold amplification. The amplified products from individual breast cancer cells were collected from the device to either directly investigate the amplification of specific genes by qPCR or for re-amplification of the DNA to obtain sufficient material for whole genome sequencing. Our pscWGA device provides sufficient DNA from individual cells for their genetic characterization, and will undoubtedly allow for automated sample preparation for single cancer cell genomic characterization. PMID:25233459

  15. The stability of liquid-filled matrix ionization chamber electronic portal imaging devices for dosimetry purposes.

    PubMed

    Louwe, R J W; Tielenburg, R; van Ingen, K M; Mijnheer, B J; van Herk, M B

    2004-04-01

    This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the response (e.g., temperature fluctuations, radiation damage, and the performance of the electronic hardware). It was shown that testing the performance of the electronic hardware as well as the short-term stability of the imagers may reveal the cause of a poor long-term stability of the imager response. In addition, the short-term stability was measured to verify the validity of the fitted dose-response curve immediately after beam startup. The long-term stability of these imagers could be considerably improved by correcting for room temperature fluctuations and gradual changes in response due to radiation damage. As a result, the reproducibility was better than 1% (1 SD) over a period of two years. The results of this study were used to formulate recommendations for a quality control program for portal dosimetry. The effect of such a program was assessed by comparing the results of portal dosimetry and in vivo dosimetry using diodes during the treatment of 31 prostate patients. The improvement of the results for portal dosimetry was consistent with the deviations observed with the reproducibility tests in that particular period. After a correction for the variation in response of the imager, the average difference between the measured and prescribed dose during the treatment of prostate patients was -0.7%+/-1.5% (1 SD), and -0.6%+/-1.1% (1 SD) for EPID and diode in vivo dosimetry, respectively. It can be concluded that a high stability of the response can be achieved for this type of EPID by applying a rigorous quality control program.

  16. Potential errors in relative dose measurements in kilovoltage photon beams due to polarity effects in plane-parallel ionisation chambers.

    PubMed

    Dowdell, S; Tyler, M; McNamara, J; Sloan, K; Ceylan, A; Rinks, A

    2016-11-15

    Plane-parallel ionisation chambers are regularly used to conduct relative dosimetry measurements for therapeutic kilovoltage beams during commissioning and routine quality assurance. This paper presents the first quantification of the polarity effect in kilovoltage photon beams for two types of commercially available plane-parallel ionisation chambers used for such measurements. Measurements were performed at various depths along the central axis in a solid water phantom and for different field sizes at 2 cm depth to determine the polarity effect for PTW Advanced Markus and Roos ionisation chambers (PTW-Freiburg, Germany). Data was acquired for kilovoltage beams between 100 kVp (half-value layer (HVL)  =  2.88 mm Al) and 250 kVp (HVL  =  2.12 mm Cu) and field sizes of 3-15 cm diameter for 30 cm focus-source distance (FSD) and 4  ×  4 cm(2)-20  ×  20 cm(2) for 50 cm FSD. Substantial polarity effects, up to 9.6%, were observed for the Advanced Markus chamber compared to a maximum 0.5% for the Roos chamber. The magnitude of the polarity effect was observed to increase with field size and beam energy but was consistent with depth. The polarity effect is directly influenced by chamber design, with potentially large polarity effects for some plane-parallel ionisation chambers. Depending on the specific chamber used, polarity corrections may be required for output factor measurements of kilovoltage photon beams. Failure to account for polarity effects could lead to an incorrect dose being delivered to the patient.

  17. Potential errors in relative dose measurements in kilovoltage photon beams due to polarity effects in plane-parallel ionisation chambers

    NASA Astrophysics Data System (ADS)

    Dowdell, S.; Tyler, M.; McNamara, J.; Sloan, K.; Ceylan, A.; Rinks, A.

    2016-12-01

    Plane-parallel ionisation chambers are regularly used to conduct relative dosimetry measurements for therapeutic kilovoltage beams during commissioning and routine quality assurance. This paper presents the first quantification of the polarity effect in kilovoltage photon beams for two types of commercially available plane-parallel ionisation chambers used for such measurements. Measurements were performed at various depths along the central axis in a solid water phantom and for different field sizes at 2 cm depth to determine the polarity effect for PTW Advanced Markus and Roos ionisation chambers (PTW-Freiburg, Germany). Data was acquired for kilovoltage beams between 100 kVp (half-value layer (HVL)  =  2.88 mm Al) and 250 kVp (HVL  =  2.12 mm Cu) and field sizes of 3-15 cm diameter for 30 cm focus-source distance (FSD) and 4  ×  4 cm2-20  ×  20 cm2 for 50 cm FSD. Substantial polarity effects, up to 9.6%, were observed for the Advanced Markus chamber compared to a maximum 0.5% for the Roos chamber. The magnitude of the polarity effect was observed to increase with field size and beam energy but was consistent with depth. The polarity effect is directly influenced by chamber design, with potentially large polarity effects for some plane-parallel ionisation chambers. Depending on the specific chamber used, polarity corrections may be required for output factor measurements of kilovoltage photon beams. Failure to account for polarity effects could lead to an incorrect dose being delivered to the patient.

  18. DETECTORS AND EXPERIMENTAL METHODS: Design and construction of the first prototype ionization chamber for CSNS and PA beam loss monitor (BLM) system

    NASA Astrophysics Data System (ADS)

    Xu, Mei-Hang; Tian, Jian-Min; Chen, Chang; Chen, Yuan-Bo; Xu, Tao-Guang; Lu, Shuang-Tong

    2009-02-01

    Design and construction of the first prototype ionization chamber for CSNS and Proton Accelerator (PA) beam loss monitor (BLM) system is reported. The low leakage current (<0.1 pA), good plateau (approx800 V) and linearity range up to 200 Roentgen/h are obtained in the first prototype. All of these give us good experience for further improving the ionization chamber construction.

  19. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber.

    PubMed

    Li, Jiuyi; Busscher, Henk J; Norde, Willem; Sjollema, Jelmer

    2011-05-01

    In order to investigate bacterium-substratum interactions, understanding of bacterial mass transport is necessary. Comparisons of experimentally observed initial deposition rates with mass transport rates in parallel-plate-flow-chambers (PPFC) predicted by convective-diffusion yielded deposition efficiencies above unity, despite electrostatic repulsion. It is hypothesized that sedimentation is the major mass transport mechanism in a PPFC. The contribution of sedimentation to the mass transport in a PPFC was experimentally investigated by introducing a novel microscopy-based method. First, height-dependent bacterial concentrations were measured at different times and flow rates and used to calculate bacterial sedimentation velocities. For Staphylococcus aureus ATCC 12600, a sedimentation velocity of 240 μm h(-1) was obtained. Therewith, sedimentation appeared as the predominant contribution to mass transport in a PPFC. Also in the current study, deposition efficiencies of S. aureus ATCC 12600 with respect to the Smoluchowski-Levich solution of the convective-diffusion equation were four-to-five fold higher than unity. However, calculation of deposition efficiencies with respect to sedimentation were below unity and decreased from 0.78 to 0.36 when flow rates increased from 0.017 to 0.33 cm(3) s(-1). The proposed analysis of bacterial mass transport processes is simple, does not require additional equipment and yields a more reasonable interpretation of bacterial deposition in a PPFC.

  20. Pooled human immunoglobulins reduce adhesion of Pseudomonas aeruginosa in a parallel plate flow chamber.

    PubMed

    Poelstra, K A; van der Mei, H C; Gottenbos, B; Grainger, D W; van Horn, J R; Busscher, H J

    2000-08-01

    The influence of pooled polyclonal immunoglobulin (IgG) interactions with both bacteria and model substrates in altering Pseudomonas aeruginosa surface adhesion is reported. Opsonization of this pathogen by polyclonal human IgG and preadsorption of IgG to glass surfaces both effectively reduce initial deposition rates and surface growth of P. aeruginosa IFO3455 from dilute nutrient broth in a parallel plate flow chamber. Polyclonal IgG depleted of P. aeruginosa-specific antibodies reduces the initial deposition rate or surface growth to levels intermediate between exposed and nonexposed IgG conditions. Bacterial surface properties are changed in the presence of opsonizing IgG. Plateau contact angle analysis via sessile drop technique shows a drop in P. aeruginosa surface hydrophobicity after IgG exposure consistent with a more hydrophilic IgG surface coat. Zeta potential values for opsonized versus nonopsonized bacteria exhibit little change. X-ray photoelectron spectroscopy measurements provide surface compositional evidence for IgG attachment to bacterial surfaces. Surface elemental ratios attributed to IgG protein signals versus those attributed primarily to bacterial polysaccharide surface or lipid membrane change with IgG opsonization. Direct evidence for antibody-modified P. aeruginosa surface properties correlates both with reduction of bacterial adhesion to glass surfaces under flow in nutrient medium reported and previous reports of IgG efficacy against P. aeruginosa motility in vitro and infection in vivo.

  1. SU-E-T-415: An Ionization Chamber Array with High Spatial Resolution for External Beam Radiotherapy

    SciTech Connect

    Togno, M; Wilkens, J; Menichelli, D

    2014-06-01

    Purpose: To characterize an ionization chamber array technology with high spatial resolution and high charge collection efficiency for external beam radiotherapy. Methods: The prototype under test is a linear array of air vented ionization chambers developed by IBA Dosimetry, consisting of 80 pixels with 3.5mm spatial resolution and 4mm{sup 3} sensitive volume. The detector was characterized in a plastic phantom with {sup 60} Co radiation and MV X-rays from an ELEKTA Agility LINAC (with flattened and unflattened beam qualities). Bias voltage was varied in order to evaluate charge collection efficiency. A commercial array of ionization chambers (MatriXX Evolution, IBA Dosimetry) and an amorphous silicon flat panel in direct conversion configuration were used as references. Results: Repeatability (0.4%) and stability under continuous gamma irradiation (0.3%) are very good, in spite of low active volume and sensitivity (∼200pC/Gy). Charge collection efficiency is higher than 99% already at 150V with ∼2mGy dose per pulse, leading to a ±1.1% sensitivity change with dose per pulse in the range 0.09-2mGy (covering all flattened and unflattened applications). Measured dose profiles are in agreement with MatriXX for fields larger than 2×2cm{sup 2}, in which case the linear array offers a much better characterization of the penumbra region. Down to 1×1cm{sup 2}, measured profiles are in very good agreement with the flat panel. Conclusion: The array represents a valuable tool for the characterization of treatment fields in which high spatial resolution is required, together with the dosimetric performance of air vented ionization chambers. Such a technology would be particularly valuable in association with advanced treatment modalities such as rotational radiotherapy, stereotactic treatments (even with unflattened beam qualities) and proton therapy, due to the insensitivity of the chambers on dose per pulse. In the future, a two dimensional prototype based on this

  2. The effective point of measurement of ionization chambers and the build-up anomaly in MV x-ray beams.

    PubMed

    McEwen, M R; Kawrakow, I; Ross, C K

    2008-03-01

    A precision experimental investigation of the effective point of measurement (EPOM) of ion chambers in megavoltage beams has been carried out. A one-dimensional scanning phantom system was developed with an overall accuracy in the positioning of a chamber of better than 0.15 mm. Depth-dose data were acquired for a 25 MV beam from an Elekta Precise linac (field sizes of 10 x 10 cm and 25 x 25 cm) for measurement depths in the range 0.6-6 cm. The results confirmed the Monte Carlo calculations of an earlier theoretical investigation by Kawrakow [Med. Phys. 33, 1829-1839 (2006)] that the standard shift for cylindrical chambers, recommended in dosimetry protocols of -0.6r (where r is the internal radius of the cavity), is incorrect. A wide range of ion chambers were investigated and it was found that errors of up to 1.4 mm could occur for certain chamber designs (although typical errors for common chambers were around 0.5 mm). A comparison between measurements and Monte Carlo simulations showed that once the correct EPOM is used, the details of the linac geometry are correct, and the parameters of the electron beam striking the bremsstrahlung target have been adequately determined, the EGSnrc Monte Carlo package is capable of reproducing the experimental data to 0.2 mm or better. The investigation also confirmed that for the highest accuracy depth-dose curves in megavoltage photon beams one should use a well-guarded parallel-plate ion chamber. Three chamber designs were tested here and found to be satisfactory-the Scanditronix-Wellhöfer NACP-02, PTW Roos and Exradin All.

  3. Multi-Zone Liquid Thrust Chamber Performance Code with Domain Decomposition for Parallel Processing

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.

    2002-01-01

    Computational Fluid Dynamics (CFD) has considerably evolved in the last decade. There are many computer programs that can perform computations on viscous internal or external flows with chemical reactions. CFD has become a commonly used tool in the design and analysis of gas turbines, ramjet combustors, turbo-machinery, inlet ducts, rocket engines, jet interaction, missile, and ramjet nozzles. One of the problems of interest to NASA has always been the performance prediction for rocket and air-breathing engines. Due to the complexity of flow in these engines it is necessary to resolve the flowfield into a fine mesh to capture quantities like turbulence and heat transfer. However, calculation on a high-resolution grid is associated with a prohibitively increasing computational time that can downgrade the value of the CFD for practical engineering calculations. The Liquid Thrust Chamber Performance (LTCP) code was developed for NASA/MSFC (Marshall Space Flight Center) to perform liquid rocket engine performance calculations. This code is a 2D/axisymmetric full Navier-Stokes (NS) solver with fully coupled finite rate chemistry and Eulerian treatment of liquid fuel and/or oxidizer droplets. One of the advantages of this code has been the resemblance of its input file to the JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee) standard TDK code, and its automatic grid generation for JANNAF defined combustion chamber wall geometry. These options minimize the learning effort for TDK users, and make the code a good candidate for performing engineering calculations. Although the LTCP code was developed for liquid rocket engines, it is a general-purpose code and has been used for solving many engineering problems. However, the single zone formulation of the LTCP has limited the code to be applicable to problems with complex geometry. Furthermore, the computational time becomes prohibitively large for high-resolution problems with chemistry, two

  4. Patient specific quality assurance of RapidArc pre treatment plans using semiflex 0.125 cc ionization chamber

    NASA Astrophysics Data System (ADS)

    Kumar, S. A. Syam; Vivekanandan, Nagarajan

    2017-01-01

    Patient specific pre-treatment quality assurance for RapidArc plans were analyzed for hundred patients for different sites. Verification plan was created for each treatment plan in Eclipse 8.6 treatment planning system with the semiflex ionization chamber and the octavius phantom. Absolute point dose were measured for head and neck, thorax and abdomen cases using semiflex (0.125 cc) ionization chamber. Positive absolute mean dose variation of 0.56% was observed with thorax cases with a standard deviation (SD) of ±1.13 between the plans with a range of -1.78% to 2.70%. Negative percentage dose errors were found with head and neck and abdomen cases, with a mean variation of -0.43% (SD±1.50), (range -3.25% to 2.85%) and -0.35% (SD±1.48), (range -3.10% to 2.65%) for head and neck and abdomen cases respectively. Evaluation has been done using PTW verisoft software by keeping the passing criteria as 3 mm DTA, 3% DD, for 95% of the evaluated dose points. The maximum percentage value failed in gamma analysis was found to be 4.95, 4.75, and 4.88 for head and neck, thorax, and abdomen cases respectively. In all the cases analyzed the percentage dose points failed the gamma criteria is less than 5%. On the basis of the studies performed it can be concluded that the semiflex ionization chamber having a volume of 0.125 cc can be used efficiently for measuring the pre-treatment quality assurance of RapidArc plans for all the sites.

  5. Particle identification in a LKr ionization chamber by multiple induced current measurements using the shape analysis of the signal

    NASA Astrophysics Data System (ADS)

    Diaferia, R.; Lanni, F.; Maggi, B.; Palombo, F.; Sala, A.; Cantoni, P.; Frabetti, P. L.; Stagni, L.

    1996-01-01

    Charged particle (π/K) separation in the momentum range 0.5-0.7 GeV/c using a new method of shape analysis of the signal from a liquid krypton ionization chamber has been studied experimentally. The detector has been exposed to pions and protons at the T11 test beam at CERN PS. The shape of preamplifier output signal has been recorded by a waveform digitizer and differentiated to obtain multiple measurements of induced current inside a 2 cm gap. Results on particle separation are presented and compared with a Monte Carlo simulation.

  6. Particle identification in a LKr ionization chamber by multiple induced current measurements using the shape analysis of the signal

    NASA Astrophysics Data System (ADS)

    Cantoni, P.; Frabetti, P. L.; Stagni, L.; Diaferia, R.; Lanni, F.; Maggi, B.; Palombo, F.; Sala, A.; Manfredi, P. F.; Re, V.; Speziali, V.

    1995-02-01

    Charged particle ( {π}/{K}) separation in the momentum range 0.5-0.7 GeV/ c using a new method of shape analysis of the signal from a liquid krypton ionization chamber has been studied experimentally. The detector has been exposed to the T11 test beam at CERN PS. The shape of the preamplifier output signal has been recorded by a waveform digitizer and differentiated to obtain multiple measurements of induced current inside a 2 cm gap. Results on particle separation are presented.

  7. Correction factors for ionization chamber dosimetry in CyberKnife: Machine-specific, plan-class, and clinical fields

    SciTech Connect

    Gago-Arias, Araceli; Antolin, Elena; Fayos-Ferrer, Francisco; Simon, Rocio; Gonzalez-Castano, Diego M.; Palmans, Hugo; Sharpe, Peter; Gomez, Faustino; Pardo-Montero, Juan

    2013-01-15

    Purpose: The aim of this work is the application of the formalism for ionization chamber reference dosimetry of small and nonstandard fields [R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjaell, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich, and S. Vatnitsky, 'A new formalism for reference dosimetry of small and nonstandard fields,' Med. Phys. 35, 5179-5186 (2008)] to the CyberKnife robotic radiosurgery system. Correction factors for intermediate calibration fields, a machine-specific reference field (msr) and two plan-class specific reference fields (pcsr), have been studied. Furthermore, the applicability of the new formalism to clinical dosimetry has been analyzed through the investigation of two clinical treatments. Methods: PTW31014 and Scanditronix-Wellhofer CC13 ionization chamber measurements were performed for the fields under investigation. Absorbed dose to water was determined using alanine reference dosimetry, and experimental correction factors were calculated from alanine to ionization chamber readings ratios. In addition, correction factors were calculated for the intermediate calibration fields and one of the clinical treatment fields using the Monte Carlo method and these were compared with the experimental values. Results: Overall correction factors deviating from unity by approximately 2% were obtained from both measurements and simulations, with values below and above unity for the studied intermediate calibration fields and clinical fields for the ionization chambers under consideration. Monte Carlo simulations yielded correction factors comparable with those obtained from measurements for the machine-specific reference field, although differences from 1% to 3.3% were observed between measured and calculated correction factors for the composite intermediate calibration fields. Dose distribution inhomogeneities are thought to be responsible for such discrepancies. Conclusions: The differences found between overall

  8. Dosimetric Verification and Validation of Conformal and IMRT Treatments Fields with an Ionization Chamber 2D-Array

    SciTech Connect

    Evangelina, Figueroa M.; Gabriel, Resendiz G.; Miguel, Perez P.

    2008-08-11

    A three-dimensional treatment planning system requires comparisons of calculated and measured dose distributions. It is necessary to confirm by means of patient specific QA that the dose distributions are correctly calculated, and that the patient data is correctly transferred to and delivered by the treatment machine. We used an analysis software for bi-dimensional dosimetric verification of conformal treatment and IMRT fields using as objective criterion the gamma index. An ionization chamber bi-dimensional array was used for absolute dose measurement in the complete field area.

  9. A method for measuring the electron drift velocity in working gas using a Frisch-grid ionization chamber

    NASA Astrophysics Data System (ADS)

    Bai, Huaiyong; Wang, Zhimin; Zhang, Luyu; Chen, Jinxiang; Zhang, Guohui

    2016-12-01

    A method for measuring the electron drift velocity in working gas is proposed. Based on the cathode and the anode signal waveforms of the Frisch-grid ionization chamber, the electron drift velocity is extracted. With this method, the electron drift velocities in Ar + 10% CH4, Ar + 3.5% CO2 and Kr + 2.7% CO2 gases have been measured and the results are compared with the existing measurements and the simulating results. Using this method, the electron drift velocity can be monitored throughout the experiment of charged particle without bothering the measurement of other parameters, such as the energy and orientation.

  10. Discovery of multiple, ionization-created CS{sub 2} anions and a new mode of operation for drift chambers

    SciTech Connect

    Snowden-Ifft, Daniel P.

    2014-01-15

    This paper focuses on the surprising discovery of multiple species of ionization-created CS{sub 2} anions in gas mixtures containing electronegative CS{sub 2} and O{sub 2}, identified by their slightly different drift velocities. Data are presented to understand the formation mechanism and identity of these new anions. Regardless of the micro-physics, however, this discovery offers a new, trigger-less mode of operation for the drift chambers. A demonstration of trigger-less operation is presented.

  11. Direct determination of k Q for Farmer-type ionization chambers in a clinical scanned carbon ion beam using water calorimetry.

    PubMed

    Osinga-Blättermann, J-M; Brons, S; Greilich, S; Jäkel, O; Krauss, A

    2017-03-21

    Until now, the dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as that of high-energy photons. This is mainly caused by the approximately threefold larger uncertainty of the k Q factor of ionization chambers, which, due to the lack of experimental data, is still derived by calculations. Measurements of absorbed dose to water, D w, by means of water calorimetry have now been performed in the entrance channel of a scanned 6 cm  ×  6 cm radiation field of 429 MeV/u carbon ions, allowing the direct calibration of ionization chambers and thus the experimental determination of k Q. Within this work, values for k Q have been determined for the Farmer-type ionization chambers FC65-G and TM30013. A detailed investigation of the radiation field enabled the accurate determination of correction factors needed for both calorimetric and ionometric measurements. Finally, a relative standard measurement uncertainty of 0.8% (k  =  1) could be achieved for the experimental k Q values. For both chambers, the experimental k Q factors were found to be about 1% larger than those tabulated in the German DIN 6801-1 protocol, whereas compared to the theoretical values stated in the TRS-398 protocol, the experimental k Q value agrees within 0.4% for the TM30013 chamber but is about 1% lower in the case of the FC65-G chamber.

  12. Direct determination of k Q for Farmer-type ionization chambers in a clinical scanned carbon ion beam using water calorimetry

    NASA Astrophysics Data System (ADS)

    Osinga-Blättermann, J.-M.; Brons, S.; Greilich, S.; Jäkel, O.; Krauss, A.

    2017-03-01

    Until now, the dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as that of high-energy photons. This is mainly caused by the approximately threefold larger uncertainty of the k Q factor of ionization chambers, which, due to the lack of experimental data, is still derived by calculations. Measurements of absorbed dose to water, D w, by means of water calorimetry have now been performed in the entrance channel of a scanned 6 cm  ×  6 cm radiation field of 429 MeV/u carbon ions, allowing the direct calibration of ionization chambers and thus the experimental determination of k Q. Within this work, values for k Q have been determined for the Farmer-type ionization chambers FC65-G and TM30013. A detailed investigation of the radiation field enabled the accurate determination of correction factors needed for both calorimetric and ionometric measurements. Finally, a relative standard measurement uncertainty of 0.8% (k  =  1) could be achieved for the experimental k Q values. For both chambers, the experimental k Q factors were found to be about 1% larger than those tabulated in the German DIN 6801-1 protocol, whereas compared to the theoretical values stated in the TRS-398 protocol, the experimental k Q value agrees within 0.4% for the TM30013 chamber but is about 1% lower in the case of the FC65-G chamber.

  13. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  14. Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber.

    PubMed

    Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko

    2014-12-01

    Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry.

  15. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    SciTech Connect

    Muir, B R; McEwen, M R

    2014-06-01

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R{sub 5} {sub 0} < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications.

  16. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems

    NASA Astrophysics Data System (ADS)

    Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-01

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  17. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning

    NASA Astrophysics Data System (ADS)

    Courtois, C.; Boissonnat, G.; Brusasco, C.; Colin, J.; Cussol, D.; Fontbonne, J. M.; Marchand, B.; Mertens, T.; de Neuter, S.; Peronnel, J.

    2014-02-01

    Every radiotherapy center has to be equipped with real-time beam monitoring devices. In 2008, we developed an ionization chamber in collaboration with the IBA (Ion Beam Applications) company. This monitoring device called IC2/3 was developed to be used in IBA universal irradiation head for Pencil Beam Scanning (PBS). Here we present the characterization of the IC2/3 monitor in the energy and flux ranges used in protontherapy. The equipment has been tested with an IBA cyclotron able to deliver proton beams from 70 to 230 MeV. This beam monitoring device has been validated and is now installed at the Westdeutsches Protonentherapiezentrum Essen protontherapy center (WPE, Germany). The results obtained in both terms of spatial resolution and dose measurements are at least equal to the initial specifications needed for PBS purposes. The detector measures the dose with a relative uncertainty lower than 1% in the range from 0.5 Gy/min to 8 Gy/min while the spatial resolution is better than 250 μm. The technology has been patented and five IC2/3 chambers were delivered to IBA. Nowadays, IBA produces the IC2/3 beam monitoring device as a part of its Proteus 235 product.

  18. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    SciTech Connect

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  19. Verification of absorbed dose determined with plane-parallel chambers in clinical electron beams following AAPM Task Group 39 protocol using ferrous sulphate dosimetry.

    PubMed

    Xu, Z; Li, H; Almond, P R; Guan, T Y

    1996-03-01

    The absorbed dose values determined with the Exradin and PTW-Markus plane-parallel chambers were compared to the values obtained with the ferrous sulphate dosimetry for a number of the Philips SL25 and the Therac 20 electron beams. For the plane-parallel chambers, the cavity-gas calibration factor Ngaspp, was derived by a direct comparison with a calibrated cylindrical chamber using the three different calibration methods as proposed by the newly published AAPM TG 39 protocol. For the ferrous sulphate dosimetry, an epsilon mG value of 352 x 10(-6) m-2 kg-1 Gy-1 was adopted from ICRU Report No. 35. The average ratio of the dose values determined with the plane-parallel chambers and the dose values determined with the Fricke dosimetry system was 1.001 +/- 1.4%. These measurements are consistent with the AAPM TG 39 protocol.

  20. Corrosion rates of stainless steel under shear stress measured by a novel parallel-plate flow chamber.

    PubMed

    Messer, Regina L W; Mickalonis, John; Adams, Yolanda; Tseng, Wan Y

    2006-02-01

    A unique parallel-plate flow chamber has been engineered to assess the corrosion properties of implant materials in biological environments under shear flow. This parallel-plate flow chamber provides a novel approach to investigate hypotheses regarding cellular-material-mechanical-force interactions that influence the success or failure of implant devices. The results of the current study demonstrated that physiological stresses (0.5-50 dynes/cm2) from laminar flow from cell culture media did not significantly alter corrosion rates of stainless steel, providing baseline information for an extensive study of the cellular-material-mechanical-force interactions. Furthermore, this study demonstrated that this device is electrochemically stable and provides reproducible results within test parameters. In addition, the results were not significantly different from corrosion tests on bulk samples. Therefore, this system will be useful for investigating cell-material interactions under shear stress for implant alloys or other opaque materials. This information is currently lacking. The results of the present study also support further development of this test system to assess cellular responses to these materials under shear stresses.

  1. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in the Cosmic Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.

  2. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    NASA Astrophysics Data System (ADS)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4

  3. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests

    NASA Astrophysics Data System (ADS)

    Brualla-González, Luis; Gómez, Faustino; Vicedo, Aurora; González-Castaño, Diego M.; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Roselló, Joan V.; Pardo-Montero, Juan

    2012-08-01

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development.

  4. On the interpretation of current-voltage curves in ionization chambers using the exact solution of the Thomson problem

    NASA Astrophysics Data System (ADS)

    Ridenti, M. A.; Pascholati, P. R.; Gonçalves, J. A. C.; Bueno, C. C.

    2015-09-01

    The I - ΔV characteristic curve of a well type ionization chamber irradiated with 192Ir sources (0.75 Ci-120 Ci) was fitted using the exact solution of the Thomson problem. The recombination coefficient and saturation current were estimated using this new approach. The saturation current was compared with the results of the conventional method based on Boag-Wilson formula. It was verified that differences larger than 1% between both methods only occurred at activities higher than 55 Ci. We concluded that this new approach is recommended for a more accurate estimate of the saturation current when it is not possible to measure currents satisfying the condition I /Isat > 0.95. From the calibration curve the average value of pairs of carriers created per unit volume was estimated to be equal to η = 8.1 ×10-3cm-3s-1 Bq-1 and from that value it was estimated that ~ 17 pairs were created on average per second for each decay of the source.

  5. Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions.

    PubMed

    Bakker, Dewi P; Busscher, Henk J; van der Mei, Henny C

    2002-02-01

    Deposition onto glass in a parallel plate (PP) and in a stagnation point (SP) flow chamber of Marinobacter hydrocarbonoclasticus, Psychrobacter sp. and Halomonas pacifica, suspended in artificial seawater, was compared in order to determine the influence of methodology on bacterial adhesion mechanisms. The three strains had different cell surface hydrophobicities, with water contact angles on bacterial lawns ranging from 18 to 85 degrees. Bacterial zeta potentials in artificial seawater were essentially zero. The three strains showed different adhesion kinetics and the hydrophilic bacterium H. pacifica had the greatest affinity for hydrophilic glass. On average, initial deposition rates were two- to threefold higher in the SP than in the PP flow chamber, possibly due to the convective fluid flow toward the substratum surface in the SP flow chamber causing more intimate contact between a substratum and a bacterial cell surface than the gentle collisions in the PP flow chamber. The ratios between the experimental deposition rates and theoretically calculated deposition rates based on mass transport equations not only differed among the strains, but were also different for the two flow chambers, indicating different mechanisms under the two modes of mass transport. The efficiencies of deposition were higher in the SP flow chamber than in the PP flow chamber: 62+/-4 and 114+/-28% respectively. Experiments in the SP flow chamber were more reproducible than those in the PP flow chamber, with standard deviations over triplicate runs of 8% in the SP and 23% in the PP flow chamber. This is probably due to better-controlled convective mass transport in the SP flow chamber, as compared with the diffusion-controlled mass transport in the PP flow chamber. In conclusion, this study shows that bacterial adhesion mechanisms depend on the prevailing mass transport conditions in the experimental set-up used, which makes it essential in the design of experiments that a methodology is

  6. Comparison of depth-dose distributions of proton therapeutic beams calculated by means of logical detectors and ionization chamber modeled in Monte Carlo codes

    NASA Astrophysics Data System (ADS)

    Pietrzak, Robert; Konefał, Adam; Sokół, Maria; Orlef, Andrzej

    2016-08-01

    The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method.

  7. Large area neutron detector based on Li6 ionization chamber with integrated body-moderator of high density polyethylene

    SciTech Connect

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Chung, Kiwhan; Makela, Mark F.

    2009-06-30

    A detector was developed and funded by DHS to be a lower cost alternative to 3He detectors. A 6Li foil-lined ionization chamber was prepared with fill gas at one atmosphere and pulse mode operation. The high-density polyethylene (HOPE) body serves also as a neutron moderator. All electrodes, including high voltage bias supply, are hermetically sealed within the plastic slabs.

  8. Measurement of absorbed dose-to-water for an HDR {sup 192}Ir source with ionization chambers in a sandwich setup

    SciTech Connect

    Araki, Fujio; Kouno, Tomohiro; Ohno, Takeshi; Kakei, Kiyotaka; Yoshiyama, Fumiaki; Kawamura, Shinji

    2013-09-15

    Purpose: In this study, a dedicated device for ion chamber measurements of absorbed dose-to-water for a Nucletron microSelectron-v2 HDR {sup 192}Ir brachytherapy source is presented. The device uses two ionization chambers in a so-called sandwich assembly. Using this setup and by taking the average reading of the two chambers, any dose error due to difficulties in absolute positioning (centering) of the source in between the chambers is cancelled to first order. The method's accuracy was examined by comparing measurements with absorbed dose-to-water determination based on the AAPM TG-43 protocol.Methods: The optimal source-to-chamber distance (SCD) for {sup 192}Ir dosimetry was determined from ion chamber measurements in a water phantom. The {sup 192}Ir source was sandwiched between two Exradin A1SL chambers (0.057 cm{sup 3}) at the optimal SCD separation. The measured ionization was converted to the absorbed dose-to-water using a {sup 60}Co calibration factor and a Monte Carlo-calculated beam quality conversion factor, k{sub Q}, for {sup 60}Co to {sup 192}Ir. An uncertainty estimate of the proposed method was determined based on reproducibility of measurements at different institutions for the same type of source.Results: The optimal distance for the A1SL chamber measurements was determined to be 5 cm from the {sup 192}Ir source center, considering the depth dependency of k{sub Q} for {sup 60}Co to {sup 192}Ir and the chamber positioning. The absorbed dose to water measured at (5 cm, 90°) on the transverse axis was 1.3% lower than TG-43 values and its reproducibility and overall uncertainty were 0.8% and 1.7%, respectively. The measurement doses at anisotropic points agreed within 1.5% with TG-43 values.Conclusions: The ion chamber measurement of absorbed dose-to-water with a sandwich method for the {sup 192}Ir source provides a more accurate, direct, and reference dose compared to the dose-to-water determination based on air-kerma strength in the TG-43 protocol

  9. SU-E-T-561: Development of Depth Dose Measurement Technique Using the Multilayer Ionization Chamber for Spot Scanning Method

    SciTech Connect

    Takayanagi, T; Fujitaka, S; Umezawa, M; Ito, Y; Nakashima, C; Matsuda, K

    2014-06-01

    Purpose: To develop a measurement technique which suppresses the difference between profiles obtained with a multilayer ionization chamber (MLIC) and with a water phantom. Methods: The developed technique multiplies the raw MLIC data by a correction factor that depends on the initial beam range and water equivalent depth. The correction factor is derived based on a Bragg curve calculation formula considering range straggling and fluence loss caused by nuclear reactions. Furthermore, the correction factor is adjusted based on several integrated depth doses measured with a water phantom and the MLIC. The measured depth dose profiles along the central axis of the proton field with a nominal field size of 10 by 10 cm were compared between the MLIC using the new technique and the water phantom. The spread out Bragg peak was 20 cm for fields with a range of 30.6 cm and 6.9 cm. Raw MLIC data were obtained with each energy layer, and integrated after multiplying by the correction factor. The measurements were performed by a spot scanning nozzle at Nagoya Proton Therapy Center, Japan. Results: The profile measured with the MLIC using the new technique is consistent with that of the water phantom. Moreover, 97% of the points passed the 1% dose /1mm distance agreement criterion of the gamma index. Conclusion: We have demonstrated that the new technique suppresses the difference between profiles obtained with the MLIC and with the water phantom. It was concluded that this technique is useful for depth dose measurement in proton spot scanning method.

  10. SU-D-213-04: Accounting for Volume Averaging and Material Composition Effects in An Ionization Chamber Array for Patient Specific QA

    SciTech Connect

    Fugal, M; McDonald, D; Jacqmin, D; Koch, N; Ellis, A; Peng, J; Ashenafi, M; Vanek, K

    2015-06-15

    Purpose: This study explores novel methods to address two significant challenges affecting measurement of patient-specific quality assurance (QA) with IBA’s Matrixx Evolution™ ionization chamber array. First, dose calculation algorithms often struggle to accurately determine dose to the chamber array due to CT artifact and algorithm limitations. Second, finite chamber size and volume averaging effects cause additional deviation from the calculated dose. Methods: QA measurements were taken with the Matrixx positioned on the treatment table in a solid-water Multi-Cube™ phantom. To reduce the effect of CT artifact, the Matrixx CT image set was masked with appropriate materials and densities. Individual ionization chambers were masked as air, while the high-z electronic backplane and remaining solid-water material were masked as aluminum and water, respectively. Dose calculation was done using Varian’s Acuros XB™ (V11) algorithm, which is capable of predicting dose more accurately in non-biologic materials due to its consideration of each material’s atomic properties. Finally, the exported TPS dose was processed using an in-house algorithm (MATLAB) to assign the volume averaged TPS dose to each element of a corresponding 2-D matrix. This matrix was used for comparison with the measured dose. Square fields at regularly-spaced gantry angles, as well as selected patient plans were analyzed. Results: Analyzed plans showed improved agreement, with the average gamma passing rate increasing from 94 to 98%. Correction factors necessary for chamber angular dependence were reduced by 67% compared to factors measured previously, indicating that previously measured factors corrected for dose calculation errors in addition to true chamber angular dependence. Conclusion: By comparing volume averaged dose, calculated with a capable dose engine, on a phantom masked with correct materials and densities, QA results obtained with the Matrixx Evolution™ can be significantly

  11. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber: part II: use of fluorescence imaging.

    PubMed

    Li, Jiuyi; Busscher, Henk J; van der Mei, Henny C; Norde, Willem; Krom, Bastiaan P; Sjollema, Jelmer

    2011-10-15

    Using a new phase-contrast microscopy-based method of analysis, sedimentation has recently been demonstrated to be the major mass transport mechanism of bacteria towards substratum surfaces in a parallel plate flow chamber (J. Li, H.J. Busscher, W. Norde, J. Sjollema, Colloid Surf. B. 84 (2011) 76). Here we describe a novel method for enumerating adhesion of fluorescent bacteria in a parallel plate flow chamber that allows direct imaging of the bacterial distribution along the length of the flow chamber, as caused by sedimentation. Imaging of fluorescence was done using macroscopic bio-optical imaging of the entire flow chamber, including top and bottom plates as well as of the flowing suspension in between. An algorithm is forwarded that allows to separate the fluorescence arising from the suspension and bottom plate and at the same time determines the single cell fluorescence from which the bacterial distribution over the entire bottom plate can be visualized. Enumeration of the numbers of bacteria adhering to the center of the glass bottom plate for a fluorescent Staphylococcus aureus strain was found to coincide with enumerations using phase-contrast microscopy. Moreover, due to the use of macroscopic bio-optical imaging, it was found that the number of adhering staphylococci increases linearly with distance from the inlet of the flow chamber, which could be explained from a simplified mass balance of convection, sedimentation and blocking near the bottom plate of the flow chamber.

  12. SU-E-T-625: Use and Choice of Ionization Chambers for the Commissioning of Flattened and Flattening-Filter-Free Photon Beams: Determination of Recombination Correction Factor (ks)

    SciTech Connect

    Stucchi, C; Mongioj, V; Carrara, M; Pignoli, E; Bonfantini, F; Bresolin, A

    2014-06-15

    Purpose: To evaluate the recombination effect for some ionization chambers to be used for linacs commissioning for Flattened Filter (FF) and Flattening Filter Free (FFF) photon beams. Methods: A Varian TrueBeam linac with five photon beams was used: 6, 10 and 15 MV FF and 6 and 10 MV FFF. Measurements were performed in a water tank and in a plastic water phantom with different chambers: a mini-ion chamber (IC CC01, IBA), a plane-parallel ion chamber (IC PPC05, IBA) and two Farmer chambers (NE2581 and FPC05-IBA). Measurement conditions were Source- Surface Distance of 100 cm, two field sizes (10x10 and 40x40 cm2) and five depths (1cm, maximum buildup, 5cm, 10cm and 20cm). The ion recombination factors (kS), obtained from the Jaffe's plots (voltage interval 50-400 V), were evaluated at the recommended operating voltage of +300V. Results: Dose Per Pulse (DPP) at dmax was 0.4 mGy/pulse for FF beams, 1.0 mGy/pulse and 1.9 mGy/pulse for 6MV and 10 MV FFF beams respectively. For all measurement conditions, kS ranged between 0.996 and 0.999 for IC PPC05, 0.997 and 1.008 for IC CC01. For the FPC05 IBA Farmer IC, kS varied from 1.001 to 1.011 for FF beams, from 1.004 to 1.015 for 6 MV FFF and from 1.009 to 1.025 for 10 MV FFF. Whereas, for NE2581 IC the values ranged from 1.002 to 1.009 for all energy beams and measurement conditions. Conclusion: kS depends on the chamber volume and the DPP, which in turn depends on energy beam but is independent of dose rate. Ion chambers with small active volume can be reliably used for dosimetry of FF and FFF beams even without kS correction. On the contrary, for absolute dosimetry of FFF beams by Farmer ICs it is necessary to evaluate and apply the kS correction. Partially supported by Lega Italiana Lotta contro i Tumori (LILT)

  13. Long-term stability of liquid ionization chambers with regard to their qualification as local reference dosimeters for low dose-rate absorbed dose measurements in water.

    PubMed

    Bahar-Gogani, J; Grindborg, J E; Johansson, B E; Wickman, G

    2001-03-01

    The long-term sensitivity and calibration stability of liquid ionization chambers (LICs) has been studied at a local and a secondary standards dosimetry laboratory over a period of 3 years. The chambers were transported several times by mail between the two laboratories for measurements. The LICs used in this work are designed for absorbed dose measurements in the dose rate region of 0.1-100 mGy min(-1) and have a liquid layer thickness of 1 mm and a sensitive volume of 16.2 mm3. The liquids used as sensitive media in the chambers are mixtures of isooctane (C8H18) and tetramethylsilane (Si(CH3)4) in different proportions (about 2 to 1). Operating at a polarizing voltage of 300 V the leakage current of the chambers was stable and never exceeded 3% of the observable current at a dose rate of about 1 mGy min(-1). The volume sensitivity of the chambers was measured to be of the order of 10(-9) C Gy(-1) mm3. No systematic changes in the absorbed dose to water calibration was observed for any of the chambers during the test period (sigma < 0.2%). Variations in chamber dose response with small changes in the polarizing voltage as well as sensitivity changes with accumulated absorbed dose were also investigated. Measurements showed that the LIC response varies by 0.15% per 1% change in applied voltage around 300 V. No significant change could be observed in the LIC sensitivity after a single absorbed dose of 15 kGy. The results indicate that the LIC can be made to serve as a calibration transfer instrument and a reference detector for absorbed dose to water determinations providing good precision and long-term reproducibility.

  14. SU-E-T-645: Qualification of a 2D Ionization Chamber Array for Beam Steering and Profile Measurement

    SciTech Connect

    Gao, S; Balter, P; Rose, M; Simon, W

    2015-06-15

    Purpose: Establish a procedure for beam steering and profile measurement using a 2D ionization chamber array and show equivalence to a water scanning system. Methods: Multiple photon beams (30×30cm{sup 2} field) and electron beams (25×25cm{sup 2} cone) were steered in the radial and transverse directions using Sun Nuclear’s IC PROFILER (ICP). Solid water was added during steering to ensure measurements were beyond the buildup region. With steering complete, servos were zeroed and enabled. Photon profiles were collected in a 30×30cm{sup 2} field at dmax and 2.9 cm depth for flattened and FFF beams respectively. Electron profiles were collected with a 25×25cm{sup 2} cone and effective depth (solid water + 0.9 cm intrinsic buildup) as follows: 0.9 cm (6e), 1.9 cm (9e), 2.9 cm (12e, 16e, 20e). Profiles of the same energy, field size and depth were measured in water with Sun Nuclear’s 3D SCANNER (3DS). Profiles were re-measured using the ICP after the in-water scans. Profiles measured using the ICP and 3DS were compared by (a) examining the differences in Varian’s “Point Difference Symmetry” metric, (b) visual inspection of the overlaid profile shapes and (c) calculation of point-by-point differences. Results: Comparing ICP measurements before and after water scanning showed very good agreement indicating good stability of the linac and measurement system. Comparing ICP Measurements to water phantom measurements using Varian’s symmetry metric showed agreement within 0.5% for all beams. The average magnitude of the agreement was within 0.2%. Comparing ICP Measurements to water phantom measurements using point-by-point difference showed agreement within 0.5% inside of 80% area of the field width. Conclusion: Profile agreement to within 0.5% was observed between ICP and 3DS after steering multiple energies with the ICP. This indicates that the ICP may be used for steering electron beams, and both flattened and FFF photon beams. Song Gao: Sun Nuclear

  15. SU-E-T-460: Impact of the LINAC Repetition Rate On a High-Resolution Liquid Ionization Chamber Array for Patient-Specific QA

    SciTech Connect

    Wang, S; Driewer, J; Zheng, D; Lei, Y; Zhang, Q; Zhu, X; Li, S; Enke, C; Zhou, S; Xu, B

    2015-06-15

    Purpose: The purpose of this study is to investigate the LINAC repetition-rate (dose-rate) dependence of OCTAVIUS 1000SRS liquid ionization chamber (LIC) array for patient specific QA of SRT plans delivered with flattening-filter-free (FFF) beams. Methods: 1) The repetition-rate dependence of 1000SRS was measured in a phantom constructed with 5-cm solid water above and below the array for build-up and backscatter. A 0.3cc calibrated ion chamber was also placed along the central axis 2.3cm below the center chamber of the array for normalizing LINAC output fluctuation. The signals from the center chamber of the array under different repetition rates in the range of 400–2400 MU/min for 6xFFF and 10xFFF beams on a Varian TrueBeamSTx LINAC, normalized by the independent chamber readings, were analyzed for the array response dependence on repetition rates. 2) Twelve Step-and-shoot IMRS QA plans (6xFFF and 10xFFF) were delivered to the array under different repetition rates for analysis and comparison. 3) The absolute doses measured by the center chamber were compared to measurements using an independent ionization chamber with the identical setup, taken as the gold standard. 4) The correction factors based on the actual delivery repetition rate were applied to the measurements, and the results were compared again to the gold standard. Results: 1) The 1000SRS array exhibited repetition-rate dependence for FFF beams, up to 5% for 6xFFF and 10% for 10xFFF; 2) The array showed clinically-acceptable repetition-rate dependence for regular flattened beams; 3) This repetition-rate dependence significantly affected the measurement accuracy, thereby affecting IMRS QA results; 4) By applying an empirical repetition-rate correction, the corrected measurements agreed better with the gold standard ion chamber measurements. Conclusion: OCTAVIUS 1000SRS LIC array exhibited considerable repetition-rate dependence for FFF beams, which will affect the accuracy of the absolute QA

  16. [Experimental investigation of the collection efficiency of a PTW Roos ionization chamber irradiated with pulsed beams at high pulse dose with different pulse lengths].

    PubMed

    Karsch, Leonhard; Richter, Christian; Pawelke, Jörg

    2011-01-01

    In gas-filled ionization chambers as radiation detectors, the collection of the charge carriers is affected by the recombination effect. In dosimetry this effect must be accounted for by the saturation correction factor k(S). The physical description of the correction factor by Boag, Hochhäuser and Balk for pulsed radiation is well established. However, this description is only accurate when the pulse length is short compared to the collection time of the ionization chamber. In this work experimental investigations of the saturation correction factor have been made for pulses of 4 μ s up to pulse doses of about 230 mGy, and the theory of Boag, Hochhäuser and Balk was again confirmed. For longer pulses, however, the correction factor decreases and at a pulse duration of about 200μs reaches 75% of the value valid for short pulses. This reduced influence of the ion recombination is interpreted by the reaction kinetics of ion recombination as a second-order reaction. This effect is negligible for PTW Roos chambers at clinical linear accelerators with 4 μ s pulse duration for pulse doses up to 120 mGy.

  17. Right/left assignment in drift chambers and proportional multiwire chambers (PWC's) using induced signals

    DOEpatents

    Walenta, Albert H.

    1979-01-01

    Improved multiwire chamber having means for resolving the left/right ambiguity in the location of an ionizing event. The chamber includes a plurality of spaced parallel anode wires positioned between spaced planar cathodes. Associated with each of the anode wires are a pair of localizing wires, one positioned on either side of the anode wire. The localizing wires are connected to a differential amplifier whose output polarity is determined by whether the ionizing event occurs to the right or left of the anode wire.

  18. Photoneutron production of a Siemens Primus linear accelerator studied by Monte Carlo methods and a paired magnesium and boron coated magnesium ionization chamber system.

    PubMed

    Becker, J; Brunckhorst, E; Schmidt, R

    2007-11-07

    When radiotherapy with photon energies greater than 10 MV is performed neutrons contaminate the photon beam. In this paper the neutron contamination of the 15 MV photon mode of the Siemens Primus accelerator was studied. The Monte Carlo code MCNPX was used for the description of the treatment head and treatment room. The Monte Carlo results were verified by studying the photon depth dose curve and beam profiles in a water phantom. After these verifications the locations of neutron production were studied and the neutron source spectrum and strength were calculated. The neutron response of the paired Mg/Ar and MgB/Ar ionization chamber system was calculated and experimentally verified for two experimental set-ups. The paired chamber system allowed us to measure neutrons inside the field borders and allowed rapid and point wise measurement in contrast to other methods of neutron detection.

  19. Early biofilm formation and the effects of antimicrobial agents on orthodontic bonding materials in a parallel plate flow chamber.

    PubMed

    Chin, Mervyn Y H; Busscher, Henk J; Evans, Robert; Noar, Joseph; Pratten, Jonathan

    2006-02-01

    Decalcification is a commonly recognized complication of orthodontic treatment with fixed appliances. A technology, based on a parallel plate flow chamber, was developed to investigate early biofilm formation of a strain of Streptococcus sanguis on the surface of four orthodontic bonding materials: glass ionomer cement (Ketac Cem), resin-modified glass ionomer cement (Fuji Ortho LC), chemically-cured composite resin (Concise) and light-cured composite resin (Transbond XT). S. sanguis was used as it is one of the primary colonizers of dental hard surfaces. Artificial saliva was supplied as a source of nutrients for the biofilms. The effects of two commercially available mouthrinses (i.e. a fluoride containing rinse and chlorhexidine) were evaluated. Initial colonization of the bacterium was assessed after 6 hours of growth by the percentage surface coverage (PSC) of the biofilm on the disc surfaces. There were statistically significant differences in bacterial accumulation between different bonding materials (P < 0.05), Concise being the least colonized and Transbond XT being the most colonized by S. sanguis biofilms. All materials pre-treated with 0.05 per cent sodium fluoride mouthrinse showed more than 50 per cent reduction in biofilm formation. The 0.2 per cent chlorhexidine gluconate mouthrinse caused significant reduction of biofilm formation on all materials except Ketac Cem. This in vitro study showed that the use of a chemically-cured composite resin (Concise) reduced early S. sanguis biofilm formation. Also, fluoride had a greater effect in reducing the PSC by S. sanguis biofilms than chlorhexidine. Rinsing with 0.05 per cent sodium fluoride prior to placement of orthodontic appliances is effective in reducing early biofilm formation.

  20. Instantaneous and continuous measurement of /sup 14/C-labeled substrate oxidation to /sup 14/CO2 by minute tissue specimens: an ionization chamber method

    SciTech Connect

    Davidson, W.D.; Klein, K.L.; Kurokawa, K.; Soll, A.H.

    1981-06-01

    The vibrating reed electrometer and ionization chamber have been adapted for the instantaneous and continuous measurement of /sup 14/C-labeled substrate oxidation to /sup 14/CO2 by minute quantities of isolated tissues. This modified technique, utilizing a ''closed'' circulation incubation system, is 10-50 times as sensitive as the previously described ''open'' circulation techniques. Substrate oxidation curves are described for human erythrocytes and polymorphonuclear leucocytes, canine parietal cells and isolated segments of the rat nephron. This apparatus should prove to be a useful tool for metabolic studies of small quantities of isolated tissue.

  1. (18)F primary standard at ENEA-INMRI by three absolute techniques and calibration of a well-type IG11 ionization chamber.

    PubMed

    Capogni, Marco; Carconi, Pierluigi; De Felice, Pierino; Fazio, Aldo

    2016-03-01

    A new (18)F primary standardization carried out at ENEA-INMRI by three different absolute techniques, i.e. 4πγNaI(Tl)γ high-efficiency counting, TDCR and 4πβ(LS)-γ[NaI(Tl)] coincidence counting method, allowed the calibration of a fixed well-reentrant IG11 ionization chamber (IC), with an uncertainty lower than 1%, and to check the calibration factor of a portable well-type IC NPL-CRC model, previously calibrated. By the new standard the ENEA-INMRI was linked to the BIPM International Reference System (SIR) through the BIPM SIR Transfer Instrument (SIRTI).

  2. High energy photon reference for radiation protection: technical design of the LINAC beam and ionization chambers; and calculation of monoenergetic conversion coefficients

    NASA Astrophysics Data System (ADS)

    Dusciac, D.; Bordy, J.-M.; Daures, J.; Blideanu, V.

    2016-09-01

    In this work, we present the results of the first part of a research project aimed at offering a complete response to dosimeters providers and nuclear physicists' demands for high-energy (6 - 9 MeV) photon beams for radiation protection purposes. Classical facilities allowing the production of high-energy photonic radiation (proton accelerators, nuclear reactors) are very rare and need large investment for development and use. A novel solution is proposed, consisting in the use of a medical linear accelerator, allowing a significant decrease of all costs.Using Monte Carlo simulations (MCNP5 and PENELOPE codes), a specifically designed electron-photon conversion target allowing for obtaining a high energy photon beam (with an average energy weighted by fluence of about 6 MeV) has been built for radiation protection purposes. Due to the specific design of the target, this "realistic" radiation protection high-energy photon beam presents a uniform distribution of air kerma rate at a distance of 1 m, over a 30 × 30 cm2 surface. Two graphite cavity ionizing chambers for ionometric measurements have been built. For one of these chambers, the charge collection volume has been measured allowing for its use as a primary standard. The second ionizing chamber is used as a transfer standard; as such it has been calibrated in a 60Co beam, and in the high energy photon beam for radiation protection.The measurements with these ionizing chambers allowed for an evaluation of the air kerma rate in the LINAC based high-energy photon beam for radiation protection: the values cover a range between 36 mGy/h and 210 mGy/h, compatible with radiation protection purposes.Finally, using Monte Carlo simulations, conversion coefficients from air kerma to dose equivalent quantities have been calculated in the range between 10 keV and 22.4 MeV, for the spectral distribution of the fluence corresponding to the beam produced by the linear accelerator of the LNE-LNHB.

  3. Direct measurement of absorbed dose to water in HDR {sup 192}Ir brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43

    SciTech Connect

    Sarfehnia, Arman; Kawrakow, Iwan; Seuntjens, Jan

    2010-04-15

    Purpose: Gafchromic film and ionometric calibration procedures for HDR {sup 192}Ir brachytherapy sources in terms of dose rate to water are presented and the experimental results are compared to the TG-43 protocol as well as with the absolute dose measurement results from a water calorimetry-based primary standard. Methods: EBT-1 Gafchromic films, an A1SL Exradin miniature Shonka thimble type chamber, and an SI HDR 1000 Plus well-type chamber (Standard Imaging, Inc., Middleton, WI) with an ADCL traceable S{sub k} calibration coefficient (following the AAPM TG-43 protocol) were used. The Farmer chamber and Gafchromic film measurements were performed directly in water. All results were compared to direct and absolute absorbed dose to water measurements from a 4 deg. C stagnant water calorimeter. Results: Based on water calorimetry, the authors measured the dose rate to water to be 361{+-}7 {mu}Gy/(h U) at a 55 mm source-to-detector separation. The dose rate normalized to air-kerma strength for all the techniques agree with the water calorimetry results to within 0.83%. The overall 1-sigma uncertainty on water calorimetry, ionization chamber, Gafchromic film, and TG-43 dose rate measurement amounts to 1.90%, 1.44%, 1.78%, and 2.50%, respectively. Conclusions: This work allows us to build a more realistic uncertainty estimate for absorbed dose to water determination using the TG-43 protocol. Furthermore, it provides the framework necessary for a shift from indirect HDR {sup 192}Ir brachytherapy dosimetry to a more accurate, direct, and absolute measurement of absorbed dose to water.

  4. Correction factors for the NMi free-air ionization chamber for medium-energy x-rays calculated with the Monte Carlo method.

    PubMed

    Grimbergen, T W; van Dijk, E; de Vries, W

    1998-11-01

    A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range.

  5. SU-E-T-414: Experimental Correction of High-Z Electrode Effect in Mini-Ionization Chambers for Small Beam Dosimetry

    SciTech Connect

    Larraga-Gutierrez, J

    2015-06-15

    Purpose: To correct for the over-response of mini-ionization chambers with high-Z central electrodes. The hypothesis is that by applying a negative/reverse voltage, it is possible to suppress the signal generated in the high-Z central electrode by low-energy photons. Methods: The mini-ionization chambers used in the experiments were a PTW-31014, PTW-31006 and IBA-CC01. The PTW-31014 has an aluminum central electrode while the PTW-31006 and IBA-CC01 have a steel one. Total scatter factors (Scp) were measured for a 6 MV photon beam down to a square field size of 0.5 cm. The measurements were performed in water at 10 cm depth with SAD of 100 cm. The Scp were measured with the dosimeters with +400V bias voltage. In the case of the PTW-31006 and IBA-CC01, the measurements were repeated with −400V bias voltage. Also, the field factors in water were calculated with Monte Carlo simulations for comparison. Results: The measured Scp at +400V with the PTW-31006 and IBA-CC01 detectors were in agreement within 0.2% down to a field size of 1.5 cm. Both dosimeters shown a systematic difference about 2.5% with the Scp measured with the PTW-31014 and the Monte Carlo calculated field factors. The measured Scp at −400V with the PTW-31006 and IBA-CC01 detectors were in close agreement with the PTW-31014 measured Scp and the field factors within 0.3 and 1.0%, respectively. In the case of the IBA-CC01 it was found a good agreement (1%) down to field size of 1.0 cm. All the dosimeters shown differences up to 17% between the measured Scp and the field factor for the 0.5 cm field size. Conclusion: By applying a negative/reverse voltage to the mini-ionization chambers with high-Z central electrode it was possible to correct for their over-response to low energy photons.

  6. Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress

    PubMed Central

    Lane, Whitney O.; Jantzen, Alexandra E.; Carlon, Tim A.; Jamiolkowski, Ryan M.; Grenet, Justin E.; Ley, Melissa M.; Haseltine, Justin M.; Galinat, Lauren J.; Lin, Fu-Hsiung; Allen, Jason D.; Truskey, George A.; Achneck, Hardean E.

    2012-01-01

    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6. PMID:22297325

  7. Parallel-plate flow chamber and continuous flow circuit to evaluate endothelial progenitor cells under laminar flow shear stress.

    PubMed

    Lane, Whitney O; Jantzen, Alexandra E; Carlon, Tim A; Jamiolkowski, Ryan M; Grenet, Justin E; Ley, Melissa M; Haseltine, Justin M; Galinat, Lauren J; Lin, Fu-Hsiung; Allen, Jason D; Truskey, George A; Achneck, Hardean E

    2012-01-17

    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12).

  8. Output current variation and polarity effect by electric field and ion-pair non-uniformity inside thimble-type ionization chamber

    NASA Astrophysics Data System (ADS)

    Kim, Jaecheon; Kim, Yong Kyun; Kim, Soon Young; Kim, Jong Kyung

    2007-09-01

    A new analytic approach considering both electric field and ion-pair non-uniformity has been proposed to accurately analyze the design characteristics of an ionization chamber and to interpret measurements. It is commonly assumed that ion-pairs are generated uniformly in the air volume, but such an assumption ignores various source and geometry conditions. The new approach was applied to angular dependence analysis and to polarity effect assessment in an ionization chamber. For the angular dependence analysis, whole, uniform, and non-uniform output currents were calculated as a function of the irradiation angle for an 241Am gamma-ray source. The non-uniform output current proposed in this paper was found to be closer to the measured one. This is because the non-uniform output current takes into account the ion-pair distribution in the air volume as well as the active volume determined by the electric field. For the polarity effect assessment, the amount of field distortion due to potential difference and actual current difference was calculated. Previous methods cannot appropriately estimate the variation of polarity effect because they ignore the influence of the ion-pair distribution. The polarity effect assessment using the non-uniform output current can be more useful for obtaining the practical current difference, because this assessment considers both the variation of active volume and the ion-pair non-uniformity according to source conditions such as the irradiation angle and the distance. It is important to precisely calculate not only the active volume, but also the variation in the ion-pair distribution.

  9. Characterization of radiation beams used to determinate the correction factor for a CyberKnife® unit reference field using ionization chambers

    SciTech Connect

    Aragón-Martínez, Nestor Massillon-JL, Guerda; Gómez-Muñoz, Arnulfo

    2014-11-07

    This paper aimed to characterize a 6 MV x-ray beam from a Varian® iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism{sup 1}. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm × 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm × 10 cm and 5.4 cm × 5.4 cm fields was obtained in order to simulate the CyberKnife® conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm × 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm × 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife® conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  10. Characterization of radiation beams used to determinate the correction factor for a CyberKnife® unit reference field using ionization chambers

    NASA Astrophysics Data System (ADS)

    Aragón-Martínez, Nestor; Gómez-Muñoz, Arnulfo; Massillon-JL, Guerda

    2014-11-01

    This paper aimed to characterize a 6 MV x-ray beam from a Varian® iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism1. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm × 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm × 10 cm and 5.4 cm × 5.4 cm fields was obtained in order to simulate the CyberKnife® conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm × 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm × 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife® conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  11. A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk components of complex gas mixtures: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser-induced electron impact ionization.

    PubMed

    Mühlberger, F; Zimmermann, R; Kettrup, A

    2001-08-01

    A newly developed compact and mobile time-of-flight mass spectrometer (TOFMS) for on-line analysis and monitoring of complex gas mixtures is presented. The instrument is designed for a (quasi-)simultaneous application of three ionization techniques that exhibit different ionization selectivities. The highly selective resonance-enhanced multiphoton ionization (REMPI) technique, using 266-nm UV laser pulses, is applied for selective and fragmentationless ionization of aromatic compounds at trace levels (parts-per-billion volume range). Mass spectra obtained using this technique show the chemical signature solely of monocyclic (benzene, phenols, etc.) and polycyclic (naphthalene, phenathrene, indol, etc.) aromatic species. Furthermore, the less selective but still fragmentationless single photon ionization (SPI) technique with 118-nm VUV laser pulses allows the ionization of compounds with an ionization potential below 10.5 eV. Mass spectra obtained using this technique show the profile of most organic compounds (aliphatic and aromatic species, like nonane, acetaldehyde, or pyrrol) and some inorganic compounds (e.g., ammonia, nitrogen monoxide). Finally, the nonselective ionization technique laser-induced electron-impact ionization (LEI) is applied. However, the sensitivity of the LEI technique is adjusted to be fairly low. Thus, the LEI signal in the mass spectra gives information on the inorganic bulk constituents of the sample (i.e., compounds such as water, oxygen, nitrogen, and carbon dioxide). Because the three ionization methods (REMPI, SPI, LEI) exhibit largely different ionization selectivities, the isolated application of each method alone solely provides specific mass spectrometric information about the sample composition. Special techniques have been developed and applied which allow the quasi-parallel use of all three ionization techniques for on-line monitoring purposes. Thus, a comprehensive characterization of complex samples is feasible jointly using

  12. Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer

    SciTech Connect

    Crosbie, Jeffrey C.; Rogers, Peter A. W.; Stevenson, Andrew W.; Hall, Christopher J.; Lye, Jessica E.; Nordstroem, Terese; Midgley, Stewart M.; Lewis, Robert A.

    2013-06-15

    Purpose: Novel, preclinical radiotherapy modalities are being developed at synchrotrons around the world, most notably stereotactic synchrotron radiation therapy and microbeam radiotherapy at the European Synchrotron Radiation Facility in Grenoble, France. The imaging and medical beamline (IMBL) at the Australian Synchrotron has recently become available for preclinical radiotherapy and imaging research with clinical trials, a distinct possibility in the coming years. The aim of this present study was to accurately characterize the synchrotron-generated x-ray beam for the purposes of air kerma-based absolute dosimetry. Methods: The authors used a theoretical model of the energy spectrum from the wiggler source and validated this model by comparing the transmission through copper absorbers (0.1-3.0 mm) against real measurements conducted at the beamline. The authors used a low energy free air ionization chamber (LEFAC) from the Australian Radiation Protection and Nuclear Safety Agency and a commercially available free air chamber (ADC-105) for the measurements. The dimensions of these two chambers are different from one another requiring careful consideration of correction factors. Results: Measured and calculated half value layer (HVL) and air kerma rates differed by less than 3% for the LEFAC when the ion chamber readings were corrected for electron energy loss and ion recombination. The agreement between measured and predicted air kerma rates was less satisfactory for the ADC-105 chamber, however. The LEFAC and ADC measurements produced a first half value layer of 0.405 {+-} 0.015 and 0.412 {+-} 0.016 mm Cu, respectively, compared to the theoretical prediction of 0.427 {+-} 0.012 mm Cu. The theoretical model based upon a spectrum calculator derived a mean beam energy of 61.4 keV with a first half value layer of approximately 30 mm in water. Conclusions: The authors showed in this study their ability to verify the predicted air kerma rate and x-ray attenuation

  13. Measurements of miniature ionization chamber currents in the JSI TRIGA Mark II reactor demonstrate the importance of the delayed contribution to the photon field in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Radulović, Vladimir; Fourmentel, Damien; Barbot, Loïc; Villard, Jean-François; Kaiba, Tanja; Gašper, Žerovnik; Snoj, Luka

    2015-12-01

    The characterization of experimental locations of a research nuclear reactor implies the determination of neutron and photon flux levels within, with the best achievable accuracy. In nuclear reactors, photon fluxes are commonly calculated by Monte Carlo simulations but rarely measured on-line. In this context, experiments were conducted with a miniature gas ionization chamber (MIC) based on miniature fission chamber mechanical parts, recently developed by the CEA (French Atomic Energy and Alternative Energies Commission) irradiated in the core of the Jožef Stefan Institute TRIGA Mark II reactor in Ljubljana, Slovenia. The aim of the study was to compare the measured MIC currents with calculated currents based on simulations with the MCNP6 code. A discrepancy of around 50% was observed between the measured and the calculated currents; in the latter taking into consideration only the prompt photon field. Further experimental measurements of MIC currents following reactor SCRAMs (reactor shutdown with rapid insertions of control rods) provide evidence that over 30% of the total measured signal is due to the delayed photon field, originating from fission and activation products, which are untreated in the calculations. In the comparison between the measured and calculated values, these findings imply an overall discrepancy of less than 20% of the total signal which is still unexplained.

  14. WE-EF-207-11: Energy and Depth Response of Thermoluminescent Dosimeters and Ionization Chambers in Water for Kilovoltage X-Ray Beams

    SciTech Connect

    Lawless, M; Palmer, B; DeWerd, L

    2015-06-15

    Purpose: To assess the effects of changes in beam quality on detector response in the kilovoltage energy range by modulating the x-ray tube voltage and the measurement depth in water. Methods: Measurements were performed with TLD-100 and TLD-100H thermoluminescent dosimeters and an A12 farmer-type ionization chamber. To assess the energy response of the detectors, irradiations were performed at a depth of 3 cm in a custom-built thin-window water phantom using the moderately filtered x-ray beams at the UWADCL (20 kVp-250 kVp) and a Co-60 beam.The x-ray beams and detectors were modeled using the EGSnrc Monte Carlo code. The model was validated by simulating dose to the collecting volume of an A12 farmer chamber and comparing it with measured A12 signal as a function of depth. Dose was tallied to each detector and to water for comparison with measurements. Simulations were used to calculate the predicted energy response, which was compared to the measured response of each detector. Dose to each detector and dose to water as a function of depth were also simulated. Results: Detector output per dose to water was found to deviate by up to 15%, 20% and 30% as a function of energy relative to Co-60 for the A12, TLD-100H and TLD-100, respectively. The EGSnrc simulations produced results similar to the measurements for ionization chambers, but discrepancies of up to 30% were observed for TLD-100H. Simulated detector response as a function of depth was found to vary by up to 3%. Conclusion: These results suggest that changes in beam quality in kilovoltage x-ray beams can have a significant impact on detector response. In-water detector response was found to differ from the previously investigated in-air response. Deviations in detector response as a function of depth were less significant, but could potentially cause dosimetric errors if ignored.

  15. Assaying multiple 125I seeds with the well-ionization chamber SourceCheck4π 33005 and a new insert

    PubMed Central

    Ballester, Facundo; Perez-Calatayud, Jose; Vijande, Javier

    2015-01-01

    Purpose To provide a practical solution that can be adopted in clinical routine to fulfill the AAPM-ESTRO recommendations regarding quality assurance of seeds used in prostate permanent brachytherapy. The aim is to design a new insert for the well-ionization chamber SourceCheck4π 33005 (PTW, Germany) that allows evaluating the mean air-kerma strength of up to ten 125I seeds with one single measurement instead of measuring each seed individually. Material and methods The material required is: a) the SourceCheck4π 33005 well-ionization chamber provided with a PTW insert to measure the air-kerma strength S K of one single seed at a time; b) a newly designed insert that accommodates ten seeds in one column, which allows measuring the mean S K of the ten seeds in one single measurement; and c) a container with ten seeds from the same batch and class of the seeds used for the patient implant, and a set of nine non-radioactive seeds. The new insert is characterized by determining its calibration coefficient, used to convert the reading of the well-chamber when ten seeds are measured to their mean S K. The proposed method is validated by comparing the mean S K of the ten seeds obtained from the new insert with the individual measurement of S K of each seed, evaluated with the PTW insert. Results The ratio between the calibration coefficient of the new insert and the calibration coefficient of the PTW insert for the SourceCheck4π 33005 is 1.135 ± 0.007 (k = 1). The mean S K of a set of ten seeds evaluated with this new system is in agreement with the mean value obtained from measuring independently the S K of each seed. Conclusions The new insert and procedure allow evaluating the mean S K of ten seeds prior to the implant in a single measurement. The method is faster and more efficient from radiation protection point of view than measuring the individual S K of each seed. PMID:26816507

  16. Poster — Thur Eve — 21: Off-axis dose perturbation effects in water in a 5 × 5 cm{sup 2} 18 MV photon beam for the PTW microLion and Exradin A1SL ionization chambers

    SciTech Connect

    O'Grady, K; Davis, S D; Papaconstadopoulos, P; Seuntjens, J

    2014-08-15

    A PTW microLion liquid ionization chamber and an Exradin A1SL air-filled ionization chamber have been modeled using the egs-chamber user code of the EGSnrc system to determine their perturbation effects in water in a 5 × 5 cm{sup 2} 18 MV photon beam. A model of the Varian CL21EX linear accelerator was constructed using the BEAMnrc Monte Carlo code, and was validated by comparing measured PDDs and profiles from the microLion and A1SL chambers to calculated results that included chamber models. Measured PDDs for a 5 × 5 cm{sup 2} field for the microLion chamber agreed with calculations to within 1.5% beyond a depth of 0.5 cm, and the A1SL PDDs agreed within 1.0% beyond 1.0 cm. Measured and calculated profiles at 10 cm depth agreed within 1.0% for both chambers inside the field, and within 4.0% near the field edge. Local percent differences increased up to 15% at 4 cm outside the field. The ratio of dose to water in the absence of the chamber relative to dose in the chamber's active volume as a function of off-axis distance was calculated using the egs-chamber correlated sampling technique. The dose ratio was nearly constant inside the field and consistent with the stopping power ratios of water to detector material, but varied up to 3.3% near the field edge and 5.2% at 4 cm outside the field. Once these perturbation effects are fully characterized for more field sizes and detectors, they could be applied to clinical water tank measurements for improved dosimetric accuracy.

  17. Detecting X-rays with an optical imaging chamber

    NASA Astrophysics Data System (ADS)

    Austin, Robert A.; Ramsey, Brian D.

    1992-10-01

    The light emitted by electron avalanches in a parallel plate chamber can be used to image the tracks of photoelectrons liberated by the interaction of an incident X-ray with the gas filling the chamber. The different morphologies of photoelectron tracks and minimum ionizing tracks can be used for charged particle rejection. The initial direction (before scattering) of the liberated photoelectron also contains information about the polarization of the incident radiation. We have built a small test chamber with which we have imaged photoelectron tracks using an intensified CCD camera. Our results show that optical imaging could be used in a hard X-ray imaging polarimeter useful for astronomy.

  18. Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber.

    PubMed

    Roosjen, Astrid; Boks, Niels P; van der Mei, Henny C; Busscher, Henk J; Norde, Willem

    2005-11-25

    Microbial adhesion to surfaces often occurs despite high wall shear rates acting on the adhering microorganisms. In this paper, we compare the wall shear rates needed to prevent microbial adhesion to bare glass and poly(ethylene oxide) (PEO)-brush coated glass in a parallel plate flow chamber. Initial microbial deposition rates were determined for different wall shear rates between 4 and 1600 s(-1) on the top and bottom plates of the flow chamber. Deposition efficiencies alpha(SL), based on the Smoluchowski-Levich approach, for Pseudomonas aeruginosa D1, Escherichia coli O2K2 and Candida tropicalis GB 9/9 decreased with increasing wall shear rates and were lower for PEO-brush coated glass than for bare glass. Characteristic shear rates preventing adhesion to the bottom plate were around 10 and 1.0 s(-1) for the bacteria on glass and the PEO-brush and 36 and 3.4s(-1) for the yeast strain on glass and the PEO-brush, respectively. This demonstrates that the adhesive forces between microorganisms and a PEO-brush are comparatively weak, although some strains may have the ability to adhere to a PEO-brush under low shear conditions. Microbial deposition efficiencies alpha(SL) were much larger, however, than unity for bottom plate deposition, but could be reduced to realistic values by averaging the deposition rates found for the top (negative contribution of sedimentation) and bottom (positive contribution of sedimentation) plates.

  19. A pixel chamber to monitor the beam performances in hadron therapy

    NASA Astrophysics Data System (ADS)

    Bonin, R.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Marchetto, F.; Peroni, C.; Sanz Freire, C. J.; Simonetti, L.

    2004-03-01

    In this paper we describe the design, construction, and tests of a parallel plate ionization chamber with the anode segmented in (32×32) square pixels. The performance of the read out and data acquisition systems is also discussed. The design of the chamber has been finalized to be used as a beam monitor for therapeutical treatments. Position and flux resolution obtained with a carbon ion beam are presented.

  20. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    SciTech Connect

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

  1. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  2. NOTE: Hybrid plan verification for intensity-modulated radiation therapy (IMRT) using the 2D ionization chamber array I'mRT MatriXX—a feasibility study

    NASA Astrophysics Data System (ADS)

    Dobler, Barbara; Streck, Natalia; Klein, Elisabeth; Loeschel, Rainer; Haertl, Petra; Koelbl, Oliver

    2010-01-01

    The 2D ionization chamber array I'mRT MatriXX (IBA, Schwarzenbruck, Germany) has been developed for absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT) for perpendicular beam incidence. The aim of this study is to evaluate the applicability of I'mRT MatriXX for oblique beam incidence and hybrid plan verification of IMRT with original gantry angles. For the assessment of angular dependence, open fields with gantry angles in steps of 10° were calculated on a CT scan of I'mRT MatriXX. For hybrid plan verification, 17 clinical IMRT plans and one rotational plan were used. Calculations were performed with pencil beam (PB), collapsed cone (CC) and Monte Carlo (MC) methods, which had been previously validated. Measurements were conducted on an Elekta SynergyS linear accelerator. To assess the potential and limitations of the system, gamma evaluation was performed with different dose tolerances and distances to agreement. Hybrid plan verification passed the gamma test with 4% dose tolerance and 3 mm distance to agreement in all cases, in 82-88% of the cases for tolerances of 3%/3 mm, and in 59-76% of the cases if 3%/2 mm were used. Separate evaluation of the low dose and high dose regions showed that I'mRT MatriXX can be used for hybrid plan verification of IMRT plans within 3% dose tolerance and 3 mm distance to agreement with a relaxed dose tolerance of 4% in the low dose region outside the multileaf collimator (MLC).

  3. The effect of a compression paddle on energy response, calibration and measurement with mammographic dosimeters using ionization chambers and solid-state detectors.

    PubMed

    Hourdakis, C J; Boziari, A; Koumbouli, E

    2009-02-21

    A compression paddle is always used in mammography x-ray examinations, in order to improve image quality and reduce patient doses. Although clinical dose measurements should be performed with the paddle to interfere with the x-ray beam, calibration of mammography dosimeters is performed free in air without the presence of the paddle. The paddle hardens the x-ray beam, which has an impact on a dosimeter performance, particularly on high-energy-dependent detectors. Due to the paddle, clinical mammography x-ray systems may exhibit beams with HVL values exceeding those of the IEC 61267 RQR-M series qualities at which dosimeters are usually calibrated. In this study, the influence of the paddle in mammography dosimetry is examined, in Mo/Mo anode/filter x-ray qualities. PMMA slabs of 1, 2 and 3 mm thickness and Al foils of 0.05, 0.10 and 0.15 mm thicknesses were used to simulate the paddles, producing beams with HVL values from 0.28 up to 0.43 mmAl. In these qualities, four solid-state (ST) detectors and three ionizations chambers (IC) were calibrated in terms of Kair and N(K) and k(Q) were deduced. The results showed that all IC and two modern-type ST dosimeters have a flat energy response in the above HVL range (less than 3%), so their calibration factor at RQR-M2 quality could be safely used for clinical measurements. Two other ST dosimeters exhibit up to 20% energy response, so differences up to 15% in dose measurement may be observed if the effect of paddle on their performance is ignored. Finally, the need of additional mammographic calibration qualities to the existing IEC 61267 RQR-M series is examined and discussed.

  4. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE PAGES

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; ...

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 daysmore » of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  5. SU-E-T-382: Influence of Compton Currents On Profile Measurements in Small- Volume Ion Chambers

    SciTech Connect

    Tanny, S; Parsai, E; Holmes, S

    2014-06-01

    Purpose: Ionization chambers in electron radiation fields are known to exhibit polarity effects due to Compton currents. Previously we have presented a unique manifestation of this effect observed with a microionization chamber. We have expanded that investigation to include three micro-ionization chambers commonly used in radiation therapy. The purpose of this project is to determine what factors influence this polarity effect for micro-chambers and how it might be mitigated. Methods: Three chambers were utilized: a PTW 31016, an Exradin A-16, and an Exradin A- 26. Beam profile scans were obtained on a Varian TrueBeam linear accelerator in combination with a Wellhofer water phantom for 6, 9, and 12 MeV electrons. Profiles were obtained parallel and perpendicular to the chamber's long axis, with both positive and negative collecting bias. Profiles were obtained with various chamber components shielded by 5 mm of Pb at 6 MeV to determine their relative contributions to this polarity effect. Results: The polarity effect was observed for all three chambers, and the ratio of the polarity effect for the Exradin chambers is proportional to the ratio of chamber volumes. Shielding the stem of both Exradin chambers diminished, but did not remove the polarity effect. However, they demonstrated no out-of-field effect when the cable was shielded with Pb. The PTW chamber demonstrated a significantly reduced polarity effect without any shielding despite its comparable volume with the A-26. Conclusions: The sensitive volume of these micro-chambers is relatively insensitive to collecting polarity. However, charge deposition within the cable can dramatically alter measured ionization profiles. This is demonstrated by the removal of the out-of-field ionization when the cable is shielded for the Exradin chambers. We strongly recommend analyzing any polarity dependence for small-volume chambers used in characterization of electron fields.

  6. Deposition of Oral Bacteria and Polystyrene Particles to Quartz and Dental Enamel in a Parallel Plate and Stagnation Point Flow Chamber.

    PubMed

    Yang; Bos; Belder; Engel; Busscher

    1999-12-15

    The aim of this paper is to determine to what extent (i) deposition of oral bacteria and polystyrene particles, (ii) onto quartz and dental enamel with and without a salivary conditioning film, (iii) in a parallel plate (PP) and stagnation point (SP) flow chamber and at common Peclet numbers are comparable. All three bacterial strains showed different adhesion behaviors, and even Streptococcus mitis BMS, possessing a similar cell surface hydrophobicity as polystyrene particles, did not mimic polystyrene particles in its adhesion behavior, possibly as a result of the more negative zeta potentials of the polystyrene particles. The stationary endpoint adhesion of all strains, including polystyrene particles, was lower in the presence of a salivary conditioning film, while also desorption probabilities under flow were higher in the presence of a conditioning film than in its absence. Deposition onto quartz and enamel surfaces was different, but without a consistent trend valid for all strains and polystyrene particles. It is concluded that differences in experimental results exist, and the process of bacterial deposition to enamel surfaces cannot be modeled by using polystyrene particles and quartz collector surfaces. Copyright 1999 Academic Press.

  7. Recombination characteristics of therapeutic ion beams on ion chamber dosimetry

    NASA Astrophysics Data System (ADS)

    Matsufuji, Naruhiro; Matsuyama, Tetsuharu; Sato, Shinji; Kohno, Toshiyuki

    2016-09-01

    In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40-160 MeV, carbon at 21-400 MeV/n, and iron at 23.5-500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.

  8. SU-E-T-35: An Investigation of the Accuracy of Cervical IMRT Dose Distribution Using 2D/3D Ionization Chamber Arrays System and Monte Carlo Simulation

    SciTech Connect

    Zhang, Y; Yang, J; Liu, H; Liu, D

    2014-06-01

    Purpose: The purpose of this work is to compare the verification results of three solutions (2D/3D ionization chamber arrays measurement and Monte Carlo simulation), the results will help make a clinical decision as how to do our cervical IMRT verification. Methods: Seven cervical cases were planned with Pinnacle 8.0m to meet the clinical acceptance criteria. The plans were recalculated in the Matrixx and Delta4 phantom with the accurate plans parameters. The plans were also recalculated by Monte Carlo using leaf sequences and MUs for individual plans of every patient, Matrixx and Delta4 phantom. All plans of Matrixx and Delta4 phantom were delivered and measured. The dose distribution of iso slice, dose profiles, gamma maps of every beam were used to evaluate the agreement. Dose-volume histograms were also compared. Results: The dose distribution of iso slice and dose profiles from Pinnacle calculation were in agreement with the Monte Carlo simulation, Matrixx and Delta4 measurement. A 95.2%/91.3% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Pinnacle distributions within 3mm/3% gamma criteria. A 96.4%/95.6% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Monte Carlo simulation within 2mm/2% gamma criteria, almost 100% gamma pass ratio within 3mm/3% gamma criteria. The DVH plot have slightly differences between Pinnacle and Delta4 measurement as well as Pinnacle and Monte Carlo simulation, but have excellent agreement between Delta4 measurement and Monte Carlo simulation. Conclusion: It was shown that Matrixx/Delta4 and Monte Carlo simulation can be used very efficiently to verify cervical IMRT delivery. In terms of Gamma value the pass ratio of Matrixx was little higher, however, Delta4 showed more problem fields. The primary advantage of Delta4 is the fact it can measure true 3D dosimetry while Monte Carlo can simulate in patients CT images but not in phantom.

  9. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  10. SU-E-T-552: Monte Carlo Calculation of Correction Factors for a Free-Air Ionization Chamber in Support of a National Air-Kerma Standard for Electronic Brachytherapy

    SciTech Connect

    Mille, M; Bergstrom, P

    2015-06-15

    Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or current can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose

  11. SU-E-T-448: On the Perturbation Factor P-cav of the Markus Parallel Plate Ion Chambers in Clinical Electron Beams, Monte Carlo Based Reintegration of An Historical Experiment

    SciTech Connect

    Voigts-Rhetz, P von; Zink, K

    2014-06-01

    Purpose: All present dosimetry protocols recommend well-guarded parallel-plate ion chambers for electron dosimetry. For the guard-less Markus chamber an energy dependent fluence perturbation correction pcav is given. This perturbation correction was experimentally determined by van der Plaetsen by comparison of the read-out of a Markus and a NACP chamber, which was assumed to be “perturbation-free”. Aim of the present study is a Monte Carlo based reiteration of this experiment. Methods: Detailed models of four parallel-plate chambers (Roos, Markus, NACP and Advanced Markus) were designed using the Monte Carlo code EGSnrc and placed in a water phantom. For all chambers the dose to the active volume filled with low density water was calculated for 13 clinical electron spectra (E{sub 0}=6-21 MeV) at the depth of maximum and at the reference depth under reference conditions. In all cases the chamber's reference point was positioned at the depth of measurement. Moreover, the dose to water DW was calculated in a small water voxel positioned at the same depth. Results: The calculated dose ratio D{sub NACP}/D{sub Markus}, which according to van der Plaetsen reflects the fluence perturbation correction of the Markus chamber, deviates less from unity than the values given by van der Plaetsen's but exhibits a similar energy dependence. The same holds for the dose ratios of the other well guarded chambers. But, in comparison to water, the Markus chamber reveals the smallest overall perturbation correction which is nearly energy independent at both investigated depths. Conclusion: The simulations principally confirm the energy dependence of the dose ratio D{sub NACP}/D{sub Markus} as published by van der Plaetsen. But, as shown by our simulations of the ratio D{sub W}/D{sub Markus}, the conclusion drawn in all dosimetry protocols is questionable: in contrast to all well-guarded chambers the guard-less Markus chamber reveals the smallest overall perturbation correction and

  12. SU-E-T-225: Correction Matrix for PinPoint Ionization Chamber for Dosimetric Measurements in the Newly Released Incise™ Multileaf Collimator Shaped Small Field for CyberKnife M6™ Machine

    SciTech Connect

    Zhang, Y; Li, T; Heron, D; Huq, M

    2015-06-15

    Purpose: For small field dosimetry, such as measurements of output factors for cones or MLC-shaped irregular small fields, ion chambers often Result in an underestimation of the dose, due to both the volume averaging effect and the lack of lateral charged particle equilibrium. This work presents a mathematical model for correction matrix for a PTW PinPoint ionization chamber for dosimetric measurements made in the newly released Incise™ Multileaf collimator fields of the CyberKnife M6™ machine. Methods: A correction matrix for a PTW 0.015cc PinPoint ionization chamber was developed by modeling its 3D dose response in twelve cone-shaped circular fields created using the 5mm, 7.5mm, 10mm, 12.5mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 50mm, 60mm cones in a CyberKnife M6™ machine. For each field size, hundreds of readings were recorded for every 2mm chamber shift in the horizontal plane. The contribution of each dose pixel to a measurement point depended on the radial distance and the angle to the chamber axis. These readings were then compared with the theoretical dose as obtained with Monte Carlo calculation. A penalized least-square optimization algorithm was developed to generate the correction matrix. After the parameter fitting, the mathematical model was validated for MLC-shaped irregular fields. Results: The optimization algorithm used for parameter fitting was stable and the resulted response factors were smooth in spatial domain. After correction with the mathematical model, the chamber reading matched with the calculation for all the tested fields to within 2%. Conclusion: A novel mathematical model has been developed for PinPoint chamber for dosimetric measurements in small MLC-shaped irregular fields. The correction matrix is dependent on detector, treatment unit and the geometry of setup. The model can be applied to non-standard composite fields and provides an access to IMRT point dose validation.

  13. Breast cancer risk from low-dose exposures to ionizing radiation: results of parallel analysis of three exposed populations of women

    SciTech Connect

    Land, C.E.; Boice, J.D. Jr.; Shore, R.E.; Norman, J.E.; Tokunaga, M.

    1980-08-01

    Breast cancer incidence data were analyzed from three populations of women exposed to ionizing radiation: survivors of the Hiroshima and Nagasaki atomic bombs, patients in Massachusetts tuberculosis sanitoria who were exposed to multiple chest fluoroscopies, and patients treated by X-rays for acute postpartum mastitis in Rochester, New York. Parallel analyses by radiation dose, age at exposure, and time after exposure suggested that risk of radiation-induced cancer increased approximately linearly with increasing dose and was heavily dependent on age at exposure; however, the risk was otherwise remarkably similar among the three populations, at least for ages 10 to 40 years at exposure, and followed the same temporal pattern of occurrence as did breast cancer incidence in nonexposed women of similar ages.

  14. Flow chamber

    SciTech Connect

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  15. Practical method for determination of air kerma by use of an ionization chamber toward construction of a secondary X-ray field to be used in clinical examination rooms.

    PubMed

    Maehata, Itsumi; Hayashi, Hiroaki; Kimoto, Natsumi; Takegami, Kazuki; Okino, Hiroki; Kanazawa, Yuki; Tominaga, Masahide

    2016-07-01

    We propose a new practical method for the construction of an accurate secondary X-ray field using medical diagnostic X-ray equipment. For accurate measurement of the air kerma of an X-ray field, it is important to reduce and evaluate the contamination rate of scattered X-rays. To determine the rate quantitatively, we performed the following studies. First, we developed a shield box in which an ionization chamber could be set at an inner of the box to prevent detection of the X-rays scattered from the air. In addition, we made collimator plates which were placed near the X-ray source for estimation of the contamination rate by scattered X-rays from the movable diaphragm which is a component of the X-ray equipment. Then, we measured the exposure dose while changing the collimator plates, which had diameters of 25-90 mm(ϕ). The ideal value of the exposure dose was derived mathematically by extrapolation to 0 mm(ϕ). Tube voltages ranged from 40 to 130 kV. Under these irradiation conditions, we analyzed the contamination rate by the scattered X-rays. We found that the contamination rates were less than 1.7 and 2.3 %, caused by air and the movable diaphragm, respectively. The extrapolated value of the exposure dose has been determined to have an uncertainty of 0.7 %. The ionization chamber used in this study was calibrated with an accuracy of 5 %. Using this kind of ionization chamber, we can construct a secondary X-ray field with an uncertainty of 5 %.

  16. Calculation of reactivities using ionization chamber currents with different sets of kinetic parameters for reduced scram system efficiency in the VVER-1000 of the third unit of the Kalinin nuclear power plant at the stage of physical start-up

    SciTech Connect

    Zizin, M. N.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.

    2011-12-15

    The effectiveness of the VVER-1000 reactor scram system is analyzed using ionization chamber currents with different sets of kinetic parameters with allowance for the isotopic composition in the calculation of these parameters. The most 'correct, aesthetically acceptable' results are obtained using the eight-group constants of the ROSFOND (BNAB-RF) library. The difference between the maximum and minimum values of the scram system effectiveness calculated with different sets of kinetic parameters slightly exceeds 2{beta}. The problems of introducing corrections due to spatial effects are not considered in this study.

  17. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  18. Parallel detection, quantification, and depth profiling of peptides with dynamic-secondary ion mass spectrometry (D-SIMS) ionized by C60(+)-Ar(+) co-sputtering.

    PubMed

    Chang, Chi-Jen; Chang, Hsun-Yun; You, Yun-Wen; Liao, Hua-Yang; Kuo, Yu-Ting; Kao, Wei-Lun; Yen, Guo-Ji; Tsai, Meng-Hung; Shyue, Jing-Jong

    2012-03-09

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C(60)(+) primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the C(60)(+) primary ion have been based on static-SIMS, which makes depth profiling complicated. Therefore, a dynamic-SIMS technique is reported here. Mixed peptides in the cryoprotectant trehalose were used as a model for evaluating the parameters that lead to the parallel detection and quantification of biomaterials. Trehalose was mixed separately with different concentrations of peptides. The peptide secondary ion intensities (normalized with respect to those of trehalose) were directly proportional to their concentration in the matrix (0.01-2.5 mol%). Quantification curves for each peptide were generated by plotting the percentage of peptides in trehalose versus the normalized SIMS intensities. Using these curves, the parallel detection, identification, and quantification of multiple peptides was achieved. Low energy Ar(+) was used to co-sputter and ionize the peptide-doped trehalose sample to suppress the carbon deposition associated with C(60)(+) bombardment, which suppressed the ion intensities during the depth profiling. This co-sputtering technique yielded steadier molecular ion intensities than when using a single C(60)(+) beam. In other words, co-sputtering is suitable for the depth profiling of thick specimens. In addition, the smoother surface generated by co-sputtering yielded greater depth resolution than C(60)(+) sputtering. Furthermore, because C(60)(+) is responsible for generating the molecular ions, the dosage of the auxiliary Ar(+) does not significantly affect the quantification curves.

  19. SU-E-P-35: Real-Time Patient Transit Dose Verification of Volumetric Modulated Arc Radiotherapy by a 2D Ionization Chamber Array

    SciTech Connect

    Liu, X

    2015-06-15

    Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteria of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.

  20. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  1. Technical Note: Influence of Compton currents on profile measurements in small-volume ion chambers

    SciTech Connect

    Tanny, Sean; Sperling, Nicholas; Parsai, E. Ishmael; Holmes, Shannon

    2015-10-15

    Purpose: This work is to evaluate the effects of Compton current generation in three small-volume ionization chambers on measured beam characteristics for electron fields. Methods: Beam scans were performed using Exradin A16, A26, and PTW 31014 microchambers. Scans with varying chamber components shielded were performed. Static point measurements, output factors, and cable only irradiations were performed to determine the contribution of Compton currents to various components of the chamber. Monte Carlo simulations were performed to evaluate why one microchamber showed a significant reduction in Compton current generation. Results: Beam profiles demonstrated significant distortion for two of the three chambers when scanned parallel to the chamber axis, produced by electron deposition within the wire. Measurements of ionization produced within the cable identified Compton current generation as the cause of these distortions. The size of the central collecting wire was found to have the greatest influence on the magnitude of Compton current generation. Conclusions: Microchambers can demonstrate significant (>5%) deviations from properties as measured with larger volume chambers (0.125 cm{sup 3} and above). These deviations can be substantially reduced by averaging measurements conducted at opposite polarities.

  2. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  3. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  4. A high rate proportional chamber

    SciTech Connect

    Henderson, R.; Fraszer, W.; Openshaw, R.; Sheffer, G.; Salomon, M.; Dew, S.; Marans, J.; Wilson, P.

    1987-02-01

    Gas mixtures with high specific ionization allow the use of small interelectrode distances while still maintaining full efficiency. With the short electron drift distances the timing resolution is also improved. The authors have built and operated two 25 cm/sup 2/ chambers with small interelectrode distances. Also single wire detector cells have been built to test gas mixture lifetimes. Various admixtures of CF/sub 4/, DME, Isobutane, Ethane and Argon have been tested. Possible applications of such chambers are as beam profile monitors, position tagging of rare events and front end chambers in spectrometers.

  5. Wire chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, Victor; Mulera, Terrence A.

    1984-01-01

    A wire chamber radiation detector (11) has spaced apart parallel electrodes (16) and grids (17, 18, 19) defining an ignition region (21) in which charged particles (12) or other ionizing radiations initiate brief localized avalanche discharges (93) and defining an adjacent memory region (22) in which sustained glow discharges (94) are initiated by the primary discharges (93). Conductors (29, 32) of the grids (18, 19) at each side of the memory section (22) extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles (12) were detected by sequentially transmitting pulses to the conductors (29) of one grid (18) while detecting transmissions of the pulses to the orthogonal conductors (36) of the other grid (19) through glow discharges (94). One of the grids (19) bounding the memory region (22) is defined by an array of conductive elements (32) each of which is connected to the associated readout conductor (36) through a separate resistance (37). The wire chamber (11) avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles (12) have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  6. Automatic system for ionization chamber current measurements.

    PubMed

    Brancaccio, Franco; Dias, Mauro S; Koskinas, Marina F

    2004-12-01

    The present work describes an automatic system developed for current integration measurements at the Laboratório de Metrologia Nuclear of Instituto de Pesquisas Energéticas e Nucleares. This system includes software (graphic user interface and control) and a module connected to a microcomputer, by means of a commercial data acquisition card. Measurements were performed in order to check the performance and for validating the proposed design.

  7. Ion chamber based neutron detectors

    DOEpatents

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  8. A Prototype Ionization Profile Monitor for RHIC.

    NASA Astrophysics Data System (ADS)

    Connolly, R.; Cameron, P.; Ryan, W.; Shea, T.; Sikora, R.; Tsoupas, N.

    1997-05-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPMs). Each IPM will measure the integrated distribution of electrons in one plane resulting from residual gas ionization during bunch passage. The high space-charge electric field of the beam makes it necessary to image with electrons which are guided by a magnetic field. A prototype detector was tested in the injection line during the RHIC Sextant Test. It consists of a collector circuit board mounted on one side of the beam and a parallel electrode on the other to provide an electric sweep field. The collector board has 48 electrodes oriented parallel to the beam with a chevron microchannel plate amplifier mounted in front of the collection traces. The detector vacuum chamber is placed in the gap of a magnet. At each bunch passage the charge pulses are integrated, amplified, and digitized for display as a profile histogram. This paper describes the prototype detector and gives results from the beam tests.

  9. High-efficiency electron ionizer for a mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Darrach, Murray R. (Inventor); Orient, Otto J. (Inventor)

    2001-01-01

    The present invention provides an improved electron ionizer for use in a quadrupole mass spectrometer. The improved electron ionizer includes a repeller plate that ejects sample atoms or molecules, an ionizer chamber, a cathode that emits an electron beam into the ionizer chamber, an exit opening for excess electrons to escape, at least one shim plate to collimate said electron beam, extraction apertures, and a plurality of lens elements for focusing the extracted ions onto entrance apertures.

  10. National Ignition Facility Target Chamber

    SciTech Connect

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  11. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  12. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  13. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  14. Analysis of the Benzene Oxide-DNA Adduct 7-Phenylguanine by Liquid Chromatography-Nanoelectrospray Ionization-High Resolution Tandem Mass Spectrometry-Parallel Reaction Monitoring: Application to DNA from Exposed Mice and Humans

    PubMed Central

    Zarth, Adam; Cheng, Guang; Zhang, Zhaobin; Wang, Mingyao; Villalta, Peter W.; Balbo, Silvia; Hecht, Stephen S.

    2014-01-01

    Benzene oxide, the initial metabolite of the human carcinogen benzene, reacts with DNA producing 7-phenylguanine (7-PhG) and other products. We developed a highly sensitive liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry-parallel reaction monitoring method for the analysis of 7-PhG in DNA. Accuracy and precision of the method were established and the detection limit was about 8 amol of 7-PhG injected on the column and less than 1 adduct per 109 nucleotides in DNA. 7-PhG was detected in calf thymus DNA reacted with 1 μM to 10 mM benzene oxide. The method was applied for the analysis of DNA isolated from bone marrow, lung, and liver of B6C3F1 mice treated by gavage with 50 mg/kg benzene in corn oil 5 times weekly for 4 weeks. 7-PhG was not detected in any of these DNA samples. The method was applied to DNA from mouse hepatocytes exposed to 100 μM benzene oxide and human TK-6 lymphoblasts exposed to 100 μM, 1 mM, and 10 mM benzene oxide. 7-PhG was only detected in TK-6 cell DNA from the 10 mM exposure. The method was also applied to leukocyte DNA from 10 smokers and 10 nonsmokers. 7-PhG was detected in only one DNA sample, from a nonsmoker. The results of this study do not support the hypothesis that the benzene oxide-DNA adduct 7-PhG is involved in carcinogenesis by benzene. PMID:24632417

  15. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  16. Wire-chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, V.; Mulera, T.A.

    1982-03-29

    A wire chamber; radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or; near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  17. Study of the PTW microLion chamber temperature dependence

    NASA Astrophysics Data System (ADS)

    Gómez, F.; González-Castaño, D.; Díaz-Botana, P.; Pardo-Montero, J.

    2014-06-01

    The use of liquid ionization chambers in radiotherapy has grown during the past few years. While for air ionization chambers the kTP correction for air mass density due to pressure and temperature variations is well known, less work has been done on the case of liquid ionization chambers, where there is still the need to take into account the influence of temperature in the free ion yield. We have measured the PTW microLion isooctane-filled ionization chamber temperature dependence in a ˜ ±10 °C interval around the standard 20 °C room temperature for three operation voltages, including the manufacturer recommended voltage, and two beam qualities, 60Co and 50 kV x-rays. Within the measured temperature range, the microLion signal exhibits a positive linear dependence, which is around 0.24% K-1 at 800 V with 60Co irradiation. This effect is of the same order of magnitude as the T dependence found in air ionization chambers, but its nature is completely different and its sign opposite to that of an air chamber. Onsager theory has been used to model the results and is consistent with this linear behaviour. However, some inconsistencies in the modelling of the 50 kV x-ray results have been found that are attributed to the failure of Onsager's isolated pair assumption for such radiation quality.

  18. Poster — Thur Eve — 24: Commissioning and preliminary measurements using an Attix-style free air ionization chamber for air kerma measurements on the BioMedical Imaging and Therapy beamlines at the Canadian Light Source

    SciTech Connect

    Anderson, D; McEwen, M; Shen, H; Siegbahn, EA; Fallone, BG; Warkentin, B

    2014-08-15

    Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC was benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors.

  19. CONTINUOUS ROTATION SCATTERING CHAMBER

    DOEpatents

    Verba, J.W.; Hawrylak, R.A.

    1963-08-01

    An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)

  20. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  1. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  2. The effect of discharge chamber geometry on the ignition of low-pressure rf capacitive discharges

    SciTech Connect

    Lisovskiy, V.; Martins, S.; Landry, K.; Douai, D.; Booth, J.-P.; Cassagne, V.; Yegorenkov, V.

    2005-09-15

    This paper reports measured and calculated breakdown curves in several gases of rf capacitive discharges excited at 13.56 MHz in chambers of three different geometries: parallel plates surrounded by a dielectric cylinder ('symmetric parallel plate'), parallel plates surrounded by a grounded metallic cylinder ('asymmetric parallel plate'), and parallel plates inside a much larger grounded metallic chamber ('large chamber'). The breakdown curves for the symmetric chamber have a multivalued section at low pressure. For the asymmetric chamber the breakdown curves are shifted to lower pressures and rf voltages, but the multivalued feature is still present. At higher pressures the breakdown voltages are much lower than for the symmetric geometry. For the large chamber geometry the multivalued behavior is not observed. The breakdown curves were also calculated using a numerical model based on fluid equations, giving results that are in satisfactory agreement with the measurements.

  3. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  4. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodríguez, A.

    2003-10-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8×8 cm2 with a pixel size of 1.27×1.27 mm2. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  5. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  6. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  7. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  8. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  9. Target chambers for gammashpere

    SciTech Connect

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G.

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  10. A soundproof pressure chamber.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Inoue, S

    1994-01-01

    For neurotological research we designed a soundproof pressure chamber in which pressure can be adjusted +/- 1000 mmH2O at the rate of less than 100 mmH2O per second. Noise in the chamber can be maintained under 30-35 dB while pressure is kept at a given level.

  11. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  12. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  13. Parallel machines: Parallel machine languages

    SciTech Connect

    Iannucci, R.A. )

    1990-01-01

    This book presents a framework for understanding the tradeoffs between the conventional view and the dataflow view with the objective of discovering the critical hardware structures which must be present in any scalable, general-purpose parallel computer to effectively tolerate latency and synchronization costs. The author presents an approach to scalable general purpose parallel computation. Linguistic Concerns, Compiling Issues, Intermediate Language Issues, and hardware/technological constraints are presented as a combined approach to architectural Develoement. This book presents the notion of a parallel machine language.

  14. The Mars Chamber

    NASA Video Gallery

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  15. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  16. Parallel pipelining

    SciTech Connect

    Joseph, D.D.; Bai, R.; Liao, T.Y.; Huang, A.; Hu, H.H.

    1995-09-01

    In this paper the authors introduce the idea of parallel pipelining for water lubricated transportation of oil (or other viscous material). A parallel system can have major advantages over a single pipe with respect to the cost of maintenance and continuous operation of the system, to the pressure gradients required to restart a stopped system and to the reduction and even elimination of the fouling of pipe walls in continuous operation. The authors show that the action of capillarity in small pipes is more favorable for restart than in large pipes. In a parallel pipeline system, they estimate the number of small pipes needed to deliver the same oil flux as in one larger pipe as N = (R/r){sup {alpha}}, where r and R are the radii of the small and large pipes, respectively, and {alpha} = 4 or 19/7 when the lubricating water flow is laminar or turbulent.

  17. Search for the best timing strategy in high-precision drift chambers

    SciTech Connect

    Va'vra, J.

    1983-06-01

    Computer simulated drift chamber pulses are used to investigate various possible timing strategies in the drift chambers. In particular, the leading edge, the multiple threshold and the flash ADC timing methods are compared. Although the presented method is general for any drift geometry, we concentrate our discussion on the jet chambers where the drift velocity is about 3 to 5 cm/..mu..sec and the individual ionization clusters are not resolved due to a finite speed of our electronics.

  18. Simulation of ion chamber signals in the n+3 He -> p + t experiment

    NASA Astrophysics Data System (ADS)

    Coppola, Christopher; n3He Collaboration

    2017-01-01

    The parity violating proton directional asymmetry from the capture of polarized neutrons on 3He was measured with a pulsed neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The target is an ion chamber with 3He at 0.476 atmosphere. Signal wires in the chamber have different sensitivities to the physics asymmetry, depdendent on their location and the configuration of the experiment. These geometry factors must be determined by simulation. In addition, simulation estimates the statistical precision of the experiment, optimizes configuration variables, and assists with systematic analysis. To achieve the most accurate simulation of the detector signals, a custom simulation was written in C++ using weighted variables and taking advantage of parallel execution. The phsyics inputs to the simulation came from measurements of the neutron phase space, ENDF cross sections, and PSTAR ionization data. A cell model was applied to combine this physics to produce an accurate simulation of the experimental data. This simulation can be used to calculate accurate and tunable geometry factors, and to produce desired quanities for use in optimization and analysis.

  19. Study of SiPM custom arrays for scintillation light detection in a Liquid Argon Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Cervi, T.; Babicz, M. E.; Bonesini, M.; Falcone, A.; Kose, U.; Nessi, M.; Menegolli, A.; Pietropaolo, F.; Raselli, G. L.; Rossella, M.; Torti, M.; Zani, A.

    2017-03-01

    Liquid Argon Time Projection Chamber (LAr-TPC) technique has been established as one of the most promising for the next generation of experiments dedicated to neutrino and rare-event physics. LAr-TPCs have the fundamental feature to be able to both collect the charge and the scintillation light produced after the passage of a ionizing particle inside the Argon volume. Scintillation light is traditionally detected by large surface Photo-Multiplier Tubes (PMTs) working at cryogenic temperature. Silicon Photo-Multipliers (SiPMs) are semiconductor-based devices with performances comparable to the PMT ones, but with very small active areas. For this reason we built a prototype array composed by SiPMs connected in different electrical configurations. We present results on preliminary tests made with four SiPMs, connected both in parallel and in series configurations, deployed into a 50 liters LAr-TPC exposed to cosmic rays at CERN.

  20. Target Chamber Manipulator

    NASA Astrophysics Data System (ADS)

    Tantillo, Anthony; Watson, Matthew

    2015-11-01

    A system has been developed to allow remote actuation of sensors in a high vacuum target chamber used with a particle accelerator. Typically, sensors of various types are placed into the target chamber at specific radial and angular positions relative to the beam line and target. The chamber is then evacuated and the experiments are performed for those sensor positions. Then, the chamber is opened, the sensors are repositioned to new angles or radii, and the process is repeated, with a separate pump-down cycle for each set of sensor positions. The new sensor positioning system allows scientists to pre-set the radii of up to a dozen sensors, and then remotely actuate their angular positions without breaking the vacuum of the target chamber. This reduces the time required to reposition sensors from 6 hours to 1 minute. The sensors are placed into one of two tracks that are separately actuated using vacuum-grade stepping motors. The positions of the sensors are verified using absolute optical rotary encoders, and the positions are accurate to 0.5 degrees. The positions of the sensors are electronically recorded and time-stamped after every change. User control is through a GUI using LabVIEW.

  1. Thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Kasper, H. J.

    1985-01-01

    The reusable life of the Space Shuttle main engine (SSME) is influenced by the cyclic life of the regeneratively liquid cooled main combustion chamber (MCC). During an operational duty cycle the MCC liner is subjected to a large transient thermal gradient that imparts a high thermal cyclic strain to the liner hot gas wall. Life predictions of such chambers have usually been based on low cycle fatigue (LCF) evaluations. Hot-fire testing, however, has shown significant mid-channel wall deformation and thinning during accrued cyclic testing. This phenomenon is termed cyclic creep and appears to be significantly accelerated at elevated temperatures. An analytical method that models the cyclic creep phenomenon and its application to thrust chamber life prediction is presented. The chamber finite element geometry is updated periodically to account for accrued wall thinning and distortion. Failure is based on the tensile instability failure criterion. Cyclic life results for several chamber life enhancing coolant channel designs are compared to the typically used LCF analysis that neglects cyclic creep. The results show that the usable cyclic creep life is approximately 30 to 50% of the commonly used LCF life.

  2. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  3. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  4. Antipollution combustion chamber

    SciTech Connect

    Caruel, J.E.; Gastebois, P.M.

    1981-01-27

    The invention concerns a combustion chamber for turbojet engines. The combustion chamber is of the annular type and consists of two coaxial flame tubes opening into a common dilution and mixing zone. The inner tube is designed for low operating ratings of the engine, the outer tube for high ratings. Air is injected as far upstream as possible into the dilution zone, to enhance the homogenization of the gaseous flow issuing from the two tubes prior to their passage into the turbine and to assure the optimum radial distribution of temperatures. The combustion chamber according to the invention finds application in a particularly advantageous manner in turbojet engines used in aircraft propulsion because of the reduced emission of pollutants it affords.

  5. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  6. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  7. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  8. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  9. Metabolic simulation chamber

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.

    1972-01-01

    Metabolic simulation combustion chamber was developed as subsystem for breathing metabolic simulator. Entire system is used for evaluation of life support and resuscitation equipment. Metabolism subsystem simulates a human by consuming oxygen and producing carbon dioxide. Basic function is to simulate human metabolic range from rest to hard work.

  10. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  11. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  12. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  13. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  14. 72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR AND CANAL (LOCATION T) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  15. Optical Time Projection Chamber for imaging nuclear decays

    NASA Astrophysics Data System (ADS)

    Miernik, K.; Dominik, W.; Czyrkowski, H.; Dabrowski, R.; Fomitchev, A.; Golovkov, M.; Janas, Z.; Kuśmierz, W.; Pfützner, M.; Rodin, A.; Stepantsov, S.; Slepniev, R.; Ter-Akopian, G. M.; Wolski, R.

    2007-10-01

    We present a novel type of a Time Projection Chamber in which tracks of charged particles ionizing an active gas volume are recorded by means of optical signals. By combining a CCD camera image with the electron drift-time profile measured by a photomultiplier, it is possible to reconstruct trajectories of particles in three dimensions. The chamber was developed to study exotic nuclear decays in which charged particles are emitted. The results of first measurements will be demonstrated in which beta-delayed protons from 13O, the two-alpha decay of 8Be, and the triple-alpha decay of 12C excited states were recorded.

  16. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  17. Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon

    NASA Astrophysics Data System (ADS)

    Cao, H.; Alexander, T.; Aprahamian, A.; Avetisyan, R.; Back, H. O.; Cocco, A. G.; Dejongh, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Guardincerri, Y.; Kendziora, C.; Lippincott, W. H.; Love, C.; Lyons, S.; Manenti, L.; Martoff, C. J.; Meng, Y.; Montanari, D.; Mosteiro, P.; Olvitt, D.; Pordes, S.; Qian, H.; Rossi, B.; Saldanha, R.; Sangiorgio, S.; Siegl, K.; Strauss, S. Y.; Tan, W.; Tatarowicz, J.; Walker, S.; Wang, H.; Watson, A. W.; Westerdale, S.; Yoo, J.; Scene Collaboration

    2015-05-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V /cm . For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V /cm . We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from Krm83 internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni ) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  18. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    SciTech Connect

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  19. Design and performance of a dynaniic gas flux chamber.

    PubMed

    Reichman, Rivka; Rolston, Dennis E

    2002-01-01

    Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.

  20. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  1. Crystals in magma chambers

    NASA Astrophysics Data System (ADS)

    Higgins, M.

    2011-12-01

    Differentiation processes in igneous systems are one way in which the diversity of igneous rocks is produced. Traditionally, magmatic diversity is considered as variations in the overall chemical composition, such as basalt and rhyolite, but I want to extend this definition to include textural diversity. Such textural variations can be manifested as differences in the amount of crystalline (and immiscible liquid) phases and in the origin and identity of such phases. One important differentiation process is crystal-liquid separation by floatation or decantation, which clearly necessitates crystals in the magma. Hence, it is important to determine if magmas in chambers (sensu lato) have crystals. The following discussion is framed in generalities - many exceptions occur. Diabase (dolerite) dykes are a common, widespread result of regional mafic magmatism. The rims of most diabase dykes have few or no phenocrysts and crystals in the cores are commonly thought to have crystallized in place. Hence, this major mafic magmatic source did not have crystals, although compositional diversity of these dykes is commonly explained by crystal-liquid separation. This can be resolved if crystallisation was on the walls on the magma chamber. Similarly, most flood basalts are low in crystals and separation of those that are present cannot always explain the observed compositional diversity. Crystal-rich flows do occur, for example the 'Giant Plagioclase Basalts' of the Deccan series, but the crystals are thought to form or accumulate in a crystal-rich zone beneath the roof of the chamber - the rest of the chamber probably has few crystals. Some magmas from Hawaii contain significant amounts of olivine crystals, but most of these are deformed and cannot have crystallised in the chamber. In this case the crystals are thought to grow as the magma passes through a decollement zone. They may have grown on the walls or been trapped by filters. Basaltic andesite ignimbrites generally have

  2. Combustion chamber noise suppressor

    SciTech Connect

    Livingston, A.M.

    1986-08-19

    A combustion chamber is described for a hot fog generating machine comprising a hollow cylindrical combustion chamber shell having a closure plate at one end and outlet means at the opposite end for directing hot combustion gasses to a fogging nozzle, air inlet means disposed adjacent the outlet means, fuel inlet means and ignition means mounted in the closure plate and liner means disposed concentrically within the cylindrical combustion chamber for controlling the flow of air and combustion gasses within the shell. The liner means includes a liner base having a frustroconical configuration with the smaller diameter end thereof disposed in communication with the outlet means and with the larger diameter end thereof disposed in spaced relation to the shell, circumferentially spaced, longitudinally extending fins extending outwardly from the liner base intermediate the liner base and the shell, a cylindrical liner midsection having circumferentially spaced fins extending outwardly therefrom between the midsection and the shell with the fins supporting the midsection on the larger diameter end of the liner base.

  3. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  4. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  5. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  6. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  7. A prototype ionization profile monitor for RHIC

    SciTech Connect

    Connolly, R.; Cameron, P.; Ryan, W.

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  8. Modeling of Ionization Physics with the PIC Code OSIRIS

    SciTech Connect

    Deng, S.; Tsung, F.; Lee, S.; Lu, W.; Mori, W.B.; Katsouleas, T.; Muggli, P.; Blue, B.E.; Clayton, C.E.; O'Connell, C.; Dodd, E.; Decker, F.J.; Huang, C.; Hogan, M.J.; Hemker, R.; Iverson, R.H.; Joshi, C.; Ren, C.; Raimondi, P.; Wang, S.; Walz, D.; /Southern California U. /UCLA /SLAC

    2005-09-27

    When considering intense particle or laser beams propagating in dense plasma or gas, ionization plays an important role. Impact ionization and tunnel ionization may create new plasma electrons, altering the physics of wakefield accelerators, causing blue shifts in laser spectra, creating and modifying instabilities, etc. Here we describe the addition of an impact ionization package into the 3-D, object-oriented, fully parallel PIC code OSIRIS. We apply the simulation tool to simulate the parameters of the upcoming E164 Plasma Wakefield Accelerator experiment at the Stanford Linear Accelerator Center (SLAC). We find that impact ionization is dominated by the plasma electrons moving in the wake rather than the 30 GeV drive beam electrons. Impact ionization leads to a significant number of trapped electrons accelerated from rest in the wake.

  9. The APS ceramic chambers

    SciTech Connect

    Milton, S.; Warner, D.

    1994-07-01

    Ceramics chambers are used in the Advanced Photon Source (APS) machines at the locations of the pulsed kicker and bumper magnets. The ceramic will be coated internally with a resistive paste. The resistance is chosen to allow the low frequency pulsed magnet field to penetrate but not the high frequency components of the circulating beam. Another design goal was to keep the power density experienced by the resistive coating to a minimum. These ceramics, their associated hardware, the coating process, and our recent experiences with them are described.

  10. Vacuum chamber for ion manipulation device

    SciTech Connect

    Chen, Tsung-Chi; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D; Anderson, Gordon A; Baker, Erin M

    2014-12-09

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area. A predetermined number of pairs of surfaces are disposed in one or more chambers, forming a multiple-layer ion mobility cyclotron device.

  11. Nucleation in an Ultra Low Ionization Environment

    NASA Astrophysics Data System (ADS)

    Pedersen, J. O.; Enghoff, M. B.; Paling, S.; Svensmark, H.

    2010-12-01

    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar activity and climate. In order to understand the effect ions may have on the production of cloud condensation nuclei the overall contribution of ion induced nucleation to the global production of secondary aerosols must be determined. One issue with determining this contribution is that several mechanisms for nucleation exist and it can be difficult to determine the relative importance of the various mechanisms in a given nucleation event when both ion induced and electrically neutral nucleation mechanisms are at work at the same time. We have carried out nucleation experiments in the Boulby Underground Laboratory, located 1100 meters below ground, thus reducing the flux of ionizing cosmic radiation by six orders of magnitude. Similarly we have reduced the gamma background by shielding the experiment in lead and copper. Finally we have used air stored for several weeks and passed through an active charcoal filter in order to reduce the Radon concentration. In this way we have been able to make nucleation experiments with very low ionizing background, meaning that we can rule out ion induced nucleation as a contributing mechanism. Our experimental setup is a 50 L electropolished stainless steel reactor at near atmospheric conditions. The chamber contains clean air with the addition of water vapor, ozone, and SO2. Using UV lights at 254 nm ozone is photolyzed, leading to the production of sulfuric acid and thus aerosols. An 18 MBq Caesium-137 gamma ray source with various amounts of lead in front allows us to alter the ionization in our chamber. By making series of nucleation bursts with varying amounts of ionizing radiation we then gauge the relative importance of ion

  12. Simulation studies on a prototype ionisation chamber for measurement of personal dose equivalent, Hp(10).

    PubMed

    Cardoso, J; Carvalho, A F; Oliveira, C

    2007-01-01

    A prototype ionisation chamber for direct measurement of the personal dose equivalent, Hp(10), similar to the one developed by the Physikalisch-Technische Bundesantalt (PTB), was designed and constructed by the Metrological Laboratory of Ionizing Radiation (LMRI) of Nuclear and Technological Institute (ITN). Tests already performed have shown that the behaviour of this chamber is very similar to the PTB chamber, mainly the energy dependence for the X-ray radiation qualities of the ISO 4037-1 narrow series N-30, N-40, N-60, N-80, N-100 and N-120 and also for gamma radiation of 137Cs and 60Co. However, the results obtained also show a dependence on the energy and angles of incident radiation and a low magnitude of the electrical response of the ionisation chamber. In order to optimise the performance of the chamber, the LMRI initiated numerical simulation of this ionisation chamber by Monte Carlo method using the MCNPX code.

  13. Modeling Chamber Transport for Heavy-Ion Fusion

    SciTech Connect

    Sharp, W M; Niller, D A C; Tabak, M; Yu, S S; Peterson, P F; Welch, D R; Rose, D V; Olson, C L

    2002-08-02

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  14. Modeling chamber transport for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2002-10-01

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  15. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.

    PubMed

    Choi, Munseok; Na, Yang; Kim, Sung-Jin

    2015-12-01

    In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications.

  16. Parallel pivoting combined with parallel reduction

    NASA Technical Reports Server (NTRS)

    Alaghband, Gita

    1987-01-01

    Parallel algorithms for triangularization of large, sparse, and unsymmetric matrices are presented. The method combines the parallel reduction with a new parallel pivoting technique, control over generations of fill-ins and a check for numerical stability, all done in parallel with the work being distributed over the active processes. The parallel technique uses the compatibility relation between pivots to identify parallel pivot candidates and uses the Markowitz number of pivots to minimize fill-in. This technique is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds.

  17. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  18. Diogene pictorial drift chamber

    SciTech Connect

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  19. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  20. Charges and current induced by moving ions in multiwire chambers

    NASA Astrophysics Data System (ADS)

    Erskine, G. A.

    1982-07-01

    A method for calculating the charges induced on the grid wires, and on cathode strips parallel to the grid wires, by a point charge in a multiwire chamber is described. The method is applied to the calculation, as a function of time, of the charge and current induced by a small group of positive ions moving in accordance with the drift equation v= μE where v is the velocity. An appendix lists a number of formulae relating to the electrostatic field of a multiwire chamber.

  1. Concept of a solid-state drift chamber

    SciTech Connect

    Gatti, E.; Rehak, P.

    1983-03-01

    The operation of a solid state drift chamber is described, and its use in a high rate, high multiplicity environment is discussed. The Solid State Drift Chamber (SSDCH) is a thin wafer of a high purity n-type silicon (few cm/sup 2/ x a few hundreds ..mu..m thick) with a single small-area, small-capacitance anode readout. The drift voltage is supplied to an array of drift electrodes on both sides of the wafer to produce a uniform drift field parallel to the surface of the wafer and to ensure the complete depletion of the wafer. (WHK)

  2. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  3. Tunnel ionization, population trapping, filamentation and applications

    NASA Astrophysics Data System (ADS)

    Leang Chin, See; Xu, Huailiang

    2016-11-01

    The advances in femtosecond Ti-sapphire laser technology have led to the discovery of a profusion of new physics. This review starts with a brief historical account of the experimental realization of tunnel ionization, followed by high harmonic generation and the prediction of attosecond pulses. Then, the unique phenomenon of dynamic population trapping during the ionization of atoms and molecules in intense laser fields is introduced. One of the consequences of population trapping in the highly excited states is the neutral dissociation into simple molecular fragments which fluoresce. Such fluorescence could be amplified in femtosecond laser filamentation in gases. The experimental observations of filament-induced fluorescence and lasing in the atmosphere and combustion flames are given. Excitation of molecular rotational wave packets (molecular alignment) and their relaxation and revival in a gas filament are described. Furthermore, filament-induced condensation and precipitation inside a cloud chamber is explained. Lastly, a summary and future outlook is given.

  4. Special parallel processing workshop

    SciTech Connect

    1994-12-01

    This report contains viewgraphs from the Special Parallel Processing Workshop. These viewgraphs deal with topics such as parallel processing performance, message passing, queue structure, and other basic concept detailing with parallel processing.

  5. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  6. Characterization of a Reverberation Chamber

    DTIC Science & Technology

    2015-10-01

    electromagnetic susceptibility and immunity of a device under test because of its repeatability and measurement speed. A reverberation chamber is...devices or unmanned aircraft systems has led to a baseline characterization of the reverberation chamber at the US Army Research Laboratory (ARL). A...

  7. Small rocket flowfield diagnostic chambers

    NASA Technical Reports Server (NTRS)

    Morren, Sybil; Reed, Brian

    1993-01-01

    Instrumented and optically-accessible rocket chambers are being developed to be used for diagnostics of small rocket (less than 440 N thrust level) flowfields. These chambers are being tested to gather local fluid dynamic and thermodynamic flowfield data over a range of test conditions. This flowfield database is being used to better understand mixing and heat transfer phenomena in small rockets, influence the numerical modeling of small rocket flowfields, and characterize small rocket components. The diagnostic chamber designs include: a chamber design for gathering wall temperature profiles to be used as boundary conditions in a finite element heat flux model; a chamber design for gathering inner wall temperature and static pressure profiles; and optically-accessible chamber designs, to be used with a suite of laser-based diagnostics for gathering local species concentration, temperature, density, and velocity profiles. These chambers were run with gaseous hydrogen/gaseous oxygen (GH2/GO2) propellants, while subsequent versions will be run on liquid oxygen/hydrocarbon (LOX/HC) propellants. The purpose, design, and initial test results of these small rocket flowfield diagnostic chambers are summarized.

  8. Fast-response cloud chamber

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1977-01-01

    Wall structure keeps chambers at constant, uniform temperature, yet allows them to be cooled rapidly if necessary. Wall structure, used in fast-response cloud chamber, has surface heater and coolant shell separated by foam insulation. It is lightweight and requires relatively little power.

  9. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  10. The high momentum spectrometer drift chambers

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Baker, O. K.; Beaufait, J.; Bennett, C.; Bryant, E.; Carlini, R.; Kross, B.; McCauley, A.; Naing, W.; Shin, T.; Vulcan, W.

    1992-12-01

    The High Momentum Spectrometer in Hall C will use planar drift chambers for charged particle track reconstruction. The chambers are constructed using well understood technology and a conventional gas mixture. Two (plus one spare) drift chambers will be constructed for this spectrometers. Each chamber will contain 6 planes of readout channels. This paper describes the chamber design and gas handling system used.

  11. Parallel rendering techniques for massively parallel visualization

    SciTech Connect

    Hansen, C.; Krogh, M.; Painter, J.

    1995-07-01

    As the resolution of simulation models increases, scientific visualization algorithms which take advantage of the large memory. and parallelism of Massively Parallel Processors (MPPs) are becoming increasingly important. For large applications rendering on the MPP tends to be preferable to rendering on a graphics workstation due to the MPP`s abundant resources: memory, disk, and numerous processors. The challenge becomes developing algorithms that can exploit these resources while minimizing overhead, typically communication costs. This paper will describe recent efforts in parallel rendering for polygonal primitives as well as parallel volumetric techniques. This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume render use a MIMD approach. Implementations for these algorithms are presented for the Thinking Ma.chines Corporation CM-5 MPP.

  12. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography.

  13. Parallel data analysis in a multichannel flash-ADC-system

    SciTech Connect

    Eckerlin, G.; Elsen, E.; Schmitt, H.V.D.; Wagner, A.; Walter, P.V.; Zimmer, M.

    1987-02-01

    Parallel analysis of drift chamber signals with M68000 processors has proven to be an efficient way to deal with the tremendous data flow generated by high speed (100 MHz) Flash-ADCs in real time. The authors report on the experience gained with a network of 34 processors, placed in 3 VME crates, to read out the 3072 Flash-ADC channels of the JADE Jet-Chamber at PETRA (1). The properties of such a system are compared to more conventional readout schemes for drift chambers.

  14. Electron ionization of acetylene.

    PubMed

    King, Simon J; Price, Stephen D

    2007-11-07

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  15. IRIS Leaves Thermal Vacuum Chamber

    NASA Video Gallery

    This video shows the transportation of the IRIS observatory from the thermal vacuum chamber back to the clean tent for final testing and preparations for delivery to the launch site at Vandenberg A...

  16. Vaporization chambers and associated methods

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Shunn, Lee P.

    2017-02-21

    A vaporization chamber may include at least one conduit and a shell. The at least one conduit may have an inlet at a first end, an outlet at a second end and a flow path therebetween. The shell may surround a portion of each conduit and define a chamber surrounding the portion of each conduit. Additionally, a plurality of discrete apertures may be positioned at longitudinal intervals in a wall of each conduit, each discrete aperture of the plurality of discrete apertures sized and configured to direct a jet of fluid into each conduit from the chamber. A liquid may be vaporized by directing a first fluid comprising a liquid into the inlet at the first end of each conduit, directing jets of a second fluid into each conduit from the chamber through discrete apertures in a wall of each conduit and transferring heat from the second fluid to the first fluid.

  17. The multigap resistive plate chamber

    SciTech Connect

    Zeballos, E. Cerron; Crotty, I.; Hatzifotiadou, D.; Valverde, J. Lamas; Neupane, S.; Williams, M. C. S.; Zichichi, A.

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  18. Cyclically controlled welding purge chamber

    NASA Technical Reports Server (NTRS)

    Gallagher, Robert L. (Inventor)

    1996-01-01

    An arrangement for butt-welding cylindrical sections of large, thin-wall tanks includes a rotatable mandrel with side-by-side sets of radial position adjusters. Each set of adjusters bears on one of the tank sections adjacent the seam, to prevent the sections from sagging out-of-round. The mandrel rotates relative to the welder, so that a continuous seam is formed. A purge chamber is fixed in position behind the seam at the weld head, and is flushed with inert gas. The purge chamber includes a two-sided structure which is contiguous with the cylindrical sections and a circumferential vane to form an open-ended tube-like structure, through which the radial position adjusters pass as the mandrel and cylindrical workpiece sections rotate. The tube-like structure is formed into a chamber by a plurality of movable gates which are controlled to maintain a seal while allowing adjusters to progress through the purge chamber.

  19. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  20. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  1. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  2. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  3. Xenon bubble chambers for direct dark matter detection

    NASA Astrophysics Data System (ADS)

    Levy, C.; Fallon, S.; Genovesi, J.; Khaitan, D.; Klimov, K.; Mock, J.; Szydagis, M.

    2016-03-01

    The search for dark matter is one of today's most exciting fields. As bigger detectors are being built to increase their sensitivity, background reduction is an ever more challenging issue. To this end, a new type of dark matter detector is proposed, a xenon bubble chamber, which would combine the strengths of liquid xenon TPCs, namely event by event energy resolution, with those of a bubble chamber, namely insensitivity to electronic recoils. In addition, it would be the first time ever that a dark matter detector is active on all three detection channels, ionization and scintillation characteristic of xenon detectors, and heat through bubble formation in superheated fluids. Preliminary simulations show that, depending on threshold, a discrimination of 99.99% to 99.9999+% can be achieved, which is on par or better than many current experiments. A prototype is being built at the University at Albany, SUNY. The prototype is currently undergoing seals, thermal, and compression testing.

  4. Imaging nuclear decays with Optical Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Miernik, K.; Dominik, W.; Janas, Z.; Pfützner, M.; Bingham, C.; Czyrkowski, H.; Ćwiok, M.; Darby, I.; Dȧbrowski, R.; Fomitchev, A.; Gintei, T.; Golovkov, M.; Grzywacz, R.; Karny, M.; Korgul, A.; Kuśmierz, W.; Liddick, S.; Rajabali, M.; Rodin, A.; Rykaczewski, K.; Stepantsov, S.; Slepniev, R.; Stolz, A.; Ter-Akopian, G. M.; Wolski, R.

    2007-11-01

    A novel type of gaseous ionization detector—Optical Time Projection Chamber (OTPC)—developed to study rare nuclear decays is presented. The OTPC records tracks of charged particles ionizing a counting gas by optical imaging of the light generated by electrons multiplied in the amplification structures. By combining an electron drift-time profile measured by a photomultiplier and a CCD camera image we reconstruct three-dimensional trajectories of particles, energies and charges. The capabilities of the OTPC detector to study various decay modes are demonstrated by observation of beta-delayed proton emission from 13O, two-alpha break-up of 8Be, triple-alpha decay of 12C excited states and two-proton radioactivity of 45Fe.

  5. Measurement of alpha particle energy using windowless electret ion chambers.

    PubMed

    Dua, S K; Kotrappa, P; Srivastava, R; Ebadian, M A; Stieff, L R

    2002-10-01

    Electret ion chambers are inexpensive, lightweight, robust, commercially available, passive, charge-integrating devices for accurate measurement of different ionizing radiations. In an earlier work a chamber of dimensions larger than the range of alpha particles having aluminized Mylar windows of different thickness was used for measurement of alpha radiation. Correlation between electret mid-point voltage, alpha particle energy, and response was developed and it was shown that this chamber could be used for estimating the effective energy of an unknown alpha source. In the present study, the electret ion chamber is used in the windowless mode so that the alpha particles dissipate their entire energy inside the volume, and the alpha particle energy is determined from the first principles. This requires that alpha disintegration rate be accurately known or measured by an alternate method. The measured energies were within 1 to 4% of the true values for different sources (230Th, 237Np, 239Pu, 241Am, and 224Cm). This method finds application in quantitative determination of alpha energy absorbed in thin membrane and, hence, the absorbed dose.

  6. The MICE Demonstration of Muon Ionization Cooling

    SciTech Connect

    Lagrange, Jean-Baptiste; Hunt, Christopher; Palladino, Vittorio; Pasternak, Jaroslaw

    2016-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate muon ionization cooling, the technique proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam traverses a material (the absorber) loosing energy, which is replaced using RF cavities. The combined effect is to reduce the transverse emittance of the beam (transverse cooling). The configuration of MICE required to deliver the demonstration of ionization cooling is being prepared in parallel to the execution of a programme designed to measure the cooling properties of liquid-hydrogen and lithium hydride. The design of the cooling-demonstration experiment will be presented together with a summary of the performance of each of its components and the cooling performance of the experiment.

  7. Post-flight Analysis of the Argon Filled Ion Chamber

    NASA Technical Reports Server (NTRS)

    Tai, H.; Goldhagen, P.; Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Shinn, J. L.

    2003-01-01

    Atmospheric ionizing radiation is a complex mixture of primary galactic and solar cosmic rays and a multitude of secondary particles produced in collision with air nuclei. The first series of Atmospheric Ionizing Radiation (AIR) measurement flights on the NASA research aircraft ER-2 took place in June 1997. The ER-2 flight package consisted of fifteen instruments from six countries and were chosen to provide varying sensitivity to specific components. These AIR ER-2 flight measurements are to characterize the AIR environment during solar minimum to allow the continued development of environmental models of this complex mixture of ionizing radiation. This will enable scientists to study the ionizing radiation health hazard associated with the high-altitude operation of a commercial supersonic transport and to allow estimates of single event upsets for advanced avionics systems design. The argon filled ion chamber representing about 40 percent of the contributions to radiation risks are analyzed herein and model discrepancies for solar minimum environment are on the order of 5 percent and less. Other biologically significant components remain to be analyzed.

  8. Nucleation in an ultra low ionization environment

    NASA Astrophysics Data System (ADS)

    Olaf Pepke Pedersen, Jens; Bødker Enghoff, Martin; Paling, Sean; Svensmark, Henrik

    2010-05-01

    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar activity and climate. In order to understand the effect ions may have on the formation of cloud condensation nuclei and thus the Earth's radiation budget the overall contribution of ion induced nucleation to the global production of secondary aerosols must be determined. One issue with determining this contribution is that several mechanisms for nucleation exist and it can be difficult to determine the relative importance of the various mechanisms in a given nucleation event when both ion induced and electrically neutral nucleation mechanisms are at work at the same time. We have carried out nucleation experiments in the Boulby Underground Laboratory, located 1100 meters below ground, thus reducing the flux of ionizing cosmic radiation by six orders of magnitude. Similarly we have reduced the gamma background by shielding the experiment in lead and copper. Finally we have used air stored for several weeks and passed through an active charcoal filter in order to reduce the Radon concentration. In this way we have been able to make nucleation experiments with very low ionizing background, meaning that we can rule out ion induced nucleation as a contributing mechanism. Our experimental setup is a 50 L electropolished stainless steel reactor at near atmospheric conditions. The chamber contains clean air with the addition of water vapour, ozone, and sulphur dioxide. Using UV lights at 254 nm ozone is photolyzed, leading to the production of sulphuric acid and thus aerosols. An 18 MBq Caesium-137 gamma ray source with various amounts of lead in front allows us to alter the ionization in our chamber. By making series of nucleation bursts with varying amounts of ionizing

  9. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  10. SU-E-T-156: Can Sr-90 Check Sources Replace Co-60 Measurements for Monitoring of Reference Chamber Stability?

    SciTech Connect

    McEwen, M; Niven, D; Miksys, N

    2015-06-15

    Purpose: To determine the ultimate precision of a system for monitoring reference-class ion chamber stability using a commercial Sr-90 check source. Methods: A detailed investigation of a commercial Sr-90 check source (PTW48002) was carried out using a series of Farmer-type ionization chambers. Investigations included: positioning repeatability (angular variation as chamber is rotated in source, variation in ionization current with vertical alignment); chamber settling; short and long term repeatability Results: i) Measurement precision – the ionization current was typically 10 pA, and therefore a high-precision electrometer is required to prevent electrometer noise/resolution/leakage biaising the results. ii) Chamber settling - the chamber response stabilizes after approximately 10 minutes, which is longer than reported for linac beams and is likely due to the low doserate of the source.iii) The measured response depended at the 1 % level on the orientation of the chamber with respect to the source. However, consistent positioning resulted in repeatability at the 0.05 % level. Care was also required to ensure that the chamber was consistently positioned vertically with respect to the source. The sensitivity to vertical position was found to be > 1 % per mm.iv)With a uniform procedure the long-term (> 6 month) repeatability was found to be better than 0.1 % for multiple chamber types and potentially a precision of 0.05 % is achievable. Conclusion: A Sr-90 check source is easy to use and is a viable alternative to Co-60 for monitoring reference chamber stability.

  11. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  12. 63. Interior view, kitchen chamber, north elevation. The kitchen chamber ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Interior view, kitchen chamber, north elevation. The kitchen chamber was completed in the first stages of phase III construction. The paneled wall to the fireplace's right displays a phase III molding profile. The mark between the cabinet doors and on the large lower panel indicates the former position of a partition wall. The chimney-breast paneling bears a phase I profile and might have been moved to the room when the fireplace mass in the hall was reduced. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  13. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  14. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  15. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  16. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  17. Plant growth chamber M design

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M.

    1986-01-01

    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems.

  18. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  19. Parallel processing ITS

    SciTech Connect

    Fan, W.C.; Halbleib, J.A. Sr.

    1996-09-01

    This report provides a users` guide for parallel processing ITS on a UNIX workstation network, a shared-memory multiprocessor or a massively-parallel processor. The parallelized version of ITS is based on a master/slave model with message passing. Parallel issues such as random number generation, load balancing, and communication software are briefly discussed. Timing results for example problems are presented for demonstration purposes.

  20. Research in parallel computing

    NASA Technical Reports Server (NTRS)

    Ortega, James M.; Henderson, Charles

    1994-01-01

    This report summarizes work on parallel computations for NASA Grant NAG-1-1529 for the period 1 Jan. - 30 June 1994. Short summaries on highly parallel preconditioners, target-specific parallel reductions, and simulation of delta-cache protocols are provided.

  1. Parallel simulation today

    NASA Technical Reports Server (NTRS)

    Nicol, David; Fujimoto, Richard

    1992-01-01

    This paper surveys topics that presently define the state of the art in parallel simulation. Included in the tutorial are discussions on new protocols, mathematical performance analysis, time parallelism, hardware support for parallel simulation, load balancing algorithms, and dynamic memory management for optimistic synchronization.

  2. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  3. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam M.

    2011-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications, including the treatment of medical conditions. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy available in the developing world for the treatment of a variety of medical conditions. Specifically, hyperbaric oxygen therapy is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. Hyperbaric oxygen therapy is simply too expensive and too dangerous to implement in the developing world using standard equipment. The hydrostatic hyperbaric chamber technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system that will provide controlled pressurization of the system, and provide adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the

  4. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  5. CHAMBERS FERRY ROADLESS AREA, TEXAS.

    USGS Publications Warehouse

    Houser, B.B.; Ryan, George S.

    1984-01-01

    A geologic and geochemical investigation of the Chambers Ferry Roadless Area, Texas was conducted. The area has probable mineral-resource potential for oil and gas and for lignite. No metallic or additional energy resources were identified in the investigation. Detailed analyses of well logs from the vicinity of the Chambers Ferry Roadless Area, in conjunction with seismic data, are necessary to determine if the subsurface stratigraphy and structure are favorable for the accumulation of oil and gas. A shallow drilling program involving coring on a close-space grid is necessary for determination of the rank and continuity of seams of lignitic sediments in the area.

  6. Test chamber for alpha spectrometry

    DOEpatents

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  7. High pressure (>1 atm) electrospray ionization mass spectrometry.

    PubMed

    Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2011-03-01

    High pressure electrospray ionization mass spectrometry has been performed by pressurizing a custom made ion source chamber with compressed air to a pressure higher than the atmospheric pressure. The ion source was coupled to a commercial time-of-flight mass spectrometer using a nozzle-skimmer arrangement. The onset voltage for the electrospray of aqueous solution was found to be independent on the operating pressure. The onset voltage for the corona discharge, however, increased with the rise of pressure following the Paschen's law. Thus, besides having more working gas for the desolvation process, gaseous breakdown could also be avoided by pressurizing the ESI ion source with air to an appropriate level. Stable electrospray ionization has been achieved for the sample solution with high surface tension such as pure water in both positive and negative ion modes. Fragmentation of labile compounds during the ionization process could also be reduced by optimizing the operating pressure of the ion source.

  8. Note: Discharging fused silica test masses with ionized nitrogen

    NASA Astrophysics Data System (ADS)

    Ugolini, D.; Funk, Q.; Amen, T.

    2011-04-01

    We have developed a technique for discharging fused silica test masses in a gravitational-wave interferometer with nitrogen ionized by an electron beam. The electrons are produced from a heated filament by thermionic emission in a low-pressure region to avoid contamination and burnout. Some electrons then pass through a small aperture and ionize nitrogen in a higher-pressure region, and this ionized gas is pumped across the test mass surface, neutralizing both polarities of charge. The discharge rate varies exponentially with charge density and filament current, quadratically with filament potential, and has an optimal working pressure of ˜8 mT. Adapting the technique to larger test mass chambers is also discussed.

  9. Parallel algorithm development

    SciTech Connect

    Adams, T.F.

    1996-06-01

    Rapid changes in parallel computing technology are causing significant changes in the strategies being used for parallel algorithm development. One approach is simply to write computer code in a standard language like FORTRAN 77 or with the expectation that the compiler will produce executable code that will run in parallel. The alternatives are: (1) to build explicit message passing directly into the source code; or (2) to write source code without explicit reference to message passing or parallelism, but use a general communications library to provide efficient parallel execution. Application of these strategies is illustrated with examples of codes currently under development.

  10. Lightweight Chambers for Thrust Assemblies

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Lee, Jonathan; Holmes, Richard; Zimmerman, Frank; Effinger, Mike; Turner, James E. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) has successfully applied new materials and fabrication techniques to create actively cooled thrust chambers that operate 200-400 degrees hotter and weigh 50% lighter than conventional designs. In some vehicles, thrust assemblies account for as much as 20% of the engine weight. So, reducing the weight of these components and increasing their operating range will benefit many engines and vehicle designs, including Reusable Launch Vehicle (RLV) concepts. Obviously, copper and steel alloys have been used successfully for many years in the chamber components of thrust assemblies. Yet, by replacing the steel alloys with Polymer Matrix Composite (PMC) and/or Metal Matrix Composite (MMC) materials, design weights can be drastically reduced. In addition, replacing the traditional copper alloys with a Ceramic Matrix Composite (CMC) or an advanced copper alloy (Cu-8Cr-4Nb, also known as GRCop-84) significantly increases allowable operating temperatures. Several small MMC and PMC demonstration chambers have recently been fabricated with promising results. Each of these designs included GRCop-84 for the cooled chamber liner. These units successfully verified that designs over 50% lighter are feasible. New fabrication processes, including advanced casting technology and a low cost vacuum plasma spray (VPS) process, were also demonstrated with these units. Hot-fire testing at MSFC is currently being conducted on the chambers to verify increased operating temperatures available with the GRCop-84 liner. Unique CMC chamber liners were also successfully fabricated and prepared for hot-fire testing. Yet, early results indicate these CMC liners need significantly more development in order to use them in required chamber designs. Based on the successful efforts with the MMC and PMC concepts, two full size "lightweight" chambers are currently being designed and fabricated for hot

  11. Promoted-Combustion Chamber with Induction Heating Coil

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hagood, Richard; Lowery, Freida; Herald, Stephen

    2006-01-01

    prevent heating of the base of the chamber during use. A sapphire cylinder protects the coil against slag generated during an experiment. The induction coil is energized by a 6-kW water-cooled power supply operating at a frequency of 400 kHz. The induction coil is part of a parallel-tuned circuit, the tuning of which is used to adjust the coupling of power to the specimen. The chamber is mounted on a test stand along with pumps, valves, and plumbing for transferring pressurized gas into and out of the chamber. In addition to multiple video cameras aimed through the windows encircling the chamber, the chamber is instrumented with gauges for monitoring the progress of an experiment. One of the gauges is a dual-frequency infrared temperature transducer aimed at the specimen through one window. Chamber operation is achieved via a console that contains a computer running apparatus-specific software, a video recorder, and real-time video monitors. For safety, a blast wall separates the console from the test stand.

  12. Defect tolerance in microfluidic chambers for capacitive biosensors

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn; Gray, Bonnie L.; Jain, Vijay K.

    2010-02-01

    Biomedical sensors combining microfluidic and electronics capabilities require defect avoidance in both the electronic processing circuits and microfluidic areas. Microfluidic sensors involve sealed channels through which sample fluids containing biomedical materials flow. Inserting microchannels between capacitive plates enable the detection of biomaterials by the changes in capacitance. However, faults occur when foreign particles, or fluid bubbles get lodged in the paths blocking a channel, thereby affecting the measured C. To achieve fault tolerance we investigate a Cathedral Chamber design, with pillars supporting the roof at regular intervals. This prevents single blockages from stopping fluid flow through the system in a channel, as there are many paths. We discuss the potential causes and effects of such blockages. Monte Carlo simulations show that the Cathedral Chamber design significantly increases lifetime of the system, an average of 6 times more particles are required before full blockage occurs compared to an array of parallel channels. Fluid flow modeling shows parallel channels show rapid rise of pressure with the number of blockages while the Cathedral chamber shows much slower rise, which reaches a plateau pressure until it is blocked. The impact of defects on the capacitive measurement is also discussed. Finally, an interesting application, one that uses patches of single chain Fragment variables (scFv's), the active part of antibodies, is also discussed.

  13. Parallel Atomistic Simulations

    SciTech Connect

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  14. Magnetically-conformed, Variable Area Discharge Chamber for Hall Thruster, and Method

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R. (Inventor)

    2013-01-01

    The invention is a Hall thruster that incorporates a discharge chamber having a variable area channel including an ionization zone, a transition region, and an acceleration zone. The variable area channel is wider through the acceleration zone than through the ionization zone. An anode is located in a vicinity of the ionization zone and a cathode is located in a vicinity of the acceleration zone. The Hall thruster includes a magnetic circuit which is capable of forming a local magnetic field having a curvature within the transition region of the variable area channel whereby the transition region conforms to the curvature of the local magnetic field. The Hall thruster optimizes the ionization and acceleration efficiencies by the combined effects of the variable area channel and magnetic conformity.

  15. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel

  16. Plasma generation near an Ion thruster disharge chamber hollow cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Anderson, John R.; Goebel, Dan M.; Wirz, Richard; Sengupta, Anita

    2003-01-01

    In gridded electrostatic thrusters, ions are produced by electron bombardment in the discharge chamber. In most of these thrusters, a single, centrally located hollow cathode supplies the ionizing electrons. An applied magnetic field in the discharge chamber restricts the electrons leaving the hollow cathode to a very narrow channel. In this channel, the high electron current density ionizes both propellant gas flowing from the hollow cathode, and other neutrals from the main propellant flow from the plenum. The processes that occur just past the hollow cathode exit are very important. In recent engine tests, several cases of discharge cathode orifice place and keeper erosion have been reported. In this paper we present results from a new 1-D, variable area model of the plasma processes in the magnetized channel just downstream of the hollow cathode keeper. The model predicts plasma densities, and temperatures consistent with those reported in the literature for the NSTAR engine, and preliminary results from the model show a potential maximum just downstream of the cathode.

  17. Ionizing radiation and life.

    PubMed

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology.

  18. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  19. Ionizing radiation from tobacco

    SciTech Connect

    Westin, J.B.

    1987-04-24

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed.

  20. Microchip sonic spray ionization.

    PubMed

    Pól, Jaroslav; Kauppila, Tiina J; Haapala, Markus; Saarela, Ville; Franssila, Sami; Ketola, Raimo A; Kotiaho, Tapio; Kostiainen, Risto

    2007-05-01

    The first microchip version of sonic spray ionization (SSI) as an atmospheric pressure ionization source for mass spectrometry (MS) is presented. The microchip used for SSI has recently been developed in our laboratory, and it has been used before as an atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) source. Now the ionization is achieved simply by applying high (sonic) speed nebulizer gas, without heat, corona discharge, or high voltage. The microchip SSI was applied to the analysis of tetra-N-butylammonium, verapamil, testosterone, angiotensin I, and ibuprofen. The limits of detection were in the range of 15 nM to 4 microM. The technique was found to be highly dependent on the position of the chip toward the mass spectrometer inlet, and on the gas and the sample solution flow rates. The microchip SSI provided dynamic linearity following a pattern similar to that used with electrospray, good quantitative repeatability (RSD=16%), and long-term signal stability.

  1. Submicrometer particle removal indoors by a novel electrostatic precipitator with high clean air delivery rate, low ozone emissions, and carbon fiber ionizer.

    PubMed

    Kim, H-J; Han, B; Kim, Y-J; Oda, T; Won, H

    2013-10-01

    A novel positive-polarity electrostatic precipitator (ESP) was developed using an ionization stage (0.4 × 0.4 × 0.14 m(3) ) with 16 carbon fiber ionizers in each channel and a collection stage (0.4 × 0.4 × 0.21 m(3) ) with parallel metallic plates. The single-pass collection efficiency and clean air delivery rate (CADR) were measured by standard tests using KCl particles in 0.25-0.35 μm. Performance was determined using the Deutsch equation and established diffusion and field charging theories and also compared with the commercialized HEPA filter-type air cleaner. Experimental results showed that the single-pass collection efficiency of the ESP ranged from 50 to 95% and decreased with the flow rate (10-20 m(3) /min), but increased with the voltage applied to the ionizers (6 to 8 kV) and collection plates (-5 to -7 kV). The ESP with 18 m(3) /min achieved a CADR of 12.1 m(3) /min with a voltage of 8 kV applied to the ionization stage and with a voltage of -6 kV applied to the collection stage. The concentration of ozone in the test chamber (30.4 m(3) ), a maximum value of 5.4 ppb over 12 h of continuous operation, was much lower than the current indoor regulation (50 ppb).

  2. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles…

  3. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  4. Chamber Clearing First Principles Modeling

    SciTech Connect

    Loosmore, G

    2009-06-09

    LIFE fusion is designed to generate 37.5 MJ of energy per shot, at 13.3 Hz, for a total average fusion power of 500 MW. The energy from each shot is partitioned among neutrons ({approx}78%), x-rays ({approx}12%), and ions ({approx}10%). First wall heating is dominated by x-rays and debris because the neutron mean free path is much longer than the wall thickness. Ion implantation in the first wall also causes damage such as blistering if not prevented. To moderate the peak-pulse heating, the LIFE fusion chamber is filled with a gas (such as xenon) to reduce the peak-pulse heat load. The debris ions and majority of the x-rays stop in the gas, which re-radiates this energy over a longer timescale (allowing time for heat conduction to cool the first wall sufficiently to avoid damage). After a shot, because of the x-ray and ion deposition, the chamber fill gas is hot and turbulent and contains debris ions. The debris needs to be removed. The ions increase the gas density, may cluster or form aerosols, and can interfere with the propagation of the laser beams to the target for the next shot. Moreover, the tritium and high-Z hohlraum debris needs to be recovered for reuse. Additionally, the cryogenic target needs to survive transport through the gas mixture to the chamber center. Hence, it will be necessary to clear the chamber of the hot contaminated gas mixture and refill it with a cool, clean gas between shots. The refilling process may create density gradients that could interfere with beam propagation, so the fluid dynamics must be studied carefully. This paper describes an analytic modeling effort to study the clearing and refilling process for the LIFE fusion chamber. The models used here are derived from first principles and balances of mass and energy, with the intent of providing a first estimate of clearing rates, clearing times, fractional removal of ions, equilibrated chamber temperatures, and equilibrated ion concentrations for the chamber. These can be used

  5. Parallel detecting, spectroscopic ellipsometers/polarimeters

    DOEpatents

    Furtak, Thomas E.

    2002-01-01

    The parallel detecting spectroscopic ellipsometer/polarimeter sensor has no moving parts and operates in real-time for in-situ monitoring of the thin film surface properties of a sample within a processing chamber. It includes a multi-spectral source of radiation for producing a collimated beam of radiation directed towards the surface of the sample through a polarizer. The thus polarized collimated beam of radiation impacts and is reflected from the surface of the sample, thereby changing its polarization state due to the intrinsic material properties of the sample. The light reflected from the sample is separated into four separate polarized filtered beams, each having individual spectral intensities. Data about said four individual spectral intensities is collected within the processing chamber, and is transmitted into one or more spectrometers. The data of all four individual spectral intensities is then analyzed using transformation algorithms, in real-time.

  6. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  7. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  8. An inexpensive dual-chamber particle monitor: laboratory characterization

    SciTech Connect

    Rufus Edwards; Kirk R. Smith; Brent Kirby; Tracy Allen; Charles D. Litton; Susanne Hering

    2006-06-15

    In developing countries, high levels of particle pollution from the use of coal and biomass fuels for household cooking and heating are a major cause of ill health and premature mortality. Existing monitoring equipment makes routine quantification of household particle pollution levels difficult. Recent advances have enabled the development of a small, portable, data-logging particle monitor modified from commercial smoke alarm technology that can meet the needs of surveys in the developing world at reasonable cost. Laboratory comparisons of a prototype particle monitor developed at the University of California at Berkeley (UCB) with gravimetric filters, a tapered element oscillating microbalance, and a TSI DustTrak to quantify the UCB particle monitor response as a function of both concentration and particle size and to examine sensor response in relation to changes in temperature, relative humidity, and elevation are presented. UCB particle monitors showed good linearity in response to different concentrations of laboratory-generated oleic acid aerosols with a coarse and fine size distributions. The photoelectric and ionization chamber showed a wide range of responses based on particle size and, thus, require calibration with the aerosol of interest. The ionization chamber was five times more sensitive to fine rather than coarse particles, whereas the photoelectric chamber was five times more sensitive to coarse than fine. The ratio of the response between the two sensors has the potential for mass calibration of individual data points based on estimated parameters of the size distribution. The results demonstrate the significant potential of this monitor, which will facilitate the evaluation of interventions (improved fuels, stoves, and ventilation) on indoor air pollution levels and research on the impacts of indoor particle levels on health in developing countries. 10 refs., 10 figs., 2 tabs.

  9. Parallel digital forensics infrastructure.

    SciTech Connect

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  10. Parallel path nebulizer: Critical parameters for use with microseparation techniques combined with inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2005-04-01

    Four different, low flow parallel path Mira Mist CE nebulizers were evaluated and compared in support of an ongoing project related to the use of microseparation techniques interfaced to inductively coupled plasma mass spectrometry for the quantification of cobalamin species (Vitamin B12). For the characterization of the different Mira Mist CE nebulizers, the nebulizer orientation as well as the effect of methanol on analytical response was the focus of the study. The position of the gas outlet on the nebulizer which consistently provided the maximum signal was when it was rotated to the 11 o'clock position when the nebulizer is viewed end-on. With this orientation the increased signal may be explained by the fact that the cone angle of the aerosol is such that the largest percentage of the aerosol is directed to the center of the spray chamber and consequently into the plasma. To characterize the nebulizer's performance, the signal response of a multielement solution containing elements with a variety of ionization potentials was used. The selection of elements with varying ionization energies and degrees of ionization was essential for a better understanding of observed increases in signal enhancement when methanol was used. Two different phenomena contribute to signal enhancement when using methanol: the first is improved transport efficiency and the second is the "carbon enhancement effect". The net result was that as much as a 30-fold increase in signal was observed for As and Mg when using a make-up solution of 20% methanol at a 15 μL/min flow rate which is equivalent to a net volume of 3 μL/min of pure methanol.

  11. MEASUREMENT OF SURFACE ALPHA CONTAMINATION USING ELECTRET ION CHAMBERS

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    Electret ion chambers (EICs) are known to be inexpensive, reliable, passive, integrating devices used for measurement of ionizing radiation. Their application for measurement of alpha contamination on surfaces was recently realized. This two-year project deals with the evaluation of electret ion chambers with different types of electrets and chambers for measurement of surface alpha contamination, their demonstration at U.S. Department of Energy (DOE) sites, a cost-benefit comparison with the existing methods, and the potential deployment at DOE sites. During the first year (FY98) of the project, evaluation of the EICS was completed. It was observed that EICS could be used for measurement of free release level of alpha contamination for transuranics (100 dpm/100 cm{sup 2} fixed). DOE sites, where demonstration of EIC technology for surface alpha contamination measurements could be performed, were also identified. During FY99, demonstration and deployment of EICS at DOE sites are planned. A cost-benefit analysis of the EIC for surface alpha contamination measurement will also be performed.

  12. Introduction to Parallel Computing

    DTIC Science & Technology

    1992-05-01

    Topology C, Ada, C++, Data-parallel FORTRAN, 2D mesh of node boards, each node FORTRAN-90 (late 1992) board has 1 application processor Devopment Tools ...parallel machines become the wave of the present, tools are increasingly needed to assist programmers in creating parallel tasks and coordinating...their activities. Linda was designed to be such a tool . Linda was designed with three important goals in mind: to be portable, efficient, and easy to use

  13. Parallel Wolff Cluster Algorithms

    NASA Astrophysics Data System (ADS)

    Bae, S.; Ko, S. H.; Coddington, P. D.

    The Wolff single-cluster algorithm is the most efficient method known for Monte Carlo simulation of many spin models. Due to the irregular size, shape and position of the Wolff clusters, this method does not easily lend itself to efficient parallel implementation, so that simulations using this method have thus far been confined to workstations and vector machines. Here we present two parallel implementations of this algorithm, and show that one gives fairly good performance on a MIMD parallel computer.

  14. High-intensity positive beams extracted from a compact double-chamber ion source

    SciTech Connect

    Huck, H.; Somacal, H.; Di Gregorio, D.E.; Fernandez Niello, J.O.; Igarzabal, M.; Di Paolo, H.; Reinoso, M.

    2005-06-15

    This work presents the design and development of a simple ion source, the associated ion extraction optics, and the beam transport of a low-energy and high-current proton accelerator. In its actual version, the ion source can deliver positive proton currents up to 100 mA. This rather high beam current is achieved by adding a small ionization chamber between the discharge chamber containing the filament and the extraction electrode of the ion source. Different parameters of the ion source and the injection beam line are evaluated by means of computer simulations to optimize the beam production and transmission.

  15. PCLIPS: Parallel CLIPS

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bennett, Bonnie H.; Tello, Ivan

    1994-01-01

    A parallel version of CLIPS 5.1 has been developed to run on Intel Hypercubes. The user interface is the same as that for CLIPS with some added commands to allow for parallel calls. A complete version of CLIPS runs on each node of the hypercube. The system has been instrumented to display the time spent in the match, recognize, and act cycles on each node. Only rule-level parallelism is supported. Parallel commands enable the assertion and retraction of facts to/from remote nodes working memory. Parallel CLIPS was used to implement a knowledge-based command, control, communications, and intelligence (C(sup 3)I) system to demonstrate the fusion of high-level, disparate sources. We discuss the nature of the information fusion problem, our approach, and implementation. Parallel CLIPS has also be used to run several benchmark parallel knowledge bases such as one to set up a cafeteria. Results show from running Parallel CLIPS with parallel knowledge base partitions indicate that significant speed increases, including superlinear in some cases, are possible.

  16. Application Portable Parallel Library

    NASA Technical Reports Server (NTRS)

    Cole, Gary L.; Blech, Richard A.; Quealy, Angela; Townsend, Scott

    1995-01-01

    Application Portable Parallel Library (APPL) computer program is subroutine-based message-passing software library intended to provide consistent interface to variety of multiprocessor computers on market today. Minimizes effort needed to move application program from one computer to another. User develops application program once and then easily moves application program from parallel computer on which created to another parallel computer. ("Parallel computer" also include heterogeneous collection of networked computers). Written in C language with one FORTRAN 77 subroutine for UNIX-based computers and callable from application programs written in C language or FORTRAN 77.

  17. Parallel Algorithms and Patterns

    SciTech Connect

    Robey, Robert W.

    2016-06-16

    This is a powerpoint presentation on parallel algorithms and patterns. A parallel algorithm is a well-defined, step-by-step computational procedure that emphasizes concurrency to solve a problem. Examples of problems include: Sorting, searching, optimization, matrix operations. A parallel pattern is a computational step in a sequence of independent, potentially concurrent operations that occurs in diverse scenarios with some frequency. Examples are: Reductions, prefix scans, ghost cell updates. We only touch on parallel patterns in this presentation. It really deserves its own detailed discussion which Gabe Rockefeller would like to develop.

  18. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  19. Orientation of the eruption fissures controlled by a shallow magma chamber in Miyakejima

    NASA Astrophysics Data System (ADS)

    Geshi, Nobuo; Oikawa, Teruki

    2016-11-01

    Orientation of the eruption fissures and composition of the lavas of the Miyakejima volcano indicate tectonic influence of a shallow magma chamber on the distribution of eruption fissures. We examined the distributions and magmatic compositions of 23 fissures that formed within the last 2800 years, based on a field survey and a new dataset of 14C ages. The dominant orientation of the eruption fissures in the central portion of the volcano was found to be NE-SW, which is perpendicular to the direction of regional maximum horizontal compressive stress (σHmax). Magmas that show evidences of magma mixing between basaltic and andesitic magmas erupted mainly from the eruption fissures with a higher offset angle from the regional σHmax direction. The presence of a shallow dike-shaped magma chamber controls the distribution of the eruption fissures. The injection of basaltic magma into the shallow andesitic magma chamber caused the temporal rise of internal magmatic pressure in the shallow magma chamber. Dikes extending from the andesitic magma chamber intrude along the local compressive stress field which is generated by the internal excess pressure of the andesitic magma chamber. As the result, the eruption fissures trend parallel to the elongation direction of the shallow magma chamber. Injection of basaltic magma into the shallow andesitic magma chamber caused the magma mixing. Some basaltic dikes from the deep-seated magma chamber reach the ground surface without intersection with the andesitic magma chamber. The patterns of the eruption fissures can be modified in the future as was observed in the case of the destruction of the shallow magma chamber during the 2000 AD eruption.

  20. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  1. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  2. Single wire drift chamber design

    SciTech Connect

    Krider, J.

    1987-03-30

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 ..mu..m rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles.

  3. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  4. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  5. The LIFE Dynamic Chamber System

    NASA Astrophysics Data System (ADS)

    Rhodes, Mark; Kane, Jave; Latkowski, Jeffery; Cook, Andrew; Divol, Laurent; Loosmore, Gwendolen; Scott, Howard; Scullard, Christian; Tabak, Max; Wilks, Scott; Moses, Gregory; Heltemes, Thad; Sacks, Ryan; Pantano, Carlos; Kramer, Richard

    2011-10-01

    Dry-wall IFE designs such as LIFE utilize Xe fill gas to protect the target chamber first wall from x-ray heating and ionic debris. A key question is how cool, settled and clean the Xe must be to permit beam propagation and target transport, and how to reach this state at a 10+ Hz shot repetition rate. Xe is at low density in the target chamber, and purified Xe is reinjected at higher density and lower temperature into the larger outer chamber. Maintenance of this density difference due to blast waves generated by implosion of the target capsules is being assessed with HYDRA and 3D VTF, and possible validation experiments are being investigated. Detailed gas response near the wall is being studied using 3D Miranda. A laboratory-scale theta pinch experiment will study cooling and beam propagation in Xe. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  7. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel having the configuration of an assembly having a combustion chamber portion connected to a nozzle portion through a throat portion is wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The width of the tape is positioned at an angle of 30 to 50 deg. to the axis of the mandrel such that one edge of the tape contacts the mandrel while the other edge is spaced from the mandrel. The phenolic in the tape is cured and the end of the wrap is machined to provide a frusto-conical surface extending at an angle of 15 to 30 deg. with respect to the axis of the mandrel for starting a second wrap on the mandrel to cover the throat portion. The remainder of the mandrel is wrapped with a third silica tape having its width positioned at a angle of 5 to 20 deg. from the axis of the mandrel. The resin in the third tape is cured and the assembly is machined to provide a smooth outer surface. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  8. Ionization Cooling using Parametric Resonances

    SciTech Connect

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  9. [Development of a membrane inlet-single photon ionization/chemical ionization-mass spectrometer for online analysis of VOCs in water].

    PubMed

    Hua, Lei; Wu, Qing-Hao; Hou, Ke-Yong; Cui, Hua-Peng; Chen, Ping; Zhao, Wu-Duo; Xie, Yuan-Yuan; Li, Hai-Yang

    2011-12-01

    A home-made membrane inlet- single photon ionization/chemical ionization- time-of-flight mass spectrometer has been described. A vacuum ultraviolet (VUV) lamp with photon energy of 10.6 eV was used as the light source for single photon ionization (SPI). Chemical ionization (CI) was achieved through ion-molecule reactions with O2- reactant ions generated by photoelectron ionization. The two ionization modes could be rapidly switched by adjusting electric field in the ionization region within 2 s. Membrane inlet system used for rapid enrichment of volatile organic compounds (VOCs) in water was constructed by using a polydimethylsiloxane (PDMS) membrane with a thickness of 50 microm. A purge gas was added to accelerate desorption of analytes from the membrane surface. The purge gas could also help to prevent the pump oil back-streaming into the ionization region from the analyzer chamber and improve the signal to noise ratio (S/N). Achieved detection limits were 2 microg x L(-1) for methyl tert-butyl ether (MTBE) in SPI mode and 1 microg x L(-1) for chloroform in SPI-CI mode within 10 s analysis time, respectively. The instrument has been successfully applied to the rapid analysis of MTBE in simulated underground water nearby petrol station and VOCs in disinfected drinking water. The results indicate that the instrument has a great application prospect for online analysis of VOCs in water.

  10. Parallel Lisp simulator

    SciTech Connect

    Weening, J.S.

    1988-05-01

    CSIM is a simulator for parallel Lisp, based on a continuation passing interpreter. It models a shared-memory multiprocessor executing programs written in Common Lisp, extended with several primitives for creating and controlling processes. This paper describes the structure of the simulator, measures its performance, and gives an example of its use with a parallel Lisp program.

  11. Parallel and Distributed Computing.

    DTIC Science & Technology

    1986-12-12

    program was devoted to parallel and distributed computing . Support for this part of the program was obtained from the present Army contract and a...Umesh Vazirani. A workshop on parallel and distributed computing was held from May 19 to May 23, 1986 and drew 141 participants. Keywords: Mathematical programming; Protocols; Randomized algorithms. (Author)

  12. Use of cluster counting technique for particle identification in a drift chamber with the cathode strip readout

    SciTech Connect

    Berdnikov, Vladimir V.; Somov, S. V.; Pentchev, Lubomir P.

    2015-07-01

    The possibility of using the clusters counting technique for particle identification in a drift chamber with the cathode strip readout is experimentally investigated. Results of counting of primary ionization clusters on a relativistic particle track, as well as results of computer simulation of pion, kaon, and proton identification in the momentum range of 1–8 GeV/c, are presented.

  13. Making a Fish Tank Cloud Chamber

    ERIC Educational Resources Information Center

    Green, Frances

    2012-01-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…

  14. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  15. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  16. Gas turbine combustion chamber with air scoops

    SciTech Connect

    Mumford, S.E.; Smed, J.P.

    1989-12-19

    This patent describes a gas turbine combustion chamber. It comprises: means for admission of fuel to the upstream end thereof and discharge of hot gases from the downstream end thereof, and a combustion chamber wall, having an outer surface, with apertures therethrough, and air scoops provided through the apertures to direct air into the combustion chamber.

  17. Uniform-Temperature Walls for Cloud Chambers

    NASA Technical Reports Server (NTRS)

    Fleischman, G.

    1985-01-01

    Flat heat pipes rapidly transfer heat to and from experimental volumes. Heat pipe vapor chamber carries heat to and from thermo electric modules. Critical surface acts as evaporator or condenser in cloud physics experiments. Used as walls of spaceborne atmospheric cloud chambers. On Earth, used as isothermal floors for environmental test chambers.

  18. A Sensitive Cloud Chamber without Radioactive Sources

    ERIC Educational Resources Information Center

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  19. Ionization efficiency studies for xenon ions with thesuperconducting ECR ion source VENUS

    SciTech Connect

    Leitner, Daniela; Lyneis, Claude M.; Todd, DamonS.; Tarvainen,Olli

    2007-06-05

    Ionization efficiency studies for high charge state xenon ions using a calibrated gas leak are presented. A 75% enriched {sup 129}Xe gas leak with a gas flow equivalent to 5.11p{mu}A was used in all the measurements. The experiments were performed at the VENUS (Versatile ECR ion source for Nuclear Science) ion source for 18 GHz, 28 GHz and double frequency operation. Overall, total ionization efficiencies close to 100% and ionization efficiencies into a single charge state up to 22% were measured. The influence of the biased disk on the ionization efficiency was studied and the results were somewhat surprising. When the biased disk was removed from the plasma chamber, the ionization efficiency was dramatically reduced for single frequency operation. However, using double frequency heating the ionization efficiencies achieved without the biased disk almost matched the ionization efficiencies achieved with the biased probe. In addition, we have studied the influence of the support gas on the charge state distribution of the xenon ions. Either pure oxygen or a mixture of oxygen and helium were used as support gases. The addition of a small amount of helium can increase the ionization efficiency into a single charge state by narrowing the charge state distribution. Furthermore by varying the helium flow the most efficient charge state can be shifted over a wide range without compromising the ionization efficiency. This is not possible using only oxygen as support gas. Results from these studies are presented and discussed.

  20. Massively parallel mathematical sieves

    SciTech Connect

    Montry, G.R.

    1989-01-01

    The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.

  1. Totally parallel multilevel algorithms

    NASA Technical Reports Server (NTRS)

    Frederickson, Paul O.

    1988-01-01

    Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.

  2. Parallel computing works

    SciTech Connect

    Not Available

    1991-10-23

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

  3. Chamber B Thermal/Vacuum Chamber: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Mike E.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  4. Crystallization and saturation front propagation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, Ethan T.

    2013-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface-driven processes of conduction and crystallization front migration. In the end-member case of vigorous convection and crystal settling, volatile saturation advances downward from the roof and upward from the floor throughout the chamber. In the end-member case of stagnant magma bodies, volatile saturation occurs along an inward propagating front from all sides of the chamber. Ambient thermal gradient primarily controls the propagation rate; warm (⩾40 °C/km) geothermal gradients lead to thick (1200+ m) crystal mush zones and slow crystallization front propagation. Cold (<40 °C/km) geothermal gradients lead to rapid crystallization front propagation and thin (<1000 m) mush zones. Magma chamber geometry also exerts a first-order control on propagation rates; bodies with high surface to magma volume ratio and large Earth-surface-parallel faces exhibit more rapid propagation and thinner mush zones. Crystallization front propagation occurs at speeds of greater than 10 cm/yr (rhyolitic magma; 1 km thick sill geometry in a 20 °C/km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate, grow, and ascend through the chamber. Numerical simulations indicate saturation front propagation is determined primarily by pressure and magma crystallization rate; above certain initial water contents (4.4 wt.% in a dacite) the mobile magma is volatile-rich enough above 10 km depth to always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt.% in a dacite at 5 km depth), creating an upper saturated interface for most common (4-6 wt.%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. If the fluid

  5. Calcium: total or ionized?

    PubMed

    Schenck, Patricia A; Chew, Dennis J

    2008-05-01

    Measurement of serum total calcium (tCa) has been relied on for assessment of calcium status, despite the fact that it is the ionized calcium (iCa) fraction that has biologic activity. Serum tCa does not accurately predict iCa status in many clinical conditions. For accurate assessment of iCa status, iCa should be directly measured. Anaerobic measurement of serum iCa under controlled conditions provides the most reliable assessment of calcium status; aerobic measurement of iCa with species-specific pH correction is highly correlated with anaerobic measurements.

  6. The NAS parallel benchmarks

    NASA Technical Reports Server (NTRS)

    Bailey, David (Editor); Barton, John (Editor); Lasinski, Thomas (Editor); Simon, Horst (Editor)

    1993-01-01

    A new set of benchmarks was developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of a set of kernels, the 'Parallel Kernels,' and a simulated application benchmark. Together they mimic the computation and data movement characteristics of large scale computational fluid dynamics (CFD) applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification - all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.

  7. The DELPHI time projection chamber

    SciTech Connect

    Brand, C.; Cairanti, G.; Charpentier, P.; Clara, M.P.; Delikaris, D.; Foeth, H.; Heck, B.W.; Hilke, H.J.; Sulkowski, K.; Aubret, C.

    1989-02-01

    The central tracking device of the DELPHI Experiment at LEP is a Time Projection Chamber (TPC) with an active volume of 2 x 1.34m in length and 2.22m in diameter. Since spring 1988 the TPC has undergone extensive tests in a cosmic ray set-up. It will be installed in the LEP tunnel by early 1989. This report covers the construction, the read-out electronics and the contribution of the TPC to the DELPHI trigger. Emphasis is given to novelties which are not used in similar detectors.

  8. Three chamber negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.; Hiskes, J.R.

    1983-11-10

    It is an object of this invention provide a negative ion source which efficiently provides a large flux of negatively ionized particles. This invention provides a volume source of negative ions which has a current density sufficient for magnetic fusion applications and has electrons suppressed from the output. It is still another object of this invention to provide a volume source of negative ions which can be electrostatically accelerated to high energies and subsequently neutralized to form a high energy neutral beam for use with a magnetically confined plasma.

  9. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1991-12-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and C that allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. In includes both tutorial and reference material. It also presents the basic concepts that underly PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous FTP from Argonne National Laboratory in the directory pub/pcn at info.mcs.anl.gov (c.f. Appendix A).

  10. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1991-09-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, a set of tools for developing and debugging programs in this language, and interfaces to Fortran and C that allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. It includes both tutorial and reference material. It also presents the basic concepts that underlie PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous FTP from Argonne National Laboratory at info.mcs.anl.gov.

  11. The Parallel Axiom

    ERIC Educational Resources Information Center

    Rogers, Pat

    1972-01-01

    Criteria for a reasonable axiomatic system are discussed. A discussion of the historical attempts to prove the independence of Euclids parallel postulate introduces non-Euclidean geometries. Poincare's model for a non-Euclidean geometry is defined and analyzed. (LS)

  12. Scalable parallel communications

    NASA Technical Reports Server (NTRS)

    Maly, K.; Khanna, S.; Overstreet, C. M.; Mukkamala, R.; Zubair, M.; Sekhar, Y. S.; Foudriat, E. C.

    1992-01-01

    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth

  13. Liquid xenon time projection chamber for gamma rays in the MeV region: Development status

    NASA Technical Reports Server (NTRS)

    Aprile, E.; Bolotnikov, A.; Chen, D.; Mukherjee, R.

    1992-01-01

    The feasibility of a large volume Liquid Xenon Time Projection Chamber (LXe-TPC) for three dimensional imaging and spectroscopy of cosmic gamma ray sources, was tested with a 3.5 liter prototype. The observation of induction signals produced by MeV gamma rays in liquid xenon is reported, with a good signal-to-noise ratio. The results represent the first experimental demonstration with a liquid xenon ionization chamber of a nondestructive readout of the electron image produced by point-like charges, using a sense wire configuration of the type originally proposed in 1970 by Gatti et al. An energy resolution as good as that previously measured by the millimeter size chambers, was achieved with the large prototype of 4.4 cm drift gap.

  14. Liquid xenon time projection chamber for gamma rays in the MeV region: Development status

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Bolotnikov, A.; Chen, D.; Mukherjee, R.

    1992-12-01

    The feasibility of a large volume Liquid Xenon Time Projection Chamber (LXe-TPC) for three dimensional imaging and spectroscopy of cosmic gamma ray sources, was tested with a 3.5 liter prototype. The observation of induction signals produced by MeV gamma rays in liquid xenon is reported, with a good signal-to-noise ratio. The results represent the first experimental demonstration with a liquid xenon ionization chamber of a nondestructive readout of the electron image produced by point-like charges, using a sense wire configuration of the type originally proposed in 1970 by Gatti et al. An energy resolution as good as that previously measured by the millimeter size chambers, was achieved with the large prototype of 4.4 cm drift gap.

  15. Parallel image compression

    NASA Technical Reports Server (NTRS)

    Reif, John H.

    1987-01-01

    A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.

  16. Revisiting and parallelizing SHAKE

    NASA Astrophysics Data System (ADS)

    Weinbach, Yael; Elber, Ron

    2005-10-01

    An algorithm is presented for running SHAKE in parallel. SHAKE is a widely used approach to compute molecular dynamics trajectories with constraints. An essential step in SHAKE is the solution of a sparse linear problem of the type Ax = b, where x is a vector of unknowns. Conjugate gradient minimization (that can be done in parallel) replaces the widely used iteration process that is inherently serial. Numerical examples present good load balancing and are limited only by communication time.

  17. Performance of the Time Expansion Chamber / Transition Radiation Detector in PHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Luiz Silva, Cesar

    2004-10-01

    The Time Expansion Chamber / Transition Radiation Detector (TEC/TRD) in the PHENIX Experiment at RHIC measures ionization losses (dE/dX) and transition radiation from charged particles produced by beam collisions. It is designed to perform tracking and identification for charged particles on very high particle multiplicity environment. The TEC/TRD consists of 24 wire chambers readout on both sides filled with recycled Xe-based gas mixture. This wire chamber configuration, besides providing measurements of ionization losses for charged particles, can absorb X-Ray photons generated by transition radiation from incident particles with γ>1000 crossing fiber radiators placed at the entrance of the chambers. This allows TEC/TRD to distinguish electrons from the huge pion signal produced over a broad momentum range (1GeV/c

  18. Thrust chamber material technology program

    NASA Technical Reports Server (NTRS)

    Andrus, J. S.; Bordeau, R. G.

    1989-01-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  19. Influence of resonant charge exchange on the viscosity of partially ionized plasma in a magnetic field

    SciTech Connect

    Zhdanov, V. M. Stepanenko, A. A.

    2013-12-15

    The influence of resonant charge exchange for ion-atom interaction on the viscosity of partially ionized plasma embedded in the magnetic field is investigated. The general system of equations used to derive the viscosity coefficients for an arbitrary plasma component in the 21-moment approximation of Grad’s method is presented. The expressions for the coefficients of total and partial viscosities of a multicomponent partially ionized plasma in the magnetic field are obtained. As an example, the coefficients of the parallel and transverse viscosities for the ionic and neutral components of the partially ionized hydrogen plasma are calculated. It is shown that the account for resonant charge exchange can lead to a substantial change of the parallel and transverse viscosity of the plasma components in the region of low degrees of ionization on the order of 0.1.

  20. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    SciTech Connect

    Muir, B. R.; Rogers, D. W. O.

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ′}) are provided. These

  1. Development of a Liquefied Noble Gas Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lesser, Ezra; White, Aaron; Aidala, Christine

    2015-10-01

    Liquefied noble gas detectors have been used for various applications in recent years for detecting neutrinos, neutrons, photons, and potentially dark matter. The University of Michigan is developing a detector with liquid argon to produce scintillation light and ionization electrons. Our data collection method will allow high-resolution energy measurement and spatial reconstruction of detected particles by using multi-pixel silicon photomultipliers (SiPM) and a cylindrical time projection chamber (TPC) with a multi-wire endplate. We have already designed a liquid argon condenser and purification unit surrounded by an insulating vacuum, constructed circuitry for temperature and pressure sensors, and created software to obtain high-accuracy sensor readouts. The status of detector development will be presented. Funded through the Michigan Memorial Phoenix Project.

  2. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    SciTech Connect

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  3. Overview of the n3He Experiment and Target Chamber

    NASA Astrophysics Data System (ADS)

    McCrea, Mark; n3He Collaboration

    2017-01-01

    The n3He Experiment aims to measure the parity-violating asymmetry in the direction of proton emission relative to the initial neutron polarization direction in the reaction n-> +3 He -> T + p + 765 keV to a high precision. The size of the asymmetry is estimated to be in the range - 9 . 5 - 2 . 5 ×10-8 , and our goal statistical accuracy is 2 ×10-8 . The experiment ran at the Spallation Neutron Source with data taking completing at the end of 2015. The experiment used a Helium-3 ionization chamber as the combined target and detector. Data analysis is underway and is currently in an advanced stage

  4. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  5. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  6. Micromachined filter-chamber array with passive valves for biochemical assays on beads.

    PubMed

    Andersson, H; van der Wijngaart, W; Stemme, G

    2001-01-01

    The filter-chamber array presented here enables a real-time parallel analysis of three different samples on beads in a volume of 3 nL, on a 1 cm2 chip. The filter-chamber array is a system containing three filter-chambers, three passive valves at the inlet channels and a common outlet. The design enables parallel sample handling and time-controlled analysis. The device is microfabricated in silicon and sealed with a Pyrex lid to enable real-time analysis. Single nucleotide polymorphism analysis by using pyrosequencing has successfully been performed in single filter-chamber devices. The passive valves consist of plasma-deposited octafluorocyclobutane and show a much higher resistance towards water and surface-active solutions than previous hydrophobic patches. The device is not sensitive to gas bubbles, clogging is rare and reversible, and the filter-chamber array is reusable. More complex (bio)chemical reactions on beads can be performed in the devices with passive valves than in the devices without valves.

  7. Comments on GUT monopole energy loss and ionization

    SciTech Connect

    Hagstrom, R.

    1982-01-01

    A few comments about the likely behavior of the electromagnetic energy loss and ionization rates of super-slowly moving magnetic monopoles are presented. The questions of energy loss rates and ionization rates for super-low monopoles passing through matter are considered, concentrating on aspects of these issues which affect practical detection techniques. It is worthwhile here to emphasize that there is a potentially great distinction between energy loss rates and ionization rates and that the magnitude of this distinction is really the great issue which must be settled in order to understand the significance of experimental results from present and proposed investigations of the slow monopole question. Energy loss here means the total dE/dX of the projectile due to interactions with the electrons of the slowing medium. To the extent that nuclear collisions can be neglected, this so-called electronic energy loss is the relevant quantity in questions about whether monopoles stop within the earth's crust, whether they are slowed by interstellar plasmas, or the signal in a truly calorimetric measurement (measuring temperature rises along the trajectory), etc. Most of our successful detection techniques depend upon the promotion of ground state electrons into states which lie above some energy gap in the material of the detector: electrons must be knocked completely free from the gas atoms in a proportional chamber gas, electrons must be promoted to a higher band in solid scintillator plastics. These processes are generically identified as ionization. (WHK)

  8. Laser desorption lamp ionization source for ion trap mass spectrometry.

    PubMed

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds.

  9. Neutron-chamber detectors and applications

    SciTech Connect

    Fehlau, P.E.; Atwater, H.F.; Coop, K.L.

    1990-01-01

    Detector applications in Nuclear Safeguards and Waste Management have included measuring neutrons from fission and (alpha,n) reactions with well-moderated neutron proportional counters, often embedded in a slab of polyethylene. Other less-moderated geometries are useful for detecting both bare and moderated fission-source neutrons with good efficiency. The neutron chamber is an undermoderated detector design comprising a large, hollow, polyethylene-walled chamber containing one or more proportional counters. Neutron-chamber detectors are relatively inexpensive; can have large apertures, usually through a thin chamber wall; and offer very good detection efficiency per dollar. Neutron-chamber detectors have also been used for monitoring vehicles and for assaying large crates of transuranic waste. Our Monte Carlo calculations for a new application (monitoring low-density waste for concealed plutonium) illustrate the advantages of the hollow-chamber design for detecting moderated fission sources. 9 refs., 6 figs., 2 tabs.

  10. Tests of anechoic chamber for aeroacoustics investigations

    NASA Astrophysics Data System (ADS)

    Palchikovskiy, V. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Belyaev, I. V.; Korin, I. A.; Sorokin, E. V.; Khramtsov, I. V.; Kustov, O. Yu.

    2016-10-01

    The paper presents the results of qualification tests in the new anechoic chamber of Perm National Research Polytechnic University (PNRPU) built in 2014-2015 and evaluation of the chamber quality in aeroacoustic experiments. It describes design features of the chamber and its sound-absorption lining. The qualification tests were carried out with tonal and broadband noise sources in the frequency range 100 Hz - 20 kHz for two different cases of the source arrangement. In every case, measurements were performed in three directions by traverse microphones. Qualification tests have determined that in the chamber there is a free acoustic field within radius of 2 m for tonal noise and 3 m for broadband noise. There was also evaluated acoustic quality of the chamber by measurements of the jet noise and vortex ring noise. The results of the experiments demonstrate that PNRPU anechoic chamber allows the aeroacoustic measurements to be performed to obtain quantitative results.

  11. The ARGUS microvertex drift chamber

    NASA Astrophysics Data System (ADS)

    Michel, E.; Schmidt-Parzefall, W.; Appuhn, R. D.; Buchmüller, J.; Kolanoski, H.; Kreimeier, B.; Lange, A.; Siegmund, T.; Walther, A.; Edwards, K. W.; Fernholz, R. C.; Kapitza, H.; MacFarlane, D. B.; O'Neill, M.; Parsons, J. A.; Prentice, J. D.; Seidel, S. C.; Tsipolitis, G.; Ball, S.; Babaev, A.; Danilov, M.; Tichomirov, I.

    1989-11-01

    The ARGUS collaboration is currently building a new microvertex drift chamber (μVDC) as an upgrade of their detector. The μVDC is optimized for B-meson physics at DORIS energies. Important design features are minimal multiple scattering for low-momentum particles and three-dimensional reconstruction of decay vertices with equal resolutions in r- φ and r- z. Vertex resolutions of 15-25 μm are expected. Prototypes of the μVDC have been tested with different gas mixtures at various pressures. Spatial resolutions as small as 20 μm were obtained using CO 2/propane at 4 bar and DME at 1 bar. New readout electronics have been developed for the μVDC aiming at low thresholds for the TDC measurements. Employing a novel idea for noise and cross-talk suppression, which is based on a discrimination against short pulses, very low threshold settings are possible.

  12. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  13. IFE Chamber Technology - Status and Future Challenges

    SciTech Connect

    Meier, W.R.; Raffray, A.R.; Abdel-Khalik, S.I.; Kulcinski, G.L.; Latowski, J.F.; Najmabadi, F.; Olson, C.L.; Peterson, P.F.; Ying, A.; Yoda, M.

    2003-07-15

    Significant progress has been made on addressing critical issues for inertial fusion energy (IFE) chambers for heavy-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including drywall (currently favored for laser IFE), wetted-wall (applicable to both laser and ion drivers), and thick-liquid-wall (favored by heavy ion and z-pinch drivers). Recent progress and remaining challenges in developing IFE chambers are reviewed.

  14. Fluidized wall for protecting fusion chamber walls

    DOEpatents

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  15. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  16. IFE Chamber Technology - Status and Future Challenges

    SciTech Connect

    Meier, W R; Raffrary, A R; Abdel-Khalik, S; Kulcinski, G; Latkowski, J F; Najmabadi, F; Olson, C L; Peterson, P F; Ying, A; Yoda, M

    2002-11-15

    Significant progress has been made on addressing critical issues for inertial fusion energy (IFE) chambers for heavy-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including dry-wall (currently favored for laser IFE), wetted-wall (applicable to both laser and ion drivers), and thick-liquid-wall favored by heavy ion and z-pinch drivers. Recent progress and remaining challenges in developing IFE chambers are reviewed.

  17. Drift chamber tracking with neural networks

    SciTech Connect

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  18. Parallel architectures for vision

    SciTech Connect

    Maresca, M. ); Lavin, M.A. ); Li, H. )

    1988-08-01

    Vision computing involves the execution of a large number of operations on large sets of structured data. Sequential computers cannot achieve the speed required by most of the current applications and therefore parallel architectural solutions have to be explored. In this paper the authors examine the options that drive the design of a vision oriented computer, starting with the analysis of the basic vision computation and communication requirements. They briefly review the classical taxonomy for parallel computers, based on the multiplicity of the instruction and data stream, and apply a recently proposed criterion, the degree of autonomy of each processor, to further classify fine-grain SIMD massively parallel computers. They identify three types of processor autonomy, namely operation autonomy, addressing autonomy, and connection autonomy. For each type they give the basic definitions and show some examples. They focus on the concept of connection autonomy, which they believe is a key point in the development of massively parallel architectures for vision. They show two examples of parallel computers featuring different types of connection autonomy - the Connection Machine and the Polymorphic-Torus - and compare their cost and benefit.

  19. Sublattice parallel replica dynamics

    NASA Astrophysics Data System (ADS)

    Martínez, Enrique; Uberuaga, Blas P.; Voter, Arthur F.

    2014-06-01

    Exascale computing presents a challenge for the scientific community as new algorithms must be developed to take full advantage of the new computing paradigm. Atomistic simulation methods that offer full fidelity to the underlying potential, i.e., molecular dynamics (MD) and parallel replica dynamics, fail to use the whole machine speedup, leaving a region in time and sample size space that is unattainable with current algorithms. In this paper, we present an extension of the parallel replica dynamics algorithm [A. F. Voter, Phys. Rev. B 57, R13985 (1998), 10.1103/PhysRevB.57.R13985] by combining it with the synchronous sublattice approach of Shim and Amar [Y. Shim and J. G. Amar, Phys. Rev. B 71, 125432 (2005), 10.1103/PhysRevB.71.125432], thereby exploiting event locality to improve the algorithm scalability. This algorithm is based on a domain decomposition in which events happen independently in different regions in the sample. We develop an analytical expression for the speedup given by this sublattice parallel replica dynamics algorithm and compare it with parallel MD and traditional parallel replica dynamics. We demonstrate how this algorithm, which introduces a slight additional approximation of event locality, enables the study of physical systems unreachable with traditional methodologies and promises to better utilize the resources of current high performance and future exascale computers.

  20. The Mark II Vertex Drift Chamber

    SciTech Connect

    Alexander, J.P.; Baggs, R.; Fujino, D.; Hayes, K.; Hoard, C.; Hower, N.; Hutchinson, D.; Jaros, J.A.; Koetke, D.; Kowalski, L.A.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 {mu}m spatial resolution and <1000 {mu}m track-pair resolution in pressurized CO{sub 2} gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO{sub 2} mixtures are presented. 10 refs., 12 figs., 1 tab.

  1. D0 central tracking chamber performance studies

    SciTech Connect

    Pizzuto, D.

    1991-12-01

    The performance of the completed DO central tracking chamber was studied using cosmic rays at the State University of New York at Stony Brook. Also studied was a prototype tracking chamber identical in design to the completed DO tracking chamber. The prototype chamber was exposed to a collimated beam of 150 GeV pions at the Fermilab NWA test facility. Results indicate an R{Phi} tracking resolution compatible with the limitations imposed by physical considerations, excellent 2 track resolution, and a high track reconstruction efficiency along with a good rejection power against {gamma} {yields} e {sup +} e{sup {minus}} events.

  2. Engineering verification of the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.

    1992-01-01

    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.

  3. Thrust chamber thermal barrier coating techniques

    NASA Technical Reports Server (NTRS)

    Quentmeyer, Richard J.

    1989-01-01

    Methods for applying thermal barrier coatings to the hot-gas side wall of rocket thrust chambers in order to significantly reduce the heat transfer in high heat flux regions has been the focus of technology efforts for many years. A successful technique developed by NASA-Lewis that starts with the coating on a mandrel and then builds the thrust chamber around it by electroforming appropriate materials is described. This results in a smooth coating with exceptional adherence, as was demonstrated in hot fire rig tests. The low cycle fatigue life of chambers with coatings applied in this manner was increased dramatically compared to uncoated chambers.

  4. Thrust chamber thermal barrier coating techniques

    NASA Technical Reports Server (NTRS)

    Quentmeyer, Richard J.

    1988-01-01

    Methods for applying thermal barrier coatings to the hot-gas side wall of rocket thrust chambers in order to significantly reduce the heat transfer in high heat flux regions was the focus of technology efforts for many years. This paper describes a successful technique developed by the Lewis Research Center that starts with the coating of a mandrel and then builds the thrust chamber around it by electroforming appropriate materials. This results in a smooth coating with exceptional adherence, demonstrated in hot fire rig tests. The low cycle fatigue life of chambers with coatings applied in this manner was increased dramatically compared to uncoated chambers.

  5. Miniature triaxial metastable ionization detector for gas chromatographic trace analysis of extraterrestrial volatiles

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Kojiro, D. R.; Carle, G. C.

    1984-01-01

    The present investigation is concerned with a miniature metastable ionization detector featuring an unconventional electrode configuration, whose performance characteristics parallel those of traditional design. The ionization detector is to be incorporated in a flight gas chromatograph (GC) for use in the Space Shuttle. The design of the detector is discussed, taking into account studies which verified the sensitivity of the detector. The triaxial design of the detector is compared with a flat-plate style. The obtained results show that the principal goal of developing a miniature, highly sensitive ionization detector for flight applications was achieved. Improved fabrication techniques will utilize glass-to-metal seals and brazing procedures.

  6. Parallel optical sampler

    DOEpatents

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  7. CRUNCH_PARALLEL

    SciTech Connect

    Shumaker, Dana E.; Steefel, Carl I.

    2016-06-21

    The code CRUNCH_PARALLEL is a parallel version of the CRUNCH code. CRUNCH code version 2.0 was previously released by LLNL, (UCRL-CODE-200063). Crunch is a general purpose reactive transport code developed by Carl Steefel and Yabusake (Steefel Yabsaki 1996). The code handles non-isothermal transport and reaction in one, two, and three dimensions. The reaction algorithm is generic in form, handling an arbitrary number of aqueous and surface complexation as well as mineral dissolution/precipitation. A standardized database is used containing thermodynamic and kinetic data. The code includes advective, dispersive, and diffusive transport.

  8. The NAS Parallel Benchmarks

    SciTech Connect

    Bailey, David H.

    2009-11-15

    The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, although the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage

  9. Highly parallel computation

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.; Tichy, Walter F.

    1990-01-01

    Among the highly parallel computing architectures required for advanced scientific computation, those designated 'MIMD' and 'SIMD' have yielded the best results to date. The present development status evaluation of such architectures shown neither to have attained a decisive advantage in most near-homogeneous problems' treatment; in the cases of problems involving numerous dissimilar parts, however, such currently speculative architectures as 'neural networks' or 'data flow' machines may be entailed. Data flow computers are the most practical form of MIMD fine-grained parallel computers yet conceived; they automatically solve the problem of assigning virtual processors to the real processors in the machine.

  10. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  11. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  12. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  13. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    SciTech Connect

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-08-26

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or ‘interstitial’ aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation.

  14. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  15. Parallel Coordinate Axes.

    ERIC Educational Resources Information Center

    Friedlander, Alex; And Others

    1982-01-01

    Several methods of numerical mappings other than the usual cartesian coordinate system are considered. Some examples using parallel axes representation, which are seen to lead to aesthetically pleasing or interesting configurations, are presented. Exercises with alternative representations can stimulate pupil imagination and exploration in…

  16. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1993-01-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and Cthat allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. It includes both tutorial and reference material. It also presents the basic concepts that underlie PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous ftp from Argonne National Laboratory in the directory pub/pcn at info.mcs. ani.gov (cf. Appendix A). This version of this document describes PCN version 2.0, a major revision of the PCN programming system. It supersedes earlier versions of this report.

  17. Parallel Dislocation Simulator

    SciTech Connect

    2006-10-30

    ParaDiS is software capable of simulating the motion, evolution, and interaction of dislocation networks in single crystals using massively parallel computer architectures. The software is capable of outputting the stress-strain response of a single crystal whose plastic deformation is controlled by the dislocation processes.

  18. Massively parallel processor computer

    NASA Technical Reports Server (NTRS)

    Fung, L. W. (Inventor)

    1983-01-01

    An apparatus for processing multidimensional data with strong spatial characteristics, such as raw image data, characterized by a large number of parallel data streams in an ordered array is described. It comprises a large number (e.g., 16,384 in a 128 x 128 array) of parallel processing elements operating simultaneously and independently on single bit slices of a corresponding array of incoming data streams under control of a single set of instructions. Each of the processing elements comprises a bidirectional data bus in communication with a register for storing single bit slices together with a random access memory unit and associated circuitry, including a binary counter/shift register device, for performing logical and arithmetical computations on the bit slices, and an I/O unit for interfacing the bidirectional data bus with the data stream source. The massively parallel processor architecture enables very high speed processing of large amounts of ordered parallel data, including spatial translation by shifting or sliding of bits vertically or horizontally to neighboring processing elements.

  19. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  20. Parallel fast gauss transform

    SciTech Connect

    Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan

    2010-01-01

    We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.

  1. Parallel hierarchical radiosity rendering

    SciTech Connect

    Carter, M.

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  2. Parallel hierarchical global illumination

    SciTech Connect

    Snell, Quinn O.

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  3. Parallel Multigrid Equation Solver

    SciTech Connect

    Adams, Mark

    2001-09-07

    Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.

  4. Optical ionization detector

    DOEpatents

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  5. Optical ionization detector

    DOEpatents

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  6. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  7. Ionizing radiation promotes protozoan reproduction

    SciTech Connect

    Luckey, T.D.

    1986-11-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism.

  8. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  9. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  10. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  11. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  12. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  13. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  14. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  15. Raymond J. Chambers--A Personal Reflection

    ERIC Educational Resources Information Center

    Gaffikin, Michael

    2012-01-01

    This paper is presented as a tribute to Raymond J. Chambers. As its title suggests, it is a personal reflection through the eyes of someone who worked closely with him over a period of 10 years during a latter part of his career, and who completed a doctoral thesis with aspects of the work of Chambers as its subject. During this time, author…

  16. Dual-chamber inflatable oil boom

    SciTech Connect

    Blair, R.M.; Tedeschi, E.T.

    1993-08-24

    An elongated floating material containment boom section is described having a normally vertical ballasted skirt depending from flotation means, and convertible from a flattened collapsed condition to a deployable condition wherein buoyancy chamber means extending along the upper edge of said skirt are inflated to expanded buoyant configuration, including: a gas-impervious sleeve extending along the upper edge of said normally vertical skirt forming a first outer collapsible and inflatable flotation chamber, a first inflation valve connecting the interior of said sleeve with the ambient atmosphere, through which gas under pressure may be introduced into said sleeve to inflate said first buoyant outer flotation chamber, elongated gas-impervious tube means positioned inside said outer flotation chamber and forming second collapsible and inflatable internal flotation bladder chamber means, second inflation valve means connecting the interior of said bladder means through said outer flotation chamber to the ambient atmosphere through which gas under pressure may be introduced into said bladder means to inflate it forming said second flotation chamber means inside said outer flotation chamber.

  17. Space Power Facility Reverberation Chamber Calibration Report

    NASA Technical Reports Server (NTRS)

    Lewis, Catherine C.; Dolesh, Robert J.; Garrett, Michael J.

    2014-01-01

    This document describes the process and results of calibrating the Space Environmental Test EMI Test facility at NASA Plum Brook Space Power Facility according to the specifications of IEC61000-4-21 for susceptibility testing from 100 MHz to 40 GHz. The chamber passed the field uniformity test, in both the empty and loaded conditions, making it the world's largest Reverberation Chamber.

  18. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§...

  19. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§...

  20. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§...

  1. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§...

  2. Incinerator system arrangement with dual scrubbing chambers

    SciTech Connect

    Domnitch, I.

    1987-01-13

    An incinerator arrangement is described comprising: an incinerator housing located near the lowest point in a building, the housing containing incinerator elements therein; a chute-flue having a first end in communication with the incinerator housing, a second end at the top of the building for evacuation of combustion gases to the atmosphere therethrough, and at least one intermediately located waste disposal opening through which waste is dropped into the incinerator housing; the incinerator elements including: a main combustion chamber, an opening between the main combustion chamber and the first end of the chute-flue and a flue-damper covering the opening. The flue-damper is biased in a closed position and being operable by the weight of waste to admit the waste into the combustion chamber; a scrubbing chamber located exteriorly along the top of the combustion chamber and having a first opening into the combustion chamber and a second opening into the chute-flue; and water spraying means in the scrubbing chamber for directing a water spray at the combustion gases to wash particulate matter from the gases before the gases enter the chute-flue whereby the water spraying means which are located adjacent the combustion chamber are protected against freezing and the elements.

  3. The effect of ambient pressure on well chamber response: Monte Carlo calculated results for the HDR 1000 plus.

    PubMed

    Bohm, Tim D; Griffin, Sheridan L; DeLuca, Paul M; DeWerd, Larry A

    2005-04-01

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, the response of the Standard Imaging HDR 1000 Plus well chamber to ambient pressure is examined using Monte Carlo calculations. The experimental work examining the response of this chamber as well as other chambers is presented in a companion paper. The Monte Carlo results show that for low-energy photon sources, the application of the standard temperature pressure PTP correction factor produces an over-response at the reduced air densities/pressures corresponding to high elevations. With photon sources of 20 to 40 keV, the normalized PTP corrected chamber response is as much as 10% to 20% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. At air densities corresponding to an elevation of 1524 m (5000 ft), the normalized PTP-corrected chamber response is 5% to 10% over unity for these photon sources. With higher-energy photon sources (>100 keV), the normalized PTP corrected chamber response is near unity. For low-energy beta sources of 0.25 to 0.50 MeV, the normalized PTP-corrected chamber response is as much as 4% to 12% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. Higher-energy beta sources (>0.75 MeV) have a normalized PTP corrected chamber response near unity. Comparing calculated and measured chamber responses for common 103Pd- and 125I-based brachytherapy seeds show agreement to within 2.7% and 1.9%, respectively. Comparing MCNP calculated chamber responses with EGSnrc calculated chamber responses show agreement to within 3.1% at photon energies of 20 to 40 keV. We conclude that Monte Carlo transport calculations accurately model the response of this well chamber. Further, applying the standard PTP correction

  4. Theoretical and observational determinations of the ionization coefficient of meteors

    NASA Astrophysics Data System (ADS)

    Jones, William

    1997-07-01

    We examine the problem of the determination of the ionization coefficient beta from both the theoretical and observational points of view. In the past, theoretical evaluations of beta in terms of the relevant scattering cross-sections have used the Massey-Sida formula, which we show to give results which are plainly incorrect. We derive an integral equation for beta and compare the results of its application to copper and iron with laboratory simulations. Agreement for the variation of the ionization coefficient with velocity is good. The ionization coefficient has been determined observationally by Verniani & Hawkins from a comparison of radar and visual observations, employing the luminous efficiency tau also obtained observationally by Verniani. However, this determination of tau would appear to be invalidated by fragmentation. There is good evidence that the radiation of cometary meteors is dominated by that of iron in the visual range, and we have accordingly re-analysed the data of Verniani & Hawkins using the luminous efficiency of iron obtained in simulation experiments. However, it is not possible to choose an iron concentration which gives agreement between the determination of the ionization coefficient by this means and its determination from the theoretical equation in terms of either scattering coefficients or simulation methods. The observational ionization coefficients are much lower than predicted by the present theory and we provisionally explain this as a consequence of transfer of charge from the meteoric ion to a molecule of the air. It is now possible for the meteoric atom to be re-ionized, but it is also possible at sufficiently high initial line densities for significant dissociative recombination of the electrons and nitrogen or oxygen to take place. This recombination will not take place in meteor trains simulated in an ionization chamber. We thus conclude that the present theory is limited to faint radio meteors at lower velocities (v<~35

  5. An atmospheric exposure chamber for small animals

    NASA Technical Reports Server (NTRS)

    Glaser, R. M.; Weiss, H. S.; Pitt, J. F.; Grimard, M.

    1982-01-01

    The purpose of this project was to design a long-term environmental exposure chamber for small animals. This chamber is capable of producing hypoxic, normoxic and hyperoxic atmospheres which are closely regulated. The chamber, which is of the recycling type, is fashioned after clear plastic germ-free isolators. Oxygen concentration is set and controlled by a paramagnetic O2 analyzer and a 3-way solenoid valve. In this way either O2 or N2 may be provided to the system by way of negative O2 feedback. Relative humidity is maintained at 40-50 percent by a refrigeration type dryer. Carbon dioxide is absorbed by indicating soda lime. A diaphragm pump continuously circulates chamber gas at a high enough flow rate to prevent buildup of CO2 and humidity. This chamber has been used for numerous studies which involve prolonged exposure of small animals to various O2 concentrations.

  6. Note: Small anaerobic chamber for optical spectroscopy

    PubMed Central

    Chauvet, Adrien A. P.; Agarwal, Rachna; Cramer, William A.; Chergui, Majed

    2015-01-01

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment. PMID:26520998

  7. Anechoic chamber qualification at ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Jenny, Trevor; Anderson, Brian

    2010-10-01

    Qualifying an anechoic chamber for frequencies that extend into the ultrasonic range is necessary for research work involving airborne ultrasonic sound. For example, an anechoic chamber allows for measurements of the direct sound radiated by an object without reflections from walls. The ANSI S12.55/ISO 3745 standard which covers anechoic chamber qualification does not extend into the ultrasonic frequency range, nor have others discussed this frequency range in the literature. An increasing number of technologies are employing ultrasound; hence the need to develop facilities to conduct basic research studies on airborne ultrasound. This presentation will discuss the challenges associated with chamber qualification and present the results for qualification of a chamber at Brigham Young University. [This work has been funded by the Los Alamos National Laboratory

  8. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  9. Advanced tube-bundle rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Pavli, Albert J.

    1990-01-01

    An advanced rocket thrust chamber for future space application is described along with an improved method of fabrication. Potential benefits of the concept are improved cyclic life, reusability, and performance. Performance improvements are anticipated because of the enhanced heat transfer into the coolant which will enable higher chamber pressure in expander cycle engines. Cyclic life, reusability and reliability improvements are anticipated because of the enhanced structural compliance inherent in the construction. The method of construction involves the forming of the combustion chamber with a tube-bundle of high conductivity copper or copper alloy tubes, and the bonding of these tubes by an electroforming operation. Further, the method of fabrication reduces chamber complexity by incorporating manifolds, jackets, and structural stiffeners while having the potential for thrust chamber cost and weight reduction.

  10. Note: Small anaerobic chamber for optical spectroscopy

    SciTech Connect

    Chauvet, Adrien A. P. Chergui, Majed; Agarwal, Rachna; Cramer, William A.

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  11. Note: Small anaerobic chamber for optical spectroscopy.

    PubMed

    Chauvet, Adrien A P; Agarwal, Rachna; Cramer, William A; Chergui, Majed

    2015-10-01

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  12. Leakage correction estimate for electret ion chamber dielectric material used for long-term environmental gamma monitoring.

    PubMed

    Jones, David F; Paulus, L R

    2008-05-01

    The Idaho Department of Environmental Quality INL Oversight Program (DEQ-INL) operates an environmental gamma radiation detection network consisting of a series of high-pressure ion chambers to provide real-time ambient radiation measurements and a series of passive environmental electret ion chambers to increase coverage area and measure cumulative dose over a calendar quarter. DEQ-INL has identified a consistent over-response of approximately 40% by the electret ion chambers with respect to co-located high-pressure ion chambers since 1998. DEQ-INL conducted a series of three investigations to quantify this over-response. The over-response is likely attributable to a number of factors, including inherent voltage loss by the electret material not due to ionization within the chamber. One aspect of the investigation verified the manufacturer's calibration factor used to convert decrease in voltage to exposure. Additional investigations were performed that identified an average electret voltage loss of 0.2 V d(-1). When this voltage correction was applied to historical environmental data, electret ion chamber response was within 10% of the co-located high-pressure ion chamber response.

  13. Numerical studies of wall-plasma interactions and ionization phenomena in an ablative pulsed plasma thruster

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zeng, Guangshang; Tang, Haibin; Huang, Yuping; Liu, Xiangyang

    2016-07-01

    Wall-plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall-plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall-plasma interaction results based on this modified model were found to be more realistic than for the unmodified model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.

  14. The SAMURAI Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Dye, Steven

    2011-10-01

    The SAMURAI Time Projection Chamber (TPC) will be used to study particle collisions by colliding a beam of particles with a stationary gas which will be contained in a field cage inside the TPC. When the beam collides with the gas, charged particles are accelerated into the pad plane by an electric field. The paths of these particles will be curved by a magnetic field created by the SAMURAI magnet at the RIKEN facility in Japan. The charged particles will then collide with the pad plane which will be located on the bottom of the TPC. The pad plane will take these collisions and create electrical signals and send them to supporting electronics where the data can be interpreted. The TPC will be used to help determine the Equation of State for asymmetric nuclear matter. Measurements of neutron, proton, 3H and 3He flow will be taken with the NEBULA array which consists of nebula scintillators. The poster will contain information on the laser calibration system and the electronics that will be used for the TPC. The electronics used are the same electronics used in the STAR TPC experiment.

  15. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report.

  16. Calibration and performance of a secondary emission chamber as a beam intensity monitor

    SciTech Connect

    Sivertz, M.; Chiang, I-H,; Rusek, A.

    2011-03-28

    We report on a study of the behavior of a secondary emission chamber (SEC). We show the dependence of the SEC signal on the charge and velocity of the primary beam for beams of protons, and heavy ions including Helium, Neon, Chlorine and Iron. We fill the SEC with a selection of different gases including Hydrogen, Helium, Nitrogen, Argon, and air, studying the SEC response when it is acting as an ion chamber. We also investigate the behavior of the SEC at intermediate pressures between 10{sup -8} torr and atmospheric pressure. The SEC uses thin conducting foils as the source and collector of electrons in a vacuum chamber. When charged particles traverse the vacuum chamber, they pass through a series of thin conducting foils, alternating anode and cathode. Ionization produced in the cathode foils travels across the intervening gap due to an applied high voltage and is collected on the anode foils. Electron production is very inefficient because most of the ionization in the foils remains trapped within the foil due to the short range of most delta-rays and the work function of the foil. It is this inefficiency that allows the SEC to operate at high dose rates and short pulse duration where the standard ion chambers cannot function reliably. The SEC was placed in the NSRL ion beam to receive a variety of heavy ion beams under different beam conditions. We used these ion beams to study the response of the SEC to different species of heavy ion, comparing with proton beams. We studied the response to beam of different energies, and as a function of different counting rate. We compared the behaviour of the SEC when operating under positive and negative high voltage. The SEC can operate as an ion chamber if it is filled with gas. We measured the response of the SEC when filled with a variety of gases, from Hydrogen to Helium, Nitrogen, Argon and air. The performance of the SEC as an ion chamber is compared with the standard NSRL ion chamber, QC3. By evacuating the SEC and

  17. Cryogenic Testing Chamber for Optical Mirrors with Shearing Interferometer

    NASA Astrophysics Data System (ADS)

    Belyaeva, Alla I.; Galuza, Alexey A.

    Low temperature test units are complex and expensive instruments, often with a limited range of applications, for example, monitoring large optical system and details. Almost every project aimed at building a cooled satellite telescope requires a new test units. The original cryogenic testing chamber for measuring the shape of spherical mirrors with a diameter of up to 0.4 m and a curvature radius of up to 0.7 m in vacuum at temperature of 10 - 300 K is proposed. The optical mirrors are tested at low temperature by interferometry. The shearing interferometer is placed outside the testing chamber. The tolerances with respect to the wavefront distortions are less than wave-length/40. Main difference of our chamber from the previously reported is that all the optical components and most of the cooling system are attached to a flange, mounted on a base and to a frame with a stabilized temperature. The rigid frame is a "squirrel wheel" welded from thick-walled pipes, and coolant can circulate inside. This design excludes unintentional thermal deformations of the frame and the related mirror displacement after cooling. A two-stage cooling system includes a nitrogen vessel (the first stage) with detachable heat shields and a movable shield. A continuous-flow coolers -cocurrent exchanger (the second stage) sets the temperature of the test mirror in the range 10-300K. The test mirror is fixed on three alignment units attached to the frame via rigid thermally insulating rods. The screw alignment units are driven by modified low-power stepper motors fixed to the alignment units. The circuit which controls the motors can translate the mirror parallel or tilt it in any direction. This design allows the interference pattern to be corrected at any stage of the test. The drives can also compensate for the flexibility of the mirror mounting (without rigid rims and cold conductors), which is needed to reduce the mechanical strain. The proposed design and structure of the chamber

  18. Resonance ionization for analytical spectroscopy

    DOEpatents

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  19. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  20. Design and Installation of a Field Ionization Test Chamber for Ion Thrusters

    DTIC Science & Technology

    2011-12-01

    Romano Second Reader: Oscar Biblarz THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public...Paul W. Camp Approved by: Sebastian Osswald Thesis Advisor Marcello Romano Thesis Co-Advisor Oscar Biblarz Second Reader Knox T...in its success. I would also like to thank Professor Oscar Biblarz, for his wealth of knowledge on ion propulsion he imparted to me. A special